xref: /openbmc/linux/drivers/net/can/rcar/rcar_canfd.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0+
2  /* Renesas R-Car CAN FD device driver
3   *
4   * Copyright (C) 2015 Renesas Electronics Corp.
5   */
6  
7  /* The R-Car CAN FD controller can operate in either one of the below two modes
8   *  - CAN FD only mode
9   *  - Classical CAN (CAN 2.0) only mode
10   *
11   * This driver puts the controller in CAN FD only mode by default. In this
12   * mode, the controller acts as a CAN FD node that can also interoperate with
13   * CAN 2.0 nodes.
14   *
15   * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16   * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17   * also required to switch modes.
18   *
19   * Note: The h/w manual register naming convention is clumsy and not acceptable
20   * to use as it is in the driver. However, those names are added as comments
21   * wherever it is modified to a readable name.
22   */
23  
24  #include <linux/bitmap.h>
25  #include <linux/bitops.h>
26  #include <linux/can/dev.h>
27  #include <linux/clk.h>
28  #include <linux/errno.h>
29  #include <linux/ethtool.h>
30  #include <linux/interrupt.h>
31  #include <linux/iopoll.h>
32  #include <linux/kernel.h>
33  #include <linux/module.h>
34  #include <linux/moduleparam.h>
35  #include <linux/netdevice.h>
36  #include <linux/of.h>
37  #include <linux/phy/phy.h>
38  #include <linux/platform_device.h>
39  #include <linux/reset.h>
40  #include <linux/types.h>
41  
42  #define RCANFD_DRV_NAME			"rcar_canfd"
43  
44  /* Global register bits */
45  
46  /* RSCFDnCFDGRMCFG */
47  #define RCANFD_GRMCFG_RCMC		BIT(0)
48  
49  /* RSCFDnCFDGCFG / RSCFDnGCFG */
50  #define RCANFD_GCFG_EEFE		BIT(6)
51  #define RCANFD_GCFG_CMPOC		BIT(5)	/* CAN FD only */
52  #define RCANFD_GCFG_DCS			BIT(4)
53  #define RCANFD_GCFG_DCE			BIT(1)
54  #define RCANFD_GCFG_TPRI		BIT(0)
55  
56  /* RSCFDnCFDGCTR / RSCFDnGCTR */
57  #define RCANFD_GCTR_TSRST		BIT(16)
58  #define RCANFD_GCTR_CFMPOFIE		BIT(11)	/* CAN FD only */
59  #define RCANFD_GCTR_THLEIE		BIT(10)
60  #define RCANFD_GCTR_MEIE		BIT(9)
61  #define RCANFD_GCTR_DEIE		BIT(8)
62  #define RCANFD_GCTR_GSLPR		BIT(2)
63  #define RCANFD_GCTR_GMDC_MASK		(0x3)
64  #define RCANFD_GCTR_GMDC_GOPM		(0x0)
65  #define RCANFD_GCTR_GMDC_GRESET		(0x1)
66  #define RCANFD_GCTR_GMDC_GTEST		(0x2)
67  
68  /* RSCFDnCFDGSTS / RSCFDnGSTS */
69  #define RCANFD_GSTS_GRAMINIT		BIT(3)
70  #define RCANFD_GSTS_GSLPSTS		BIT(2)
71  #define RCANFD_GSTS_GHLTSTS		BIT(1)
72  #define RCANFD_GSTS_GRSTSTS		BIT(0)
73  /* Non-operational status */
74  #define RCANFD_GSTS_GNOPM		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
75  
76  /* RSCFDnCFDGERFL / RSCFDnGERFL */
77  #define RCANFD_GERFL_EEF0_7		GENMASK(23, 16)
78  #define RCANFD_GERFL_EEF(ch)		BIT(16 + (ch))
79  #define RCANFD_GERFL_CMPOF		BIT(3)	/* CAN FD only */
80  #define RCANFD_GERFL_THLES		BIT(2)
81  #define RCANFD_GERFL_MES		BIT(1)
82  #define RCANFD_GERFL_DEF		BIT(0)
83  
84  #define RCANFD_GERFL_ERR(gpriv, x) \
85  	((x) & (reg_gen4(gpriv, RCANFD_GERFL_EEF0_7, \
86  			 RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
87  		RCANFD_GERFL_MES | \
88  		((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
89  
90  /* AFL Rx rules registers */
91  
92  /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
93  #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
94  	(((x) & reg_gen4(gpriv, 0x1ff, 0xff)) << \
95  	 (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8)))
96  
97  #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
98  	(((x) >> (reg_gen4(gpriv, 16, 24) - ((n) & 1) * reg_gen4(gpriv, 16, 8))) & \
99  	 reg_gen4(gpriv, 0x1ff, 0xff))
100  
101  /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
102  #define RCANFD_GAFLECTR_AFLDAE		BIT(8)
103  #define RCANFD_GAFLECTR_AFLPN(gpriv, x)	((x) & reg_gen4(gpriv, 0x7f, 0x1f))
104  
105  /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
106  #define RCANFD_GAFLID_GAFLLB		BIT(29)
107  
108  /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
109  #define RCANFD_GAFLP1_GAFLFDP(x)	(1 << (x))
110  
111  /* Channel register bits */
112  
113  /* RSCFDnCmCFG - Classical CAN only */
114  #define RCANFD_CFG_SJW(x)		(((x) & 0x3) << 24)
115  #define RCANFD_CFG_TSEG2(x)		(((x) & 0x7) << 20)
116  #define RCANFD_CFG_TSEG1(x)		(((x) & 0xf) << 16)
117  #define RCANFD_CFG_BRP(x)		(((x) & 0x3ff) << 0)
118  
119  /* RSCFDnCFDCmNCFG - CAN FD only */
120  #define RCANFD_NCFG_NTSEG2(gpriv, x) \
121  	(((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 25, 24))
122  
123  #define RCANFD_NCFG_NTSEG1(gpriv, x) \
124  	(((x) & reg_gen4(gpriv, 0xff, 0x7f)) << reg_gen4(gpriv, 17, 16))
125  
126  #define RCANFD_NCFG_NSJW(gpriv, x) \
127  	(((x) & reg_gen4(gpriv, 0x7f, 0x1f)) << reg_gen4(gpriv, 10, 11))
128  
129  #define RCANFD_NCFG_NBRP(x)		(((x) & 0x3ff) << 0)
130  
131  /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
132  #define RCANFD_CCTR_CTME		BIT(24)
133  #define RCANFD_CCTR_ERRD		BIT(23)
134  #define RCANFD_CCTR_BOM_MASK		(0x3 << 21)
135  #define RCANFD_CCTR_BOM_ISO		(0x0 << 21)
136  #define RCANFD_CCTR_BOM_BENTRY		(0x1 << 21)
137  #define RCANFD_CCTR_BOM_BEND		(0x2 << 21)
138  #define RCANFD_CCTR_TDCVFIE		BIT(19)
139  #define RCANFD_CCTR_SOCOIE		BIT(18)
140  #define RCANFD_CCTR_EOCOIE		BIT(17)
141  #define RCANFD_CCTR_TAIE		BIT(16)
142  #define RCANFD_CCTR_ALIE		BIT(15)
143  #define RCANFD_CCTR_BLIE		BIT(14)
144  #define RCANFD_CCTR_OLIE		BIT(13)
145  #define RCANFD_CCTR_BORIE		BIT(12)
146  #define RCANFD_CCTR_BOEIE		BIT(11)
147  #define RCANFD_CCTR_EPIE		BIT(10)
148  #define RCANFD_CCTR_EWIE		BIT(9)
149  #define RCANFD_CCTR_BEIE		BIT(8)
150  #define RCANFD_CCTR_CSLPR		BIT(2)
151  #define RCANFD_CCTR_CHMDC_MASK		(0x3)
152  #define RCANFD_CCTR_CHDMC_COPM		(0x0)
153  #define RCANFD_CCTR_CHDMC_CRESET	(0x1)
154  #define RCANFD_CCTR_CHDMC_CHLT		(0x2)
155  
156  /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
157  #define RCANFD_CSTS_COMSTS		BIT(7)
158  #define RCANFD_CSTS_RECSTS		BIT(6)
159  #define RCANFD_CSTS_TRMSTS		BIT(5)
160  #define RCANFD_CSTS_BOSTS		BIT(4)
161  #define RCANFD_CSTS_EPSTS		BIT(3)
162  #define RCANFD_CSTS_SLPSTS		BIT(2)
163  #define RCANFD_CSTS_HLTSTS		BIT(1)
164  #define RCANFD_CSTS_CRSTSTS		BIT(0)
165  
166  #define RCANFD_CSTS_TECCNT(x)		(((x) >> 24) & 0xff)
167  #define RCANFD_CSTS_RECCNT(x)		(((x) >> 16) & 0xff)
168  
169  /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
170  #define RCANFD_CERFL_ADERR		BIT(14)
171  #define RCANFD_CERFL_B0ERR		BIT(13)
172  #define RCANFD_CERFL_B1ERR		BIT(12)
173  #define RCANFD_CERFL_CERR		BIT(11)
174  #define RCANFD_CERFL_AERR		BIT(10)
175  #define RCANFD_CERFL_FERR		BIT(9)
176  #define RCANFD_CERFL_SERR		BIT(8)
177  #define RCANFD_CERFL_ALF		BIT(7)
178  #define RCANFD_CERFL_BLF		BIT(6)
179  #define RCANFD_CERFL_OVLF		BIT(5)
180  #define RCANFD_CERFL_BORF		BIT(4)
181  #define RCANFD_CERFL_BOEF		BIT(3)
182  #define RCANFD_CERFL_EPF		BIT(2)
183  #define RCANFD_CERFL_EWF		BIT(1)
184  #define RCANFD_CERFL_BEF		BIT(0)
185  
186  #define RCANFD_CERFL_ERR(x)		((x) & (0x7fff)) /* above bits 14:0 */
187  
188  /* RSCFDnCFDCmDCFG */
189  #define RCANFD_DCFG_DSJW(gpriv, x)	(((x) & reg_gen4(gpriv, 0xf, 0x7)) << 24)
190  
191  #define RCANFD_DCFG_DTSEG2(gpriv, x) \
192  	(((x) & reg_gen4(gpriv, 0x0f, 0x7)) << reg_gen4(gpriv, 16, 20))
193  
194  #define RCANFD_DCFG_DTSEG1(gpriv, x) \
195  	(((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 8, 16))
196  
197  #define RCANFD_DCFG_DBRP(x)		(((x) & 0xff) << 0)
198  
199  /* RSCFDnCFDCmFDCFG */
200  #define RCANFD_GEN4_FDCFG_CLOE		BIT(30)
201  #define RCANFD_GEN4_FDCFG_FDOE		BIT(28)
202  #define RCANFD_FDCFG_TDCE		BIT(9)
203  #define RCANFD_FDCFG_TDCOC		BIT(8)
204  #define RCANFD_FDCFG_TDCO(x)		(((x) & 0x7f) >> 16)
205  
206  /* RSCFDnCFDRFCCx */
207  #define RCANFD_RFCC_RFIM		BIT(12)
208  #define RCANFD_RFCC_RFDC(x)		(((x) & 0x7) << 8)
209  #define RCANFD_RFCC_RFPLS(x)		(((x) & 0x7) << 4)
210  #define RCANFD_RFCC_RFIE		BIT(1)
211  #define RCANFD_RFCC_RFE			BIT(0)
212  
213  /* RSCFDnCFDRFSTSx */
214  #define RCANFD_RFSTS_RFIF		BIT(3)
215  #define RCANFD_RFSTS_RFMLT		BIT(2)
216  #define RCANFD_RFSTS_RFFLL		BIT(1)
217  #define RCANFD_RFSTS_RFEMP		BIT(0)
218  
219  /* RSCFDnCFDRFIDx */
220  #define RCANFD_RFID_RFIDE		BIT(31)
221  #define RCANFD_RFID_RFRTR		BIT(30)
222  
223  /* RSCFDnCFDRFPTRx */
224  #define RCANFD_RFPTR_RFDLC(x)		(((x) >> 28) & 0xf)
225  #define RCANFD_RFPTR_RFPTR(x)		(((x) >> 16) & 0xfff)
226  #define RCANFD_RFPTR_RFTS(x)		(((x) >> 0) & 0xffff)
227  
228  /* RSCFDnCFDRFFDSTSx */
229  #define RCANFD_RFFDSTS_RFFDF		BIT(2)
230  #define RCANFD_RFFDSTS_RFBRS		BIT(1)
231  #define RCANFD_RFFDSTS_RFESI		BIT(0)
232  
233  /* Common FIFO bits */
234  
235  /* RSCFDnCFDCFCCk */
236  #define RCANFD_CFCC_CFTML(gpriv, x)	\
237  	(((x) & reg_gen4(gpriv, 0x1f, 0xf)) << reg_gen4(gpriv, 16, 20))
238  #define RCANFD_CFCC_CFM(gpriv, x)	(((x) & 0x3) << reg_gen4(gpriv,  8, 16))
239  #define RCANFD_CFCC_CFIM		BIT(12)
240  #define RCANFD_CFCC_CFDC(gpriv, x)	(((x) & 0x7) << reg_gen4(gpriv, 21,  8))
241  #define RCANFD_CFCC_CFPLS(x)		(((x) & 0x7) << 4)
242  #define RCANFD_CFCC_CFTXIE		BIT(2)
243  #define RCANFD_CFCC_CFE			BIT(0)
244  
245  /* RSCFDnCFDCFSTSk */
246  #define RCANFD_CFSTS_CFMC(x)		(((x) >> 8) & 0xff)
247  #define RCANFD_CFSTS_CFTXIF		BIT(4)
248  #define RCANFD_CFSTS_CFMLT		BIT(2)
249  #define RCANFD_CFSTS_CFFLL		BIT(1)
250  #define RCANFD_CFSTS_CFEMP		BIT(0)
251  
252  /* RSCFDnCFDCFIDk */
253  #define RCANFD_CFID_CFIDE		BIT(31)
254  #define RCANFD_CFID_CFRTR		BIT(30)
255  #define RCANFD_CFID_CFID_MASK(x)	((x) & 0x1fffffff)
256  
257  /* RSCFDnCFDCFPTRk */
258  #define RCANFD_CFPTR_CFDLC(x)		(((x) & 0xf) << 28)
259  #define RCANFD_CFPTR_CFPTR(x)		(((x) & 0xfff) << 16)
260  #define RCANFD_CFPTR_CFTS(x)		(((x) & 0xff) << 0)
261  
262  /* RSCFDnCFDCFFDCSTSk */
263  #define RCANFD_CFFDCSTS_CFFDF		BIT(2)
264  #define RCANFD_CFFDCSTS_CFBRS		BIT(1)
265  #define RCANFD_CFFDCSTS_CFESI		BIT(0)
266  
267  /* This controller supports either Classical CAN only mode or CAN FD only mode.
268   * These modes are supported in two separate set of register maps & names.
269   * However, some of the register offsets are common for both modes. Those
270   * offsets are listed below as Common registers.
271   *
272   * The CAN FD only mode specific registers & Classical CAN only mode specific
273   * registers are listed separately. Their register names starts with
274   * RCANFD_F_xxx & RCANFD_C_xxx respectively.
275   */
276  
277  /* Common registers */
278  
279  /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
280  #define RCANFD_CCFG(m)			(0x0000 + (0x10 * (m)))
281  /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
282  #define RCANFD_CCTR(m)			(0x0004 + (0x10 * (m)))
283  /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
284  #define RCANFD_CSTS(m)			(0x0008 + (0x10 * (m)))
285  /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
286  #define RCANFD_CERFL(m)			(0x000C + (0x10 * (m)))
287  
288  /* RSCFDnCFDGCFG / RSCFDnGCFG */
289  #define RCANFD_GCFG			(0x0084)
290  /* RSCFDnCFDGCTR / RSCFDnGCTR */
291  #define RCANFD_GCTR			(0x0088)
292  /* RSCFDnCFDGCTS / RSCFDnGCTS */
293  #define RCANFD_GSTS			(0x008c)
294  /* RSCFDnCFDGERFL / RSCFDnGERFL */
295  #define RCANFD_GERFL			(0x0090)
296  /* RSCFDnCFDGTSC / RSCFDnGTSC */
297  #define RCANFD_GTSC			(0x0094)
298  /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
299  #define RCANFD_GAFLECTR			(0x0098)
300  /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
301  #define RCANFD_GAFLCFG(ch)		(0x009c + (0x04 * ((ch) / 2)))
302  /* RSCFDnCFDRMNB / RSCFDnRMNB */
303  #define RCANFD_RMNB			(0x00a4)
304  /* RSCFDnCFDRMND / RSCFDnRMND */
305  #define RCANFD_RMND(y)			(0x00a8 + (0x04 * (y)))
306  
307  /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
308  #define RCANFD_RFCC(gpriv, x)		(reg_gen4(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
309  /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
310  #define RCANFD_RFSTS(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x20)
311  /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
312  #define RCANFD_RFPCTR(gpriv, x)		(RCANFD_RFCC(gpriv, x) + 0x40)
313  
314  /* Common FIFO Control registers */
315  
316  /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
317  #define RCANFD_CFCC(gpriv, ch, idx) \
318  	(reg_gen4(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
319  /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
320  #define RCANFD_CFSTS(gpriv, ch, idx) \
321  	(reg_gen4(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
322  /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
323  #define RCANFD_CFPCTR(gpriv, ch, idx) \
324  	(reg_gen4(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
325  
326  /* RSCFDnCFDFESTS / RSCFDnFESTS */
327  #define RCANFD_FESTS			(0x0238)
328  /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
329  #define RCANFD_FFSTS			(0x023c)
330  /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
331  #define RCANFD_FMSTS			(0x0240)
332  /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
333  #define RCANFD_RFISTS			(0x0244)
334  /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
335  #define RCANFD_CFRISTS			(0x0248)
336  /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
337  #define RCANFD_CFTISTS			(0x024c)
338  
339  /* RSCFDnCFDTMCp / RSCFDnTMCp */
340  #define RCANFD_TMC(p)			(0x0250 + (0x01 * (p)))
341  /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
342  #define RCANFD_TMSTS(p)			(0x02d0 + (0x01 * (p)))
343  
344  /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
345  #define RCANFD_TMTRSTS(y)		(0x0350 + (0x04 * (y)))
346  /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
347  #define RCANFD_TMTARSTS(y)		(0x0360 + (0x04 * (y)))
348  /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
349  #define RCANFD_TMTCSTS(y)		(0x0370 + (0x04 * (y)))
350  /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
351  #define RCANFD_TMTASTS(y)		(0x0380 + (0x04 * (y)))
352  /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
353  #define RCANFD_TMIEC(y)			(0x0390 + (0x04 * (y)))
354  
355  /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
356  #define RCANFD_TXQCC(m)			(0x03a0 + (0x04 * (m)))
357  /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
358  #define RCANFD_TXQSTS(m)		(0x03c0 + (0x04 * (m)))
359  /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
360  #define RCANFD_TXQPCTR(m)		(0x03e0 + (0x04 * (m)))
361  
362  /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
363  #define RCANFD_THLCC(m)			(0x0400 + (0x04 * (m)))
364  /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
365  #define RCANFD_THLSTS(m)		(0x0420 + (0x04 * (m)))
366  /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
367  #define RCANFD_THLPCTR(m)		(0x0440 + (0x04 * (m)))
368  
369  /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
370  #define RCANFD_GTINTSTS0		(0x0460)
371  /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
372  #define RCANFD_GTINTSTS1		(0x0464)
373  /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
374  #define RCANFD_GTSTCFG			(0x0468)
375  /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
376  #define RCANFD_GTSTCTR			(0x046c)
377  /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
378  #define RCANFD_GLOCKK			(0x047c)
379  /* RSCFDnCFDGRMCFG */
380  #define RCANFD_GRMCFG			(0x04fc)
381  
382  /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
383  #define RCANFD_GAFLID(offset, j)	((offset) + (0x10 * (j)))
384  /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
385  #define RCANFD_GAFLM(offset, j)		((offset) + 0x04 + (0x10 * (j)))
386  /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
387  #define RCANFD_GAFLP0(offset, j)	((offset) + 0x08 + (0x10 * (j)))
388  /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
389  #define RCANFD_GAFLP1(offset, j)	((offset) + 0x0c + (0x10 * (j)))
390  
391  /* Classical CAN only mode register map */
392  
393  /* RSCFDnGAFLXXXj offset */
394  #define RCANFD_C_GAFL_OFFSET		(0x0500)
395  
396  /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
397  #define RCANFD_C_RMID(q)		(0x0600 + (0x10 * (q)))
398  #define RCANFD_C_RMPTR(q)		(0x0604 + (0x10 * (q)))
399  #define RCANFD_C_RMDF0(q)		(0x0608 + (0x10 * (q)))
400  #define RCANFD_C_RMDF1(q)		(0x060c + (0x10 * (q)))
401  
402  /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
403  #define RCANFD_C_RFOFFSET	(0x0e00)
404  #define RCANFD_C_RFID(x)	(RCANFD_C_RFOFFSET + (0x10 * (x)))
405  #define RCANFD_C_RFPTR(x)	(RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
406  #define RCANFD_C_RFDF(x, df) \
407  		(RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
408  
409  /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
410  #define RCANFD_C_CFOFFSET		(0x0e80)
411  
412  #define RCANFD_C_CFID(ch, idx) \
413  	(RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
414  
415  #define RCANFD_C_CFPTR(ch, idx)	\
416  	(RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
417  
418  #define RCANFD_C_CFDF(ch, idx, df) \
419  	(RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
420  
421  /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
422  #define RCANFD_C_TMID(p)		(0x1000 + (0x10 * (p)))
423  #define RCANFD_C_TMPTR(p)		(0x1004 + (0x10 * (p)))
424  #define RCANFD_C_TMDF0(p)		(0x1008 + (0x10 * (p)))
425  #define RCANFD_C_TMDF1(p)		(0x100c + (0x10 * (p)))
426  
427  /* RSCFDnTHLACCm */
428  #define RCANFD_C_THLACC(m)		(0x1800 + (0x04 * (m)))
429  /* RSCFDnRPGACCr */
430  #define RCANFD_C_RPGACC(r)		(0x1900 + (0x04 * (r)))
431  
432  /* R-Car Gen4 Classical and CAN FD mode specific register map */
433  #define RCANFD_GEN4_FDCFG(m)		(0x1404 + (0x20 * (m)))
434  
435  #define RCANFD_GEN4_GAFL_OFFSET		(0x1800)
436  
437  /* CAN FD mode specific register map */
438  
439  /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
440  #define RCANFD_F_DCFG(gpriv, m)		(reg_gen4(gpriv, 0x1400, 0x0500) + (0x20 * (m)))
441  #define RCANFD_F_CFDCFG(m)		(0x0504 + (0x20 * (m)))
442  #define RCANFD_F_CFDCTR(m)		(0x0508 + (0x20 * (m)))
443  #define RCANFD_F_CFDSTS(m)		(0x050c + (0x20 * (m)))
444  #define RCANFD_F_CFDCRC(m)		(0x0510 + (0x20 * (m)))
445  
446  /* RSCFDnCFDGAFLXXXj offset */
447  #define RCANFD_F_GAFL_OFFSET		(0x1000)
448  
449  /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
450  #define RCANFD_F_RMID(q)		(0x2000 + (0x20 * (q)))
451  #define RCANFD_F_RMPTR(q)		(0x2004 + (0x20 * (q)))
452  #define RCANFD_F_RMFDSTS(q)		(0x2008 + (0x20 * (q)))
453  #define RCANFD_F_RMDF(q, b)		(0x200c + (0x04 * (b)) + (0x20 * (q)))
454  
455  /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
456  #define RCANFD_F_RFOFFSET(gpriv)	reg_gen4(gpriv, 0x6000, 0x3000)
457  #define RCANFD_F_RFID(gpriv, x)		(RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
458  #define RCANFD_F_RFPTR(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
459  #define RCANFD_F_RFFDSTS(gpriv, x)	(RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
460  #define RCANFD_F_RFDF(gpriv, x, df) \
461  	(RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
462  
463  /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
464  #define RCANFD_F_CFOFFSET(gpriv)	reg_gen4(gpriv, 0x6400, 0x3400)
465  
466  #define RCANFD_F_CFID(gpriv, ch, idx) \
467  	(RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
468  
469  #define RCANFD_F_CFPTR(gpriv, ch, idx) \
470  	(RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
471  
472  #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
473  	(RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
474  
475  #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
476  	(RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
477  	 (0x04 * (df)))
478  
479  /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
480  #define RCANFD_F_TMID(p)		(0x4000 + (0x20 * (p)))
481  #define RCANFD_F_TMPTR(p)		(0x4004 + (0x20 * (p)))
482  #define RCANFD_F_TMFDCTR(p)		(0x4008 + (0x20 * (p)))
483  #define RCANFD_F_TMDF(p, b)		(0x400c + (0x20 * (p)) + (0x04 * (b)))
484  
485  /* RSCFDnCFDTHLACCm */
486  #define RCANFD_F_THLACC(m)		(0x6000 + (0x04 * (m)))
487  /* RSCFDnCFDRPGACCr */
488  #define RCANFD_F_RPGACC(r)		(0x6400 + (0x04 * (r)))
489  
490  /* Constants */
491  #define RCANFD_FIFO_DEPTH		8	/* Tx FIFO depth */
492  #define RCANFD_NAPI_WEIGHT		8	/* Rx poll quota */
493  
494  #define RCANFD_NUM_CHANNELS		8	/* Eight channels max */
495  #define RCANFD_CHANNELS_MASK		BIT((RCANFD_NUM_CHANNELS) - 1)
496  
497  #define RCANFD_GAFL_PAGENUM(entry)	((entry) / 16)
498  #define RCANFD_CHANNEL_NUMRULES		1	/* only one rule per channel */
499  
500  /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
501   * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
502   * number is added to RFFIFO index.
503   */
504  #define RCANFD_RFFIFO_IDX		0
505  
506  /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
507   * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
508   */
509  #define RCANFD_CFFIFO_IDX		0
510  
511  /* fCAN clock select register settings */
512  enum rcar_canfd_fcanclk {
513  	RCANFD_CANFDCLK = 0,		/* CANFD clock */
514  	RCANFD_EXTCLK,			/* Externally input clock */
515  };
516  
517  struct rcar_canfd_global;
518  
519  struct rcar_canfd_hw_info {
520  	u8 max_channels;
521  	u8 postdiv;
522  	/* hardware features */
523  	unsigned shared_global_irqs:1;	/* Has shared global irqs */
524  	unsigned multi_channel_irqs:1;	/* Has multiple channel irqs */
525  };
526  
527  /* Channel priv data */
528  struct rcar_canfd_channel {
529  	struct can_priv can;			/* Must be the first member */
530  	struct net_device *ndev;
531  	struct rcar_canfd_global *gpriv;	/* Controller reference */
532  	void __iomem *base;			/* Register base address */
533  	struct phy *transceiver;		/* Optional transceiver */
534  	struct napi_struct napi;
535  	u32 tx_head;				/* Incremented on xmit */
536  	u32 tx_tail;				/* Incremented on xmit done */
537  	u32 channel;				/* Channel number */
538  	spinlock_t tx_lock;			/* To protect tx path */
539  };
540  
541  /* Global priv data */
542  struct rcar_canfd_global {
543  	struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
544  	void __iomem *base;		/* Register base address */
545  	struct platform_device *pdev;	/* Respective platform device */
546  	struct clk *clkp;		/* Peripheral clock */
547  	struct clk *can_clk;		/* fCAN clock */
548  	enum rcar_canfd_fcanclk fcan;	/* CANFD or Ext clock */
549  	unsigned long channels_mask;	/* Enabled channels mask */
550  	bool fdmode;			/* CAN FD or Classical CAN only mode */
551  	struct reset_control *rstc1;
552  	struct reset_control *rstc2;
553  	const struct rcar_canfd_hw_info *info;
554  };
555  
556  /* CAN FD mode nominal rate constants */
557  static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
558  	.name = RCANFD_DRV_NAME,
559  	.tseg1_min = 2,
560  	.tseg1_max = 128,
561  	.tseg2_min = 2,
562  	.tseg2_max = 32,
563  	.sjw_max = 32,
564  	.brp_min = 1,
565  	.brp_max = 1024,
566  	.brp_inc = 1,
567  };
568  
569  /* CAN FD mode data rate constants */
570  static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
571  	.name = RCANFD_DRV_NAME,
572  	.tseg1_min = 2,
573  	.tseg1_max = 16,
574  	.tseg2_min = 2,
575  	.tseg2_max = 8,
576  	.sjw_max = 8,
577  	.brp_min = 1,
578  	.brp_max = 256,
579  	.brp_inc = 1,
580  };
581  
582  /* Classical CAN mode bitrate constants */
583  static const struct can_bittiming_const rcar_canfd_bittiming_const = {
584  	.name = RCANFD_DRV_NAME,
585  	.tseg1_min = 4,
586  	.tseg1_max = 16,
587  	.tseg2_min = 2,
588  	.tseg2_max = 8,
589  	.sjw_max = 4,
590  	.brp_min = 1,
591  	.brp_max = 1024,
592  	.brp_inc = 1,
593  };
594  
595  static const struct rcar_canfd_hw_info rcar_gen3_hw_info = {
596  	.max_channels = 2,
597  	.postdiv = 2,
598  	.shared_global_irqs = 1,
599  };
600  
601  static const struct rcar_canfd_hw_info rcar_gen4_hw_info = {
602  	.max_channels = 8,
603  	.postdiv = 2,
604  	.shared_global_irqs = 1,
605  };
606  
607  static const struct rcar_canfd_hw_info rzg2l_hw_info = {
608  	.max_channels = 2,
609  	.postdiv = 1,
610  	.multi_channel_irqs = 1,
611  };
612  
613  /* Helper functions */
is_gen4(struct rcar_canfd_global * gpriv)614  static inline bool is_gen4(struct rcar_canfd_global *gpriv)
615  {
616  	return gpriv->info == &rcar_gen4_hw_info;
617  }
618  
reg_gen4(struct rcar_canfd_global * gpriv,u32 gen4,u32 not_gen4)619  static inline u32 reg_gen4(struct rcar_canfd_global *gpriv,
620  			   u32 gen4, u32 not_gen4)
621  {
622  	return is_gen4(gpriv) ? gen4 : not_gen4;
623  }
624  
rcar_canfd_update(u32 mask,u32 val,u32 __iomem * reg)625  static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
626  {
627  	u32 data = readl(reg);
628  
629  	data &= ~mask;
630  	data |= (val & mask);
631  	writel(data, reg);
632  }
633  
rcar_canfd_read(void __iomem * base,u32 offset)634  static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
635  {
636  	return readl(base + (offset));
637  }
638  
rcar_canfd_write(void __iomem * base,u32 offset,u32 val)639  static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
640  {
641  	writel(val, base + (offset));
642  }
643  
rcar_canfd_set_bit(void __iomem * base,u32 reg,u32 val)644  static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
645  {
646  	rcar_canfd_update(val, val, base + (reg));
647  }
648  
rcar_canfd_clear_bit(void __iomem * base,u32 reg,u32 val)649  static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
650  {
651  	rcar_canfd_update(val, 0, base + (reg));
652  }
653  
rcar_canfd_update_bit(void __iomem * base,u32 reg,u32 mask,u32 val)654  static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
655  				  u32 mask, u32 val)
656  {
657  	rcar_canfd_update(mask, val, base + (reg));
658  }
659  
rcar_canfd_get_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)660  static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
661  				struct canfd_frame *cf, u32 off)
662  {
663  	u32 i, lwords;
664  
665  	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
666  	for (i = 0; i < lwords; i++)
667  		*((u32 *)cf->data + i) =
668  			rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
669  }
670  
rcar_canfd_put_data(struct rcar_canfd_channel * priv,struct canfd_frame * cf,u32 off)671  static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
672  				struct canfd_frame *cf, u32 off)
673  {
674  	u32 i, lwords;
675  
676  	lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
677  	for (i = 0; i < lwords; i++)
678  		rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
679  				 *((u32 *)cf->data + i));
680  }
681  
rcar_canfd_tx_failure_cleanup(struct net_device * ndev)682  static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
683  {
684  	u32 i;
685  
686  	for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
687  		can_free_echo_skb(ndev, i, NULL);
688  }
689  
rcar_canfd_set_mode(struct rcar_canfd_global * gpriv)690  static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
691  {
692  	if (is_gen4(gpriv)) {
693  		u32 ch, val = gpriv->fdmode ? RCANFD_GEN4_FDCFG_FDOE
694  					    : RCANFD_GEN4_FDCFG_CLOE;
695  
696  		for_each_set_bit(ch, &gpriv->channels_mask,
697  				 gpriv->info->max_channels)
698  			rcar_canfd_set_bit(gpriv->base, RCANFD_GEN4_FDCFG(ch),
699  					   val);
700  	} else {
701  		if (gpriv->fdmode)
702  			rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
703  					   RCANFD_GRMCFG_RCMC);
704  		else
705  			rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
706  					     RCANFD_GRMCFG_RCMC);
707  	}
708  }
709  
rcar_canfd_reset_controller(struct rcar_canfd_global * gpriv)710  static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
711  {
712  	u32 sts, ch;
713  	int err;
714  
715  	/* Check RAMINIT flag as CAN RAM initialization takes place
716  	 * after the MCU reset
717  	 */
718  	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
719  				 !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
720  	if (err) {
721  		dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
722  		return err;
723  	}
724  
725  	/* Transition to Global Reset mode */
726  	rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
727  	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
728  			      RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
729  
730  	/* Ensure Global reset mode */
731  	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
732  				 (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
733  	if (err) {
734  		dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
735  		return err;
736  	}
737  
738  	/* Reset Global error flags */
739  	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
740  
741  	/* Set the controller into appropriate mode */
742  	rcar_canfd_set_mode(gpriv);
743  
744  	/* Transition all Channels to reset mode */
745  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
746  		rcar_canfd_clear_bit(gpriv->base,
747  				     RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
748  
749  		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
750  				      RCANFD_CCTR_CHMDC_MASK,
751  				      RCANFD_CCTR_CHDMC_CRESET);
752  
753  		/* Ensure Channel reset mode */
754  		err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
755  					 (sts & RCANFD_CSTS_CRSTSTS),
756  					 2, 500000);
757  		if (err) {
758  			dev_dbg(&gpriv->pdev->dev,
759  				"channel %u reset failed\n", ch);
760  			return err;
761  		}
762  	}
763  	return 0;
764  }
765  
rcar_canfd_configure_controller(struct rcar_canfd_global * gpriv)766  static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
767  {
768  	u32 cfg, ch;
769  
770  	/* Global configuration settings */
771  
772  	/* ECC Error flag Enable */
773  	cfg = RCANFD_GCFG_EEFE;
774  
775  	if (gpriv->fdmode)
776  		/* Truncate payload to configured message size RFPLS */
777  		cfg |= RCANFD_GCFG_CMPOC;
778  
779  	/* Set External Clock if selected */
780  	if (gpriv->fcan != RCANFD_CANFDCLK)
781  		cfg |= RCANFD_GCFG_DCS;
782  
783  	rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
784  
785  	/* Channel configuration settings */
786  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
787  		rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
788  				   RCANFD_CCTR_ERRD);
789  		rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
790  				      RCANFD_CCTR_BOM_MASK,
791  				      RCANFD_CCTR_BOM_BENTRY);
792  	}
793  }
794  
rcar_canfd_configure_afl_rules(struct rcar_canfd_global * gpriv,u32 ch)795  static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
796  					   u32 ch)
797  {
798  	u32 cfg;
799  	int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
800  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
801  
802  	if (ch == 0) {
803  		start = 0; /* Channel 0 always starts from 0th rule */
804  	} else {
805  		/* Get number of Channel 0 rules and adjust */
806  		cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
807  		start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
808  	}
809  
810  	/* Enable write access to entry */
811  	page = RCANFD_GAFL_PAGENUM(start);
812  	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
813  			   (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
814  			    RCANFD_GAFLECTR_AFLDAE));
815  
816  	/* Write number of rules for channel */
817  	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
818  			   RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
819  	if (is_gen4(gpriv))
820  		offset = RCANFD_GEN4_GAFL_OFFSET;
821  	else if (gpriv->fdmode)
822  		offset = RCANFD_F_GAFL_OFFSET;
823  	else
824  		offset = RCANFD_C_GAFL_OFFSET;
825  
826  	/* Accept all IDs */
827  	rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
828  	/* IDE or RTR is not considered for matching */
829  	rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
830  	/* Any data length accepted */
831  	rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
832  	/* Place the msg in corresponding Rx FIFO entry */
833  	rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
834  			   RCANFD_GAFLP1_GAFLFDP(ridx));
835  
836  	/* Disable write access to page */
837  	rcar_canfd_clear_bit(gpriv->base,
838  			     RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
839  }
840  
rcar_canfd_configure_rx(struct rcar_canfd_global * gpriv,u32 ch)841  static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
842  {
843  	/* Rx FIFO is used for reception */
844  	u32 cfg;
845  	u16 rfdc, rfpls;
846  
847  	/* Select Rx FIFO based on channel */
848  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
849  
850  	rfdc = 2;		/* b010 - 8 messages Rx FIFO depth */
851  	if (gpriv->fdmode)
852  		rfpls = 7;	/* b111 - Max 64 bytes payload */
853  	else
854  		rfpls = 0;	/* b000 - Max 8 bytes payload */
855  
856  	cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
857  		RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
858  	rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
859  }
860  
rcar_canfd_configure_tx(struct rcar_canfd_global * gpriv,u32 ch)861  static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
862  {
863  	/* Tx/Rx(Common) FIFO configured in Tx mode is
864  	 * used for transmission
865  	 *
866  	 * Each channel has 3 Common FIFO dedicated to them.
867  	 * Use the 1st (index 0) out of 3
868  	 */
869  	u32 cfg;
870  	u16 cftml, cfm, cfdc, cfpls;
871  
872  	cftml = 0;		/* 0th buffer */
873  	cfm = 1;		/* b01 - Transmit mode */
874  	cfdc = 2;		/* b010 - 8 messages Tx FIFO depth */
875  	if (gpriv->fdmode)
876  		cfpls = 7;	/* b111 - Max 64 bytes payload */
877  	else
878  		cfpls = 0;	/* b000 - Max 8 bytes payload */
879  
880  	cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
881  		RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
882  		RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
883  	rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
884  
885  	if (gpriv->fdmode)
886  		/* Clear FD mode specific control/status register */
887  		rcar_canfd_write(gpriv->base,
888  				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
889  }
890  
rcar_canfd_enable_global_interrupts(struct rcar_canfd_global * gpriv)891  static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
892  {
893  	u32 ctr;
894  
895  	/* Clear any stray error interrupt flags */
896  	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
897  
898  	/* Global interrupts setup */
899  	ctr = RCANFD_GCTR_MEIE;
900  	if (gpriv->fdmode)
901  		ctr |= RCANFD_GCTR_CFMPOFIE;
902  
903  	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
904  }
905  
rcar_canfd_disable_global_interrupts(struct rcar_canfd_global * gpriv)906  static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
907  						 *gpriv)
908  {
909  	/* Disable all interrupts */
910  	rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
911  
912  	/* Clear any stray error interrupt flags */
913  	rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
914  }
915  
rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel * priv)916  static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
917  						 *priv)
918  {
919  	u32 ctr, ch = priv->channel;
920  
921  	/* Clear any stray error flags */
922  	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
923  
924  	/* Channel interrupts setup */
925  	ctr = (RCANFD_CCTR_TAIE |
926  	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
927  	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
928  	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
929  	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
930  	rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
931  }
932  
rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel * priv)933  static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
934  						  *priv)
935  {
936  	u32 ctr, ch = priv->channel;
937  
938  	ctr = (RCANFD_CCTR_TAIE |
939  	       RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
940  	       RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
941  	       RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
942  	       RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
943  	rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
944  
945  	/* Clear any stray error flags */
946  	rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
947  }
948  
rcar_canfd_global_error(struct net_device * ndev)949  static void rcar_canfd_global_error(struct net_device *ndev)
950  {
951  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
952  	struct rcar_canfd_global *gpriv = priv->gpriv;
953  	struct net_device_stats *stats = &ndev->stats;
954  	u32 ch = priv->channel;
955  	u32 gerfl, sts;
956  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
957  
958  	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
959  	if (gerfl & RCANFD_GERFL_EEF(ch)) {
960  		netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
961  		stats->tx_dropped++;
962  	}
963  	if (gerfl & RCANFD_GERFL_MES) {
964  		sts = rcar_canfd_read(priv->base,
965  				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
966  		if (sts & RCANFD_CFSTS_CFMLT) {
967  			netdev_dbg(ndev, "Tx Message Lost flag\n");
968  			stats->tx_dropped++;
969  			rcar_canfd_write(priv->base,
970  					 RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
971  					 sts & ~RCANFD_CFSTS_CFMLT);
972  		}
973  
974  		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
975  		if (sts & RCANFD_RFSTS_RFMLT) {
976  			netdev_dbg(ndev, "Rx Message Lost flag\n");
977  			stats->rx_dropped++;
978  			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
979  					 sts & ~RCANFD_RFSTS_RFMLT);
980  		}
981  	}
982  	if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
983  		/* Message Lost flag will be set for respective channel
984  		 * when this condition happens with counters and flags
985  		 * already updated.
986  		 */
987  		netdev_dbg(ndev, "global payload overflow interrupt\n");
988  	}
989  
990  	/* Clear all global error interrupts. Only affected channels bits
991  	 * get cleared
992  	 */
993  	rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
994  }
995  
rcar_canfd_error(struct net_device * ndev,u32 cerfl,u16 txerr,u16 rxerr)996  static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
997  			     u16 txerr, u16 rxerr)
998  {
999  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1000  	struct net_device_stats *stats = &ndev->stats;
1001  	struct can_frame *cf;
1002  	struct sk_buff *skb;
1003  	u32 ch = priv->channel;
1004  
1005  	netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
1006  
1007  	/* Propagate the error condition to the CAN stack */
1008  	skb = alloc_can_err_skb(ndev, &cf);
1009  	if (!skb) {
1010  		stats->rx_dropped++;
1011  		return;
1012  	}
1013  
1014  	/* Channel error interrupts */
1015  	if (cerfl & RCANFD_CERFL_BEF) {
1016  		netdev_dbg(ndev, "Bus error\n");
1017  		cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1018  		cf->data[2] = CAN_ERR_PROT_UNSPEC;
1019  		priv->can.can_stats.bus_error++;
1020  	}
1021  	if (cerfl & RCANFD_CERFL_ADERR) {
1022  		netdev_dbg(ndev, "ACK Delimiter Error\n");
1023  		stats->tx_errors++;
1024  		cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1025  	}
1026  	if (cerfl & RCANFD_CERFL_B0ERR) {
1027  		netdev_dbg(ndev, "Bit Error (dominant)\n");
1028  		stats->tx_errors++;
1029  		cf->data[2] |= CAN_ERR_PROT_BIT0;
1030  	}
1031  	if (cerfl & RCANFD_CERFL_B1ERR) {
1032  		netdev_dbg(ndev, "Bit Error (recessive)\n");
1033  		stats->tx_errors++;
1034  		cf->data[2] |= CAN_ERR_PROT_BIT1;
1035  	}
1036  	if (cerfl & RCANFD_CERFL_CERR) {
1037  		netdev_dbg(ndev, "CRC Error\n");
1038  		stats->rx_errors++;
1039  		cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1040  	}
1041  	if (cerfl & RCANFD_CERFL_AERR) {
1042  		netdev_dbg(ndev, "ACK Error\n");
1043  		stats->tx_errors++;
1044  		cf->can_id |= CAN_ERR_ACK;
1045  		cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1046  	}
1047  	if (cerfl & RCANFD_CERFL_FERR) {
1048  		netdev_dbg(ndev, "Form Error\n");
1049  		stats->rx_errors++;
1050  		cf->data[2] |= CAN_ERR_PROT_FORM;
1051  	}
1052  	if (cerfl & RCANFD_CERFL_SERR) {
1053  		netdev_dbg(ndev, "Stuff Error\n");
1054  		stats->rx_errors++;
1055  		cf->data[2] |= CAN_ERR_PROT_STUFF;
1056  	}
1057  	if (cerfl & RCANFD_CERFL_ALF) {
1058  		netdev_dbg(ndev, "Arbitration lost Error\n");
1059  		priv->can.can_stats.arbitration_lost++;
1060  		cf->can_id |= CAN_ERR_LOSTARB;
1061  		cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1062  	}
1063  	if (cerfl & RCANFD_CERFL_BLF) {
1064  		netdev_dbg(ndev, "Bus Lock Error\n");
1065  		stats->rx_errors++;
1066  		cf->can_id |= CAN_ERR_BUSERROR;
1067  	}
1068  	if (cerfl & RCANFD_CERFL_EWF) {
1069  		netdev_dbg(ndev, "Error warning interrupt\n");
1070  		priv->can.state = CAN_STATE_ERROR_WARNING;
1071  		priv->can.can_stats.error_warning++;
1072  		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1073  		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1074  			CAN_ERR_CRTL_RX_WARNING;
1075  		cf->data[6] = txerr;
1076  		cf->data[7] = rxerr;
1077  	}
1078  	if (cerfl & RCANFD_CERFL_EPF) {
1079  		netdev_dbg(ndev, "Error passive interrupt\n");
1080  		priv->can.state = CAN_STATE_ERROR_PASSIVE;
1081  		priv->can.can_stats.error_passive++;
1082  		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1083  		cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1084  			CAN_ERR_CRTL_RX_PASSIVE;
1085  		cf->data[6] = txerr;
1086  		cf->data[7] = rxerr;
1087  	}
1088  	if (cerfl & RCANFD_CERFL_BOEF) {
1089  		netdev_dbg(ndev, "Bus-off entry interrupt\n");
1090  		rcar_canfd_tx_failure_cleanup(ndev);
1091  		priv->can.state = CAN_STATE_BUS_OFF;
1092  		priv->can.can_stats.bus_off++;
1093  		can_bus_off(ndev);
1094  		cf->can_id |= CAN_ERR_BUSOFF;
1095  	}
1096  	if (cerfl & RCANFD_CERFL_OVLF) {
1097  		netdev_dbg(ndev,
1098  			   "Overload Frame Transmission error interrupt\n");
1099  		stats->tx_errors++;
1100  		cf->can_id |= CAN_ERR_PROT;
1101  		cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1102  	}
1103  
1104  	/* Clear channel error interrupts that are handled */
1105  	rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1106  			 RCANFD_CERFL_ERR(~cerfl));
1107  	netif_rx(skb);
1108  }
1109  
rcar_canfd_tx_done(struct net_device * ndev)1110  static void rcar_canfd_tx_done(struct net_device *ndev)
1111  {
1112  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1113  	struct rcar_canfd_global *gpriv = priv->gpriv;
1114  	struct net_device_stats *stats = &ndev->stats;
1115  	u32 sts;
1116  	unsigned long flags;
1117  	u32 ch = priv->channel;
1118  
1119  	do {
1120  		u8 unsent, sent;
1121  
1122  		sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1123  		stats->tx_packets++;
1124  		stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1125  
1126  		spin_lock_irqsave(&priv->tx_lock, flags);
1127  		priv->tx_tail++;
1128  		sts = rcar_canfd_read(priv->base,
1129  				      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1130  		unsent = RCANFD_CFSTS_CFMC(sts);
1131  
1132  		/* Wake producer only when there is room */
1133  		if (unsent != RCANFD_FIFO_DEPTH)
1134  			netif_wake_queue(ndev);
1135  
1136  		if (priv->tx_head - priv->tx_tail <= unsent) {
1137  			spin_unlock_irqrestore(&priv->tx_lock, flags);
1138  			break;
1139  		}
1140  		spin_unlock_irqrestore(&priv->tx_lock, flags);
1141  
1142  	} while (1);
1143  
1144  	/* Clear interrupt */
1145  	rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1146  			 sts & ~RCANFD_CFSTS_CFTXIF);
1147  }
1148  
rcar_canfd_handle_global_err(struct rcar_canfd_global * gpriv,u32 ch)1149  static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1150  {
1151  	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1152  	struct net_device *ndev = priv->ndev;
1153  	u32 gerfl;
1154  
1155  	/* Handle global error interrupts */
1156  	gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1157  	if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1158  		rcar_canfd_global_error(ndev);
1159  }
1160  
rcar_canfd_global_err_interrupt(int irq,void * dev_id)1161  static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1162  {
1163  	struct rcar_canfd_global *gpriv = dev_id;
1164  	u32 ch;
1165  
1166  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1167  		rcar_canfd_handle_global_err(gpriv, ch);
1168  
1169  	return IRQ_HANDLED;
1170  }
1171  
rcar_canfd_handle_global_receive(struct rcar_canfd_global * gpriv,u32 ch)1172  static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1173  {
1174  	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1175  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1176  	u32 sts, cc;
1177  
1178  	/* Handle Rx interrupts */
1179  	sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1180  	cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1181  	if (likely(sts & RCANFD_RFSTS_RFIF &&
1182  		   cc & RCANFD_RFCC_RFIE)) {
1183  		if (napi_schedule_prep(&priv->napi)) {
1184  			/* Disable Rx FIFO interrupts */
1185  			rcar_canfd_clear_bit(priv->base,
1186  					     RCANFD_RFCC(gpriv, ridx),
1187  					     RCANFD_RFCC_RFIE);
1188  			__napi_schedule(&priv->napi);
1189  		}
1190  	}
1191  }
1192  
rcar_canfd_global_receive_fifo_interrupt(int irq,void * dev_id)1193  static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1194  {
1195  	struct rcar_canfd_global *gpriv = dev_id;
1196  	u32 ch;
1197  
1198  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels)
1199  		rcar_canfd_handle_global_receive(gpriv, ch);
1200  
1201  	return IRQ_HANDLED;
1202  }
1203  
rcar_canfd_global_interrupt(int irq,void * dev_id)1204  static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1205  {
1206  	struct rcar_canfd_global *gpriv = dev_id;
1207  	u32 ch;
1208  
1209  	/* Global error interrupts still indicate a condition specific
1210  	 * to a channel. RxFIFO interrupt is a global interrupt.
1211  	 */
1212  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1213  		rcar_canfd_handle_global_err(gpriv, ch);
1214  		rcar_canfd_handle_global_receive(gpriv, ch);
1215  	}
1216  	return IRQ_HANDLED;
1217  }
1218  
rcar_canfd_state_change(struct net_device * ndev,u16 txerr,u16 rxerr)1219  static void rcar_canfd_state_change(struct net_device *ndev,
1220  				    u16 txerr, u16 rxerr)
1221  {
1222  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1223  	struct net_device_stats *stats = &ndev->stats;
1224  	enum can_state rx_state, tx_state, state = priv->can.state;
1225  	struct can_frame *cf;
1226  	struct sk_buff *skb;
1227  
1228  	/* Handle transition from error to normal states */
1229  	if (txerr < 96 && rxerr < 96)
1230  		state = CAN_STATE_ERROR_ACTIVE;
1231  	else if (txerr < 128 && rxerr < 128)
1232  		state = CAN_STATE_ERROR_WARNING;
1233  
1234  	if (state != priv->can.state) {
1235  		netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1236  			   state, priv->can.state, txerr, rxerr);
1237  		skb = alloc_can_err_skb(ndev, &cf);
1238  		if (!skb) {
1239  			stats->rx_dropped++;
1240  			return;
1241  		}
1242  		tx_state = txerr >= rxerr ? state : 0;
1243  		rx_state = txerr <= rxerr ? state : 0;
1244  
1245  		can_change_state(ndev, cf, tx_state, rx_state);
1246  		netif_rx(skb);
1247  	}
1248  }
1249  
rcar_canfd_handle_channel_tx(struct rcar_canfd_global * gpriv,u32 ch)1250  static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1251  {
1252  	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1253  	struct net_device *ndev = priv->ndev;
1254  	u32 sts;
1255  
1256  	/* Handle Tx interrupts */
1257  	sts = rcar_canfd_read(priv->base,
1258  			      RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1259  	if (likely(sts & RCANFD_CFSTS_CFTXIF))
1260  		rcar_canfd_tx_done(ndev);
1261  }
1262  
rcar_canfd_channel_tx_interrupt(int irq,void * dev_id)1263  static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1264  {
1265  	struct rcar_canfd_channel *priv = dev_id;
1266  
1267  	rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1268  
1269  	return IRQ_HANDLED;
1270  }
1271  
rcar_canfd_handle_channel_err(struct rcar_canfd_global * gpriv,u32 ch)1272  static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1273  {
1274  	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1275  	struct net_device *ndev = priv->ndev;
1276  	u16 txerr, rxerr;
1277  	u32 sts, cerfl;
1278  
1279  	/* Handle channel error interrupts */
1280  	cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1281  	sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1282  	txerr = RCANFD_CSTS_TECCNT(sts);
1283  	rxerr = RCANFD_CSTS_RECCNT(sts);
1284  	if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1285  		rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1286  
1287  	/* Handle state change to lower states */
1288  	if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1289  		     priv->can.state != CAN_STATE_BUS_OFF))
1290  		rcar_canfd_state_change(ndev, txerr, rxerr);
1291  }
1292  
rcar_canfd_channel_err_interrupt(int irq,void * dev_id)1293  static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1294  {
1295  	struct rcar_canfd_channel *priv = dev_id;
1296  
1297  	rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1298  
1299  	return IRQ_HANDLED;
1300  }
1301  
rcar_canfd_channel_interrupt(int irq,void * dev_id)1302  static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1303  {
1304  	struct rcar_canfd_global *gpriv = dev_id;
1305  	u32 ch;
1306  
1307  	/* Common FIFO is a per channel resource */
1308  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
1309  		rcar_canfd_handle_channel_err(gpriv, ch);
1310  		rcar_canfd_handle_channel_tx(gpriv, ch);
1311  	}
1312  
1313  	return IRQ_HANDLED;
1314  }
1315  
rcar_canfd_set_bittiming(struct net_device * dev)1316  static void rcar_canfd_set_bittiming(struct net_device *dev)
1317  {
1318  	struct rcar_canfd_channel *priv = netdev_priv(dev);
1319  	struct rcar_canfd_global *gpriv = priv->gpriv;
1320  	const struct can_bittiming *bt = &priv->can.bittiming;
1321  	const struct can_bittiming *dbt = &priv->can.data_bittiming;
1322  	u16 brp, sjw, tseg1, tseg2;
1323  	u32 cfg;
1324  	u32 ch = priv->channel;
1325  
1326  	/* Nominal bit timing settings */
1327  	brp = bt->brp - 1;
1328  	sjw = bt->sjw - 1;
1329  	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1330  	tseg2 = bt->phase_seg2 - 1;
1331  
1332  	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1333  		/* CAN FD only mode */
1334  		cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1335  		       RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1336  
1337  		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1338  		netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1339  			   brp, sjw, tseg1, tseg2);
1340  
1341  		/* Data bit timing settings */
1342  		brp = dbt->brp - 1;
1343  		sjw = dbt->sjw - 1;
1344  		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1345  		tseg2 = dbt->phase_seg2 - 1;
1346  
1347  		cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1348  		       RCANFD_DCFG_DSJW(gpriv, sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1349  
1350  		rcar_canfd_write(priv->base, RCANFD_F_DCFG(gpriv, ch), cfg);
1351  		netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1352  			   brp, sjw, tseg1, tseg2);
1353  	} else {
1354  		/* Classical CAN only mode */
1355  		if (is_gen4(gpriv)) {
1356  			cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1357  			       RCANFD_NCFG_NBRP(brp) |
1358  			       RCANFD_NCFG_NSJW(gpriv, sjw) |
1359  			       RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1360  		} else {
1361  			cfg = (RCANFD_CFG_TSEG1(tseg1) |
1362  			       RCANFD_CFG_BRP(brp) |
1363  			       RCANFD_CFG_SJW(sjw) |
1364  			       RCANFD_CFG_TSEG2(tseg2));
1365  		}
1366  
1367  		rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1368  		netdev_dbg(priv->ndev,
1369  			   "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1370  			   brp, sjw, tseg1, tseg2);
1371  	}
1372  }
1373  
rcar_canfd_start(struct net_device * ndev)1374  static int rcar_canfd_start(struct net_device *ndev)
1375  {
1376  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1377  	struct rcar_canfd_global *gpriv = priv->gpriv;
1378  	int err = -EOPNOTSUPP;
1379  	u32 sts, ch = priv->channel;
1380  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1381  
1382  	rcar_canfd_set_bittiming(ndev);
1383  
1384  	rcar_canfd_enable_channel_interrupts(priv);
1385  
1386  	/* Set channel to Operational mode */
1387  	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1388  			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1389  
1390  	/* Verify channel mode change */
1391  	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1392  				 (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1393  	if (err) {
1394  		netdev_err(ndev, "channel %u communication state failed\n", ch);
1395  		goto fail_mode_change;
1396  	}
1397  
1398  	/* Enable Common & Rx FIFO */
1399  	rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1400  			   RCANFD_CFCC_CFE);
1401  	rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1402  
1403  	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1404  	return 0;
1405  
1406  fail_mode_change:
1407  	rcar_canfd_disable_channel_interrupts(priv);
1408  	return err;
1409  }
1410  
rcar_canfd_open(struct net_device * ndev)1411  static int rcar_canfd_open(struct net_device *ndev)
1412  {
1413  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1414  	struct rcar_canfd_global *gpriv = priv->gpriv;
1415  	int err;
1416  
1417  	err = phy_power_on(priv->transceiver);
1418  	if (err) {
1419  		netdev_err(ndev, "failed to power on PHY: %pe\n", ERR_PTR(err));
1420  		return err;
1421  	}
1422  
1423  	/* Peripheral clock is already enabled in probe */
1424  	err = clk_prepare_enable(gpriv->can_clk);
1425  	if (err) {
1426  		netdev_err(ndev, "failed to enable CAN clock: %pe\n", ERR_PTR(err));
1427  		goto out_phy;
1428  	}
1429  
1430  	err = open_candev(ndev);
1431  	if (err) {
1432  		netdev_err(ndev, "open_candev() failed: %pe\n", ERR_PTR(err));
1433  		goto out_can_clock;
1434  	}
1435  
1436  	napi_enable(&priv->napi);
1437  	err = rcar_canfd_start(ndev);
1438  	if (err)
1439  		goto out_close;
1440  	netif_start_queue(ndev);
1441  	return 0;
1442  out_close:
1443  	napi_disable(&priv->napi);
1444  	close_candev(ndev);
1445  out_can_clock:
1446  	clk_disable_unprepare(gpriv->can_clk);
1447  out_phy:
1448  	phy_power_off(priv->transceiver);
1449  	return err;
1450  }
1451  
rcar_canfd_stop(struct net_device * ndev)1452  static void rcar_canfd_stop(struct net_device *ndev)
1453  {
1454  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1455  	struct rcar_canfd_global *gpriv = priv->gpriv;
1456  	int err;
1457  	u32 sts, ch = priv->channel;
1458  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1459  
1460  	/* Transition to channel reset mode  */
1461  	rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1462  			      RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1463  
1464  	/* Check Channel reset mode */
1465  	err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1466  				 (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1467  	if (err)
1468  		netdev_err(ndev, "channel %u reset failed\n", ch);
1469  
1470  	rcar_canfd_disable_channel_interrupts(priv);
1471  
1472  	/* Disable Common & Rx FIFO */
1473  	rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1474  			     RCANFD_CFCC_CFE);
1475  	rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1476  
1477  	/* Set the state as STOPPED */
1478  	priv->can.state = CAN_STATE_STOPPED;
1479  }
1480  
rcar_canfd_close(struct net_device * ndev)1481  static int rcar_canfd_close(struct net_device *ndev)
1482  {
1483  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1484  	struct rcar_canfd_global *gpriv = priv->gpriv;
1485  
1486  	netif_stop_queue(ndev);
1487  	rcar_canfd_stop(ndev);
1488  	napi_disable(&priv->napi);
1489  	clk_disable_unprepare(gpriv->can_clk);
1490  	close_candev(ndev);
1491  	phy_power_off(priv->transceiver);
1492  	return 0;
1493  }
1494  
rcar_canfd_start_xmit(struct sk_buff * skb,struct net_device * ndev)1495  static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1496  					 struct net_device *ndev)
1497  {
1498  	struct rcar_canfd_channel *priv = netdev_priv(ndev);
1499  	struct rcar_canfd_global *gpriv = priv->gpriv;
1500  	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1501  	u32 sts = 0, id, dlc;
1502  	unsigned long flags;
1503  	u32 ch = priv->channel;
1504  
1505  	if (can_dev_dropped_skb(ndev, skb))
1506  		return NETDEV_TX_OK;
1507  
1508  	if (cf->can_id & CAN_EFF_FLAG) {
1509  		id = cf->can_id & CAN_EFF_MASK;
1510  		id |= RCANFD_CFID_CFIDE;
1511  	} else {
1512  		id = cf->can_id & CAN_SFF_MASK;
1513  	}
1514  
1515  	if (cf->can_id & CAN_RTR_FLAG)
1516  		id |= RCANFD_CFID_CFRTR;
1517  
1518  	dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1519  
1520  	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1521  		rcar_canfd_write(priv->base,
1522  				 RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1523  		rcar_canfd_write(priv->base,
1524  				 RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1525  
1526  		if (can_is_canfd_skb(skb)) {
1527  			/* CAN FD frame format */
1528  			sts |= RCANFD_CFFDCSTS_CFFDF;
1529  			if (cf->flags & CANFD_BRS)
1530  				sts |= RCANFD_CFFDCSTS_CFBRS;
1531  
1532  			if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1533  				sts |= RCANFD_CFFDCSTS_CFESI;
1534  		}
1535  
1536  		rcar_canfd_write(priv->base,
1537  				 RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1538  
1539  		rcar_canfd_put_data(priv, cf,
1540  				    RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1541  	} else {
1542  		rcar_canfd_write(priv->base,
1543  				 RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1544  		rcar_canfd_write(priv->base,
1545  				 RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1546  		rcar_canfd_put_data(priv, cf,
1547  				    RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1548  	}
1549  
1550  	can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1551  
1552  	spin_lock_irqsave(&priv->tx_lock, flags);
1553  	priv->tx_head++;
1554  
1555  	/* Stop the queue if we've filled all FIFO entries */
1556  	if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1557  		netif_stop_queue(ndev);
1558  
1559  	/* Start Tx: Write 0xff to CFPC to increment the CPU-side
1560  	 * pointer for the Common FIFO
1561  	 */
1562  	rcar_canfd_write(priv->base,
1563  			 RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1564  
1565  	spin_unlock_irqrestore(&priv->tx_lock, flags);
1566  	return NETDEV_TX_OK;
1567  }
1568  
rcar_canfd_rx_pkt(struct rcar_canfd_channel * priv)1569  static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1570  {
1571  	struct net_device_stats *stats = &priv->ndev->stats;
1572  	struct rcar_canfd_global *gpriv = priv->gpriv;
1573  	struct canfd_frame *cf;
1574  	struct sk_buff *skb;
1575  	u32 sts = 0, id, dlc;
1576  	u32 ch = priv->channel;
1577  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1578  
1579  	if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_gen4(gpriv)) {
1580  		id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1581  		dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1582  
1583  		sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1584  
1585  		if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1586  		    sts & RCANFD_RFFDSTS_RFFDF)
1587  			skb = alloc_canfd_skb(priv->ndev, &cf);
1588  		else
1589  			skb = alloc_can_skb(priv->ndev,
1590  					    (struct can_frame **)&cf);
1591  	} else {
1592  		id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1593  		dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1594  		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1595  	}
1596  
1597  	if (!skb) {
1598  		stats->rx_dropped++;
1599  		return;
1600  	}
1601  
1602  	if (id & RCANFD_RFID_RFIDE)
1603  		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1604  	else
1605  		cf->can_id = id & CAN_SFF_MASK;
1606  
1607  	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1608  		if (sts & RCANFD_RFFDSTS_RFFDF)
1609  			cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1610  		else
1611  			cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1612  
1613  		if (sts & RCANFD_RFFDSTS_RFESI) {
1614  			cf->flags |= CANFD_ESI;
1615  			netdev_dbg(priv->ndev, "ESI Error\n");
1616  		}
1617  
1618  		if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1619  			cf->can_id |= CAN_RTR_FLAG;
1620  		} else {
1621  			if (sts & RCANFD_RFFDSTS_RFBRS)
1622  				cf->flags |= CANFD_BRS;
1623  
1624  			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1625  		}
1626  	} else {
1627  		cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1628  		if (id & RCANFD_RFID_RFRTR)
1629  			cf->can_id |= CAN_RTR_FLAG;
1630  		else if (is_gen4(gpriv))
1631  			rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1632  		else
1633  			rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1634  	}
1635  
1636  	/* Write 0xff to RFPC to increment the CPU-side
1637  	 * pointer of the Rx FIFO
1638  	 */
1639  	rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1640  
1641  	if (!(cf->can_id & CAN_RTR_FLAG))
1642  		stats->rx_bytes += cf->len;
1643  	stats->rx_packets++;
1644  	netif_receive_skb(skb);
1645  }
1646  
rcar_canfd_rx_poll(struct napi_struct * napi,int quota)1647  static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1648  {
1649  	struct rcar_canfd_channel *priv =
1650  		container_of(napi, struct rcar_canfd_channel, napi);
1651  	struct rcar_canfd_global *gpriv = priv->gpriv;
1652  	int num_pkts;
1653  	u32 sts;
1654  	u32 ch = priv->channel;
1655  	u32 ridx = ch + RCANFD_RFFIFO_IDX;
1656  
1657  	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1658  		sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1659  		/* Check FIFO empty condition */
1660  		if (sts & RCANFD_RFSTS_RFEMP)
1661  			break;
1662  
1663  		rcar_canfd_rx_pkt(priv);
1664  
1665  		/* Clear interrupt bit */
1666  		if (sts & RCANFD_RFSTS_RFIF)
1667  			rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1668  					 sts & ~RCANFD_RFSTS_RFIF);
1669  	}
1670  
1671  	/* All packets processed */
1672  	if (num_pkts < quota) {
1673  		if (napi_complete_done(napi, num_pkts)) {
1674  			/* Enable Rx FIFO interrupts */
1675  			rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1676  					   RCANFD_RFCC_RFIE);
1677  		}
1678  	}
1679  	return num_pkts;
1680  }
1681  
rcar_canfd_do_set_mode(struct net_device * ndev,enum can_mode mode)1682  static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1683  {
1684  	int err;
1685  
1686  	switch (mode) {
1687  	case CAN_MODE_START:
1688  		err = rcar_canfd_start(ndev);
1689  		if (err)
1690  			return err;
1691  		netif_wake_queue(ndev);
1692  		return 0;
1693  	default:
1694  		return -EOPNOTSUPP;
1695  	}
1696  }
1697  
rcar_canfd_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)1698  static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1699  				       struct can_berr_counter *bec)
1700  {
1701  	struct rcar_canfd_channel *priv = netdev_priv(dev);
1702  	u32 val, ch = priv->channel;
1703  
1704  	/* Peripheral clock is already enabled in probe */
1705  	val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1706  	bec->txerr = RCANFD_CSTS_TECCNT(val);
1707  	bec->rxerr = RCANFD_CSTS_RECCNT(val);
1708  	return 0;
1709  }
1710  
1711  static const struct net_device_ops rcar_canfd_netdev_ops = {
1712  	.ndo_open = rcar_canfd_open,
1713  	.ndo_stop = rcar_canfd_close,
1714  	.ndo_start_xmit = rcar_canfd_start_xmit,
1715  	.ndo_change_mtu = can_change_mtu,
1716  };
1717  
1718  static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1719  	.get_ts_info = ethtool_op_get_ts_info,
1720  };
1721  
rcar_canfd_channel_probe(struct rcar_canfd_global * gpriv,u32 ch,u32 fcan_freq,struct phy * transceiver)1722  static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1723  				    u32 fcan_freq, struct phy *transceiver)
1724  {
1725  	const struct rcar_canfd_hw_info *info = gpriv->info;
1726  	struct platform_device *pdev = gpriv->pdev;
1727  	struct device *dev = &pdev->dev;
1728  	struct rcar_canfd_channel *priv;
1729  	struct net_device *ndev;
1730  	int err = -ENODEV;
1731  
1732  	ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1733  	if (!ndev)
1734  		return -ENOMEM;
1735  
1736  	priv = netdev_priv(ndev);
1737  
1738  	ndev->netdev_ops = &rcar_canfd_netdev_ops;
1739  	ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1740  	ndev->flags |= IFF_ECHO;
1741  	priv->ndev = ndev;
1742  	priv->base = gpriv->base;
1743  	priv->transceiver = transceiver;
1744  	priv->channel = ch;
1745  	priv->gpriv = gpriv;
1746  	if (transceiver)
1747  		priv->can.bitrate_max = transceiver->attrs.max_link_rate;
1748  	priv->can.clock.freq = fcan_freq;
1749  	dev_info(dev, "can_clk rate is %u\n", priv->can.clock.freq);
1750  
1751  	if (info->multi_channel_irqs) {
1752  		char *irq_name;
1753  		int err_irq;
1754  		int tx_irq;
1755  
1756  		err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1757  		if (err_irq < 0) {
1758  			err = err_irq;
1759  			goto fail;
1760  		}
1761  
1762  		tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1763  		if (tx_irq < 0) {
1764  			err = tx_irq;
1765  			goto fail;
1766  		}
1767  
1768  		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_err",
1769  					  ch);
1770  		if (!irq_name) {
1771  			err = -ENOMEM;
1772  			goto fail;
1773  		}
1774  		err = devm_request_irq(dev, err_irq,
1775  				       rcar_canfd_channel_err_interrupt, 0,
1776  				       irq_name, priv);
1777  		if (err) {
1778  			dev_err(dev, "devm_request_irq CH Err %d failed: %pe\n",
1779  				err_irq, ERR_PTR(err));
1780  			goto fail;
1781  		}
1782  		irq_name = devm_kasprintf(dev, GFP_KERNEL, "canfd.ch%d_trx",
1783  					  ch);
1784  		if (!irq_name) {
1785  			err = -ENOMEM;
1786  			goto fail;
1787  		}
1788  		err = devm_request_irq(dev, tx_irq,
1789  				       rcar_canfd_channel_tx_interrupt, 0,
1790  				       irq_name, priv);
1791  		if (err) {
1792  			dev_err(dev, "devm_request_irq Tx %d failed: %pe\n",
1793  				tx_irq, ERR_PTR(err));
1794  			goto fail;
1795  		}
1796  	}
1797  
1798  	if (gpriv->fdmode) {
1799  		priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1800  		priv->can.data_bittiming_const =
1801  			&rcar_canfd_data_bittiming_const;
1802  
1803  		/* Controller starts in CAN FD only mode */
1804  		err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1805  		if (err)
1806  			goto fail;
1807  		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1808  	} else {
1809  		/* Controller starts in Classical CAN only mode */
1810  		priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1811  		priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1812  	}
1813  
1814  	priv->can.do_set_mode = rcar_canfd_do_set_mode;
1815  	priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1816  	SET_NETDEV_DEV(ndev, dev);
1817  
1818  	netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1819  			      RCANFD_NAPI_WEIGHT);
1820  	spin_lock_init(&priv->tx_lock);
1821  	gpriv->ch[priv->channel] = priv;
1822  	err = register_candev(ndev);
1823  	if (err) {
1824  		dev_err(dev, "register_candev() failed: %pe\n", ERR_PTR(err));
1825  		goto fail_candev;
1826  	}
1827  	dev_info(dev, "device registered (channel %u)\n", priv->channel);
1828  	return 0;
1829  
1830  fail_candev:
1831  	netif_napi_del(&priv->napi);
1832  fail:
1833  	free_candev(ndev);
1834  	return err;
1835  }
1836  
rcar_canfd_channel_remove(struct rcar_canfd_global * gpriv,u32 ch)1837  static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1838  {
1839  	struct rcar_canfd_channel *priv = gpriv->ch[ch];
1840  
1841  	if (priv) {
1842  		unregister_candev(priv->ndev);
1843  		netif_napi_del(&priv->napi);
1844  		free_candev(priv->ndev);
1845  	}
1846  }
1847  
rcar_canfd_probe(struct platform_device * pdev)1848  static int rcar_canfd_probe(struct platform_device *pdev)
1849  {
1850  	struct phy *transceivers[RCANFD_NUM_CHANNELS] = { NULL, };
1851  	const struct rcar_canfd_hw_info *info;
1852  	struct device *dev = &pdev->dev;
1853  	void __iomem *addr;
1854  	u32 sts, ch, fcan_freq;
1855  	struct rcar_canfd_global *gpriv;
1856  	struct device_node *of_child;
1857  	unsigned long channels_mask = 0;
1858  	int err, ch_irq, g_irq;
1859  	int g_err_irq, g_recc_irq;
1860  	bool fdmode = true;			/* CAN FD only mode - default */
1861  	char name[9] = "channelX";
1862  	int i;
1863  
1864  	info = of_device_get_match_data(dev);
1865  
1866  	if (of_property_read_bool(dev->of_node, "renesas,no-can-fd"))
1867  		fdmode = false;			/* Classical CAN only mode */
1868  
1869  	for (i = 0; i < info->max_channels; ++i) {
1870  		name[7] = '0' + i;
1871  		of_child = of_get_child_by_name(dev->of_node, name);
1872  		if (of_child && of_device_is_available(of_child)) {
1873  			channels_mask |= BIT(i);
1874  			transceivers[i] = devm_of_phy_optional_get(dev,
1875  							of_child, NULL);
1876  		}
1877  		of_node_put(of_child);
1878  		if (IS_ERR(transceivers[i]))
1879  			return PTR_ERR(transceivers[i]);
1880  	}
1881  
1882  	if (info->shared_global_irqs) {
1883  		ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1884  		if (ch_irq < 0) {
1885  			/* For backward compatibility get irq by index */
1886  			ch_irq = platform_get_irq(pdev, 0);
1887  			if (ch_irq < 0)
1888  				return ch_irq;
1889  		}
1890  
1891  		g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1892  		if (g_irq < 0) {
1893  			/* For backward compatibility get irq by index */
1894  			g_irq = platform_get_irq(pdev, 1);
1895  			if (g_irq < 0)
1896  				return g_irq;
1897  		}
1898  	} else {
1899  		g_err_irq = platform_get_irq_byname(pdev, "g_err");
1900  		if (g_err_irq < 0)
1901  			return g_err_irq;
1902  
1903  		g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1904  		if (g_recc_irq < 0)
1905  			return g_recc_irq;
1906  	}
1907  
1908  	/* Global controller context */
1909  	gpriv = devm_kzalloc(dev, sizeof(*gpriv), GFP_KERNEL);
1910  	if (!gpriv)
1911  		return -ENOMEM;
1912  
1913  	gpriv->pdev = pdev;
1914  	gpriv->channels_mask = channels_mask;
1915  	gpriv->fdmode = fdmode;
1916  	gpriv->info = info;
1917  
1918  	gpriv->rstc1 = devm_reset_control_get_optional_exclusive(dev, "rstp_n");
1919  	if (IS_ERR(gpriv->rstc1))
1920  		return dev_err_probe(dev, PTR_ERR(gpriv->rstc1),
1921  				     "failed to get rstp_n\n");
1922  
1923  	gpriv->rstc2 = devm_reset_control_get_optional_exclusive(dev, "rstc_n");
1924  	if (IS_ERR(gpriv->rstc2))
1925  		return dev_err_probe(dev, PTR_ERR(gpriv->rstc2),
1926  				     "failed to get rstc_n\n");
1927  
1928  	/* Peripheral clock */
1929  	gpriv->clkp = devm_clk_get(dev, "fck");
1930  	if (IS_ERR(gpriv->clkp))
1931  		return dev_err_probe(dev, PTR_ERR(gpriv->clkp),
1932  				     "cannot get peripheral clock\n");
1933  
1934  	/* fCAN clock: Pick External clock. If not available fallback to
1935  	 * CANFD clock
1936  	 */
1937  	gpriv->can_clk = devm_clk_get(dev, "can_clk");
1938  	if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1939  		gpriv->can_clk = devm_clk_get(dev, "canfd");
1940  		if (IS_ERR(gpriv->can_clk))
1941  			return dev_err_probe(dev, PTR_ERR(gpriv->can_clk),
1942  					     "cannot get canfd clock\n");
1943  
1944  		gpriv->fcan = RCANFD_CANFDCLK;
1945  
1946  	} else {
1947  		gpriv->fcan = RCANFD_EXTCLK;
1948  	}
1949  	fcan_freq = clk_get_rate(gpriv->can_clk);
1950  
1951  	if (gpriv->fcan == RCANFD_CANFDCLK)
1952  		/* CANFD clock is further divided by (1/2) within the IP */
1953  		fcan_freq /= info->postdiv;
1954  
1955  	addr = devm_platform_ioremap_resource(pdev, 0);
1956  	if (IS_ERR(addr)) {
1957  		err = PTR_ERR(addr);
1958  		goto fail_dev;
1959  	}
1960  	gpriv->base = addr;
1961  
1962  	/* Request IRQ that's common for both channels */
1963  	if (info->shared_global_irqs) {
1964  		err = devm_request_irq(dev, ch_irq,
1965  				       rcar_canfd_channel_interrupt, 0,
1966  				       "canfd.ch_int", gpriv);
1967  		if (err) {
1968  			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1969  				ch_irq, ERR_PTR(err));
1970  			goto fail_dev;
1971  		}
1972  
1973  		err = devm_request_irq(dev, g_irq, rcar_canfd_global_interrupt,
1974  				       0, "canfd.g_int", gpriv);
1975  		if (err) {
1976  			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1977  				g_irq, ERR_PTR(err));
1978  			goto fail_dev;
1979  		}
1980  	} else {
1981  		err = devm_request_irq(dev, g_recc_irq,
1982  				       rcar_canfd_global_receive_fifo_interrupt, 0,
1983  				       "canfd.g_recc", gpriv);
1984  
1985  		if (err) {
1986  			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1987  				g_recc_irq, ERR_PTR(err));
1988  			goto fail_dev;
1989  		}
1990  
1991  		err = devm_request_irq(dev, g_err_irq,
1992  				       rcar_canfd_global_err_interrupt, 0,
1993  				       "canfd.g_err", gpriv);
1994  		if (err) {
1995  			dev_err(dev, "devm_request_irq %d failed: %pe\n",
1996  				g_err_irq, ERR_PTR(err));
1997  			goto fail_dev;
1998  		}
1999  	}
2000  
2001  	err = reset_control_reset(gpriv->rstc1);
2002  	if (err)
2003  		goto fail_dev;
2004  	err = reset_control_reset(gpriv->rstc2);
2005  	if (err) {
2006  		reset_control_assert(gpriv->rstc1);
2007  		goto fail_dev;
2008  	}
2009  
2010  	/* Enable peripheral clock for register access */
2011  	err = clk_prepare_enable(gpriv->clkp);
2012  	if (err) {
2013  		dev_err(dev, "failed to enable peripheral clock: %pe\n",
2014  			ERR_PTR(err));
2015  		goto fail_reset;
2016  	}
2017  
2018  	err = rcar_canfd_reset_controller(gpriv);
2019  	if (err) {
2020  		dev_err(dev, "reset controller failed: %pe\n", ERR_PTR(err));
2021  		goto fail_clk;
2022  	}
2023  
2024  	/* Controller in Global reset & Channel reset mode */
2025  	rcar_canfd_configure_controller(gpriv);
2026  
2027  	/* Configure per channel attributes */
2028  	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2029  		/* Configure Channel's Rx fifo */
2030  		rcar_canfd_configure_rx(gpriv, ch);
2031  
2032  		/* Configure Channel's Tx (Common) fifo */
2033  		rcar_canfd_configure_tx(gpriv, ch);
2034  
2035  		/* Configure receive rules */
2036  		rcar_canfd_configure_afl_rules(gpriv, ch);
2037  	}
2038  
2039  	/* Configure common interrupts */
2040  	rcar_canfd_enable_global_interrupts(gpriv);
2041  
2042  	/* Start Global operation mode */
2043  	rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2044  			      RCANFD_GCTR_GMDC_GOPM);
2045  
2046  	/* Verify mode change */
2047  	err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2048  				 !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2049  	if (err) {
2050  		dev_err(dev, "global operational mode failed\n");
2051  		goto fail_mode;
2052  	}
2053  
2054  	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels) {
2055  		err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq,
2056  					       transceivers[ch]);
2057  		if (err)
2058  			goto fail_channel;
2059  	}
2060  
2061  	platform_set_drvdata(pdev, gpriv);
2062  	dev_info(dev, "global operational state (clk %d, fdmode %d)\n",
2063  		 gpriv->fcan, gpriv->fdmode);
2064  	return 0;
2065  
2066  fail_channel:
2067  	for_each_set_bit(ch, &gpriv->channels_mask, info->max_channels)
2068  		rcar_canfd_channel_remove(gpriv, ch);
2069  fail_mode:
2070  	rcar_canfd_disable_global_interrupts(gpriv);
2071  fail_clk:
2072  	clk_disable_unprepare(gpriv->clkp);
2073  fail_reset:
2074  	reset_control_assert(gpriv->rstc1);
2075  	reset_control_assert(gpriv->rstc2);
2076  fail_dev:
2077  	return err;
2078  }
2079  
rcar_canfd_remove(struct platform_device * pdev)2080  static void rcar_canfd_remove(struct platform_device *pdev)
2081  {
2082  	struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2083  	u32 ch;
2084  
2085  	rcar_canfd_reset_controller(gpriv);
2086  	rcar_canfd_disable_global_interrupts(gpriv);
2087  
2088  	for_each_set_bit(ch, &gpriv->channels_mask, gpriv->info->max_channels) {
2089  		rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2090  		rcar_canfd_channel_remove(gpriv, ch);
2091  	}
2092  
2093  	/* Enter global sleep mode */
2094  	rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2095  	clk_disable_unprepare(gpriv->clkp);
2096  	reset_control_assert(gpriv->rstc1);
2097  	reset_control_assert(gpriv->rstc2);
2098  }
2099  
rcar_canfd_suspend(struct device * dev)2100  static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2101  {
2102  	return 0;
2103  }
2104  
rcar_canfd_resume(struct device * dev)2105  static int __maybe_unused rcar_canfd_resume(struct device *dev)
2106  {
2107  	return 0;
2108  }
2109  
2110  static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2111  			 rcar_canfd_resume);
2112  
2113  static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2114  	{ .compatible = "renesas,r8a779a0-canfd", .data = &rcar_gen4_hw_info },
2115  	{ .compatible = "renesas,rcar-gen3-canfd", .data = &rcar_gen3_hw_info },
2116  	{ .compatible = "renesas,rcar-gen4-canfd", .data = &rcar_gen4_hw_info },
2117  	{ .compatible = "renesas,rzg2l-canfd", .data = &rzg2l_hw_info },
2118  	{ }
2119  };
2120  
2121  MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2122  
2123  static struct platform_driver rcar_canfd_driver = {
2124  	.driver = {
2125  		.name = RCANFD_DRV_NAME,
2126  		.of_match_table = of_match_ptr(rcar_canfd_of_table),
2127  		.pm = &rcar_canfd_pm_ops,
2128  	},
2129  	.probe = rcar_canfd_probe,
2130  	.remove_new = rcar_canfd_remove,
2131  };
2132  
2133  module_platform_driver(rcar_canfd_driver);
2134  
2135  MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2136  MODULE_LICENSE("GPL");
2137  MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2138  MODULE_ALIAS("platform:" RCANFD_DRV_NAME);
2139