1 /*
2 * RISC-V implementation of KVM hooks
3 *
4 * Copyright (c) 2020 Huawei Technologies Co., Ltd
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include "qemu/osdep.h"
20 #include <sys/ioctl.h>
21 #include <sys/prctl.h>
22
23 #include <linux/kvm.h>
24
25 #include "qemu/timer.h"
26 #include "qapi/error.h"
27 #include "qemu/error-report.h"
28 #include "qemu/main-loop.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/kvm_int.h"
33 #include "cpu.h"
34 #include "trace.h"
35 #include "hw/core/accel-cpu.h"
36 #include "hw/pci/pci.h"
37 #include "exec/memattrs.h"
38 #include "exec/address-spaces.h"
39 #include "hw/boards.h"
40 #include "hw/irq.h"
41 #include "hw/intc/riscv_imsic.h"
42 #include "qemu/log.h"
43 #include "hw/loader.h"
44 #include "kvm_riscv.h"
45 #include "sbi_ecall_interface.h"
46 #include "chardev/char-fe.h"
47 #include "migration/misc.h"
48 #include "sysemu/runstate.h"
49 #include "hw/riscv/numa.h"
50
51 #define PR_RISCV_V_SET_CONTROL 69
52 #define PR_RISCV_V_VSTATE_CTRL_ON 2
53
riscv_kvm_aplic_request(void * opaque,int irq,int level)54 void riscv_kvm_aplic_request(void *opaque, int irq, int level)
55 {
56 kvm_set_irq(kvm_state, irq, !!level);
57 }
58
59 static bool cap_has_mp_state;
60
kvm_riscv_reg_id_ulong(CPURISCVState * env,uint64_t type,uint64_t idx)61 static uint64_t kvm_riscv_reg_id_ulong(CPURISCVState *env, uint64_t type,
62 uint64_t idx)
63 {
64 uint64_t id = KVM_REG_RISCV | type | idx;
65
66 switch (riscv_cpu_mxl(env)) {
67 case MXL_RV32:
68 id |= KVM_REG_SIZE_U32;
69 break;
70 case MXL_RV64:
71 id |= KVM_REG_SIZE_U64;
72 break;
73 default:
74 g_assert_not_reached();
75 }
76 return id;
77 }
78
kvm_riscv_reg_id_u32(uint64_t type,uint64_t idx)79 static uint64_t kvm_riscv_reg_id_u32(uint64_t type, uint64_t idx)
80 {
81 return KVM_REG_RISCV | KVM_REG_SIZE_U32 | type | idx;
82 }
83
kvm_riscv_reg_id_u64(uint64_t type,uint64_t idx)84 static uint64_t kvm_riscv_reg_id_u64(uint64_t type, uint64_t idx)
85 {
86 return KVM_REG_RISCV | KVM_REG_SIZE_U64 | type | idx;
87 }
88
kvm_encode_reg_size_id(uint64_t id,size_t size_b)89 static uint64_t kvm_encode_reg_size_id(uint64_t id, size_t size_b)
90 {
91 uint64_t size_ctz = __builtin_ctz(size_b);
92
93 return id | (size_ctz << KVM_REG_SIZE_SHIFT);
94 }
95
kvm_riscv_vector_reg_id(RISCVCPU * cpu,uint64_t idx)96 static uint64_t kvm_riscv_vector_reg_id(RISCVCPU *cpu,
97 uint64_t idx)
98 {
99 uint64_t id;
100 size_t size_b;
101
102 g_assert(idx < 32);
103
104 id = KVM_REG_RISCV | KVM_REG_RISCV_VECTOR | KVM_REG_RISCV_VECTOR_REG(idx);
105 size_b = cpu->cfg.vlenb;
106
107 return kvm_encode_reg_size_id(id, size_b);
108 }
109
110 #define RISCV_CORE_REG(env, name) \
111 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, \
112 KVM_REG_RISCV_CORE_REG(name))
113
114 #define RISCV_CSR_REG(env, name) \
115 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CSR, \
116 KVM_REG_RISCV_CSR_REG(name))
117
118 #define RISCV_CONFIG_REG(env, name) \
119 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, \
120 KVM_REG_RISCV_CONFIG_REG(name))
121
122 #define RISCV_TIMER_REG(name) kvm_riscv_reg_id_u64(KVM_REG_RISCV_TIMER, \
123 KVM_REG_RISCV_TIMER_REG(name))
124
125 #define RISCV_FP_F_REG(idx) kvm_riscv_reg_id_u32(KVM_REG_RISCV_FP_F, idx)
126
127 #define RISCV_FP_D_REG(idx) kvm_riscv_reg_id_u64(KVM_REG_RISCV_FP_D, idx)
128
129 #define RISCV_VECTOR_CSR_REG(env, name) \
130 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_VECTOR, \
131 KVM_REG_RISCV_VECTOR_CSR_REG(name))
132
133 #define KVM_RISCV_GET_CSR(cs, env, csr, reg) \
134 do { \
135 int _ret = kvm_get_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \
136 if (_ret) { \
137 return _ret; \
138 } \
139 } while (0)
140
141 #define KVM_RISCV_SET_CSR(cs, env, csr, reg) \
142 do { \
143 int _ret = kvm_set_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \
144 if (_ret) { \
145 return _ret; \
146 } \
147 } while (0)
148
149 #define KVM_RISCV_GET_TIMER(cs, name, reg) \
150 do { \
151 int ret = kvm_get_one_reg(cs, RISCV_TIMER_REG(name), ®); \
152 if (ret) { \
153 abort(); \
154 } \
155 } while (0)
156
157 #define KVM_RISCV_SET_TIMER(cs, name, reg) \
158 do { \
159 int ret = kvm_set_one_reg(cs, RISCV_TIMER_REG(name), ®); \
160 if (ret) { \
161 abort(); \
162 } \
163 } while (0)
164
165 typedef struct KVMCPUConfig {
166 const char *name;
167 const char *description;
168 target_ulong offset;
169 uint64_t kvm_reg_id;
170 bool user_set;
171 bool supported;
172 } KVMCPUConfig;
173
174 #define KVM_MISA_CFG(_bit, _reg_id) \
175 {.offset = _bit, .kvm_reg_id = _reg_id}
176
177 /* KVM ISA extensions */
178 static KVMCPUConfig kvm_misa_ext_cfgs[] = {
179 KVM_MISA_CFG(RVA, KVM_RISCV_ISA_EXT_A),
180 KVM_MISA_CFG(RVC, KVM_RISCV_ISA_EXT_C),
181 KVM_MISA_CFG(RVD, KVM_RISCV_ISA_EXT_D),
182 KVM_MISA_CFG(RVF, KVM_RISCV_ISA_EXT_F),
183 KVM_MISA_CFG(RVH, KVM_RISCV_ISA_EXT_H),
184 KVM_MISA_CFG(RVI, KVM_RISCV_ISA_EXT_I),
185 KVM_MISA_CFG(RVM, KVM_RISCV_ISA_EXT_M),
186 KVM_MISA_CFG(RVV, KVM_RISCV_ISA_EXT_V),
187 };
188
kvm_cpu_get_misa_ext_cfg(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)189 static void kvm_cpu_get_misa_ext_cfg(Object *obj, Visitor *v,
190 const char *name,
191 void *opaque, Error **errp)
192 {
193 KVMCPUConfig *misa_ext_cfg = opaque;
194 target_ulong misa_bit = misa_ext_cfg->offset;
195 RISCVCPU *cpu = RISCV_CPU(obj);
196 CPURISCVState *env = &cpu->env;
197 bool value = env->misa_ext_mask & misa_bit;
198
199 visit_type_bool(v, name, &value, errp);
200 }
201
kvm_cpu_set_misa_ext_cfg(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)202 static void kvm_cpu_set_misa_ext_cfg(Object *obj, Visitor *v,
203 const char *name,
204 void *opaque, Error **errp)
205 {
206 KVMCPUConfig *misa_ext_cfg = opaque;
207 target_ulong misa_bit = misa_ext_cfg->offset;
208 RISCVCPU *cpu = RISCV_CPU(obj);
209 CPURISCVState *env = &cpu->env;
210 bool value, host_bit;
211
212 if (!visit_type_bool(v, name, &value, errp)) {
213 return;
214 }
215
216 host_bit = env->misa_ext_mask & misa_bit;
217
218 if (value == host_bit) {
219 return;
220 }
221
222 if (!value) {
223 misa_ext_cfg->user_set = true;
224 return;
225 }
226
227 /*
228 * Forbid users to enable extensions that aren't
229 * available in the hart.
230 */
231 error_setg(errp, "Enabling MISA bit '%s' is not allowed: it's not "
232 "enabled in the host", misa_ext_cfg->name);
233 }
234
kvm_riscv_update_cpu_misa_ext(RISCVCPU * cpu,CPUState * cs)235 static void kvm_riscv_update_cpu_misa_ext(RISCVCPU *cpu, CPUState *cs)
236 {
237 CPURISCVState *env = &cpu->env;
238 uint64_t id, reg;
239 int i, ret;
240
241 for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
242 KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
243 target_ulong misa_bit = misa_cfg->offset;
244
245 if (!misa_cfg->user_set) {
246 continue;
247 }
248
249 /* If we're here we're going to disable the MISA bit */
250 reg = 0;
251 id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
252 misa_cfg->kvm_reg_id);
253 ret = kvm_set_one_reg(cs, id, ®);
254 if (ret != 0) {
255 /*
256 * We're not checking for -EINVAL because if the bit is about
257 * to be disabled, it means that it was already enabled by
258 * KVM. We determined that by fetching the 'isa' register
259 * during init() time. Any error at this point is worth
260 * aborting.
261 */
262 error_report("Unable to set KVM reg %s, error %d",
263 misa_cfg->name, ret);
264 exit(EXIT_FAILURE);
265 }
266 env->misa_ext &= ~misa_bit;
267 }
268 }
269
270 #define KVM_EXT_CFG(_name, _prop, _reg_id) \
271 {.name = _name, .offset = CPU_CFG_OFFSET(_prop), \
272 .kvm_reg_id = _reg_id}
273
274 static KVMCPUConfig kvm_multi_ext_cfgs[] = {
275 KVM_EXT_CFG("zicbom", ext_zicbom, KVM_RISCV_ISA_EXT_ZICBOM),
276 KVM_EXT_CFG("zicboz", ext_zicboz, KVM_RISCV_ISA_EXT_ZICBOZ),
277 KVM_EXT_CFG("zicntr", ext_zicntr, KVM_RISCV_ISA_EXT_ZICNTR),
278 KVM_EXT_CFG("zicond", ext_zicond, KVM_RISCV_ISA_EXT_ZICOND),
279 KVM_EXT_CFG("zicsr", ext_zicsr, KVM_RISCV_ISA_EXT_ZICSR),
280 KVM_EXT_CFG("zifencei", ext_zifencei, KVM_RISCV_ISA_EXT_ZIFENCEI),
281 KVM_EXT_CFG("zihintntl", ext_zihintntl, KVM_RISCV_ISA_EXT_ZIHINTNTL),
282 KVM_EXT_CFG("zihintpause", ext_zihintpause, KVM_RISCV_ISA_EXT_ZIHINTPAUSE),
283 KVM_EXT_CFG("zihpm", ext_zihpm, KVM_RISCV_ISA_EXT_ZIHPM),
284 KVM_EXT_CFG("zacas", ext_zacas, KVM_RISCV_ISA_EXT_ZACAS),
285 KVM_EXT_CFG("zfa", ext_zfa, KVM_RISCV_ISA_EXT_ZFA),
286 KVM_EXT_CFG("zfh", ext_zfh, KVM_RISCV_ISA_EXT_ZFH),
287 KVM_EXT_CFG("zfhmin", ext_zfhmin, KVM_RISCV_ISA_EXT_ZFHMIN),
288 KVM_EXT_CFG("zba", ext_zba, KVM_RISCV_ISA_EXT_ZBA),
289 KVM_EXT_CFG("zbb", ext_zbb, KVM_RISCV_ISA_EXT_ZBB),
290 KVM_EXT_CFG("zbc", ext_zbc, KVM_RISCV_ISA_EXT_ZBC),
291 KVM_EXT_CFG("zbkb", ext_zbkb, KVM_RISCV_ISA_EXT_ZBKB),
292 KVM_EXT_CFG("zbkc", ext_zbkc, KVM_RISCV_ISA_EXT_ZBKC),
293 KVM_EXT_CFG("zbkx", ext_zbkx, KVM_RISCV_ISA_EXT_ZBKX),
294 KVM_EXT_CFG("zbs", ext_zbs, KVM_RISCV_ISA_EXT_ZBS),
295 KVM_EXT_CFG("zknd", ext_zknd, KVM_RISCV_ISA_EXT_ZKND),
296 KVM_EXT_CFG("zkne", ext_zkne, KVM_RISCV_ISA_EXT_ZKNE),
297 KVM_EXT_CFG("zknh", ext_zknh, KVM_RISCV_ISA_EXT_ZKNH),
298 KVM_EXT_CFG("zkr", ext_zkr, KVM_RISCV_ISA_EXT_ZKR),
299 KVM_EXT_CFG("zksed", ext_zksed, KVM_RISCV_ISA_EXT_ZKSED),
300 KVM_EXT_CFG("zksh", ext_zksh, KVM_RISCV_ISA_EXT_ZKSH),
301 KVM_EXT_CFG("zkt", ext_zkt, KVM_RISCV_ISA_EXT_ZKT),
302 KVM_EXT_CFG("ztso", ext_ztso, KVM_RISCV_ISA_EXT_ZTSO),
303 KVM_EXT_CFG("zvbb", ext_zvbb, KVM_RISCV_ISA_EXT_ZVBB),
304 KVM_EXT_CFG("zvbc", ext_zvbc, KVM_RISCV_ISA_EXT_ZVBC),
305 KVM_EXT_CFG("zvfh", ext_zvfh, KVM_RISCV_ISA_EXT_ZVFH),
306 KVM_EXT_CFG("zvfhmin", ext_zvfhmin, KVM_RISCV_ISA_EXT_ZVFHMIN),
307 KVM_EXT_CFG("zvkb", ext_zvkb, KVM_RISCV_ISA_EXT_ZVKB),
308 KVM_EXT_CFG("zvkg", ext_zvkg, KVM_RISCV_ISA_EXT_ZVKG),
309 KVM_EXT_CFG("zvkned", ext_zvkned, KVM_RISCV_ISA_EXT_ZVKNED),
310 KVM_EXT_CFG("zvknha", ext_zvknha, KVM_RISCV_ISA_EXT_ZVKNHA),
311 KVM_EXT_CFG("zvknhb", ext_zvknhb, KVM_RISCV_ISA_EXT_ZVKNHB),
312 KVM_EXT_CFG("zvksed", ext_zvksed, KVM_RISCV_ISA_EXT_ZVKSED),
313 KVM_EXT_CFG("zvksh", ext_zvksh, KVM_RISCV_ISA_EXT_ZVKSH),
314 KVM_EXT_CFG("zvkt", ext_zvkt, KVM_RISCV_ISA_EXT_ZVKT),
315 KVM_EXT_CFG("smstateen", ext_smstateen, KVM_RISCV_ISA_EXT_SMSTATEEN),
316 KVM_EXT_CFG("ssaia", ext_ssaia, KVM_RISCV_ISA_EXT_SSAIA),
317 KVM_EXT_CFG("sstc", ext_sstc, KVM_RISCV_ISA_EXT_SSTC),
318 KVM_EXT_CFG("svinval", ext_svinval, KVM_RISCV_ISA_EXT_SVINVAL),
319 KVM_EXT_CFG("svnapot", ext_svnapot, KVM_RISCV_ISA_EXT_SVNAPOT),
320 KVM_EXT_CFG("svpbmt", ext_svpbmt, KVM_RISCV_ISA_EXT_SVPBMT),
321 };
322
kvmconfig_get_cfg_addr(RISCVCPU * cpu,KVMCPUConfig * kvmcfg)323 static void *kvmconfig_get_cfg_addr(RISCVCPU *cpu, KVMCPUConfig *kvmcfg)
324 {
325 return (void *)&cpu->cfg + kvmcfg->offset;
326 }
327
kvm_cpu_cfg_set(RISCVCPU * cpu,KVMCPUConfig * multi_ext,uint32_t val)328 static void kvm_cpu_cfg_set(RISCVCPU *cpu, KVMCPUConfig *multi_ext,
329 uint32_t val)
330 {
331 bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
332
333 *ext_enabled = val;
334 }
335
kvm_cpu_cfg_get(RISCVCPU * cpu,KVMCPUConfig * multi_ext)336 static uint32_t kvm_cpu_cfg_get(RISCVCPU *cpu,
337 KVMCPUConfig *multi_ext)
338 {
339 bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
340
341 return *ext_enabled;
342 }
343
kvm_cpu_get_multi_ext_cfg(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)344 static void kvm_cpu_get_multi_ext_cfg(Object *obj, Visitor *v,
345 const char *name,
346 void *opaque, Error **errp)
347 {
348 KVMCPUConfig *multi_ext_cfg = opaque;
349 RISCVCPU *cpu = RISCV_CPU(obj);
350 bool value = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
351
352 visit_type_bool(v, name, &value, errp);
353 }
354
kvm_cpu_set_multi_ext_cfg(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)355 static void kvm_cpu_set_multi_ext_cfg(Object *obj, Visitor *v,
356 const char *name,
357 void *opaque, Error **errp)
358 {
359 KVMCPUConfig *multi_ext_cfg = opaque;
360 RISCVCPU *cpu = RISCV_CPU(obj);
361 bool value, host_val;
362
363 if (!visit_type_bool(v, name, &value, errp)) {
364 return;
365 }
366
367 host_val = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
368
369 /*
370 * Ignore if the user is setting the same value
371 * as the host.
372 */
373 if (value == host_val) {
374 return;
375 }
376
377 if (!multi_ext_cfg->supported) {
378 /*
379 * Error out if the user is trying to enable an
380 * extension that KVM doesn't support. Ignore
381 * option otherwise.
382 */
383 if (value) {
384 error_setg(errp, "KVM does not support disabling extension %s",
385 multi_ext_cfg->name);
386 }
387
388 return;
389 }
390
391 multi_ext_cfg->user_set = true;
392 kvm_cpu_cfg_set(cpu, multi_ext_cfg, value);
393 }
394
395 static KVMCPUConfig kvm_cbom_blocksize = {
396 .name = "cbom_blocksize",
397 .offset = CPU_CFG_OFFSET(cbom_blocksize),
398 .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicbom_block_size)
399 };
400
401 static KVMCPUConfig kvm_cboz_blocksize = {
402 .name = "cboz_blocksize",
403 .offset = CPU_CFG_OFFSET(cboz_blocksize),
404 .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicboz_block_size)
405 };
406
407 static KVMCPUConfig kvm_v_vlenb = {
408 .name = "vlenb",
409 .offset = CPU_CFG_OFFSET(vlenb),
410 .kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_VECTOR |
411 KVM_REG_RISCV_VECTOR_CSR_REG(vlenb)
412 };
413
414 static KVMCPUConfig kvm_sbi_dbcn = {
415 .name = "sbi_dbcn",
416 .kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 |
417 KVM_REG_RISCV_SBI_EXT | KVM_RISCV_SBI_EXT_DBCN
418 };
419
kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU * cpu,CPUState * cs)420 static void kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU *cpu, CPUState *cs)
421 {
422 CPURISCVState *env = &cpu->env;
423 uint64_t id, reg;
424 int i, ret;
425
426 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
427 KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
428
429 if (!multi_ext_cfg->user_set) {
430 continue;
431 }
432
433 id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
434 multi_ext_cfg->kvm_reg_id);
435 reg = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
436 ret = kvm_set_one_reg(cs, id, ®);
437 if (ret != 0) {
438 if (!reg && ret == -EINVAL) {
439 warn_report("KVM cannot disable extension %s",
440 multi_ext_cfg->name);
441 } else {
442 error_report("Unable to enable extension %s in KVM, error %d",
443 multi_ext_cfg->name, ret);
444 exit(EXIT_FAILURE);
445 }
446 }
447 }
448 }
449
cpu_get_cfg_unavailable(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)450 static void cpu_get_cfg_unavailable(Object *obj, Visitor *v,
451 const char *name,
452 void *opaque, Error **errp)
453 {
454 bool value = false;
455
456 visit_type_bool(v, name, &value, errp);
457 }
458
cpu_set_cfg_unavailable(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)459 static void cpu_set_cfg_unavailable(Object *obj, Visitor *v,
460 const char *name,
461 void *opaque, Error **errp)
462 {
463 const char *propname = opaque;
464 bool value;
465
466 if (!visit_type_bool(v, name, &value, errp)) {
467 return;
468 }
469
470 if (value) {
471 error_setg(errp, "'%s' is not available with KVM",
472 propname);
473 }
474 }
475
riscv_cpu_add_kvm_unavail_prop(Object * obj,const char * prop_name)476 static void riscv_cpu_add_kvm_unavail_prop(Object *obj, const char *prop_name)
477 {
478 /* Check if KVM created the property already */
479 if (object_property_find(obj, prop_name)) {
480 return;
481 }
482
483 /*
484 * Set the default to disabled for every extension
485 * unknown to KVM and error out if the user attempts
486 * to enable any of them.
487 */
488 object_property_add(obj, prop_name, "bool",
489 cpu_get_cfg_unavailable,
490 cpu_set_cfg_unavailable,
491 NULL, (void *)prop_name);
492 }
493
riscv_cpu_add_kvm_unavail_prop_array(Object * obj,const RISCVCPUMultiExtConfig * array)494 static void riscv_cpu_add_kvm_unavail_prop_array(Object *obj,
495 const RISCVCPUMultiExtConfig *array)
496 {
497 const RISCVCPUMultiExtConfig *prop;
498
499 g_assert(array);
500
501 for (prop = array; prop && prop->name; prop++) {
502 riscv_cpu_add_kvm_unavail_prop(obj, prop->name);
503 }
504 }
505
kvm_riscv_add_cpu_user_properties(Object * cpu_obj)506 static void kvm_riscv_add_cpu_user_properties(Object *cpu_obj)
507 {
508 int i;
509
510 riscv_add_satp_mode_properties(cpu_obj);
511
512 for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
513 KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
514 int bit = misa_cfg->offset;
515
516 misa_cfg->name = riscv_get_misa_ext_name(bit);
517 misa_cfg->description = riscv_get_misa_ext_description(bit);
518
519 object_property_add(cpu_obj, misa_cfg->name, "bool",
520 kvm_cpu_get_misa_ext_cfg,
521 kvm_cpu_set_misa_ext_cfg,
522 NULL, misa_cfg);
523 object_property_set_description(cpu_obj, misa_cfg->name,
524 misa_cfg->description);
525 }
526
527 for (i = 0; misa_bits[i] != 0; i++) {
528 const char *ext_name = riscv_get_misa_ext_name(misa_bits[i]);
529 riscv_cpu_add_kvm_unavail_prop(cpu_obj, ext_name);
530 }
531
532 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
533 KVMCPUConfig *multi_cfg = &kvm_multi_ext_cfgs[i];
534
535 object_property_add(cpu_obj, multi_cfg->name, "bool",
536 kvm_cpu_get_multi_ext_cfg,
537 kvm_cpu_set_multi_ext_cfg,
538 NULL, multi_cfg);
539 }
540
541 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_extensions);
542 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_vendor_exts);
543 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_experimental_exts);
544
545 /* We don't have the needed KVM support for profiles */
546 for (i = 0; riscv_profiles[i] != NULL; i++) {
547 riscv_cpu_add_kvm_unavail_prop(cpu_obj, riscv_profiles[i]->name);
548 }
549 }
550
kvm_riscv_get_regs_core(CPUState * cs)551 static int kvm_riscv_get_regs_core(CPUState *cs)
552 {
553 int ret = 0;
554 int i;
555 target_ulong reg;
556 CPURISCVState *env = &RISCV_CPU(cs)->env;
557
558 ret = kvm_get_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®);
559 if (ret) {
560 return ret;
561 }
562 env->pc = reg;
563
564 for (i = 1; i < 32; i++) {
565 uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i);
566 ret = kvm_get_one_reg(cs, id, ®);
567 if (ret) {
568 return ret;
569 }
570 env->gpr[i] = reg;
571 }
572
573 return ret;
574 }
575
kvm_riscv_put_regs_core(CPUState * cs)576 static int kvm_riscv_put_regs_core(CPUState *cs)
577 {
578 int ret = 0;
579 int i;
580 target_ulong reg;
581 CPURISCVState *env = &RISCV_CPU(cs)->env;
582
583 reg = env->pc;
584 ret = kvm_set_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®);
585 if (ret) {
586 return ret;
587 }
588
589 for (i = 1; i < 32; i++) {
590 uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i);
591 reg = env->gpr[i];
592 ret = kvm_set_one_reg(cs, id, ®);
593 if (ret) {
594 return ret;
595 }
596 }
597
598 return ret;
599 }
600
kvm_riscv_get_regs_csr(CPUState * cs)601 static int kvm_riscv_get_regs_csr(CPUState *cs)
602 {
603 CPURISCVState *env = &RISCV_CPU(cs)->env;
604
605 KVM_RISCV_GET_CSR(cs, env, sstatus, env->mstatus);
606 KVM_RISCV_GET_CSR(cs, env, sie, env->mie);
607 KVM_RISCV_GET_CSR(cs, env, stvec, env->stvec);
608 KVM_RISCV_GET_CSR(cs, env, sscratch, env->sscratch);
609 KVM_RISCV_GET_CSR(cs, env, sepc, env->sepc);
610 KVM_RISCV_GET_CSR(cs, env, scause, env->scause);
611 KVM_RISCV_GET_CSR(cs, env, stval, env->stval);
612 KVM_RISCV_GET_CSR(cs, env, sip, env->mip);
613 KVM_RISCV_GET_CSR(cs, env, satp, env->satp);
614
615 return 0;
616 }
617
kvm_riscv_put_regs_csr(CPUState * cs)618 static int kvm_riscv_put_regs_csr(CPUState *cs)
619 {
620 CPURISCVState *env = &RISCV_CPU(cs)->env;
621
622 KVM_RISCV_SET_CSR(cs, env, sstatus, env->mstatus);
623 KVM_RISCV_SET_CSR(cs, env, sie, env->mie);
624 KVM_RISCV_SET_CSR(cs, env, stvec, env->stvec);
625 KVM_RISCV_SET_CSR(cs, env, sscratch, env->sscratch);
626 KVM_RISCV_SET_CSR(cs, env, sepc, env->sepc);
627 KVM_RISCV_SET_CSR(cs, env, scause, env->scause);
628 KVM_RISCV_SET_CSR(cs, env, stval, env->stval);
629 KVM_RISCV_SET_CSR(cs, env, sip, env->mip);
630 KVM_RISCV_SET_CSR(cs, env, satp, env->satp);
631
632 return 0;
633 }
634
kvm_riscv_get_regs_fp(CPUState * cs)635 static int kvm_riscv_get_regs_fp(CPUState *cs)
636 {
637 int ret = 0;
638 int i;
639 CPURISCVState *env = &RISCV_CPU(cs)->env;
640
641 if (riscv_has_ext(env, RVD)) {
642 uint64_t reg;
643 for (i = 0; i < 32; i++) {
644 ret = kvm_get_one_reg(cs, RISCV_FP_D_REG(i), ®);
645 if (ret) {
646 return ret;
647 }
648 env->fpr[i] = reg;
649 }
650 return ret;
651 }
652
653 if (riscv_has_ext(env, RVF)) {
654 uint32_t reg;
655 for (i = 0; i < 32; i++) {
656 ret = kvm_get_one_reg(cs, RISCV_FP_F_REG(i), ®);
657 if (ret) {
658 return ret;
659 }
660 env->fpr[i] = reg;
661 }
662 return ret;
663 }
664
665 return ret;
666 }
667
kvm_riscv_put_regs_fp(CPUState * cs)668 static int kvm_riscv_put_regs_fp(CPUState *cs)
669 {
670 int ret = 0;
671 int i;
672 CPURISCVState *env = &RISCV_CPU(cs)->env;
673
674 if (riscv_has_ext(env, RVD)) {
675 uint64_t reg;
676 for (i = 0; i < 32; i++) {
677 reg = env->fpr[i];
678 ret = kvm_set_one_reg(cs, RISCV_FP_D_REG(i), ®);
679 if (ret) {
680 return ret;
681 }
682 }
683 return ret;
684 }
685
686 if (riscv_has_ext(env, RVF)) {
687 uint32_t reg;
688 for (i = 0; i < 32; i++) {
689 reg = env->fpr[i];
690 ret = kvm_set_one_reg(cs, RISCV_FP_F_REG(i), ®);
691 if (ret) {
692 return ret;
693 }
694 }
695 return ret;
696 }
697
698 return ret;
699 }
700
kvm_riscv_get_regs_timer(CPUState * cs)701 static void kvm_riscv_get_regs_timer(CPUState *cs)
702 {
703 CPURISCVState *env = &RISCV_CPU(cs)->env;
704
705 if (env->kvm_timer_dirty) {
706 return;
707 }
708
709 KVM_RISCV_GET_TIMER(cs, time, env->kvm_timer_time);
710 KVM_RISCV_GET_TIMER(cs, compare, env->kvm_timer_compare);
711 KVM_RISCV_GET_TIMER(cs, state, env->kvm_timer_state);
712 KVM_RISCV_GET_TIMER(cs, frequency, env->kvm_timer_frequency);
713
714 env->kvm_timer_dirty = true;
715 }
716
kvm_riscv_put_regs_timer(CPUState * cs)717 static void kvm_riscv_put_regs_timer(CPUState *cs)
718 {
719 uint64_t reg;
720 CPURISCVState *env = &RISCV_CPU(cs)->env;
721
722 if (!env->kvm_timer_dirty) {
723 return;
724 }
725
726 KVM_RISCV_SET_TIMER(cs, time, env->kvm_timer_time);
727 KVM_RISCV_SET_TIMER(cs, compare, env->kvm_timer_compare);
728
729 /*
730 * To set register of RISCV_TIMER_REG(state) will occur a error from KVM
731 * on env->kvm_timer_state == 0, It's better to adapt in KVM, but it
732 * doesn't matter that adaping in QEMU now.
733 * TODO If KVM changes, adapt here.
734 */
735 if (env->kvm_timer_state) {
736 KVM_RISCV_SET_TIMER(cs, state, env->kvm_timer_state);
737 }
738
739 /*
740 * For now, migration will not work between Hosts with different timer
741 * frequency. Therefore, we should check whether they are the same here
742 * during the migration.
743 */
744 if (migration_is_running()) {
745 KVM_RISCV_GET_TIMER(cs, frequency, reg);
746 if (reg != env->kvm_timer_frequency) {
747 error_report("Dst Hosts timer frequency != Src Hosts");
748 }
749 }
750
751 env->kvm_timer_dirty = false;
752 }
753
kvm_riscv_get_timebase_frequency(CPUState * cs)754 uint64_t kvm_riscv_get_timebase_frequency(CPUState *cs)
755 {
756 uint64_t reg;
757
758 KVM_RISCV_GET_TIMER(cs, frequency, reg);
759
760 return reg;
761 }
762
kvm_riscv_get_regs_vector(CPUState * cs)763 static int kvm_riscv_get_regs_vector(CPUState *cs)
764 {
765 RISCVCPU *cpu = RISCV_CPU(cs);
766 CPURISCVState *env = &cpu->env;
767 target_ulong reg;
768 uint64_t vreg_id;
769 int vreg_idx, ret = 0;
770
771 if (!riscv_has_ext(env, RVV)) {
772 return 0;
773 }
774
775 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®);
776 if (ret) {
777 return ret;
778 }
779 env->vstart = reg;
780
781 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®);
782 if (ret) {
783 return ret;
784 }
785 env->vl = reg;
786
787 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®);
788 if (ret) {
789 return ret;
790 }
791 env->vtype = reg;
792
793 if (kvm_v_vlenb.supported) {
794 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®);
795 if (ret) {
796 return ret;
797 }
798 cpu->cfg.vlenb = reg;
799
800 for (int i = 0; i < 32; i++) {
801 /*
802 * vreg[] is statically allocated using RV_VLEN_MAX.
803 * Use it instead of vlenb to calculate vreg_idx for
804 * simplicity.
805 */
806 vreg_idx = i * RV_VLEN_MAX / 64;
807 vreg_id = kvm_riscv_vector_reg_id(cpu, i);
808
809 ret = kvm_get_one_reg(cs, vreg_id, &env->vreg[vreg_idx]);
810 if (ret) {
811 return ret;
812 }
813 }
814 }
815
816 return 0;
817 }
818
kvm_riscv_put_regs_vector(CPUState * cs)819 static int kvm_riscv_put_regs_vector(CPUState *cs)
820 {
821 RISCVCPU *cpu = RISCV_CPU(cs);
822 CPURISCVState *env = &cpu->env;
823 target_ulong reg;
824 uint64_t vreg_id;
825 int vreg_idx, ret = 0;
826
827 if (!riscv_has_ext(env, RVV)) {
828 return 0;
829 }
830
831 reg = env->vstart;
832 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®);
833 if (ret) {
834 return ret;
835 }
836
837 reg = env->vl;
838 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®);
839 if (ret) {
840 return ret;
841 }
842
843 reg = env->vtype;
844 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®);
845 if (ret) {
846 return ret;
847 }
848
849 if (kvm_v_vlenb.supported) {
850 reg = cpu->cfg.vlenb;
851 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®);
852
853 for (int i = 0; i < 32; i++) {
854 /*
855 * vreg[] is statically allocated using RV_VLEN_MAX.
856 * Use it instead of vlenb to calculate vreg_idx for
857 * simplicity.
858 */
859 vreg_idx = i * RV_VLEN_MAX / 64;
860 vreg_id = kvm_riscv_vector_reg_id(cpu, i);
861
862 ret = kvm_set_one_reg(cs, vreg_id, &env->vreg[vreg_idx]);
863 if (ret) {
864 return ret;
865 }
866 }
867 }
868
869 return ret;
870 }
871
872 typedef struct KVMScratchCPU {
873 int kvmfd;
874 int vmfd;
875 int cpufd;
876 } KVMScratchCPU;
877
878 /*
879 * Heavily inspired by kvm_arm_create_scratch_host_vcpu()
880 * from target/arm/kvm.c.
881 */
kvm_riscv_create_scratch_vcpu(KVMScratchCPU * scratch)882 static bool kvm_riscv_create_scratch_vcpu(KVMScratchCPU *scratch)
883 {
884 int kvmfd = -1, vmfd = -1, cpufd = -1;
885
886 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
887 if (kvmfd < 0) {
888 goto err;
889 }
890 do {
891 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
892 } while (vmfd == -1 && errno == EINTR);
893 if (vmfd < 0) {
894 goto err;
895 }
896 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
897 if (cpufd < 0) {
898 goto err;
899 }
900
901 scratch->kvmfd = kvmfd;
902 scratch->vmfd = vmfd;
903 scratch->cpufd = cpufd;
904
905 return true;
906
907 err:
908 if (cpufd >= 0) {
909 close(cpufd);
910 }
911 if (vmfd >= 0) {
912 close(vmfd);
913 }
914 if (kvmfd >= 0) {
915 close(kvmfd);
916 }
917
918 return false;
919 }
920
kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU * scratch)921 static void kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU *scratch)
922 {
923 close(scratch->cpufd);
924 close(scratch->vmfd);
925 close(scratch->kvmfd);
926 }
927
kvm_riscv_init_machine_ids(RISCVCPU * cpu,KVMScratchCPU * kvmcpu)928 static void kvm_riscv_init_machine_ids(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
929 {
930 CPURISCVState *env = &cpu->env;
931 struct kvm_one_reg reg;
932 int ret;
933
934 reg.id = RISCV_CONFIG_REG(env, mvendorid);
935 reg.addr = (uint64_t)&cpu->cfg.mvendorid;
936 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
937 if (ret != 0) {
938 error_report("Unable to retrieve mvendorid from host, error %d", ret);
939 }
940
941 reg.id = RISCV_CONFIG_REG(env, marchid);
942 reg.addr = (uint64_t)&cpu->cfg.marchid;
943 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
944 if (ret != 0) {
945 error_report("Unable to retrieve marchid from host, error %d", ret);
946 }
947
948 reg.id = RISCV_CONFIG_REG(env, mimpid);
949 reg.addr = (uint64_t)&cpu->cfg.mimpid;
950 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
951 if (ret != 0) {
952 error_report("Unable to retrieve mimpid from host, error %d", ret);
953 }
954 }
955
kvm_riscv_init_misa_ext_mask(RISCVCPU * cpu,KVMScratchCPU * kvmcpu)956 static void kvm_riscv_init_misa_ext_mask(RISCVCPU *cpu,
957 KVMScratchCPU *kvmcpu)
958 {
959 CPURISCVState *env = &cpu->env;
960 struct kvm_one_reg reg;
961 int ret;
962
963 reg.id = RISCV_CONFIG_REG(env, isa);
964 reg.addr = (uint64_t)&env->misa_ext_mask;
965 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
966
967 if (ret) {
968 error_report("Unable to fetch ISA register from KVM, "
969 "error %d", ret);
970 kvm_riscv_destroy_scratch_vcpu(kvmcpu);
971 exit(EXIT_FAILURE);
972 }
973
974 env->misa_ext = env->misa_ext_mask;
975 }
976
kvm_riscv_read_cbomz_blksize(RISCVCPU * cpu,KVMScratchCPU * kvmcpu,KVMCPUConfig * cbomz_cfg)977 static void kvm_riscv_read_cbomz_blksize(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
978 KVMCPUConfig *cbomz_cfg)
979 {
980 CPURISCVState *env = &cpu->env;
981 struct kvm_one_reg reg;
982 int ret;
983
984 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
985 cbomz_cfg->kvm_reg_id);
986 reg.addr = (uint64_t)kvmconfig_get_cfg_addr(cpu, cbomz_cfg);
987 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
988 if (ret != 0) {
989 error_report("Unable to read KVM reg %s, error %d",
990 cbomz_cfg->name, ret);
991 exit(EXIT_FAILURE);
992 }
993 }
994
kvm_riscv_read_multiext_legacy(RISCVCPU * cpu,KVMScratchCPU * kvmcpu)995 static void kvm_riscv_read_multiext_legacy(RISCVCPU *cpu,
996 KVMScratchCPU *kvmcpu)
997 {
998 CPURISCVState *env = &cpu->env;
999 uint64_t val;
1000 int i, ret;
1001
1002 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
1003 KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
1004 struct kvm_one_reg reg;
1005
1006 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
1007 multi_ext_cfg->kvm_reg_id);
1008 reg.addr = (uint64_t)&val;
1009 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
1010 if (ret != 0) {
1011 if (errno == EINVAL) {
1012 /* Silently default to 'false' if KVM does not support it. */
1013 multi_ext_cfg->supported = false;
1014 val = false;
1015 } else {
1016 error_report("Unable to read ISA_EXT KVM register %s: %s",
1017 multi_ext_cfg->name, strerror(errno));
1018 exit(EXIT_FAILURE);
1019 }
1020 } else {
1021 multi_ext_cfg->supported = true;
1022 }
1023
1024 kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
1025 }
1026
1027 if (cpu->cfg.ext_zicbom) {
1028 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
1029 }
1030
1031 if (cpu->cfg.ext_zicboz) {
1032 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
1033 }
1034 }
1035
uint64_cmp(const void * a,const void * b)1036 static int uint64_cmp(const void *a, const void *b)
1037 {
1038 uint64_t val1 = *(const uint64_t *)a;
1039 uint64_t val2 = *(const uint64_t *)b;
1040
1041 if (val1 < val2) {
1042 return -1;
1043 }
1044
1045 if (val1 > val2) {
1046 return 1;
1047 }
1048
1049 return 0;
1050 }
1051
kvm_riscv_check_sbi_dbcn_support(RISCVCPU * cpu,KVMScratchCPU * kvmcpu,struct kvm_reg_list * reglist)1052 static void kvm_riscv_check_sbi_dbcn_support(RISCVCPU *cpu,
1053 KVMScratchCPU *kvmcpu,
1054 struct kvm_reg_list *reglist)
1055 {
1056 struct kvm_reg_list *reg_search;
1057
1058 reg_search = bsearch(&kvm_sbi_dbcn.kvm_reg_id, reglist->reg, reglist->n,
1059 sizeof(uint64_t), uint64_cmp);
1060
1061 if (reg_search) {
1062 kvm_sbi_dbcn.supported = true;
1063 }
1064 }
1065
kvm_riscv_read_vlenb(RISCVCPU * cpu,KVMScratchCPU * kvmcpu,struct kvm_reg_list * reglist)1066 static void kvm_riscv_read_vlenb(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
1067 struct kvm_reg_list *reglist)
1068 {
1069 struct kvm_one_reg reg;
1070 struct kvm_reg_list *reg_search;
1071 uint64_t val;
1072 int ret;
1073
1074 reg_search = bsearch(&kvm_v_vlenb.kvm_reg_id, reglist->reg, reglist->n,
1075 sizeof(uint64_t), uint64_cmp);
1076
1077 if (reg_search) {
1078 reg.id = kvm_v_vlenb.kvm_reg_id;
1079 reg.addr = (uint64_t)&val;
1080
1081 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
1082 if (ret != 0) {
1083 error_report("Unable to read vlenb register, error code: %d",
1084 errno);
1085 exit(EXIT_FAILURE);
1086 }
1087
1088 kvm_v_vlenb.supported = true;
1089 cpu->cfg.vlenb = val;
1090 }
1091 }
1092
kvm_riscv_init_multiext_cfg(RISCVCPU * cpu,KVMScratchCPU * kvmcpu)1093 static void kvm_riscv_init_multiext_cfg(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
1094 {
1095 KVMCPUConfig *multi_ext_cfg;
1096 struct kvm_one_reg reg;
1097 struct kvm_reg_list rl_struct;
1098 struct kvm_reg_list *reglist;
1099 uint64_t val, reg_id, *reg_search;
1100 int i, ret;
1101
1102 rl_struct.n = 0;
1103 ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, &rl_struct);
1104
1105 /*
1106 * If KVM_GET_REG_LIST isn't supported we'll get errno 22
1107 * (EINVAL). Use read_legacy() in this case.
1108 */
1109 if (errno == EINVAL) {
1110 return kvm_riscv_read_multiext_legacy(cpu, kvmcpu);
1111 } else if (errno != E2BIG) {
1112 /*
1113 * E2BIG is an expected error message for the API since we
1114 * don't know the number of registers. The right amount will
1115 * be written in rl_struct.n.
1116 *
1117 * Error out if we get any other errno.
1118 */
1119 error_report("Error when accessing get-reg-list: %s",
1120 strerror(errno));
1121 exit(EXIT_FAILURE);
1122 }
1123
1124 reglist = g_malloc(sizeof(struct kvm_reg_list) +
1125 rl_struct.n * sizeof(uint64_t));
1126 reglist->n = rl_struct.n;
1127 ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, reglist);
1128 if (ret) {
1129 error_report("Error when reading KVM_GET_REG_LIST: %s",
1130 strerror(errno));
1131 exit(EXIT_FAILURE);
1132 }
1133
1134 /* sort reglist to use bsearch() */
1135 qsort(®list->reg, reglist->n, sizeof(uint64_t), uint64_cmp);
1136
1137 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
1138 multi_ext_cfg = &kvm_multi_ext_cfgs[i];
1139 reg_id = kvm_riscv_reg_id_ulong(&cpu->env, KVM_REG_RISCV_ISA_EXT,
1140 multi_ext_cfg->kvm_reg_id);
1141 reg_search = bsearch(®_id, reglist->reg, reglist->n,
1142 sizeof(uint64_t), uint64_cmp);
1143 if (!reg_search) {
1144 continue;
1145 }
1146
1147 reg.id = reg_id;
1148 reg.addr = (uint64_t)&val;
1149 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®);
1150 if (ret != 0) {
1151 error_report("Unable to read ISA_EXT KVM register %s: %s",
1152 multi_ext_cfg->name, strerror(errno));
1153 exit(EXIT_FAILURE);
1154 }
1155
1156 multi_ext_cfg->supported = true;
1157 kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
1158 }
1159
1160 if (cpu->cfg.ext_zicbom) {
1161 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
1162 }
1163
1164 if (cpu->cfg.ext_zicboz) {
1165 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
1166 }
1167
1168 if (riscv_has_ext(&cpu->env, RVV)) {
1169 kvm_riscv_read_vlenb(cpu, kvmcpu, reglist);
1170 }
1171
1172 kvm_riscv_check_sbi_dbcn_support(cpu, kvmcpu, reglist);
1173 }
1174
riscv_init_kvm_registers(Object * cpu_obj)1175 static void riscv_init_kvm_registers(Object *cpu_obj)
1176 {
1177 RISCVCPU *cpu = RISCV_CPU(cpu_obj);
1178 KVMScratchCPU kvmcpu;
1179
1180 if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
1181 return;
1182 }
1183
1184 kvm_riscv_init_machine_ids(cpu, &kvmcpu);
1185 kvm_riscv_init_misa_ext_mask(cpu, &kvmcpu);
1186 kvm_riscv_init_multiext_cfg(cpu, &kvmcpu);
1187
1188 kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
1189 }
1190
1191 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
1192 KVM_CAP_LAST_INFO
1193 };
1194
kvm_arch_get_registers(CPUState * cs)1195 int kvm_arch_get_registers(CPUState *cs)
1196 {
1197 int ret = 0;
1198
1199 ret = kvm_riscv_get_regs_core(cs);
1200 if (ret) {
1201 return ret;
1202 }
1203
1204 ret = kvm_riscv_get_regs_csr(cs);
1205 if (ret) {
1206 return ret;
1207 }
1208
1209 ret = kvm_riscv_get_regs_fp(cs);
1210 if (ret) {
1211 return ret;
1212 }
1213
1214 ret = kvm_riscv_get_regs_vector(cs);
1215 if (ret) {
1216 return ret;
1217 }
1218
1219 return ret;
1220 }
1221
kvm_riscv_sync_mpstate_to_kvm(RISCVCPU * cpu,int state)1222 int kvm_riscv_sync_mpstate_to_kvm(RISCVCPU *cpu, int state)
1223 {
1224 if (cap_has_mp_state) {
1225 struct kvm_mp_state mp_state = {
1226 .mp_state = state
1227 };
1228
1229 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1230 if (ret) {
1231 fprintf(stderr, "%s: failed to sync MP_STATE %d/%s\n",
1232 __func__, ret, strerror(-ret));
1233 return -1;
1234 }
1235 }
1236
1237 return 0;
1238 }
1239
kvm_arch_put_registers(CPUState * cs,int level)1240 int kvm_arch_put_registers(CPUState *cs, int level)
1241 {
1242 int ret = 0;
1243
1244 ret = kvm_riscv_put_regs_core(cs);
1245 if (ret) {
1246 return ret;
1247 }
1248
1249 ret = kvm_riscv_put_regs_csr(cs);
1250 if (ret) {
1251 return ret;
1252 }
1253
1254 ret = kvm_riscv_put_regs_fp(cs);
1255 if (ret) {
1256 return ret;
1257 }
1258
1259 ret = kvm_riscv_put_regs_vector(cs);
1260 if (ret) {
1261 return ret;
1262 }
1263
1264 if (KVM_PUT_RESET_STATE == level) {
1265 RISCVCPU *cpu = RISCV_CPU(cs);
1266 if (cs->cpu_index == 0) {
1267 ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_RUNNABLE);
1268 } else {
1269 ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_STOPPED);
1270 }
1271 if (ret) {
1272 return ret;
1273 }
1274 }
1275
1276 return ret;
1277 }
1278
kvm_arch_release_virq_post(int virq)1279 int kvm_arch_release_virq_post(int virq)
1280 {
1281 return 0;
1282 }
1283
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)1284 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1285 uint64_t address, uint32_t data, PCIDevice *dev)
1286 {
1287 return 0;
1288 }
1289
kvm_arch_destroy_vcpu(CPUState * cs)1290 int kvm_arch_destroy_vcpu(CPUState *cs)
1291 {
1292 return 0;
1293 }
1294
kvm_arch_vcpu_id(CPUState * cpu)1295 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
1296 {
1297 return cpu->cpu_index;
1298 }
1299
kvm_riscv_vm_state_change(void * opaque,bool running,RunState state)1300 static void kvm_riscv_vm_state_change(void *opaque, bool running,
1301 RunState state)
1302 {
1303 CPUState *cs = opaque;
1304
1305 if (running) {
1306 kvm_riscv_put_regs_timer(cs);
1307 } else {
1308 kvm_riscv_get_regs_timer(cs);
1309 }
1310 }
1311
kvm_arch_init_irq_routing(KVMState * s)1312 void kvm_arch_init_irq_routing(KVMState *s)
1313 {
1314 }
1315
kvm_vcpu_set_machine_ids(RISCVCPU * cpu,CPUState * cs)1316 static int kvm_vcpu_set_machine_ids(RISCVCPU *cpu, CPUState *cs)
1317 {
1318 CPURISCVState *env = &cpu->env;
1319 target_ulong reg;
1320 uint64_t id;
1321 int ret;
1322
1323 id = RISCV_CONFIG_REG(env, mvendorid);
1324 /*
1325 * cfg.mvendorid is an uint32 but a target_ulong will
1326 * be written. Assign it to a target_ulong var to avoid
1327 * writing pieces of other cpu->cfg fields in the reg.
1328 */
1329 reg = cpu->cfg.mvendorid;
1330 ret = kvm_set_one_reg(cs, id, ®);
1331 if (ret != 0) {
1332 return ret;
1333 }
1334
1335 id = RISCV_CONFIG_REG(env, marchid);
1336 ret = kvm_set_one_reg(cs, id, &cpu->cfg.marchid);
1337 if (ret != 0) {
1338 return ret;
1339 }
1340
1341 id = RISCV_CONFIG_REG(env, mimpid);
1342 ret = kvm_set_one_reg(cs, id, &cpu->cfg.mimpid);
1343
1344 return ret;
1345 }
1346
kvm_vcpu_enable_sbi_dbcn(RISCVCPU * cpu,CPUState * cs)1347 static int kvm_vcpu_enable_sbi_dbcn(RISCVCPU *cpu, CPUState *cs)
1348 {
1349 target_ulong reg = 1;
1350
1351 if (!kvm_sbi_dbcn.supported) {
1352 return 0;
1353 }
1354
1355 return kvm_set_one_reg(cs, kvm_sbi_dbcn.kvm_reg_id, ®);
1356 }
1357
kvm_arch_init_vcpu(CPUState * cs)1358 int kvm_arch_init_vcpu(CPUState *cs)
1359 {
1360 int ret = 0;
1361 RISCVCPU *cpu = RISCV_CPU(cs);
1362
1363 qemu_add_vm_change_state_handler(kvm_riscv_vm_state_change, cs);
1364
1365 if (!object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_CPU_HOST)) {
1366 ret = kvm_vcpu_set_machine_ids(cpu, cs);
1367 if (ret != 0) {
1368 return ret;
1369 }
1370 }
1371
1372 kvm_riscv_update_cpu_misa_ext(cpu, cs);
1373 kvm_riscv_update_cpu_cfg_isa_ext(cpu, cs);
1374
1375 ret = kvm_vcpu_enable_sbi_dbcn(cpu, cs);
1376
1377 return ret;
1378 }
1379
kvm_arch_msi_data_to_gsi(uint32_t data)1380 int kvm_arch_msi_data_to_gsi(uint32_t data)
1381 {
1382 abort();
1383 }
1384
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)1385 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1386 int vector, PCIDevice *dev)
1387 {
1388 return 0;
1389 }
1390
kvm_arch_get_default_type(MachineState * ms)1391 int kvm_arch_get_default_type(MachineState *ms)
1392 {
1393 return 0;
1394 }
1395
kvm_arch_init(MachineState * ms,KVMState * s)1396 int kvm_arch_init(MachineState *ms, KVMState *s)
1397 {
1398 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
1399 return 0;
1400 }
1401
kvm_arch_irqchip_create(KVMState * s)1402 int kvm_arch_irqchip_create(KVMState *s)
1403 {
1404 if (kvm_kernel_irqchip_split()) {
1405 error_report("-machine kernel_irqchip=split is not supported on RISC-V.");
1406 exit(1);
1407 }
1408
1409 /*
1410 * We can create the VAIA using the newer device control API.
1411 */
1412 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1413 }
1414
kvm_arch_process_async_events(CPUState * cs)1415 int kvm_arch_process_async_events(CPUState *cs)
1416 {
1417 return 0;
1418 }
1419
kvm_arch_pre_run(CPUState * cs,struct kvm_run * run)1420 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1421 {
1422 }
1423
kvm_arch_post_run(CPUState * cs,struct kvm_run * run)1424 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1425 {
1426 return MEMTXATTRS_UNSPECIFIED;
1427 }
1428
kvm_arch_stop_on_emulation_error(CPUState * cs)1429 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1430 {
1431 return true;
1432 }
1433
kvm_riscv_handle_sbi_dbcn(CPUState * cs,struct kvm_run * run)1434 static void kvm_riscv_handle_sbi_dbcn(CPUState *cs, struct kvm_run *run)
1435 {
1436 g_autofree uint8_t *buf = NULL;
1437 RISCVCPU *cpu = RISCV_CPU(cs);
1438 target_ulong num_bytes;
1439 uint64_t addr;
1440 unsigned char ch;
1441 int ret;
1442
1443 switch (run->riscv_sbi.function_id) {
1444 case SBI_EXT_DBCN_CONSOLE_READ:
1445 case SBI_EXT_DBCN_CONSOLE_WRITE:
1446 num_bytes = run->riscv_sbi.args[0];
1447
1448 if (num_bytes == 0) {
1449 run->riscv_sbi.ret[0] = SBI_SUCCESS;
1450 run->riscv_sbi.ret[1] = 0;
1451 break;
1452 }
1453
1454 addr = run->riscv_sbi.args[1];
1455
1456 /*
1457 * Handle the case where a 32 bit CPU is running in a
1458 * 64 bit addressing env.
1459 */
1460 if (riscv_cpu_mxl(&cpu->env) == MXL_RV32) {
1461 addr |= (uint64_t)run->riscv_sbi.args[2] << 32;
1462 }
1463
1464 buf = g_malloc0(num_bytes);
1465
1466 if (run->riscv_sbi.function_id == SBI_EXT_DBCN_CONSOLE_READ) {
1467 ret = qemu_chr_fe_read_all(serial_hd(0)->be, buf, num_bytes);
1468 if (ret < 0) {
1469 error_report("SBI_EXT_DBCN_CONSOLE_READ: error when "
1470 "reading chardev");
1471 exit(1);
1472 }
1473
1474 cpu_physical_memory_write(addr, buf, ret);
1475 } else {
1476 cpu_physical_memory_read(addr, buf, num_bytes);
1477
1478 ret = qemu_chr_fe_write_all(serial_hd(0)->be, buf, num_bytes);
1479 if (ret < 0) {
1480 error_report("SBI_EXT_DBCN_CONSOLE_WRITE: error when "
1481 "writing chardev");
1482 exit(1);
1483 }
1484 }
1485
1486 run->riscv_sbi.ret[0] = SBI_SUCCESS;
1487 run->riscv_sbi.ret[1] = ret;
1488 break;
1489 case SBI_EXT_DBCN_CONSOLE_WRITE_BYTE:
1490 ch = run->riscv_sbi.args[0];
1491 ret = qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
1492
1493 if (ret < 0) {
1494 error_report("SBI_EXT_DBCN_CONSOLE_WRITE_BYTE: error when "
1495 "writing chardev");
1496 exit(1);
1497 }
1498
1499 run->riscv_sbi.ret[0] = SBI_SUCCESS;
1500 run->riscv_sbi.ret[1] = 0;
1501 break;
1502 default:
1503 run->riscv_sbi.ret[0] = SBI_ERR_NOT_SUPPORTED;
1504 }
1505 }
1506
kvm_riscv_handle_sbi(CPUState * cs,struct kvm_run * run)1507 static int kvm_riscv_handle_sbi(CPUState *cs, struct kvm_run *run)
1508 {
1509 int ret = 0;
1510 unsigned char ch;
1511 switch (run->riscv_sbi.extension_id) {
1512 case SBI_EXT_0_1_CONSOLE_PUTCHAR:
1513 ch = run->riscv_sbi.args[0];
1514 qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
1515 break;
1516 case SBI_EXT_0_1_CONSOLE_GETCHAR:
1517 ret = qemu_chr_fe_read_all(serial_hd(0)->be, &ch, sizeof(ch));
1518 if (ret == sizeof(ch)) {
1519 run->riscv_sbi.ret[0] = ch;
1520 } else {
1521 run->riscv_sbi.ret[0] = -1;
1522 }
1523 ret = 0;
1524 break;
1525 case SBI_EXT_DBCN:
1526 kvm_riscv_handle_sbi_dbcn(cs, run);
1527 break;
1528 default:
1529 qemu_log_mask(LOG_UNIMP,
1530 "%s: un-handled SBI EXIT, specific reasons is %lu\n",
1531 __func__, run->riscv_sbi.extension_id);
1532 ret = -1;
1533 break;
1534 }
1535 return ret;
1536 }
1537
kvm_riscv_handle_csr(CPUState * cs,struct kvm_run * run)1538 static int kvm_riscv_handle_csr(CPUState *cs, struct kvm_run *run)
1539 {
1540 target_ulong csr_num = run->riscv_csr.csr_num;
1541 target_ulong new_value = run->riscv_csr.new_value;
1542 target_ulong write_mask = run->riscv_csr.write_mask;
1543 int ret = 0;
1544
1545 switch (csr_num) {
1546 case CSR_SEED:
1547 run->riscv_csr.ret_value = riscv_new_csr_seed(new_value, write_mask);
1548 break;
1549 default:
1550 qemu_log_mask(LOG_UNIMP,
1551 "%s: un-handled CSR EXIT for CSR %lx\n",
1552 __func__, csr_num);
1553 ret = -1;
1554 break;
1555 }
1556
1557 return ret;
1558 }
1559
kvm_riscv_handle_debug(CPUState * cs)1560 static bool kvm_riscv_handle_debug(CPUState *cs)
1561 {
1562 RISCVCPU *cpu = RISCV_CPU(cs);
1563 CPURISCVState *env = &cpu->env;
1564
1565 /* Ensure PC is synchronised */
1566 kvm_cpu_synchronize_state(cs);
1567
1568 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1569 return true;
1570 }
1571
1572 return false;
1573 }
1574
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)1575 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1576 {
1577 int ret = 0;
1578 switch (run->exit_reason) {
1579 case KVM_EXIT_RISCV_SBI:
1580 ret = kvm_riscv_handle_sbi(cs, run);
1581 break;
1582 case KVM_EXIT_RISCV_CSR:
1583 ret = kvm_riscv_handle_csr(cs, run);
1584 break;
1585 case KVM_EXIT_DEBUG:
1586 if (kvm_riscv_handle_debug(cs)) {
1587 ret = EXCP_DEBUG;
1588 }
1589 break;
1590 default:
1591 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1592 __func__, run->exit_reason);
1593 ret = -1;
1594 break;
1595 }
1596 return ret;
1597 }
1598
kvm_riscv_reset_vcpu(RISCVCPU * cpu)1599 void kvm_riscv_reset_vcpu(RISCVCPU *cpu)
1600 {
1601 CPURISCVState *env = &cpu->env;
1602 int i;
1603
1604 if (!kvm_enabled()) {
1605 return;
1606 }
1607 for (i = 0; i < 32; i++) {
1608 env->gpr[i] = 0;
1609 }
1610 env->pc = cpu->env.kernel_addr;
1611 env->gpr[10] = kvm_arch_vcpu_id(CPU(cpu)); /* a0 */
1612 env->gpr[11] = cpu->env.fdt_addr; /* a1 */
1613 env->satp = 0;
1614 env->mie = 0;
1615 env->stvec = 0;
1616 env->sscratch = 0;
1617 env->sepc = 0;
1618 env->scause = 0;
1619 env->stval = 0;
1620 env->mip = 0;
1621 }
1622
kvm_riscv_set_irq(RISCVCPU * cpu,int irq,int level)1623 void kvm_riscv_set_irq(RISCVCPU *cpu, int irq, int level)
1624 {
1625 int ret;
1626 unsigned virq = level ? KVM_INTERRUPT_SET : KVM_INTERRUPT_UNSET;
1627
1628 if (irq != IRQ_S_EXT) {
1629 perror("kvm riscv set irq != IRQ_S_EXT\n");
1630 abort();
1631 }
1632
1633 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1634 if (ret < 0) {
1635 perror("Set irq failed");
1636 abort();
1637 }
1638 }
1639
1640 static int aia_mode;
1641
kvm_aia_mode_str(uint64_t mode)1642 static const char *kvm_aia_mode_str(uint64_t mode)
1643 {
1644 switch (mode) {
1645 case KVM_DEV_RISCV_AIA_MODE_EMUL:
1646 return "emul";
1647 case KVM_DEV_RISCV_AIA_MODE_HWACCEL:
1648 return "hwaccel";
1649 case KVM_DEV_RISCV_AIA_MODE_AUTO:
1650 default:
1651 return "auto";
1652 };
1653 }
1654
riscv_get_kvm_aia(Object * obj,Error ** errp)1655 static char *riscv_get_kvm_aia(Object *obj, Error **errp)
1656 {
1657 return g_strdup(kvm_aia_mode_str(aia_mode));
1658 }
1659
riscv_set_kvm_aia(Object * obj,const char * val,Error ** errp)1660 static void riscv_set_kvm_aia(Object *obj, const char *val, Error **errp)
1661 {
1662 if (!strcmp(val, "emul")) {
1663 aia_mode = KVM_DEV_RISCV_AIA_MODE_EMUL;
1664 } else if (!strcmp(val, "hwaccel")) {
1665 aia_mode = KVM_DEV_RISCV_AIA_MODE_HWACCEL;
1666 } else if (!strcmp(val, "auto")) {
1667 aia_mode = KVM_DEV_RISCV_AIA_MODE_AUTO;
1668 } else {
1669 error_setg(errp, "Invalid KVM AIA mode");
1670 error_append_hint(errp, "Valid values are emul, hwaccel, and auto.\n");
1671 }
1672 }
1673
kvm_arch_accel_class_init(ObjectClass * oc)1674 void kvm_arch_accel_class_init(ObjectClass *oc)
1675 {
1676 object_class_property_add_str(oc, "riscv-aia", riscv_get_kvm_aia,
1677 riscv_set_kvm_aia);
1678 object_class_property_set_description(oc, "riscv-aia",
1679 "Set KVM AIA mode. Valid values are "
1680 "emul, hwaccel, and auto. Default "
1681 "is auto.");
1682 object_property_set_default_str(object_class_property_find(oc, "riscv-aia"),
1683 "auto");
1684 }
1685
kvm_riscv_aia_create(MachineState * machine,uint64_t group_shift,uint64_t aia_irq_num,uint64_t aia_msi_num,uint64_t aplic_base,uint64_t imsic_base,uint64_t guest_num)1686 void kvm_riscv_aia_create(MachineState *machine, uint64_t group_shift,
1687 uint64_t aia_irq_num, uint64_t aia_msi_num,
1688 uint64_t aplic_base, uint64_t imsic_base,
1689 uint64_t guest_num)
1690 {
1691 int ret, i;
1692 int aia_fd = -1;
1693 uint64_t default_aia_mode;
1694 uint64_t socket_count = riscv_socket_count(machine);
1695 uint64_t max_hart_per_socket = 0;
1696 uint64_t socket, base_hart, hart_count, socket_imsic_base, imsic_addr;
1697 uint64_t socket_bits, hart_bits, guest_bits;
1698
1699 aia_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_RISCV_AIA, false);
1700
1701 if (aia_fd < 0) {
1702 error_report("Unable to create in-kernel irqchip");
1703 exit(1);
1704 }
1705
1706 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1707 KVM_DEV_RISCV_AIA_CONFIG_MODE,
1708 &default_aia_mode, false, NULL);
1709 if (ret < 0) {
1710 error_report("KVM AIA: failed to get current KVM AIA mode");
1711 exit(1);
1712 }
1713 qemu_log("KVM AIA: default mode is %s\n",
1714 kvm_aia_mode_str(default_aia_mode));
1715
1716 if (default_aia_mode != aia_mode) {
1717 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1718 KVM_DEV_RISCV_AIA_CONFIG_MODE,
1719 &aia_mode, true, NULL);
1720 if (ret < 0)
1721 warn_report("KVM AIA: failed to set KVM AIA mode");
1722 else
1723 qemu_log("KVM AIA: set current mode to %s\n",
1724 kvm_aia_mode_str(aia_mode));
1725 }
1726
1727 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1728 KVM_DEV_RISCV_AIA_CONFIG_SRCS,
1729 &aia_irq_num, true, NULL);
1730 if (ret < 0) {
1731 error_report("KVM AIA: failed to set number of input irq lines");
1732 exit(1);
1733 }
1734
1735 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1736 KVM_DEV_RISCV_AIA_CONFIG_IDS,
1737 &aia_msi_num, true, NULL);
1738 if (ret < 0) {
1739 error_report("KVM AIA: failed to set number of msi");
1740 exit(1);
1741 }
1742
1743
1744 if (socket_count > 1) {
1745 socket_bits = find_last_bit(&socket_count, BITS_PER_LONG) + 1;
1746 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1747 KVM_DEV_RISCV_AIA_CONFIG_GROUP_BITS,
1748 &socket_bits, true, NULL);
1749 if (ret < 0) {
1750 error_report("KVM AIA: failed to set group_bits");
1751 exit(1);
1752 }
1753
1754 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1755 KVM_DEV_RISCV_AIA_CONFIG_GROUP_SHIFT,
1756 &group_shift, true, NULL);
1757 if (ret < 0) {
1758 error_report("KVM AIA: failed to set group_shift");
1759 exit(1);
1760 }
1761 }
1762
1763 guest_bits = guest_num == 0 ? 0 :
1764 find_last_bit(&guest_num, BITS_PER_LONG) + 1;
1765 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1766 KVM_DEV_RISCV_AIA_CONFIG_GUEST_BITS,
1767 &guest_bits, true, NULL);
1768 if (ret < 0) {
1769 error_report("KVM AIA: failed to set guest_bits");
1770 exit(1);
1771 }
1772
1773 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
1774 KVM_DEV_RISCV_AIA_ADDR_APLIC,
1775 &aplic_base, true, NULL);
1776 if (ret < 0) {
1777 error_report("KVM AIA: failed to set the base address of APLIC");
1778 exit(1);
1779 }
1780
1781 for (socket = 0; socket < socket_count; socket++) {
1782 socket_imsic_base = imsic_base + socket * (1U << group_shift);
1783 hart_count = riscv_socket_hart_count(machine, socket);
1784 base_hart = riscv_socket_first_hartid(machine, socket);
1785
1786 if (max_hart_per_socket < hart_count) {
1787 max_hart_per_socket = hart_count;
1788 }
1789
1790 for (i = 0; i < hart_count; i++) {
1791 imsic_addr = socket_imsic_base + i * IMSIC_HART_SIZE(guest_bits);
1792 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
1793 KVM_DEV_RISCV_AIA_ADDR_IMSIC(i + base_hart),
1794 &imsic_addr, true, NULL);
1795 if (ret < 0) {
1796 error_report("KVM AIA: failed to set the IMSIC address for hart %d", i);
1797 exit(1);
1798 }
1799 }
1800 }
1801
1802
1803 if (max_hart_per_socket > 1) {
1804 max_hart_per_socket--;
1805 hart_bits = find_last_bit(&max_hart_per_socket, BITS_PER_LONG) + 1;
1806 } else {
1807 hart_bits = 0;
1808 }
1809
1810 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1811 KVM_DEV_RISCV_AIA_CONFIG_HART_BITS,
1812 &hart_bits, true, NULL);
1813 if (ret < 0) {
1814 error_report("KVM AIA: failed to set hart_bits");
1815 exit(1);
1816 }
1817
1818 if (kvm_has_gsi_routing()) {
1819 for (uint64_t idx = 0; idx < aia_irq_num + 1; ++idx) {
1820 /* KVM AIA only has one APLIC instance */
1821 kvm_irqchip_add_irq_route(kvm_state, idx, 0, idx);
1822 }
1823 kvm_gsi_routing_allowed = true;
1824 kvm_irqchip_commit_routes(kvm_state);
1825 }
1826
1827 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CTRL,
1828 KVM_DEV_RISCV_AIA_CTRL_INIT,
1829 NULL, true, NULL);
1830 if (ret < 0) {
1831 error_report("KVM AIA: initialized fail");
1832 exit(1);
1833 }
1834
1835 kvm_msi_via_irqfd_allowed = true;
1836 }
1837
kvm_cpu_instance_init(CPUState * cs)1838 static void kvm_cpu_instance_init(CPUState *cs)
1839 {
1840 Object *obj = OBJECT(RISCV_CPU(cs));
1841
1842 riscv_init_kvm_registers(obj);
1843
1844 kvm_riscv_add_cpu_user_properties(obj);
1845 }
1846
1847 /*
1848 * We'll get here via the following path:
1849 *
1850 * riscv_cpu_realize()
1851 * -> cpu_exec_realizefn()
1852 * -> kvm_cpu_realize() (via accel_cpu_common_realize())
1853 */
kvm_cpu_realize(CPUState * cs,Error ** errp)1854 static bool kvm_cpu_realize(CPUState *cs, Error **errp)
1855 {
1856 RISCVCPU *cpu = RISCV_CPU(cs);
1857 int ret;
1858
1859 if (riscv_has_ext(&cpu->env, RVV)) {
1860 ret = prctl(PR_RISCV_V_SET_CONTROL, PR_RISCV_V_VSTATE_CTRL_ON);
1861 if (ret) {
1862 error_setg(errp, "Error in prctl PR_RISCV_V_SET_CONTROL, code: %s",
1863 strerrorname_np(errno));
1864 return false;
1865 }
1866 }
1867
1868 return true;
1869 }
1870
riscv_kvm_cpu_finalize_features(RISCVCPU * cpu,Error ** errp)1871 void riscv_kvm_cpu_finalize_features(RISCVCPU *cpu, Error **errp)
1872 {
1873 CPURISCVState *env = &cpu->env;
1874 KVMScratchCPU kvmcpu;
1875 struct kvm_one_reg reg;
1876 uint64_t val;
1877 int ret;
1878
1879 /* short-circuit without spinning the scratch CPU */
1880 if (!cpu->cfg.ext_zicbom && !cpu->cfg.ext_zicboz &&
1881 !riscv_has_ext(env, RVV)) {
1882 return;
1883 }
1884
1885 if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
1886 error_setg(errp, "Unable to create scratch KVM cpu");
1887 return;
1888 }
1889
1890 if (cpu->cfg.ext_zicbom &&
1891 riscv_cpu_option_set(kvm_cbom_blocksize.name)) {
1892
1893 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
1894 kvm_cbom_blocksize.kvm_reg_id);
1895 reg.addr = (uint64_t)&val;
1896 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®);
1897 if (ret != 0) {
1898 error_setg(errp, "Unable to read cbom_blocksize, error %d", errno);
1899 return;
1900 }
1901
1902 if (cpu->cfg.cbom_blocksize != val) {
1903 error_setg(errp, "Unable to set cbom_blocksize to a different "
1904 "value than the host (%lu)", val);
1905 return;
1906 }
1907 }
1908
1909 if (cpu->cfg.ext_zicboz &&
1910 riscv_cpu_option_set(kvm_cboz_blocksize.name)) {
1911
1912 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
1913 kvm_cboz_blocksize.kvm_reg_id);
1914 reg.addr = (uint64_t)&val;
1915 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®);
1916 if (ret != 0) {
1917 error_setg(errp, "Unable to read cboz_blocksize, error %d", errno);
1918 return;
1919 }
1920
1921 if (cpu->cfg.cboz_blocksize != val) {
1922 error_setg(errp, "Unable to set cboz_blocksize to a different "
1923 "value than the host (%lu)", val);
1924 return;
1925 }
1926 }
1927
1928 /* Users are setting vlen, not vlenb */
1929 if (riscv_has_ext(env, RVV) && riscv_cpu_option_set("vlen")) {
1930 if (!kvm_v_vlenb.supported) {
1931 error_setg(errp, "Unable to set 'vlenb': register not supported");
1932 return;
1933 }
1934
1935 reg.id = kvm_v_vlenb.kvm_reg_id;
1936 reg.addr = (uint64_t)&val;
1937 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®);
1938 if (ret != 0) {
1939 error_setg(errp, "Unable to read vlenb register, error %d", errno);
1940 return;
1941 }
1942
1943 if (cpu->cfg.vlenb != val) {
1944 error_setg(errp, "Unable to set 'vlen' to a different "
1945 "value than the host (%lu)", val * 8);
1946 return;
1947 }
1948 }
1949
1950 kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
1951 }
1952
kvm_cpu_accel_class_init(ObjectClass * oc,void * data)1953 static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data)
1954 {
1955 AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
1956
1957 acc->cpu_instance_init = kvm_cpu_instance_init;
1958 acc->cpu_target_realize = kvm_cpu_realize;
1959 }
1960
1961 static const TypeInfo kvm_cpu_accel_type_info = {
1962 .name = ACCEL_CPU_NAME("kvm"),
1963
1964 .parent = TYPE_ACCEL_CPU,
1965 .class_init = kvm_cpu_accel_class_init,
1966 .abstract = true,
1967 };
kvm_cpu_accel_register_types(void)1968 static void kvm_cpu_accel_register_types(void)
1969 {
1970 type_register_static(&kvm_cpu_accel_type_info);
1971 }
1972 type_init(kvm_cpu_accel_register_types);
1973
riscv_host_cpu_class_init(ObjectClass * c,void * data)1974 static void riscv_host_cpu_class_init(ObjectClass *c, void *data)
1975 {
1976 RISCVCPUClass *mcc = RISCV_CPU_CLASS(c);
1977
1978 #if defined(TARGET_RISCV32)
1979 mcc->misa_mxl_max = MXL_RV32;
1980 #elif defined(TARGET_RISCV64)
1981 mcc->misa_mxl_max = MXL_RV64;
1982 #endif
1983 }
1984
1985 static const TypeInfo riscv_kvm_cpu_type_infos[] = {
1986 {
1987 .name = TYPE_RISCV_CPU_HOST,
1988 .parent = TYPE_RISCV_CPU,
1989 .class_init = riscv_host_cpu_class_init,
1990 }
1991 };
1992
1993 DEFINE_TYPES(riscv_kvm_cpu_type_infos)
1994
1995 static const uint32_t ebreak_insn = 0x00100073;
1996 static const uint16_t c_ebreak_insn = 0x9002;
1997
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)1998 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1999 {
2000 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 0)) {
2001 return -EINVAL;
2002 }
2003
2004 if ((bp->saved_insn & 0x3) == 0x3) {
2005 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0)
2006 || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak_insn, 4, 1)) {
2007 return -EINVAL;
2008 }
2009 } else {
2010 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak_insn, 2, 1)) {
2011 return -EINVAL;
2012 }
2013 }
2014
2015 return 0;
2016 }
2017
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)2018 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2019 {
2020 uint32_t ebreak;
2021 uint16_t c_ebreak;
2022
2023 if ((bp->saved_insn & 0x3) == 0x3) {
2024 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak, 4, 0) ||
2025 ebreak != ebreak_insn ||
2026 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2027 return -EINVAL;
2028 }
2029 } else {
2030 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak, 2, 0) ||
2031 c_ebreak != c_ebreak_insn ||
2032 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 1)) {
2033 return -EINVAL;
2034 }
2035 }
2036
2037 return 0;
2038 }
2039
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)2040 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2041 {
2042 /* TODO; To be implemented later. */
2043 return -EINVAL;
2044 }
2045
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)2046 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2047 {
2048 /* TODO; To be implemented later. */
2049 return -EINVAL;
2050 }
2051
kvm_arch_remove_all_hw_breakpoints(void)2052 void kvm_arch_remove_all_hw_breakpoints(void)
2053 {
2054 /* TODO; To be implemented later. */
2055 }
2056
kvm_arch_update_guest_debug(CPUState * cs,struct kvm_guest_debug * dbg)2057 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
2058 {
2059 if (kvm_sw_breakpoints_active(cs)) {
2060 dbg->control |= KVM_GUESTDBG_ENABLE;
2061 }
2062 }
2063