1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
34
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36
37 static void switch_mode(CPUARMState *env, int mode);
38
raw_read(CPUARMState * env,const ARMCPRegInfo * ri)39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 {
41 assert(ri->fieldoffset);
42 if (cpreg_field_is_64bit(ri)) {
43 return CPREG_FIELD64(env, ri);
44 } else {
45 return CPREG_FIELD32(env, ri);
46 }
47 }
48
raw_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
50 {
51 assert(ri->fieldoffset);
52 if (cpreg_field_is_64bit(ri)) {
53 CPREG_FIELD64(env, ri) = value;
54 } else {
55 CPREG_FIELD32(env, ri) = value;
56 }
57 }
58
raw_ptr(CPUARMState * env,const ARMCPRegInfo * ri)59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
60 {
61 return (char *)env + ri->fieldoffset;
62 }
63
read_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri)64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
65 {
66 /* Raw read of a coprocessor register (as needed for migration, etc). */
67 if (ri->type & ARM_CP_CONST) {
68 return ri->resetvalue;
69 } else if (ri->raw_readfn) {
70 return ri->raw_readfn(env, ri);
71 } else if (ri->readfn) {
72 return ri->readfn(env, ri);
73 } else {
74 return raw_read(env, ri);
75 }
76 }
77
write_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t v)78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79 uint64_t v)
80 {
81 /*
82 * Raw write of a coprocessor register (as needed for migration, etc).
83 * Note that constant registers are treated as write-ignored; the
84 * caller should check for success by whether a readback gives the
85 * value written.
86 */
87 if (ri->type & ARM_CP_CONST) {
88 return;
89 } else if (ri->raw_writefn) {
90 ri->raw_writefn(env, ri, v);
91 } else if (ri->writefn) {
92 ri->writefn(env, ri, v);
93 } else {
94 raw_write(env, ri, v);
95 }
96 }
97
raw_accessors_invalid(const ARMCPRegInfo * ri)98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
99 {
100 /*
101 * Return true if the regdef would cause an assertion if you called
102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103 * program bug for it not to have the NO_RAW flag).
104 * NB that returning false here doesn't necessarily mean that calling
105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106 * read/write access functions which are safe for raw use" from "has
107 * read/write access functions which have side effects but has forgotten
108 * to provide raw access functions".
109 * The tests here line up with the conditions in read/write_raw_cp_reg()
110 * and assertions in raw_read()/raw_write().
111 */
112 if ((ri->type & ARM_CP_CONST) ||
113 ri->fieldoffset ||
114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115 return false;
116 }
117 return true;
118 }
119
write_cpustate_to_list(ARMCPU * cpu,bool kvm_sync)120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
121 {
122 /* Write the coprocessor state from cpu->env to the (index,value) list. */
123 int i;
124 bool ok = true;
125
126 for (i = 0; i < cpu->cpreg_array_len; i++) {
127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128 const ARMCPRegInfo *ri;
129 uint64_t newval;
130
131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132 if (!ri) {
133 ok = false;
134 continue;
135 }
136 if (ri->type & ARM_CP_NO_RAW) {
137 continue;
138 }
139
140 newval = read_raw_cp_reg(&cpu->env, ri);
141 if (kvm_sync) {
142 /*
143 * Only sync if the previous list->cpustate sync succeeded.
144 * Rather than tracking the success/failure state for every
145 * item in the list, we just recheck "does the raw write we must
146 * have made in write_list_to_cpustate() read back OK" here.
147 */
148 uint64_t oldval = cpu->cpreg_values[i];
149
150 if (oldval == newval) {
151 continue;
152 }
153
154 write_raw_cp_reg(&cpu->env, ri, oldval);
155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156 continue;
157 }
158
159 write_raw_cp_reg(&cpu->env, ri, newval);
160 }
161 cpu->cpreg_values[i] = newval;
162 }
163 return ok;
164 }
165
write_list_to_cpustate(ARMCPU * cpu)166 bool write_list_to_cpustate(ARMCPU *cpu)
167 {
168 int i;
169 bool ok = true;
170
171 for (i = 0; i < cpu->cpreg_array_len; i++) {
172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173 uint64_t v = cpu->cpreg_values[i];
174 const ARMCPRegInfo *ri;
175
176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177 if (!ri) {
178 ok = false;
179 continue;
180 }
181 if (ri->type & ARM_CP_NO_RAW) {
182 continue;
183 }
184 /*
185 * Write value and confirm it reads back as written
186 * (to catch read-only registers and partially read-only
187 * registers where the incoming migration value doesn't match)
188 */
189 write_raw_cp_reg(&cpu->env, ri, v);
190 if (read_raw_cp_reg(&cpu->env, ri) != v) {
191 ok = false;
192 }
193 }
194 return ok;
195 }
196
add_cpreg_to_list(gpointer key,gpointer opaque)197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 {
199 ARMCPU *cpu = opaque;
200 uint32_t regidx = (uintptr_t)key;
201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
202
203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205 /* The value array need not be initialized at this point */
206 cpu->cpreg_array_len++;
207 }
208 }
209
count_cpreg(gpointer key,gpointer opaque)210 static void count_cpreg(gpointer key, gpointer opaque)
211 {
212 ARMCPU *cpu = opaque;
213 const ARMCPRegInfo *ri;
214
215 ri = g_hash_table_lookup(cpu->cp_regs, key);
216
217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218 cpu->cpreg_array_len++;
219 }
220 }
221
cpreg_key_compare(gconstpointer a,gconstpointer b)222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
223 {
224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
226
227 if (aidx > bidx) {
228 return 1;
229 }
230 if (aidx < bidx) {
231 return -1;
232 }
233 return 0;
234 }
235
init_cpreg_list(ARMCPU * cpu)236 void init_cpreg_list(ARMCPU *cpu)
237 {
238 /*
239 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240 * Note that we require cpreg_tuples[] to be sorted by key ID.
241 */
242 GList *keys;
243 int arraylen;
244
245 keys = g_hash_table_get_keys(cpu->cp_regs);
246 keys = g_list_sort(keys, cpreg_key_compare);
247
248 cpu->cpreg_array_len = 0;
249
250 g_list_foreach(keys, count_cpreg, cpu);
251
252 arraylen = cpu->cpreg_array_len;
253 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258 cpu->cpreg_array_len = 0;
259
260 g_list_foreach(keys, add_cpreg_to_list, cpu);
261
262 assert(cpu->cpreg_array_len == arraylen);
263
264 g_list_free(keys);
265 }
266
arm_pan_enabled(CPUARMState * env)267 static bool arm_pan_enabled(CPUARMState *env)
268 {
269 if (is_a64(env)) {
270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271 return false;
272 }
273 return env->pstate & PSTATE_PAN;
274 } else {
275 return env->uncached_cpsr & CPSR_PAN;
276 }
277 }
278
279 /*
280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
281 */
access_el3_aa32ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283 const ARMCPRegInfo *ri,
284 bool isread)
285 {
286 if (!is_a64(env) && arm_current_el(env) == 3 &&
287 arm_is_secure_below_el3(env)) {
288 return CP_ACCESS_TRAP_UNCATEGORIZED;
289 }
290 return CP_ACCESS_OK;
291 }
292
293 /*
294 * Some secure-only AArch32 registers trap to EL3 if used from
295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297 * We assume that the .access field is set to PL1_RW.
298 */
access_trap_aa32s_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300 const ARMCPRegInfo *ri,
301 bool isread)
302 {
303 if (arm_current_el(env) == 3) {
304 return CP_ACCESS_OK;
305 }
306 if (arm_is_secure_below_el3(env)) {
307 if (env->cp15.scr_el3 & SCR_EEL2) {
308 return CP_ACCESS_TRAP_EL2;
309 }
310 return CP_ACCESS_TRAP_EL3;
311 }
312 /* This will be EL1 NS and EL2 NS, which just UNDEF */
313 return CP_ACCESS_TRAP_UNCATEGORIZED;
314 }
315
316 /*
317 * Check for traps to performance monitor registers, which are controlled
318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
319 */
access_tpm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321 bool isread)
322 {
323 int el = arm_current_el(env);
324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
325
326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327 return CP_ACCESS_TRAP_EL2;
328 }
329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330 return CP_ACCESS_TRAP_EL3;
331 }
332 return CP_ACCESS_OK;
333 }
334
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
access_tvm_trvm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
338 {
339 if (arm_current_el(env) == 1) {
340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341 if (arm_hcr_el2_eff(env) & trap) {
342 return CP_ACCESS_TRAP_EL2;
343 }
344 }
345 return CP_ACCESS_OK;
346 }
347
348 /* Check for traps from EL1 due to HCR_EL2.TSW. */
access_tsw(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350 bool isread)
351 {
352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353 return CP_ACCESS_TRAP_EL2;
354 }
355 return CP_ACCESS_OK;
356 }
357
358 /* Check for traps from EL1 due to HCR_EL2.TACR. */
access_tacr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360 bool isread)
361 {
362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363 return CP_ACCESS_TRAP_EL2;
364 }
365 return CP_ACCESS_OK;
366 }
367
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
access_ttlb(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370 bool isread)
371 {
372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373 return CP_ACCESS_TRAP_EL2;
374 }
375 return CP_ACCESS_OK;
376 }
377
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
access_ttlbis(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380 bool isread)
381 {
382 if (arm_current_el(env) == 1 &&
383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384 return CP_ACCESS_TRAP_EL2;
385 }
386 return CP_ACCESS_OK;
387 }
388
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
access_ttlbos(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
393 {
394 if (arm_current_el(env) == 1 &&
395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396 return CP_ACCESS_TRAP_EL2;
397 }
398 return CP_ACCESS_OK;
399 }
400 #endif
401
dacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
403 {
404 ARMCPU *cpu = env_archcpu(env);
405
406 raw_write(env, ri, value);
407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
408 }
409
fcse_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
411 {
412 ARMCPU *cpu = env_archcpu(env);
413
414 if (raw_read(env, ri) != value) {
415 /*
416 * Unlike real hardware the qemu TLB uses virtual addresses,
417 * not modified virtual addresses, so this causes a TLB flush.
418 */
419 tlb_flush(CPU(cpu));
420 raw_write(env, ri, value);
421 }
422 }
423
contextidr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425 uint64_t value)
426 {
427 ARMCPU *cpu = env_archcpu(env);
428
429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430 && !extended_addresses_enabled(env)) {
431 /*
432 * For VMSA (when not using the LPAE long descriptor page table
433 * format) this register includes the ASID, so do a TLB flush.
434 * For PMSA it is purely a process ID and no action is needed.
435 */
436 tlb_flush(CPU(cpu));
437 }
438 raw_write(env, ri, value);
439 }
440
alle1_tlbmask(CPUARMState * env)441 static int alle1_tlbmask(CPUARMState *env)
442 {
443 /*
444 * Note that the 'ALL' scope must invalidate both stage 1 and
445 * stage 2 translations, whereas most other scopes only invalidate
446 * stage 1 translations.
447 */
448 return (ARMMMUIdxBit_E10_1 |
449 ARMMMUIdxBit_E10_1_PAN |
450 ARMMMUIdxBit_E10_0 |
451 ARMMMUIdxBit_Stage2 |
452 ARMMMUIdxBit_Stage2_S);
453 }
454
455
456 /* IS variants of TLB operations must affect all cores */
tlbiall_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
458 uint64_t value)
459 {
460 CPUState *cs = env_cpu(env);
461
462 tlb_flush_all_cpus_synced(cs);
463 }
464
tlbiasid_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
466 uint64_t value)
467 {
468 CPUState *cs = env_cpu(env);
469
470 tlb_flush_all_cpus_synced(cs);
471 }
472
tlbimva_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
474 uint64_t value)
475 {
476 CPUState *cs = env_cpu(env);
477
478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
479 }
480
tlbimvaa_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 uint64_t value)
483 {
484 CPUState *cs = env_cpu(env);
485
486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
487 }
488
489 /*
490 * Non-IS variants of TLB operations are upgraded to
491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
492 * force broadcast of these operations.
493 */
tlb_force_broadcast(CPUARMState * env)494 static bool tlb_force_broadcast(CPUARMState *env)
495 {
496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
497 }
498
tlbiall_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
501 {
502 /* Invalidate all (TLBIALL) */
503 CPUState *cs = env_cpu(env);
504
505 if (tlb_force_broadcast(env)) {
506 tlb_flush_all_cpus_synced(cs);
507 } else {
508 tlb_flush(cs);
509 }
510 }
511
tlbimva_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
514 {
515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
516 CPUState *cs = env_cpu(env);
517
518 value &= TARGET_PAGE_MASK;
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_page_all_cpus_synced(cs, value);
521 } else {
522 tlb_flush_page(cs, value);
523 }
524 }
525
tlbiasid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
528 {
529 /* Invalidate by ASID (TLBIASID) */
530 CPUState *cs = env_cpu(env);
531
532 if (tlb_force_broadcast(env)) {
533 tlb_flush_all_cpus_synced(cs);
534 } else {
535 tlb_flush(cs);
536 }
537 }
538
tlbimvaa_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
541 {
542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
543 CPUState *cs = env_cpu(env);
544
545 value &= TARGET_PAGE_MASK;
546 if (tlb_force_broadcast(env)) {
547 tlb_flush_page_all_cpus_synced(cs, value);
548 } else {
549 tlb_flush_page(cs, value);
550 }
551 }
552
tlbiall_nsnh_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
555 {
556 CPUState *cs = env_cpu(env);
557
558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
559 }
560
tlbiall_nsnh_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
563 {
564 CPUState *cs = env_cpu(env);
565
566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
567 }
568
569
tlbiall_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
572 {
573 CPUState *cs = env_cpu(env);
574
575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
576 }
577
tlbiall_hyp_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
580 {
581 CPUState *cs = env_cpu(env);
582
583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
584 }
585
tlbimva_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
588 {
589 CPUState *cs = env_cpu(env);
590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
591
592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
593 }
594
tlbimva_hyp_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value)
597 {
598 CPUState *cs = env_cpu(env);
599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
600
601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
602 ARMMMUIdxBit_E2);
603 }
604
tlbiipas2_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 uint64_t value)
607 {
608 CPUState *cs = env_cpu(env);
609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
610
611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
612 }
613
tlbiipas2is_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
615 uint64_t value)
616 {
617 CPUState *cs = env_cpu(env);
618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
619
620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
621 }
622
623 static const ARMCPRegInfo cp_reginfo[] = {
624 /*
625 * Define the secure and non-secure FCSE identifier CP registers
626 * separately because there is no secure bank in V8 (no _EL3). This allows
627 * the secure register to be properly reset and migrated. There is also no
628 * v8 EL1 version of the register so the non-secure instance stands alone.
629 */
630 { .name = "FCSEIDR",
631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
635 { .name = "FCSEIDR_S",
636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
640 /*
641 * Define the secure and non-secure context identifier CP registers
642 * separately because there is no secure bank in V8 (no _EL3). This allows
643 * the secure register to be properly reset and migrated. In the
644 * non-secure case, the 32-bit register will have reset and migration
645 * disabled during registration as it is handled by the 64-bit instance.
646 */
647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
649 .access = PL1_RW, .accessfn = access_tvm_trvm,
650 .fgt = FGT_CONTEXTIDR_EL1,
651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
652 .secure = ARM_CP_SECSTATE_NS,
653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
657 .access = PL1_RW, .accessfn = access_tvm_trvm,
658 .secure = ARM_CP_SECSTATE_S,
659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
661 };
662
663 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
664 /*
665 * NB: Some of these registers exist in v8 but with more precise
666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
667 */
668 /* MMU Domain access control / MPU write buffer control */
669 { .name = "DACR",
670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
672 .writefn = dacr_write, .raw_writefn = raw_write,
673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
674 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
675 /*
676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
677 * For v6 and v5, these mappings are overly broad.
678 */
679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
687 /* Cache maintenance ops; some of this space may be overridden later. */
688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
691 };
692
693 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
694 /*
695 * Not all pre-v6 cores implemented this WFI, so this is slightly
696 * over-broad.
697 */
698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
699 .access = PL1_W, .type = ARM_CP_WFI },
700 };
701
702 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
703 /*
704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
705 * is UNPREDICTABLE; we choose to NOP as most implementations do).
706 */
707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
708 .access = PL1_W, .type = ARM_CP_WFI },
709 /*
710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
712 * OMAPCP will override this space.
713 */
714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
716 .resetvalue = 0 },
717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
719 .resetvalue = 0 },
720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
723 .resetvalue = 0 },
724 /*
725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
726 * implementing it as RAZ means the "debug architecture version" bits
727 * will read as a reserved value, which should cause Linux to not try
728 * to use the debug hardware.
729 */
730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
732 /*
733 * MMU TLB control. Note that the wildcarding means we cover not just
734 * the unified TLB ops but also the dside/iside/inner-shareable variants.
735 */
736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
738 .type = ARM_CP_NO_RAW },
739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
741 .type = ARM_CP_NO_RAW },
742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
744 .type = ARM_CP_NO_RAW },
745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
747 .type = ARM_CP_NO_RAW },
748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
752 };
753
cpacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
755 uint64_t value)
756 {
757 uint32_t mask = 0;
758
759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
760 if (!arm_feature(env, ARM_FEATURE_V8)) {
761 /*
762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
765 */
766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
767 /* VFP coprocessor: cp10 & cp11 [23:20] */
768 mask |= R_CPACR_ASEDIS_MASK |
769 R_CPACR_D32DIS_MASK |
770 R_CPACR_CP11_MASK |
771 R_CPACR_CP10_MASK;
772
773 if (!arm_feature(env, ARM_FEATURE_NEON)) {
774 /* ASEDIS [31] bit is RAO/WI */
775 value |= R_CPACR_ASEDIS_MASK;
776 }
777
778 /*
779 * VFPv3 and upwards with NEON implement 32 double precision
780 * registers (D0-D31).
781 */
782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
784 value |= R_CPACR_D32DIS_MASK;
785 }
786 }
787 value &= mask;
788 }
789
790 /*
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793 */
794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
798 }
799
800 env->cp15.cpacr_el1 = value;
801 }
802
cpacr_read(CPUARMState * env,const ARMCPRegInfo * ri)803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
804 {
805 /*
806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
808 */
809 uint64_t value = env->cp15.cpacr_el1;
810
811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
814 }
815 return value;
816 }
817
818
cpacr_reset(CPUARMState * env,const ARMCPRegInfo * ri)819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
820 {
821 /*
822 * Call cpacr_write() so that we reset with the correct RAO bits set
823 * for our CPU features.
824 */
825 cpacr_write(env, ri, 0);
826 }
827
cpacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
830 {
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
840 }
841 }
842
843 return CP_ACCESS_OK;
844 }
845
cptr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
848 {
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 &&
851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
852 return CP_ACCESS_TRAP_EL3;
853 }
854
855 return CP_ACCESS_OK;
856 }
857
858 static const ARMCPRegInfo v6_cp_reginfo[] = {
859 /* prefetch by MVA in v6, NOP in v7 */
860 { .name = "MVA_prefetch",
861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
862 .access = PL1_W, .type = ARM_CP_NOP },
863 /*
864 * We need to break the TB after ISB to execute self-modifying code
865 * correctly and also to take any pending interrupts immediately.
866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
867 */
868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
873 .access = PL0_W, .type = ARM_CP_NOP },
874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
875 .access = PL1_RW, .accessfn = access_tvm_trvm,
876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
877 offsetof(CPUARMState, cp15.ifar_ns) },
878 .resetvalue = 0, },
879 /*
880 * Watchpoint Fault Address Register : should actually only be present
881 * for 1136, 1176, 11MPCore.
882 */
883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
887 .fgt = FGT_CPACR_EL1,
888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
891 };
892
893 typedef struct pm_event {
894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896 bool (*supported)(CPUARMState *);
897 /*
898 * Retrieve the current count of the underlying event. The programmed
899 * counters hold a difference from the return value from this function
900 */
901 uint64_t (*get_count)(CPUARMState *);
902 /*
903 * Return how many nanoseconds it will take (at a minimum) for count events
904 * to occur. A negative value indicates the counter will never overflow, or
905 * that the counter has otherwise arranged for the overflow bit to be set
906 * and the PMU interrupt to be raised on overflow.
907 */
908 int64_t (*ns_per_count)(uint64_t);
909 } pm_event;
910
event_always_supported(CPUARMState * env)911 static bool event_always_supported(CPUARMState *env)
912 {
913 return true;
914 }
915
swinc_get_count(CPUARMState * env)916 static uint64_t swinc_get_count(CPUARMState *env)
917 {
918 /*
919 * SW_INCR events are written directly to the pmevcntr's by writes to
920 * PMSWINC, so there is no underlying count maintained by the PMU itself
921 */
922 return 0;
923 }
924
swinc_ns_per(uint64_t ignored)925 static int64_t swinc_ns_per(uint64_t ignored)
926 {
927 return -1;
928 }
929
930 /*
931 * Return the underlying cycle count for the PMU cycle counters. If we're in
932 * usermode, simply return 0.
933 */
cycles_get_count(CPUARMState * env)934 static uint64_t cycles_get_count(CPUARMState *env)
935 {
936 #ifndef CONFIG_USER_ONLY
937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
939 #else
940 return cpu_get_host_ticks();
941 #endif
942 }
943
944 #ifndef CONFIG_USER_ONLY
cycles_ns_per(uint64_t cycles)945 static int64_t cycles_ns_per(uint64_t cycles)
946 {
947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
948 }
949
instructions_supported(CPUARMState * env)950 static bool instructions_supported(CPUARMState *env)
951 {
952 /* Precise instruction counting */
953 return icount_enabled() == ICOUNT_PRECISE;
954 }
955
instructions_get_count(CPUARMState * env)956 static uint64_t instructions_get_count(CPUARMState *env)
957 {
958 assert(icount_enabled() == ICOUNT_PRECISE);
959 return (uint64_t)icount_get_raw();
960 }
961
instructions_ns_per(uint64_t icount)962 static int64_t instructions_ns_per(uint64_t icount)
963 {
964 assert(icount_enabled() == ICOUNT_PRECISE);
965 return icount_to_ns((int64_t)icount);
966 }
967 #endif
968
pmuv3p1_events_supported(CPUARMState * env)969 static bool pmuv3p1_events_supported(CPUARMState *env)
970 {
971 /* For events which are supported in any v8.1 PMU */
972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
973 }
974
pmuv3p4_events_supported(CPUARMState * env)975 static bool pmuv3p4_events_supported(CPUARMState *env)
976 {
977 /* For events which are supported in any v8.1 PMU */
978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
979 }
980
zero_event_get_count(CPUARMState * env)981 static uint64_t zero_event_get_count(CPUARMState *env)
982 {
983 /* For events which on QEMU never fire, so their count is always zero */
984 return 0;
985 }
986
zero_event_ns_per(uint64_t cycles)987 static int64_t zero_event_ns_per(uint64_t cycles)
988 {
989 /* An event which never fires can never overflow */
990 return -1;
991 }
992
993 static const pm_event pm_events[] = {
994 { .number = 0x000, /* SW_INCR */
995 .supported = event_always_supported,
996 .get_count = swinc_get_count,
997 .ns_per_count = swinc_ns_per,
998 },
999 #ifndef CONFIG_USER_ONLY
1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1001 .supported = instructions_supported,
1002 .get_count = instructions_get_count,
1003 .ns_per_count = instructions_ns_per,
1004 },
1005 { .number = 0x011, /* CPU_CYCLES, Cycle */
1006 .supported = event_always_supported,
1007 .get_count = cycles_get_count,
1008 .ns_per_count = cycles_ns_per,
1009 },
1010 #endif
1011 { .number = 0x023, /* STALL_FRONTEND */
1012 .supported = pmuv3p1_events_supported,
1013 .get_count = zero_event_get_count,
1014 .ns_per_count = zero_event_ns_per,
1015 },
1016 { .number = 0x024, /* STALL_BACKEND */
1017 .supported = pmuv3p1_events_supported,
1018 .get_count = zero_event_get_count,
1019 .ns_per_count = zero_event_ns_per,
1020 },
1021 { .number = 0x03c, /* STALL */
1022 .supported = pmuv3p4_events_supported,
1023 .get_count = zero_event_get_count,
1024 .ns_per_count = zero_event_ns_per,
1025 },
1026 };
1027
1028 /*
1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1030 * events (i.e. the statistical profiling extension), this implementation
1031 * should first be updated to something sparse instead of the current
1032 * supported_event_map[] array.
1033 */
1034 #define MAX_EVENT_ID 0x3c
1035 #define UNSUPPORTED_EVENT UINT16_MAX
1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1037
1038 /*
1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1040 * of ARM event numbers to indices in our pm_events array.
1041 *
1042 * Note: Events in the 0x40XX range are not currently supported.
1043 */
pmu_init(ARMCPU * cpu)1044 void pmu_init(ARMCPU *cpu)
1045 {
1046 unsigned int i;
1047
1048 /*
1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1050 * events to them
1051 */
1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1053 supported_event_map[i] = UNSUPPORTED_EVENT;
1054 }
1055 cpu->pmceid0 = 0;
1056 cpu->pmceid1 = 0;
1057
1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1059 const pm_event *cnt = &pm_events[i];
1060 assert(cnt->number <= MAX_EVENT_ID);
1061 /* We do not currently support events in the 0x40xx range */
1062 assert(cnt->number <= 0x3f);
1063
1064 if (cnt->supported(&cpu->env)) {
1065 supported_event_map[cnt->number] = i;
1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1067 if (cnt->number & 0x20) {
1068 cpu->pmceid1 |= event_mask;
1069 } else {
1070 cpu->pmceid0 |= event_mask;
1071 }
1072 }
1073 }
1074 }
1075
1076 /*
1077 * Check at runtime whether a PMU event is supported for the current machine
1078 */
event_supported(uint16_t number)1079 static bool event_supported(uint16_t number)
1080 {
1081 if (number > MAX_EVENT_ID) {
1082 return false;
1083 }
1084 return supported_event_map[number] != UNSUPPORTED_EVENT;
1085 }
1086
pmreg_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1088 bool isread)
1089 {
1090 /*
1091 * Performance monitor registers user accessibility is controlled
1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1093 * trapping to EL2 or EL3 for other accesses.
1094 */
1095 int el = arm_current_el(env);
1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1097
1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1099 return CP_ACCESS_TRAP;
1100 }
1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1102 return CP_ACCESS_TRAP_EL2;
1103 }
1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1105 return CP_ACCESS_TRAP_EL3;
1106 }
1107
1108 return CP_ACCESS_OK;
1109 }
1110
pmreg_access_xevcntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1112 const ARMCPRegInfo *ri,
1113 bool isread)
1114 {
1115 /* ER: event counter read trap control */
1116 if (arm_feature(env, ARM_FEATURE_V8)
1117 && arm_current_el(env) == 0
1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1119 && isread) {
1120 return CP_ACCESS_OK;
1121 }
1122
1123 return pmreg_access(env, ri, isread);
1124 }
1125
pmreg_access_swinc(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1127 const ARMCPRegInfo *ri,
1128 bool isread)
1129 {
1130 /* SW: software increment write trap control */
1131 if (arm_feature(env, ARM_FEATURE_V8)
1132 && arm_current_el(env) == 0
1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1134 && !isread) {
1135 return CP_ACCESS_OK;
1136 }
1137
1138 return pmreg_access(env, ri, isread);
1139 }
1140
pmreg_access_selr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1141 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1142 const ARMCPRegInfo *ri,
1143 bool isread)
1144 {
1145 /* ER: event counter read trap control */
1146 if (arm_feature(env, ARM_FEATURE_V8)
1147 && arm_current_el(env) == 0
1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1149 return CP_ACCESS_OK;
1150 }
1151
1152 return pmreg_access(env, ri, isread);
1153 }
1154
pmreg_access_ccntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1156 const ARMCPRegInfo *ri,
1157 bool isread)
1158 {
1159 /* CR: cycle counter read trap control */
1160 if (arm_feature(env, ARM_FEATURE_V8)
1161 && arm_current_el(env) == 0
1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1163 && isread) {
1164 return CP_ACCESS_OK;
1165 }
1166
1167 return pmreg_access(env, ri, isread);
1168 }
1169
1170 /*
1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1172 * We use these to decide whether we need to wrap a write to MDCR_EL2
1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1174 */
1175 #define MDCR_EL2_PMU_ENABLE_BITS \
1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1178
1179 /*
1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1181 * the current EL, security state, and register configuration.
1182 */
pmu_counter_enabled(CPUARMState * env,uint8_t counter)1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1184 {
1185 uint64_t filter;
1186 bool e, p, u, nsk, nsu, nsh, m;
1187 bool enabled, prohibited = false, filtered;
1188 bool secure = arm_is_secure(env);
1189 int el = arm_current_el(env);
1190 uint64_t mdcr_el2;
1191 uint8_t hpmn;
1192
1193 /*
1194 * We might be called for M-profile cores where MDCR_EL2 doesn't
1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1196 * must be before we read that value.
1197 */
1198 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1199 return false;
1200 }
1201
1202 mdcr_el2 = arm_mdcr_el2_eff(env);
1203 hpmn = mdcr_el2 & MDCR_HPMN;
1204
1205 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1206 (counter < hpmn || counter == 31)) {
1207 e = env->cp15.c9_pmcr & PMCRE;
1208 } else {
1209 e = mdcr_el2 & MDCR_HPME;
1210 }
1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1212
1213 /* Is event counting prohibited? */
1214 if (el == 2 && (counter < hpmn || counter == 31)) {
1215 prohibited = mdcr_el2 & MDCR_HPMD;
1216 }
1217 if (secure) {
1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1219 }
1220
1221 if (counter == 31) {
1222 /*
1223 * The cycle counter defaults to running. PMCR.DP says "disable
1224 * the cycle counter when event counting is prohibited".
1225 * Some MDCR bits disable the cycle counter specifically.
1226 */
1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1229 if (secure) {
1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1231 }
1232 if (el == 2) {
1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1234 }
1235 }
1236 }
1237
1238 if (counter == 31) {
1239 filter = env->cp15.pmccfiltr_el0;
1240 } else {
1241 filter = env->cp15.c14_pmevtyper[counter];
1242 }
1243
1244 p = filter & PMXEVTYPER_P;
1245 u = filter & PMXEVTYPER_U;
1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1249 m = arm_el_is_aa64(env, 1) &&
1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1251
1252 if (el == 0) {
1253 filtered = secure ? u : u != nsu;
1254 } else if (el == 1) {
1255 filtered = secure ? p : p != nsk;
1256 } else if (el == 2) {
1257 filtered = !nsh;
1258 } else { /* EL3 */
1259 filtered = m != p;
1260 }
1261
1262 if (counter != 31) {
1263 /*
1264 * If not checking PMCCNTR, ensure the counter is setup to an event we
1265 * support
1266 */
1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1268 if (!event_supported(event)) {
1269 return false;
1270 }
1271 }
1272
1273 return enabled && !prohibited && !filtered;
1274 }
1275
pmu_update_irq(CPUARMState * env)1276 static void pmu_update_irq(CPUARMState *env)
1277 {
1278 ARMCPU *cpu = env_archcpu(env);
1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1281 }
1282
pmccntr_clockdiv_enabled(CPUARMState * env)1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1284 {
1285 /*
1286 * Return true if the clock divider is enabled and the cycle counter
1287 * is supposed to tick only once every 64 clock cycles. This is
1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1289 * (64-bit) cycle counter PMCR.D has no effect.
1290 */
1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1292 }
1293
pmevcntr_is_64_bit(CPUARMState * env,int counter)1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1295 {
1296 /* Return true if the specified event counter is configured to be 64 bit */
1297
1298 /* This isn't intended to be used with the cycle counter */
1299 assert(counter < 31);
1300
1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1302 return false;
1303 }
1304
1305 if (arm_feature(env, ARM_FEATURE_EL2)) {
1306 /*
1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1308 * current security state, so we don't use arm_mdcr_el2_eff() here.
1309 */
1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1312
1313 if (counter >= hpmn) {
1314 return hlp;
1315 }
1316 }
1317 return env->cp15.c9_pmcr & PMCRLP;
1318 }
1319
1320 /*
1321 * Ensure c15_ccnt is the guest-visible count so that operations such as
1322 * enabling/disabling the counter or filtering, modifying the count itself,
1323 * etc. can be done logically. This is essentially a no-op if the counter is
1324 * not enabled at the time of the call.
1325 */
pmccntr_op_start(CPUARMState * env)1326 static void pmccntr_op_start(CPUARMState *env)
1327 {
1328 uint64_t cycles = cycles_get_count(env);
1329
1330 if (pmu_counter_enabled(env, 31)) {
1331 uint64_t eff_cycles = cycles;
1332 if (pmccntr_clockdiv_enabled(env)) {
1333 eff_cycles /= 64;
1334 }
1335
1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1337
1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1339 1ull << 63 : 1ull << 31;
1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1341 env->cp15.c9_pmovsr |= (1ULL << 31);
1342 pmu_update_irq(env);
1343 }
1344
1345 env->cp15.c15_ccnt = new_pmccntr;
1346 }
1347 env->cp15.c15_ccnt_delta = cycles;
1348 }
1349
1350 /*
1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1353 * pmccntr_op_start.
1354 */
pmccntr_op_finish(CPUARMState * env)1355 static void pmccntr_op_finish(CPUARMState *env)
1356 {
1357 if (pmu_counter_enabled(env, 31)) {
1358 #ifndef CONFIG_USER_ONLY
1359 /* Calculate when the counter will next overflow */
1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1361 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1362 remaining_cycles = (uint32_t)remaining_cycles;
1363 }
1364 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1365
1366 if (overflow_in > 0) {
1367 int64_t overflow_at;
1368
1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1370 overflow_in, &overflow_at)) {
1371 ARMCPU *cpu = env_archcpu(env);
1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1373 }
1374 }
1375 #endif
1376
1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1378 if (pmccntr_clockdiv_enabled(env)) {
1379 prev_cycles /= 64;
1380 }
1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1382 }
1383 }
1384
pmevcntr_op_start(CPUARMState * env,uint8_t counter)1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1386 {
1387
1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1389 uint64_t count = 0;
1390 if (event_supported(event)) {
1391 uint16_t event_idx = supported_event_map[event];
1392 count = pm_events[event_idx].get_count(env);
1393 }
1394
1395 if (pmu_counter_enabled(env, counter)) {
1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1398 1ULL << 63 : 1ULL << 31;
1399
1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1401 env->cp15.c9_pmovsr |= (1 << counter);
1402 pmu_update_irq(env);
1403 }
1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1405 }
1406 env->cp15.c14_pmevcntr_delta[counter] = count;
1407 }
1408
pmevcntr_op_finish(CPUARMState * env,uint8_t counter)1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1410 {
1411 if (pmu_counter_enabled(env, counter)) {
1412 #ifndef CONFIG_USER_ONLY
1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1414 uint16_t event_idx = supported_event_map[event];
1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1416 int64_t overflow_in;
1417
1418 if (!pmevcntr_is_64_bit(env, counter)) {
1419 delta = (uint32_t)delta;
1420 }
1421 overflow_in = pm_events[event_idx].ns_per_count(delta);
1422
1423 if (overflow_in > 0) {
1424 int64_t overflow_at;
1425
1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1427 overflow_in, &overflow_at)) {
1428 ARMCPU *cpu = env_archcpu(env);
1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1430 }
1431 }
1432 #endif
1433
1434 env->cp15.c14_pmevcntr_delta[counter] -=
1435 env->cp15.c14_pmevcntr[counter];
1436 }
1437 }
1438
pmu_op_start(CPUARMState * env)1439 void pmu_op_start(CPUARMState *env)
1440 {
1441 unsigned int i;
1442 pmccntr_op_start(env);
1443 for (i = 0; i < pmu_num_counters(env); i++) {
1444 pmevcntr_op_start(env, i);
1445 }
1446 }
1447
pmu_op_finish(CPUARMState * env)1448 void pmu_op_finish(CPUARMState *env)
1449 {
1450 unsigned int i;
1451 pmccntr_op_finish(env);
1452 for (i = 0; i < pmu_num_counters(env); i++) {
1453 pmevcntr_op_finish(env, i);
1454 }
1455 }
1456
pmu_pre_el_change(ARMCPU * cpu,void * ignored)1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1458 {
1459 pmu_op_start(&cpu->env);
1460 }
1461
pmu_post_el_change(ARMCPU * cpu,void * ignored)1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1463 {
1464 pmu_op_finish(&cpu->env);
1465 }
1466
arm_pmu_timer_cb(void * opaque)1467 void arm_pmu_timer_cb(void *opaque)
1468 {
1469 ARMCPU *cpu = opaque;
1470
1471 /*
1472 * Update all the counter values based on the current underlying counts,
1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1475 * counter may expire.
1476 */
1477 pmu_op_start(&cpu->env);
1478 pmu_op_finish(&cpu->env);
1479 }
1480
pmcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1482 uint64_t value)
1483 {
1484 pmu_op_start(env);
1485
1486 if (value & PMCRC) {
1487 /* The counter has been reset */
1488 env->cp15.c15_ccnt = 0;
1489 }
1490
1491 if (value & PMCRP) {
1492 unsigned int i;
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 env->cp15.c14_pmevcntr[i] = 0;
1495 }
1496 }
1497
1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1500
1501 pmu_op_finish(env);
1502 }
1503
pmcr_read(CPUARMState * env,const ARMCPRegInfo * ri)1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1505 {
1506 uint64_t pmcr = env->cp15.c9_pmcr;
1507
1508 /*
1509 * If EL2 is implemented and enabled for the current security state, reads
1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1511 */
1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1513 pmcr &= ~PMCRN_MASK;
1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1515 }
1516
1517 return pmcr;
1518 }
1519
pmswinc_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521 uint64_t value)
1522 {
1523 unsigned int i;
1524 uint64_t overflow_mask, new_pmswinc;
1525
1526 for (i = 0; i < pmu_num_counters(env); i++) {
1527 /* Increment a counter's count iff: */
1528 if ((value & (1 << i)) && /* counter's bit is set */
1529 /* counter is enabled and not filtered */
1530 pmu_counter_enabled(env, i) &&
1531 /* counter is SW_INCR */
1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1533 pmevcntr_op_start(env, i);
1534
1535 /*
1536 * Detect if this write causes an overflow since we can't predict
1537 * PMSWINC overflows like we can for other events
1538 */
1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1540
1541 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1542 1ULL << 63 : 1ULL << 31;
1543
1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1545 env->cp15.c9_pmovsr |= (1 << i);
1546 pmu_update_irq(env);
1547 }
1548
1549 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1550
1551 pmevcntr_op_finish(env, i);
1552 }
1553 }
1554 }
1555
pmccntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1557 {
1558 uint64_t ret;
1559 pmccntr_op_start(env);
1560 ret = env->cp15.c15_ccnt;
1561 pmccntr_op_finish(env);
1562 return ret;
1563 }
1564
pmselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566 uint64_t value)
1567 {
1568 /*
1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1572 * accessed.
1573 */
1574 env->cp15.c9_pmselr = value & 0x1f;
1575 }
1576
pmccntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578 uint64_t value)
1579 {
1580 pmccntr_op_start(env);
1581 env->cp15.c15_ccnt = value;
1582 pmccntr_op_finish(env);
1583 }
1584
pmccntr_write32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1586 uint64_t value)
1587 {
1588 uint64_t cur_val = pmccntr_read(env, NULL);
1589
1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1591 }
1592
pmccfiltr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1595 {
1596 pmccntr_op_start(env);
1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1598 pmccntr_op_finish(env);
1599 }
1600
pmccfiltr_write_a32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1603 {
1604 pmccntr_op_start(env);
1605 /* M is not accessible from AArch32 */
1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1607 (value & PMCCFILTR);
1608 pmccntr_op_finish(env);
1609 }
1610
pmccfiltr_read_a32(CPUARMState * env,const ARMCPRegInfo * ri)1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1612 {
1613 /* M is not visible in AArch32 */
1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1615 }
1616
pmcntenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1619 {
1620 pmu_op_start(env);
1621 value &= pmu_counter_mask(env);
1622 env->cp15.c9_pmcnten |= value;
1623 pmu_op_finish(env);
1624 }
1625
pmcntenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 uint64_t value)
1628 {
1629 pmu_op_start(env);
1630 value &= pmu_counter_mask(env);
1631 env->cp15.c9_pmcnten &= ~value;
1632 pmu_op_finish(env);
1633 }
1634
pmovsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636 uint64_t value)
1637 {
1638 value &= pmu_counter_mask(env);
1639 env->cp15.c9_pmovsr &= ~value;
1640 pmu_update_irq(env);
1641 }
1642
pmovsset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1644 uint64_t value)
1645 {
1646 value &= pmu_counter_mask(env);
1647 env->cp15.c9_pmovsr |= value;
1648 pmu_update_irq(env);
1649 }
1650
pmevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,const uint8_t counter)1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652 uint64_t value, const uint8_t counter)
1653 {
1654 if (counter == 31) {
1655 pmccfiltr_write(env, ri, value);
1656 } else if (counter < pmu_num_counters(env)) {
1657 pmevcntr_op_start(env, counter);
1658
1659 /*
1660 * If this counter's event type is changing, store the current
1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1662 * pmevcntr_op_finish has the correct baseline when it converts back to
1663 * a delta.
1664 */
1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1666 PMXEVTYPER_EVTCOUNT;
1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1668 if (old_event != new_event) {
1669 uint64_t count = 0;
1670 if (event_supported(new_event)) {
1671 uint16_t event_idx = supported_event_map[new_event];
1672 count = pm_events[event_idx].get_count(env);
1673 }
1674 env->cp15.c14_pmevcntr_delta[counter] = count;
1675 }
1676
1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1678 pmevcntr_op_finish(env, counter);
1679 }
1680 /*
1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1682 * PMSELR value is equal to or greater than the number of implemented
1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1684 */
1685 }
1686
pmevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri,const uint8_t counter)1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1688 const uint8_t counter)
1689 {
1690 if (counter == 31) {
1691 return env->cp15.pmccfiltr_el0;
1692 } else if (counter < pmu_num_counters(env)) {
1693 return env->cp15.c14_pmevtyper[counter];
1694 } else {
1695 /*
1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1698 */
1699 return 0;
1700 }
1701 }
1702
pmevtyper_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1704 uint64_t value)
1705 {
1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1707 pmevtyper_write(env, ri, value, counter);
1708 }
1709
pmevtyper_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1711 uint64_t value)
1712 {
1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1714 env->cp15.c14_pmevtyper[counter] = value;
1715
1716 /*
1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1718 * pmu_op_finish calls when loading saved state for a migration. Because
1719 * we're potentially updating the type of event here, the value written to
1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1721 * different counter type. Therefore, we need to set this value to the
1722 * current count for the counter type we're writing so that pmu_op_finish
1723 * has the correct count for its calculation.
1724 */
1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1726 if (event_supported(event)) {
1727 uint16_t event_idx = supported_event_map[event];
1728 env->cp15.c14_pmevcntr_delta[counter] =
1729 pm_events[event_idx].get_count(env);
1730 }
1731 }
1732
pmevtyper_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1734 {
1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1736 return pmevtyper_read(env, ri, counter);
1737 }
1738
pmxevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740 uint64_t value)
1741 {
1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1743 }
1744
pmxevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri)1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1746 {
1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1748 }
1749
pmevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,uint8_t counter)1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751 uint64_t value, uint8_t counter)
1752 {
1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1755 value &= MAKE_64BIT_MASK(0, 32);
1756 }
1757 if (counter < pmu_num_counters(env)) {
1758 pmevcntr_op_start(env, counter);
1759 env->cp15.c14_pmevcntr[counter] = value;
1760 pmevcntr_op_finish(env, counter);
1761 }
1762 /*
1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1764 * are CONSTRAINED UNPREDICTABLE.
1765 */
1766 }
1767
pmevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri,uint8_t counter)1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1769 uint8_t counter)
1770 {
1771 if (counter < pmu_num_counters(env)) {
1772 uint64_t ret;
1773 pmevcntr_op_start(env, counter);
1774 ret = env->cp15.c14_pmevcntr[counter];
1775 pmevcntr_op_finish(env, counter);
1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1778 ret &= MAKE_64BIT_MASK(0, 32);
1779 }
1780 return ret;
1781 } else {
1782 /*
1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1784 * are CONSTRAINED UNPREDICTABLE.
1785 */
1786 return 0;
1787 }
1788 }
1789
pmevcntr_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1791 uint64_t value)
1792 {
1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1794 pmevcntr_write(env, ri, value, counter);
1795 }
1796
pmevcntr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1798 {
1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1800 return pmevcntr_read(env, ri, counter);
1801 }
1802
pmevcntr_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1804 uint64_t value)
1805 {
1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1807 assert(counter < pmu_num_counters(env));
1808 env->cp15.c14_pmevcntr[counter] = value;
1809 pmevcntr_write(env, ri, value, counter);
1810 }
1811
pmevcntr_rawread(CPUARMState * env,const ARMCPRegInfo * ri)1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1813 {
1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1815 assert(counter < pmu_num_counters(env));
1816 return env->cp15.c14_pmevcntr[counter];
1817 }
1818
pmxevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820 uint64_t value)
1821 {
1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1823 }
1824
pmxevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1826 {
1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1828 }
1829
pmuserenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1831 uint64_t value)
1832 {
1833 if (arm_feature(env, ARM_FEATURE_V8)) {
1834 env->cp15.c9_pmuserenr = value & 0xf;
1835 } else {
1836 env->cp15.c9_pmuserenr = value & 1;
1837 }
1838 }
1839
pmintenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1842 {
1843 /* We have no event counters so only the C bit can be changed */
1844 value &= pmu_counter_mask(env);
1845 env->cp15.c9_pminten |= value;
1846 pmu_update_irq(env);
1847 }
1848
pmintenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1851 {
1852 value &= pmu_counter_mask(env);
1853 env->cp15.c9_pminten &= ~value;
1854 pmu_update_irq(env);
1855 }
1856
vbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1859 {
1860 /*
1861 * Note that even though the AArch64 view of this register has bits
1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1863 * architectural requirements for bits which are RES0 only in some
1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1866 */
1867 raw_write(env, ri, value & ~0x1FULL);
1868 }
1869
scr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1871 {
1872 /* Begin with base v8.0 state. */
1873 uint64_t valid_mask = 0x3fff;
1874 ARMCPU *cpu = env_archcpu(env);
1875 uint64_t changed;
1876
1877 /*
1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1880 * Instead, choose the format based on the mode of EL3.
1881 */
1882 if (arm_el_is_aa64(env, 3)) {
1883 value |= SCR_FW | SCR_AW; /* RES1 */
1884 valid_mask &= ~SCR_NET; /* RES0 */
1885
1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1888 value |= SCR_RW; /* RAO/WI */
1889 }
1890 if (cpu_isar_feature(aa64_ras, cpu)) {
1891 valid_mask |= SCR_TERR;
1892 }
1893 if (cpu_isar_feature(aa64_lor, cpu)) {
1894 valid_mask |= SCR_TLOR;
1895 }
1896 if (cpu_isar_feature(aa64_pauth, cpu)) {
1897 valid_mask |= SCR_API | SCR_APK;
1898 }
1899 if (cpu_isar_feature(aa64_sel2, cpu)) {
1900 valid_mask |= SCR_EEL2;
1901 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1903 value |= SCR_NS;
1904 }
1905 if (cpu_isar_feature(aa64_mte, cpu)) {
1906 valid_mask |= SCR_ATA;
1907 }
1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1909 valid_mask |= SCR_ENSCXT;
1910 }
1911 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1912 valid_mask |= SCR_EASE | SCR_NMEA;
1913 }
1914 if (cpu_isar_feature(aa64_sme, cpu)) {
1915 valid_mask |= SCR_ENTP2;
1916 }
1917 if (cpu_isar_feature(aa64_hcx, cpu)) {
1918 valid_mask |= SCR_HXEN;
1919 }
1920 if (cpu_isar_feature(aa64_fgt, cpu)) {
1921 valid_mask |= SCR_FGTEN;
1922 }
1923 if (cpu_isar_feature(aa64_rme, cpu)) {
1924 valid_mask |= SCR_NSE | SCR_GPF;
1925 }
1926 if (cpu_isar_feature(aa64_ecv, cpu)) {
1927 valid_mask |= SCR_ECVEN;
1928 }
1929 } else {
1930 valid_mask &= ~(SCR_RW | SCR_ST);
1931 if (cpu_isar_feature(aa32_ras, cpu)) {
1932 valid_mask |= SCR_TERR;
1933 }
1934 }
1935
1936 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1937 valid_mask &= ~SCR_HCE;
1938
1939 /*
1940 * On ARMv7, SMD (or SCD as it is called in v7) is only
1941 * supported if EL2 exists. The bit is UNK/SBZP when
1942 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1943 * when EL2 is unavailable.
1944 * On ARMv8, this bit is always available.
1945 */
1946 if (arm_feature(env, ARM_FEATURE_V7) &&
1947 !arm_feature(env, ARM_FEATURE_V8)) {
1948 valid_mask &= ~SCR_SMD;
1949 }
1950 }
1951
1952 /* Clear all-context RES0 bits. */
1953 value &= valid_mask;
1954 changed = env->cp15.scr_el3 ^ value;
1955 env->cp15.scr_el3 = value;
1956
1957 /*
1958 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1959 * we must invalidate all TLBs below EL3.
1960 */
1961 if (changed & (SCR_NS | SCR_NSE)) {
1962 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1963 ARMMMUIdxBit_E20_0 |
1964 ARMMMUIdxBit_E10_1 |
1965 ARMMMUIdxBit_E20_2 |
1966 ARMMMUIdxBit_E10_1_PAN |
1967 ARMMMUIdxBit_E20_2_PAN |
1968 ARMMMUIdxBit_E2));
1969 }
1970 }
1971
scr_reset(CPUARMState * env,const ARMCPRegInfo * ri)1972 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1973 {
1974 /*
1975 * scr_write will set the RES1 bits on an AArch64-only CPU.
1976 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1977 */
1978 scr_write(env, ri, 0);
1979 }
1980
access_tid4(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1981 static CPAccessResult access_tid4(CPUARMState *env,
1982 const ARMCPRegInfo *ri,
1983 bool isread)
1984 {
1985 if (arm_current_el(env) == 1 &&
1986 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1987 return CP_ACCESS_TRAP_EL2;
1988 }
1989
1990 return CP_ACCESS_OK;
1991 }
1992
ccsidr_read(CPUARMState * env,const ARMCPRegInfo * ri)1993 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1994 {
1995 ARMCPU *cpu = env_archcpu(env);
1996
1997 /*
1998 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1999 * bank
2000 */
2001 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2002 ri->secure & ARM_CP_SECSTATE_S);
2003
2004 return cpu->ccsidr[index];
2005 }
2006
csselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2007 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2008 uint64_t value)
2009 {
2010 raw_write(env, ri, value & 0xf);
2011 }
2012
isr_read(CPUARMState * env,const ARMCPRegInfo * ri)2013 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2014 {
2015 CPUState *cs = env_cpu(env);
2016 bool el1 = arm_current_el(env) == 1;
2017 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2018 uint64_t ret = 0;
2019
2020 if (hcr_el2 & HCR_IMO) {
2021 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2022 ret |= CPSR_I;
2023 }
2024 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) {
2025 ret |= ISR_IS;
2026 ret |= CPSR_I;
2027 }
2028 } else {
2029 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2030 ret |= CPSR_I;
2031 }
2032
2033 if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
2034 ret |= ISR_IS;
2035 ret |= CPSR_I;
2036 }
2037 }
2038
2039 if (hcr_el2 & HCR_FMO) {
2040 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2041 ret |= CPSR_F;
2042 }
2043 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) {
2044 ret |= ISR_FS;
2045 ret |= CPSR_F;
2046 }
2047 } else {
2048 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2049 ret |= CPSR_F;
2050 }
2051 }
2052
2053 if (hcr_el2 & HCR_AMO) {
2054 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2055 ret |= CPSR_A;
2056 }
2057 }
2058
2059 return ret;
2060 }
2061
access_aa64_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2062 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2063 bool isread)
2064 {
2065 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2066 return CP_ACCESS_TRAP_EL2;
2067 }
2068
2069 return CP_ACCESS_OK;
2070 }
2071
access_aa32_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2072 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2073 bool isread)
2074 {
2075 if (arm_feature(env, ARM_FEATURE_V8)) {
2076 return access_aa64_tid1(env, ri, isread);
2077 }
2078
2079 return CP_ACCESS_OK;
2080 }
2081
2082 static const ARMCPRegInfo v7_cp_reginfo[] = {
2083 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2084 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2085 .access = PL1_W, .type = ARM_CP_NOP },
2086 /*
2087 * Performance monitors are implementation defined in v7,
2088 * but with an ARM recommended set of registers, which we
2089 * follow.
2090 *
2091 * Performance registers fall into three categories:
2092 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2093 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2094 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2095 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2096 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2097 */
2098 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2099 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2100 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2101 .writefn = pmcntenset_write,
2102 .accessfn = pmreg_access,
2103 .fgt = FGT_PMCNTEN,
2104 .raw_writefn = raw_write },
2105 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2106 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2107 .access = PL0_RW, .accessfn = pmreg_access,
2108 .fgt = FGT_PMCNTEN,
2109 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2110 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2111 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2112 .access = PL0_RW,
2113 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2114 .accessfn = pmreg_access,
2115 .fgt = FGT_PMCNTEN,
2116 .writefn = pmcntenclr_write,
2117 .type = ARM_CP_ALIAS | ARM_CP_IO },
2118 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2119 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2120 .access = PL0_RW, .accessfn = pmreg_access,
2121 .fgt = FGT_PMCNTEN,
2122 .type = ARM_CP_ALIAS | ARM_CP_IO,
2123 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2124 .writefn = pmcntenclr_write },
2125 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2126 .access = PL0_RW, .type = ARM_CP_IO,
2127 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2128 .accessfn = pmreg_access,
2129 .fgt = FGT_PMOVS,
2130 .writefn = pmovsr_write,
2131 .raw_writefn = raw_write },
2132 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2133 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2134 .access = PL0_RW, .accessfn = pmreg_access,
2135 .fgt = FGT_PMOVS,
2136 .type = ARM_CP_ALIAS | ARM_CP_IO,
2137 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2138 .writefn = pmovsr_write,
2139 .raw_writefn = raw_write },
2140 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2141 .access = PL0_W, .accessfn = pmreg_access_swinc,
2142 .fgt = FGT_PMSWINC_EL0,
2143 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144 .writefn = pmswinc_write },
2145 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2146 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2147 .access = PL0_W, .accessfn = pmreg_access_swinc,
2148 .fgt = FGT_PMSWINC_EL0,
2149 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150 .writefn = pmswinc_write },
2151 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2152 .access = PL0_RW, .type = ARM_CP_ALIAS,
2153 .fgt = FGT_PMSELR_EL0,
2154 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2155 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2156 .raw_writefn = raw_write},
2157 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2158 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2159 .access = PL0_RW, .accessfn = pmreg_access_selr,
2160 .fgt = FGT_PMSELR_EL0,
2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2162 .writefn = pmselr_write, .raw_writefn = raw_write, },
2163 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2164 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2165 .fgt = FGT_PMCCNTR_EL0,
2166 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2167 .accessfn = pmreg_access_ccntr },
2168 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2170 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2171 .fgt = FGT_PMCCNTR_EL0,
2172 .type = ARM_CP_IO,
2173 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2174 .readfn = pmccntr_read, .writefn = pmccntr_write,
2175 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2176 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2177 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2178 .access = PL0_RW, .accessfn = pmreg_access,
2179 .fgt = FGT_PMCCFILTR_EL0,
2180 .type = ARM_CP_ALIAS | ARM_CP_IO,
2181 .resetvalue = 0, },
2182 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2184 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2185 .access = PL0_RW, .accessfn = pmreg_access,
2186 .fgt = FGT_PMCCFILTR_EL0,
2187 .type = ARM_CP_IO,
2188 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2189 .resetvalue = 0, },
2190 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2191 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2192 .accessfn = pmreg_access,
2193 .fgt = FGT_PMEVTYPERN_EL0,
2194 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2195 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2196 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2197 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2198 .accessfn = pmreg_access,
2199 .fgt = FGT_PMEVTYPERN_EL0,
2200 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2201 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2202 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2203 .accessfn = pmreg_access_xevcntr,
2204 .fgt = FGT_PMEVCNTRN_EL0,
2205 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2206 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2207 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2208 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2209 .accessfn = pmreg_access_xevcntr,
2210 .fgt = FGT_PMEVCNTRN_EL0,
2211 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2212 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2213 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2214 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2215 .resetvalue = 0,
2216 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2217 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2218 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2219 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2220 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2221 .resetvalue = 0,
2222 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2223 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2224 .access = PL1_RW, .accessfn = access_tpm,
2225 .fgt = FGT_PMINTEN,
2226 .type = ARM_CP_ALIAS | ARM_CP_IO,
2227 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2228 .resetvalue = 0,
2229 .writefn = pmintenset_write, .raw_writefn = raw_write },
2230 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2231 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2232 .access = PL1_RW, .accessfn = access_tpm,
2233 .fgt = FGT_PMINTEN,
2234 .type = ARM_CP_IO,
2235 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2236 .writefn = pmintenset_write, .raw_writefn = raw_write,
2237 .resetvalue = 0x0 },
2238 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2239 .access = PL1_RW, .accessfn = access_tpm,
2240 .fgt = FGT_PMINTEN,
2241 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2242 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2243 .writefn = pmintenclr_write, },
2244 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2245 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2246 .access = PL1_RW, .accessfn = access_tpm,
2247 .fgt = FGT_PMINTEN,
2248 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2249 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2250 .writefn = pmintenclr_write },
2251 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2252 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2253 .access = PL1_R,
2254 .accessfn = access_tid4,
2255 .fgt = FGT_CCSIDR_EL1,
2256 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2257 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2258 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2259 .access = PL1_RW,
2260 .accessfn = access_tid4,
2261 .fgt = FGT_CSSELR_EL1,
2262 .writefn = csselr_write, .resetvalue = 0,
2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2264 offsetof(CPUARMState, cp15.csselr_ns) } },
2265 /*
2266 * Auxiliary ID register: this actually has an IMPDEF value but for now
2267 * just RAZ for all cores:
2268 */
2269 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2270 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2271 .access = PL1_R, .type = ARM_CP_CONST,
2272 .accessfn = access_aa64_tid1,
2273 .fgt = FGT_AIDR_EL1,
2274 .resetvalue = 0 },
2275 /*
2276 * Auxiliary fault status registers: these also are IMPDEF, and we
2277 * choose to RAZ/WI for all cores.
2278 */
2279 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2280 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2281 .access = PL1_RW, .accessfn = access_tvm_trvm,
2282 .fgt = FGT_AFSR0_EL1,
2283 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2284 .type = ARM_CP_CONST, .resetvalue = 0 },
2285 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2286 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2287 .access = PL1_RW, .accessfn = access_tvm_trvm,
2288 .fgt = FGT_AFSR1_EL1,
2289 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2290 .type = ARM_CP_CONST, .resetvalue = 0 },
2291 /*
2292 * MAIR can just read-as-written because we don't implement caches
2293 * and so don't need to care about memory attributes.
2294 */
2295 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2296 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2297 .access = PL1_RW, .accessfn = access_tvm_trvm,
2298 .fgt = FGT_MAIR_EL1,
2299 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2300 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2301 .resetvalue = 0 },
2302 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2303 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2304 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2305 .resetvalue = 0 },
2306 /*
2307 * For non-long-descriptor page tables these are PRRR and NMRR;
2308 * regardless they still act as reads-as-written for QEMU.
2309 */
2310 /*
2311 * MAIR0/1 are defined separately from their 64-bit counterpart which
2312 * allows them to assign the correct fieldoffset based on the endianness
2313 * handled in the field definitions.
2314 */
2315 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2316 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2317 .access = PL1_RW, .accessfn = access_tvm_trvm,
2318 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2319 offsetof(CPUARMState, cp15.mair0_ns) },
2320 .resetfn = arm_cp_reset_ignore },
2321 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2322 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2323 .access = PL1_RW, .accessfn = access_tvm_trvm,
2324 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2325 offsetof(CPUARMState, cp15.mair1_ns) },
2326 .resetfn = arm_cp_reset_ignore },
2327 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2328 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2329 .fgt = FGT_ISR_EL1,
2330 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2331 /* 32 bit ITLB invalidates */
2332 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2334 .writefn = tlbiall_write },
2335 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2336 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2337 .writefn = tlbimva_write },
2338 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2339 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2340 .writefn = tlbiasid_write },
2341 /* 32 bit DTLB invalidates */
2342 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2344 .writefn = tlbiall_write },
2345 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347 .writefn = tlbimva_write },
2348 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350 .writefn = tlbiasid_write },
2351 /* 32 bit TLB invalidates */
2352 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2354 .writefn = tlbiall_write },
2355 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2357 .writefn = tlbimva_write },
2358 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360 .writefn = tlbiasid_write },
2361 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2363 .writefn = tlbimvaa_write },
2364 };
2365
2366 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2367 /* 32 bit TLB invalidates, Inner Shareable */
2368 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2370 .writefn = tlbiall_is_write },
2371 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2373 .writefn = tlbimva_is_write },
2374 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2376 .writefn = tlbiasid_is_write },
2377 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2379 .writefn = tlbimvaa_is_write },
2380 };
2381
2382 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2383 /* PMOVSSET is not implemented in v7 before v7ve */
2384 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2385 .access = PL0_RW, .accessfn = pmreg_access,
2386 .fgt = FGT_PMOVS,
2387 .type = ARM_CP_ALIAS | ARM_CP_IO,
2388 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2389 .writefn = pmovsset_write,
2390 .raw_writefn = raw_write },
2391 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2392 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2393 .access = PL0_RW, .accessfn = pmreg_access,
2394 .fgt = FGT_PMOVS,
2395 .type = ARM_CP_ALIAS | ARM_CP_IO,
2396 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2397 .writefn = pmovsset_write,
2398 .raw_writefn = raw_write },
2399 };
2400
teecr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2401 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2402 uint64_t value)
2403 {
2404 value &= 1;
2405 env->teecr = value;
2406 }
2407
teecr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2408 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2409 bool isread)
2410 {
2411 /*
2412 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2413 * at all, so we don't need to check whether we're v8A.
2414 */
2415 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2416 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2417 return CP_ACCESS_TRAP_EL2;
2418 }
2419 return CP_ACCESS_OK;
2420 }
2421
teehbr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2422 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2423 bool isread)
2424 {
2425 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2426 return CP_ACCESS_TRAP;
2427 }
2428 return teecr_access(env, ri, isread);
2429 }
2430
2431 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2432 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2433 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2434 .resetvalue = 0,
2435 .writefn = teecr_write, .accessfn = teecr_access },
2436 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2437 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2438 .accessfn = teehbr_access, .resetvalue = 0 },
2439 };
2440
2441 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2442 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2443 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2444 .access = PL0_RW,
2445 .fgt = FGT_TPIDR_EL0,
2446 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2447 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2448 .access = PL0_RW,
2449 .fgt = FGT_TPIDR_EL0,
2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2451 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2452 .resetfn = arm_cp_reset_ignore },
2453 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2454 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2455 .access = PL0_R | PL1_W,
2456 .fgt = FGT_TPIDRRO_EL0,
2457 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2458 .resetvalue = 0},
2459 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2460 .access = PL0_R | PL1_W,
2461 .fgt = FGT_TPIDRRO_EL0,
2462 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2463 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2464 .resetfn = arm_cp_reset_ignore },
2465 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2466 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2467 .access = PL1_RW,
2468 .fgt = FGT_TPIDR_EL1,
2469 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2470 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2471 .access = PL1_RW,
2472 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2473 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2474 .resetvalue = 0 },
2475 };
2476
arm_gt_cntfrq_reset(CPUARMState * env,const ARMCPRegInfo * opaque)2477 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2478 {
2479 ARMCPU *cpu = env_archcpu(env);
2480
2481 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2482 }
2483
2484 #ifndef CONFIG_USER_ONLY
2485
gt_cntfrq_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2486 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2487 bool isread)
2488 {
2489 /*
2490 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2491 * Writable only at the highest implemented exception level.
2492 */
2493 int el = arm_current_el(env);
2494 uint64_t hcr;
2495 uint32_t cntkctl;
2496
2497 switch (el) {
2498 case 0:
2499 hcr = arm_hcr_el2_eff(env);
2500 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2501 cntkctl = env->cp15.cnthctl_el2;
2502 } else {
2503 cntkctl = env->cp15.c14_cntkctl;
2504 }
2505 if (!extract32(cntkctl, 0, 2)) {
2506 return CP_ACCESS_TRAP;
2507 }
2508 break;
2509 case 1:
2510 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2511 arm_is_secure_below_el3(env)) {
2512 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2513 return CP_ACCESS_TRAP_UNCATEGORIZED;
2514 }
2515 break;
2516 case 2:
2517 case 3:
2518 break;
2519 }
2520
2521 if (!isread && el < arm_highest_el(env)) {
2522 return CP_ACCESS_TRAP_UNCATEGORIZED;
2523 }
2524
2525 return CP_ACCESS_OK;
2526 }
2527
gt_counter_access(CPUARMState * env,int timeridx,bool isread)2528 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2529 bool isread)
2530 {
2531 unsigned int cur_el = arm_current_el(env);
2532 bool has_el2 = arm_is_el2_enabled(env);
2533 uint64_t hcr = arm_hcr_el2_eff(env);
2534
2535 switch (cur_el) {
2536 case 0:
2537 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2538 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2539 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2540 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2541 }
2542
2543 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2544 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2545 return CP_ACCESS_TRAP;
2546 }
2547 /* fall through */
2548 case 1:
2549 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2550 if (has_el2 && timeridx == GTIMER_PHYS &&
2551 (hcr & HCR_E2H
2552 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2553 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2554 return CP_ACCESS_TRAP_EL2;
2555 }
2556 if (has_el2 && timeridx == GTIMER_VIRT) {
2557 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
2558 return CP_ACCESS_TRAP_EL2;
2559 }
2560 }
2561 break;
2562 }
2563 return CP_ACCESS_OK;
2564 }
2565
gt_timer_access(CPUARMState * env,int timeridx,bool isread)2566 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2567 bool isread)
2568 {
2569 unsigned int cur_el = arm_current_el(env);
2570 bool has_el2 = arm_is_el2_enabled(env);
2571 uint64_t hcr = arm_hcr_el2_eff(env);
2572
2573 switch (cur_el) {
2574 case 0:
2575 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2576 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2577 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2578 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2579 }
2580
2581 /*
2582 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2583 * EL0 if EL0[PV]TEN is zero.
2584 */
2585 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2586 return CP_ACCESS_TRAP;
2587 }
2588 /* fall through */
2589
2590 case 1:
2591 if (has_el2 && timeridx == GTIMER_PHYS) {
2592 if (hcr & HCR_E2H) {
2593 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2594 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2595 return CP_ACCESS_TRAP_EL2;
2596 }
2597 } else {
2598 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2599 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2600 return CP_ACCESS_TRAP_EL2;
2601 }
2602 }
2603 }
2604 if (has_el2 && timeridx == GTIMER_VIRT) {
2605 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
2606 return CP_ACCESS_TRAP_EL2;
2607 }
2608 }
2609 break;
2610 }
2611 return CP_ACCESS_OK;
2612 }
2613
gt_pct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2614 static CPAccessResult gt_pct_access(CPUARMState *env,
2615 const ARMCPRegInfo *ri,
2616 bool isread)
2617 {
2618 return gt_counter_access(env, GTIMER_PHYS, isread);
2619 }
2620
gt_vct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2621 static CPAccessResult gt_vct_access(CPUARMState *env,
2622 const ARMCPRegInfo *ri,
2623 bool isread)
2624 {
2625 return gt_counter_access(env, GTIMER_VIRT, isread);
2626 }
2627
gt_ptimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2628 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2629 bool isread)
2630 {
2631 return gt_timer_access(env, GTIMER_PHYS, isread);
2632 }
2633
gt_vtimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2634 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2635 bool isread)
2636 {
2637 return gt_timer_access(env, GTIMER_VIRT, isread);
2638 }
2639
gt_stimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2640 static CPAccessResult gt_stimer_access(CPUARMState *env,
2641 const ARMCPRegInfo *ri,
2642 bool isread)
2643 {
2644 /*
2645 * The AArch64 register view of the secure physical timer is
2646 * always accessible from EL3, and configurably accessible from
2647 * Secure EL1.
2648 */
2649 switch (arm_current_el(env)) {
2650 case 1:
2651 if (!arm_is_secure(env)) {
2652 return CP_ACCESS_TRAP;
2653 }
2654 if (!(env->cp15.scr_el3 & SCR_ST)) {
2655 return CP_ACCESS_TRAP_EL3;
2656 }
2657 return CP_ACCESS_OK;
2658 case 0:
2659 case 2:
2660 return CP_ACCESS_TRAP;
2661 case 3:
2662 return CP_ACCESS_OK;
2663 default:
2664 g_assert_not_reached();
2665 }
2666 }
2667
gt_get_countervalue(CPUARMState * env)2668 uint64_t gt_get_countervalue(CPUARMState *env)
2669 {
2670 ARMCPU *cpu = env_archcpu(env);
2671
2672 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2673 }
2674
gt_update_irq(ARMCPU * cpu,int timeridx)2675 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2676 {
2677 CPUARMState *env = &cpu->env;
2678 uint64_t cnthctl = env->cp15.cnthctl_el2;
2679 ARMSecuritySpace ss = arm_security_space(env);
2680 /* ISTATUS && !IMASK */
2681 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2682
2683 /*
2684 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2685 * It is RES0 in Secure and NonSecure state.
2686 */
2687 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2688 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
2689 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
2690 irqstate = 0;
2691 }
2692
2693 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2694 trace_arm_gt_update_irq(timeridx, irqstate);
2695 }
2696
gt_rme_post_el_change(ARMCPU * cpu,void * ignored)2697 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2698 {
2699 /*
2700 * Changing security state between Root and Secure/NonSecure, which may
2701 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2702 * mask bits. Update the IRQ state accordingly.
2703 */
2704 gt_update_irq(cpu, GTIMER_VIRT);
2705 gt_update_irq(cpu, GTIMER_PHYS);
2706 }
2707
gt_phys_raw_cnt_offset(CPUARMState * env)2708 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
2709 {
2710 if ((env->cp15.scr_el3 & SCR_ECVEN) &&
2711 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
2712 arm_is_el2_enabled(env) &&
2713 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
2714 return env->cp15.cntpoff_el2;
2715 }
2716 return 0;
2717 }
2718
gt_phys_cnt_offset(CPUARMState * env)2719 static uint64_t gt_phys_cnt_offset(CPUARMState *env)
2720 {
2721 if (arm_current_el(env) >= 2) {
2722 return 0;
2723 }
2724 return gt_phys_raw_cnt_offset(env);
2725 }
2726
gt_recalc_timer(ARMCPU * cpu,int timeridx)2727 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2728 {
2729 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2730
2731 if (gt->ctl & 1) {
2732 /*
2733 * Timer enabled: calculate and set current ISTATUS, irq, and
2734 * reset timer to when ISTATUS next has to change
2735 */
2736 uint64_t offset = timeridx == GTIMER_VIRT ?
2737 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env);
2738 uint64_t count = gt_get_countervalue(&cpu->env);
2739 /* Note that this must be unsigned 64 bit arithmetic: */
2740 int istatus = count - offset >= gt->cval;
2741 uint64_t nexttick;
2742
2743 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2744
2745 if (istatus) {
2746 /*
2747 * Next transition is when (count - offset) rolls back over to 0.
2748 * If offset > count then this is when count == offset;
2749 * if offset <= count then this is when count == offset + 2^64
2750 * For the latter case we set nexttick to an "as far in future
2751 * as possible" value and let the code below handle it.
2752 */
2753 if (offset > count) {
2754 nexttick = offset;
2755 } else {
2756 nexttick = UINT64_MAX;
2757 }
2758 } else {
2759 /*
2760 * Next transition is when (count - offset) == cval, i.e.
2761 * when count == (cval + offset).
2762 * If that would overflow, then again we set up the next interrupt
2763 * for "as far in the future as possible" for the code below.
2764 */
2765 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2766 nexttick = UINT64_MAX;
2767 }
2768 }
2769 /*
2770 * Note that the desired next expiry time might be beyond the
2771 * signed-64-bit range of a QEMUTimer -- in this case we just
2772 * set the timer for as far in the future as possible. When the
2773 * timer expires we will reset the timer for any remaining period.
2774 */
2775 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2776 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2777 } else {
2778 timer_mod(cpu->gt_timer[timeridx], nexttick);
2779 }
2780 trace_arm_gt_recalc(timeridx, nexttick);
2781 } else {
2782 /* Timer disabled: ISTATUS and timer output always clear */
2783 gt->ctl &= ~4;
2784 timer_del(cpu->gt_timer[timeridx]);
2785 trace_arm_gt_recalc_disabled(timeridx);
2786 }
2787 gt_update_irq(cpu, timeridx);
2788 }
2789
gt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2790 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2791 int timeridx)
2792 {
2793 ARMCPU *cpu = env_archcpu(env);
2794
2795 timer_del(cpu->gt_timer[timeridx]);
2796 }
2797
gt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2798 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2799 {
2800 return gt_get_countervalue(env) - gt_phys_cnt_offset(env);
2801 }
2802
gt_virt_cnt_offset(CPUARMState * env)2803 uint64_t gt_virt_cnt_offset(CPUARMState *env)
2804 {
2805 uint64_t hcr;
2806
2807 switch (arm_current_el(env)) {
2808 case 2:
2809 hcr = arm_hcr_el2_eff(env);
2810 if (hcr & HCR_E2H) {
2811 return 0;
2812 }
2813 break;
2814 case 0:
2815 hcr = arm_hcr_el2_eff(env);
2816 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2817 return 0;
2818 }
2819 break;
2820 }
2821
2822 return env->cp15.cntvoff_el2;
2823 }
2824
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2825 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2826 {
2827 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2828 }
2829
gt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2830 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2831 int timeridx,
2832 uint64_t value)
2833 {
2834 trace_arm_gt_cval_write(timeridx, value);
2835 env->cp15.c14_timer[timeridx].cval = value;
2836 gt_recalc_timer(env_archcpu(env), timeridx);
2837 }
2838
gt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2839 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2840 int timeridx)
2841 {
2842 uint64_t offset = 0;
2843
2844 switch (timeridx) {
2845 case GTIMER_VIRT:
2846 case GTIMER_HYPVIRT:
2847 offset = gt_virt_cnt_offset(env);
2848 break;
2849 case GTIMER_PHYS:
2850 offset = gt_phys_cnt_offset(env);
2851 break;
2852 }
2853
2854 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2855 (gt_get_countervalue(env) - offset));
2856 }
2857
gt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2858 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859 int timeridx,
2860 uint64_t value)
2861 {
2862 uint64_t offset = 0;
2863
2864 switch (timeridx) {
2865 case GTIMER_VIRT:
2866 case GTIMER_HYPVIRT:
2867 offset = gt_virt_cnt_offset(env);
2868 break;
2869 case GTIMER_PHYS:
2870 offset = gt_phys_cnt_offset(env);
2871 break;
2872 }
2873
2874 trace_arm_gt_tval_write(timeridx, value);
2875 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2876 sextract64(value, 0, 32);
2877 gt_recalc_timer(env_archcpu(env), timeridx);
2878 }
2879
gt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2880 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2881 int timeridx,
2882 uint64_t value)
2883 {
2884 ARMCPU *cpu = env_archcpu(env);
2885 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2886
2887 trace_arm_gt_ctl_write(timeridx, value);
2888 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2889 if ((oldval ^ value) & 1) {
2890 /* Enable toggled */
2891 gt_recalc_timer(cpu, timeridx);
2892 } else if ((oldval ^ value) & 2) {
2893 /*
2894 * IMASK toggled: don't need to recalculate,
2895 * just set the interrupt line based on ISTATUS
2896 */
2897 trace_arm_gt_imask_toggle(timeridx);
2898 gt_update_irq(cpu, timeridx);
2899 }
2900 }
2901
gt_phys_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2902 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2903 {
2904 gt_timer_reset(env, ri, GTIMER_PHYS);
2905 }
2906
gt_phys_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2907 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2908 uint64_t value)
2909 {
2910 gt_cval_write(env, ri, GTIMER_PHYS, value);
2911 }
2912
gt_phys_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2913 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2914 {
2915 return gt_tval_read(env, ri, GTIMER_PHYS);
2916 }
2917
gt_phys_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2918 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2919 uint64_t value)
2920 {
2921 gt_tval_write(env, ri, GTIMER_PHYS, value);
2922 }
2923
gt_phys_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2924 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2925 uint64_t value)
2926 {
2927 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2928 }
2929
gt_phys_redir_timeridx(CPUARMState * env)2930 static int gt_phys_redir_timeridx(CPUARMState *env)
2931 {
2932 switch (arm_mmu_idx(env)) {
2933 case ARMMMUIdx_E20_0:
2934 case ARMMMUIdx_E20_2:
2935 case ARMMMUIdx_E20_2_PAN:
2936 return GTIMER_HYP;
2937 default:
2938 return GTIMER_PHYS;
2939 }
2940 }
2941
gt_virt_redir_timeridx(CPUARMState * env)2942 static int gt_virt_redir_timeridx(CPUARMState *env)
2943 {
2944 switch (arm_mmu_idx(env)) {
2945 case ARMMMUIdx_E20_0:
2946 case ARMMMUIdx_E20_2:
2947 case ARMMMUIdx_E20_2_PAN:
2948 return GTIMER_HYPVIRT;
2949 default:
2950 return GTIMER_VIRT;
2951 }
2952 }
2953
gt_phys_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)2954 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2955 const ARMCPRegInfo *ri)
2956 {
2957 int timeridx = gt_phys_redir_timeridx(env);
2958 return env->cp15.c14_timer[timeridx].cval;
2959 }
2960
gt_phys_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2961 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2962 uint64_t value)
2963 {
2964 int timeridx = gt_phys_redir_timeridx(env);
2965 gt_cval_write(env, ri, timeridx, value);
2966 }
2967
gt_phys_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2968 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2969 const ARMCPRegInfo *ri)
2970 {
2971 int timeridx = gt_phys_redir_timeridx(env);
2972 return gt_tval_read(env, ri, timeridx);
2973 }
2974
gt_phys_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2975 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2976 uint64_t value)
2977 {
2978 int timeridx = gt_phys_redir_timeridx(env);
2979 gt_tval_write(env, ri, timeridx, value);
2980 }
2981
gt_phys_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)2982 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2983 const ARMCPRegInfo *ri)
2984 {
2985 int timeridx = gt_phys_redir_timeridx(env);
2986 return env->cp15.c14_timer[timeridx].ctl;
2987 }
2988
gt_phys_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2989 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2990 uint64_t value)
2991 {
2992 int timeridx = gt_phys_redir_timeridx(env);
2993 gt_ctl_write(env, ri, timeridx, value);
2994 }
2995
gt_virt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2996 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2997 {
2998 gt_timer_reset(env, ri, GTIMER_VIRT);
2999 }
3000
gt_virt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3001 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3002 uint64_t value)
3003 {
3004 gt_cval_write(env, ri, GTIMER_VIRT, value);
3005 }
3006
gt_virt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3007 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3008 {
3009 return gt_tval_read(env, ri, GTIMER_VIRT);
3010 }
3011
gt_virt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3012 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3013 uint64_t value)
3014 {
3015 gt_tval_write(env, ri, GTIMER_VIRT, value);
3016 }
3017
gt_virt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3018 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3019 uint64_t value)
3020 {
3021 gt_ctl_write(env, ri, GTIMER_VIRT, value);
3022 }
3023
gt_cnthctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3024 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3025 uint64_t value)
3026 {
3027 ARMCPU *cpu = env_archcpu(env);
3028 uint32_t oldval = env->cp15.cnthctl_el2;
3029 uint32_t valid_mask =
3030 R_CNTHCTL_EL0PCTEN_E2H1_MASK |
3031 R_CNTHCTL_EL0VCTEN_E2H1_MASK |
3032 R_CNTHCTL_EVNTEN_MASK |
3033 R_CNTHCTL_EVNTDIR_MASK |
3034 R_CNTHCTL_EVNTI_MASK |
3035 R_CNTHCTL_EL0VTEN_MASK |
3036 R_CNTHCTL_EL0PTEN_MASK |
3037 R_CNTHCTL_EL1PCTEN_E2H1_MASK |
3038 R_CNTHCTL_EL1PTEN_MASK;
3039
3040 if (cpu_isar_feature(aa64_rme, cpu)) {
3041 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
3042 }
3043 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
3044 valid_mask |=
3045 R_CNTHCTL_EL1TVT_MASK |
3046 R_CNTHCTL_EL1TVCT_MASK |
3047 R_CNTHCTL_EL1NVPCT_MASK |
3048 R_CNTHCTL_EL1NVVCT_MASK |
3049 R_CNTHCTL_EVNTIS_MASK;
3050 }
3051 if (cpu_isar_feature(aa64_ecv, cpu)) {
3052 valid_mask |= R_CNTHCTL_ECV_MASK;
3053 }
3054
3055 /* Clear RES0 bits */
3056 value &= valid_mask;
3057
3058 raw_write(env, ri, value);
3059
3060 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
3061 gt_update_irq(cpu, GTIMER_VIRT);
3062 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
3063 gt_update_irq(cpu, GTIMER_PHYS);
3064 }
3065 }
3066
gt_cntvoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3067 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3068 uint64_t value)
3069 {
3070 ARMCPU *cpu = env_archcpu(env);
3071
3072 trace_arm_gt_cntvoff_write(value);
3073 raw_write(env, ri, value);
3074 gt_recalc_timer(cpu, GTIMER_VIRT);
3075 }
3076
gt_virt_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)3077 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3078 const ARMCPRegInfo *ri)
3079 {
3080 int timeridx = gt_virt_redir_timeridx(env);
3081 return env->cp15.c14_timer[timeridx].cval;
3082 }
3083
gt_virt_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3084 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3085 uint64_t value)
3086 {
3087 int timeridx = gt_virt_redir_timeridx(env);
3088 gt_cval_write(env, ri, timeridx, value);
3089 }
3090
gt_virt_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3091 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3092 const ARMCPRegInfo *ri)
3093 {
3094 int timeridx = gt_virt_redir_timeridx(env);
3095 return gt_tval_read(env, ri, timeridx);
3096 }
3097
gt_virt_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3098 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3099 uint64_t value)
3100 {
3101 int timeridx = gt_virt_redir_timeridx(env);
3102 gt_tval_write(env, ri, timeridx, value);
3103 }
3104
gt_virt_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)3105 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3106 const ARMCPRegInfo *ri)
3107 {
3108 int timeridx = gt_virt_redir_timeridx(env);
3109 return env->cp15.c14_timer[timeridx].ctl;
3110 }
3111
gt_virt_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3112 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3113 uint64_t value)
3114 {
3115 int timeridx = gt_virt_redir_timeridx(env);
3116 gt_ctl_write(env, ri, timeridx, value);
3117 }
3118
gt_hyp_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3119 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3120 {
3121 gt_timer_reset(env, ri, GTIMER_HYP);
3122 }
3123
gt_hyp_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3124 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3125 uint64_t value)
3126 {
3127 gt_cval_write(env, ri, GTIMER_HYP, value);
3128 }
3129
gt_hyp_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3130 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3131 {
3132 return gt_tval_read(env, ri, GTIMER_HYP);
3133 }
3134
gt_hyp_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3135 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3136 uint64_t value)
3137 {
3138 gt_tval_write(env, ri, GTIMER_HYP, value);
3139 }
3140
gt_hyp_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3141 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3142 uint64_t value)
3143 {
3144 gt_ctl_write(env, ri, GTIMER_HYP, value);
3145 }
3146
gt_sec_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3147 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3148 {
3149 gt_timer_reset(env, ri, GTIMER_SEC);
3150 }
3151
gt_sec_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3152 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3153 uint64_t value)
3154 {
3155 gt_cval_write(env, ri, GTIMER_SEC, value);
3156 }
3157
gt_sec_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3158 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3159 {
3160 return gt_tval_read(env, ri, GTIMER_SEC);
3161 }
3162
gt_sec_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3163 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3164 uint64_t value)
3165 {
3166 gt_tval_write(env, ri, GTIMER_SEC, value);
3167 }
3168
gt_sec_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3169 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3170 uint64_t value)
3171 {
3172 gt_ctl_write(env, ri, GTIMER_SEC, value);
3173 }
3174
gt_hv_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3175 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3176 {
3177 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3178 }
3179
gt_hv_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3180 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3181 uint64_t value)
3182 {
3183 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3184 }
3185
gt_hv_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3186 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3187 {
3188 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3189 }
3190
gt_hv_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3191 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3192 uint64_t value)
3193 {
3194 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3195 }
3196
gt_hv_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3197 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3198 uint64_t value)
3199 {
3200 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3201 }
3202
arm_gt_ptimer_cb(void * opaque)3203 void arm_gt_ptimer_cb(void *opaque)
3204 {
3205 ARMCPU *cpu = opaque;
3206
3207 gt_recalc_timer(cpu, GTIMER_PHYS);
3208 }
3209
arm_gt_vtimer_cb(void * opaque)3210 void arm_gt_vtimer_cb(void *opaque)
3211 {
3212 ARMCPU *cpu = opaque;
3213
3214 gt_recalc_timer(cpu, GTIMER_VIRT);
3215 }
3216
arm_gt_htimer_cb(void * opaque)3217 void arm_gt_htimer_cb(void *opaque)
3218 {
3219 ARMCPU *cpu = opaque;
3220
3221 gt_recalc_timer(cpu, GTIMER_HYP);
3222 }
3223
arm_gt_stimer_cb(void * opaque)3224 void arm_gt_stimer_cb(void *opaque)
3225 {
3226 ARMCPU *cpu = opaque;
3227
3228 gt_recalc_timer(cpu, GTIMER_SEC);
3229 }
3230
arm_gt_hvtimer_cb(void * opaque)3231 void arm_gt_hvtimer_cb(void *opaque)
3232 {
3233 ARMCPU *cpu = opaque;
3234
3235 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3236 }
3237
3238 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3239 /*
3240 * Note that CNTFRQ is purely reads-as-written for the benefit
3241 * of software; writing it doesn't actually change the timer frequency.
3242 * Our reset value matches the fixed frequency we implement the timer at.
3243 */
3244 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3245 .type = ARM_CP_ALIAS,
3246 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3247 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3248 },
3249 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3251 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3253 .resetfn = arm_gt_cntfrq_reset,
3254 },
3255 /* overall control: mostly access permissions */
3256 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3257 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3258 .access = PL1_RW,
3259 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3260 .resetvalue = 0,
3261 },
3262 /* per-timer control */
3263 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3264 .secure = ARM_CP_SECSTATE_NS,
3265 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3266 .accessfn = gt_ptimer_access,
3267 .fieldoffset = offsetoflow32(CPUARMState,
3268 cp15.c14_timer[GTIMER_PHYS].ctl),
3269 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3270 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3271 },
3272 { .name = "CNTP_CTL_S",
3273 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3274 .secure = ARM_CP_SECSTATE_S,
3275 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3276 .accessfn = gt_ptimer_access,
3277 .fieldoffset = offsetoflow32(CPUARMState,
3278 cp15.c14_timer[GTIMER_SEC].ctl),
3279 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3280 },
3281 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3283 .type = ARM_CP_IO, .access = PL0_RW,
3284 .accessfn = gt_ptimer_access,
3285 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3287 .resetvalue = 0,
3288 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3289 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3290 },
3291 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3292 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3293 .accessfn = gt_vtimer_access,
3294 .fieldoffset = offsetoflow32(CPUARMState,
3295 cp15.c14_timer[GTIMER_VIRT].ctl),
3296 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3297 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3298 },
3299 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3301 .type = ARM_CP_IO, .access = PL0_RW,
3302 .accessfn = gt_vtimer_access,
3303 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3304 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3305 .resetvalue = 0,
3306 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3307 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3308 },
3309 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3310 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3311 .secure = ARM_CP_SECSTATE_NS,
3312 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3313 .accessfn = gt_ptimer_access,
3314 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3315 },
3316 { .name = "CNTP_TVAL_S",
3317 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3318 .secure = ARM_CP_SECSTATE_S,
3319 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3320 .accessfn = gt_ptimer_access,
3321 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3322 },
3323 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3326 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3327 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3328 },
3329 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3330 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3331 .accessfn = gt_vtimer_access,
3332 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3333 },
3334 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3335 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3336 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3337 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3338 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3339 },
3340 /* The counter itself */
3341 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3342 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3343 .accessfn = gt_pct_access,
3344 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3345 },
3346 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3347 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3348 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3349 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3350 },
3351 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3352 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3353 .accessfn = gt_vct_access,
3354 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3355 },
3356 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3358 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3359 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3360 },
3361 /* Comparison value, indicating when the timer goes off */
3362 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3363 .secure = ARM_CP_SECSTATE_NS,
3364 .access = PL0_RW,
3365 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3366 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3367 .accessfn = gt_ptimer_access,
3368 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3369 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3370 },
3371 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3372 .secure = ARM_CP_SECSTATE_S,
3373 .access = PL0_RW,
3374 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3375 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3376 .accessfn = gt_ptimer_access,
3377 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3378 },
3379 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3380 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3381 .access = PL0_RW,
3382 .type = ARM_CP_IO,
3383 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3384 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3385 .resetvalue = 0, .accessfn = gt_ptimer_access,
3386 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3387 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3388 },
3389 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3390 .access = PL0_RW,
3391 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3392 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3393 .accessfn = gt_vtimer_access,
3394 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3395 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3396 },
3397 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3398 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3399 .access = PL0_RW,
3400 .type = ARM_CP_IO,
3401 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3402 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3403 .resetvalue = 0, .accessfn = gt_vtimer_access,
3404 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3405 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3406 },
3407 /*
3408 * Secure timer -- this is actually restricted to only EL3
3409 * and configurably Secure-EL1 via the accessfn.
3410 */
3411 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3412 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3413 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3414 .accessfn = gt_stimer_access,
3415 .readfn = gt_sec_tval_read,
3416 .writefn = gt_sec_tval_write,
3417 .resetfn = gt_sec_timer_reset,
3418 },
3419 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3420 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3421 .type = ARM_CP_IO, .access = PL1_RW,
3422 .accessfn = gt_stimer_access,
3423 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3424 .resetvalue = 0,
3425 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3426 },
3427 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3429 .type = ARM_CP_IO, .access = PL1_RW,
3430 .accessfn = gt_stimer_access,
3431 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3432 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3433 },
3434 };
3435
3436 /*
3437 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
3438 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
3439 * so our implementations here are identical to the normal registers.
3440 */
3441 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3442 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
3443 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3444 .accessfn = gt_vct_access,
3445 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3446 },
3447 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3449 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3450 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3451 },
3452 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
3453 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3454 .accessfn = gt_pct_access,
3455 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3456 },
3457 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
3458 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
3459 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3460 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3461 },
3462 };
3463
gt_cntpoff_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3464 static CPAccessResult gt_cntpoff_access(CPUARMState *env,
3465 const ARMCPRegInfo *ri,
3466 bool isread)
3467 {
3468 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
3469 !(env->cp15.scr_el3 & SCR_ECVEN)) {
3470 return CP_ACCESS_TRAP_EL3;
3471 }
3472 return CP_ACCESS_OK;
3473 }
3474
gt_cntpoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3475 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3476 uint64_t value)
3477 {
3478 ARMCPU *cpu = env_archcpu(env);
3479
3480 trace_arm_gt_cntpoff_write(value);
3481 raw_write(env, ri, value);
3482 gt_recalc_timer(cpu, GTIMER_PHYS);
3483 }
3484
3485 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
3486 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
3487 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
3488 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3489 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
3490 .nv2_redirect_offset = 0x1a8,
3491 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
3492 };
3493 #else
3494
3495 /*
3496 * In user-mode most of the generic timer registers are inaccessible
3497 * however modern kernels (4.12+) allow access to cntvct_el0
3498 */
3499
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)3500 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3501 {
3502 ARMCPU *cpu = env_archcpu(env);
3503
3504 /*
3505 * Currently we have no support for QEMUTimer in linux-user so we
3506 * can't call gt_get_countervalue(env), instead we directly
3507 * call the lower level functions.
3508 */
3509 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3510 }
3511
3512 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3513 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3514 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3515 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3516 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3517 .resetfn = arm_gt_cntfrq_reset,
3518 },
3519 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3520 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3521 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3522 .readfn = gt_virt_cnt_read,
3523 },
3524 };
3525
3526 /*
3527 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
3528 * is exposed to userspace by Linux.
3529 */
3530 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3531 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3532 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3533 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3534 .readfn = gt_virt_cnt_read,
3535 },
3536 };
3537
3538 #endif
3539
par_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3540 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3541 {
3542 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3543 raw_write(env, ri, value);
3544 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3545 raw_write(env, ri, value & 0xfffff6ff);
3546 } else {
3547 raw_write(env, ri, value & 0xfffff1ff);
3548 }
3549 }
3550
3551 #ifndef CONFIG_USER_ONLY
3552 /* get_phys_addr() isn't present for user-mode-only targets */
3553
ats_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3554 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3555 bool isread)
3556 {
3557 if (ri->opc2 & 4) {
3558 /*
3559 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3560 * Secure EL1 (which can only happen if EL3 is AArch64).
3561 * They are simply UNDEF if executed from NS EL1.
3562 * They function normally from EL2 or EL3.
3563 */
3564 if (arm_current_el(env) == 1) {
3565 if (arm_is_secure_below_el3(env)) {
3566 if (env->cp15.scr_el3 & SCR_EEL2) {
3567 return CP_ACCESS_TRAP_EL2;
3568 }
3569 return CP_ACCESS_TRAP_EL3;
3570 }
3571 return CP_ACCESS_TRAP_UNCATEGORIZED;
3572 }
3573 }
3574 return CP_ACCESS_OK;
3575 }
3576
3577 #ifdef CONFIG_TCG
par_el1_shareability(GetPhysAddrResult * res)3578 static int par_el1_shareability(GetPhysAddrResult *res)
3579 {
3580 /*
3581 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3582 * memory -- see pseudocode PAREncodeShareability().
3583 */
3584 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3585 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3586 return 2;
3587 }
3588 return res->cacheattrs.shareability;
3589 }
3590
do_ats_write(CPUARMState * env,uint64_t value,MMUAccessType access_type,ARMMMUIdx mmu_idx,ARMSecuritySpace ss)3591 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3592 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3593 ARMSecuritySpace ss)
3594 {
3595 bool ret;
3596 uint64_t par64;
3597 bool format64 = false;
3598 ARMMMUFaultInfo fi = {};
3599 GetPhysAddrResult res = {};
3600
3601 /*
3602 * I_MXTJT: Granule protection checks are not performed on the final address
3603 * of a successful translation.
3604 */
3605 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3606 &res, &fi);
3607
3608 /*
3609 * ATS operations only do S1 or S1+S2 translations, so we never
3610 * have to deal with the ARMCacheAttrs format for S2 only.
3611 */
3612 assert(!res.cacheattrs.is_s2_format);
3613
3614 if (ret) {
3615 /*
3616 * Some kinds of translation fault must cause exceptions rather
3617 * than being reported in the PAR.
3618 */
3619 int current_el = arm_current_el(env);
3620 int target_el;
3621 uint32_t syn, fsr, fsc;
3622 bool take_exc = false;
3623
3624 if (fi.s1ptw && current_el == 1
3625 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3626 /*
3627 * Synchronous stage 2 fault on an access made as part of the
3628 * translation table walk for AT S1E0* or AT S1E1* insn
3629 * executed from NS EL1. If this is a synchronous external abort
3630 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3631 * to EL3. Otherwise the fault is taken as an exception to EL2,
3632 * and HPFAR_EL2 holds the faulting IPA.
3633 */
3634 if (fi.type == ARMFault_SyncExternalOnWalk &&
3635 (env->cp15.scr_el3 & SCR_EA)) {
3636 target_el = 3;
3637 } else {
3638 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3639 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3640 env->cp15.hpfar_el2 |= HPFAR_NS;
3641 }
3642 target_el = 2;
3643 }
3644 take_exc = true;
3645 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3646 /*
3647 * Synchronous external aborts during a translation table walk
3648 * are taken as Data Abort exceptions.
3649 */
3650 if (fi.stage2) {
3651 if (current_el == 3) {
3652 target_el = 3;
3653 } else {
3654 target_el = 2;
3655 }
3656 } else {
3657 target_el = exception_target_el(env);
3658 }
3659 take_exc = true;
3660 }
3661
3662 if (take_exc) {
3663 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3664 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3665 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3666 fsr = arm_fi_to_lfsc(&fi);
3667 fsc = extract32(fsr, 0, 6);
3668 } else {
3669 fsr = arm_fi_to_sfsc(&fi);
3670 fsc = 0x3f;
3671 }
3672 /*
3673 * Report exception with ESR indicating a fault due to a
3674 * translation table walk for a cache maintenance instruction.
3675 */
3676 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3677 fi.ea, 1, fi.s1ptw, 1, fsc);
3678 env->exception.vaddress = value;
3679 env->exception.fsr = fsr;
3680 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3681 }
3682 }
3683
3684 if (is_a64(env)) {
3685 format64 = true;
3686 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3687 /*
3688 * ATS1Cxx:
3689 * * TTBCR.EAE determines whether the result is returned using the
3690 * 32-bit or the 64-bit PAR format
3691 * * Instructions executed in Hyp mode always use the 64bit format
3692 *
3693 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3694 * * The Non-secure TTBCR.EAE bit is set to 1
3695 * * The implementation includes EL2, and the value of HCR.VM is 1
3696 *
3697 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3698 *
3699 * ATS1Hx always uses the 64bit format.
3700 */
3701 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3702
3703 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_aa32_secure_pl1_0(env)) {
3704 if (mmu_idx == ARMMMUIdx_E10_0 ||
3705 mmu_idx == ARMMMUIdx_E10_1 ||
3706 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3707 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3708 } else {
3709 format64 |= arm_current_el(env) == 2;
3710 }
3711 }
3712 }
3713
3714 if (format64) {
3715 /* Create a 64-bit PAR */
3716 par64 = (1 << 11); /* LPAE bit always set */
3717 if (!ret) {
3718 par64 |= res.f.phys_addr & ~0xfffULL;
3719 if (!res.f.attrs.secure) {
3720 par64 |= (1 << 9); /* NS */
3721 }
3722 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3723 par64 |= par_el1_shareability(&res) << 7; /* SH */
3724 } else {
3725 uint32_t fsr = arm_fi_to_lfsc(&fi);
3726
3727 par64 |= 1; /* F */
3728 par64 |= (fsr & 0x3f) << 1; /* FS */
3729 if (fi.stage2) {
3730 par64 |= (1 << 9); /* S */
3731 }
3732 if (fi.s1ptw) {
3733 par64 |= (1 << 8); /* PTW */
3734 }
3735 }
3736 } else {
3737 /*
3738 * fsr is a DFSR/IFSR value for the short descriptor
3739 * translation table format (with WnR always clear).
3740 * Convert it to a 32-bit PAR.
3741 */
3742 if (!ret) {
3743 /* We do not set any attribute bits in the PAR */
3744 if (res.f.lg_page_size == 24
3745 && arm_feature(env, ARM_FEATURE_V7)) {
3746 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3747 } else {
3748 par64 = res.f.phys_addr & 0xfffff000;
3749 }
3750 if (!res.f.attrs.secure) {
3751 par64 |= (1 << 9); /* NS */
3752 }
3753 } else {
3754 uint32_t fsr = arm_fi_to_sfsc(&fi);
3755
3756 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3757 ((fsr & 0xf) << 1) | 1;
3758 }
3759 }
3760 return par64;
3761 }
3762 #endif /* CONFIG_TCG */
3763
ats_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3764 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3765 {
3766 #ifdef CONFIG_TCG
3767 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3768 uint64_t par64;
3769 ARMMMUIdx mmu_idx;
3770 int el = arm_current_el(env);
3771 ARMSecuritySpace ss = arm_security_space(env);
3772
3773 switch (ri->opc2 & 6) {
3774 case 0:
3775 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3776 switch (el) {
3777 case 2:
3778 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3779 /* fall through */
3780 case 1:
3781 case 3:
3782 if (ri->crm == 9 && arm_pan_enabled(env)) {
3783 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3784 } else {
3785 mmu_idx = ARMMMUIdx_Stage1_E1;
3786 }
3787 break;
3788 default:
3789 g_assert_not_reached();
3790 }
3791 break;
3792 case 2:
3793 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3794 switch (el) {
3795 case 3:
3796 mmu_idx = ARMMMUIdx_E10_0;
3797 break;
3798 case 2:
3799 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3800 mmu_idx = ARMMMUIdx_Stage1_E0;
3801 break;
3802 case 1:
3803 mmu_idx = ARMMMUIdx_Stage1_E0;
3804 break;
3805 default:
3806 g_assert_not_reached();
3807 }
3808 break;
3809 case 4:
3810 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3811 mmu_idx = ARMMMUIdx_E10_1;
3812 ss = ARMSS_NonSecure;
3813 break;
3814 case 6:
3815 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3816 mmu_idx = ARMMMUIdx_E10_0;
3817 ss = ARMSS_NonSecure;
3818 break;
3819 default:
3820 g_assert_not_reached();
3821 }
3822
3823 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3824
3825 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3826 #else
3827 /* Handled by hardware accelerator. */
3828 g_assert_not_reached();
3829 #endif /* CONFIG_TCG */
3830 }
3831
ats1h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3832 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3833 uint64_t value)
3834 {
3835 #ifdef CONFIG_TCG
3836 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3837 uint64_t par64;
3838
3839 /* There is no SecureEL2 for AArch32. */
3840 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3841 ARMSS_NonSecure);
3842
3843 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3844 #else
3845 /* Handled by hardware accelerator. */
3846 g_assert_not_reached();
3847 #endif /* CONFIG_TCG */
3848 }
3849
at_e012_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3850 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3851 bool isread)
3852 {
3853 /*
3854 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3855 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3856 * only happen when executing at EL3 because that combination also causes an
3857 * illegal exception return. We don't need to check FEAT_RME either, because
3858 * scr_write() ensures that the NSE bit is not set otherwise.
3859 */
3860 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3861 return CP_ACCESS_TRAP;
3862 }
3863 return CP_ACCESS_OK;
3864 }
3865
at_s1e2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3866 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3867 bool isread)
3868 {
3869 if (arm_current_el(env) == 3 &&
3870 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3871 return CP_ACCESS_TRAP;
3872 }
3873 return at_e012_access(env, ri, isread);
3874 }
3875
at_s1e01_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3876 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3877 bool isread)
3878 {
3879 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3880 return CP_ACCESS_TRAP_EL2;
3881 }
3882 return at_e012_access(env, ri, isread);
3883 }
3884
ats_write64(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3885 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3886 uint64_t value)
3887 {
3888 #ifdef CONFIG_TCG
3889 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3890 ARMMMUIdx mmu_idx;
3891 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3892 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3893 bool for_el3 = false;
3894 ARMSecuritySpace ss;
3895
3896 switch (ri->opc2 & 6) {
3897 case 0:
3898 switch (ri->opc1) {
3899 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3900 if (ri->crm == 9 && arm_pan_enabled(env)) {
3901 mmu_idx = regime_e20 ?
3902 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3903 } else {
3904 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3905 }
3906 break;
3907 case 4: /* AT S1E2R, AT S1E2W */
3908 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3909 break;
3910 case 6: /* AT S1E3R, AT S1E3W */
3911 mmu_idx = ARMMMUIdx_E3;
3912 for_el3 = true;
3913 break;
3914 default:
3915 g_assert_not_reached();
3916 }
3917 break;
3918 case 2: /* AT S1E0R, AT S1E0W */
3919 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3920 break;
3921 case 4: /* AT S12E1R, AT S12E1W */
3922 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3923 break;
3924 case 6: /* AT S12E0R, AT S12E0W */
3925 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3926 break;
3927 default:
3928 g_assert_not_reached();
3929 }
3930
3931 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env);
3932 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss);
3933 #else
3934 /* Handled by hardware accelerator. */
3935 g_assert_not_reached();
3936 #endif /* CONFIG_TCG */
3937 }
3938 #endif
3939
3940 /* Return basic MPU access permission bits. */
simple_mpu_ap_bits(uint32_t val)3941 static uint32_t simple_mpu_ap_bits(uint32_t val)
3942 {
3943 uint32_t ret;
3944 uint32_t mask;
3945 int i;
3946 ret = 0;
3947 mask = 3;
3948 for (i = 0; i < 16; i += 2) {
3949 ret |= (val >> i) & mask;
3950 mask <<= 2;
3951 }
3952 return ret;
3953 }
3954
3955 /* Pad basic MPU access permission bits to extended format. */
extended_mpu_ap_bits(uint32_t val)3956 static uint32_t extended_mpu_ap_bits(uint32_t val)
3957 {
3958 uint32_t ret;
3959 uint32_t mask;
3960 int i;
3961 ret = 0;
3962 mask = 3;
3963 for (i = 0; i < 16; i += 2) {
3964 ret |= (val & mask) << i;
3965 mask <<= 2;
3966 }
3967 return ret;
3968 }
3969
pmsav5_data_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3970 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3971 uint64_t value)
3972 {
3973 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3974 }
3975
pmsav5_data_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)3976 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3977 {
3978 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3979 }
3980
pmsav5_insn_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3981 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3982 uint64_t value)
3983 {
3984 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3985 }
3986
pmsav5_insn_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)3987 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3988 {
3989 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3990 }
3991
pmsav7_read(CPUARMState * env,const ARMCPRegInfo * ri)3992 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3993 {
3994 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3995
3996 if (!u32p) {
3997 return 0;
3998 }
3999
4000 u32p += env->pmsav7.rnr[M_REG_NS];
4001 return *u32p;
4002 }
4003
pmsav7_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4004 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
4005 uint64_t value)
4006 {
4007 ARMCPU *cpu = env_archcpu(env);
4008 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
4009
4010 if (!u32p) {
4011 return;
4012 }
4013
4014 u32p += env->pmsav7.rnr[M_REG_NS];
4015 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4016 *u32p = value;
4017 }
4018
pmsav7_rgnr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4019 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4020 uint64_t value)
4021 {
4022 ARMCPU *cpu = env_archcpu(env);
4023 uint32_t nrgs = cpu->pmsav7_dregion;
4024
4025 if (value >= nrgs) {
4026 qemu_log_mask(LOG_GUEST_ERROR,
4027 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
4028 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
4029 return;
4030 }
4031
4032 raw_write(env, ri, value);
4033 }
4034
prbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4035 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4036 uint64_t value)
4037 {
4038 ARMCPU *cpu = env_archcpu(env);
4039
4040 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4041 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4042 }
4043
prbar_read(CPUARMState * env,const ARMCPRegInfo * ri)4044 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4045 {
4046 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4047 }
4048
prlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4049 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4050 uint64_t value)
4051 {
4052 ARMCPU *cpu = env_archcpu(env);
4053
4054 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4055 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4056 }
4057
prlar_read(CPUARMState * env,const ARMCPRegInfo * ri)4058 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4059 {
4060 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4061 }
4062
prselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4063 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4064 uint64_t value)
4065 {
4066 ARMCPU *cpu = env_archcpu(env);
4067
4068 /*
4069 * Ignore writes that would select not implemented region.
4070 * This is architecturally UNPREDICTABLE.
4071 */
4072 if (value >= cpu->pmsav7_dregion) {
4073 return;
4074 }
4075
4076 env->pmsav7.rnr[M_REG_NS] = value;
4077 }
4078
hprbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4079 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4080 uint64_t value)
4081 {
4082 ARMCPU *cpu = env_archcpu(env);
4083
4084 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4085 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
4086 }
4087
hprbar_read(CPUARMState * env,const ARMCPRegInfo * ri)4088 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4089 {
4090 return env->pmsav8.hprbar[env->pmsav8.hprselr];
4091 }
4092
hprlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4093 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4094 uint64_t value)
4095 {
4096 ARMCPU *cpu = env_archcpu(env);
4097
4098 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4099 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
4100 }
4101
hprlar_read(CPUARMState * env,const ARMCPRegInfo * ri)4102 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4103 {
4104 return env->pmsav8.hprlar[env->pmsav8.hprselr];
4105 }
4106
hprenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4107 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4108 uint64_t value)
4109 {
4110 uint32_t n;
4111 uint32_t bit;
4112 ARMCPU *cpu = env_archcpu(env);
4113
4114 /* Ignore writes to unimplemented regions */
4115 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
4116 value &= MAKE_64BIT_MASK(0, rmax);
4117
4118 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4119
4120 /* Register alias is only valid for first 32 indexes */
4121 for (n = 0; n < rmax; ++n) {
4122 bit = extract32(value, n, 1);
4123 env->pmsav8.hprlar[n] = deposit32(
4124 env->pmsav8.hprlar[n], 0, 1, bit);
4125 }
4126 }
4127
hprenr_read(CPUARMState * env,const ARMCPRegInfo * ri)4128 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4129 {
4130 uint32_t n;
4131 uint32_t result = 0x0;
4132 ARMCPU *cpu = env_archcpu(env);
4133
4134 /* Register alias is only valid for first 32 indexes */
4135 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
4136 if (env->pmsav8.hprlar[n] & 0x1) {
4137 result |= (0x1 << n);
4138 }
4139 }
4140 return result;
4141 }
4142
hprselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4143 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4144 uint64_t value)
4145 {
4146 ARMCPU *cpu = env_archcpu(env);
4147
4148 /*
4149 * Ignore writes that would select not implemented region.
4150 * This is architecturally UNPREDICTABLE.
4151 */
4152 if (value >= cpu->pmsav8r_hdregion) {
4153 return;
4154 }
4155
4156 env->pmsav8.hprselr = value;
4157 }
4158
pmsav8r_regn_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4159 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4160 uint64_t value)
4161 {
4162 ARMCPU *cpu = env_archcpu(env);
4163 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4164 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4165
4166 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4167
4168 if (ri->opc1 & 4) {
4169 if (index >= cpu->pmsav8r_hdregion) {
4170 return;
4171 }
4172 if (ri->opc2 & 0x1) {
4173 env->pmsav8.hprlar[index] = value;
4174 } else {
4175 env->pmsav8.hprbar[index] = value;
4176 }
4177 } else {
4178 if (index >= cpu->pmsav7_dregion) {
4179 return;
4180 }
4181 if (ri->opc2 & 0x1) {
4182 env->pmsav8.rlar[M_REG_NS][index] = value;
4183 } else {
4184 env->pmsav8.rbar[M_REG_NS][index] = value;
4185 }
4186 }
4187 }
4188
pmsav8r_regn_read(CPUARMState * env,const ARMCPRegInfo * ri)4189 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4190 {
4191 ARMCPU *cpu = env_archcpu(env);
4192 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4193 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4194
4195 if (ri->opc1 & 4) {
4196 if (index >= cpu->pmsav8r_hdregion) {
4197 return 0x0;
4198 }
4199 if (ri->opc2 & 0x1) {
4200 return env->pmsav8.hprlar[index];
4201 } else {
4202 return env->pmsav8.hprbar[index];
4203 }
4204 } else {
4205 if (index >= cpu->pmsav7_dregion) {
4206 return 0x0;
4207 }
4208 if (ri->opc2 & 0x1) {
4209 return env->pmsav8.rlar[M_REG_NS][index];
4210 } else {
4211 return env->pmsav8.rbar[M_REG_NS][index];
4212 }
4213 }
4214 }
4215
4216 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4217 { .name = "PRBAR",
4218 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4219 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4220 .accessfn = access_tvm_trvm,
4221 .readfn = prbar_read, .writefn = prbar_write },
4222 { .name = "PRLAR",
4223 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4224 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4225 .accessfn = access_tvm_trvm,
4226 .readfn = prlar_read, .writefn = prlar_write },
4227 { .name = "PRSELR", .resetvalue = 0,
4228 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4229 .access = PL1_RW, .accessfn = access_tvm_trvm,
4230 .writefn = prselr_write,
4231 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4232 { .name = "HPRBAR", .resetvalue = 0,
4233 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4234 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4235 .readfn = hprbar_read, .writefn = hprbar_write },
4236 { .name = "HPRLAR",
4237 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4238 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4239 .readfn = hprlar_read, .writefn = hprlar_write },
4240 { .name = "HPRSELR", .resetvalue = 0,
4241 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4242 .access = PL2_RW,
4243 .writefn = hprselr_write,
4244 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4245 { .name = "HPRENR",
4246 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4247 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4248 .readfn = hprenr_read, .writefn = hprenr_write },
4249 };
4250
4251 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4252 /*
4253 * Reset for all these registers is handled in arm_cpu_reset(),
4254 * because the PMSAv7 is also used by M-profile CPUs, which do
4255 * not register cpregs but still need the state to be reset.
4256 */
4257 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4258 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4259 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4260 .readfn = pmsav7_read, .writefn = pmsav7_write,
4261 .resetfn = arm_cp_reset_ignore },
4262 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4263 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4264 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4265 .readfn = pmsav7_read, .writefn = pmsav7_write,
4266 .resetfn = arm_cp_reset_ignore },
4267 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4268 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4269 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4270 .readfn = pmsav7_read, .writefn = pmsav7_write,
4271 .resetfn = arm_cp_reset_ignore },
4272 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4273 .access = PL1_RW,
4274 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4275 .writefn = pmsav7_rgnr_write,
4276 .resetfn = arm_cp_reset_ignore },
4277 };
4278
4279 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4280 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4281 .access = PL1_RW, .type = ARM_CP_ALIAS,
4282 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4283 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4284 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4285 .access = PL1_RW, .type = ARM_CP_ALIAS,
4286 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4287 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4288 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4289 .access = PL1_RW,
4290 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4291 .resetvalue = 0, },
4292 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4293 .access = PL1_RW,
4294 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4295 .resetvalue = 0, },
4296 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4297 .access = PL1_RW,
4298 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4299 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4300 .access = PL1_RW,
4301 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4302 /* Protection region base and size registers */
4303 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4304 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4305 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4306 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4307 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4308 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4309 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4310 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4311 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4312 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4313 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4314 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4315 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4316 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4317 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4318 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4319 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4320 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4321 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4322 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4323 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4324 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4325 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4326 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4327 };
4328
vmsa_ttbcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4329 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4330 uint64_t value)
4331 {
4332 ARMCPU *cpu = env_archcpu(env);
4333
4334 if (!arm_feature(env, ARM_FEATURE_V8)) {
4335 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4336 /*
4337 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4338 * using Long-descriptor translation table format
4339 */
4340 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4341 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4342 /*
4343 * In an implementation that includes the Security Extensions
4344 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4345 * Short-descriptor translation table format.
4346 */
4347 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4348 } else {
4349 value &= TTBCR_N;
4350 }
4351 }
4352
4353 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4354 /*
4355 * With LPAE the TTBCR could result in a change of ASID
4356 * via the TTBCR.A1 bit, so do a TLB flush.
4357 */
4358 tlb_flush(CPU(cpu));
4359 }
4360 raw_write(env, ri, value);
4361 }
4362
vmsa_tcr_el12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4363 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4364 uint64_t value)
4365 {
4366 ARMCPU *cpu = env_archcpu(env);
4367
4368 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4369 tlb_flush(CPU(cpu));
4370 raw_write(env, ri, value);
4371 }
4372
vmsa_ttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4373 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4374 uint64_t value)
4375 {
4376 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4377 if (cpreg_field_is_64bit(ri) &&
4378 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4379 ARMCPU *cpu = env_archcpu(env);
4380 tlb_flush(CPU(cpu));
4381 }
4382 raw_write(env, ri, value);
4383 }
4384
vmsa_tcr_ttbr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4385 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4386 uint64_t value)
4387 {
4388 /*
4389 * If we are running with E2&0 regime, then an ASID is active.
4390 * Flush if that might be changing. Note we're not checking
4391 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4392 * holds the active ASID, only checking the field that might.
4393 */
4394 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4395 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4396 uint16_t mask = ARMMMUIdxBit_E20_2 |
4397 ARMMMUIdxBit_E20_2_PAN |
4398 ARMMMUIdxBit_E20_0;
4399 tlb_flush_by_mmuidx(env_cpu(env), mask);
4400 }
4401 raw_write(env, ri, value);
4402 }
4403
vttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4404 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4405 uint64_t value)
4406 {
4407 ARMCPU *cpu = env_archcpu(env);
4408 CPUState *cs = CPU(cpu);
4409
4410 /*
4411 * A change in VMID to the stage2 page table (Stage2) invalidates
4412 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4413 */
4414 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4415 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4416 }
4417 raw_write(env, ri, value);
4418 }
4419
4420 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4421 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4422 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4423 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4424 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4425 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4426 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4427 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4428 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4429 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4430 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4431 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4432 offsetof(CPUARMState, cp15.dfar_ns) } },
4433 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4434 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4435 .access = PL1_RW, .accessfn = access_tvm_trvm,
4436 .fgt = FGT_FAR_EL1,
4437 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4438 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4439 .resetvalue = 0, },
4440 };
4441
4442 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4443 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4444 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4445 .access = PL1_RW, .accessfn = access_tvm_trvm,
4446 .fgt = FGT_ESR_EL1,
4447 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4448 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4449 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4450 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4451 .access = PL1_RW, .accessfn = access_tvm_trvm,
4452 .fgt = FGT_TTBR0_EL1,
4453 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4454 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4455 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4456 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4457 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4458 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4459 .access = PL1_RW, .accessfn = access_tvm_trvm,
4460 .fgt = FGT_TTBR1_EL1,
4461 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4462 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4463 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4464 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4465 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4466 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4467 .access = PL1_RW, .accessfn = access_tvm_trvm,
4468 .fgt = FGT_TCR_EL1,
4469 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4470 .writefn = vmsa_tcr_el12_write,
4471 .raw_writefn = raw_write,
4472 .resetvalue = 0,
4473 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4474 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4475 .access = PL1_RW, .accessfn = access_tvm_trvm,
4476 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4477 .raw_writefn = raw_write,
4478 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4479 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4480 };
4481
4482 /*
4483 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4484 * qemu tlbs nor adjusting cached masks.
4485 */
4486 static const ARMCPRegInfo ttbcr2_reginfo = {
4487 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4488 .access = PL1_RW, .accessfn = access_tvm_trvm,
4489 .type = ARM_CP_ALIAS,
4490 .bank_fieldoffsets = {
4491 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4492 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4493 },
4494 };
4495
omap_ticonfig_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4496 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4497 uint64_t value)
4498 {
4499 env->cp15.c15_ticonfig = value & 0xe7;
4500 /* The OS_TYPE bit in this register changes the reported CPUID! */
4501 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4502 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4503 }
4504
omap_threadid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4505 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4506 uint64_t value)
4507 {
4508 env->cp15.c15_threadid = value & 0xffff;
4509 }
4510
omap_wfi_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4511 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4512 uint64_t value)
4513 {
4514 /* Wait-for-interrupt (deprecated) */
4515 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4516 }
4517
omap_cachemaint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4518 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4519 uint64_t value)
4520 {
4521 /*
4522 * On OMAP there are registers indicating the max/min index of dcache lines
4523 * containing a dirty line; cache flush operations have to reset these.
4524 */
4525 env->cp15.c15_i_max = 0x000;
4526 env->cp15.c15_i_min = 0xff0;
4527 }
4528
4529 static const ARMCPRegInfo omap_cp_reginfo[] = {
4530 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4531 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4532 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4533 .resetvalue = 0, },
4534 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4535 .access = PL1_RW, .type = ARM_CP_NOP },
4536 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4537 .access = PL1_RW,
4538 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4539 .writefn = omap_ticonfig_write },
4540 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4541 .access = PL1_RW,
4542 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4543 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4544 .access = PL1_RW, .resetvalue = 0xff0,
4545 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4546 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4547 .access = PL1_RW,
4548 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4549 .writefn = omap_threadid_write },
4550 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4551 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4552 .type = ARM_CP_NO_RAW,
4553 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4554 /*
4555 * TODO: Peripheral port remap register:
4556 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4557 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4558 * when MMU is off.
4559 */
4560 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4561 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4562 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4563 .writefn = omap_cachemaint_write },
4564 { .name = "C9", .cp = 15, .crn = 9,
4565 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4566 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4567 };
4568
xscale_cpar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4569 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4570 uint64_t value)
4571 {
4572 env->cp15.c15_cpar = value & 0x3fff;
4573 }
4574
4575 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4576 { .name = "XSCALE_CPAR",
4577 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4578 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4579 .writefn = xscale_cpar_write, },
4580 { .name = "XSCALE_AUXCR",
4581 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4582 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4583 .resetvalue = 0, },
4584 /*
4585 * XScale specific cache-lockdown: since we have no cache we NOP these
4586 * and hope the guest does not really rely on cache behaviour.
4587 */
4588 { .name = "XSCALE_LOCK_ICACHE_LINE",
4589 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4590 .access = PL1_W, .type = ARM_CP_NOP },
4591 { .name = "XSCALE_UNLOCK_ICACHE",
4592 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4593 .access = PL1_W, .type = ARM_CP_NOP },
4594 { .name = "XSCALE_DCACHE_LOCK",
4595 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4596 .access = PL1_RW, .type = ARM_CP_NOP },
4597 { .name = "XSCALE_UNLOCK_DCACHE",
4598 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4599 .access = PL1_W, .type = ARM_CP_NOP },
4600 };
4601
4602 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4603 /*
4604 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4605 * implementation of this implementation-defined space.
4606 * Ideally this should eventually disappear in favour of actually
4607 * implementing the correct behaviour for all cores.
4608 */
4609 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4610 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4611 .access = PL1_RW,
4612 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4613 .resetvalue = 0 },
4614 };
4615
4616 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4617 /* Cache status: RAZ because we have no cache so it's always clean */
4618 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4619 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4620 .resetvalue = 0 },
4621 };
4622
4623 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4624 /* We never have a block transfer operation in progress */
4625 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4626 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4627 .resetvalue = 0 },
4628 /* The cache ops themselves: these all NOP for QEMU */
4629 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4630 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4631 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4632 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4633 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4634 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4635 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4636 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4637 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4638 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4639 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4640 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4641 };
4642
4643 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4644 /*
4645 * The cache test-and-clean instructions always return (1 << 30)
4646 * to indicate that there are no dirty cache lines.
4647 */
4648 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4649 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4650 .resetvalue = (1 << 30) },
4651 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4652 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4653 .resetvalue = (1 << 30) },
4654 };
4655
4656 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4657 /* Ignore ReadBuffer accesses */
4658 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4659 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4660 .access = PL1_RW, .resetvalue = 0,
4661 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4662 };
4663
midr_read(CPUARMState * env,const ARMCPRegInfo * ri)4664 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4665 {
4666 unsigned int cur_el = arm_current_el(env);
4667
4668 if (arm_is_el2_enabled(env) && cur_el == 1) {
4669 return env->cp15.vpidr_el2;
4670 }
4671 return raw_read(env, ri);
4672 }
4673
mpidr_read_val(CPUARMState * env)4674 static uint64_t mpidr_read_val(CPUARMState *env)
4675 {
4676 ARMCPU *cpu = env_archcpu(env);
4677 uint64_t mpidr = cpu->mp_affinity;
4678
4679 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4680 mpidr |= (1U << 31);
4681 /*
4682 * Cores which are uniprocessor (non-coherent)
4683 * but still implement the MP extensions set
4684 * bit 30. (For instance, Cortex-R5).
4685 */
4686 if (cpu->mp_is_up) {
4687 mpidr |= (1u << 30);
4688 }
4689 }
4690 return mpidr;
4691 }
4692
mpidr_read(CPUARMState * env,const ARMCPRegInfo * ri)4693 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4694 {
4695 unsigned int cur_el = arm_current_el(env);
4696
4697 if (arm_is_el2_enabled(env) && cur_el == 1) {
4698 return env->cp15.vmpidr_el2;
4699 }
4700 return mpidr_read_val(env);
4701 }
4702
4703 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4704 /* NOP AMAIR0/1 */
4705 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4706 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4707 .access = PL1_RW, .accessfn = access_tvm_trvm,
4708 .fgt = FGT_AMAIR_EL1,
4709 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4710 .type = ARM_CP_CONST, .resetvalue = 0 },
4711 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4712 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4713 .access = PL1_RW, .accessfn = access_tvm_trvm,
4714 .type = ARM_CP_CONST, .resetvalue = 0 },
4715 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4716 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4717 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4718 offsetof(CPUARMState, cp15.par_ns)} },
4719 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4720 .access = PL1_RW, .accessfn = access_tvm_trvm,
4721 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4722 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4723 offsetof(CPUARMState, cp15.ttbr0_ns) },
4724 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4725 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4726 .access = PL1_RW, .accessfn = access_tvm_trvm,
4727 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4728 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4729 offsetof(CPUARMState, cp15.ttbr1_ns) },
4730 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4731 };
4732
aa64_fpcr_read(CPUARMState * env,const ARMCPRegInfo * ri)4733 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4734 {
4735 return vfp_get_fpcr(env);
4736 }
4737
aa64_fpcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4738 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4739 uint64_t value)
4740 {
4741 vfp_set_fpcr(env, value);
4742 }
4743
aa64_fpsr_read(CPUARMState * env,const ARMCPRegInfo * ri)4744 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4745 {
4746 return vfp_get_fpsr(env);
4747 }
4748
aa64_fpsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4749 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4750 uint64_t value)
4751 {
4752 vfp_set_fpsr(env, value);
4753 }
4754
aa64_daif_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4755 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4756 bool isread)
4757 {
4758 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4759 return CP_ACCESS_TRAP;
4760 }
4761 return CP_ACCESS_OK;
4762 }
4763
aa64_daif_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4764 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4765 uint64_t value)
4766 {
4767 env->daif = value & PSTATE_DAIF;
4768 }
4769
aa64_pan_read(CPUARMState * env,const ARMCPRegInfo * ri)4770 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4771 {
4772 return env->pstate & PSTATE_PAN;
4773 }
4774
aa64_pan_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4775 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4776 uint64_t value)
4777 {
4778 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4779 }
4780
4781 static const ARMCPRegInfo pan_reginfo = {
4782 .name = "PAN", .state = ARM_CP_STATE_AA64,
4783 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4784 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4785 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4786 };
4787
aa64_uao_read(CPUARMState * env,const ARMCPRegInfo * ri)4788 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4789 {
4790 return env->pstate & PSTATE_UAO;
4791 }
4792
aa64_uao_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4793 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4794 uint64_t value)
4795 {
4796 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4797 }
4798
4799 static const ARMCPRegInfo uao_reginfo = {
4800 .name = "UAO", .state = ARM_CP_STATE_AA64,
4801 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4802 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4803 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4804 };
4805
aa64_dit_read(CPUARMState * env,const ARMCPRegInfo * ri)4806 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4807 {
4808 return env->pstate & PSTATE_DIT;
4809 }
4810
aa64_dit_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4811 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4812 uint64_t value)
4813 {
4814 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4815 }
4816
4817 static const ARMCPRegInfo dit_reginfo = {
4818 .name = "DIT", .state = ARM_CP_STATE_AA64,
4819 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4820 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4821 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4822 };
4823
aa64_ssbs_read(CPUARMState * env,const ARMCPRegInfo * ri)4824 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4825 {
4826 return env->pstate & PSTATE_SSBS;
4827 }
4828
aa64_ssbs_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4829 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830 uint64_t value)
4831 {
4832 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4833 }
4834
4835 static const ARMCPRegInfo ssbs_reginfo = {
4836 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4837 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4838 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4839 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4840 };
4841
aa64_cacheop_poc_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4842 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4843 const ARMCPRegInfo *ri,
4844 bool isread)
4845 {
4846 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4847 switch (arm_current_el(env)) {
4848 case 0:
4849 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4850 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4851 return CP_ACCESS_TRAP;
4852 }
4853 /* fall through */
4854 case 1:
4855 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4856 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4857 return CP_ACCESS_TRAP_EL2;
4858 }
4859 break;
4860 }
4861 return CP_ACCESS_OK;
4862 }
4863
do_cacheop_pou_access(CPUARMState * env,uint64_t hcrflags)4864 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4865 {
4866 /* Cache invalidate/clean to Point of Unification... */
4867 switch (arm_current_el(env)) {
4868 case 0:
4869 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4870 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4871 return CP_ACCESS_TRAP;
4872 }
4873 /* fall through */
4874 case 1:
4875 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4876 if (arm_hcr_el2_eff(env) & hcrflags) {
4877 return CP_ACCESS_TRAP_EL2;
4878 }
4879 break;
4880 }
4881 return CP_ACCESS_OK;
4882 }
4883
access_ticab(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4884 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4885 bool isread)
4886 {
4887 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4888 }
4889
access_tocu(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4890 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4891 bool isread)
4892 {
4893 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4894 }
4895
4896 /*
4897 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4898 * Page D4-1736 (DDI0487A.b)
4899 */
4900
vae1_tlbmask(CPUARMState * env)4901 static int vae1_tlbmask(CPUARMState *env)
4902 {
4903 uint64_t hcr = arm_hcr_el2_eff(env);
4904 uint16_t mask;
4905
4906 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4907 mask = ARMMMUIdxBit_E20_2 |
4908 ARMMMUIdxBit_E20_2_PAN |
4909 ARMMMUIdxBit_E20_0;
4910 } else {
4911 mask = ARMMMUIdxBit_E10_1 |
4912 ARMMMUIdxBit_E10_1_PAN |
4913 ARMMMUIdxBit_E10_0;
4914 }
4915 return mask;
4916 }
4917
vae2_tlbmask(CPUARMState * env)4918 static int vae2_tlbmask(CPUARMState *env)
4919 {
4920 uint64_t hcr = arm_hcr_el2_eff(env);
4921 uint16_t mask;
4922
4923 if (hcr & HCR_E2H) {
4924 mask = ARMMMUIdxBit_E20_2 |
4925 ARMMMUIdxBit_E20_2_PAN |
4926 ARMMMUIdxBit_E20_0;
4927 } else {
4928 mask = ARMMMUIdxBit_E2;
4929 }
4930 return mask;
4931 }
4932
4933 /* Return 56 if TBI is enabled, 64 otherwise. */
tlbbits_for_regime(CPUARMState * env,ARMMMUIdx mmu_idx,uint64_t addr)4934 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4935 uint64_t addr)
4936 {
4937 uint64_t tcr = regime_tcr(env, mmu_idx);
4938 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4939 int select = extract64(addr, 55, 1);
4940
4941 return (tbi >> select) & 1 ? 56 : 64;
4942 }
4943
vae1_tlbbits(CPUARMState * env,uint64_t addr)4944 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4945 {
4946 uint64_t hcr = arm_hcr_el2_eff(env);
4947 ARMMMUIdx mmu_idx;
4948
4949 /* Only the regime of the mmu_idx below is significant. */
4950 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4951 mmu_idx = ARMMMUIdx_E20_0;
4952 } else {
4953 mmu_idx = ARMMMUIdx_E10_0;
4954 }
4955
4956 return tlbbits_for_regime(env, mmu_idx, addr);
4957 }
4958
vae2_tlbbits(CPUARMState * env,uint64_t addr)4959 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4960 {
4961 uint64_t hcr = arm_hcr_el2_eff(env);
4962 ARMMMUIdx mmu_idx;
4963
4964 /*
4965 * Only the regime of the mmu_idx below is significant.
4966 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4967 * only has one.
4968 */
4969 if (hcr & HCR_E2H) {
4970 mmu_idx = ARMMMUIdx_E20_2;
4971 } else {
4972 mmu_idx = ARMMMUIdx_E2;
4973 }
4974
4975 return tlbbits_for_regime(env, mmu_idx, addr);
4976 }
4977
tlbi_aa64_vmalle1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4978 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4979 uint64_t value)
4980 {
4981 CPUState *cs = env_cpu(env);
4982 int mask = vae1_tlbmask(env);
4983
4984 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4985 }
4986
tlbi_aa64_vmalle1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4987 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4988 uint64_t value)
4989 {
4990 CPUState *cs = env_cpu(env);
4991 int mask = vae1_tlbmask(env);
4992
4993 if (tlb_force_broadcast(env)) {
4994 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4995 } else {
4996 tlb_flush_by_mmuidx(cs, mask);
4997 }
4998 }
4999
e2_tlbmask(CPUARMState * env)5000 static int e2_tlbmask(CPUARMState *env)
5001 {
5002 return (ARMMMUIdxBit_E20_0 |
5003 ARMMMUIdxBit_E20_2 |
5004 ARMMMUIdxBit_E20_2_PAN |
5005 ARMMMUIdxBit_E2);
5006 }
5007
tlbi_aa64_alle1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5008 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5009 uint64_t value)
5010 {
5011 CPUState *cs = env_cpu(env);
5012 int mask = alle1_tlbmask(env);
5013
5014 tlb_flush_by_mmuidx(cs, mask);
5015 }
5016
tlbi_aa64_alle2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5017 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5018 uint64_t value)
5019 {
5020 CPUState *cs = env_cpu(env);
5021 int mask = e2_tlbmask(env);
5022
5023 tlb_flush_by_mmuidx(cs, mask);
5024 }
5025
tlbi_aa64_alle3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5026 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5027 uint64_t value)
5028 {
5029 ARMCPU *cpu = env_archcpu(env);
5030 CPUState *cs = CPU(cpu);
5031
5032 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
5033 }
5034
tlbi_aa64_alle1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5035 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5036 uint64_t value)
5037 {
5038 CPUState *cs = env_cpu(env);
5039 int mask = alle1_tlbmask(env);
5040
5041 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5042 }
5043
tlbi_aa64_alle2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5044 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5045 uint64_t value)
5046 {
5047 CPUState *cs = env_cpu(env);
5048 int mask = e2_tlbmask(env);
5049
5050 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5051 }
5052
tlbi_aa64_alle3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5053 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5054 uint64_t value)
5055 {
5056 CPUState *cs = env_cpu(env);
5057
5058 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
5059 }
5060
tlbi_aa64_vae2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5061 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5062 uint64_t value)
5063 {
5064 /*
5065 * Invalidate by VA, EL2
5066 * Currently handles both VAE2 and VALE2, since we don't support
5067 * flush-last-level-only.
5068 */
5069 CPUState *cs = env_cpu(env);
5070 int mask = vae2_tlbmask(env);
5071 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5072 int bits = vae2_tlbbits(env, pageaddr);
5073
5074 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5075 }
5076
tlbi_aa64_vae3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5077 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5078 uint64_t value)
5079 {
5080 /*
5081 * Invalidate by VA, EL3
5082 * Currently handles both VAE3 and VALE3, since we don't support
5083 * flush-last-level-only.
5084 */
5085 ARMCPU *cpu = env_archcpu(env);
5086 CPUState *cs = CPU(cpu);
5087 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5088
5089 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
5090 }
5091
tlbi_aa64_vae1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5092 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5093 uint64_t value)
5094 {
5095 CPUState *cs = env_cpu(env);
5096 int mask = vae1_tlbmask(env);
5097 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5098 int bits = vae1_tlbbits(env, pageaddr);
5099
5100 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5101 }
5102
tlbi_aa64_vae1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5103 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5104 uint64_t value)
5105 {
5106 /*
5107 * Invalidate by VA, EL1&0 (AArch64 version).
5108 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
5109 * since we don't support flush-for-specific-ASID-only or
5110 * flush-last-level-only.
5111 */
5112 CPUState *cs = env_cpu(env);
5113 int mask = vae1_tlbmask(env);
5114 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5115 int bits = vae1_tlbbits(env, pageaddr);
5116
5117 if (tlb_force_broadcast(env)) {
5118 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5119 } else {
5120 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5121 }
5122 }
5123
tlbi_aa64_vae2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5124 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5125 uint64_t value)
5126 {
5127 CPUState *cs = env_cpu(env);
5128 int mask = vae2_tlbmask(env);
5129 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5130 int bits = vae2_tlbbits(env, pageaddr);
5131
5132 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5133 }
5134
tlbi_aa64_vae3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5135 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5136 uint64_t value)
5137 {
5138 CPUState *cs = env_cpu(env);
5139 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5140 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
5141
5142 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
5143 ARMMMUIdxBit_E3, bits);
5144 }
5145
ipas2e1_tlbmask(CPUARMState * env,int64_t value)5146 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5147 {
5148 /*
5149 * The MSB of value is the NS field, which only applies if SEL2
5150 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5151 */
5152 return (value >= 0
5153 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5154 && arm_is_secure_below_el3(env)
5155 ? ARMMMUIdxBit_Stage2_S
5156 : ARMMMUIdxBit_Stage2);
5157 }
5158
tlbi_aa64_ipas2e1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5159 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5160 uint64_t value)
5161 {
5162 CPUState *cs = env_cpu(env);
5163 int mask = ipas2e1_tlbmask(env, value);
5164 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5165
5166 if (tlb_force_broadcast(env)) {
5167 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5168 } else {
5169 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5170 }
5171 }
5172
tlbi_aa64_ipas2e1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5173 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5174 uint64_t value)
5175 {
5176 CPUState *cs = env_cpu(env);
5177 int mask = ipas2e1_tlbmask(env, value);
5178 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5179
5180 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5181 }
5182
5183 #ifdef TARGET_AARCH64
5184 typedef struct {
5185 uint64_t base;
5186 uint64_t length;
5187 } TLBIRange;
5188
tlbi_range_tg_to_gran_size(int tg)5189 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5190 {
5191 /*
5192 * Note that the TLBI range TG field encoding differs from both
5193 * TG0 and TG1 encodings.
5194 */
5195 switch (tg) {
5196 case 1:
5197 return Gran4K;
5198 case 2:
5199 return Gran16K;
5200 case 3:
5201 return Gran64K;
5202 default:
5203 return GranInvalid;
5204 }
5205 }
5206
tlbi_aa64_get_range(CPUARMState * env,ARMMMUIdx mmuidx,uint64_t value)5207 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5208 uint64_t value)
5209 {
5210 unsigned int page_size_granule, page_shift, num, scale, exponent;
5211 /* Extract one bit to represent the va selector in use. */
5212 uint64_t select = sextract64(value, 36, 1);
5213 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5214 TLBIRange ret = { };
5215 ARMGranuleSize gran;
5216
5217 page_size_granule = extract64(value, 46, 2);
5218 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5219
5220 /* The granule encoded in value must match the granule in use. */
5221 if (gran != param.gran) {
5222 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5223 page_size_granule);
5224 return ret;
5225 }
5226
5227 page_shift = arm_granule_bits(gran);
5228 num = extract64(value, 39, 5);
5229 scale = extract64(value, 44, 2);
5230 exponent = (5 * scale) + 1;
5231
5232 ret.length = (num + 1) << (exponent + page_shift);
5233
5234 if (param.select) {
5235 ret.base = sextract64(value, 0, 37);
5236 } else {
5237 ret.base = extract64(value, 0, 37);
5238 }
5239 if (param.ds) {
5240 /*
5241 * With DS=1, BaseADDR is always shifted 16 so that it is able
5242 * to address all 52 va bits. The input address is perforce
5243 * aligned on a 64k boundary regardless of translation granule.
5244 */
5245 page_shift = 16;
5246 }
5247 ret.base <<= page_shift;
5248
5249 return ret;
5250 }
5251
do_rvae_write(CPUARMState * env,uint64_t value,int idxmap,bool synced)5252 static void do_rvae_write(CPUARMState *env, uint64_t value,
5253 int idxmap, bool synced)
5254 {
5255 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5256 TLBIRange range;
5257 int bits;
5258
5259 range = tlbi_aa64_get_range(env, one_idx, value);
5260 bits = tlbbits_for_regime(env, one_idx, range.base);
5261
5262 if (synced) {
5263 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5264 range.base,
5265 range.length,
5266 idxmap,
5267 bits);
5268 } else {
5269 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5270 range.length, idxmap, bits);
5271 }
5272 }
5273
tlbi_aa64_rvae1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5274 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5275 const ARMCPRegInfo *ri,
5276 uint64_t value)
5277 {
5278 /*
5279 * Invalidate by VA range, EL1&0.
5280 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5281 * since we don't support flush-for-specific-ASID-only or
5282 * flush-last-level-only.
5283 */
5284
5285 do_rvae_write(env, value, vae1_tlbmask(env),
5286 tlb_force_broadcast(env));
5287 }
5288
tlbi_aa64_rvae1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5289 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5290 const ARMCPRegInfo *ri,
5291 uint64_t value)
5292 {
5293 /*
5294 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5295 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5296 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5297 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5298 * shareable specific flushes.
5299 */
5300
5301 do_rvae_write(env, value, vae1_tlbmask(env), true);
5302 }
5303
tlbi_aa64_rvae2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5304 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5305 const ARMCPRegInfo *ri,
5306 uint64_t value)
5307 {
5308 /*
5309 * Invalidate by VA range, EL2.
5310 * Currently handles all of RVAE2 and RVALE2,
5311 * since we don't support flush-for-specific-ASID-only or
5312 * flush-last-level-only.
5313 */
5314
5315 do_rvae_write(env, value, vae2_tlbmask(env),
5316 tlb_force_broadcast(env));
5317
5318
5319 }
5320
tlbi_aa64_rvae2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5321 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5322 const ARMCPRegInfo *ri,
5323 uint64_t value)
5324 {
5325 /*
5326 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5327 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5328 * since we don't support flush-for-specific-ASID-only,
5329 * flush-last-level-only or inner/outer shareable specific flushes.
5330 */
5331
5332 do_rvae_write(env, value, vae2_tlbmask(env), true);
5333
5334 }
5335
tlbi_aa64_rvae3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5336 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5337 const ARMCPRegInfo *ri,
5338 uint64_t value)
5339 {
5340 /*
5341 * Invalidate by VA range, EL3.
5342 * Currently handles all of RVAE3 and RVALE3,
5343 * since we don't support flush-for-specific-ASID-only or
5344 * flush-last-level-only.
5345 */
5346
5347 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5348 }
5349
tlbi_aa64_rvae3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5350 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5351 const ARMCPRegInfo *ri,
5352 uint64_t value)
5353 {
5354 /*
5355 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5356 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5357 * since we don't support flush-for-specific-ASID-only,
5358 * flush-last-level-only or inner/outer specific flushes.
5359 */
5360
5361 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5362 }
5363
tlbi_aa64_ripas2e1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5364 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5365 uint64_t value)
5366 {
5367 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5368 tlb_force_broadcast(env));
5369 }
5370
tlbi_aa64_ripas2e1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5371 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5372 const ARMCPRegInfo *ri,
5373 uint64_t value)
5374 {
5375 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5376 }
5377 #endif
5378
aa64_zva_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5379 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5380 bool isread)
5381 {
5382 int cur_el = arm_current_el(env);
5383
5384 if (cur_el < 2) {
5385 uint64_t hcr = arm_hcr_el2_eff(env);
5386
5387 if (cur_el == 0) {
5388 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5389 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5390 return CP_ACCESS_TRAP_EL2;
5391 }
5392 } else {
5393 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5394 return CP_ACCESS_TRAP;
5395 }
5396 if (hcr & HCR_TDZ) {
5397 return CP_ACCESS_TRAP_EL2;
5398 }
5399 }
5400 } else if (hcr & HCR_TDZ) {
5401 return CP_ACCESS_TRAP_EL2;
5402 }
5403 }
5404 return CP_ACCESS_OK;
5405 }
5406
aa64_dczid_read(CPUARMState * env,const ARMCPRegInfo * ri)5407 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5408 {
5409 ARMCPU *cpu = env_archcpu(env);
5410 int dzp_bit = 1 << 4;
5411
5412 /* DZP indicates whether DC ZVA access is allowed */
5413 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5414 dzp_bit = 0;
5415 }
5416 return cpu->dcz_blocksize | dzp_bit;
5417 }
5418
sp_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5419 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5420 bool isread)
5421 {
5422 if (!(env->pstate & PSTATE_SP)) {
5423 /*
5424 * Access to SP_EL0 is undefined if it's being used as
5425 * the stack pointer.
5426 */
5427 return CP_ACCESS_TRAP_UNCATEGORIZED;
5428 }
5429 return CP_ACCESS_OK;
5430 }
5431
spsel_read(CPUARMState * env,const ARMCPRegInfo * ri)5432 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5433 {
5434 return env->pstate & PSTATE_SP;
5435 }
5436
spsel_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)5437 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5438 {
5439 update_spsel(env, val);
5440 }
5441
sctlr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5442 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5443 uint64_t value)
5444 {
5445 ARMCPU *cpu = env_archcpu(env);
5446
5447 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5448 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5449 value &= ~SCTLR_M;
5450 }
5451
5452 /* ??? Lots of these bits are not implemented. */
5453
5454 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5455 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5456 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5457 } else {
5458 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5459 SCTLR_ATA0 | SCTLR_ATA);
5460 }
5461 }
5462
5463 if (raw_read(env, ri) == value) {
5464 /*
5465 * Skip the TLB flush if nothing actually changed; Linux likes
5466 * to do a lot of pointless SCTLR writes.
5467 */
5468 return;
5469 }
5470
5471 raw_write(env, ri, value);
5472
5473 /* This may enable/disable the MMU, so do a TLB flush. */
5474 tlb_flush(CPU(cpu));
5475
5476 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5477 /*
5478 * Normally we would always end the TB on an SCTLR write; see the
5479 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5480 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5481 * of hflags from the translator, so do it here.
5482 */
5483 arm_rebuild_hflags(env);
5484 }
5485 }
5486
mdcr_el3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5487 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5488 uint64_t value)
5489 {
5490 /*
5491 * Some MDCR_EL3 bits affect whether PMU counters are running:
5492 * if we are trying to change any of those then we must
5493 * bracket this update with PMU start/finish calls.
5494 */
5495 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5496
5497 if (pmu_op) {
5498 pmu_op_start(env);
5499 }
5500 env->cp15.mdcr_el3 = value;
5501 if (pmu_op) {
5502 pmu_op_finish(env);
5503 }
5504 }
5505
sdcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5506 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5507 uint64_t value)
5508 {
5509 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5510 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5511 }
5512
mdcr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5513 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5514 uint64_t value)
5515 {
5516 /*
5517 * Some MDCR_EL2 bits affect whether PMU counters are running:
5518 * if we are trying to change any of those then we must
5519 * bracket this update with PMU start/finish calls.
5520 */
5521 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5522
5523 if (pmu_op) {
5524 pmu_op_start(env);
5525 }
5526 env->cp15.mdcr_el2 = value;
5527 if (pmu_op) {
5528 pmu_op_finish(env);
5529 }
5530 }
5531
access_nv1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5532 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5533 bool isread)
5534 {
5535 if (arm_current_el(env) == 1) {
5536 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5537
5538 if (hcr_nv == (HCR_NV | HCR_NV1)) {
5539 return CP_ACCESS_TRAP_EL2;
5540 }
5541 }
5542 return CP_ACCESS_OK;
5543 }
5544
5545 #ifdef CONFIG_USER_ONLY
5546 /*
5547 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5548 * code to get around W^X restrictions, where one region is writable and the
5549 * other is executable.
5550 *
5551 * Since the executable region is never written to we cannot detect code
5552 * changes when running in user mode, and rely on the emulated JIT telling us
5553 * that the code has changed by executing this instruction.
5554 */
ic_ivau_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5555 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5556 uint64_t value)
5557 {
5558 uint64_t icache_line_mask, start_address, end_address;
5559 const ARMCPU *cpu;
5560
5561 cpu = env_archcpu(env);
5562
5563 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5564 start_address = value & ~icache_line_mask;
5565 end_address = value | icache_line_mask;
5566
5567 mmap_lock();
5568
5569 tb_invalidate_phys_range(start_address, end_address);
5570
5571 mmap_unlock();
5572 }
5573 #endif
5574
5575 static const ARMCPRegInfo v8_cp_reginfo[] = {
5576 /*
5577 * Minimal set of EL0-visible registers. This will need to be expanded
5578 * significantly for system emulation of AArch64 CPUs.
5579 */
5580 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5581 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5582 .access = PL0_RW, .type = ARM_CP_NZCV },
5583 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5584 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5585 .type = ARM_CP_NO_RAW,
5586 .access = PL0_RW, .accessfn = aa64_daif_access,
5587 .fieldoffset = offsetof(CPUARMState, daif),
5588 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5589 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5590 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5591 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5592 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5593 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5594 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5595 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5596 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5597 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5598 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5599 .access = PL0_R, .type = ARM_CP_NO_RAW,
5600 .fgt = FGT_DCZID_EL0,
5601 .readfn = aa64_dczid_read },
5602 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5603 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5604 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5605 #ifndef CONFIG_USER_ONLY
5606 /* Avoid overhead of an access check that always passes in user-mode */
5607 .accessfn = aa64_zva_access,
5608 .fgt = FGT_DCZVA,
5609 #endif
5610 },
5611 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5612 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5613 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5614 /*
5615 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5616 * don't emulate caches.
5617 */
5618 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5619 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5620 .access = PL1_W, .type = ARM_CP_NOP,
5621 .fgt = FGT_ICIALLUIS,
5622 .accessfn = access_ticab },
5623 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5624 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5625 .access = PL1_W, .type = ARM_CP_NOP,
5626 .fgt = FGT_ICIALLU,
5627 .accessfn = access_tocu },
5628 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5629 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5630 .access = PL0_W,
5631 .fgt = FGT_ICIVAU,
5632 .accessfn = access_tocu,
5633 #ifdef CONFIG_USER_ONLY
5634 .type = ARM_CP_NO_RAW,
5635 .writefn = ic_ivau_write
5636 #else
5637 .type = ARM_CP_NOP
5638 #endif
5639 },
5640 /* Cache ops: all NOPs since we don't emulate caches */
5641 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5642 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5643 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5644 .fgt = FGT_DCIVAC,
5645 .type = ARM_CP_NOP },
5646 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5647 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5648 .fgt = FGT_DCISW,
5649 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5650 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5651 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5652 .access = PL0_W, .type = ARM_CP_NOP,
5653 .fgt = FGT_DCCVAC,
5654 .accessfn = aa64_cacheop_poc_access },
5655 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5656 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5657 .fgt = FGT_DCCSW,
5658 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5659 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5660 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5661 .access = PL0_W, .type = ARM_CP_NOP,
5662 .fgt = FGT_DCCVAU,
5663 .accessfn = access_tocu },
5664 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5665 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5666 .access = PL0_W, .type = ARM_CP_NOP,
5667 .fgt = FGT_DCCIVAC,
5668 .accessfn = aa64_cacheop_poc_access },
5669 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5670 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5671 .fgt = FGT_DCCISW,
5672 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5673 /* TLBI operations */
5674 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5675 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5676 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5677 .fgt = FGT_TLBIVMALLE1IS,
5678 .writefn = tlbi_aa64_vmalle1is_write },
5679 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5680 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5681 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5682 .fgt = FGT_TLBIVAE1IS,
5683 .writefn = tlbi_aa64_vae1is_write },
5684 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5685 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5686 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5687 .fgt = FGT_TLBIASIDE1IS,
5688 .writefn = tlbi_aa64_vmalle1is_write },
5689 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5690 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5691 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5692 .fgt = FGT_TLBIVAAE1IS,
5693 .writefn = tlbi_aa64_vae1is_write },
5694 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5695 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5696 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5697 .fgt = FGT_TLBIVALE1IS,
5698 .writefn = tlbi_aa64_vae1is_write },
5699 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5700 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5701 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5702 .fgt = FGT_TLBIVAALE1IS,
5703 .writefn = tlbi_aa64_vae1is_write },
5704 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5705 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5706 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5707 .fgt = FGT_TLBIVMALLE1,
5708 .writefn = tlbi_aa64_vmalle1_write },
5709 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5710 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5711 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5712 .fgt = FGT_TLBIVAE1,
5713 .writefn = tlbi_aa64_vae1_write },
5714 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5715 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5716 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5717 .fgt = FGT_TLBIASIDE1,
5718 .writefn = tlbi_aa64_vmalle1_write },
5719 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5720 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5721 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5722 .fgt = FGT_TLBIVAAE1,
5723 .writefn = tlbi_aa64_vae1_write },
5724 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5725 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5726 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5727 .fgt = FGT_TLBIVALE1,
5728 .writefn = tlbi_aa64_vae1_write },
5729 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5730 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5731 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5732 .fgt = FGT_TLBIVAALE1,
5733 .writefn = tlbi_aa64_vae1_write },
5734 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5735 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5736 .access = PL2_W, .type = ARM_CP_NO_RAW,
5737 .writefn = tlbi_aa64_ipas2e1is_write },
5738 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5739 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5740 .access = PL2_W, .type = ARM_CP_NO_RAW,
5741 .writefn = tlbi_aa64_ipas2e1is_write },
5742 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5743 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5744 .access = PL2_W, .type = ARM_CP_NO_RAW,
5745 .writefn = tlbi_aa64_alle1is_write },
5746 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5747 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5748 .access = PL2_W, .type = ARM_CP_NO_RAW,
5749 .writefn = tlbi_aa64_alle1is_write },
5750 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5751 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5752 .access = PL2_W, .type = ARM_CP_NO_RAW,
5753 .writefn = tlbi_aa64_ipas2e1_write },
5754 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5755 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5756 .access = PL2_W, .type = ARM_CP_NO_RAW,
5757 .writefn = tlbi_aa64_ipas2e1_write },
5758 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5759 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5760 .access = PL2_W, .type = ARM_CP_NO_RAW,
5761 .writefn = tlbi_aa64_alle1_write },
5762 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5763 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5764 .access = PL2_W, .type = ARM_CP_NO_RAW,
5765 .writefn = tlbi_aa64_alle1is_write },
5766 #ifndef CONFIG_USER_ONLY
5767 /* 64 bit address translation operations */
5768 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5769 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5770 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5771 .fgt = FGT_ATS1E1R,
5772 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5773 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5774 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5775 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5776 .fgt = FGT_ATS1E1W,
5777 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5778 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5779 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5780 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5781 .fgt = FGT_ATS1E0R,
5782 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5783 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5784 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5785 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5786 .fgt = FGT_ATS1E0W,
5787 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5788 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5789 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5790 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5791 .accessfn = at_e012_access, .writefn = ats_write64 },
5792 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5793 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5794 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5795 .accessfn = at_e012_access, .writefn = ats_write64 },
5796 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5797 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5798 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5799 .accessfn = at_e012_access, .writefn = ats_write64 },
5800 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5801 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5802 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5803 .accessfn = at_e012_access, .writefn = ats_write64 },
5804 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5805 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5806 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5807 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5808 .writefn = ats_write64 },
5809 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5810 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5811 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5812 .writefn = ats_write64 },
5813 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5814 .type = ARM_CP_ALIAS,
5815 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5816 .access = PL1_RW, .resetvalue = 0,
5817 .fgt = FGT_PAR_EL1,
5818 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5819 .writefn = par_write },
5820 #endif
5821 /* TLB invalidate last level of translation table walk */
5822 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5823 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5824 .writefn = tlbimva_is_write },
5825 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5826 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5827 .writefn = tlbimvaa_is_write },
5828 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5829 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5830 .writefn = tlbimva_write },
5831 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5832 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5833 .writefn = tlbimvaa_write },
5834 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5835 .type = ARM_CP_NO_RAW, .access = PL2_W,
5836 .writefn = tlbimva_hyp_write },
5837 { .name = "TLBIMVALHIS",
5838 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5839 .type = ARM_CP_NO_RAW, .access = PL2_W,
5840 .writefn = tlbimva_hyp_is_write },
5841 { .name = "TLBIIPAS2",
5842 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5843 .type = ARM_CP_NO_RAW, .access = PL2_W,
5844 .writefn = tlbiipas2_hyp_write },
5845 { .name = "TLBIIPAS2IS",
5846 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5847 .type = ARM_CP_NO_RAW, .access = PL2_W,
5848 .writefn = tlbiipas2is_hyp_write },
5849 { .name = "TLBIIPAS2L",
5850 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5851 .type = ARM_CP_NO_RAW, .access = PL2_W,
5852 .writefn = tlbiipas2_hyp_write },
5853 { .name = "TLBIIPAS2LIS",
5854 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5855 .type = ARM_CP_NO_RAW, .access = PL2_W,
5856 .writefn = tlbiipas2is_hyp_write },
5857 /* 32 bit cache operations */
5858 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5859 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5860 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5861 .type = ARM_CP_NOP, .access = PL1_W },
5862 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5863 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5864 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5865 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5866 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5867 .type = ARM_CP_NOP, .access = PL1_W },
5868 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5869 .type = ARM_CP_NOP, .access = PL1_W },
5870 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5871 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5872 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5873 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5874 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5875 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5876 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5877 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5878 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5879 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5880 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5881 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5882 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5883 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5884 /* MMU Domain access control / MPU write buffer control */
5885 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5886 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5887 .writefn = dacr_write, .raw_writefn = raw_write,
5888 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5889 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5890 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5891 .type = ARM_CP_ALIAS,
5892 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5893 .access = PL1_RW, .accessfn = access_nv1,
5894 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5895 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5896 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5897 .type = ARM_CP_ALIAS,
5898 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5899 .access = PL1_RW, .accessfn = access_nv1,
5900 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5901 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5902 /*
5903 * We rely on the access checks not allowing the guest to write to the
5904 * state field when SPSel indicates that it's being used as the stack
5905 * pointer.
5906 */
5907 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5908 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5909 .access = PL1_RW, .accessfn = sp_el0_access,
5910 .type = ARM_CP_ALIAS,
5911 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5912 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5913 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5914 .nv2_redirect_offset = 0x240,
5915 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5916 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5917 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5918 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5919 .type = ARM_CP_NO_RAW,
5920 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5921 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5922 .type = ARM_CP_ALIAS,
5923 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5924 .access = PL2_RW,
5925 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5926 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5927 .type = ARM_CP_ALIAS,
5928 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5929 .access = PL2_RW,
5930 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5931 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5932 .type = ARM_CP_ALIAS,
5933 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5934 .access = PL2_RW,
5935 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5936 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5937 .type = ARM_CP_ALIAS,
5938 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5939 .access = PL2_RW,
5940 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5941 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5942 .type = ARM_CP_IO,
5943 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5944 .resetvalue = 0,
5945 .access = PL3_RW,
5946 .writefn = mdcr_el3_write,
5947 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5948 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5949 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5950 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5951 .writefn = sdcr_write,
5952 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5953 };
5954
5955 /* These are present only when EL1 supports AArch32 */
5956 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5957 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5958 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5959 .access = PL2_RW,
5960 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5961 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5962 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5963 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5964 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5965 .writefn = dacr_write, .raw_writefn = raw_write,
5966 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5967 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5968 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5969 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5970 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5971 };
5972
do_hcr_write(CPUARMState * env,uint64_t value,uint64_t valid_mask)5973 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5974 {
5975 ARMCPU *cpu = env_archcpu(env);
5976
5977 if (arm_feature(env, ARM_FEATURE_V8)) {
5978 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5979 } else {
5980 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5981 }
5982
5983 if (arm_feature(env, ARM_FEATURE_EL3)) {
5984 valid_mask &= ~HCR_HCD;
5985 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5986 /*
5987 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5988 * However, if we're using the SMC PSCI conduit then QEMU is
5989 * effectively acting like EL3 firmware and so the guest at
5990 * EL2 should retain the ability to prevent EL1 from being
5991 * able to make SMC calls into the ersatz firmware, so in
5992 * that case HCR.TSC should be read/write.
5993 */
5994 valid_mask &= ~HCR_TSC;
5995 }
5996
5997 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5998 if (cpu_isar_feature(aa64_vh, cpu)) {
5999 valid_mask |= HCR_E2H;
6000 }
6001 if (cpu_isar_feature(aa64_ras, cpu)) {
6002 valid_mask |= HCR_TERR | HCR_TEA;
6003 }
6004 if (cpu_isar_feature(aa64_lor, cpu)) {
6005 valid_mask |= HCR_TLOR;
6006 }
6007 if (cpu_isar_feature(aa64_pauth, cpu)) {
6008 valid_mask |= HCR_API | HCR_APK;
6009 }
6010 if (cpu_isar_feature(aa64_mte, cpu)) {
6011 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
6012 }
6013 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
6014 valid_mask |= HCR_ENSCXT;
6015 }
6016 if (cpu_isar_feature(aa64_fwb, cpu)) {
6017 valid_mask |= HCR_FWB;
6018 }
6019 if (cpu_isar_feature(aa64_rme, cpu)) {
6020 valid_mask |= HCR_GPF;
6021 }
6022 if (cpu_isar_feature(aa64_nv, cpu)) {
6023 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
6024 }
6025 if (cpu_isar_feature(aa64_nv2, cpu)) {
6026 valid_mask |= HCR_NV2;
6027 }
6028 }
6029
6030 if (cpu_isar_feature(any_evt, cpu)) {
6031 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
6032 } else if (cpu_isar_feature(any_half_evt, cpu)) {
6033 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
6034 }
6035
6036 /* Clear RES0 bits. */
6037 value &= valid_mask;
6038
6039 /*
6040 * These bits change the MMU setup:
6041 * HCR_VM enables stage 2 translation
6042 * HCR_PTW forbids certain page-table setups
6043 * HCR_DC disables stage1 and enables stage2 translation
6044 * HCR_DCT enables tagging on (disabled) stage1 translation
6045 * HCR_FWB changes the interpretation of stage2 descriptor bits
6046 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
6047 */
6048 if ((env->cp15.hcr_el2 ^ value) &
6049 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
6050 tlb_flush(CPU(cpu));
6051 }
6052 env->cp15.hcr_el2 = value;
6053
6054 /*
6055 * Updates to VI and VF require us to update the status of
6056 * virtual interrupts, which are the logical OR of these bits
6057 * and the state of the input lines from the GIC. (This requires
6058 * that we have the BQL, which is done by marking the
6059 * reginfo structs as ARM_CP_IO.)
6060 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or
6061 * VFNMI, it is never possible for it to be taken immediately
6062 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running
6063 * at EL0 or EL1, and HCR can only be written at EL2.
6064 */
6065 g_assert(bql_locked());
6066 arm_cpu_update_virq(cpu);
6067 arm_cpu_update_vfiq(cpu);
6068 arm_cpu_update_vserr(cpu);
6069 if (cpu_isar_feature(aa64_nmi, cpu)) {
6070 arm_cpu_update_vinmi(cpu);
6071 arm_cpu_update_vfnmi(cpu);
6072 }
6073 }
6074
hcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6075 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
6076 {
6077 do_hcr_write(env, value, 0);
6078 }
6079
hcr_writehigh(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6080 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
6081 uint64_t value)
6082 {
6083 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
6084 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
6085 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
6086 }
6087
hcr_writelow(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6088 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
6089 uint64_t value)
6090 {
6091 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
6092 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
6093 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
6094 }
6095
6096 /*
6097 * Return the effective value of HCR_EL2, at the given security state.
6098 * Bits that are not included here:
6099 * RW (read from SCR_EL3.RW as needed)
6100 */
arm_hcr_el2_eff_secstate(CPUARMState * env,ARMSecuritySpace space)6101 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
6102 {
6103 uint64_t ret = env->cp15.hcr_el2;
6104
6105 assert(space != ARMSS_Root);
6106
6107 if (!arm_is_el2_enabled_secstate(env, space)) {
6108 /*
6109 * "This register has no effect if EL2 is not enabled in the
6110 * current Security state". This is ARMv8.4-SecEL2 speak for
6111 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
6112 *
6113 * Prior to that, the language was "In an implementation that
6114 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
6115 * as if this field is 0 for all purposes other than a direct
6116 * read or write access of HCR_EL2". With lots of enumeration
6117 * on a per-field basis. In current QEMU, this is condition
6118 * is arm_is_secure_below_el3.
6119 *
6120 * Since the v8.4 language applies to the entire register, and
6121 * appears to be backward compatible, use that.
6122 */
6123 return 0;
6124 }
6125
6126 /*
6127 * For a cpu that supports both aarch64 and aarch32, we can set bits
6128 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
6129 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
6130 */
6131 if (!arm_el_is_aa64(env, 2)) {
6132 uint64_t aa32_valid;
6133
6134 /*
6135 * These bits are up-to-date as of ARMv8.6.
6136 * For HCR, it's easiest to list just the 2 bits that are invalid.
6137 * For HCR2, list those that are valid.
6138 */
6139 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
6140 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
6141 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
6142 ret &= aa32_valid;
6143 }
6144
6145 if (ret & HCR_TGE) {
6146 /* These bits are up-to-date as of ARMv8.6. */
6147 if (ret & HCR_E2H) {
6148 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
6149 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
6150 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6151 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6152 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6153 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6154 } else {
6155 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6156 }
6157 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6158 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6159 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6160 HCR_TLOR);
6161 }
6162
6163 return ret;
6164 }
6165
arm_hcr_el2_eff(CPUARMState * env)6166 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6167 {
6168 if (arm_feature(env, ARM_FEATURE_M)) {
6169 return 0;
6170 }
6171 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6172 }
6173
6174 /*
6175 * Corresponds to ARM pseudocode function ELIsInHost().
6176 */
el_is_in_host(CPUARMState * env,int el)6177 bool el_is_in_host(CPUARMState *env, int el)
6178 {
6179 uint64_t mask;
6180
6181 /*
6182 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6183 * Perform the simplest bit tests first, and validate EL2 afterward.
6184 */
6185 if (el & 1) {
6186 return false; /* EL1 or EL3 */
6187 }
6188
6189 /*
6190 * Note that hcr_write() checks isar_feature_aa64_vh(),
6191 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6192 */
6193 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6194 if ((env->cp15.hcr_el2 & mask) != mask) {
6195 return false;
6196 }
6197
6198 /* TGE and/or E2H set: double check those bits are currently legal. */
6199 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6200 }
6201
hcrx_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6202 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6203 uint64_t value)
6204 {
6205 ARMCPU *cpu = env_archcpu(env);
6206 uint64_t valid_mask = 0;
6207
6208 /* FEAT_MOPS adds MSCEn and MCE2 */
6209 if (cpu_isar_feature(aa64_mops, cpu)) {
6210 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6211 }
6212
6213 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */
6214 if (cpu_isar_feature(aa64_nmi, cpu)) {
6215 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI;
6216 }
6217
6218 /* Clear RES0 bits. */
6219 env->cp15.hcrx_el2 = value & valid_mask;
6220
6221 /*
6222 * Updates to VINMI and VFNMI require us to update the status of
6223 * virtual NMI, which are the logical OR of these bits
6224 * and the state of the input lines from the GIC. (This requires
6225 * that we have the BQL, which is done by marking the
6226 * reginfo structs as ARM_CP_IO.)
6227 * Note that if a write to HCRX pends a VINMI or VFNMI it is never
6228 * possible for it to be taken immediately, because VINMI and
6229 * VFNMI are masked unless running at EL0 or EL1, and HCRX
6230 * can only be written at EL2.
6231 */
6232 if (cpu_isar_feature(aa64_nmi, cpu)) {
6233 g_assert(bql_locked());
6234 arm_cpu_update_vinmi(cpu);
6235 arm_cpu_update_vfnmi(cpu);
6236 }
6237 }
6238
access_hxen(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6239 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6240 bool isread)
6241 {
6242 if (arm_current_el(env) == 2
6243 && arm_feature(env, ARM_FEATURE_EL3)
6244 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6245 return CP_ACCESS_TRAP_EL3;
6246 }
6247 return CP_ACCESS_OK;
6248 }
6249
6250 static const ARMCPRegInfo hcrx_el2_reginfo = {
6251 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6252 .type = ARM_CP_IO,
6253 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6254 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6255 .nv2_redirect_offset = 0xa0,
6256 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6257 };
6258
6259 /* Return the effective value of HCRX_EL2. */
arm_hcrx_el2_eff(CPUARMState * env)6260 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6261 {
6262 /*
6263 * The bits in this register behave as 0 for all purposes other than
6264 * direct reads of the register if SCR_EL3.HXEn is 0.
6265 * If EL2 is not enabled in the current security state, then the
6266 * bit may behave as if 0, or as if 1, depending on the bit.
6267 * For the moment, we treat the EL2-disabled case as taking
6268 * priority over the HXEn-disabled case. This is true for the only
6269 * bit for a feature which we implement where the answer is different
6270 * for the two cases (MSCEn for FEAT_MOPS).
6271 * This may need to be revisited for future bits.
6272 */
6273 if (!arm_is_el2_enabled(env)) {
6274 uint64_t hcrx = 0;
6275 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6276 /* MSCEn behaves as 1 if EL2 is not enabled */
6277 hcrx |= HCRX_MSCEN;
6278 }
6279 return hcrx;
6280 }
6281 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6282 return 0;
6283 }
6284 return env->cp15.hcrx_el2;
6285 }
6286
cptr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6287 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6288 uint64_t value)
6289 {
6290 /*
6291 * For A-profile AArch32 EL3, if NSACR.CP10
6292 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6293 */
6294 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6295 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6296 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6297 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6298 }
6299 env->cp15.cptr_el[2] = value;
6300 }
6301
cptr_el2_read(CPUARMState * env,const ARMCPRegInfo * ri)6302 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6303 {
6304 /*
6305 * For A-profile AArch32 EL3, if NSACR.CP10
6306 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6307 */
6308 uint64_t value = env->cp15.cptr_el[2];
6309
6310 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6311 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6312 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6313 }
6314 return value;
6315 }
6316
6317 static const ARMCPRegInfo el2_cp_reginfo[] = {
6318 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6319 .type = ARM_CP_IO,
6320 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6321 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6322 .nv2_redirect_offset = 0x78,
6323 .writefn = hcr_write, .raw_writefn = raw_write },
6324 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6325 .type = ARM_CP_ALIAS | ARM_CP_IO,
6326 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6327 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6328 .writefn = hcr_writelow },
6329 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6330 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6331 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6332 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6333 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6334 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6335 .access = PL2_RW,
6336 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6337 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6338 .type = ARM_CP_NV2_REDIRECT,
6339 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6340 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6341 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6342 .type = ARM_CP_NV2_REDIRECT,
6343 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6344 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6345 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6346 .type = ARM_CP_ALIAS,
6347 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6348 .access = PL2_RW,
6349 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6350 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6351 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6352 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6353 .access = PL2_RW,
6354 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6355 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6356 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6357 .access = PL2_RW, .writefn = vbar_write,
6358 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6359 .resetvalue = 0 },
6360 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6361 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6362 .access = PL3_RW, .type = ARM_CP_ALIAS,
6363 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6364 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6365 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6366 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6367 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6368 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6369 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6370 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6371 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6372 .resetvalue = 0 },
6373 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6374 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6375 .access = PL2_RW, .type = ARM_CP_ALIAS,
6376 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6377 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6378 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6379 .access = PL2_RW, .type = ARM_CP_CONST,
6380 .resetvalue = 0 },
6381 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6382 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6383 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6384 .access = PL2_RW, .type = ARM_CP_CONST,
6385 .resetvalue = 0 },
6386 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6387 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6388 .access = PL2_RW, .type = ARM_CP_CONST,
6389 .resetvalue = 0 },
6390 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6391 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6392 .access = PL2_RW, .type = ARM_CP_CONST,
6393 .resetvalue = 0 },
6394 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6395 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6396 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6397 .raw_writefn = raw_write,
6398 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6399 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6400 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6401 .type = ARM_CP_ALIAS,
6402 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6403 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6404 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6405 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6406 .access = PL2_RW,
6407 .nv2_redirect_offset = 0x40,
6408 /* no .writefn needed as this can't cause an ASID change */
6409 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6410 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6411 .cp = 15, .opc1 = 6, .crm = 2,
6412 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6413 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6414 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6415 .writefn = vttbr_write, .raw_writefn = raw_write },
6416 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6417 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6418 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6419 .nv2_redirect_offset = 0x20,
6420 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6421 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6422 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6423 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6424 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6425 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6426 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6427 .access = PL2_RW, .resetvalue = 0,
6428 .nv2_redirect_offset = 0x90,
6429 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6430 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6431 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6432 .access = PL2_RW, .resetvalue = 0,
6433 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6434 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6435 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6436 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6437 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6438 { .name = "TLBIALLNSNH",
6439 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6440 .type = ARM_CP_NO_RAW, .access = PL2_W,
6441 .writefn = tlbiall_nsnh_write },
6442 { .name = "TLBIALLNSNHIS",
6443 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6444 .type = ARM_CP_NO_RAW, .access = PL2_W,
6445 .writefn = tlbiall_nsnh_is_write },
6446 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6447 .type = ARM_CP_NO_RAW, .access = PL2_W,
6448 .writefn = tlbiall_hyp_write },
6449 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6450 .type = ARM_CP_NO_RAW, .access = PL2_W,
6451 .writefn = tlbiall_hyp_is_write },
6452 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6453 .type = ARM_CP_NO_RAW, .access = PL2_W,
6454 .writefn = tlbimva_hyp_write },
6455 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6456 .type = ARM_CP_NO_RAW, .access = PL2_W,
6457 .writefn = tlbimva_hyp_is_write },
6458 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6459 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6460 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6461 .writefn = tlbi_aa64_alle2_write },
6462 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6463 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6464 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6465 .writefn = tlbi_aa64_vae2_write },
6466 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6467 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6468 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6469 .writefn = tlbi_aa64_vae2_write },
6470 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6471 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6472 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6473 .writefn = tlbi_aa64_alle2is_write },
6474 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6475 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6476 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6477 .writefn = tlbi_aa64_vae2is_write },
6478 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6479 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6480 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6481 .writefn = tlbi_aa64_vae2is_write },
6482 #ifndef CONFIG_USER_ONLY
6483 /*
6484 * Unlike the other EL2-related AT operations, these must
6485 * UNDEF from EL3 if EL2 is not implemented, which is why we
6486 * define them here rather than with the rest of the AT ops.
6487 */
6488 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6489 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6490 .access = PL2_W, .accessfn = at_s1e2_access,
6491 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6492 .writefn = ats_write64 },
6493 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6494 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6495 .access = PL2_W, .accessfn = at_s1e2_access,
6496 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6497 .writefn = ats_write64 },
6498 /*
6499 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6500 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6501 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6502 * to behave as if SCR.NS was 1.
6503 */
6504 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6505 .access = PL2_W,
6506 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6507 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6508 .access = PL2_W,
6509 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6510 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6511 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6512 /*
6513 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6514 * reset values as IMPDEF. We choose to reset to 3 to comply with
6515 * both ARMv7 and ARMv8.
6516 */
6517 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6518 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6519 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6520 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6521 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6522 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6523 .writefn = gt_cntvoff_write,
6524 .nv2_redirect_offset = 0x60,
6525 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6526 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6527 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6528 .writefn = gt_cntvoff_write,
6529 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6530 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6531 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6532 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6533 .type = ARM_CP_IO, .access = PL2_RW,
6534 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6535 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6536 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6537 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6538 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6539 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6540 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6541 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6542 .resetfn = gt_hyp_timer_reset,
6543 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6544 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6545 .type = ARM_CP_IO,
6546 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6547 .access = PL2_RW,
6548 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6549 .resetvalue = 0,
6550 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6551 #endif
6552 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6553 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6554 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6555 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6556 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6557 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6558 .access = PL2_RW,
6559 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6560 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6561 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6562 .access = PL2_RW,
6563 .nv2_redirect_offset = 0x80,
6564 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6565 };
6566
6567 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6568 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6569 .type = ARM_CP_ALIAS | ARM_CP_IO,
6570 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6571 .access = PL2_RW,
6572 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6573 .writefn = hcr_writehigh },
6574 };
6575
sel2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6576 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6577 bool isread)
6578 {
6579 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6580 return CP_ACCESS_OK;
6581 }
6582 return CP_ACCESS_TRAP_UNCATEGORIZED;
6583 }
6584
6585 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6586 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6587 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6588 .access = PL2_RW, .accessfn = sel2_access,
6589 .nv2_redirect_offset = 0x30,
6590 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6591 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6592 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6593 .access = PL2_RW, .accessfn = sel2_access,
6594 .nv2_redirect_offset = 0x48,
6595 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6596 };
6597
nsacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6598 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6599 bool isread)
6600 {
6601 /*
6602 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6603 * At Secure EL1 it traps to EL3 or EL2.
6604 */
6605 if (arm_current_el(env) == 3) {
6606 return CP_ACCESS_OK;
6607 }
6608 if (arm_is_secure_below_el3(env)) {
6609 if (env->cp15.scr_el3 & SCR_EEL2) {
6610 return CP_ACCESS_TRAP_EL2;
6611 }
6612 return CP_ACCESS_TRAP_EL3;
6613 }
6614 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6615 if (isread) {
6616 return CP_ACCESS_OK;
6617 }
6618 return CP_ACCESS_TRAP_UNCATEGORIZED;
6619 }
6620
6621 static const ARMCPRegInfo el3_cp_reginfo[] = {
6622 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6623 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6624 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6625 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6626 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6627 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6628 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6629 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6630 .writefn = scr_write, .raw_writefn = raw_write },
6631 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6632 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6633 .access = PL3_RW, .resetvalue = 0,
6634 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6635 { .name = "SDER",
6636 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6637 .access = PL3_RW, .resetvalue = 0,
6638 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6639 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6640 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6641 .writefn = vbar_write, .resetvalue = 0,
6642 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6643 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6644 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6645 .access = PL3_RW, .resetvalue = 0,
6646 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6647 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6648 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6649 .access = PL3_RW,
6650 /* no .writefn needed as this can't cause an ASID change */
6651 .resetvalue = 0,
6652 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6653 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6654 .type = ARM_CP_ALIAS,
6655 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6656 .access = PL3_RW,
6657 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6658 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6659 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6660 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6661 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6662 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6663 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6664 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6665 .type = ARM_CP_ALIAS,
6666 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6667 .access = PL3_RW,
6668 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6669 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6670 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6671 .access = PL3_RW, .writefn = vbar_write,
6672 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6673 .resetvalue = 0 },
6674 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6675 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6676 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6677 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6678 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6679 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6680 .access = PL3_RW, .resetvalue = 0,
6681 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6682 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6683 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6684 .access = PL3_RW, .type = ARM_CP_CONST,
6685 .resetvalue = 0 },
6686 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6687 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6688 .access = PL3_RW, .type = ARM_CP_CONST,
6689 .resetvalue = 0 },
6690 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6691 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6692 .access = PL3_RW, .type = ARM_CP_CONST,
6693 .resetvalue = 0 },
6694 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6695 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6696 .access = PL3_W, .type = ARM_CP_NO_RAW,
6697 .writefn = tlbi_aa64_alle3is_write },
6698 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6699 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6700 .access = PL3_W, .type = ARM_CP_NO_RAW,
6701 .writefn = tlbi_aa64_vae3is_write },
6702 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6703 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6704 .access = PL3_W, .type = ARM_CP_NO_RAW,
6705 .writefn = tlbi_aa64_vae3is_write },
6706 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6707 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6708 .access = PL3_W, .type = ARM_CP_NO_RAW,
6709 .writefn = tlbi_aa64_alle3_write },
6710 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6711 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6712 .access = PL3_W, .type = ARM_CP_NO_RAW,
6713 .writefn = tlbi_aa64_vae3_write },
6714 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6715 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6716 .access = PL3_W, .type = ARM_CP_NO_RAW,
6717 .writefn = tlbi_aa64_vae3_write },
6718 };
6719
6720 #ifndef CONFIG_USER_ONLY
6721
e2h_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6722 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6723 bool isread)
6724 {
6725 if (arm_current_el(env) == 1) {
6726 /* This must be a FEAT_NV access */
6727 return CP_ACCESS_OK;
6728 }
6729 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6730 return CP_ACCESS_TRAP_UNCATEGORIZED;
6731 }
6732 return CP_ACCESS_OK;
6733 }
6734
access_el1nvpct(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6735 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
6736 bool isread)
6737 {
6738 if (arm_current_el(env) == 1) {
6739 /* This must be a FEAT_NV access with NVx == 101 */
6740 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
6741 return CP_ACCESS_TRAP_EL2;
6742 }
6743 }
6744 return e2h_access(env, ri, isread);
6745 }
6746
access_el1nvvct(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6747 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
6748 bool isread)
6749 {
6750 if (arm_current_el(env) == 1) {
6751 /* This must be a FEAT_NV access with NVx == 101 */
6752 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
6753 return CP_ACCESS_TRAP_EL2;
6754 }
6755 }
6756 return e2h_access(env, ri, isread);
6757 }
6758
6759 /* Test if system register redirection is to occur in the current state. */
redirect_for_e2h(CPUARMState * env)6760 static bool redirect_for_e2h(CPUARMState *env)
6761 {
6762 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6763 }
6764
el2_e2h_read(CPUARMState * env,const ARMCPRegInfo * ri)6765 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6766 {
6767 CPReadFn *readfn;
6768
6769 if (redirect_for_e2h(env)) {
6770 /* Switch to the saved EL2 version of the register. */
6771 ri = ri->opaque;
6772 readfn = ri->readfn;
6773 } else {
6774 readfn = ri->orig_readfn;
6775 }
6776 if (readfn == NULL) {
6777 readfn = raw_read;
6778 }
6779 return readfn(env, ri);
6780 }
6781
el2_e2h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6782 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6783 uint64_t value)
6784 {
6785 CPWriteFn *writefn;
6786
6787 if (redirect_for_e2h(env)) {
6788 /* Switch to the saved EL2 version of the register. */
6789 ri = ri->opaque;
6790 writefn = ri->writefn;
6791 } else {
6792 writefn = ri->orig_writefn;
6793 }
6794 if (writefn == NULL) {
6795 writefn = raw_write;
6796 }
6797 writefn(env, ri, value);
6798 }
6799
el2_e2h_e12_read(CPUARMState * env,const ARMCPRegInfo * ri)6800 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6801 {
6802 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6803 return ri->orig_readfn(env, ri->opaque);
6804 }
6805
el2_e2h_e12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6806 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6807 uint64_t value)
6808 {
6809 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6810 return ri->orig_writefn(env, ri->opaque, value);
6811 }
6812
el2_e2h_e12_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6813 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6814 const ARMCPRegInfo *ri,
6815 bool isread)
6816 {
6817 if (arm_current_el(env) == 1) {
6818 /*
6819 * This must be a FEAT_NV access (will either trap or redirect
6820 * to memory). None of the registers with _EL12 aliases want to
6821 * apply their trap controls for this kind of access, so don't
6822 * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6823 */
6824 return CP_ACCESS_OK;
6825 }
6826 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6827 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6828 return CP_ACCESS_TRAP_UNCATEGORIZED;
6829 }
6830 if (ri->orig_accessfn) {
6831 return ri->orig_accessfn(env, ri->opaque, isread);
6832 }
6833 return CP_ACCESS_OK;
6834 }
6835
define_arm_vh_e2h_redirects_aliases(ARMCPU * cpu)6836 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6837 {
6838 struct E2HAlias {
6839 uint32_t src_key, dst_key, new_key;
6840 const char *src_name, *dst_name, *new_name;
6841 bool (*feature)(const ARMISARegisters *id);
6842 };
6843
6844 #define K(op0, op1, crn, crm, op2) \
6845 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6846
6847 static const struct E2HAlias aliases[] = {
6848 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6849 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6850 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6851 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6852 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6853 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6854 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6855 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6856 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6857 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6858 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6859 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6860 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6861 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6862 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6863 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6864 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6865 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6866 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6867 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6868 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6869 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6870 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6871 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6872 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6873 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6874 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6875 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6876 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6877 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6878 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6879 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6880
6881 /*
6882 * Note that redirection of ZCR is mentioned in the description
6883 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6884 * not in the summary table.
6885 */
6886 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6887 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6888 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6889 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6890
6891 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6892 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6893
6894 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6895 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6896 isar_feature_aa64_scxtnum },
6897
6898 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6899 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6900 };
6901 #undef K
6902
6903 size_t i;
6904
6905 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6906 const struct E2HAlias *a = &aliases[i];
6907 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6908 bool ok;
6909
6910 if (a->feature && !a->feature(&cpu->isar)) {
6911 continue;
6912 }
6913
6914 src_reg = g_hash_table_lookup(cpu->cp_regs,
6915 (gpointer)(uintptr_t)a->src_key);
6916 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6917 (gpointer)(uintptr_t)a->dst_key);
6918 g_assert(src_reg != NULL);
6919 g_assert(dst_reg != NULL);
6920
6921 /* Cross-compare names to detect typos in the keys. */
6922 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6923 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6924
6925 /* None of the core system registers use opaque; we will. */
6926 g_assert(src_reg->opaque == NULL);
6927
6928 /* Create alias before redirection so we dup the right data. */
6929 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6930
6931 new_reg->name = a->new_name;
6932 new_reg->type |= ARM_CP_ALIAS;
6933 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6934 new_reg->access &= PL2_RW | PL3_RW;
6935 /* The new_reg op fields are as per new_key, not the target reg */
6936 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6937 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6938 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6939 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6940 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6941 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6942 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6943 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6944 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6945 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6946 new_reg->opaque = src_reg;
6947 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6948 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6949 new_reg->orig_accessfn = src_reg->accessfn;
6950 if (!new_reg->raw_readfn) {
6951 new_reg->raw_readfn = raw_read;
6952 }
6953 if (!new_reg->raw_writefn) {
6954 new_reg->raw_writefn = raw_write;
6955 }
6956 new_reg->readfn = el2_e2h_e12_read;
6957 new_reg->writefn = el2_e2h_e12_write;
6958 new_reg->accessfn = el2_e2h_e12_access;
6959
6960 /*
6961 * If the _EL1 register is redirected to memory by FEAT_NV2,
6962 * then it shares the offset with the _EL12 register,
6963 * and which one is redirected depends on HCR_EL2.NV1.
6964 */
6965 if (new_reg->nv2_redirect_offset) {
6966 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6967 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6968 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6969 }
6970
6971 ok = g_hash_table_insert(cpu->cp_regs,
6972 (gpointer)(uintptr_t)a->new_key, new_reg);
6973 g_assert(ok);
6974
6975 src_reg->opaque = dst_reg;
6976 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6977 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6978 if (!src_reg->raw_readfn) {
6979 src_reg->raw_readfn = raw_read;
6980 }
6981 if (!src_reg->raw_writefn) {
6982 src_reg->raw_writefn = raw_write;
6983 }
6984 src_reg->readfn = el2_e2h_read;
6985 src_reg->writefn = el2_e2h_write;
6986 }
6987 }
6988 #endif
6989
ctr_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6990 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6991 bool isread)
6992 {
6993 int cur_el = arm_current_el(env);
6994
6995 if (cur_el < 2) {
6996 uint64_t hcr = arm_hcr_el2_eff(env);
6997
6998 if (cur_el == 0) {
6999 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
7000 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
7001 return CP_ACCESS_TRAP_EL2;
7002 }
7003 } else {
7004 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7005 return CP_ACCESS_TRAP;
7006 }
7007 if (hcr & HCR_TID2) {
7008 return CP_ACCESS_TRAP_EL2;
7009 }
7010 }
7011 } else if (hcr & HCR_TID2) {
7012 return CP_ACCESS_TRAP_EL2;
7013 }
7014 }
7015
7016 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
7017 return CP_ACCESS_TRAP_EL2;
7018 }
7019
7020 return CP_ACCESS_OK;
7021 }
7022
7023 /*
7024 * Check for traps to RAS registers, which are controlled
7025 * by HCR_EL2.TERR and SCR_EL3.TERR.
7026 */
access_terr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7027 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
7028 bool isread)
7029 {
7030 int el = arm_current_el(env);
7031
7032 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
7033 return CP_ACCESS_TRAP_EL2;
7034 }
7035 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
7036 return CP_ACCESS_TRAP_EL3;
7037 }
7038 return CP_ACCESS_OK;
7039 }
7040
disr_read(CPUARMState * env,const ARMCPRegInfo * ri)7041 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
7042 {
7043 int el = arm_current_el(env);
7044
7045 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7046 return env->cp15.vdisr_el2;
7047 }
7048 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7049 return 0; /* RAZ/WI */
7050 }
7051 return env->cp15.disr_el1;
7052 }
7053
disr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)7054 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7055 {
7056 int el = arm_current_el(env);
7057
7058 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7059 env->cp15.vdisr_el2 = val;
7060 return;
7061 }
7062 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7063 return; /* RAZ/WI */
7064 }
7065 env->cp15.disr_el1 = val;
7066 }
7067
7068 /*
7069 * Minimal RAS implementation with no Error Records.
7070 * Which means that all of the Error Record registers:
7071 * ERXADDR_EL1
7072 * ERXCTLR_EL1
7073 * ERXFR_EL1
7074 * ERXMISC0_EL1
7075 * ERXMISC1_EL1
7076 * ERXMISC2_EL1
7077 * ERXMISC3_EL1
7078 * ERXPFGCDN_EL1 (RASv1p1)
7079 * ERXPFGCTL_EL1 (RASv1p1)
7080 * ERXPFGF_EL1 (RASv1p1)
7081 * ERXSTATUS_EL1
7082 * and
7083 * ERRSELR_EL1
7084 * may generate UNDEFINED, which is the effect we get by not
7085 * listing them at all.
7086 *
7087 * These registers have fine-grained trap bits, but UNDEF-to-EL1
7088 * is higher priority than FGT-to-EL2 so we do not need to list them
7089 * in order to check for an FGT.
7090 */
7091 static const ARMCPRegInfo minimal_ras_reginfo[] = {
7092 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
7093 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
7094 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
7095 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
7096 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
7097 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
7098 .access = PL1_R, .accessfn = access_terr,
7099 .fgt = FGT_ERRIDR_EL1,
7100 .type = ARM_CP_CONST, .resetvalue = 0 },
7101 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
7102 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
7103 .nv2_redirect_offset = 0x500,
7104 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
7105 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
7106 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
7107 .nv2_redirect_offset = 0x508,
7108 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
7109 };
7110
7111 /*
7112 * Return the exception level to which exceptions should be taken
7113 * via SVEAccessTrap. This excludes the check for whether the exception
7114 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
7115 * be found by testing 0 < fp_exception_el < sve_exception_el.
7116 *
7117 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
7118 * pseudocode does *not* separate out the FP trap checks, but has them
7119 * all in one function.
7120 */
sve_exception_el(CPUARMState * env,int el)7121 int sve_exception_el(CPUARMState *env, int el)
7122 {
7123 #ifndef CONFIG_USER_ONLY
7124 if (el <= 1 && !el_is_in_host(env, el)) {
7125 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7126 case 1:
7127 if (el != 0) {
7128 break;
7129 }
7130 /* fall through */
7131 case 0:
7132 case 2:
7133 return 1;
7134 }
7135 }
7136
7137 if (el <= 2 && arm_is_el2_enabled(env)) {
7138 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7139 if (env->cp15.hcr_el2 & HCR_E2H) {
7140 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
7141 case 1:
7142 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7143 break;
7144 }
7145 /* fall through */
7146 case 0:
7147 case 2:
7148 return 2;
7149 }
7150 } else {
7151 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
7152 return 2;
7153 }
7154 }
7155 }
7156
7157 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
7158 if (arm_feature(env, ARM_FEATURE_EL3)
7159 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
7160 return 3;
7161 }
7162 #endif
7163 return 0;
7164 }
7165
7166 /*
7167 * Return the exception level to which exceptions should be taken for SME.
7168 * C.f. the ARM pseudocode function CheckSMEAccess.
7169 */
sme_exception_el(CPUARMState * env,int el)7170 int sme_exception_el(CPUARMState *env, int el)
7171 {
7172 #ifndef CONFIG_USER_ONLY
7173 if (el <= 1 && !el_is_in_host(env, el)) {
7174 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
7175 case 1:
7176 if (el != 0) {
7177 break;
7178 }
7179 /* fall through */
7180 case 0:
7181 case 2:
7182 return 1;
7183 }
7184 }
7185
7186 if (el <= 2 && arm_is_el2_enabled(env)) {
7187 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7188 if (env->cp15.hcr_el2 & HCR_E2H) {
7189 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
7190 case 1:
7191 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7192 break;
7193 }
7194 /* fall through */
7195 case 0:
7196 case 2:
7197 return 2;
7198 }
7199 } else {
7200 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
7201 return 2;
7202 }
7203 }
7204 }
7205
7206 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
7207 if (arm_feature(env, ARM_FEATURE_EL3)
7208 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7209 return 3;
7210 }
7211 #endif
7212 return 0;
7213 }
7214
7215 /*
7216 * Given that SVE is enabled, return the vector length for EL.
7217 */
sve_vqm1_for_el_sm(CPUARMState * env,int el,bool sm)7218 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7219 {
7220 ARMCPU *cpu = env_archcpu(env);
7221 uint64_t *cr = env->vfp.zcr_el;
7222 uint32_t map = cpu->sve_vq.map;
7223 uint32_t len = ARM_MAX_VQ - 1;
7224
7225 if (sm) {
7226 cr = env->vfp.smcr_el;
7227 map = cpu->sme_vq.map;
7228 }
7229
7230 if (el <= 1 && !el_is_in_host(env, el)) {
7231 len = MIN(len, 0xf & (uint32_t)cr[1]);
7232 }
7233 if (el <= 2 && arm_is_el2_enabled(env)) {
7234 len = MIN(len, 0xf & (uint32_t)cr[2]);
7235 }
7236 if (arm_feature(env, ARM_FEATURE_EL3)) {
7237 len = MIN(len, 0xf & (uint32_t)cr[3]);
7238 }
7239
7240 map &= MAKE_64BIT_MASK(0, len + 1);
7241 if (map != 0) {
7242 return 31 - clz32(map);
7243 }
7244
7245 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7246 assert(sm);
7247 return ctz32(cpu->sme_vq.map);
7248 }
7249
sve_vqm1_for_el(CPUARMState * env,int el)7250 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7251 {
7252 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7253 }
7254
zcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7255 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7256 uint64_t value)
7257 {
7258 int cur_el = arm_current_el(env);
7259 int old_len = sve_vqm1_for_el(env, cur_el);
7260 int new_len;
7261
7262 /* Bits other than [3:0] are RAZ/WI. */
7263 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7264 raw_write(env, ri, value & 0xf);
7265
7266 /*
7267 * Because we arrived here, we know both FP and SVE are enabled;
7268 * otherwise we would have trapped access to the ZCR_ELn register.
7269 */
7270 new_len = sve_vqm1_for_el(env, cur_el);
7271 if (new_len < old_len) {
7272 aarch64_sve_narrow_vq(env, new_len + 1);
7273 }
7274 }
7275
7276 static const ARMCPRegInfo zcr_reginfo[] = {
7277 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7278 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7279 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7280 .access = PL1_RW, .type = ARM_CP_SVE,
7281 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7282 .writefn = zcr_write, .raw_writefn = raw_write },
7283 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7284 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7285 .access = PL2_RW, .type = ARM_CP_SVE,
7286 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7287 .writefn = zcr_write, .raw_writefn = raw_write },
7288 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7289 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7290 .access = PL3_RW, .type = ARM_CP_SVE,
7291 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7292 .writefn = zcr_write, .raw_writefn = raw_write },
7293 };
7294
7295 #ifdef TARGET_AARCH64
access_tpidr2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7296 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7297 bool isread)
7298 {
7299 int el = arm_current_el(env);
7300
7301 if (el == 0) {
7302 uint64_t sctlr = arm_sctlr(env, el);
7303 if (!(sctlr & SCTLR_EnTP2)) {
7304 return CP_ACCESS_TRAP;
7305 }
7306 }
7307 /* TODO: FEAT_FGT */
7308 if (el < 3
7309 && arm_feature(env, ARM_FEATURE_EL3)
7310 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7311 return CP_ACCESS_TRAP_EL3;
7312 }
7313 return CP_ACCESS_OK;
7314 }
7315
access_smprimap(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7316 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7317 bool isread)
7318 {
7319 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7320 if (arm_current_el(env) == 2
7321 && arm_feature(env, ARM_FEATURE_EL3)
7322 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7323 return CP_ACCESS_TRAP_EL3;
7324 }
7325 return CP_ACCESS_OK;
7326 }
7327
access_smpri(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7328 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7329 bool isread)
7330 {
7331 if (arm_current_el(env) < 3
7332 && arm_feature(env, ARM_FEATURE_EL3)
7333 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7334 return CP_ACCESS_TRAP_EL3;
7335 }
7336 return CP_ACCESS_OK;
7337 }
7338
7339 /* ResetSVEState */
arm_reset_sve_state(CPUARMState * env)7340 static void arm_reset_sve_state(CPUARMState *env)
7341 {
7342 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7343 /* Recall that FFR is stored as pregs[16]. */
7344 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7345 vfp_set_fpcr(env, 0x0800009f);
7346 }
7347
aarch64_set_svcr(CPUARMState * env,uint64_t new,uint64_t mask)7348 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7349 {
7350 uint64_t change = (env->svcr ^ new) & mask;
7351
7352 if (change == 0) {
7353 return;
7354 }
7355 env->svcr ^= change;
7356
7357 if (change & R_SVCR_SM_MASK) {
7358 arm_reset_sve_state(env);
7359 }
7360
7361 /*
7362 * ResetSMEState.
7363 *
7364 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7365 * on enable: while disabled, the storage is inaccessible and the
7366 * value does not matter. We're not saving the storage in vmstate
7367 * when disabled either.
7368 */
7369 if (change & new & R_SVCR_ZA_MASK) {
7370 memset(env->zarray, 0, sizeof(env->zarray));
7371 }
7372
7373 if (tcg_enabled()) {
7374 arm_rebuild_hflags(env);
7375 }
7376 }
7377
svcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7378 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7379 uint64_t value)
7380 {
7381 aarch64_set_svcr(env, value, -1);
7382 }
7383
smcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7384 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7385 uint64_t value)
7386 {
7387 int cur_el = arm_current_el(env);
7388 int old_len = sve_vqm1_for_el(env, cur_el);
7389 int new_len;
7390
7391 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7392 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7393 raw_write(env, ri, value);
7394
7395 /*
7396 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7397 * when SVL is widened (old values kept, or zeros). Choose to keep the
7398 * current values for simplicity. But for QEMU internals, we must still
7399 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7400 * above aarch64_sve_narrow_vq.
7401 */
7402 new_len = sve_vqm1_for_el(env, cur_el);
7403 if (new_len < old_len) {
7404 aarch64_sve_narrow_vq(env, new_len + 1);
7405 }
7406 }
7407
7408 static const ARMCPRegInfo sme_reginfo[] = {
7409 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7410 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7411 .access = PL0_RW, .accessfn = access_tpidr2,
7412 .fgt = FGT_NTPIDR2_EL0,
7413 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7414 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7415 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7416 .access = PL0_RW, .type = ARM_CP_SME,
7417 .fieldoffset = offsetof(CPUARMState, svcr),
7418 .writefn = svcr_write, .raw_writefn = raw_write },
7419 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7420 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7421 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7422 .access = PL1_RW, .type = ARM_CP_SME,
7423 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7424 .writefn = smcr_write, .raw_writefn = raw_write },
7425 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7426 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7427 .access = PL2_RW, .type = ARM_CP_SME,
7428 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7429 .writefn = smcr_write, .raw_writefn = raw_write },
7430 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7431 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7432 .access = PL3_RW, .type = ARM_CP_SME,
7433 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7434 .writefn = smcr_write, .raw_writefn = raw_write },
7435 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7436 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7437 .access = PL1_R, .accessfn = access_aa64_tid1,
7438 /*
7439 * IMPLEMENTOR = 0 (software)
7440 * REVISION = 0 (implementation defined)
7441 * SMPS = 0 (no streaming execution priority in QEMU)
7442 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7443 */
7444 .type = ARM_CP_CONST, .resetvalue = 0, },
7445 /*
7446 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7447 */
7448 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7449 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7450 .access = PL1_RW, .accessfn = access_smpri,
7451 .fgt = FGT_NSMPRI_EL1,
7452 .type = ARM_CP_CONST, .resetvalue = 0 },
7453 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7454 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7455 .nv2_redirect_offset = 0x1f8,
7456 .access = PL2_RW, .accessfn = access_smprimap,
7457 .type = ARM_CP_CONST, .resetvalue = 0 },
7458 };
7459
tlbi_aa64_paall_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7460 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7461 uint64_t value)
7462 {
7463 CPUState *cs = env_cpu(env);
7464
7465 tlb_flush(cs);
7466 }
7467
gpccr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7468 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7469 uint64_t value)
7470 {
7471 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7472 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7473 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7474 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7475
7476 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7477 }
7478
gpccr_reset(CPUARMState * env,const ARMCPRegInfo * ri)7479 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7480 {
7481 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7482 env_archcpu(env)->reset_l0gptsz);
7483 }
7484
tlbi_aa64_paallos_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7485 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7486 uint64_t value)
7487 {
7488 CPUState *cs = env_cpu(env);
7489
7490 tlb_flush_all_cpus_synced(cs);
7491 }
7492
7493 static const ARMCPRegInfo rme_reginfo[] = {
7494 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7495 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7496 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7497 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7498 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7499 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7500 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7501 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7502 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7503 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7504 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7505 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7506 .access = PL3_W, .type = ARM_CP_NO_RAW,
7507 .writefn = tlbi_aa64_paall_write },
7508 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7509 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7510 .access = PL3_W, .type = ARM_CP_NO_RAW,
7511 .writefn = tlbi_aa64_paallos_write },
7512 /*
7513 * QEMU does not have a way to invalidate by physical address, thus
7514 * invalidating a range of physical addresses is accomplished by
7515 * flushing all tlb entries in the outer shareable domain,
7516 * just like PAALLOS.
7517 */
7518 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7519 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7520 .access = PL3_W, .type = ARM_CP_NO_RAW,
7521 .writefn = tlbi_aa64_paallos_write },
7522 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7523 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7524 .access = PL3_W, .type = ARM_CP_NO_RAW,
7525 .writefn = tlbi_aa64_paallos_write },
7526 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7527 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7528 .access = PL3_W, .type = ARM_CP_NOP },
7529 };
7530
7531 static const ARMCPRegInfo rme_mte_reginfo[] = {
7532 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7533 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7534 .access = PL3_W, .type = ARM_CP_NOP },
7535 };
7536
aa64_allint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7537 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri,
7538 uint64_t value)
7539 {
7540 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT);
7541 }
7542
aa64_allint_read(CPUARMState * env,const ARMCPRegInfo * ri)7543 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri)
7544 {
7545 return env->pstate & PSTATE_ALLINT;
7546 }
7547
aa64_allint_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7548 static CPAccessResult aa64_allint_access(CPUARMState *env,
7549 const ARMCPRegInfo *ri, bool isread)
7550 {
7551 if (!isread && arm_current_el(env) == 1 &&
7552 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) {
7553 return CP_ACCESS_TRAP_EL2;
7554 }
7555 return CP_ACCESS_OK;
7556 }
7557
7558 static const ARMCPRegInfo nmi_reginfo[] = {
7559 { .name = "ALLINT", .state = ARM_CP_STATE_AA64,
7560 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3,
7561 .type = ARM_CP_NO_RAW,
7562 .access = PL1_RW, .accessfn = aa64_allint_access,
7563 .fieldoffset = offsetof(CPUARMState, pstate),
7564 .writefn = aa64_allint_write, .readfn = aa64_allint_read,
7565 .resetfn = arm_cp_reset_ignore },
7566 };
7567 #endif /* TARGET_AARCH64 */
7568
define_pmu_regs(ARMCPU * cpu)7569 static void define_pmu_regs(ARMCPU *cpu)
7570 {
7571 /*
7572 * v7 performance monitor control register: same implementor
7573 * field as main ID register, and we implement four counters in
7574 * addition to the cycle count register.
7575 */
7576 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7577 ARMCPRegInfo pmcr = {
7578 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7579 .access = PL0_RW,
7580 .fgt = FGT_PMCR_EL0,
7581 .type = ARM_CP_IO | ARM_CP_ALIAS,
7582 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7583 .accessfn = pmreg_access,
7584 .readfn = pmcr_read, .raw_readfn = raw_read,
7585 .writefn = pmcr_write, .raw_writefn = raw_write,
7586 };
7587 ARMCPRegInfo pmcr64 = {
7588 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7589 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7590 .access = PL0_RW, .accessfn = pmreg_access,
7591 .fgt = FGT_PMCR_EL0,
7592 .type = ARM_CP_IO,
7593 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7594 .resetvalue = cpu->isar.reset_pmcr_el0,
7595 .readfn = pmcr_read, .raw_readfn = raw_read,
7596 .writefn = pmcr_write, .raw_writefn = raw_write,
7597 };
7598
7599 define_one_arm_cp_reg(cpu, &pmcr);
7600 define_one_arm_cp_reg(cpu, &pmcr64);
7601 for (i = 0; i < pmcrn; i++) {
7602 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7603 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7604 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7605 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7606 ARMCPRegInfo pmev_regs[] = {
7607 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7608 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7609 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7610 .fgt = FGT_PMEVCNTRN_EL0,
7611 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7612 .accessfn = pmreg_access_xevcntr },
7613 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7614 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7615 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7616 .type = ARM_CP_IO,
7617 .fgt = FGT_PMEVCNTRN_EL0,
7618 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7619 .raw_readfn = pmevcntr_rawread,
7620 .raw_writefn = pmevcntr_rawwrite },
7621 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7622 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7623 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7624 .fgt = FGT_PMEVTYPERN_EL0,
7625 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7626 .accessfn = pmreg_access },
7627 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7628 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7629 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7630 .fgt = FGT_PMEVTYPERN_EL0,
7631 .type = ARM_CP_IO,
7632 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7633 .raw_writefn = pmevtyper_rawwrite },
7634 };
7635 define_arm_cp_regs(cpu, pmev_regs);
7636 g_free(pmevcntr_name);
7637 g_free(pmevcntr_el0_name);
7638 g_free(pmevtyper_name);
7639 g_free(pmevtyper_el0_name);
7640 }
7641 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7642 ARMCPRegInfo v81_pmu_regs[] = {
7643 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7644 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7645 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7646 .fgt = FGT_PMCEIDN_EL0,
7647 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7648 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7649 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7650 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7651 .fgt = FGT_PMCEIDN_EL0,
7652 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7653 };
7654 define_arm_cp_regs(cpu, v81_pmu_regs);
7655 }
7656 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7657 static const ARMCPRegInfo v84_pmmir = {
7658 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7659 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7660 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7661 .fgt = FGT_PMMIR_EL1,
7662 .resetvalue = 0
7663 };
7664 define_one_arm_cp_reg(cpu, &v84_pmmir);
7665 }
7666 }
7667
7668 #ifndef CONFIG_USER_ONLY
7669 /*
7670 * We don't know until after realize whether there's a GICv3
7671 * attached, and that is what registers the gicv3 sysregs.
7672 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7673 * at runtime.
7674 */
id_pfr1_read(CPUARMState * env,const ARMCPRegInfo * ri)7675 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7676 {
7677 ARMCPU *cpu = env_archcpu(env);
7678 uint64_t pfr1 = cpu->isar.id_pfr1;
7679
7680 if (env->gicv3state) {
7681 pfr1 |= 1 << 28;
7682 }
7683 return pfr1;
7684 }
7685
id_aa64pfr0_read(CPUARMState * env,const ARMCPRegInfo * ri)7686 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7687 {
7688 ARMCPU *cpu = env_archcpu(env);
7689 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7690
7691 if (env->gicv3state) {
7692 pfr0 |= 1 << 24;
7693 }
7694 return pfr0;
7695 }
7696 #endif
7697
7698 /*
7699 * Shared logic between LORID and the rest of the LOR* registers.
7700 * Secure state exclusion has already been dealt with.
7701 */
access_lor_ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7702 static CPAccessResult access_lor_ns(CPUARMState *env,
7703 const ARMCPRegInfo *ri, bool isread)
7704 {
7705 int el = arm_current_el(env);
7706
7707 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7708 return CP_ACCESS_TRAP_EL2;
7709 }
7710 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7711 return CP_ACCESS_TRAP_EL3;
7712 }
7713 return CP_ACCESS_OK;
7714 }
7715
access_lor_other(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7716 static CPAccessResult access_lor_other(CPUARMState *env,
7717 const ARMCPRegInfo *ri, bool isread)
7718 {
7719 if (arm_is_secure_below_el3(env)) {
7720 /* Access denied in secure mode. */
7721 return CP_ACCESS_TRAP;
7722 }
7723 return access_lor_ns(env, ri, isread);
7724 }
7725
7726 /*
7727 * A trivial implementation of ARMv8.1-LOR leaves all of these
7728 * registers fixed at 0, which indicates that there are zero
7729 * supported Limited Ordering regions.
7730 */
7731 static const ARMCPRegInfo lor_reginfo[] = {
7732 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7733 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7734 .access = PL1_RW, .accessfn = access_lor_other,
7735 .fgt = FGT_LORSA_EL1,
7736 .type = ARM_CP_CONST, .resetvalue = 0 },
7737 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7738 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7739 .access = PL1_RW, .accessfn = access_lor_other,
7740 .fgt = FGT_LOREA_EL1,
7741 .type = ARM_CP_CONST, .resetvalue = 0 },
7742 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7743 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7744 .access = PL1_RW, .accessfn = access_lor_other,
7745 .fgt = FGT_LORN_EL1,
7746 .type = ARM_CP_CONST, .resetvalue = 0 },
7747 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7748 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7749 .access = PL1_RW, .accessfn = access_lor_other,
7750 .fgt = FGT_LORC_EL1,
7751 .type = ARM_CP_CONST, .resetvalue = 0 },
7752 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7753 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7754 .access = PL1_R, .accessfn = access_lor_ns,
7755 .fgt = FGT_LORID_EL1,
7756 .type = ARM_CP_CONST, .resetvalue = 0 },
7757 };
7758
7759 #ifdef TARGET_AARCH64
access_pauth(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7760 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7761 bool isread)
7762 {
7763 int el = arm_current_el(env);
7764
7765 if (el < 2 &&
7766 arm_is_el2_enabled(env) &&
7767 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7768 return CP_ACCESS_TRAP_EL2;
7769 }
7770 if (el < 3 &&
7771 arm_feature(env, ARM_FEATURE_EL3) &&
7772 !(env->cp15.scr_el3 & SCR_APK)) {
7773 return CP_ACCESS_TRAP_EL3;
7774 }
7775 return CP_ACCESS_OK;
7776 }
7777
7778 static const ARMCPRegInfo pauth_reginfo[] = {
7779 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7780 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7781 .access = PL1_RW, .accessfn = access_pauth,
7782 .fgt = FGT_APDAKEY,
7783 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7784 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7785 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7786 .access = PL1_RW, .accessfn = access_pauth,
7787 .fgt = FGT_APDAKEY,
7788 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7789 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7790 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7791 .access = PL1_RW, .accessfn = access_pauth,
7792 .fgt = FGT_APDBKEY,
7793 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7794 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7795 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7796 .access = PL1_RW, .accessfn = access_pauth,
7797 .fgt = FGT_APDBKEY,
7798 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7799 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7800 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7801 .access = PL1_RW, .accessfn = access_pauth,
7802 .fgt = FGT_APGAKEY,
7803 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7804 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7805 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7806 .access = PL1_RW, .accessfn = access_pauth,
7807 .fgt = FGT_APGAKEY,
7808 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7809 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7810 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7811 .access = PL1_RW, .accessfn = access_pauth,
7812 .fgt = FGT_APIAKEY,
7813 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7814 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7815 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7816 .access = PL1_RW, .accessfn = access_pauth,
7817 .fgt = FGT_APIAKEY,
7818 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7819 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7820 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7821 .access = PL1_RW, .accessfn = access_pauth,
7822 .fgt = FGT_APIBKEY,
7823 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7824 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7825 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7826 .access = PL1_RW, .accessfn = access_pauth,
7827 .fgt = FGT_APIBKEY,
7828 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7829 };
7830
7831 static const ARMCPRegInfo tlbirange_reginfo[] = {
7832 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7833 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7834 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7835 .fgt = FGT_TLBIRVAE1IS,
7836 .writefn = tlbi_aa64_rvae1is_write },
7837 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7838 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7839 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7840 .fgt = FGT_TLBIRVAAE1IS,
7841 .writefn = tlbi_aa64_rvae1is_write },
7842 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7843 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7844 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7845 .fgt = FGT_TLBIRVALE1IS,
7846 .writefn = tlbi_aa64_rvae1is_write },
7847 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7848 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7849 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7850 .fgt = FGT_TLBIRVAALE1IS,
7851 .writefn = tlbi_aa64_rvae1is_write },
7852 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7853 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7854 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7855 .fgt = FGT_TLBIRVAE1OS,
7856 .writefn = tlbi_aa64_rvae1is_write },
7857 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7859 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7860 .fgt = FGT_TLBIRVAAE1OS,
7861 .writefn = tlbi_aa64_rvae1is_write },
7862 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7863 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7864 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7865 .fgt = FGT_TLBIRVALE1OS,
7866 .writefn = tlbi_aa64_rvae1is_write },
7867 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7868 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7869 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7870 .fgt = FGT_TLBIRVAALE1OS,
7871 .writefn = tlbi_aa64_rvae1is_write },
7872 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7874 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7875 .fgt = FGT_TLBIRVAE1,
7876 .writefn = tlbi_aa64_rvae1_write },
7877 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7880 .fgt = FGT_TLBIRVAAE1,
7881 .writefn = tlbi_aa64_rvae1_write },
7882 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7885 .fgt = FGT_TLBIRVALE1,
7886 .writefn = tlbi_aa64_rvae1_write },
7887 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7888 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7889 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7890 .fgt = FGT_TLBIRVAALE1,
7891 .writefn = tlbi_aa64_rvae1_write },
7892 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7893 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7894 .access = PL2_W, .type = ARM_CP_NO_RAW,
7895 .writefn = tlbi_aa64_ripas2e1is_write },
7896 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7897 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7898 .access = PL2_W, .type = ARM_CP_NO_RAW,
7899 .writefn = tlbi_aa64_ripas2e1is_write },
7900 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7901 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7902 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7903 .writefn = tlbi_aa64_rvae2is_write },
7904 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7905 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7906 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7907 .writefn = tlbi_aa64_rvae2is_write },
7908 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7909 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7910 .access = PL2_W, .type = ARM_CP_NO_RAW,
7911 .writefn = tlbi_aa64_ripas2e1_write },
7912 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7913 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7914 .access = PL2_W, .type = ARM_CP_NO_RAW,
7915 .writefn = tlbi_aa64_ripas2e1_write },
7916 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7918 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7919 .writefn = tlbi_aa64_rvae2is_write },
7920 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7922 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7923 .writefn = tlbi_aa64_rvae2is_write },
7924 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7926 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7927 .writefn = tlbi_aa64_rvae2_write },
7928 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7930 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7931 .writefn = tlbi_aa64_rvae2_write },
7932 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7933 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7934 .access = PL3_W, .type = ARM_CP_NO_RAW,
7935 .writefn = tlbi_aa64_rvae3is_write },
7936 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7937 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7938 .access = PL3_W, .type = ARM_CP_NO_RAW,
7939 .writefn = tlbi_aa64_rvae3is_write },
7940 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7941 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7942 .access = PL3_W, .type = ARM_CP_NO_RAW,
7943 .writefn = tlbi_aa64_rvae3is_write },
7944 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7945 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7946 .access = PL3_W, .type = ARM_CP_NO_RAW,
7947 .writefn = tlbi_aa64_rvae3is_write },
7948 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7949 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7950 .access = PL3_W, .type = ARM_CP_NO_RAW,
7951 .writefn = tlbi_aa64_rvae3_write },
7952 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7953 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7954 .access = PL3_W, .type = ARM_CP_NO_RAW,
7955 .writefn = tlbi_aa64_rvae3_write },
7956 };
7957
7958 static const ARMCPRegInfo tlbios_reginfo[] = {
7959 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7960 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7961 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7962 .fgt = FGT_TLBIVMALLE1OS,
7963 .writefn = tlbi_aa64_vmalle1is_write },
7964 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7965 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7966 .fgt = FGT_TLBIVAE1OS,
7967 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7968 .writefn = tlbi_aa64_vae1is_write },
7969 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7970 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7971 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7972 .fgt = FGT_TLBIASIDE1OS,
7973 .writefn = tlbi_aa64_vmalle1is_write },
7974 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7975 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7976 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7977 .fgt = FGT_TLBIVAAE1OS,
7978 .writefn = tlbi_aa64_vae1is_write },
7979 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7980 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7981 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7982 .fgt = FGT_TLBIVALE1OS,
7983 .writefn = tlbi_aa64_vae1is_write },
7984 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7985 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7986 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7987 .fgt = FGT_TLBIVAALE1OS,
7988 .writefn = tlbi_aa64_vae1is_write },
7989 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7990 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7991 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7992 .writefn = tlbi_aa64_alle2is_write },
7993 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7994 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7995 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7996 .writefn = tlbi_aa64_vae2is_write },
7997 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7998 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7999 .access = PL2_W, .type = ARM_CP_NO_RAW,
8000 .writefn = tlbi_aa64_alle1is_write },
8001 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
8002 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
8003 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8004 .writefn = tlbi_aa64_vae2is_write },
8005 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
8006 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
8007 .access = PL2_W, .type = ARM_CP_NO_RAW,
8008 .writefn = tlbi_aa64_alle1is_write },
8009 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
8010 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
8011 .access = PL2_W, .type = ARM_CP_NOP },
8012 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
8013 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
8014 .access = PL2_W, .type = ARM_CP_NOP },
8015 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
8017 .access = PL2_W, .type = ARM_CP_NOP },
8018 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8019 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
8020 .access = PL2_W, .type = ARM_CP_NOP },
8021 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
8022 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
8023 .access = PL3_W, .type = ARM_CP_NO_RAW,
8024 .writefn = tlbi_aa64_alle3is_write },
8025 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
8026 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
8027 .access = PL3_W, .type = ARM_CP_NO_RAW,
8028 .writefn = tlbi_aa64_vae3is_write },
8029 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
8030 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
8031 .access = PL3_W, .type = ARM_CP_NO_RAW,
8032 .writefn = tlbi_aa64_vae3is_write },
8033 };
8034
rndr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)8035 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
8036 {
8037 Error *err = NULL;
8038 uint64_t ret;
8039
8040 /* Success sets NZCV = 0000. */
8041 env->NF = env->CF = env->VF = 0, env->ZF = 1;
8042
8043 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
8044 /*
8045 * ??? Failed, for unknown reasons in the crypto subsystem.
8046 * The best we can do is log the reason and return the
8047 * timed-out indication to the guest. There is no reason
8048 * we know to expect this failure to be transitory, so the
8049 * guest may well hang retrying the operation.
8050 */
8051 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
8052 ri->name, error_get_pretty(err));
8053 error_free(err);
8054
8055 env->ZF = 0; /* NZCF = 0100 */
8056 return 0;
8057 }
8058 return ret;
8059 }
8060
8061 /* We do not support re-seeding, so the two registers operate the same. */
8062 static const ARMCPRegInfo rndr_reginfo[] = {
8063 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
8064 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8065 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
8066 .access = PL0_R, .readfn = rndr_readfn },
8067 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
8068 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8069 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
8070 .access = PL0_R, .readfn = rndr_readfn },
8071 };
8072
dccvap_writefn(CPUARMState * env,const ARMCPRegInfo * opaque,uint64_t value)8073 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
8074 uint64_t value)
8075 {
8076 #ifdef CONFIG_TCG
8077 ARMCPU *cpu = env_archcpu(env);
8078 /* CTR_EL0 System register -> DminLine, bits [19:16] */
8079 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
8080 uint64_t vaddr_in = (uint64_t) value;
8081 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
8082 void *haddr;
8083 int mem_idx = arm_env_mmu_index(env);
8084
8085 /* This won't be crossing page boundaries */
8086 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
8087 if (haddr) {
8088 #ifndef CONFIG_USER_ONLY
8089
8090 ram_addr_t offset;
8091 MemoryRegion *mr;
8092
8093 /* RCU lock is already being held */
8094 mr = memory_region_from_host(haddr, &offset);
8095
8096 if (mr) {
8097 memory_region_writeback(mr, offset, dline_size);
8098 }
8099 #endif /*CONFIG_USER_ONLY*/
8100 }
8101 #else
8102 /* Handled by hardware accelerator. */
8103 g_assert_not_reached();
8104 #endif /* CONFIG_TCG */
8105 }
8106
8107 static const ARMCPRegInfo dcpop_reg[] = {
8108 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
8109 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
8110 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8111 .fgt = FGT_DCCVAP,
8112 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8113 };
8114
8115 static const ARMCPRegInfo dcpodp_reg[] = {
8116 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
8117 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
8118 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8119 .fgt = FGT_DCCVADP,
8120 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8121 };
8122
access_aa64_tid5(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8123 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
8124 bool isread)
8125 {
8126 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
8127 return CP_ACCESS_TRAP_EL2;
8128 }
8129
8130 return CP_ACCESS_OK;
8131 }
8132
access_mte(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8133 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
8134 bool isread)
8135 {
8136 int el = arm_current_el(env);
8137 if (el < 2 && arm_is_el2_enabled(env)) {
8138 uint64_t hcr = arm_hcr_el2_eff(env);
8139 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8140 return CP_ACCESS_TRAP_EL2;
8141 }
8142 }
8143 if (el < 3 &&
8144 arm_feature(env, ARM_FEATURE_EL3) &&
8145 !(env->cp15.scr_el3 & SCR_ATA)) {
8146 return CP_ACCESS_TRAP_EL3;
8147 }
8148 return CP_ACCESS_OK;
8149 }
8150
access_tfsr_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8151 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
8152 bool isread)
8153 {
8154 CPAccessResult nv1 = access_nv1(env, ri, isread);
8155
8156 if (nv1 != CP_ACCESS_OK) {
8157 return nv1;
8158 }
8159 return access_mte(env, ri, isread);
8160 }
8161
access_tfsr_el2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8162 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
8163 bool isread)
8164 {
8165 /*
8166 * TFSR_EL2: similar to generic access_mte(), but we need to
8167 * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
8168 * if NV2 is enabled then we will redirect this to TFSR_EL1
8169 * after doing the HCR and SCR ATA traps; otherwise this will
8170 * be a trap to EL2 and the HCR/SCR traps do not apply.
8171 */
8172 int el = arm_current_el(env);
8173
8174 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
8175 return CP_ACCESS_OK;
8176 }
8177 if (el < 2 && arm_is_el2_enabled(env)) {
8178 uint64_t hcr = arm_hcr_el2_eff(env);
8179 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8180 return CP_ACCESS_TRAP_EL2;
8181 }
8182 }
8183 if (el < 3 &&
8184 arm_feature(env, ARM_FEATURE_EL3) &&
8185 !(env->cp15.scr_el3 & SCR_ATA)) {
8186 return CP_ACCESS_TRAP_EL3;
8187 }
8188 return CP_ACCESS_OK;
8189 }
8190
tco_read(CPUARMState * env,const ARMCPRegInfo * ri)8191 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
8192 {
8193 return env->pstate & PSTATE_TCO;
8194 }
8195
tco_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)8196 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
8197 {
8198 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
8199 }
8200
8201 static const ARMCPRegInfo mte_reginfo[] = {
8202 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
8203 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
8204 .access = PL1_RW, .accessfn = access_mte,
8205 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
8206 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
8207 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
8208 .access = PL1_RW, .accessfn = access_tfsr_el1,
8209 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
8210 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
8211 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
8212 .type = ARM_CP_NV2_REDIRECT,
8213 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
8214 .access = PL2_RW, .accessfn = access_tfsr_el2,
8215 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
8216 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
8217 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
8218 .access = PL3_RW,
8219 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
8220 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
8221 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
8222 .access = PL1_RW, .accessfn = access_mte,
8223 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
8224 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
8225 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
8226 .access = PL1_RW, .accessfn = access_mte,
8227 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
8228 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8229 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8230 .type = ARM_CP_NO_RAW,
8231 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
8232 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
8233 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
8234 .type = ARM_CP_NOP, .access = PL1_W,
8235 .fgt = FGT_DCIVAC,
8236 .accessfn = aa64_cacheop_poc_access },
8237 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
8238 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8239 .fgt = FGT_DCISW,
8240 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8241 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8242 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8243 .type = ARM_CP_NOP, .access = PL1_W,
8244 .fgt = FGT_DCIVAC,
8245 .accessfn = aa64_cacheop_poc_access },
8246 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8247 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8248 .fgt = FGT_DCISW,
8249 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8250 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8251 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8252 .fgt = FGT_DCCSW,
8253 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8254 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8255 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8256 .fgt = FGT_DCCSW,
8257 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8258 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8259 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8260 .fgt = FGT_DCCISW,
8261 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8262 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8263 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8264 .fgt = FGT_DCCISW,
8265 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8266 };
8267
8268 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8269 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8270 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8271 .type = ARM_CP_CONST, .access = PL0_RW, },
8272 };
8273
8274 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8275 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8276 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8277 .type = ARM_CP_NOP, .access = PL0_W,
8278 .fgt = FGT_DCCVAC,
8279 .accessfn = aa64_cacheop_poc_access },
8280 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8281 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8282 .type = ARM_CP_NOP, .access = PL0_W,
8283 .fgt = FGT_DCCVAC,
8284 .accessfn = aa64_cacheop_poc_access },
8285 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8286 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8287 .type = ARM_CP_NOP, .access = PL0_W,
8288 .fgt = FGT_DCCVAP,
8289 .accessfn = aa64_cacheop_poc_access },
8290 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8291 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8292 .type = ARM_CP_NOP, .access = PL0_W,
8293 .fgt = FGT_DCCVAP,
8294 .accessfn = aa64_cacheop_poc_access },
8295 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8296 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8297 .type = ARM_CP_NOP, .access = PL0_W,
8298 .fgt = FGT_DCCVADP,
8299 .accessfn = aa64_cacheop_poc_access },
8300 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8301 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8302 .type = ARM_CP_NOP, .access = PL0_W,
8303 .fgt = FGT_DCCVADP,
8304 .accessfn = aa64_cacheop_poc_access },
8305 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8306 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8307 .type = ARM_CP_NOP, .access = PL0_W,
8308 .fgt = FGT_DCCIVAC,
8309 .accessfn = aa64_cacheop_poc_access },
8310 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8311 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8312 .type = ARM_CP_NOP, .access = PL0_W,
8313 .fgt = FGT_DCCIVAC,
8314 .accessfn = aa64_cacheop_poc_access },
8315 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8316 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8317 .access = PL0_W, .type = ARM_CP_DC_GVA,
8318 #ifndef CONFIG_USER_ONLY
8319 /* Avoid overhead of an access check that always passes in user-mode */
8320 .accessfn = aa64_zva_access,
8321 .fgt = FGT_DCZVA,
8322 #endif
8323 },
8324 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8325 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8326 .access = PL0_W, .type = ARM_CP_DC_GZVA,
8327 #ifndef CONFIG_USER_ONLY
8328 /* Avoid overhead of an access check that always passes in user-mode */
8329 .accessfn = aa64_zva_access,
8330 .fgt = FGT_DCZVA,
8331 #endif
8332 },
8333 };
8334
access_scxtnum(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8335 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8336 bool isread)
8337 {
8338 uint64_t hcr = arm_hcr_el2_eff(env);
8339 int el = arm_current_el(env);
8340
8341 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8342 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8343 if (hcr & HCR_TGE) {
8344 return CP_ACCESS_TRAP_EL2;
8345 }
8346 return CP_ACCESS_TRAP;
8347 }
8348 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8349 return CP_ACCESS_TRAP_EL2;
8350 }
8351 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8352 return CP_ACCESS_TRAP_EL2;
8353 }
8354 if (el < 3
8355 && arm_feature(env, ARM_FEATURE_EL3)
8356 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8357 return CP_ACCESS_TRAP_EL3;
8358 }
8359 return CP_ACCESS_OK;
8360 }
8361
access_scxtnum_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8362 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8363 const ARMCPRegInfo *ri,
8364 bool isread)
8365 {
8366 CPAccessResult nv1 = access_nv1(env, ri, isread);
8367
8368 if (nv1 != CP_ACCESS_OK) {
8369 return nv1;
8370 }
8371 return access_scxtnum(env, ri, isread);
8372 }
8373
8374 static const ARMCPRegInfo scxtnum_reginfo[] = {
8375 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8376 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8377 .access = PL0_RW, .accessfn = access_scxtnum,
8378 .fgt = FGT_SCXTNUM_EL0,
8379 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8380 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8381 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8382 .access = PL1_RW, .accessfn = access_scxtnum_el1,
8383 .fgt = FGT_SCXTNUM_EL1,
8384 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8385 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8386 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8387 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8388 .access = PL2_RW, .accessfn = access_scxtnum,
8389 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8390 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8391 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8392 .access = PL3_RW,
8393 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8394 };
8395
access_fgt(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8396 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8397 bool isread)
8398 {
8399 if (arm_current_el(env) == 2 &&
8400 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8401 return CP_ACCESS_TRAP_EL3;
8402 }
8403 return CP_ACCESS_OK;
8404 }
8405
8406 static const ARMCPRegInfo fgt_reginfo[] = {
8407 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8408 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8409 .nv2_redirect_offset = 0x1b8,
8410 .access = PL2_RW, .accessfn = access_fgt,
8411 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8412 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8413 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8414 .nv2_redirect_offset = 0x1c0,
8415 .access = PL2_RW, .accessfn = access_fgt,
8416 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8417 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8418 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8419 .nv2_redirect_offset = 0x1d0,
8420 .access = PL2_RW, .accessfn = access_fgt,
8421 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8422 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8423 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8424 .nv2_redirect_offset = 0x1d8,
8425 .access = PL2_RW, .accessfn = access_fgt,
8426 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8427 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8428 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8429 .nv2_redirect_offset = 0x1c8,
8430 .access = PL2_RW, .accessfn = access_fgt,
8431 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8432 };
8433
vncr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)8434 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8435 uint64_t value)
8436 {
8437 /*
8438 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8439 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8440 * about the RESS bits at the top -- we choose the "generate an EL2
8441 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8442 * the ptw.c code detect the resulting invalid address).
8443 */
8444 env->cp15.vncr_el2 = value & ~0xfffULL;
8445 }
8446
8447 static const ARMCPRegInfo nv2_reginfo[] = {
8448 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8449 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8450 .access = PL2_RW,
8451 .writefn = vncr_write,
8452 .nv2_redirect_offset = 0xb0,
8453 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8454 };
8455
8456 #endif /* TARGET_AARCH64 */
8457
access_predinv(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8458 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8459 bool isread)
8460 {
8461 int el = arm_current_el(env);
8462
8463 if (el == 0) {
8464 uint64_t sctlr = arm_sctlr(env, el);
8465 if (!(sctlr & SCTLR_EnRCTX)) {
8466 return CP_ACCESS_TRAP;
8467 }
8468 } else if (el == 1) {
8469 uint64_t hcr = arm_hcr_el2_eff(env);
8470 if (hcr & HCR_NV) {
8471 return CP_ACCESS_TRAP_EL2;
8472 }
8473 }
8474 return CP_ACCESS_OK;
8475 }
8476
8477 static const ARMCPRegInfo predinv_reginfo[] = {
8478 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8479 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8480 .fgt = FGT_CFPRCTX,
8481 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8482 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8483 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8484 .fgt = FGT_DVPRCTX,
8485 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8486 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8487 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8488 .fgt = FGT_CPPRCTX,
8489 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8490 /*
8491 * Note the AArch32 opcodes have a different OPC1.
8492 */
8493 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8494 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8495 .fgt = FGT_CFPRCTX,
8496 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8497 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8498 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8499 .fgt = FGT_DVPRCTX,
8500 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8501 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8502 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8503 .fgt = FGT_CPPRCTX,
8504 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8505 };
8506
ccsidr2_read(CPUARMState * env,const ARMCPRegInfo * ri)8507 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8508 {
8509 /* Read the high 32 bits of the current CCSIDR */
8510 return extract64(ccsidr_read(env, ri), 32, 32);
8511 }
8512
8513 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8514 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8515 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8516 .access = PL1_R,
8517 .accessfn = access_tid4,
8518 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8519 };
8520
access_aa64_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8521 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8522 bool isread)
8523 {
8524 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8525 return CP_ACCESS_TRAP_EL2;
8526 }
8527
8528 return CP_ACCESS_OK;
8529 }
8530
access_aa32_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8531 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8532 bool isread)
8533 {
8534 if (arm_feature(env, ARM_FEATURE_V8)) {
8535 return access_aa64_tid3(env, ri, isread);
8536 }
8537
8538 return CP_ACCESS_OK;
8539 }
8540
access_jazelle(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8541 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8542 bool isread)
8543 {
8544 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8545 return CP_ACCESS_TRAP_EL2;
8546 }
8547
8548 return CP_ACCESS_OK;
8549 }
8550
access_joscr_jmcr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8551 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8552 const ARMCPRegInfo *ri, bool isread)
8553 {
8554 /*
8555 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8556 * in v7A, not in v8A.
8557 */
8558 if (!arm_feature(env, ARM_FEATURE_V8) &&
8559 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8560 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8561 return CP_ACCESS_TRAP_EL2;
8562 }
8563 return CP_ACCESS_OK;
8564 }
8565
8566 static const ARMCPRegInfo jazelle_regs[] = {
8567 { .name = "JIDR",
8568 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8569 .access = PL1_R, .accessfn = access_jazelle,
8570 .type = ARM_CP_CONST, .resetvalue = 0 },
8571 { .name = "JOSCR",
8572 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8573 .accessfn = access_joscr_jmcr,
8574 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8575 { .name = "JMCR",
8576 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8577 .accessfn = access_joscr_jmcr,
8578 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8579 };
8580
8581 static const ARMCPRegInfo contextidr_el2 = {
8582 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8583 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8584 .access = PL2_RW,
8585 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8586 };
8587
8588 static const ARMCPRegInfo vhe_reginfo[] = {
8589 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8590 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8591 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8592 .raw_writefn = raw_write,
8593 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8594 #ifndef CONFIG_USER_ONLY
8595 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8596 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8597 .fieldoffset =
8598 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8599 .type = ARM_CP_IO, .access = PL2_RW,
8600 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8601 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8602 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8603 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8604 .resetfn = gt_hv_timer_reset,
8605 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8606 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8607 .type = ARM_CP_IO,
8608 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8609 .access = PL2_RW,
8610 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8611 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8612 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8613 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8614 .type = ARM_CP_IO | ARM_CP_ALIAS,
8615 .access = PL2_RW, .accessfn = access_el1nvpct,
8616 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8617 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8618 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8619 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8620 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8621 .type = ARM_CP_IO | ARM_CP_ALIAS,
8622 .access = PL2_RW, .accessfn = access_el1nvvct,
8623 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8624 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8625 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8626 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8627 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8628 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8629 .access = PL2_RW, .accessfn = e2h_access,
8630 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8631 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8632 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8633 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8634 .access = PL2_RW, .accessfn = e2h_access,
8635 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8636 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8637 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8638 .type = ARM_CP_IO | ARM_CP_ALIAS,
8639 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8640 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8641 .access = PL2_RW, .accessfn = access_el1nvpct,
8642 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8643 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8644 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8645 .type = ARM_CP_IO | ARM_CP_ALIAS,
8646 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8647 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8648 .access = PL2_RW, .accessfn = access_el1nvvct,
8649 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8650 #endif
8651 };
8652
8653 #ifndef CONFIG_USER_ONLY
8654 static const ARMCPRegInfo ats1e1_reginfo[] = {
8655 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8656 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8657 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8658 .fgt = FGT_ATS1E1RP,
8659 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8660 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8661 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8662 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8663 .fgt = FGT_ATS1E1WP,
8664 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8665 };
8666
8667 static const ARMCPRegInfo ats1cp_reginfo[] = {
8668 { .name = "ATS1CPRP",
8669 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8670 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8671 .writefn = ats_write },
8672 { .name = "ATS1CPWP",
8673 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8674 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8675 .writefn = ats_write },
8676 };
8677 #endif
8678
8679 /*
8680 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8681 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8682 * is non-zero, which is never for ARMv7, optionally in ARMv8
8683 * and mandatorily for ARMv8.2 and up.
8684 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8685 * implementation is RAZ/WI we can ignore this detail, as we
8686 * do for ACTLR.
8687 */
8688 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8689 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8690 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8691 .access = PL1_RW, .accessfn = access_tacr,
8692 .type = ARM_CP_CONST, .resetvalue = 0 },
8693 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8694 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8695 .access = PL2_RW, .type = ARM_CP_CONST,
8696 .resetvalue = 0 },
8697 };
8698
register_cp_regs_for_features(ARMCPU * cpu)8699 void register_cp_regs_for_features(ARMCPU *cpu)
8700 {
8701 /* Register all the coprocessor registers based on feature bits */
8702 CPUARMState *env = &cpu->env;
8703 if (arm_feature(env, ARM_FEATURE_M)) {
8704 /* M profile has no coprocessor registers */
8705 return;
8706 }
8707
8708 define_arm_cp_regs(cpu, cp_reginfo);
8709 if (!arm_feature(env, ARM_FEATURE_V8)) {
8710 /*
8711 * Must go early as it is full of wildcards that may be
8712 * overridden by later definitions.
8713 */
8714 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8715 }
8716
8717 if (arm_feature(env, ARM_FEATURE_V6)) {
8718 /* The ID registers all have impdef reset values */
8719 ARMCPRegInfo v6_idregs[] = {
8720 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8722 .access = PL1_R, .type = ARM_CP_CONST,
8723 .accessfn = access_aa32_tid3,
8724 .resetvalue = cpu->isar.id_pfr0 },
8725 /*
8726 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8727 * the value of the GIC field until after we define these regs.
8728 */
8729 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8731 .access = PL1_R, .type = ARM_CP_NO_RAW,
8732 .accessfn = access_aa32_tid3,
8733 #ifdef CONFIG_USER_ONLY
8734 .type = ARM_CP_CONST,
8735 .resetvalue = cpu->isar.id_pfr1,
8736 #else
8737 .type = ARM_CP_NO_RAW,
8738 .accessfn = access_aa32_tid3,
8739 .readfn = id_pfr1_read,
8740 .writefn = arm_cp_write_ignore
8741 #endif
8742 },
8743 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8745 .access = PL1_R, .type = ARM_CP_CONST,
8746 .accessfn = access_aa32_tid3,
8747 .resetvalue = cpu->isar.id_dfr0 },
8748 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8749 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8750 .access = PL1_R, .type = ARM_CP_CONST,
8751 .accessfn = access_aa32_tid3,
8752 .resetvalue = cpu->id_afr0 },
8753 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8755 .access = PL1_R, .type = ARM_CP_CONST,
8756 .accessfn = access_aa32_tid3,
8757 .resetvalue = cpu->isar.id_mmfr0 },
8758 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8760 .access = PL1_R, .type = ARM_CP_CONST,
8761 .accessfn = access_aa32_tid3,
8762 .resetvalue = cpu->isar.id_mmfr1 },
8763 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8765 .access = PL1_R, .type = ARM_CP_CONST,
8766 .accessfn = access_aa32_tid3,
8767 .resetvalue = cpu->isar.id_mmfr2 },
8768 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8770 .access = PL1_R, .type = ARM_CP_CONST,
8771 .accessfn = access_aa32_tid3,
8772 .resetvalue = cpu->isar.id_mmfr3 },
8773 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8775 .access = PL1_R, .type = ARM_CP_CONST,
8776 .accessfn = access_aa32_tid3,
8777 .resetvalue = cpu->isar.id_isar0 },
8778 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8780 .access = PL1_R, .type = ARM_CP_CONST,
8781 .accessfn = access_aa32_tid3,
8782 .resetvalue = cpu->isar.id_isar1 },
8783 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8785 .access = PL1_R, .type = ARM_CP_CONST,
8786 .accessfn = access_aa32_tid3,
8787 .resetvalue = cpu->isar.id_isar2 },
8788 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8790 .access = PL1_R, .type = ARM_CP_CONST,
8791 .accessfn = access_aa32_tid3,
8792 .resetvalue = cpu->isar.id_isar3 },
8793 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8795 .access = PL1_R, .type = ARM_CP_CONST,
8796 .accessfn = access_aa32_tid3,
8797 .resetvalue = cpu->isar.id_isar4 },
8798 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8800 .access = PL1_R, .type = ARM_CP_CONST,
8801 .accessfn = access_aa32_tid3,
8802 .resetvalue = cpu->isar.id_isar5 },
8803 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8805 .access = PL1_R, .type = ARM_CP_CONST,
8806 .accessfn = access_aa32_tid3,
8807 .resetvalue = cpu->isar.id_mmfr4 },
8808 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8810 .access = PL1_R, .type = ARM_CP_CONST,
8811 .accessfn = access_aa32_tid3,
8812 .resetvalue = cpu->isar.id_isar6 },
8813 };
8814 define_arm_cp_regs(cpu, v6_idregs);
8815 define_arm_cp_regs(cpu, v6_cp_reginfo);
8816 } else {
8817 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8818 }
8819 if (arm_feature(env, ARM_FEATURE_V6K)) {
8820 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8821 }
8822 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8823 !arm_feature(env, ARM_FEATURE_PMSA)) {
8824 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8825 }
8826 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8827 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8828 }
8829 if (arm_feature(env, ARM_FEATURE_V7)) {
8830 ARMCPRegInfo clidr = {
8831 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8832 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8833 .access = PL1_R, .type = ARM_CP_CONST,
8834 .accessfn = access_tid4,
8835 .fgt = FGT_CLIDR_EL1,
8836 .resetvalue = cpu->clidr
8837 };
8838 define_one_arm_cp_reg(cpu, &clidr);
8839 define_arm_cp_regs(cpu, v7_cp_reginfo);
8840 define_debug_regs(cpu);
8841 define_pmu_regs(cpu);
8842 } else {
8843 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8844 }
8845 if (arm_feature(env, ARM_FEATURE_V8)) {
8846 /*
8847 * v8 ID registers, which all have impdef reset values.
8848 * Note that within the ID register ranges the unused slots
8849 * must all RAZ, not UNDEF; future architecture versions may
8850 * define new registers here.
8851 * ID registers which are AArch64 views of the AArch32 ID registers
8852 * which already existed in v6 and v7 are handled elsewhere,
8853 * in v6_idregs[].
8854 */
8855 int i;
8856 ARMCPRegInfo v8_idregs[] = {
8857 /*
8858 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8859 * emulation because we don't know the right value for the
8860 * GIC field until after we define these regs.
8861 */
8862 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8863 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8864 .access = PL1_R,
8865 #ifdef CONFIG_USER_ONLY
8866 .type = ARM_CP_CONST,
8867 .resetvalue = cpu->isar.id_aa64pfr0
8868 #else
8869 .type = ARM_CP_NO_RAW,
8870 .accessfn = access_aa64_tid3,
8871 .readfn = id_aa64pfr0_read,
8872 .writefn = arm_cp_write_ignore
8873 #endif
8874 },
8875 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8877 .access = PL1_R, .type = ARM_CP_CONST,
8878 .accessfn = access_aa64_tid3,
8879 .resetvalue = cpu->isar.id_aa64pfr1},
8880 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8882 .access = PL1_R, .type = ARM_CP_CONST,
8883 .accessfn = access_aa64_tid3,
8884 .resetvalue = 0 },
8885 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8887 .access = PL1_R, .type = ARM_CP_CONST,
8888 .accessfn = access_aa64_tid3,
8889 .resetvalue = 0 },
8890 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8891 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8892 .access = PL1_R, .type = ARM_CP_CONST,
8893 .accessfn = access_aa64_tid3,
8894 .resetvalue = cpu->isar.id_aa64zfr0 },
8895 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8897 .access = PL1_R, .type = ARM_CP_CONST,
8898 .accessfn = access_aa64_tid3,
8899 .resetvalue = cpu->isar.id_aa64smfr0 },
8900 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8902 .access = PL1_R, .type = ARM_CP_CONST,
8903 .accessfn = access_aa64_tid3,
8904 .resetvalue = 0 },
8905 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8907 .access = PL1_R, .type = ARM_CP_CONST,
8908 .accessfn = access_aa64_tid3,
8909 .resetvalue = 0 },
8910 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8911 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8912 .access = PL1_R, .type = ARM_CP_CONST,
8913 .accessfn = access_aa64_tid3,
8914 .resetvalue = cpu->isar.id_aa64dfr0 },
8915 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8917 .access = PL1_R, .type = ARM_CP_CONST,
8918 .accessfn = access_aa64_tid3,
8919 .resetvalue = cpu->isar.id_aa64dfr1 },
8920 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8922 .access = PL1_R, .type = ARM_CP_CONST,
8923 .accessfn = access_aa64_tid3,
8924 .resetvalue = 0 },
8925 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8927 .access = PL1_R, .type = ARM_CP_CONST,
8928 .accessfn = access_aa64_tid3,
8929 .resetvalue = 0 },
8930 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8931 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8932 .access = PL1_R, .type = ARM_CP_CONST,
8933 .accessfn = access_aa64_tid3,
8934 .resetvalue = cpu->id_aa64afr0 },
8935 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8936 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8937 .access = PL1_R, .type = ARM_CP_CONST,
8938 .accessfn = access_aa64_tid3,
8939 .resetvalue = cpu->id_aa64afr1 },
8940 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8941 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8942 .access = PL1_R, .type = ARM_CP_CONST,
8943 .accessfn = access_aa64_tid3,
8944 .resetvalue = 0 },
8945 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8947 .access = PL1_R, .type = ARM_CP_CONST,
8948 .accessfn = access_aa64_tid3,
8949 .resetvalue = 0 },
8950 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8952 .access = PL1_R, .type = ARM_CP_CONST,
8953 .accessfn = access_aa64_tid3,
8954 .resetvalue = cpu->isar.id_aa64isar0 },
8955 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8957 .access = PL1_R, .type = ARM_CP_CONST,
8958 .accessfn = access_aa64_tid3,
8959 .resetvalue = cpu->isar.id_aa64isar1 },
8960 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8962 .access = PL1_R, .type = ARM_CP_CONST,
8963 .accessfn = access_aa64_tid3,
8964 .resetvalue = cpu->isar.id_aa64isar2 },
8965 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8967 .access = PL1_R, .type = ARM_CP_CONST,
8968 .accessfn = access_aa64_tid3,
8969 .resetvalue = 0 },
8970 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8972 .access = PL1_R, .type = ARM_CP_CONST,
8973 .accessfn = access_aa64_tid3,
8974 .resetvalue = 0 },
8975 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8977 .access = PL1_R, .type = ARM_CP_CONST,
8978 .accessfn = access_aa64_tid3,
8979 .resetvalue = 0 },
8980 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8981 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8982 .access = PL1_R, .type = ARM_CP_CONST,
8983 .accessfn = access_aa64_tid3,
8984 .resetvalue = 0 },
8985 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8987 .access = PL1_R, .type = ARM_CP_CONST,
8988 .accessfn = access_aa64_tid3,
8989 .resetvalue = 0 },
8990 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8992 .access = PL1_R, .type = ARM_CP_CONST,
8993 .accessfn = access_aa64_tid3,
8994 .resetvalue = cpu->isar.id_aa64mmfr0 },
8995 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8997 .access = PL1_R, .type = ARM_CP_CONST,
8998 .accessfn = access_aa64_tid3,
8999 .resetvalue = cpu->isar.id_aa64mmfr1 },
9000 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
9001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
9002 .access = PL1_R, .type = ARM_CP_CONST,
9003 .accessfn = access_aa64_tid3,
9004 .resetvalue = cpu->isar.id_aa64mmfr2 },
9005 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64,
9006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
9007 .access = PL1_R, .type = ARM_CP_CONST,
9008 .accessfn = access_aa64_tid3,
9009 .resetvalue = cpu->isar.id_aa64mmfr3 },
9010 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
9012 .access = PL1_R, .type = ARM_CP_CONST,
9013 .accessfn = access_aa64_tid3,
9014 .resetvalue = 0 },
9015 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
9017 .access = PL1_R, .type = ARM_CP_CONST,
9018 .accessfn = access_aa64_tid3,
9019 .resetvalue = 0 },
9020 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
9022 .access = PL1_R, .type = ARM_CP_CONST,
9023 .accessfn = access_aa64_tid3,
9024 .resetvalue = 0 },
9025 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
9027 .access = PL1_R, .type = ARM_CP_CONST,
9028 .accessfn = access_aa64_tid3,
9029 .resetvalue = 0 },
9030 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
9031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9032 .access = PL1_R, .type = ARM_CP_CONST,
9033 .accessfn = access_aa64_tid3,
9034 .resetvalue = cpu->isar.mvfr0 },
9035 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
9036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9037 .access = PL1_R, .type = ARM_CP_CONST,
9038 .accessfn = access_aa64_tid3,
9039 .resetvalue = cpu->isar.mvfr1 },
9040 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
9041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9042 .access = PL1_R, .type = ARM_CP_CONST,
9043 .accessfn = access_aa64_tid3,
9044 .resetvalue = cpu->isar.mvfr2 },
9045 /*
9046 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
9047 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
9048 * as RAZ, since it is in the "reserved for future ID
9049 * registers, RAZ" part of the AArch32 encoding space.
9050 */
9051 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
9052 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9053 .access = PL1_R, .type = ARM_CP_CONST,
9054 .accessfn = access_aa64_tid3,
9055 .resetvalue = 0 },
9056 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
9057 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9058 .access = PL1_R, .type = ARM_CP_CONST,
9059 .accessfn = access_aa64_tid3,
9060 .resetvalue = 0 },
9061 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
9062 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9063 .access = PL1_R, .type = ARM_CP_CONST,
9064 .accessfn = access_aa64_tid3,
9065 .resetvalue = 0 },
9066 /*
9067 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
9068 * they're also RAZ for AArch64, and in v8 are gradually
9069 * being filled with AArch64-view-of-AArch32-ID-register
9070 * for new ID registers.
9071 */
9072 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
9073 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
9074 .access = PL1_R, .type = ARM_CP_CONST,
9075 .accessfn = access_aa64_tid3,
9076 .resetvalue = 0 },
9077 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
9078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
9079 .access = PL1_R, .type = ARM_CP_CONST,
9080 .accessfn = access_aa64_tid3,
9081 .resetvalue = cpu->isar.id_pfr2 },
9082 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
9083 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
9084 .access = PL1_R, .type = ARM_CP_CONST,
9085 .accessfn = access_aa64_tid3,
9086 .resetvalue = cpu->isar.id_dfr1 },
9087 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
9088 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
9089 .access = PL1_R, .type = ARM_CP_CONST,
9090 .accessfn = access_aa64_tid3,
9091 .resetvalue = cpu->isar.id_mmfr5 },
9092 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
9093 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
9094 .access = PL1_R, .type = ARM_CP_CONST,
9095 .accessfn = access_aa64_tid3,
9096 .resetvalue = 0 },
9097 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
9098 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
9099 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9100 .fgt = FGT_PMCEIDN_EL0,
9101 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
9102 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
9103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
9104 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9105 .fgt = FGT_PMCEIDN_EL0,
9106 .resetvalue = cpu->pmceid0 },
9107 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
9108 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
9109 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9110 .fgt = FGT_PMCEIDN_EL0,
9111 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
9112 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
9113 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
9114 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9115 .fgt = FGT_PMCEIDN_EL0,
9116 .resetvalue = cpu->pmceid1 },
9117 };
9118 #ifdef CONFIG_USER_ONLY
9119 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
9120 { .name = "ID_AA64PFR0_EL1",
9121 .exported_bits = R_ID_AA64PFR0_FP_MASK |
9122 R_ID_AA64PFR0_ADVSIMD_MASK |
9123 R_ID_AA64PFR0_SVE_MASK |
9124 R_ID_AA64PFR0_DIT_MASK,
9125 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
9126 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
9127 { .name = "ID_AA64PFR1_EL1",
9128 .exported_bits = R_ID_AA64PFR1_BT_MASK |
9129 R_ID_AA64PFR1_SSBS_MASK |
9130 R_ID_AA64PFR1_MTE_MASK |
9131 R_ID_AA64PFR1_SME_MASK },
9132 { .name = "ID_AA64PFR*_EL1_RESERVED",
9133 .is_glob = true },
9134 { .name = "ID_AA64ZFR0_EL1",
9135 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
9136 R_ID_AA64ZFR0_AES_MASK |
9137 R_ID_AA64ZFR0_BITPERM_MASK |
9138 R_ID_AA64ZFR0_BFLOAT16_MASK |
9139 R_ID_AA64ZFR0_B16B16_MASK |
9140 R_ID_AA64ZFR0_SHA3_MASK |
9141 R_ID_AA64ZFR0_SM4_MASK |
9142 R_ID_AA64ZFR0_I8MM_MASK |
9143 R_ID_AA64ZFR0_F32MM_MASK |
9144 R_ID_AA64ZFR0_F64MM_MASK },
9145 { .name = "ID_AA64SMFR0_EL1",
9146 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
9147 R_ID_AA64SMFR0_BI32I32_MASK |
9148 R_ID_AA64SMFR0_B16F32_MASK |
9149 R_ID_AA64SMFR0_F16F32_MASK |
9150 R_ID_AA64SMFR0_I8I32_MASK |
9151 R_ID_AA64SMFR0_F16F16_MASK |
9152 R_ID_AA64SMFR0_B16B16_MASK |
9153 R_ID_AA64SMFR0_I16I32_MASK |
9154 R_ID_AA64SMFR0_F64F64_MASK |
9155 R_ID_AA64SMFR0_I16I64_MASK |
9156 R_ID_AA64SMFR0_SMEVER_MASK |
9157 R_ID_AA64SMFR0_FA64_MASK },
9158 { .name = "ID_AA64MMFR0_EL1",
9159 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
9160 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
9161 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
9162 { .name = "ID_AA64MMFR1_EL1",
9163 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
9164 { .name = "ID_AA64MMFR2_EL1",
9165 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
9166 { .name = "ID_AA64MMFR3_EL1",
9167 .exported_bits = 0 },
9168 { .name = "ID_AA64MMFR*_EL1_RESERVED",
9169 .is_glob = true },
9170 { .name = "ID_AA64DFR0_EL1",
9171 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
9172 { .name = "ID_AA64DFR1_EL1" },
9173 { .name = "ID_AA64DFR*_EL1_RESERVED",
9174 .is_glob = true },
9175 { .name = "ID_AA64AFR*",
9176 .is_glob = true },
9177 { .name = "ID_AA64ISAR0_EL1",
9178 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
9179 R_ID_AA64ISAR0_SHA1_MASK |
9180 R_ID_AA64ISAR0_SHA2_MASK |
9181 R_ID_AA64ISAR0_CRC32_MASK |
9182 R_ID_AA64ISAR0_ATOMIC_MASK |
9183 R_ID_AA64ISAR0_RDM_MASK |
9184 R_ID_AA64ISAR0_SHA3_MASK |
9185 R_ID_AA64ISAR0_SM3_MASK |
9186 R_ID_AA64ISAR0_SM4_MASK |
9187 R_ID_AA64ISAR0_DP_MASK |
9188 R_ID_AA64ISAR0_FHM_MASK |
9189 R_ID_AA64ISAR0_TS_MASK |
9190 R_ID_AA64ISAR0_RNDR_MASK },
9191 { .name = "ID_AA64ISAR1_EL1",
9192 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
9193 R_ID_AA64ISAR1_APA_MASK |
9194 R_ID_AA64ISAR1_API_MASK |
9195 R_ID_AA64ISAR1_JSCVT_MASK |
9196 R_ID_AA64ISAR1_FCMA_MASK |
9197 R_ID_AA64ISAR1_LRCPC_MASK |
9198 R_ID_AA64ISAR1_GPA_MASK |
9199 R_ID_AA64ISAR1_GPI_MASK |
9200 R_ID_AA64ISAR1_FRINTTS_MASK |
9201 R_ID_AA64ISAR1_SB_MASK |
9202 R_ID_AA64ISAR1_BF16_MASK |
9203 R_ID_AA64ISAR1_DGH_MASK |
9204 R_ID_AA64ISAR1_I8MM_MASK },
9205 { .name = "ID_AA64ISAR2_EL1",
9206 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
9207 R_ID_AA64ISAR2_RPRES_MASK |
9208 R_ID_AA64ISAR2_GPA3_MASK |
9209 R_ID_AA64ISAR2_APA3_MASK |
9210 R_ID_AA64ISAR2_MOPS_MASK |
9211 R_ID_AA64ISAR2_BC_MASK |
9212 R_ID_AA64ISAR2_RPRFM_MASK |
9213 R_ID_AA64ISAR2_CSSC_MASK },
9214 { .name = "ID_AA64ISAR*_EL1_RESERVED",
9215 .is_glob = true },
9216 };
9217 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
9218 #endif
9219 /*
9220 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
9221 * TODO: For RMR, a write with bit 1 set should do something with
9222 * cpu_reset(). In the meantime, "the bit is strictly a request",
9223 * so we are in spec just ignoring writes.
9224 */
9225 if (!arm_feature(env, ARM_FEATURE_EL3) &&
9226 !arm_feature(env, ARM_FEATURE_EL2)) {
9227 ARMCPRegInfo el1_reset_regs[] = {
9228 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
9229 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9230 .access = PL1_R,
9231 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9232 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
9233 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9234 .access = PL1_RW, .type = ARM_CP_CONST,
9235 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
9236 };
9237 define_arm_cp_regs(cpu, el1_reset_regs);
9238 }
9239 define_arm_cp_regs(cpu, v8_idregs);
9240 define_arm_cp_regs(cpu, v8_cp_reginfo);
9241 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9242 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9243 }
9244
9245 for (i = 4; i < 16; i++) {
9246 /*
9247 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9248 * For pre-v8 cores there are RAZ patterns for these in
9249 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9250 * v8 extends the "must RAZ" part of the ID register space
9251 * to also cover c0, 0, c{8-15}, {0-7}.
9252 * These are STATE_AA32 because in the AArch64 sysreg space
9253 * c4-c7 is where the AArch64 ID registers live (and we've
9254 * already defined those in v8_idregs[]), and c8-c15 are not
9255 * "must RAZ" for AArch64.
9256 */
9257 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9258 ARMCPRegInfo v8_aa32_raz_idregs = {
9259 .name = name,
9260 .state = ARM_CP_STATE_AA32,
9261 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9262 .access = PL1_R, .type = ARM_CP_CONST,
9263 .accessfn = access_aa64_tid3,
9264 .resetvalue = 0 };
9265 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9266 }
9267 }
9268
9269 /*
9270 * Register the base EL2 cpregs.
9271 * Pre v8, these registers are implemented only as part of the
9272 * Virtualization Extensions (EL2 present). Beginning with v8,
9273 * if EL2 is missing but EL3 is enabled, mostly these become
9274 * RES0 from EL3, with some specific exceptions.
9275 */
9276 if (arm_feature(env, ARM_FEATURE_EL2)
9277 || (arm_feature(env, ARM_FEATURE_EL3)
9278 && arm_feature(env, ARM_FEATURE_V8))) {
9279 uint64_t vmpidr_def = mpidr_read_val(env);
9280 ARMCPRegInfo vpidr_regs[] = {
9281 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9282 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9283 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9284 .resetvalue = cpu->midr,
9285 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9286 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9287 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9288 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9289 .access = PL2_RW, .resetvalue = cpu->midr,
9290 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9291 .nv2_redirect_offset = 0x88,
9292 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9293 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9294 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9295 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9296 .resetvalue = vmpidr_def,
9297 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9298 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9299 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9300 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9301 .access = PL2_RW, .resetvalue = vmpidr_def,
9302 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9303 .nv2_redirect_offset = 0x50,
9304 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9305 };
9306 /*
9307 * The only field of MDCR_EL2 that has a defined architectural reset
9308 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9309 */
9310 ARMCPRegInfo mdcr_el2 = {
9311 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9312 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9313 .writefn = mdcr_el2_write,
9314 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9315 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9316 };
9317 define_one_arm_cp_reg(cpu, &mdcr_el2);
9318 define_arm_cp_regs(cpu, vpidr_regs);
9319 define_arm_cp_regs(cpu, el2_cp_reginfo);
9320 if (arm_feature(env, ARM_FEATURE_V8)) {
9321 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9322 }
9323 if (cpu_isar_feature(aa64_sel2, cpu)) {
9324 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9325 }
9326 /*
9327 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9328 * See commentary near RMR_EL1.
9329 */
9330 if (!arm_feature(env, ARM_FEATURE_EL3)) {
9331 static const ARMCPRegInfo el2_reset_regs[] = {
9332 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9333 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9334 .access = PL2_R,
9335 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9336 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9337 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9338 .access = PL2_R,
9339 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9340 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9341 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9342 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9343 };
9344 define_arm_cp_regs(cpu, el2_reset_regs);
9345 }
9346 }
9347
9348 /* Register the base EL3 cpregs. */
9349 if (arm_feature(env, ARM_FEATURE_EL3)) {
9350 define_arm_cp_regs(cpu, el3_cp_reginfo);
9351 ARMCPRegInfo el3_regs[] = {
9352 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9353 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9354 .access = PL3_R,
9355 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9356 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9357 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9358 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9359 { .name = "RMR", .state = ARM_CP_STATE_AA32,
9360 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9361 .access = PL3_RW, .type = ARM_CP_CONST,
9362 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9363 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9364 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9365 .access = PL3_RW,
9366 .raw_writefn = raw_write, .writefn = sctlr_write,
9367 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9368 .resetvalue = cpu->reset_sctlr },
9369 };
9370
9371 define_arm_cp_regs(cpu, el3_regs);
9372 }
9373 /*
9374 * The behaviour of NSACR is sufficiently various that we don't
9375 * try to describe it in a single reginfo:
9376 * if EL3 is 64 bit, then trap to EL3 from S EL1,
9377 * reads as constant 0xc00 from NS EL1 and NS EL2
9378 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9379 * if v7 without EL3, register doesn't exist
9380 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9381 */
9382 if (arm_feature(env, ARM_FEATURE_EL3)) {
9383 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9384 static const ARMCPRegInfo nsacr = {
9385 .name = "NSACR", .type = ARM_CP_CONST,
9386 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9387 .access = PL1_RW, .accessfn = nsacr_access,
9388 .resetvalue = 0xc00
9389 };
9390 define_one_arm_cp_reg(cpu, &nsacr);
9391 } else {
9392 static const ARMCPRegInfo nsacr = {
9393 .name = "NSACR",
9394 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9395 .access = PL3_RW | PL1_R,
9396 .resetvalue = 0,
9397 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9398 };
9399 define_one_arm_cp_reg(cpu, &nsacr);
9400 }
9401 } else {
9402 if (arm_feature(env, ARM_FEATURE_V8)) {
9403 static const ARMCPRegInfo nsacr = {
9404 .name = "NSACR", .type = ARM_CP_CONST,
9405 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9406 .access = PL1_R,
9407 .resetvalue = 0xc00
9408 };
9409 define_one_arm_cp_reg(cpu, &nsacr);
9410 }
9411 }
9412
9413 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9414 if (arm_feature(env, ARM_FEATURE_V6)) {
9415 /* PMSAv6 not implemented */
9416 assert(arm_feature(env, ARM_FEATURE_V7));
9417 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9418 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9419 } else {
9420 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9421 }
9422 } else {
9423 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9424 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9425 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
9426 if (cpu_isar_feature(aa32_hpd, cpu)) {
9427 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9428 }
9429 }
9430 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9431 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9432 }
9433 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9434 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9435 }
9436 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
9437 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
9438 }
9439 #ifndef CONFIG_USER_ONLY
9440 if (cpu_isar_feature(aa64_ecv, cpu)) {
9441 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
9442 }
9443 #endif
9444 if (arm_feature(env, ARM_FEATURE_VAPA)) {
9445 ARMCPRegInfo vapa_cp_reginfo[] = {
9446 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9447 .access = PL1_RW, .resetvalue = 0,
9448 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9449 offsetoflow32(CPUARMState, cp15.par_ns) },
9450 .writefn = par_write},
9451 #ifndef CONFIG_USER_ONLY
9452 /* This underdecoding is safe because the reginfo is NO_RAW. */
9453 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9454 .access = PL1_W, .accessfn = ats_access,
9455 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9456 #endif
9457 };
9458
9459 /*
9460 * When LPAE exists this 32-bit PAR register is an alias of the
9461 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9462 */
9463 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9464 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9465 }
9466 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9467 }
9468 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9469 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9470 }
9471 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9472 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9473 }
9474 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9475 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9476 }
9477 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9478 define_arm_cp_regs(cpu, omap_cp_reginfo);
9479 }
9480 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9481 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9482 }
9483 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9484 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9485 }
9486 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9487 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9488 }
9489 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9490 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9491 }
9492 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9493 define_arm_cp_regs(cpu, jazelle_regs);
9494 }
9495 /*
9496 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9497 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9498 * be read-only (ie write causes UNDEF exception).
9499 */
9500 {
9501 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9502 /*
9503 * Pre-v8 MIDR space.
9504 * Note that the MIDR isn't a simple constant register because
9505 * of the TI925 behaviour where writes to another register can
9506 * cause the MIDR value to change.
9507 *
9508 * Unimplemented registers in the c15 0 0 0 space default to
9509 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9510 * and friends override accordingly.
9511 */
9512 { .name = "MIDR",
9513 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9514 .access = PL1_R, .resetvalue = cpu->midr,
9515 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9516 .readfn = midr_read,
9517 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9518 .type = ARM_CP_OVERRIDE },
9519 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9520 { .name = "DUMMY",
9521 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9522 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9523 { .name = "DUMMY",
9524 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9525 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9526 { .name = "DUMMY",
9527 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9528 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9529 { .name = "DUMMY",
9530 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9531 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9532 { .name = "DUMMY",
9533 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9534 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9535 };
9536 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9537 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9539 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9540 .fgt = FGT_MIDR_EL1,
9541 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9542 .readfn = midr_read },
9543 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9544 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9545 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9546 .access = PL1_R, .resetvalue = cpu->midr },
9547 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9549 .access = PL1_R,
9550 .accessfn = access_aa64_tid1,
9551 .fgt = FGT_REVIDR_EL1,
9552 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9553 };
9554 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9555 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9556 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9557 .access = PL1_R, .resetvalue = cpu->midr
9558 };
9559 ARMCPRegInfo id_cp_reginfo[] = {
9560 /* These are common to v8 and pre-v8 */
9561 { .name = "CTR",
9562 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9563 .access = PL1_R, .accessfn = ctr_el0_access,
9564 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9565 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9566 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9567 .access = PL0_R, .accessfn = ctr_el0_access,
9568 .fgt = FGT_CTR_EL0,
9569 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9570 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9571 { .name = "TCMTR",
9572 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9573 .access = PL1_R,
9574 .accessfn = access_aa32_tid1,
9575 .type = ARM_CP_CONST, .resetvalue = 0 },
9576 };
9577 /* TLBTR is specific to VMSA */
9578 ARMCPRegInfo id_tlbtr_reginfo = {
9579 .name = "TLBTR",
9580 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9581 .access = PL1_R,
9582 .accessfn = access_aa32_tid1,
9583 .type = ARM_CP_CONST, .resetvalue = 0,
9584 };
9585 /* MPUIR is specific to PMSA V6+ */
9586 ARMCPRegInfo id_mpuir_reginfo = {
9587 .name = "MPUIR",
9588 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9589 .access = PL1_R, .type = ARM_CP_CONST,
9590 .resetvalue = cpu->pmsav7_dregion << 8
9591 };
9592 /* HMPUIR is specific to PMSA V8 */
9593 ARMCPRegInfo id_hmpuir_reginfo = {
9594 .name = "HMPUIR",
9595 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9596 .access = PL2_R, .type = ARM_CP_CONST,
9597 .resetvalue = cpu->pmsav8r_hdregion
9598 };
9599 static const ARMCPRegInfo crn0_wi_reginfo = {
9600 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9601 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9602 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9603 };
9604 #ifdef CONFIG_USER_ONLY
9605 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9606 { .name = "MIDR_EL1",
9607 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9608 R_MIDR_EL1_PARTNUM_MASK |
9609 R_MIDR_EL1_ARCHITECTURE_MASK |
9610 R_MIDR_EL1_VARIANT_MASK |
9611 R_MIDR_EL1_IMPLEMENTER_MASK },
9612 { .name = "REVIDR_EL1" },
9613 };
9614 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9615 #endif
9616 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9617 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9618 size_t i;
9619 /*
9620 * Register the blanket "writes ignored" value first to cover the
9621 * whole space. Then update the specific ID registers to allow write
9622 * access, so that they ignore writes rather than causing them to
9623 * UNDEF.
9624 */
9625 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9626 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9627 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9628 }
9629 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9630 id_cp_reginfo[i].access = PL1_RW;
9631 }
9632 id_mpuir_reginfo.access = PL1_RW;
9633 id_tlbtr_reginfo.access = PL1_RW;
9634 }
9635 if (arm_feature(env, ARM_FEATURE_V8)) {
9636 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9637 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9638 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9639 }
9640 } else {
9641 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9642 }
9643 define_arm_cp_regs(cpu, id_cp_reginfo);
9644 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9645 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9646 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9647 arm_feature(env, ARM_FEATURE_V8)) {
9648 uint32_t i = 0;
9649 char *tmp_string;
9650
9651 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9652 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9653 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9654
9655 /* Register alias is only valid for first 32 indexes */
9656 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9657 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9658 uint8_t opc1 = extract32(i, 4, 1);
9659 uint8_t opc2 = extract32(i, 0, 1) << 2;
9660
9661 tmp_string = g_strdup_printf("PRBAR%u", i);
9662 ARMCPRegInfo tmp_prbarn_reginfo = {
9663 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9664 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9665 .access = PL1_RW, .resetvalue = 0,
9666 .accessfn = access_tvm_trvm,
9667 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9668 };
9669 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9670 g_free(tmp_string);
9671
9672 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9673 tmp_string = g_strdup_printf("PRLAR%u", i);
9674 ARMCPRegInfo tmp_prlarn_reginfo = {
9675 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9676 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9677 .access = PL1_RW, .resetvalue = 0,
9678 .accessfn = access_tvm_trvm,
9679 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9680 };
9681 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9682 g_free(tmp_string);
9683 }
9684
9685 /* Register alias is only valid for first 32 indexes */
9686 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9687 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9688 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9689 uint8_t opc2 = extract32(i, 0, 1) << 2;
9690
9691 tmp_string = g_strdup_printf("HPRBAR%u", i);
9692 ARMCPRegInfo tmp_hprbarn_reginfo = {
9693 .name = tmp_string,
9694 .type = ARM_CP_NO_RAW,
9695 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9696 .access = PL2_RW, .resetvalue = 0,
9697 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9698 };
9699 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9700 g_free(tmp_string);
9701
9702 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9703 tmp_string = g_strdup_printf("HPRLAR%u", i);
9704 ARMCPRegInfo tmp_hprlarn_reginfo = {
9705 .name = tmp_string,
9706 .type = ARM_CP_NO_RAW,
9707 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9708 .access = PL2_RW, .resetvalue = 0,
9709 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9710 };
9711 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9712 g_free(tmp_string);
9713 }
9714 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9715 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9716 }
9717 }
9718
9719 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9720 ARMCPRegInfo mpidr_cp_reginfo[] = {
9721 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9722 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9723 .fgt = FGT_MPIDR_EL1,
9724 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9725 };
9726 #ifdef CONFIG_USER_ONLY
9727 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9728 { .name = "MPIDR_EL1",
9729 .fixed_bits = 0x0000000080000000 },
9730 };
9731 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9732 #endif
9733 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9734 }
9735
9736 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9737 ARMCPRegInfo auxcr_reginfo[] = {
9738 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9739 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9740 .access = PL1_RW, .accessfn = access_tacr,
9741 .nv2_redirect_offset = 0x118,
9742 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9743 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9744 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9745 .access = PL2_RW, .type = ARM_CP_CONST,
9746 .resetvalue = 0 },
9747 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9748 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9749 .access = PL3_RW, .type = ARM_CP_CONST,
9750 .resetvalue = 0 },
9751 };
9752 define_arm_cp_regs(cpu, auxcr_reginfo);
9753 if (cpu_isar_feature(aa32_ac2, cpu)) {
9754 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9755 }
9756 }
9757
9758 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9759 /*
9760 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9761 * There are two flavours:
9762 * (1) older 32-bit only cores have a simple 32-bit CBAR
9763 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9764 * 32-bit register visible to AArch32 at a different encoding
9765 * to the "flavour 1" register and with the bits rearranged to
9766 * be able to squash a 64-bit address into the 32-bit view.
9767 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9768 * in future if we support AArch32-only configs of some of the
9769 * AArch64 cores we might need to add a specific feature flag
9770 * to indicate cores with "flavour 2" CBAR.
9771 */
9772 if (arm_feature(env, ARM_FEATURE_V8)) {
9773 /* 32 bit view is [31:18] 0...0 [43:32]. */
9774 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9775 | extract64(cpu->reset_cbar, 32, 12);
9776 ARMCPRegInfo cbar_reginfo[] = {
9777 { .name = "CBAR",
9778 .type = ARM_CP_CONST,
9779 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9780 .access = PL1_R, .resetvalue = cbar32 },
9781 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9782 .type = ARM_CP_CONST,
9783 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9784 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9785 };
9786 /* We don't implement a r/w 64 bit CBAR currently */
9787 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9788 define_arm_cp_regs(cpu, cbar_reginfo);
9789 } else {
9790 ARMCPRegInfo cbar = {
9791 .name = "CBAR",
9792 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9793 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9794 .fieldoffset = offsetof(CPUARMState,
9795 cp15.c15_config_base_address)
9796 };
9797 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9798 cbar.access = PL1_R;
9799 cbar.fieldoffset = 0;
9800 cbar.type = ARM_CP_CONST;
9801 }
9802 define_one_arm_cp_reg(cpu, &cbar);
9803 }
9804 }
9805
9806 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9807 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9808 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9809 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9810 .access = PL1_RW, .writefn = vbar_write,
9811 .accessfn = access_nv1,
9812 .fgt = FGT_VBAR_EL1,
9813 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9814 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9815 offsetof(CPUARMState, cp15.vbar_ns) },
9816 .resetvalue = 0 },
9817 };
9818 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9819 }
9820
9821 /* Generic registers whose values depend on the implementation */
9822 {
9823 ARMCPRegInfo sctlr = {
9824 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9825 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9826 .access = PL1_RW, .accessfn = access_tvm_trvm,
9827 .fgt = FGT_SCTLR_EL1,
9828 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9829 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9830 offsetof(CPUARMState, cp15.sctlr_ns) },
9831 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9832 .raw_writefn = raw_write,
9833 };
9834 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9835 /*
9836 * Normally we would always end the TB on an SCTLR write, but Linux
9837 * arch/arm/mach-pxa/sleep.S expects two instructions following
9838 * an MMU enable to execute from cache. Imitate this behaviour.
9839 */
9840 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9841 }
9842 define_one_arm_cp_reg(cpu, &sctlr);
9843
9844 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9845 arm_feature(env, ARM_FEATURE_V8)) {
9846 ARMCPRegInfo vsctlr = {
9847 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9848 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9849 .access = PL2_RW, .resetvalue = 0x0,
9850 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9851 };
9852 define_one_arm_cp_reg(cpu, &vsctlr);
9853 }
9854 }
9855
9856 if (cpu_isar_feature(aa64_lor, cpu)) {
9857 define_arm_cp_regs(cpu, lor_reginfo);
9858 }
9859 if (cpu_isar_feature(aa64_pan, cpu)) {
9860 define_one_arm_cp_reg(cpu, &pan_reginfo);
9861 }
9862 #ifndef CONFIG_USER_ONLY
9863 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9864 define_arm_cp_regs(cpu, ats1e1_reginfo);
9865 }
9866 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9867 define_arm_cp_regs(cpu, ats1cp_reginfo);
9868 }
9869 #endif
9870 if (cpu_isar_feature(aa64_uao, cpu)) {
9871 define_one_arm_cp_reg(cpu, &uao_reginfo);
9872 }
9873
9874 if (cpu_isar_feature(aa64_dit, cpu)) {
9875 define_one_arm_cp_reg(cpu, &dit_reginfo);
9876 }
9877 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9878 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9879 }
9880 if (cpu_isar_feature(any_ras, cpu)) {
9881 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9882 }
9883
9884 if (cpu_isar_feature(aa64_vh, cpu) ||
9885 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9886 define_one_arm_cp_reg(cpu, &contextidr_el2);
9887 }
9888 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9889 define_arm_cp_regs(cpu, vhe_reginfo);
9890 }
9891
9892 if (cpu_isar_feature(aa64_sve, cpu)) {
9893 define_arm_cp_regs(cpu, zcr_reginfo);
9894 }
9895
9896 if (cpu_isar_feature(aa64_hcx, cpu)) {
9897 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9898 }
9899
9900 #ifdef TARGET_AARCH64
9901 if (cpu_isar_feature(aa64_sme, cpu)) {
9902 define_arm_cp_regs(cpu, sme_reginfo);
9903 }
9904 if (cpu_isar_feature(aa64_pauth, cpu)) {
9905 define_arm_cp_regs(cpu, pauth_reginfo);
9906 }
9907 if (cpu_isar_feature(aa64_rndr, cpu)) {
9908 define_arm_cp_regs(cpu, rndr_reginfo);
9909 }
9910 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9911 define_arm_cp_regs(cpu, tlbirange_reginfo);
9912 }
9913 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9914 define_arm_cp_regs(cpu, tlbios_reginfo);
9915 }
9916 /* Data Cache clean instructions up to PoP */
9917 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9918 define_one_arm_cp_reg(cpu, dcpop_reg);
9919
9920 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9921 define_one_arm_cp_reg(cpu, dcpodp_reg);
9922 }
9923 }
9924
9925 /*
9926 * If full MTE is enabled, add all of the system registers.
9927 * If only "instructions available at EL0" are enabled,
9928 * then define only a RAZ/WI version of PSTATE.TCO.
9929 */
9930 if (cpu_isar_feature(aa64_mte, cpu)) {
9931 ARMCPRegInfo gmid_reginfo = {
9932 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9933 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9934 .access = PL1_R, .accessfn = access_aa64_tid5,
9935 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9936 };
9937 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9938 define_arm_cp_regs(cpu, mte_reginfo);
9939 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9940 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9941 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9942 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9943 }
9944
9945 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9946 define_arm_cp_regs(cpu, scxtnum_reginfo);
9947 }
9948
9949 if (cpu_isar_feature(aa64_fgt, cpu)) {
9950 define_arm_cp_regs(cpu, fgt_reginfo);
9951 }
9952
9953 if (cpu_isar_feature(aa64_rme, cpu)) {
9954 define_arm_cp_regs(cpu, rme_reginfo);
9955 if (cpu_isar_feature(aa64_mte, cpu)) {
9956 define_arm_cp_regs(cpu, rme_mte_reginfo);
9957 }
9958 }
9959
9960 if (cpu_isar_feature(aa64_nv2, cpu)) {
9961 define_arm_cp_regs(cpu, nv2_reginfo);
9962 }
9963
9964 if (cpu_isar_feature(aa64_nmi, cpu)) {
9965 define_arm_cp_regs(cpu, nmi_reginfo);
9966 }
9967 #endif
9968
9969 if (cpu_isar_feature(any_predinv, cpu)) {
9970 define_arm_cp_regs(cpu, predinv_reginfo);
9971 }
9972
9973 if (cpu_isar_feature(any_ccidx, cpu)) {
9974 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9975 }
9976
9977 #ifndef CONFIG_USER_ONLY
9978 /*
9979 * Register redirections and aliases must be done last,
9980 * after the registers from the other extensions have been defined.
9981 */
9982 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9983 define_arm_vh_e2h_redirects_aliases(cpu);
9984 }
9985 #endif
9986 }
9987
9988 /*
9989 * Private utility function for define_one_arm_cp_reg_with_opaque():
9990 * add a single reginfo struct to the hash table.
9991 */
add_cpreg_to_hashtable(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque,CPState state,CPSecureState secstate,int crm,int opc1,int opc2,const char * name)9992 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9993 void *opaque, CPState state,
9994 CPSecureState secstate,
9995 int crm, int opc1, int opc2,
9996 const char *name)
9997 {
9998 CPUARMState *env = &cpu->env;
9999 uint32_t key;
10000 ARMCPRegInfo *r2;
10001 bool is64 = r->type & ARM_CP_64BIT;
10002 bool ns = secstate & ARM_CP_SECSTATE_NS;
10003 int cp = r->cp;
10004 size_t name_len;
10005 bool make_const;
10006
10007 switch (state) {
10008 case ARM_CP_STATE_AA32:
10009 /* We assume it is a cp15 register if the .cp field is left unset. */
10010 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
10011 cp = 15;
10012 }
10013 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
10014 break;
10015 case ARM_CP_STATE_AA64:
10016 /*
10017 * To allow abbreviation of ARMCPRegInfo definitions, we treat
10018 * cp == 0 as equivalent to the value for "standard guest-visible
10019 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
10020 * in their AArch64 view (the .cp value may be non-zero for the
10021 * benefit of the AArch32 view).
10022 */
10023 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
10024 cp = CP_REG_ARM64_SYSREG_CP;
10025 }
10026 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
10027 break;
10028 default:
10029 g_assert_not_reached();
10030 }
10031
10032 /* Overriding of an existing definition must be explicitly requested. */
10033 if (!(r->type & ARM_CP_OVERRIDE)) {
10034 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
10035 if (oldreg) {
10036 assert(oldreg->type & ARM_CP_OVERRIDE);
10037 }
10038 }
10039
10040 /*
10041 * Eliminate registers that are not present because the EL is missing.
10042 * Doing this here makes it easier to put all registers for a given
10043 * feature into the same ARMCPRegInfo array and define them all at once.
10044 */
10045 make_const = false;
10046 if (arm_feature(env, ARM_FEATURE_EL3)) {
10047 /*
10048 * An EL2 register without EL2 but with EL3 is (usually) RES0.
10049 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
10050 */
10051 int min_el = ctz32(r->access) / 2;
10052 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
10053 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
10054 return;
10055 }
10056 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
10057 }
10058 } else {
10059 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
10060 ? PL2_RW : PL1_RW);
10061 if ((r->access & max_el) == 0) {
10062 return;
10063 }
10064 }
10065
10066 /* Combine cpreg and name into one allocation. */
10067 name_len = strlen(name) + 1;
10068 r2 = g_malloc(sizeof(*r2) + name_len);
10069 *r2 = *r;
10070 r2->name = memcpy(r2 + 1, name, name_len);
10071
10072 /*
10073 * Update fields to match the instantiation, overwiting wildcards
10074 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
10075 */
10076 r2->cp = cp;
10077 r2->crm = crm;
10078 r2->opc1 = opc1;
10079 r2->opc2 = opc2;
10080 r2->state = state;
10081 r2->secure = secstate;
10082 if (opaque) {
10083 r2->opaque = opaque;
10084 }
10085
10086 if (make_const) {
10087 /* This should not have been a very special register to begin. */
10088 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
10089 assert(old_special == 0 || old_special == ARM_CP_NOP);
10090 /*
10091 * Set the special function to CONST, retaining the other flags.
10092 * This is important for e.g. ARM_CP_SVE so that we still
10093 * take the SVE trap if CPTR_EL3.EZ == 0.
10094 */
10095 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
10096 /*
10097 * Usually, these registers become RES0, but there are a few
10098 * special cases like VPIDR_EL2 which have a constant non-zero
10099 * value with writes ignored.
10100 */
10101 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
10102 r2->resetvalue = 0;
10103 }
10104 /*
10105 * ARM_CP_CONST has precedence, so removing the callbacks and
10106 * offsets are not strictly necessary, but it is potentially
10107 * less confusing to debug later.
10108 */
10109 r2->readfn = NULL;
10110 r2->writefn = NULL;
10111 r2->raw_readfn = NULL;
10112 r2->raw_writefn = NULL;
10113 r2->resetfn = NULL;
10114 r2->fieldoffset = 0;
10115 r2->bank_fieldoffsets[0] = 0;
10116 r2->bank_fieldoffsets[1] = 0;
10117 } else {
10118 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
10119
10120 if (isbanked) {
10121 /*
10122 * Register is banked (using both entries in array).
10123 * Overwriting fieldoffset as the array is only used to define
10124 * banked registers but later only fieldoffset is used.
10125 */
10126 r2->fieldoffset = r->bank_fieldoffsets[ns];
10127 }
10128 if (state == ARM_CP_STATE_AA32) {
10129 if (isbanked) {
10130 /*
10131 * If the register is banked then we don't need to migrate or
10132 * reset the 32-bit instance in certain cases:
10133 *
10134 * 1) If the register has both 32-bit and 64-bit instances
10135 * then we can count on the 64-bit instance taking care
10136 * of the non-secure bank.
10137 * 2) If ARMv8 is enabled then we can count on a 64-bit
10138 * version taking care of the secure bank. This requires
10139 * that separate 32 and 64-bit definitions are provided.
10140 */
10141 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
10142 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
10143 r2->type |= ARM_CP_ALIAS;
10144 }
10145 } else if ((secstate != r->secure) && !ns) {
10146 /*
10147 * The register is not banked so we only want to allow
10148 * migration of the non-secure instance.
10149 */
10150 r2->type |= ARM_CP_ALIAS;
10151 }
10152
10153 if (HOST_BIG_ENDIAN &&
10154 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
10155 r2->fieldoffset += sizeof(uint32_t);
10156 }
10157 }
10158 }
10159
10160 /*
10161 * By convention, for wildcarded registers only the first
10162 * entry is used for migration; the others are marked as
10163 * ALIAS so we don't try to transfer the register
10164 * multiple times. Special registers (ie NOP/WFI) are
10165 * never migratable and not even raw-accessible.
10166 */
10167 if (r2->type & ARM_CP_SPECIAL_MASK) {
10168 r2->type |= ARM_CP_NO_RAW;
10169 }
10170 if (((r->crm == CP_ANY) && crm != 0) ||
10171 ((r->opc1 == CP_ANY) && opc1 != 0) ||
10172 ((r->opc2 == CP_ANY) && opc2 != 0)) {
10173 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
10174 }
10175
10176 /*
10177 * Check that raw accesses are either forbidden or handled. Note that
10178 * we can't assert this earlier because the setup of fieldoffset for
10179 * banked registers has to be done first.
10180 */
10181 if (!(r2->type & ARM_CP_NO_RAW)) {
10182 assert(!raw_accessors_invalid(r2));
10183 }
10184
10185 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
10186 }
10187
10188
define_one_arm_cp_reg_with_opaque(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque)10189 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
10190 const ARMCPRegInfo *r, void *opaque)
10191 {
10192 /*
10193 * Define implementations of coprocessor registers.
10194 * We store these in a hashtable because typically
10195 * there are less than 150 registers in a space which
10196 * is 16*16*16*8*8 = 262144 in size.
10197 * Wildcarding is supported for the crm, opc1 and opc2 fields.
10198 * If a register is defined twice then the second definition is
10199 * used, so this can be used to define some generic registers and
10200 * then override them with implementation specific variations.
10201 * At least one of the original and the second definition should
10202 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
10203 * against accidental use.
10204 *
10205 * The state field defines whether the register is to be
10206 * visible in the AArch32 or AArch64 execution state. If the
10207 * state is set to ARM_CP_STATE_BOTH then we synthesise a
10208 * reginfo structure for the AArch32 view, which sees the lower
10209 * 32 bits of the 64 bit register.
10210 *
10211 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
10212 * be wildcarded. AArch64 registers are always considered to be 64
10213 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
10214 * the register, if any.
10215 */
10216 int crm, opc1, opc2;
10217 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
10218 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
10219 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
10220 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
10221 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
10222 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
10223 CPState state;
10224
10225 /* 64 bit registers have only CRm and Opc1 fields */
10226 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
10227 /* op0 only exists in the AArch64 encodings */
10228 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
10229 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
10230 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
10231 /*
10232 * This API is only for Arm's system coprocessors (14 and 15) or
10233 * (M-profile or v7A-and-earlier only) for implementation defined
10234 * coprocessors in the range 0..7. Our decode assumes this, since
10235 * 8..13 can be used for other insns including VFP and Neon. See
10236 * valid_cp() in translate.c. Assert here that we haven't tried
10237 * to use an invalid coprocessor number.
10238 */
10239 switch (r->state) {
10240 case ARM_CP_STATE_BOTH:
10241 /* 0 has a special meaning, but otherwise the same rules as AA32. */
10242 if (r->cp == 0) {
10243 break;
10244 }
10245 /* fall through */
10246 case ARM_CP_STATE_AA32:
10247 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
10248 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
10249 assert(r->cp >= 14 && r->cp <= 15);
10250 } else {
10251 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
10252 }
10253 break;
10254 case ARM_CP_STATE_AA64:
10255 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10256 break;
10257 default:
10258 g_assert_not_reached();
10259 }
10260 /*
10261 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10262 * encodes a minimum access level for the register. We roll this
10263 * runtime check into our general permission check code, so check
10264 * here that the reginfo's specified permissions are strict enough
10265 * to encompass the generic architectural permission check.
10266 */
10267 if (r->state != ARM_CP_STATE_AA32) {
10268 CPAccessRights mask;
10269 switch (r->opc1) {
10270 case 0:
10271 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10272 mask = PL0U_R | PL1_RW;
10273 break;
10274 case 1: case 2:
10275 /* min_EL EL1 */
10276 mask = PL1_RW;
10277 break;
10278 case 3:
10279 /* min_EL EL0 */
10280 mask = PL0_RW;
10281 break;
10282 case 4:
10283 case 5:
10284 /* min_EL EL2 */
10285 mask = PL2_RW;
10286 break;
10287 case 6:
10288 /* min_EL EL3 */
10289 mask = PL3_RW;
10290 break;
10291 case 7:
10292 /* min_EL EL1, secure mode only (we don't check the latter) */
10293 mask = PL1_RW;
10294 break;
10295 default:
10296 /* broken reginfo with out-of-range opc1 */
10297 g_assert_not_reached();
10298 }
10299 /* assert our permissions are not too lax (stricter is fine) */
10300 assert((r->access & ~mask) == 0);
10301 }
10302
10303 /*
10304 * Check that the register definition has enough info to handle
10305 * reads and writes if they are permitted.
10306 */
10307 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10308 if (r->access & PL3_R) {
10309 assert((r->fieldoffset ||
10310 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10311 r->readfn);
10312 }
10313 if (r->access & PL3_W) {
10314 assert((r->fieldoffset ||
10315 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10316 r->writefn);
10317 }
10318 }
10319
10320 for (crm = crmmin; crm <= crmmax; crm++) {
10321 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10322 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10323 for (state = ARM_CP_STATE_AA32;
10324 state <= ARM_CP_STATE_AA64; state++) {
10325 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10326 continue;
10327 }
10328 if (state == ARM_CP_STATE_AA32) {
10329 /*
10330 * Under AArch32 CP registers can be common
10331 * (same for secure and non-secure world) or banked.
10332 */
10333 char *name;
10334
10335 switch (r->secure) {
10336 case ARM_CP_SECSTATE_S:
10337 case ARM_CP_SECSTATE_NS:
10338 add_cpreg_to_hashtable(cpu, r, opaque, state,
10339 r->secure, crm, opc1, opc2,
10340 r->name);
10341 break;
10342 case ARM_CP_SECSTATE_BOTH:
10343 name = g_strdup_printf("%s_S", r->name);
10344 add_cpreg_to_hashtable(cpu, r, opaque, state,
10345 ARM_CP_SECSTATE_S,
10346 crm, opc1, opc2, name);
10347 g_free(name);
10348 add_cpreg_to_hashtable(cpu, r, opaque, state,
10349 ARM_CP_SECSTATE_NS,
10350 crm, opc1, opc2, r->name);
10351 break;
10352 default:
10353 g_assert_not_reached();
10354 }
10355 } else {
10356 /*
10357 * AArch64 registers get mapped to non-secure instance
10358 * of AArch32
10359 */
10360 add_cpreg_to_hashtable(cpu, r, opaque, state,
10361 ARM_CP_SECSTATE_NS,
10362 crm, opc1, opc2, r->name);
10363 }
10364 }
10365 }
10366 }
10367 }
10368 }
10369
10370 /* Define a whole list of registers */
define_arm_cp_regs_with_opaque_len(ARMCPU * cpu,const ARMCPRegInfo * regs,void * opaque,size_t len)10371 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10372 void *opaque, size_t len)
10373 {
10374 size_t i;
10375 for (i = 0; i < len; ++i) {
10376 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10377 }
10378 }
10379
10380 /*
10381 * Modify ARMCPRegInfo for access from userspace.
10382 *
10383 * This is a data driven modification directed by
10384 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10385 * user-space cannot alter any values and dynamic values pertaining to
10386 * execution state are hidden from user space view anyway.
10387 */
modify_arm_cp_regs_with_len(ARMCPRegInfo * regs,size_t regs_len,const ARMCPRegUserSpaceInfo * mods,size_t mods_len)10388 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10389 const ARMCPRegUserSpaceInfo *mods,
10390 size_t mods_len)
10391 {
10392 for (size_t mi = 0; mi < mods_len; ++mi) {
10393 const ARMCPRegUserSpaceInfo *m = mods + mi;
10394 GPatternSpec *pat = NULL;
10395
10396 if (m->is_glob) {
10397 pat = g_pattern_spec_new(m->name);
10398 }
10399 for (size_t ri = 0; ri < regs_len; ++ri) {
10400 ARMCPRegInfo *r = regs + ri;
10401
10402 if (pat && g_pattern_match_string(pat, r->name)) {
10403 r->type = ARM_CP_CONST;
10404 r->access = PL0U_R;
10405 r->resetvalue = 0;
10406 /* continue */
10407 } else if (strcmp(r->name, m->name) == 0) {
10408 r->type = ARM_CP_CONST;
10409 r->access = PL0U_R;
10410 r->resetvalue &= m->exported_bits;
10411 r->resetvalue |= m->fixed_bits;
10412 break;
10413 }
10414 }
10415 if (pat) {
10416 g_pattern_spec_free(pat);
10417 }
10418 }
10419 }
10420
get_arm_cp_reginfo(GHashTable * cpregs,uint32_t encoded_cp)10421 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10422 {
10423 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10424 }
10425
arm_cp_write_ignore(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)10426 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10427 uint64_t value)
10428 {
10429 /* Helper coprocessor write function for write-ignore registers */
10430 }
10431
arm_cp_read_zero(CPUARMState * env,const ARMCPRegInfo * ri)10432 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10433 {
10434 /* Helper coprocessor write function for read-as-zero registers */
10435 return 0;
10436 }
10437
arm_cp_reset_ignore(CPUARMState * env,const ARMCPRegInfo * opaque)10438 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10439 {
10440 /* Helper coprocessor reset function for do-nothing-on-reset registers */
10441 }
10442
bad_mode_switch(CPUARMState * env,int mode,CPSRWriteType write_type)10443 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10444 {
10445 /*
10446 * Return true if it is not valid for us to switch to
10447 * this CPU mode (ie all the UNPREDICTABLE cases in
10448 * the ARM ARM CPSRWriteByInstr pseudocode).
10449 */
10450
10451 /* Changes to or from Hyp via MSR and CPS are illegal. */
10452 if (write_type == CPSRWriteByInstr &&
10453 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10454 mode == ARM_CPU_MODE_HYP)) {
10455 return 1;
10456 }
10457
10458 switch (mode) {
10459 case ARM_CPU_MODE_USR:
10460 return 0;
10461 case ARM_CPU_MODE_SYS:
10462 case ARM_CPU_MODE_SVC:
10463 case ARM_CPU_MODE_ABT:
10464 case ARM_CPU_MODE_UND:
10465 case ARM_CPU_MODE_IRQ:
10466 case ARM_CPU_MODE_FIQ:
10467 /*
10468 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10469 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10470 */
10471 /*
10472 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10473 * and CPS are treated as illegal mode changes.
10474 */
10475 if (write_type == CPSRWriteByInstr &&
10476 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10477 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10478 return 1;
10479 }
10480 return 0;
10481 case ARM_CPU_MODE_HYP:
10482 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10483 case ARM_CPU_MODE_MON:
10484 return arm_current_el(env) < 3;
10485 default:
10486 return 1;
10487 }
10488 }
10489
cpsr_read(CPUARMState * env)10490 uint32_t cpsr_read(CPUARMState *env)
10491 {
10492 int ZF;
10493 ZF = (env->ZF == 0);
10494 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10495 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10496 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10497 | ((env->condexec_bits & 0xfc) << 8)
10498 | (env->GE << 16) | (env->daif & CPSR_AIF);
10499 }
10500
cpsr_write(CPUARMState * env,uint32_t val,uint32_t mask,CPSRWriteType write_type)10501 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10502 CPSRWriteType write_type)
10503 {
10504 uint32_t changed_daif;
10505 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10506 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10507
10508 if (mask & CPSR_NZCV) {
10509 env->ZF = (~val) & CPSR_Z;
10510 env->NF = val;
10511 env->CF = (val >> 29) & 1;
10512 env->VF = (val << 3) & 0x80000000;
10513 }
10514 if (mask & CPSR_Q) {
10515 env->QF = ((val & CPSR_Q) != 0);
10516 }
10517 if (mask & CPSR_T) {
10518 env->thumb = ((val & CPSR_T) != 0);
10519 }
10520 if (mask & CPSR_IT_0_1) {
10521 env->condexec_bits &= ~3;
10522 env->condexec_bits |= (val >> 25) & 3;
10523 }
10524 if (mask & CPSR_IT_2_7) {
10525 env->condexec_bits &= 3;
10526 env->condexec_bits |= (val >> 8) & 0xfc;
10527 }
10528 if (mask & CPSR_GE) {
10529 env->GE = (val >> 16) & 0xf;
10530 }
10531
10532 /*
10533 * In a V7 implementation that includes the security extensions but does
10534 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10535 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10536 * bits respectively.
10537 *
10538 * In a V8 implementation, it is permitted for privileged software to
10539 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10540 */
10541 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10542 arm_feature(env, ARM_FEATURE_EL3) &&
10543 !arm_feature(env, ARM_FEATURE_EL2) &&
10544 !arm_is_secure(env)) {
10545
10546 changed_daif = (env->daif ^ val) & mask;
10547
10548 if (changed_daif & CPSR_A) {
10549 /*
10550 * Check to see if we are allowed to change the masking of async
10551 * abort exceptions from a non-secure state.
10552 */
10553 if (!(env->cp15.scr_el3 & SCR_AW)) {
10554 qemu_log_mask(LOG_GUEST_ERROR,
10555 "Ignoring attempt to switch CPSR_A flag from "
10556 "non-secure world with SCR.AW bit clear\n");
10557 mask &= ~CPSR_A;
10558 }
10559 }
10560
10561 if (changed_daif & CPSR_F) {
10562 /*
10563 * Check to see if we are allowed to change the masking of FIQ
10564 * exceptions from a non-secure state.
10565 */
10566 if (!(env->cp15.scr_el3 & SCR_FW)) {
10567 qemu_log_mask(LOG_GUEST_ERROR,
10568 "Ignoring attempt to switch CPSR_F flag from "
10569 "non-secure world with SCR.FW bit clear\n");
10570 mask &= ~CPSR_F;
10571 }
10572
10573 /*
10574 * Check whether non-maskable FIQ (NMFI) support is enabled.
10575 * If this bit is set software is not allowed to mask
10576 * FIQs, but is allowed to set CPSR_F to 0.
10577 */
10578 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10579 (val & CPSR_F)) {
10580 qemu_log_mask(LOG_GUEST_ERROR,
10581 "Ignoring attempt to enable CPSR_F flag "
10582 "(non-maskable FIQ [NMFI] support enabled)\n");
10583 mask &= ~CPSR_F;
10584 }
10585 }
10586 }
10587
10588 env->daif &= ~(CPSR_AIF & mask);
10589 env->daif |= val & CPSR_AIF & mask;
10590
10591 if (write_type != CPSRWriteRaw &&
10592 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10593 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10594 /*
10595 * Note that we can only get here in USR mode if this is a
10596 * gdb stub write; for this case we follow the architectural
10597 * behaviour for guest writes in USR mode of ignoring an attempt
10598 * to switch mode. (Those are caught by translate.c for writes
10599 * triggered by guest instructions.)
10600 */
10601 mask &= ~CPSR_M;
10602 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10603 /*
10604 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10605 * v7, and has defined behaviour in v8:
10606 * + leave CPSR.M untouched
10607 * + allow changes to the other CPSR fields
10608 * + set PSTATE.IL
10609 * For user changes via the GDB stub, we don't set PSTATE.IL,
10610 * as this would be unnecessarily harsh for a user error.
10611 */
10612 mask &= ~CPSR_M;
10613 if (write_type != CPSRWriteByGDBStub &&
10614 arm_feature(env, ARM_FEATURE_V8)) {
10615 mask |= CPSR_IL;
10616 val |= CPSR_IL;
10617 }
10618 qemu_log_mask(LOG_GUEST_ERROR,
10619 "Illegal AArch32 mode switch attempt from %s to %s\n",
10620 aarch32_mode_name(env->uncached_cpsr),
10621 aarch32_mode_name(val));
10622 } else {
10623 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10624 write_type == CPSRWriteExceptionReturn ?
10625 "Exception return from AArch32" :
10626 "AArch32 mode switch from",
10627 aarch32_mode_name(env->uncached_cpsr),
10628 aarch32_mode_name(val), env->regs[15]);
10629 switch_mode(env, val & CPSR_M);
10630 }
10631 }
10632 mask &= ~CACHED_CPSR_BITS;
10633 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10634 if (tcg_enabled() && rebuild_hflags) {
10635 arm_rebuild_hflags(env);
10636 }
10637 }
10638
10639 #ifdef CONFIG_USER_ONLY
10640
switch_mode(CPUARMState * env,int mode)10641 static void switch_mode(CPUARMState *env, int mode)
10642 {
10643 ARMCPU *cpu = env_archcpu(env);
10644
10645 if (mode != ARM_CPU_MODE_USR) {
10646 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10647 }
10648 }
10649
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)10650 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10651 uint32_t cur_el, bool secure)
10652 {
10653 return 1;
10654 }
10655
aarch64_sync_64_to_32(CPUARMState * env)10656 void aarch64_sync_64_to_32(CPUARMState *env)
10657 {
10658 g_assert_not_reached();
10659 }
10660
10661 #else
10662
switch_mode(CPUARMState * env,int mode)10663 static void switch_mode(CPUARMState *env, int mode)
10664 {
10665 int old_mode;
10666 int i;
10667
10668 old_mode = env->uncached_cpsr & CPSR_M;
10669 if (mode == old_mode) {
10670 return;
10671 }
10672
10673 if (old_mode == ARM_CPU_MODE_FIQ) {
10674 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10675 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10676 } else if (mode == ARM_CPU_MODE_FIQ) {
10677 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10678 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10679 }
10680
10681 i = bank_number(old_mode);
10682 env->banked_r13[i] = env->regs[13];
10683 env->banked_spsr[i] = env->spsr;
10684
10685 i = bank_number(mode);
10686 env->regs[13] = env->banked_r13[i];
10687 env->spsr = env->banked_spsr[i];
10688
10689 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10690 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10691 }
10692
10693 /*
10694 * Physical Interrupt Target EL Lookup Table
10695 *
10696 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10697 *
10698 * The below multi-dimensional table is used for looking up the target
10699 * exception level given numerous condition criteria. Specifically, the
10700 * target EL is based on SCR and HCR routing controls as well as the
10701 * currently executing EL and secure state.
10702 *
10703 * Dimensions:
10704 * target_el_table[2][2][2][2][2][4]
10705 * | | | | | +--- Current EL
10706 * | | | | +------ Non-secure(0)/Secure(1)
10707 * | | | +--------- HCR mask override
10708 * | | +------------ SCR exec state control
10709 * | +--------------- SCR mask override
10710 * +------------------ 32-bit(0)/64-bit(1) EL3
10711 *
10712 * The table values are as such:
10713 * 0-3 = EL0-EL3
10714 * -1 = Cannot occur
10715 *
10716 * The ARM ARM target EL table includes entries indicating that an "exception
10717 * is not taken". The two cases where this is applicable are:
10718 * 1) An exception is taken from EL3 but the SCR does not have the exception
10719 * routed to EL3.
10720 * 2) An exception is taken from EL2 but the HCR does not have the exception
10721 * routed to EL2.
10722 * In these two cases, the below table contain a target of EL1. This value is
10723 * returned as it is expected that the consumer of the table data will check
10724 * for "target EL >= current EL" to ensure the exception is not taken.
10725 *
10726 * SCR HCR
10727 * 64 EA AMO From
10728 * BIT IRQ IMO Non-secure Secure
10729 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10730 */
10731 static const int8_t target_el_table[2][2][2][2][2][4] = {
10732 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10733 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10734 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10735 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10736 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10737 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10738 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10739 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10740 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10741 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10742 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10743 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10744 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10745 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10746 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10747 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10748 };
10749
10750 /*
10751 * Determine the target EL for physical exceptions
10752 */
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)10753 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10754 uint32_t cur_el, bool secure)
10755 {
10756 CPUARMState *env = cpu_env(cs);
10757 bool rw;
10758 bool scr;
10759 bool hcr;
10760 int target_el;
10761 /* Is the highest EL AArch64? */
10762 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10763 uint64_t hcr_el2;
10764
10765 if (arm_feature(env, ARM_FEATURE_EL3)) {
10766 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10767 } else {
10768 /*
10769 * Either EL2 is the highest EL (and so the EL2 register width
10770 * is given by is64); or there is no EL2 or EL3, in which case
10771 * the value of 'rw' does not affect the table lookup anyway.
10772 */
10773 rw = is64;
10774 }
10775
10776 hcr_el2 = arm_hcr_el2_eff(env);
10777 switch (excp_idx) {
10778 case EXCP_IRQ:
10779 case EXCP_NMI:
10780 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10781 hcr = hcr_el2 & HCR_IMO;
10782 break;
10783 case EXCP_FIQ:
10784 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10785 hcr = hcr_el2 & HCR_FMO;
10786 break;
10787 default:
10788 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10789 hcr = hcr_el2 & HCR_AMO;
10790 break;
10791 };
10792
10793 /*
10794 * For these purposes, TGE and AMO/IMO/FMO both force the
10795 * interrupt to EL2. Fold TGE into the bit extracted above.
10796 */
10797 hcr |= (hcr_el2 & HCR_TGE) != 0;
10798
10799 /* Perform a table-lookup for the target EL given the current state */
10800 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10801
10802 assert(target_el > 0);
10803
10804 return target_el;
10805 }
10806
arm_log_exception(CPUState * cs)10807 void arm_log_exception(CPUState *cs)
10808 {
10809 int idx = cs->exception_index;
10810
10811 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10812 const char *exc = NULL;
10813 static const char * const excnames[] = {
10814 [EXCP_UDEF] = "Undefined Instruction",
10815 [EXCP_SWI] = "SVC",
10816 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10817 [EXCP_DATA_ABORT] = "Data Abort",
10818 [EXCP_IRQ] = "IRQ",
10819 [EXCP_FIQ] = "FIQ",
10820 [EXCP_BKPT] = "Breakpoint",
10821 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10822 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10823 [EXCP_HVC] = "Hypervisor Call",
10824 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10825 [EXCP_SMC] = "Secure Monitor Call",
10826 [EXCP_VIRQ] = "Virtual IRQ",
10827 [EXCP_VFIQ] = "Virtual FIQ",
10828 [EXCP_SEMIHOST] = "Semihosting call",
10829 [EXCP_NOCP] = "v7M NOCP UsageFault",
10830 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10831 [EXCP_STKOF] = "v8M STKOF UsageFault",
10832 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10833 [EXCP_LSERR] = "v8M LSERR UsageFault",
10834 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10835 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10836 [EXCP_VSERR] = "Virtual SERR",
10837 [EXCP_GPC] = "Granule Protection Check",
10838 [EXCP_NMI] = "NMI",
10839 [EXCP_VINMI] = "Virtual IRQ NMI",
10840 [EXCP_VFNMI] = "Virtual FIQ NMI",
10841 };
10842
10843 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10844 exc = excnames[idx];
10845 }
10846 if (!exc) {
10847 exc = "unknown";
10848 }
10849 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10850 idx, exc, cs->cpu_index);
10851 }
10852 }
10853
10854 /*
10855 * Function used to synchronize QEMU's AArch64 register set with AArch32
10856 * register set. This is necessary when switching between AArch32 and AArch64
10857 * execution state.
10858 */
aarch64_sync_32_to_64(CPUARMState * env)10859 void aarch64_sync_32_to_64(CPUARMState *env)
10860 {
10861 int i;
10862 uint32_t mode = env->uncached_cpsr & CPSR_M;
10863
10864 /* We can blanket copy R[0:7] to X[0:7] */
10865 for (i = 0; i < 8; i++) {
10866 env->xregs[i] = env->regs[i];
10867 }
10868
10869 /*
10870 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10871 * Otherwise, they come from the banked user regs.
10872 */
10873 if (mode == ARM_CPU_MODE_FIQ) {
10874 for (i = 8; i < 13; i++) {
10875 env->xregs[i] = env->usr_regs[i - 8];
10876 }
10877 } else {
10878 for (i = 8; i < 13; i++) {
10879 env->xregs[i] = env->regs[i];
10880 }
10881 }
10882
10883 /*
10884 * Registers x13-x23 are the various mode SP and FP registers. Registers
10885 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10886 * from the mode banked register.
10887 */
10888 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10889 env->xregs[13] = env->regs[13];
10890 env->xregs[14] = env->regs[14];
10891 } else {
10892 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10893 /* HYP is an exception in that it is copied from r14 */
10894 if (mode == ARM_CPU_MODE_HYP) {
10895 env->xregs[14] = env->regs[14];
10896 } else {
10897 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10898 }
10899 }
10900
10901 if (mode == ARM_CPU_MODE_HYP) {
10902 env->xregs[15] = env->regs[13];
10903 } else {
10904 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10905 }
10906
10907 if (mode == ARM_CPU_MODE_IRQ) {
10908 env->xregs[16] = env->regs[14];
10909 env->xregs[17] = env->regs[13];
10910 } else {
10911 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10912 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10913 }
10914
10915 if (mode == ARM_CPU_MODE_SVC) {
10916 env->xregs[18] = env->regs[14];
10917 env->xregs[19] = env->regs[13];
10918 } else {
10919 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10920 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10921 }
10922
10923 if (mode == ARM_CPU_MODE_ABT) {
10924 env->xregs[20] = env->regs[14];
10925 env->xregs[21] = env->regs[13];
10926 } else {
10927 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10928 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10929 }
10930
10931 if (mode == ARM_CPU_MODE_UND) {
10932 env->xregs[22] = env->regs[14];
10933 env->xregs[23] = env->regs[13];
10934 } else {
10935 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10936 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10937 }
10938
10939 /*
10940 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10941 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10942 * FIQ bank for r8-r14.
10943 */
10944 if (mode == ARM_CPU_MODE_FIQ) {
10945 for (i = 24; i < 31; i++) {
10946 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10947 }
10948 } else {
10949 for (i = 24; i < 29; i++) {
10950 env->xregs[i] = env->fiq_regs[i - 24];
10951 }
10952 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10953 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10954 }
10955
10956 env->pc = env->regs[15];
10957 }
10958
10959 /*
10960 * Function used to synchronize QEMU's AArch32 register set with AArch64
10961 * register set. This is necessary when switching between AArch32 and AArch64
10962 * execution state.
10963 */
aarch64_sync_64_to_32(CPUARMState * env)10964 void aarch64_sync_64_to_32(CPUARMState *env)
10965 {
10966 int i;
10967 uint32_t mode = env->uncached_cpsr & CPSR_M;
10968
10969 /* We can blanket copy X[0:7] to R[0:7] */
10970 for (i = 0; i < 8; i++) {
10971 env->regs[i] = env->xregs[i];
10972 }
10973
10974 /*
10975 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10976 * Otherwise, we copy x8-x12 into the banked user regs.
10977 */
10978 if (mode == ARM_CPU_MODE_FIQ) {
10979 for (i = 8; i < 13; i++) {
10980 env->usr_regs[i - 8] = env->xregs[i];
10981 }
10982 } else {
10983 for (i = 8; i < 13; i++) {
10984 env->regs[i] = env->xregs[i];
10985 }
10986 }
10987
10988 /*
10989 * Registers r13 & r14 depend on the current mode.
10990 * If we are in a given mode, we copy the corresponding x registers to r13
10991 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10992 * for the mode.
10993 */
10994 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10995 env->regs[13] = env->xregs[13];
10996 env->regs[14] = env->xregs[14];
10997 } else {
10998 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10999
11000 /*
11001 * HYP is an exception in that it does not have its own banked r14 but
11002 * shares the USR r14
11003 */
11004 if (mode == ARM_CPU_MODE_HYP) {
11005 env->regs[14] = env->xregs[14];
11006 } else {
11007 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
11008 }
11009 }
11010
11011 if (mode == ARM_CPU_MODE_HYP) {
11012 env->regs[13] = env->xregs[15];
11013 } else {
11014 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
11015 }
11016
11017 if (mode == ARM_CPU_MODE_IRQ) {
11018 env->regs[14] = env->xregs[16];
11019 env->regs[13] = env->xregs[17];
11020 } else {
11021 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
11022 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
11023 }
11024
11025 if (mode == ARM_CPU_MODE_SVC) {
11026 env->regs[14] = env->xregs[18];
11027 env->regs[13] = env->xregs[19];
11028 } else {
11029 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
11030 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
11031 }
11032
11033 if (mode == ARM_CPU_MODE_ABT) {
11034 env->regs[14] = env->xregs[20];
11035 env->regs[13] = env->xregs[21];
11036 } else {
11037 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
11038 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
11039 }
11040
11041 if (mode == ARM_CPU_MODE_UND) {
11042 env->regs[14] = env->xregs[22];
11043 env->regs[13] = env->xregs[23];
11044 } else {
11045 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
11046 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
11047 }
11048
11049 /*
11050 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
11051 * mode, then we can copy to r8-r14. Otherwise, we copy to the
11052 * FIQ bank for r8-r14.
11053 */
11054 if (mode == ARM_CPU_MODE_FIQ) {
11055 for (i = 24; i < 31; i++) {
11056 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
11057 }
11058 } else {
11059 for (i = 24; i < 29; i++) {
11060 env->fiq_regs[i - 24] = env->xregs[i];
11061 }
11062 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
11063 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
11064 }
11065
11066 env->regs[15] = env->pc;
11067 }
11068
take_aarch32_exception(CPUARMState * env,int new_mode,uint32_t mask,uint32_t offset,uint32_t newpc)11069 static void take_aarch32_exception(CPUARMState *env, int new_mode,
11070 uint32_t mask, uint32_t offset,
11071 uint32_t newpc)
11072 {
11073 int new_el;
11074
11075 /* Change the CPU state so as to actually take the exception. */
11076 switch_mode(env, new_mode);
11077
11078 /*
11079 * For exceptions taken to AArch32 we must clear the SS bit in both
11080 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
11081 */
11082 env->pstate &= ~PSTATE_SS;
11083 env->spsr = cpsr_read(env);
11084 /* Clear IT bits. */
11085 env->condexec_bits = 0;
11086 /* Switch to the new mode, and to the correct instruction set. */
11087 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
11088
11089 /* This must be after mode switching. */
11090 new_el = arm_current_el(env);
11091
11092 /* Set new mode endianness */
11093 env->uncached_cpsr &= ~CPSR_E;
11094 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
11095 env->uncached_cpsr |= CPSR_E;
11096 }
11097 /* J and IL must always be cleared for exception entry */
11098 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
11099 env->daif |= mask;
11100
11101 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
11102 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
11103 env->uncached_cpsr |= CPSR_SSBS;
11104 } else {
11105 env->uncached_cpsr &= ~CPSR_SSBS;
11106 }
11107 }
11108
11109 if (new_mode == ARM_CPU_MODE_HYP) {
11110 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
11111 env->elr_el[2] = env->regs[15];
11112 } else {
11113 /* CPSR.PAN is normally preserved preserved unless... */
11114 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
11115 switch (new_el) {
11116 case 3:
11117 if (!arm_is_secure_below_el3(env)) {
11118 /* ... the target is EL3, from non-secure state. */
11119 env->uncached_cpsr &= ~CPSR_PAN;
11120 break;
11121 }
11122 /* ... the target is EL3, from secure state ... */
11123 /* fall through */
11124 case 1:
11125 /* ... the target is EL1 and SCTLR.SPAN is 0. */
11126 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
11127 env->uncached_cpsr |= CPSR_PAN;
11128 }
11129 break;
11130 }
11131 }
11132 /*
11133 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
11134 * and we should just guard the thumb mode on V4
11135 */
11136 if (arm_feature(env, ARM_FEATURE_V4T)) {
11137 env->thumb =
11138 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
11139 }
11140 env->regs[14] = env->regs[15] + offset;
11141 }
11142 env->regs[15] = newpc;
11143
11144 if (tcg_enabled()) {
11145 arm_rebuild_hflags(env);
11146 }
11147 }
11148
arm_cpu_do_interrupt_aarch32_hyp(CPUState * cs)11149 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
11150 {
11151 /*
11152 * Handle exception entry to Hyp mode; this is sufficiently
11153 * different to entry to other AArch32 modes that we handle it
11154 * separately here.
11155 *
11156 * The vector table entry used is always the 0x14 Hyp mode entry point,
11157 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
11158 * The offset applied to the preferred return address is always zero
11159 * (see DDI0487C.a section G1.12.3).
11160 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
11161 */
11162 uint32_t addr, mask;
11163 ARMCPU *cpu = ARM_CPU(cs);
11164 CPUARMState *env = &cpu->env;
11165
11166 switch (cs->exception_index) {
11167 case EXCP_UDEF:
11168 addr = 0x04;
11169 break;
11170 case EXCP_SWI:
11171 addr = 0x08;
11172 break;
11173 case EXCP_BKPT:
11174 /* Fall through to prefetch abort. */
11175 case EXCP_PREFETCH_ABORT:
11176 env->cp15.ifar_s = env->exception.vaddress;
11177 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
11178 (uint32_t)env->exception.vaddress);
11179 addr = 0x0c;
11180 break;
11181 case EXCP_DATA_ABORT:
11182 env->cp15.dfar_s = env->exception.vaddress;
11183 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
11184 (uint32_t)env->exception.vaddress);
11185 addr = 0x10;
11186 break;
11187 case EXCP_IRQ:
11188 addr = 0x18;
11189 break;
11190 case EXCP_FIQ:
11191 addr = 0x1c;
11192 break;
11193 case EXCP_HVC:
11194 addr = 0x08;
11195 break;
11196 case EXCP_HYP_TRAP:
11197 addr = 0x14;
11198 break;
11199 default:
11200 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11201 }
11202
11203 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
11204 if (!arm_feature(env, ARM_FEATURE_V8)) {
11205 /*
11206 * QEMU syndrome values are v8-style. v7 has the IL bit
11207 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
11208 * If this is a v7 CPU, squash the IL bit in those cases.
11209 */
11210 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
11211 (cs->exception_index == EXCP_DATA_ABORT &&
11212 !(env->exception.syndrome & ARM_EL_ISV)) ||
11213 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
11214 env->exception.syndrome &= ~ARM_EL_IL;
11215 }
11216 }
11217 env->cp15.esr_el[2] = env->exception.syndrome;
11218 }
11219
11220 if (arm_current_el(env) != 2 && addr < 0x14) {
11221 addr = 0x14;
11222 }
11223
11224 mask = 0;
11225 if (!(env->cp15.scr_el3 & SCR_EA)) {
11226 mask |= CPSR_A;
11227 }
11228 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
11229 mask |= CPSR_I;
11230 }
11231 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
11232 mask |= CPSR_F;
11233 }
11234
11235 addr += env->cp15.hvbar;
11236
11237 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
11238 }
11239
arm_cpu_do_interrupt_aarch32(CPUState * cs)11240 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
11241 {
11242 ARMCPU *cpu = ARM_CPU(cs);
11243 CPUARMState *env = &cpu->env;
11244 uint32_t addr;
11245 uint32_t mask;
11246 int new_mode;
11247 uint32_t offset;
11248 uint32_t moe;
11249
11250 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
11251 switch (syn_get_ec(env->exception.syndrome)) {
11252 case EC_BREAKPOINT:
11253 case EC_BREAKPOINT_SAME_EL:
11254 moe = 1;
11255 break;
11256 case EC_WATCHPOINT:
11257 case EC_WATCHPOINT_SAME_EL:
11258 moe = 10;
11259 break;
11260 case EC_AA32_BKPT:
11261 moe = 3;
11262 break;
11263 case EC_VECTORCATCH:
11264 moe = 5;
11265 break;
11266 default:
11267 moe = 0;
11268 break;
11269 }
11270
11271 if (moe) {
11272 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11273 }
11274
11275 if (env->exception.target_el == 2) {
11276 /* Debug exceptions are reported differently on AArch32 */
11277 switch (syn_get_ec(env->exception.syndrome)) {
11278 case EC_BREAKPOINT:
11279 case EC_BREAKPOINT_SAME_EL:
11280 case EC_AA32_BKPT:
11281 case EC_VECTORCATCH:
11282 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
11283 0, 0, 0x22);
11284 break;
11285 case EC_WATCHPOINT:
11286 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11287 EC_DATAABORT);
11288 break;
11289 case EC_WATCHPOINT_SAME_EL:
11290 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11291 EC_DATAABORT_SAME_EL);
11292 break;
11293 }
11294 arm_cpu_do_interrupt_aarch32_hyp(cs);
11295 return;
11296 }
11297
11298 switch (cs->exception_index) {
11299 case EXCP_UDEF:
11300 new_mode = ARM_CPU_MODE_UND;
11301 addr = 0x04;
11302 mask = CPSR_I;
11303 if (env->thumb) {
11304 offset = 2;
11305 } else {
11306 offset = 4;
11307 }
11308 break;
11309 case EXCP_SWI:
11310 new_mode = ARM_CPU_MODE_SVC;
11311 addr = 0x08;
11312 mask = CPSR_I;
11313 /* The PC already points to the next instruction. */
11314 offset = 0;
11315 break;
11316 case EXCP_BKPT:
11317 /* Fall through to prefetch abort. */
11318 case EXCP_PREFETCH_ABORT:
11319 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11320 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11321 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11322 env->exception.fsr, (uint32_t)env->exception.vaddress);
11323 new_mode = ARM_CPU_MODE_ABT;
11324 addr = 0x0c;
11325 mask = CPSR_A | CPSR_I;
11326 offset = 4;
11327 break;
11328 case EXCP_DATA_ABORT:
11329 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11330 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11331 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11332 env->exception.fsr,
11333 (uint32_t)env->exception.vaddress);
11334 new_mode = ARM_CPU_MODE_ABT;
11335 addr = 0x10;
11336 mask = CPSR_A | CPSR_I;
11337 offset = 8;
11338 break;
11339 case EXCP_IRQ:
11340 new_mode = ARM_CPU_MODE_IRQ;
11341 addr = 0x18;
11342 /* Disable IRQ and imprecise data aborts. */
11343 mask = CPSR_A | CPSR_I;
11344 offset = 4;
11345 if (env->cp15.scr_el3 & SCR_IRQ) {
11346 /* IRQ routed to monitor mode */
11347 new_mode = ARM_CPU_MODE_MON;
11348 mask |= CPSR_F;
11349 }
11350 break;
11351 case EXCP_FIQ:
11352 new_mode = ARM_CPU_MODE_FIQ;
11353 addr = 0x1c;
11354 /* Disable FIQ, IRQ and imprecise data aborts. */
11355 mask = CPSR_A | CPSR_I | CPSR_F;
11356 if (env->cp15.scr_el3 & SCR_FIQ) {
11357 /* FIQ routed to monitor mode */
11358 new_mode = ARM_CPU_MODE_MON;
11359 }
11360 offset = 4;
11361 break;
11362 case EXCP_VIRQ:
11363 new_mode = ARM_CPU_MODE_IRQ;
11364 addr = 0x18;
11365 /* Disable IRQ and imprecise data aborts. */
11366 mask = CPSR_A | CPSR_I;
11367 offset = 4;
11368 break;
11369 case EXCP_VFIQ:
11370 new_mode = ARM_CPU_MODE_FIQ;
11371 addr = 0x1c;
11372 /* Disable FIQ, IRQ and imprecise data aborts. */
11373 mask = CPSR_A | CPSR_I | CPSR_F;
11374 offset = 4;
11375 break;
11376 case EXCP_VSERR:
11377 {
11378 /*
11379 * Note that this is reported as a data abort, but the DFAR
11380 * has an UNKNOWN value. Construct the SError syndrome from
11381 * AET and ExT fields.
11382 */
11383 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11384
11385 if (extended_addresses_enabled(env)) {
11386 env->exception.fsr = arm_fi_to_lfsc(&fi);
11387 } else {
11388 env->exception.fsr = arm_fi_to_sfsc(&fi);
11389 }
11390 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11391 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11392 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11393 env->exception.fsr);
11394
11395 new_mode = ARM_CPU_MODE_ABT;
11396 addr = 0x10;
11397 mask = CPSR_A | CPSR_I;
11398 offset = 8;
11399 }
11400 break;
11401 case EXCP_SMC:
11402 new_mode = ARM_CPU_MODE_MON;
11403 addr = 0x08;
11404 mask = CPSR_A | CPSR_I | CPSR_F;
11405 offset = 0;
11406 break;
11407 default:
11408 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11409 return; /* Never happens. Keep compiler happy. */
11410 }
11411
11412 if (new_mode == ARM_CPU_MODE_MON) {
11413 addr += env->cp15.mvbar;
11414 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11415 /* High vectors. When enabled, base address cannot be remapped. */
11416 addr += 0xffff0000;
11417 } else {
11418 /*
11419 * ARM v7 architectures provide a vector base address register to remap
11420 * the interrupt vector table.
11421 * This register is only followed in non-monitor mode, and is banked.
11422 * Note: only bits 31:5 are valid.
11423 */
11424 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11425 }
11426
11427 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11428 env->cp15.scr_el3 &= ~SCR_NS;
11429 }
11430
11431 take_aarch32_exception(env, new_mode, mask, offset, addr);
11432 }
11433
aarch64_regnum(CPUARMState * env,int aarch32_reg)11434 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11435 {
11436 /*
11437 * Return the register number of the AArch64 view of the AArch32
11438 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11439 * be that of the AArch32 mode the exception came from.
11440 */
11441 int mode = env->uncached_cpsr & CPSR_M;
11442
11443 switch (aarch32_reg) {
11444 case 0 ... 7:
11445 return aarch32_reg;
11446 case 8 ... 12:
11447 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11448 case 13:
11449 switch (mode) {
11450 case ARM_CPU_MODE_USR:
11451 case ARM_CPU_MODE_SYS:
11452 return 13;
11453 case ARM_CPU_MODE_HYP:
11454 return 15;
11455 case ARM_CPU_MODE_IRQ:
11456 return 17;
11457 case ARM_CPU_MODE_SVC:
11458 return 19;
11459 case ARM_CPU_MODE_ABT:
11460 return 21;
11461 case ARM_CPU_MODE_UND:
11462 return 23;
11463 case ARM_CPU_MODE_FIQ:
11464 return 29;
11465 default:
11466 g_assert_not_reached();
11467 }
11468 case 14:
11469 switch (mode) {
11470 case ARM_CPU_MODE_USR:
11471 case ARM_CPU_MODE_SYS:
11472 case ARM_CPU_MODE_HYP:
11473 return 14;
11474 case ARM_CPU_MODE_IRQ:
11475 return 16;
11476 case ARM_CPU_MODE_SVC:
11477 return 18;
11478 case ARM_CPU_MODE_ABT:
11479 return 20;
11480 case ARM_CPU_MODE_UND:
11481 return 22;
11482 case ARM_CPU_MODE_FIQ:
11483 return 30;
11484 default:
11485 g_assert_not_reached();
11486 }
11487 case 15:
11488 return 31;
11489 default:
11490 g_assert_not_reached();
11491 }
11492 }
11493
cpsr_read_for_spsr_elx(CPUARMState * env)11494 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11495 {
11496 uint32_t ret = cpsr_read(env);
11497
11498 /* Move DIT to the correct location for SPSR_ELx */
11499 if (ret & CPSR_DIT) {
11500 ret &= ~CPSR_DIT;
11501 ret |= PSTATE_DIT;
11502 }
11503 /* Merge PSTATE.SS into SPSR_ELx */
11504 ret |= env->pstate & PSTATE_SS;
11505
11506 return ret;
11507 }
11508
syndrome_is_sync_extabt(uint32_t syndrome)11509 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11510 {
11511 /* Return true if this syndrome value is a synchronous external abort */
11512 switch (syn_get_ec(syndrome)) {
11513 case EC_INSNABORT:
11514 case EC_INSNABORT_SAME_EL:
11515 case EC_DATAABORT:
11516 case EC_DATAABORT_SAME_EL:
11517 /* Look at fault status code for all the synchronous ext abort cases */
11518 switch (syndrome & 0x3f) {
11519 case 0x10:
11520 case 0x13:
11521 case 0x14:
11522 case 0x15:
11523 case 0x16:
11524 case 0x17:
11525 return true;
11526 default:
11527 return false;
11528 }
11529 default:
11530 return false;
11531 }
11532 }
11533
11534 /* Handle exception entry to a target EL which is using AArch64 */
arm_cpu_do_interrupt_aarch64(CPUState * cs)11535 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11536 {
11537 ARMCPU *cpu = ARM_CPU(cs);
11538 CPUARMState *env = &cpu->env;
11539 unsigned int new_el = env->exception.target_el;
11540 target_ulong addr = env->cp15.vbar_el[new_el];
11541 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11542 unsigned int old_mode;
11543 unsigned int cur_el = arm_current_el(env);
11544 int rt;
11545
11546 if (tcg_enabled()) {
11547 /*
11548 * Note that new_el can never be 0. If cur_el is 0, then
11549 * el0_a64 is is_a64(), else el0_a64 is ignored.
11550 */
11551 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11552 }
11553
11554 if (cur_el < new_el) {
11555 /*
11556 * Entry vector offset depends on whether the implemented EL
11557 * immediately lower than the target level is using AArch32 or AArch64
11558 */
11559 bool is_aa64;
11560 uint64_t hcr;
11561
11562 switch (new_el) {
11563 case 3:
11564 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11565 break;
11566 case 2:
11567 hcr = arm_hcr_el2_eff(env);
11568 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11569 is_aa64 = (hcr & HCR_RW) != 0;
11570 break;
11571 }
11572 /* fall through */
11573 case 1:
11574 is_aa64 = is_a64(env);
11575 break;
11576 default:
11577 g_assert_not_reached();
11578 }
11579
11580 if (is_aa64) {
11581 addr += 0x400;
11582 } else {
11583 addr += 0x600;
11584 }
11585 } else if (pstate_read(env) & PSTATE_SP) {
11586 addr += 0x200;
11587 }
11588
11589 switch (cs->exception_index) {
11590 case EXCP_GPC:
11591 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11592 env->cp15.mfar_el3);
11593 /* fall through */
11594 case EXCP_PREFETCH_ABORT:
11595 case EXCP_DATA_ABORT:
11596 /*
11597 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11598 * to be taken to the SError vector entrypoint.
11599 */
11600 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11601 syndrome_is_sync_extabt(env->exception.syndrome)) {
11602 addr += 0x180;
11603 }
11604 env->cp15.far_el[new_el] = env->exception.vaddress;
11605 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11606 env->cp15.far_el[new_el]);
11607 /* fall through */
11608 case EXCP_BKPT:
11609 case EXCP_UDEF:
11610 case EXCP_SWI:
11611 case EXCP_HVC:
11612 case EXCP_HYP_TRAP:
11613 case EXCP_SMC:
11614 switch (syn_get_ec(env->exception.syndrome)) {
11615 case EC_ADVSIMDFPACCESSTRAP:
11616 /*
11617 * QEMU internal FP/SIMD syndromes from AArch32 include the
11618 * TA and coproc fields which are only exposed if the exception
11619 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11620 * AArch64 format syndrome.
11621 */
11622 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11623 break;
11624 case EC_CP14RTTRAP:
11625 case EC_CP15RTTRAP:
11626 case EC_CP14DTTRAP:
11627 /*
11628 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11629 * the raw register field from the insn; when taking this to
11630 * AArch64 we must convert it to the AArch64 view of the register
11631 * number. Notice that we read a 4-bit AArch32 register number and
11632 * write back a 5-bit AArch64 one.
11633 */
11634 rt = extract32(env->exception.syndrome, 5, 4);
11635 rt = aarch64_regnum(env, rt);
11636 env->exception.syndrome = deposit32(env->exception.syndrome,
11637 5, 5, rt);
11638 break;
11639 case EC_CP15RRTTRAP:
11640 case EC_CP14RRTTRAP:
11641 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11642 rt = extract32(env->exception.syndrome, 5, 4);
11643 rt = aarch64_regnum(env, rt);
11644 env->exception.syndrome = deposit32(env->exception.syndrome,
11645 5, 5, rt);
11646 rt = extract32(env->exception.syndrome, 10, 4);
11647 rt = aarch64_regnum(env, rt);
11648 env->exception.syndrome = deposit32(env->exception.syndrome,
11649 10, 5, rt);
11650 break;
11651 }
11652 env->cp15.esr_el[new_el] = env->exception.syndrome;
11653 break;
11654 case EXCP_IRQ:
11655 case EXCP_VIRQ:
11656 case EXCP_NMI:
11657 case EXCP_VINMI:
11658 addr += 0x80;
11659 break;
11660 case EXCP_FIQ:
11661 case EXCP_VFIQ:
11662 case EXCP_VFNMI:
11663 addr += 0x100;
11664 break;
11665 case EXCP_VSERR:
11666 addr += 0x180;
11667 /* Construct the SError syndrome from IDS and ISS fields. */
11668 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11669 env->cp15.esr_el[new_el] = env->exception.syndrome;
11670 break;
11671 default:
11672 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11673 }
11674
11675 if (is_a64(env)) {
11676 old_mode = pstate_read(env);
11677 aarch64_save_sp(env, arm_current_el(env));
11678 env->elr_el[new_el] = env->pc;
11679
11680 if (cur_el == 1 && new_el == 1) {
11681 uint64_t hcr = arm_hcr_el2_eff(env);
11682 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11683 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11684 /*
11685 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11686 * by setting M[3:2] to 0b10.
11687 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11688 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11689 */
11690 old_mode = deposit32(old_mode, 2, 2, 2);
11691 }
11692 }
11693 } else {
11694 old_mode = cpsr_read_for_spsr_elx(env);
11695 env->elr_el[new_el] = env->regs[15];
11696
11697 aarch64_sync_32_to_64(env);
11698
11699 env->condexec_bits = 0;
11700 }
11701 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11702
11703 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11704 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11705 env->elr_el[new_el]);
11706
11707 if (cpu_isar_feature(aa64_pan, cpu)) {
11708 /* The value of PSTATE.PAN is normally preserved, except when ... */
11709 new_mode |= old_mode & PSTATE_PAN;
11710 switch (new_el) {
11711 case 2:
11712 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11713 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11714 != (HCR_E2H | HCR_TGE)) {
11715 break;
11716 }
11717 /* fall through */
11718 case 1:
11719 /* ... the target is EL1 ... */
11720 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11721 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11722 new_mode |= PSTATE_PAN;
11723 }
11724 break;
11725 }
11726 }
11727 if (cpu_isar_feature(aa64_mte, cpu)) {
11728 new_mode |= PSTATE_TCO;
11729 }
11730
11731 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11732 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11733 new_mode |= PSTATE_SSBS;
11734 } else {
11735 new_mode &= ~PSTATE_SSBS;
11736 }
11737 }
11738
11739 if (cpu_isar_feature(aa64_nmi, cpu)) {
11740 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) {
11741 new_mode |= PSTATE_ALLINT;
11742 } else {
11743 new_mode &= ~PSTATE_ALLINT;
11744 }
11745 }
11746
11747 pstate_write(env, PSTATE_DAIF | new_mode);
11748 env->aarch64 = true;
11749 aarch64_restore_sp(env, new_el);
11750
11751 if (tcg_enabled()) {
11752 helper_rebuild_hflags_a64(env, new_el);
11753 }
11754
11755 env->pc = addr;
11756
11757 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11758 new_el, env->pc, pstate_read(env));
11759 }
11760
11761 /*
11762 * Do semihosting call and set the appropriate return value. All the
11763 * permission and validity checks have been done at translate time.
11764 *
11765 * We only see semihosting exceptions in TCG only as they are not
11766 * trapped to the hypervisor in KVM.
11767 */
11768 #ifdef CONFIG_TCG
tcg_handle_semihosting(CPUState * cs)11769 static void tcg_handle_semihosting(CPUState *cs)
11770 {
11771 ARMCPU *cpu = ARM_CPU(cs);
11772 CPUARMState *env = &cpu->env;
11773
11774 if (is_a64(env)) {
11775 qemu_log_mask(CPU_LOG_INT,
11776 "...handling as semihosting call 0x%" PRIx64 "\n",
11777 env->xregs[0]);
11778 do_common_semihosting(cs);
11779 env->pc += 4;
11780 } else {
11781 qemu_log_mask(CPU_LOG_INT,
11782 "...handling as semihosting call 0x%x\n",
11783 env->regs[0]);
11784 do_common_semihosting(cs);
11785 env->regs[15] += env->thumb ? 2 : 4;
11786 }
11787 }
11788 #endif
11789
11790 /*
11791 * Handle a CPU exception for A and R profile CPUs.
11792 * Do any appropriate logging, handle PSCI calls, and then hand off
11793 * to the AArch64-entry or AArch32-entry function depending on the
11794 * target exception level's register width.
11795 *
11796 * Note: this is used for both TCG (as the do_interrupt tcg op),
11797 * and KVM to re-inject guest debug exceptions, and to
11798 * inject a Synchronous-External-Abort.
11799 */
arm_cpu_do_interrupt(CPUState * cs)11800 void arm_cpu_do_interrupt(CPUState *cs)
11801 {
11802 ARMCPU *cpu = ARM_CPU(cs);
11803 CPUARMState *env = &cpu->env;
11804 unsigned int new_el = env->exception.target_el;
11805
11806 assert(!arm_feature(env, ARM_FEATURE_M));
11807
11808 arm_log_exception(cs);
11809 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11810 new_el);
11811 if (qemu_loglevel_mask(CPU_LOG_INT)
11812 && !excp_is_internal(cs->exception_index)) {
11813 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11814 syn_get_ec(env->exception.syndrome),
11815 env->exception.syndrome);
11816 }
11817
11818 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11819 arm_handle_psci_call(cpu);
11820 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11821 return;
11822 }
11823
11824 /*
11825 * Semihosting semantics depend on the register width of the code
11826 * that caused the exception, not the target exception level, so
11827 * must be handled here.
11828 */
11829 #ifdef CONFIG_TCG
11830 if (cs->exception_index == EXCP_SEMIHOST) {
11831 tcg_handle_semihosting(cs);
11832 return;
11833 }
11834 #endif
11835
11836 /*
11837 * Hooks may change global state so BQL should be held, also the
11838 * BQL needs to be held for any modification of
11839 * cs->interrupt_request.
11840 */
11841 g_assert(bql_locked());
11842
11843 arm_call_pre_el_change_hook(cpu);
11844
11845 assert(!excp_is_internal(cs->exception_index));
11846 if (arm_el_is_aa64(env, new_el)) {
11847 arm_cpu_do_interrupt_aarch64(cs);
11848 } else {
11849 arm_cpu_do_interrupt_aarch32(cs);
11850 }
11851
11852 arm_call_el_change_hook(cpu);
11853
11854 if (!kvm_enabled()) {
11855 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11856 }
11857 }
11858 #endif /* !CONFIG_USER_ONLY */
11859
arm_sctlr(CPUARMState * env,int el)11860 uint64_t arm_sctlr(CPUARMState *env, int el)
11861 {
11862 if (arm_aa32_secure_pl1_0(env)) {
11863 /* In Secure PL1&0 SCTLR_S is always controlling */
11864 el = 3;
11865 } else if (el == 0) {
11866 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11867 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11868 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11869 }
11870 return env->cp15.sctlr_el[el];
11871 }
11872
aa64_va_parameter_tbi(uint64_t tcr,ARMMMUIdx mmu_idx)11873 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11874 {
11875 if (regime_has_2_ranges(mmu_idx)) {
11876 return extract64(tcr, 37, 2);
11877 } else if (regime_is_stage2(mmu_idx)) {
11878 return 0; /* VTCR_EL2 */
11879 } else {
11880 /* Replicate the single TBI bit so we always have 2 bits. */
11881 return extract32(tcr, 20, 1) * 3;
11882 }
11883 }
11884
aa64_va_parameter_tbid(uint64_t tcr,ARMMMUIdx mmu_idx)11885 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11886 {
11887 if (regime_has_2_ranges(mmu_idx)) {
11888 return extract64(tcr, 51, 2);
11889 } else if (regime_is_stage2(mmu_idx)) {
11890 return 0; /* VTCR_EL2 */
11891 } else {
11892 /* Replicate the single TBID bit so we always have 2 bits. */
11893 return extract32(tcr, 29, 1) * 3;
11894 }
11895 }
11896
aa64_va_parameter_tcma(uint64_t tcr,ARMMMUIdx mmu_idx)11897 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11898 {
11899 if (regime_has_2_ranges(mmu_idx)) {
11900 return extract64(tcr, 57, 2);
11901 } else {
11902 /* Replicate the single TCMA bit so we always have 2 bits. */
11903 return extract32(tcr, 30, 1) * 3;
11904 }
11905 }
11906
tg0_to_gran_size(int tg)11907 static ARMGranuleSize tg0_to_gran_size(int tg)
11908 {
11909 switch (tg) {
11910 case 0:
11911 return Gran4K;
11912 case 1:
11913 return Gran64K;
11914 case 2:
11915 return Gran16K;
11916 default:
11917 return GranInvalid;
11918 }
11919 }
11920
tg1_to_gran_size(int tg)11921 static ARMGranuleSize tg1_to_gran_size(int tg)
11922 {
11923 switch (tg) {
11924 case 1:
11925 return Gran16K;
11926 case 2:
11927 return Gran4K;
11928 case 3:
11929 return Gran64K;
11930 default:
11931 return GranInvalid;
11932 }
11933 }
11934
have4k(ARMCPU * cpu,bool stage2)11935 static inline bool have4k(ARMCPU *cpu, bool stage2)
11936 {
11937 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11938 : cpu_isar_feature(aa64_tgran4, cpu);
11939 }
11940
have16k(ARMCPU * cpu,bool stage2)11941 static inline bool have16k(ARMCPU *cpu, bool stage2)
11942 {
11943 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11944 : cpu_isar_feature(aa64_tgran16, cpu);
11945 }
11946
have64k(ARMCPU * cpu,bool stage2)11947 static inline bool have64k(ARMCPU *cpu, bool stage2)
11948 {
11949 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11950 : cpu_isar_feature(aa64_tgran64, cpu);
11951 }
11952
sanitize_gran_size(ARMCPU * cpu,ARMGranuleSize gran,bool stage2)11953 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11954 bool stage2)
11955 {
11956 switch (gran) {
11957 case Gran4K:
11958 if (have4k(cpu, stage2)) {
11959 return gran;
11960 }
11961 break;
11962 case Gran16K:
11963 if (have16k(cpu, stage2)) {
11964 return gran;
11965 }
11966 break;
11967 case Gran64K:
11968 if (have64k(cpu, stage2)) {
11969 return gran;
11970 }
11971 break;
11972 case GranInvalid:
11973 break;
11974 }
11975 /*
11976 * If the guest selects a granule size that isn't implemented,
11977 * the architecture requires that we behave as if it selected one
11978 * that is (with an IMPDEF choice of which one to pick). We choose
11979 * to implement the smallest supported granule size.
11980 */
11981 if (have4k(cpu, stage2)) {
11982 return Gran4K;
11983 }
11984 if (have16k(cpu, stage2)) {
11985 return Gran16K;
11986 }
11987 assert(have64k(cpu, stage2));
11988 return Gran64K;
11989 }
11990
aa64_va_parameters(CPUARMState * env,uint64_t va,ARMMMUIdx mmu_idx,bool data,bool el1_is_aa32)11991 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11992 ARMMMUIdx mmu_idx, bool data,
11993 bool el1_is_aa32)
11994 {
11995 uint64_t tcr = regime_tcr(env, mmu_idx);
11996 bool epd, hpd, tsz_oob, ds, ha, hd;
11997 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11998 ARMGranuleSize gran;
11999 ARMCPU *cpu = env_archcpu(env);
12000 bool stage2 = regime_is_stage2(mmu_idx);
12001
12002 if (!regime_has_2_ranges(mmu_idx)) {
12003 select = 0;
12004 tsz = extract32(tcr, 0, 6);
12005 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12006 if (stage2) {
12007 /* VTCR_EL2 */
12008 hpd = false;
12009 } else {
12010 hpd = extract32(tcr, 24, 1);
12011 }
12012 epd = false;
12013 sh = extract32(tcr, 12, 2);
12014 ps = extract32(tcr, 16, 3);
12015 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
12016 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12017 ds = extract64(tcr, 32, 1);
12018 } else {
12019 bool e0pd;
12020
12021 /*
12022 * Bit 55 is always between the two regions, and is canonical for
12023 * determining if address tagging is enabled.
12024 */
12025 select = extract64(va, 55, 1);
12026 if (!select) {
12027 tsz = extract32(tcr, 0, 6);
12028 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12029 epd = extract32(tcr, 7, 1);
12030 sh = extract32(tcr, 12, 2);
12031 hpd = extract64(tcr, 41, 1);
12032 e0pd = extract64(tcr, 55, 1);
12033 } else {
12034 tsz = extract32(tcr, 16, 6);
12035 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
12036 epd = extract32(tcr, 23, 1);
12037 sh = extract32(tcr, 28, 2);
12038 hpd = extract64(tcr, 42, 1);
12039 e0pd = extract64(tcr, 56, 1);
12040 }
12041 ps = extract64(tcr, 32, 3);
12042 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
12043 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12044 ds = extract64(tcr, 59, 1);
12045
12046 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
12047 regime_is_user(env, mmu_idx)) {
12048 epd = true;
12049 }
12050 }
12051
12052 gran = sanitize_gran_size(cpu, gran, stage2);
12053
12054 if (cpu_isar_feature(aa64_st, cpu)) {
12055 max_tsz = 48 - (gran == Gran64K);
12056 } else {
12057 max_tsz = 39;
12058 }
12059
12060 /*
12061 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
12062 * adjust the effective value of DS, as documented.
12063 */
12064 min_tsz = 16;
12065 if (gran == Gran64K) {
12066 if (cpu_isar_feature(aa64_lva, cpu)) {
12067 min_tsz = 12;
12068 }
12069 ds = false;
12070 } else if (ds) {
12071 if (regime_is_stage2(mmu_idx)) {
12072 if (gran == Gran16K) {
12073 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
12074 } else {
12075 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
12076 }
12077 } else {
12078 if (gran == Gran16K) {
12079 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
12080 } else {
12081 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
12082 }
12083 }
12084 if (ds) {
12085 min_tsz = 12;
12086 }
12087 }
12088
12089 if (stage2 && el1_is_aa32) {
12090 /*
12091 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
12092 * are loosened: a configured IPA of 40 bits is permitted even if
12093 * the implemented PA is less than that (and so a 40 bit IPA would
12094 * fault for an AArch64 EL1). See R_DTLMN.
12095 */
12096 min_tsz = MIN(min_tsz, 24);
12097 }
12098
12099 if (tsz > max_tsz) {
12100 tsz = max_tsz;
12101 tsz_oob = true;
12102 } else if (tsz < min_tsz) {
12103 tsz = min_tsz;
12104 tsz_oob = true;
12105 } else {
12106 tsz_oob = false;
12107 }
12108
12109 /* Present TBI as a composite with TBID. */
12110 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12111 if (!data) {
12112 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12113 }
12114 tbi = (tbi >> select) & 1;
12115
12116 return (ARMVAParameters) {
12117 .tsz = tsz,
12118 .ps = ps,
12119 .sh = sh,
12120 .select = select,
12121 .tbi = tbi,
12122 .epd = epd,
12123 .hpd = hpd,
12124 .tsz_oob = tsz_oob,
12125 .ds = ds,
12126 .ha = ha,
12127 .hd = ha && hd,
12128 .gran = gran,
12129 };
12130 }
12131
12132 /*
12133 * Note that signed overflow is undefined in C. The following routines are
12134 * careful to use unsigned types where modulo arithmetic is required.
12135 * Failure to do so _will_ break on newer gcc.
12136 */
12137
12138 /* Signed saturating arithmetic. */
12139
12140 /* Perform 16-bit signed saturating addition. */
add16_sat(uint16_t a,uint16_t b)12141 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12142 {
12143 uint16_t res;
12144
12145 res = a + b;
12146 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12147 if (a & 0x8000) {
12148 res = 0x8000;
12149 } else {
12150 res = 0x7fff;
12151 }
12152 }
12153 return res;
12154 }
12155
12156 /* Perform 8-bit signed saturating addition. */
add8_sat(uint8_t a,uint8_t b)12157 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12158 {
12159 uint8_t res;
12160
12161 res = a + b;
12162 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12163 if (a & 0x80) {
12164 res = 0x80;
12165 } else {
12166 res = 0x7f;
12167 }
12168 }
12169 return res;
12170 }
12171
12172 /* Perform 16-bit signed saturating subtraction. */
sub16_sat(uint16_t a,uint16_t b)12173 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12174 {
12175 uint16_t res;
12176
12177 res = a - b;
12178 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12179 if (a & 0x8000) {
12180 res = 0x8000;
12181 } else {
12182 res = 0x7fff;
12183 }
12184 }
12185 return res;
12186 }
12187
12188 /* Perform 8-bit signed saturating subtraction. */
sub8_sat(uint8_t a,uint8_t b)12189 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12190 {
12191 uint8_t res;
12192
12193 res = a - b;
12194 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12195 if (a & 0x80) {
12196 res = 0x80;
12197 } else {
12198 res = 0x7f;
12199 }
12200 }
12201 return res;
12202 }
12203
12204 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12205 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12206 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12207 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12208 #define PFX q
12209
12210 #include "op_addsub.h"
12211
12212 /* Unsigned saturating arithmetic. */
add16_usat(uint16_t a,uint16_t b)12213 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12214 {
12215 uint16_t res;
12216 res = a + b;
12217 if (res < a) {
12218 res = 0xffff;
12219 }
12220 return res;
12221 }
12222
sub16_usat(uint16_t a,uint16_t b)12223 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12224 {
12225 if (a > b) {
12226 return a - b;
12227 } else {
12228 return 0;
12229 }
12230 }
12231
add8_usat(uint8_t a,uint8_t b)12232 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12233 {
12234 uint8_t res;
12235 res = a + b;
12236 if (res < a) {
12237 res = 0xff;
12238 }
12239 return res;
12240 }
12241
sub8_usat(uint8_t a,uint8_t b)12242 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12243 {
12244 if (a > b) {
12245 return a - b;
12246 } else {
12247 return 0;
12248 }
12249 }
12250
12251 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12252 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12253 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12254 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12255 #define PFX uq
12256
12257 #include "op_addsub.h"
12258
12259 /* Signed modulo arithmetic. */
12260 #define SARITH16(a, b, n, op) do { \
12261 int32_t sum; \
12262 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12263 RESULT(sum, n, 16); \
12264 if (sum >= 0) \
12265 ge |= 3 << (n * 2); \
12266 } while (0)
12267
12268 #define SARITH8(a, b, n, op) do { \
12269 int32_t sum; \
12270 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12271 RESULT(sum, n, 8); \
12272 if (sum >= 0) \
12273 ge |= 1 << n; \
12274 } while (0)
12275
12276
12277 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12278 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12279 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12280 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12281 #define PFX s
12282 #define ARITH_GE
12283
12284 #include "op_addsub.h"
12285
12286 /* Unsigned modulo arithmetic. */
12287 #define ADD16(a, b, n) do { \
12288 uint32_t sum; \
12289 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12290 RESULT(sum, n, 16); \
12291 if ((sum >> 16) == 1) \
12292 ge |= 3 << (n * 2); \
12293 } while (0)
12294
12295 #define ADD8(a, b, n) do { \
12296 uint32_t sum; \
12297 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12298 RESULT(sum, n, 8); \
12299 if ((sum >> 8) == 1) \
12300 ge |= 1 << n; \
12301 } while (0)
12302
12303 #define SUB16(a, b, n) do { \
12304 uint32_t sum; \
12305 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12306 RESULT(sum, n, 16); \
12307 if ((sum >> 16) == 0) \
12308 ge |= 3 << (n * 2); \
12309 } while (0)
12310
12311 #define SUB8(a, b, n) do { \
12312 uint32_t sum; \
12313 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12314 RESULT(sum, n, 8); \
12315 if ((sum >> 8) == 0) \
12316 ge |= 1 << n; \
12317 } while (0)
12318
12319 #define PFX u
12320 #define ARITH_GE
12321
12322 #include "op_addsub.h"
12323
12324 /* Halved signed arithmetic. */
12325 #define ADD16(a, b, n) \
12326 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12327 #define SUB16(a, b, n) \
12328 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12329 #define ADD8(a, b, n) \
12330 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12331 #define SUB8(a, b, n) \
12332 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12333 #define PFX sh
12334
12335 #include "op_addsub.h"
12336
12337 /* Halved unsigned arithmetic. */
12338 #define ADD16(a, b, n) \
12339 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12340 #define SUB16(a, b, n) \
12341 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12342 #define ADD8(a, b, n) \
12343 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12344 #define SUB8(a, b, n) \
12345 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12346 #define PFX uh
12347
12348 #include "op_addsub.h"
12349
do_usad(uint8_t a,uint8_t b)12350 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12351 {
12352 if (a > b) {
12353 return a - b;
12354 } else {
12355 return b - a;
12356 }
12357 }
12358
12359 /* Unsigned sum of absolute byte differences. */
HELPER(usad8)12360 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12361 {
12362 uint32_t sum;
12363 sum = do_usad(a, b);
12364 sum += do_usad(a >> 8, b >> 8);
12365 sum += do_usad(a >> 16, b >> 16);
12366 sum += do_usad(a >> 24, b >> 24);
12367 return sum;
12368 }
12369
12370 /* For ARMv6 SEL instruction. */
HELPER(sel_flags)12371 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12372 {
12373 uint32_t mask;
12374
12375 mask = 0;
12376 if (flags & 1) {
12377 mask |= 0xff;
12378 }
12379 if (flags & 2) {
12380 mask |= 0xff00;
12381 }
12382 if (flags & 4) {
12383 mask |= 0xff0000;
12384 }
12385 if (flags & 8) {
12386 mask |= 0xff000000;
12387 }
12388 return (a & mask) | (b & ~mask);
12389 }
12390
12391 /*
12392 * CRC helpers.
12393 * The upper bytes of val (above the number specified by 'bytes') must have
12394 * been zeroed out by the caller.
12395 */
HELPER(crc32)12396 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12397 {
12398 uint8_t buf[4];
12399
12400 stl_le_p(buf, val);
12401
12402 /* zlib crc32 converts the accumulator and output to one's complement. */
12403 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12404 }
12405
HELPER(crc32c)12406 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12407 {
12408 uint8_t buf[4];
12409
12410 stl_le_p(buf, val);
12411
12412 /* Linux crc32c converts the output to one's complement. */
12413 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12414 }
12415
12416 /*
12417 * Return the exception level to which FP-disabled exceptions should
12418 * be taken, or 0 if FP is enabled.
12419 */
fp_exception_el(CPUARMState * env,int cur_el)12420 int fp_exception_el(CPUARMState *env, int cur_el)
12421 {
12422 #ifndef CONFIG_USER_ONLY
12423 uint64_t hcr_el2;
12424
12425 /*
12426 * CPACR and the CPTR registers don't exist before v6, so FP is
12427 * always accessible
12428 */
12429 if (!arm_feature(env, ARM_FEATURE_V6)) {
12430 return 0;
12431 }
12432
12433 if (arm_feature(env, ARM_FEATURE_M)) {
12434 /* CPACR can cause a NOCP UsageFault taken to current security state */
12435 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12436 return 1;
12437 }
12438
12439 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12440 if (!extract32(env->v7m.nsacr, 10, 1)) {
12441 /* FP insns cause a NOCP UsageFault taken to Secure */
12442 return 3;
12443 }
12444 }
12445
12446 return 0;
12447 }
12448
12449 hcr_el2 = arm_hcr_el2_eff(env);
12450
12451 /*
12452 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12453 * 0, 2 : trap EL0 and EL1/PL1 accesses
12454 * 1 : trap only EL0 accesses
12455 * 3 : trap no accesses
12456 * This register is ignored if E2H+TGE are both set.
12457 */
12458 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12459 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12460
12461 switch (fpen) {
12462 case 1:
12463 if (cur_el != 0) {
12464 break;
12465 }
12466 /* fall through */
12467 case 0:
12468 case 2:
12469 /* Trap from Secure PL0 or PL1 to Secure PL1. */
12470 if (!arm_el_is_aa64(env, 3)
12471 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12472 return 3;
12473 }
12474 if (cur_el <= 1) {
12475 return 1;
12476 }
12477 break;
12478 }
12479 }
12480
12481 /*
12482 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12483 * to control non-secure access to the FPU. It doesn't have any
12484 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12485 */
12486 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12487 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12488 if (!extract32(env->cp15.nsacr, 10, 1)) {
12489 /* FP insns act as UNDEF */
12490 return cur_el == 2 ? 2 : 1;
12491 }
12492 }
12493
12494 /*
12495 * CPTR_EL2 is present in v7VE or v8, and changes format
12496 * with HCR_EL2.E2H (regardless of TGE).
12497 */
12498 if (cur_el <= 2) {
12499 if (hcr_el2 & HCR_E2H) {
12500 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12501 case 1:
12502 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12503 break;
12504 }
12505 /* fall through */
12506 case 0:
12507 case 2:
12508 return 2;
12509 }
12510 } else if (arm_is_el2_enabled(env)) {
12511 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12512 return 2;
12513 }
12514 }
12515 }
12516
12517 /* CPTR_EL3 : present in v8 */
12518 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12519 /* Trap all FP ops to EL3 */
12520 return 3;
12521 }
12522 #endif
12523 return 0;
12524 }
12525
12526 /*
12527 * Return the exception level we're running at if this is our mmu_idx.
12528 * s_pl1_0 should be true if this is the AArch32 Secure PL1&0 translation
12529 * regime.
12530 */
arm_mmu_idx_to_el(ARMMMUIdx mmu_idx,bool s_pl1_0)12531 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx, bool s_pl1_0)
12532 {
12533 if (mmu_idx & ARM_MMU_IDX_M) {
12534 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12535 }
12536
12537 switch (mmu_idx) {
12538 case ARMMMUIdx_E10_0:
12539 case ARMMMUIdx_E20_0:
12540 return 0;
12541 case ARMMMUIdx_E10_1:
12542 case ARMMMUIdx_E10_1_PAN:
12543 return s_pl1_0 ? 3 : 1;
12544 case ARMMMUIdx_E2:
12545 case ARMMMUIdx_E20_2:
12546 case ARMMMUIdx_E20_2_PAN:
12547 return 2;
12548 case ARMMMUIdx_E3:
12549 return 3;
12550 default:
12551 g_assert_not_reached();
12552 }
12553 }
12554
12555 #ifndef CONFIG_TCG
arm_v7m_mmu_idx_for_secstate(CPUARMState * env,bool secstate)12556 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12557 {
12558 g_assert_not_reached();
12559 }
12560 #endif
12561
arm_mmu_idx_el(CPUARMState * env,int el)12562 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12563 {
12564 ARMMMUIdx idx;
12565 uint64_t hcr;
12566
12567 if (arm_feature(env, ARM_FEATURE_M)) {
12568 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12569 }
12570
12571 /* See ARM pseudo-function ELIsInHost. */
12572 switch (el) {
12573 case 0:
12574 hcr = arm_hcr_el2_eff(env);
12575 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12576 idx = ARMMMUIdx_E20_0;
12577 } else {
12578 idx = ARMMMUIdx_E10_0;
12579 }
12580 break;
12581 case 3:
12582 /*
12583 * AArch64 EL3 has its own translation regime; AArch32 EL3
12584 * uses the Secure PL1&0 translation regime.
12585 */
12586 if (arm_el_is_aa64(env, 3)) {
12587 return ARMMMUIdx_E3;
12588 }
12589 /* fall through */
12590 case 1:
12591 if (arm_pan_enabled(env)) {
12592 idx = ARMMMUIdx_E10_1_PAN;
12593 } else {
12594 idx = ARMMMUIdx_E10_1;
12595 }
12596 break;
12597 case 2:
12598 /* Note that TGE does not apply at EL2. */
12599 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12600 if (arm_pan_enabled(env)) {
12601 idx = ARMMMUIdx_E20_2_PAN;
12602 } else {
12603 idx = ARMMMUIdx_E20_2;
12604 }
12605 } else {
12606 idx = ARMMMUIdx_E2;
12607 }
12608 break;
12609 default:
12610 g_assert_not_reached();
12611 }
12612
12613 return idx;
12614 }
12615
arm_mmu_idx(CPUARMState * env)12616 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12617 {
12618 return arm_mmu_idx_el(env, arm_current_el(env));
12619 }
12620
mve_no_pred(CPUARMState * env)12621 static bool mve_no_pred(CPUARMState *env)
12622 {
12623 /*
12624 * Return true if there is definitely no predication of MVE
12625 * instructions by VPR or LTPSIZE. (Returning false even if there
12626 * isn't any predication is OK; generated code will just be
12627 * a little worse.)
12628 * If the CPU does not implement MVE then this TB flag is always 0.
12629 *
12630 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12631 * logic in gen_update_fp_context() needs to be updated to match.
12632 *
12633 * We do not include the effect of the ECI bits here -- they are
12634 * tracked in other TB flags. This simplifies the logic for
12635 * "when did we emit code that changes the MVE_NO_PRED TB flag
12636 * and thus need to end the TB?".
12637 */
12638 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12639 return false;
12640 }
12641 if (env->v7m.vpr) {
12642 return false;
12643 }
12644 if (env->v7m.ltpsize < 4) {
12645 return false;
12646 }
12647 return true;
12648 }
12649
cpu_get_tb_cpu_state(CPUARMState * env,vaddr * pc,uint64_t * cs_base,uint32_t * pflags)12650 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12651 uint64_t *cs_base, uint32_t *pflags)
12652 {
12653 CPUARMTBFlags flags;
12654
12655 assert_hflags_rebuild_correctly(env);
12656 flags = env->hflags;
12657
12658 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12659 *pc = env->pc;
12660 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12661 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12662 }
12663 } else {
12664 *pc = env->regs[15];
12665
12666 if (arm_feature(env, ARM_FEATURE_M)) {
12667 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12668 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12669 != env->v7m.secure) {
12670 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12671 }
12672
12673 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12674 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12675 (env->v7m.secure &&
12676 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12677 /*
12678 * ASPEN is set, but FPCA/SFPA indicate that there is no
12679 * active FP context; we must create a new FP context before
12680 * executing any FP insn.
12681 */
12682 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12683 }
12684
12685 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12686 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12687 DP_TBFLAG_M32(flags, LSPACT, 1);
12688 }
12689
12690 if (mve_no_pred(env)) {
12691 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12692 }
12693 } else {
12694 /*
12695 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12696 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12697 */
12698 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12699 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12700 } else {
12701 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12702 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12703 }
12704 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12705 DP_TBFLAG_A32(flags, VFPEN, 1);
12706 }
12707 }
12708
12709 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12710 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12711 }
12712
12713 /*
12714 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12715 * states defined in the ARM ARM for software singlestep:
12716 * SS_ACTIVE PSTATE.SS State
12717 * 0 x Inactive (the TB flag for SS is always 0)
12718 * 1 0 Active-pending
12719 * 1 1 Active-not-pending
12720 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12721 */
12722 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12723 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12724 }
12725
12726 *pflags = flags.flags;
12727 *cs_base = flags.flags2;
12728 }
12729
12730 #ifdef TARGET_AARCH64
12731 /*
12732 * The manual says that when SVE is enabled and VQ is widened the
12733 * implementation is allowed to zero the previously inaccessible
12734 * portion of the registers. The corollary to that is that when
12735 * SVE is enabled and VQ is narrowed we are also allowed to zero
12736 * the now inaccessible portion of the registers.
12737 *
12738 * The intent of this is that no predicate bit beyond VQ is ever set.
12739 * Which means that some operations on predicate registers themselves
12740 * may operate on full uint64_t or even unrolled across the maximum
12741 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12742 * may well be cheaper than conditionals to restrict the operation
12743 * to the relevant portion of a uint16_t[16].
12744 */
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)12745 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12746 {
12747 int i, j;
12748 uint64_t pmask;
12749
12750 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12751 assert(vq <= env_archcpu(env)->sve_max_vq);
12752
12753 /* Zap the high bits of the zregs. */
12754 for (i = 0; i < 32; i++) {
12755 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12756 }
12757
12758 /* Zap the high bits of the pregs and ffr. */
12759 pmask = 0;
12760 if (vq & 3) {
12761 pmask = ~(-1ULL << (16 * (vq & 3)));
12762 }
12763 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12764 for (i = 0; i < 17; ++i) {
12765 env->vfp.pregs[i].p[j] &= pmask;
12766 }
12767 pmask = 0;
12768 }
12769 }
12770
sve_vqm1_for_el_sm_ena(CPUARMState * env,int el,bool sm)12771 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12772 {
12773 int exc_el;
12774
12775 if (sm) {
12776 exc_el = sme_exception_el(env, el);
12777 } else {
12778 exc_el = sve_exception_el(env, el);
12779 }
12780 if (exc_el) {
12781 return 0; /* disabled */
12782 }
12783 return sve_vqm1_for_el_sm(env, el, sm);
12784 }
12785
12786 /*
12787 * Notice a change in SVE vector size when changing EL.
12788 */
aarch64_sve_change_el(CPUARMState * env,int old_el,int new_el,bool el0_a64)12789 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12790 int new_el, bool el0_a64)
12791 {
12792 ARMCPU *cpu = env_archcpu(env);
12793 int old_len, new_len;
12794 bool old_a64, new_a64, sm;
12795
12796 /* Nothing to do if no SVE. */
12797 if (!cpu_isar_feature(aa64_sve, cpu)) {
12798 return;
12799 }
12800
12801 /* Nothing to do if FP is disabled in either EL. */
12802 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12803 return;
12804 }
12805
12806 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12807 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12808
12809 /*
12810 * Both AArch64.TakeException and AArch64.ExceptionReturn
12811 * invoke ResetSVEState when taking an exception from, or
12812 * returning to, AArch32 state when PSTATE.SM is enabled.
12813 */
12814 sm = FIELD_EX64(env->svcr, SVCR, SM);
12815 if (old_a64 != new_a64 && sm) {
12816 arm_reset_sve_state(env);
12817 return;
12818 }
12819
12820 /*
12821 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12822 * at ELx, or not available because the EL is in AArch32 state, then
12823 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12824 * has an effective value of 0".
12825 *
12826 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12827 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12828 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12829 * we already have the correct register contents when encountering the
12830 * vq0->vq0 transition between EL0->EL1.
12831 */
12832 old_len = new_len = 0;
12833 if (old_a64) {
12834 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12835 }
12836 if (new_a64) {
12837 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12838 }
12839
12840 /* When changing vector length, clear inaccessible state. */
12841 if (new_len < old_len) {
12842 aarch64_sve_narrow_vq(env, new_len + 1);
12843 }
12844 }
12845 #endif
12846
12847 #ifndef CONFIG_USER_ONLY
arm_security_space(CPUARMState * env)12848 ARMSecuritySpace arm_security_space(CPUARMState *env)
12849 {
12850 if (arm_feature(env, ARM_FEATURE_M)) {
12851 return arm_secure_to_space(env->v7m.secure);
12852 }
12853
12854 /*
12855 * If EL3 is not supported then the secure state is implementation
12856 * defined, in which case QEMU defaults to non-secure.
12857 */
12858 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12859 return ARMSS_NonSecure;
12860 }
12861
12862 /* Check for AArch64 EL3 or AArch32 Mon. */
12863 if (is_a64(env)) {
12864 if (extract32(env->pstate, 2, 2) == 3) {
12865 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12866 return ARMSS_Root;
12867 } else {
12868 return ARMSS_Secure;
12869 }
12870 }
12871 } else {
12872 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12873 return ARMSS_Secure;
12874 }
12875 }
12876
12877 return arm_security_space_below_el3(env);
12878 }
12879
arm_security_space_below_el3(CPUARMState * env)12880 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12881 {
12882 assert(!arm_feature(env, ARM_FEATURE_M));
12883
12884 /*
12885 * If EL3 is not supported then the secure state is implementation
12886 * defined, in which case QEMU defaults to non-secure.
12887 */
12888 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12889 return ARMSS_NonSecure;
12890 }
12891
12892 /*
12893 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12894 * Ignoring NSE when !NS retains consistency without having to
12895 * modify other predicates.
12896 */
12897 if (!(env->cp15.scr_el3 & SCR_NS)) {
12898 return ARMSS_Secure;
12899 } else if (env->cp15.scr_el3 & SCR_NSE) {
12900 return ARMSS_Realm;
12901 } else {
12902 return ARMSS_NonSecure;
12903 }
12904 }
12905 #endif /* !CONFIG_USER_ONLY */
12906