1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
38
39 #include <asm/tlbflush.h>
40
41 #include "internal.h"
42 #include "shuffle.h"
43
44 enum {
45 MEMMAP_ON_MEMORY_DISABLE = 0,
46 MEMMAP_ON_MEMORY_ENABLE,
47 MEMMAP_ON_MEMORY_FORCE,
48 };
49
50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51
memory_block_memmap_size(void)52 static inline unsigned long memory_block_memmap_size(void)
53 {
54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55 }
56
memory_block_memmap_on_memory_pages(void)57 static inline unsigned long memory_block_memmap_on_memory_pages(void)
58 {
59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60
61 /*
62 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 * vmemmap size to cover full pageblocks. That way, we can add memory
64 * even if the vmemmap size is not properly aligned, however, we might waste
65 * memory.
66 */
67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 return pageblock_align(nr_pages);
69 return nr_pages;
70 }
71
72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73 /*
74 * memory_hotplug.memmap_on_memory parameter
75 */
set_memmap_mode(const char * val,const struct kernel_param * kp)76 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77 {
78 int ret, mode;
79 bool enabled;
80
81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) {
82 mode = MEMMAP_ON_MEMORY_FORCE;
83 } else {
84 ret = kstrtobool(val, &enabled);
85 if (ret < 0)
86 return ret;
87 if (enabled)
88 mode = MEMMAP_ON_MEMORY_ENABLE;
89 else
90 mode = MEMMAP_ON_MEMORY_DISABLE;
91 }
92 *((int *)kp->arg) = mode;
93 if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95
96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 memmap_pages - PFN_UP(memory_block_memmap_size()));
98 }
99 return 0;
100 }
101
get_memmap_mode(char * buffer,const struct kernel_param * kp)102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103 {
104 int mode = *((int *)kp->arg);
105
106 if (mode == MEMMAP_ON_MEMORY_FORCE)
107 return sprintf(buffer, "force\n");
108 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109 }
110
111 static const struct kernel_param_ops memmap_mode_ops = {
112 .set = set_memmap_mode,
113 .get = get_memmap_mode,
114 };
115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 "With value \"force\" it could result in memory wastage due "
118 "to memmap size limitations (Y/N/force)");
119
mhp_memmap_on_memory(void)120 static inline bool mhp_memmap_on_memory(void)
121 {
122 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123 }
124 #else
mhp_memmap_on_memory(void)125 static inline bool mhp_memmap_on_memory(void)
126 {
127 return false;
128 }
129 #endif
130
131 enum {
132 ONLINE_POLICY_CONTIG_ZONES = 0,
133 ONLINE_POLICY_AUTO_MOVABLE,
134 };
135
136 static const char * const online_policy_to_str[] = {
137 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139 };
140
set_online_policy(const char * val,const struct kernel_param * kp)141 static int set_online_policy(const char *val, const struct kernel_param *kp)
142 {
143 int ret = sysfs_match_string(online_policy_to_str, val);
144
145 if (ret < 0)
146 return ret;
147 *((int *)kp->arg) = ret;
148 return 0;
149 }
150
get_online_policy(char * buffer,const struct kernel_param * kp)151 static int get_online_policy(char *buffer, const struct kernel_param *kp)
152 {
153 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154 }
155
156 /*
157 * memory_hotplug.online_policy: configure online behavior when onlining without
158 * specifying a zone (MMOP_ONLINE)
159 *
160 * "contig-zones": keep zone contiguous
161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
163 */
164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165 static const struct kernel_param_ops online_policy_ops = {
166 .set = set_online_policy,
167 .get = get_online_policy,
168 };
169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170 MODULE_PARM_DESC(online_policy,
171 "Set the online policy (\"contig-zones\", \"auto-movable\") "
172 "Default: \"contig-zones\"");
173
174 /*
175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176 *
177 * The ratio represent an upper limit and the kernel might decide to not
178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179 * doesn't allow for more MOVABLE memory.
180 */
181 static unsigned int auto_movable_ratio __read_mostly = 301;
182 module_param(auto_movable_ratio, uint, 0644);
183 MODULE_PARM_DESC(auto_movable_ratio,
184 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 "in percent for \"auto-movable\" online policy. Default: 301");
186
187 /*
188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189 */
190 #ifdef CONFIG_NUMA
191 static bool auto_movable_numa_aware __read_mostly = true;
192 module_param(auto_movable_numa_aware, bool, 0644);
193 MODULE_PARM_DESC(auto_movable_numa_aware,
194 "Consider numa node stats in addition to global stats in "
195 "\"auto-movable\" online policy. Default: true");
196 #endif /* CONFIG_NUMA */
197
198 /*
199 * online_page_callback contains pointer to current page onlining function.
200 * Initially it is generic_online_page(). If it is required it could be
201 * changed by calling set_online_page_callback() for callback registration
202 * and restore_online_page_callback() for generic callback restore.
203 */
204
205 static online_page_callback_t online_page_callback = generic_online_page;
206 static DEFINE_MUTEX(online_page_callback_lock);
207
208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209
get_online_mems(void)210 void get_online_mems(void)
211 {
212 percpu_down_read(&mem_hotplug_lock);
213 }
214
put_online_mems(void)215 void put_online_mems(void)
216 {
217 percpu_up_read(&mem_hotplug_lock);
218 }
219
220 bool movable_node_enabled = false;
221
222 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223 int mhp_default_online_type = MMOP_OFFLINE;
224 #else
225 int mhp_default_online_type = MMOP_ONLINE;
226 #endif
227
setup_memhp_default_state(char * str)228 static int __init setup_memhp_default_state(char *str)
229 {
230 const int online_type = mhp_online_type_from_str(str);
231
232 if (online_type >= 0)
233 mhp_default_online_type = online_type;
234
235 return 1;
236 }
237 __setup("memhp_default_state=", setup_memhp_default_state);
238
mem_hotplug_begin(void)239 void mem_hotplug_begin(void)
240 {
241 cpus_read_lock();
242 percpu_down_write(&mem_hotplug_lock);
243 }
244
mem_hotplug_done(void)245 void mem_hotplug_done(void)
246 {
247 percpu_up_write(&mem_hotplug_lock);
248 cpus_read_unlock();
249 }
250
251 u64 max_mem_size = U64_MAX;
252
253 /* add this memory to iomem resource */
register_memory_resource(u64 start,u64 size,const char * resource_name)254 static struct resource *register_memory_resource(u64 start, u64 size,
255 const char *resource_name)
256 {
257 struct resource *res;
258 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
259
260 if (strcmp(resource_name, "System RAM"))
261 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
262
263 if (!mhp_range_allowed(start, size, true))
264 return ERR_PTR(-E2BIG);
265
266 /*
267 * Make sure value parsed from 'mem=' only restricts memory adding
268 * while booting, so that memory hotplug won't be impacted. Please
269 * refer to document of 'mem=' in kernel-parameters.txt for more
270 * details.
271 */
272 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273 return ERR_PTR(-E2BIG);
274
275 /*
276 * Request ownership of the new memory range. This might be
277 * a child of an existing resource that was present but
278 * not marked as busy.
279 */
280 res = __request_region(&iomem_resource, start, size,
281 resource_name, flags);
282
283 if (!res) {
284 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285 start, start + size);
286 return ERR_PTR(-EEXIST);
287 }
288 return res;
289 }
290
release_memory_resource(struct resource * res)291 static void release_memory_resource(struct resource *res)
292 {
293 if (!res)
294 return;
295 release_resource(res);
296 kfree(res);
297 }
298
check_pfn_span(unsigned long pfn,unsigned long nr_pages)299 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
300 {
301 /*
302 * Disallow all operations smaller than a sub-section and only
303 * allow operations smaller than a section for
304 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305 * enforces a larger memory_block_size_bytes() granularity for
306 * memory that will be marked online, so this check should only
307 * fire for direct arch_{add,remove}_memory() users outside of
308 * add_memory_resource().
309 */
310 unsigned long min_align;
311
312 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313 min_align = PAGES_PER_SUBSECTION;
314 else
315 min_align = PAGES_PER_SECTION;
316 if (!IS_ALIGNED(pfn | nr_pages, min_align))
317 return -EINVAL;
318 return 0;
319 }
320
321 /*
322 * Return page for the valid pfn only if the page is online. All pfn
323 * walkers which rely on the fully initialized page->flags and others
324 * should use this rather than pfn_valid && pfn_to_page
325 */
pfn_to_online_page(unsigned long pfn)326 struct page *pfn_to_online_page(unsigned long pfn)
327 {
328 unsigned long nr = pfn_to_section_nr(pfn);
329 struct dev_pagemap *pgmap;
330 struct mem_section *ms;
331
332 if (nr >= NR_MEM_SECTIONS)
333 return NULL;
334
335 ms = __nr_to_section(nr);
336 if (!online_section(ms))
337 return NULL;
338
339 /*
340 * Save some code text when online_section() +
341 * pfn_section_valid() are sufficient.
342 */
343 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344 return NULL;
345
346 if (!pfn_section_valid(ms, pfn))
347 return NULL;
348
349 if (!online_device_section(ms))
350 return pfn_to_page(pfn);
351
352 /*
353 * Slowpath: when ZONE_DEVICE collides with
354 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355 * the section may be 'offline' but 'valid'. Only
356 * get_dev_pagemap() can determine sub-section online status.
357 */
358 pgmap = get_dev_pagemap(pfn, NULL);
359 put_dev_pagemap(pgmap);
360
361 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362 if (pgmap)
363 return NULL;
364
365 return pfn_to_page(pfn);
366 }
367 EXPORT_SYMBOL_GPL(pfn_to_online_page);
368
__add_pages(int nid,unsigned long pfn,unsigned long nr_pages,struct mhp_params * params)369 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370 struct mhp_params *params)
371 {
372 const unsigned long end_pfn = pfn + nr_pages;
373 unsigned long cur_nr_pages;
374 int err;
375 struct vmem_altmap *altmap = params->altmap;
376
377 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378 return -EINVAL;
379
380 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
381
382 if (altmap) {
383 /*
384 * Validate altmap is within bounds of the total request
385 */
386 if (altmap->base_pfn != pfn
387 || vmem_altmap_offset(altmap) > nr_pages) {
388 pr_warn_once("memory add fail, invalid altmap\n");
389 return -EINVAL;
390 }
391 altmap->alloc = 0;
392 }
393
394 if (check_pfn_span(pfn, nr_pages)) {
395 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396 return -EINVAL;
397 }
398
399 for (; pfn < end_pfn; pfn += cur_nr_pages) {
400 /* Select all remaining pages up to the next section boundary */
401 cur_nr_pages = min(end_pfn - pfn,
402 SECTION_ALIGN_UP(pfn + 1) - pfn);
403 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404 params->pgmap);
405 if (err)
406 break;
407 cond_resched();
408 }
409 vmemmap_populate_print_last();
410 return err;
411 }
412
413 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
find_smallest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)414 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415 unsigned long start_pfn,
416 unsigned long end_pfn)
417 {
418 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419 if (unlikely(!pfn_to_online_page(start_pfn)))
420 continue;
421
422 if (unlikely(pfn_to_nid(start_pfn) != nid))
423 continue;
424
425 if (zone != page_zone(pfn_to_page(start_pfn)))
426 continue;
427
428 return start_pfn;
429 }
430
431 return 0;
432 }
433
434 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
find_biggest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)435 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436 unsigned long start_pfn,
437 unsigned long end_pfn)
438 {
439 unsigned long pfn;
440
441 /* pfn is the end pfn of a memory section. */
442 pfn = end_pfn - 1;
443 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444 if (unlikely(!pfn_to_online_page(pfn)))
445 continue;
446
447 if (unlikely(pfn_to_nid(pfn) != nid))
448 continue;
449
450 if (zone != page_zone(pfn_to_page(pfn)))
451 continue;
452
453 return pfn;
454 }
455
456 return 0;
457 }
458
shrink_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)459 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460 unsigned long end_pfn)
461 {
462 unsigned long pfn;
463 int nid = zone_to_nid(zone);
464
465 if (zone->zone_start_pfn == start_pfn) {
466 /*
467 * If the section is smallest section in the zone, it need
468 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469 * In this case, we find second smallest valid mem_section
470 * for shrinking zone.
471 */
472 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473 zone_end_pfn(zone));
474 if (pfn) {
475 zone->spanned_pages = zone_end_pfn(zone) - pfn;
476 zone->zone_start_pfn = pfn;
477 } else {
478 zone->zone_start_pfn = 0;
479 zone->spanned_pages = 0;
480 }
481 } else if (zone_end_pfn(zone) == end_pfn) {
482 /*
483 * If the section is biggest section in the zone, it need
484 * shrink zone->spanned_pages.
485 * In this case, we find second biggest valid mem_section for
486 * shrinking zone.
487 */
488 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489 start_pfn);
490 if (pfn)
491 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492 else {
493 zone->zone_start_pfn = 0;
494 zone->spanned_pages = 0;
495 }
496 }
497 }
498
update_pgdat_span(struct pglist_data * pgdat)499 static void update_pgdat_span(struct pglist_data *pgdat)
500 {
501 unsigned long node_start_pfn = 0, node_end_pfn = 0;
502 struct zone *zone;
503
504 for (zone = pgdat->node_zones;
505 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506 unsigned long end_pfn = zone_end_pfn(zone);
507
508 /* No need to lock the zones, they can't change. */
509 if (!zone->spanned_pages)
510 continue;
511 if (!node_end_pfn) {
512 node_start_pfn = zone->zone_start_pfn;
513 node_end_pfn = end_pfn;
514 continue;
515 }
516
517 if (end_pfn > node_end_pfn)
518 node_end_pfn = end_pfn;
519 if (zone->zone_start_pfn < node_start_pfn)
520 node_start_pfn = zone->zone_start_pfn;
521 }
522
523 pgdat->node_start_pfn = node_start_pfn;
524 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
525 }
526
remove_pfn_range_from_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)527 void __ref remove_pfn_range_from_zone(struct zone *zone,
528 unsigned long start_pfn,
529 unsigned long nr_pages)
530 {
531 const unsigned long end_pfn = start_pfn + nr_pages;
532 struct pglist_data *pgdat = zone->zone_pgdat;
533 unsigned long pfn, cur_nr_pages;
534
535 /* Poison struct pages because they are now uninitialized again. */
536 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537 cond_resched();
538
539 /* Select all remaining pages up to the next section boundary */
540 cur_nr_pages =
541 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542 page_init_poison(pfn_to_page(pfn),
543 sizeof(struct page) * cur_nr_pages);
544 }
545
546 /*
547 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548 * we will not try to shrink the zones - which is okay as
549 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
550 */
551 if (zone_is_zone_device(zone))
552 return;
553
554 clear_zone_contiguous(zone);
555
556 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557 update_pgdat_span(pgdat);
558
559 set_zone_contiguous(zone);
560 }
561
562 /**
563 * __remove_pages() - remove sections of pages
564 * @pfn: starting pageframe (must be aligned to start of a section)
565 * @nr_pages: number of pages to remove (must be multiple of section size)
566 * @altmap: alternative device page map or %NULL if default memmap is used
567 *
568 * Generic helper function to remove section mappings and sysfs entries
569 * for the section of the memory we are removing. Caller needs to make
570 * sure that pages are marked reserved and zones are adjust properly by
571 * calling offline_pages().
572 */
__remove_pages(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)573 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574 struct vmem_altmap *altmap)
575 {
576 const unsigned long end_pfn = pfn + nr_pages;
577 unsigned long cur_nr_pages;
578
579 if (check_pfn_span(pfn, nr_pages)) {
580 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581 return;
582 }
583
584 for (; pfn < end_pfn; pfn += cur_nr_pages) {
585 cond_resched();
586 /* Select all remaining pages up to the next section boundary */
587 cur_nr_pages = min(end_pfn - pfn,
588 SECTION_ALIGN_UP(pfn + 1) - pfn);
589 sparse_remove_section(pfn, cur_nr_pages, altmap);
590 }
591 }
592
set_online_page_callback(online_page_callback_t callback)593 int set_online_page_callback(online_page_callback_t callback)
594 {
595 int rc = -EINVAL;
596
597 get_online_mems();
598 mutex_lock(&online_page_callback_lock);
599
600 if (online_page_callback == generic_online_page) {
601 online_page_callback = callback;
602 rc = 0;
603 }
604
605 mutex_unlock(&online_page_callback_lock);
606 put_online_mems();
607
608 return rc;
609 }
610 EXPORT_SYMBOL_GPL(set_online_page_callback);
611
restore_online_page_callback(online_page_callback_t callback)612 int restore_online_page_callback(online_page_callback_t callback)
613 {
614 int rc = -EINVAL;
615
616 get_online_mems();
617 mutex_lock(&online_page_callback_lock);
618
619 if (online_page_callback == callback) {
620 online_page_callback = generic_online_page;
621 rc = 0;
622 }
623
624 mutex_unlock(&online_page_callback_lock);
625 put_online_mems();
626
627 return rc;
628 }
629 EXPORT_SYMBOL_GPL(restore_online_page_callback);
630
generic_online_page(struct page * page,unsigned int order)631 void generic_online_page(struct page *page, unsigned int order)
632 {
633 /*
634 * Freeing the page with debug_pagealloc enabled will try to unmap it,
635 * so we should map it first. This is better than introducing a special
636 * case in page freeing fast path.
637 */
638 debug_pagealloc_map_pages(page, 1 << order);
639 __free_pages_core(page, order);
640 totalram_pages_add(1UL << order);
641 }
642 EXPORT_SYMBOL_GPL(generic_online_page);
643
online_pages_range(unsigned long start_pfn,unsigned long nr_pages)644 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
645 {
646 const unsigned long end_pfn = start_pfn + nr_pages;
647 unsigned long pfn;
648
649 /*
650 * Online the pages in MAX_ORDER aligned chunks. The callback might
651 * decide to not expose all pages to the buddy (e.g., expose them
652 * later). We account all pages as being online and belonging to this
653 * zone ("present").
654 * When using memmap_on_memory, the range might not be aligned to
655 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
656 * this and the first chunk to online will be pageblock_nr_pages.
657 */
658 for (pfn = start_pfn; pfn < end_pfn;) {
659 int order;
660
661 /*
662 * Free to online pages in the largest chunks alignment allows.
663 *
664 * __ffs() behaviour is undefined for 0. start == 0 is
665 * MAX_ORDER-aligned, Set order to MAX_ORDER for the case.
666 */
667 if (pfn)
668 order = min_t(int, MAX_ORDER, __ffs(pfn));
669 else
670 order = MAX_ORDER;
671
672 (*online_page_callback)(pfn_to_page(pfn), order);
673 pfn += (1UL << order);
674 }
675
676 /* mark all involved sections as online */
677 online_mem_sections(start_pfn, end_pfn);
678 }
679
680 /* check which state of node_states will be changed when online memory */
node_states_check_changes_online(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)681 static void node_states_check_changes_online(unsigned long nr_pages,
682 struct zone *zone, struct memory_notify *arg)
683 {
684 int nid = zone_to_nid(zone);
685
686 arg->status_change_nid = NUMA_NO_NODE;
687 arg->status_change_nid_normal = NUMA_NO_NODE;
688
689 if (!node_state(nid, N_MEMORY))
690 arg->status_change_nid = nid;
691 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
692 arg->status_change_nid_normal = nid;
693 }
694
node_states_set_node(int node,struct memory_notify * arg)695 static void node_states_set_node(int node, struct memory_notify *arg)
696 {
697 if (arg->status_change_nid_normal >= 0)
698 node_set_state(node, N_NORMAL_MEMORY);
699
700 if (arg->status_change_nid >= 0)
701 node_set_state(node, N_MEMORY);
702 }
703
resize_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)704 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
705 unsigned long nr_pages)
706 {
707 unsigned long old_end_pfn = zone_end_pfn(zone);
708
709 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
710 zone->zone_start_pfn = start_pfn;
711
712 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
713 }
714
resize_pgdat_range(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long nr_pages)715 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
716 unsigned long nr_pages)
717 {
718 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
719
720 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
721 pgdat->node_start_pfn = start_pfn;
722
723 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
724
725 }
726
727 #ifdef CONFIG_ZONE_DEVICE
section_taint_zone_device(unsigned long pfn)728 static void section_taint_zone_device(unsigned long pfn)
729 {
730 struct mem_section *ms = __pfn_to_section(pfn);
731
732 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
733 }
734 #else
section_taint_zone_device(unsigned long pfn)735 static inline void section_taint_zone_device(unsigned long pfn)
736 {
737 }
738 #endif
739
740 /*
741 * Associate the pfn range with the given zone, initializing the memmaps
742 * and resizing the pgdat/zone data to span the added pages. After this
743 * call, all affected pages are PG_reserved.
744 *
745 * All aligned pageblocks are initialized to the specified migratetype
746 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
747 * zone stats (e.g., nr_isolate_pageblock) are touched.
748 */
move_pfn_range_to_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,int migratetype)749 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
750 unsigned long nr_pages,
751 struct vmem_altmap *altmap, int migratetype)
752 {
753 struct pglist_data *pgdat = zone->zone_pgdat;
754 int nid = pgdat->node_id;
755
756 clear_zone_contiguous(zone);
757
758 if (zone_is_empty(zone))
759 init_currently_empty_zone(zone, start_pfn, nr_pages);
760 resize_zone_range(zone, start_pfn, nr_pages);
761 resize_pgdat_range(pgdat, start_pfn, nr_pages);
762
763 /*
764 * Subsection population requires care in pfn_to_online_page().
765 * Set the taint to enable the slow path detection of
766 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
767 * section.
768 */
769 if (zone_is_zone_device(zone)) {
770 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
771 section_taint_zone_device(start_pfn);
772 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
773 section_taint_zone_device(start_pfn + nr_pages);
774 }
775
776 /*
777 * TODO now we have a visible range of pages which are not associated
778 * with their zone properly. Not nice but set_pfnblock_flags_mask
779 * expects the zone spans the pfn range. All the pages in the range
780 * are reserved so nobody should be touching them so we should be safe
781 */
782 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
783 MEMINIT_HOTPLUG, altmap, migratetype);
784
785 set_zone_contiguous(zone);
786 }
787
788 struct auto_movable_stats {
789 unsigned long kernel_early_pages;
790 unsigned long movable_pages;
791 };
792
auto_movable_stats_account_zone(struct auto_movable_stats * stats,struct zone * zone)793 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
794 struct zone *zone)
795 {
796 if (zone_idx(zone) == ZONE_MOVABLE) {
797 stats->movable_pages += zone->present_pages;
798 } else {
799 stats->kernel_early_pages += zone->present_early_pages;
800 #ifdef CONFIG_CMA
801 /*
802 * CMA pages (never on hotplugged memory) behave like
803 * ZONE_MOVABLE.
804 */
805 stats->movable_pages += zone->cma_pages;
806 stats->kernel_early_pages -= zone->cma_pages;
807 #endif /* CONFIG_CMA */
808 }
809 }
810 struct auto_movable_group_stats {
811 unsigned long movable_pages;
812 unsigned long req_kernel_early_pages;
813 };
814
auto_movable_stats_account_group(struct memory_group * group,void * arg)815 static int auto_movable_stats_account_group(struct memory_group *group,
816 void *arg)
817 {
818 const int ratio = READ_ONCE(auto_movable_ratio);
819 struct auto_movable_group_stats *stats = arg;
820 long pages;
821
822 /*
823 * We don't support modifying the config while the auto-movable online
824 * policy is already enabled. Just avoid the division by zero below.
825 */
826 if (!ratio)
827 return 0;
828
829 /*
830 * Calculate how many early kernel pages this group requires to
831 * satisfy the configured zone ratio.
832 */
833 pages = group->present_movable_pages * 100 / ratio;
834 pages -= group->present_kernel_pages;
835
836 if (pages > 0)
837 stats->req_kernel_early_pages += pages;
838 stats->movable_pages += group->present_movable_pages;
839 return 0;
840 }
841
auto_movable_can_online_movable(int nid,struct memory_group * group,unsigned long nr_pages)842 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
843 unsigned long nr_pages)
844 {
845 unsigned long kernel_early_pages, movable_pages;
846 struct auto_movable_group_stats group_stats = {};
847 struct auto_movable_stats stats = {};
848 pg_data_t *pgdat = NODE_DATA(nid);
849 struct zone *zone;
850 int i;
851
852 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
853 if (nid == NUMA_NO_NODE) {
854 /* TODO: cache values */
855 for_each_populated_zone(zone)
856 auto_movable_stats_account_zone(&stats, zone);
857 } else {
858 for (i = 0; i < MAX_NR_ZONES; i++) {
859 zone = pgdat->node_zones + i;
860 if (populated_zone(zone))
861 auto_movable_stats_account_zone(&stats, zone);
862 }
863 }
864
865 kernel_early_pages = stats.kernel_early_pages;
866 movable_pages = stats.movable_pages;
867
868 /*
869 * Kernel memory inside dynamic memory group allows for more MOVABLE
870 * memory within the same group. Remove the effect of all but the
871 * current group from the stats.
872 */
873 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
874 group, &group_stats);
875 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
876 return false;
877 kernel_early_pages -= group_stats.req_kernel_early_pages;
878 movable_pages -= group_stats.movable_pages;
879
880 if (group && group->is_dynamic)
881 kernel_early_pages += group->present_kernel_pages;
882
883 /*
884 * Test if we could online the given number of pages to ZONE_MOVABLE
885 * and still stay in the configured ratio.
886 */
887 movable_pages += nr_pages;
888 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
889 }
890
891 /*
892 * Returns a default kernel memory zone for the given pfn range.
893 * If no kernel zone covers this pfn range it will automatically go
894 * to the ZONE_NORMAL.
895 */
default_kernel_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)896 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
897 unsigned long nr_pages)
898 {
899 struct pglist_data *pgdat = NODE_DATA(nid);
900 int zid;
901
902 for (zid = 0; zid < ZONE_NORMAL; zid++) {
903 struct zone *zone = &pgdat->node_zones[zid];
904
905 if (zone_intersects(zone, start_pfn, nr_pages))
906 return zone;
907 }
908
909 return &pgdat->node_zones[ZONE_NORMAL];
910 }
911
912 /*
913 * Determine to which zone to online memory dynamically based on user
914 * configuration and system stats. We care about the following ratio:
915 *
916 * MOVABLE : KERNEL
917 *
918 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
919 * one of the kernel zones. CMA pages inside one of the kernel zones really
920 * behaves like ZONE_MOVABLE, so we treat them accordingly.
921 *
922 * We don't allow for hotplugged memory in a KERNEL zone to increase the
923 * amount of MOVABLE memory we can have, so we end up with:
924 *
925 * MOVABLE : KERNEL_EARLY
926 *
927 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
928 * boot. We base our calculation on KERNEL_EARLY internally, because:
929 *
930 * a) Hotplugged memory in one of the kernel zones can sometimes still get
931 * hotunplugged, especially when hot(un)plugging individual memory blocks.
932 * There is no coordination across memory devices, therefore "automatic"
933 * hotunplugging, as implemented in hypervisors, could result in zone
934 * imbalances.
935 * b) Early/boot memory in one of the kernel zones can usually not get
936 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
937 * with unmovable allocations). While there are corner cases where it might
938 * still work, it is barely relevant in practice.
939 *
940 * Exceptions are dynamic memory groups, which allow for more MOVABLE
941 * memory within the same memory group -- because in that case, there is
942 * coordination within the single memory device managed by a single driver.
943 *
944 * We rely on "present pages" instead of "managed pages", as the latter is
945 * highly unreliable and dynamic in virtualized environments, and does not
946 * consider boot time allocations. For example, memory ballooning adjusts the
947 * managed pages when inflating/deflating the balloon, and balloon compaction
948 * can even migrate inflated pages between zones.
949 *
950 * Using "present pages" is better but some things to keep in mind are:
951 *
952 * a) Some memblock allocations, such as for the crashkernel area, are
953 * effectively unused by the kernel, yet they account to "present pages".
954 * Fortunately, these allocations are comparatively small in relevant setups
955 * (e.g., fraction of system memory).
956 * b) Some hotplugged memory blocks in virtualized environments, esecially
957 * hotplugged by virtio-mem, look like they are completely present, however,
958 * only parts of the memory block are actually currently usable.
959 * "present pages" is an upper limit that can get reached at runtime. As
960 * we base our calculations on KERNEL_EARLY, this is not an issue.
961 */
auto_movable_zone_for_pfn(int nid,struct memory_group * group,unsigned long pfn,unsigned long nr_pages)962 static struct zone *auto_movable_zone_for_pfn(int nid,
963 struct memory_group *group,
964 unsigned long pfn,
965 unsigned long nr_pages)
966 {
967 unsigned long online_pages = 0, max_pages, end_pfn;
968 struct page *page;
969
970 if (!auto_movable_ratio)
971 goto kernel_zone;
972
973 if (group && !group->is_dynamic) {
974 max_pages = group->s.max_pages;
975 online_pages = group->present_movable_pages;
976
977 /* If anything is !MOVABLE online the rest !MOVABLE. */
978 if (group->present_kernel_pages)
979 goto kernel_zone;
980 } else if (!group || group->d.unit_pages == nr_pages) {
981 max_pages = nr_pages;
982 } else {
983 max_pages = group->d.unit_pages;
984 /*
985 * Take a look at all online sections in the current unit.
986 * We can safely assume that all pages within a section belong
987 * to the same zone, because dynamic memory groups only deal
988 * with hotplugged memory.
989 */
990 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
991 end_pfn = pfn + group->d.unit_pages;
992 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
993 page = pfn_to_online_page(pfn);
994 if (!page)
995 continue;
996 /* If anything is !MOVABLE online the rest !MOVABLE. */
997 if (!is_zone_movable_page(page))
998 goto kernel_zone;
999 online_pages += PAGES_PER_SECTION;
1000 }
1001 }
1002
1003 /*
1004 * Online MOVABLE if we could *currently* online all remaining parts
1005 * MOVABLE. We expect to (add+) online them immediately next, so if
1006 * nobody interferes, all will be MOVABLE if possible.
1007 */
1008 nr_pages = max_pages - online_pages;
1009 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1010 goto kernel_zone;
1011
1012 #ifdef CONFIG_NUMA
1013 if (auto_movable_numa_aware &&
1014 !auto_movable_can_online_movable(nid, group, nr_pages))
1015 goto kernel_zone;
1016 #endif /* CONFIG_NUMA */
1017
1018 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1019 kernel_zone:
1020 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1021 }
1022
default_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)1023 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1024 unsigned long nr_pages)
1025 {
1026 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1027 nr_pages);
1028 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1029 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1030 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1031
1032 /*
1033 * We inherit the existing zone in a simple case where zones do not
1034 * overlap in the given range
1035 */
1036 if (in_kernel ^ in_movable)
1037 return (in_kernel) ? kernel_zone : movable_zone;
1038
1039 /*
1040 * If the range doesn't belong to any zone or two zones overlap in the
1041 * given range then we use movable zone only if movable_node is
1042 * enabled because we always online to a kernel zone by default.
1043 */
1044 return movable_node_enabled ? movable_zone : kernel_zone;
1045 }
1046
zone_for_pfn_range(int online_type,int nid,struct memory_group * group,unsigned long start_pfn,unsigned long nr_pages)1047 struct zone *zone_for_pfn_range(int online_type, int nid,
1048 struct memory_group *group, unsigned long start_pfn,
1049 unsigned long nr_pages)
1050 {
1051 if (online_type == MMOP_ONLINE_KERNEL)
1052 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1053
1054 if (online_type == MMOP_ONLINE_MOVABLE)
1055 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1056
1057 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1058 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1059
1060 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1061 }
1062
1063 /*
1064 * This function should only be called by memory_block_{online,offline},
1065 * and {online,offline}_pages.
1066 */
adjust_present_page_count(struct page * page,struct memory_group * group,long nr_pages)1067 void adjust_present_page_count(struct page *page, struct memory_group *group,
1068 long nr_pages)
1069 {
1070 struct zone *zone = page_zone(page);
1071 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1072
1073 /*
1074 * We only support onlining/offlining/adding/removing of complete
1075 * memory blocks; therefore, either all is either early or hotplugged.
1076 */
1077 if (early_section(__pfn_to_section(page_to_pfn(page))))
1078 zone->present_early_pages += nr_pages;
1079 zone->present_pages += nr_pages;
1080 zone->zone_pgdat->node_present_pages += nr_pages;
1081
1082 if (group && movable)
1083 group->present_movable_pages += nr_pages;
1084 else if (group && !movable)
1085 group->present_kernel_pages += nr_pages;
1086 }
1087
mhp_init_memmap_on_memory(unsigned long pfn,unsigned long nr_pages,struct zone * zone)1088 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1089 struct zone *zone)
1090 {
1091 unsigned long end_pfn = pfn + nr_pages;
1092 int ret, i;
1093
1094 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1095 if (ret)
1096 return ret;
1097
1098 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1099
1100 for (i = 0; i < nr_pages; i++)
1101 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1102
1103 /*
1104 * It might be that the vmemmap_pages fully span sections. If that is
1105 * the case, mark those sections online here as otherwise they will be
1106 * left offline.
1107 */
1108 if (nr_pages >= PAGES_PER_SECTION)
1109 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1110
1111 return ret;
1112 }
1113
mhp_deinit_memmap_on_memory(unsigned long pfn,unsigned long nr_pages)1114 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1115 {
1116 unsigned long end_pfn = pfn + nr_pages;
1117
1118 /*
1119 * It might be that the vmemmap_pages fully span sections. If that is
1120 * the case, mark those sections offline here as otherwise they will be
1121 * left online.
1122 */
1123 if (nr_pages >= PAGES_PER_SECTION)
1124 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1125
1126 /*
1127 * The pages associated with this vmemmap have been offlined, so
1128 * we can reset its state here.
1129 */
1130 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1131 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1132 }
1133
1134 /*
1135 * Must be called with mem_hotplug_lock in write mode.
1136 */
online_pages(unsigned long pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1137 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1138 struct zone *zone, struct memory_group *group)
1139 {
1140 unsigned long flags;
1141 int need_zonelists_rebuild = 0;
1142 const int nid = zone_to_nid(zone);
1143 int ret;
1144 struct memory_notify arg;
1145
1146 /*
1147 * {on,off}lining is constrained to full memory sections (or more
1148 * precisely to memory blocks from the user space POV).
1149 * memmap_on_memory is an exception because it reserves initial part
1150 * of the physical memory space for vmemmaps. That space is pageblock
1151 * aligned.
1152 */
1153 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1154 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1155 return -EINVAL;
1156
1157
1158 /* associate pfn range with the zone */
1159 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1160
1161 arg.start_pfn = pfn;
1162 arg.nr_pages = nr_pages;
1163 node_states_check_changes_online(nr_pages, zone, &arg);
1164
1165 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1166 ret = notifier_to_errno(ret);
1167 if (ret)
1168 goto failed_addition;
1169
1170 /*
1171 * Fixup the number of isolated pageblocks before marking the sections
1172 * onlining, such that undo_isolate_page_range() works correctly.
1173 */
1174 spin_lock_irqsave(&zone->lock, flags);
1175 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1176 spin_unlock_irqrestore(&zone->lock, flags);
1177
1178 /*
1179 * If this zone is not populated, then it is not in zonelist.
1180 * This means the page allocator ignores this zone.
1181 * So, zonelist must be updated after online.
1182 */
1183 if (!populated_zone(zone)) {
1184 need_zonelists_rebuild = 1;
1185 setup_zone_pageset(zone);
1186 }
1187
1188 online_pages_range(pfn, nr_pages);
1189 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1190
1191 node_states_set_node(nid, &arg);
1192 if (need_zonelists_rebuild)
1193 build_all_zonelists(NULL);
1194
1195 /* Basic onlining is complete, allow allocation of onlined pages. */
1196 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1197
1198 /*
1199 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1200 * the tail of the freelist when undoing isolation). Shuffle the whole
1201 * zone to make sure the just onlined pages are properly distributed
1202 * across the whole freelist - to create an initial shuffle.
1203 */
1204 shuffle_zone(zone);
1205
1206 /* reinitialise watermarks and update pcp limits */
1207 init_per_zone_wmark_min();
1208
1209 kswapd_run(nid);
1210 kcompactd_run(nid);
1211
1212 writeback_set_ratelimit();
1213
1214 memory_notify(MEM_ONLINE, &arg);
1215 return 0;
1216
1217 failed_addition:
1218 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1219 (unsigned long long) pfn << PAGE_SHIFT,
1220 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1221 memory_notify(MEM_CANCEL_ONLINE, &arg);
1222 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1223 return ret;
1224 }
1225
1226 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
hotadd_init_pgdat(int nid)1227 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1228 {
1229 struct pglist_data *pgdat;
1230
1231 /*
1232 * NODE_DATA is preallocated (free_area_init) but its internal
1233 * state is not allocated completely. Add missing pieces.
1234 * Completely offline nodes stay around and they just need
1235 * reintialization.
1236 */
1237 pgdat = NODE_DATA(nid);
1238
1239 /* init node's zones as empty zones, we don't have any present pages.*/
1240 free_area_init_core_hotplug(pgdat);
1241
1242 /*
1243 * The node we allocated has no zone fallback lists. For avoiding
1244 * to access not-initialized zonelist, build here.
1245 */
1246 build_all_zonelists(pgdat);
1247
1248 return pgdat;
1249 }
1250
1251 /*
1252 * __try_online_node - online a node if offlined
1253 * @nid: the node ID
1254 * @set_node_online: Whether we want to online the node
1255 * called by cpu_up() to online a node without onlined memory.
1256 *
1257 * Returns:
1258 * 1 -> a new node has been allocated
1259 * 0 -> the node is already online
1260 * -ENOMEM -> the node could not be allocated
1261 */
__try_online_node(int nid,bool set_node_online)1262 static int __try_online_node(int nid, bool set_node_online)
1263 {
1264 pg_data_t *pgdat;
1265 int ret = 1;
1266
1267 if (node_online(nid))
1268 return 0;
1269
1270 pgdat = hotadd_init_pgdat(nid);
1271 if (!pgdat) {
1272 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1273 ret = -ENOMEM;
1274 goto out;
1275 }
1276
1277 if (set_node_online) {
1278 node_set_online(nid);
1279 ret = register_one_node(nid);
1280 BUG_ON(ret);
1281 }
1282 out:
1283 return ret;
1284 }
1285
1286 /*
1287 * Users of this function always want to online/register the node
1288 */
try_online_node(int nid)1289 int try_online_node(int nid)
1290 {
1291 int ret;
1292
1293 mem_hotplug_begin();
1294 ret = __try_online_node(nid, true);
1295 mem_hotplug_done();
1296 return ret;
1297 }
1298
check_hotplug_memory_range(u64 start,u64 size)1299 static int check_hotplug_memory_range(u64 start, u64 size)
1300 {
1301 /* memory range must be block size aligned */
1302 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1303 !IS_ALIGNED(size, memory_block_size_bytes())) {
1304 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1305 memory_block_size_bytes(), start, size);
1306 return -EINVAL;
1307 }
1308
1309 return 0;
1310 }
1311
online_memory_block(struct memory_block * mem,void * arg)1312 static int online_memory_block(struct memory_block *mem, void *arg)
1313 {
1314 mem->online_type = mhp_default_online_type;
1315 return device_online(&mem->dev);
1316 }
1317
1318 #ifndef arch_supports_memmap_on_memory
arch_supports_memmap_on_memory(unsigned long vmemmap_size)1319 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1320 {
1321 /*
1322 * As default, we want the vmemmap to span a complete PMD such that we
1323 * can map the vmemmap using a single PMD if supported by the
1324 * architecture.
1325 */
1326 return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1327 }
1328 #endif
1329
mhp_supports_memmap_on_memory(unsigned long size)1330 static bool mhp_supports_memmap_on_memory(unsigned long size)
1331 {
1332 unsigned long vmemmap_size = memory_block_memmap_size();
1333 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1334
1335 /*
1336 * Besides having arch support and the feature enabled at runtime, we
1337 * need a few more assumptions to hold true:
1338 *
1339 * a) We span a single memory block: memory onlining/offlinin;g happens
1340 * in memory block granularity. We don't want the vmemmap of online
1341 * memory blocks to reside on offline memory blocks. In the future,
1342 * we might want to support variable-sized memory blocks to make the
1343 * feature more versatile.
1344 *
1345 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1346 * to populate memory from the altmap for unrelated parts (i.e.,
1347 * other memory blocks)
1348 *
1349 * c) The vmemmap pages (and thereby the pages that will be exposed to
1350 * the buddy) have to cover full pageblocks: memory onlining/offlining
1351 * code requires applicable ranges to be page-aligned, for example, to
1352 * set the migratetypes properly.
1353 *
1354 * TODO: Although we have a check here to make sure that vmemmap pages
1355 * fully populate a PMD, it is not the right place to check for
1356 * this. A much better solution involves improving vmemmap code
1357 * to fallback to base pages when trying to populate vmemmap using
1358 * altmap as an alternative source of memory, and we do not exactly
1359 * populate a single PMD.
1360 */
1361 if (!mhp_memmap_on_memory() || size != memory_block_size_bytes())
1362 return false;
1363
1364 /*
1365 * Make sure the vmemmap allocation is fully contained
1366 * so that we always allocate vmemmap memory from altmap area.
1367 */
1368 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1369 return false;
1370
1371 /*
1372 * start pfn should be pageblock_nr_pages aligned for correctly
1373 * setting migrate types
1374 */
1375 if (!pageblock_aligned(memmap_pages))
1376 return false;
1377
1378 if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1379 /* No effective hotplugged memory doesn't make sense. */
1380 return false;
1381
1382 return arch_supports_memmap_on_memory(vmemmap_size);
1383 }
1384
1385 /*
1386 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1387 * and online/offline operations (triggered e.g. by sysfs).
1388 *
1389 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1390 */
add_memory_resource(int nid,struct resource * res,mhp_t mhp_flags)1391 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1392 {
1393 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1394 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1395 struct vmem_altmap mhp_altmap = {
1396 .base_pfn = PHYS_PFN(res->start),
1397 .end_pfn = PHYS_PFN(res->end),
1398 };
1399 struct memory_group *group = NULL;
1400 u64 start, size;
1401 bool new_node = false;
1402 int ret;
1403
1404 start = res->start;
1405 size = resource_size(res);
1406
1407 ret = check_hotplug_memory_range(start, size);
1408 if (ret)
1409 return ret;
1410
1411 if (mhp_flags & MHP_NID_IS_MGID) {
1412 group = memory_group_find_by_id(nid);
1413 if (!group)
1414 return -EINVAL;
1415 nid = group->nid;
1416 }
1417
1418 if (!node_possible(nid)) {
1419 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1420 return -EINVAL;
1421 }
1422
1423 mem_hotplug_begin();
1424
1425 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1426 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1427 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1428 ret = memblock_add_node(start, size, nid, memblock_flags);
1429 if (ret)
1430 goto error_mem_hotplug_end;
1431 }
1432
1433 ret = __try_online_node(nid, false);
1434 if (ret < 0)
1435 goto error;
1436 new_node = ret;
1437
1438 /*
1439 * Self hosted memmap array
1440 */
1441 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1442 if (mhp_supports_memmap_on_memory(size)) {
1443 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1444 params.altmap = kmalloc(sizeof(struct vmem_altmap), GFP_KERNEL);
1445 if (!params.altmap) {
1446 ret = -ENOMEM;
1447 goto error;
1448 }
1449
1450 memcpy(params.altmap, &mhp_altmap, sizeof(mhp_altmap));
1451 }
1452 /* fallback to not using altmap */
1453 }
1454
1455 /* call arch's memory hotadd */
1456 ret = arch_add_memory(nid, start, size, ¶ms);
1457 if (ret < 0)
1458 goto error_free;
1459
1460 /* create memory block devices after memory was added */
1461 ret = create_memory_block_devices(start, size, params.altmap, group);
1462 if (ret) {
1463 arch_remove_memory(start, size, params.altmap);
1464 goto error_free;
1465 }
1466
1467 if (new_node) {
1468 /* If sysfs file of new node can't be created, cpu on the node
1469 * can't be hot-added. There is no rollback way now.
1470 * So, check by BUG_ON() to catch it reluctantly..
1471 * We online node here. We can't roll back from here.
1472 */
1473 node_set_online(nid);
1474 ret = __register_one_node(nid);
1475 BUG_ON(ret);
1476 }
1477
1478 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1479 PFN_UP(start + size - 1),
1480 MEMINIT_HOTPLUG);
1481
1482 /* create new memmap entry */
1483 if (!strcmp(res->name, "System RAM"))
1484 firmware_map_add_hotplug(start, start + size, "System RAM");
1485
1486 /* device_online() will take the lock when calling online_pages() */
1487 mem_hotplug_done();
1488
1489 /*
1490 * In case we're allowed to merge the resource, flag it and trigger
1491 * merging now that adding succeeded.
1492 */
1493 if (mhp_flags & MHP_MERGE_RESOURCE)
1494 merge_system_ram_resource(res);
1495
1496 /* online pages if requested */
1497 if (mhp_default_online_type != MMOP_OFFLINE)
1498 walk_memory_blocks(start, size, NULL, online_memory_block);
1499
1500 return ret;
1501 error_free:
1502 kfree(params.altmap);
1503 error:
1504 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1505 memblock_remove(start, size);
1506 error_mem_hotplug_end:
1507 mem_hotplug_done();
1508 return ret;
1509 }
1510
1511 /* requires device_hotplug_lock, see add_memory_resource() */
__add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1512 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1513 {
1514 struct resource *res;
1515 int ret;
1516
1517 res = register_memory_resource(start, size, "System RAM");
1518 if (IS_ERR(res))
1519 return PTR_ERR(res);
1520
1521 ret = add_memory_resource(nid, res, mhp_flags);
1522 if (ret < 0)
1523 release_memory_resource(res);
1524 return ret;
1525 }
1526
add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1527 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1528 {
1529 int rc;
1530
1531 lock_device_hotplug();
1532 rc = __add_memory(nid, start, size, mhp_flags);
1533 unlock_device_hotplug();
1534
1535 return rc;
1536 }
1537 EXPORT_SYMBOL_GPL(add_memory);
1538
1539 /*
1540 * Add special, driver-managed memory to the system as system RAM. Such
1541 * memory is not exposed via the raw firmware-provided memmap as system
1542 * RAM, instead, it is detected and added by a driver - during cold boot,
1543 * after a reboot, and after kexec.
1544 *
1545 * Reasons why this memory should not be used for the initial memmap of a
1546 * kexec kernel or for placing kexec images:
1547 * - The booting kernel is in charge of determining how this memory will be
1548 * used (e.g., use persistent memory as system RAM)
1549 * - Coordination with a hypervisor is required before this memory
1550 * can be used (e.g., inaccessible parts).
1551 *
1552 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1553 * memory map") are created. Also, the created memory resource is flagged
1554 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1555 * this memory as well (esp., not place kexec images onto it).
1556 *
1557 * The resource_name (visible via /proc/iomem) has to have the format
1558 * "System RAM ($DRIVER)".
1559 */
add_memory_driver_managed(int nid,u64 start,u64 size,const char * resource_name,mhp_t mhp_flags)1560 int add_memory_driver_managed(int nid, u64 start, u64 size,
1561 const char *resource_name, mhp_t mhp_flags)
1562 {
1563 struct resource *res;
1564 int rc;
1565
1566 if (!resource_name ||
1567 strstr(resource_name, "System RAM (") != resource_name ||
1568 resource_name[strlen(resource_name) - 1] != ')')
1569 return -EINVAL;
1570
1571 lock_device_hotplug();
1572
1573 res = register_memory_resource(start, size, resource_name);
1574 if (IS_ERR(res)) {
1575 rc = PTR_ERR(res);
1576 goto out_unlock;
1577 }
1578
1579 rc = add_memory_resource(nid, res, mhp_flags);
1580 if (rc < 0)
1581 release_memory_resource(res);
1582
1583 out_unlock:
1584 unlock_device_hotplug();
1585 return rc;
1586 }
1587 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1588
1589 /*
1590 * Platforms should define arch_get_mappable_range() that provides
1591 * maximum possible addressable physical memory range for which the
1592 * linear mapping could be created. The platform returned address
1593 * range must adhere to these following semantics.
1594 *
1595 * - range.start <= range.end
1596 * - Range includes both end points [range.start..range.end]
1597 *
1598 * There is also a fallback definition provided here, allowing the
1599 * entire possible physical address range in case any platform does
1600 * not define arch_get_mappable_range().
1601 */
arch_get_mappable_range(void)1602 struct range __weak arch_get_mappable_range(void)
1603 {
1604 struct range mhp_range = {
1605 .start = 0UL,
1606 .end = -1ULL,
1607 };
1608 return mhp_range;
1609 }
1610
mhp_get_pluggable_range(bool need_mapping)1611 struct range mhp_get_pluggable_range(bool need_mapping)
1612 {
1613 const u64 max_phys = PHYSMEM_END;
1614 struct range mhp_range;
1615
1616 if (need_mapping) {
1617 mhp_range = arch_get_mappable_range();
1618 if (mhp_range.start > max_phys) {
1619 mhp_range.start = 0;
1620 mhp_range.end = 0;
1621 }
1622 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1623 } else {
1624 mhp_range.start = 0;
1625 mhp_range.end = max_phys;
1626 }
1627 return mhp_range;
1628 }
1629 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1630
mhp_range_allowed(u64 start,u64 size,bool need_mapping)1631 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1632 {
1633 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1634 u64 end = start + size;
1635
1636 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1637 return true;
1638
1639 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1640 start, end, mhp_range.start, mhp_range.end);
1641 return false;
1642 }
1643
1644 #ifdef CONFIG_MEMORY_HOTREMOVE
1645 /*
1646 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1647 * non-lru movable pages and hugepages). Will skip over most unmovable
1648 * pages (esp., pages that can be skipped when offlining), but bail out on
1649 * definitely unmovable pages.
1650 *
1651 * Returns:
1652 * 0 in case a movable page is found and movable_pfn was updated.
1653 * -ENOENT in case no movable page was found.
1654 * -EBUSY in case a definitely unmovable page was found.
1655 */
scan_movable_pages(unsigned long start,unsigned long end,unsigned long * movable_pfn)1656 static int scan_movable_pages(unsigned long start, unsigned long end,
1657 unsigned long *movable_pfn)
1658 {
1659 unsigned long pfn;
1660
1661 for (pfn = start; pfn < end; pfn++) {
1662 struct page *page, *head;
1663 unsigned long skip;
1664
1665 if (!pfn_valid(pfn))
1666 continue;
1667 page = pfn_to_page(pfn);
1668 if (PageLRU(page))
1669 goto found;
1670 if (__PageMovable(page))
1671 goto found;
1672
1673 /*
1674 * PageOffline() pages that are not marked __PageMovable() and
1675 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1676 * definitely unmovable. If their reference count would be 0,
1677 * they could at least be skipped when offlining memory.
1678 */
1679 if (PageOffline(page) && page_count(page))
1680 return -EBUSY;
1681
1682 if (!PageHuge(page))
1683 continue;
1684 head = compound_head(page);
1685 /*
1686 * This test is racy as we hold no reference or lock. The
1687 * hugetlb page could have been free'ed and head is no longer
1688 * a hugetlb page before the following check. In such unlikely
1689 * cases false positives and negatives are possible. Calling
1690 * code must deal with these scenarios.
1691 */
1692 if (HPageMigratable(head))
1693 goto found;
1694 skip = compound_nr(head) - (pfn - page_to_pfn(head));
1695 pfn += skip - 1;
1696 }
1697 return -ENOENT;
1698 found:
1699 *movable_pfn = pfn;
1700 return 0;
1701 }
1702
do_migrate_range(unsigned long start_pfn,unsigned long end_pfn)1703 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1704 {
1705 unsigned long pfn;
1706 struct page *page, *head;
1707 LIST_HEAD(source);
1708 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1709 DEFAULT_RATELIMIT_BURST);
1710
1711 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1712 struct folio *folio;
1713 bool isolated;
1714
1715 if (!pfn_valid(pfn))
1716 continue;
1717 page = pfn_to_page(pfn);
1718 folio = page_folio(page);
1719 head = &folio->page;
1720
1721 if (PageHuge(page)) {
1722 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1723 isolate_hugetlb(folio, &source);
1724 continue;
1725 } else if (PageTransHuge(page))
1726 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1727
1728 /*
1729 * HWPoison pages have elevated reference counts so the migration would
1730 * fail on them. It also doesn't make any sense to migrate them in the
1731 * first place. Still try to unmap such a page in case it is still mapped
1732 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1733 * the unmap as the catch all safety net).
1734 */
1735 if (PageHWPoison(page)) {
1736 if (WARN_ON(folio_test_lru(folio)))
1737 folio_isolate_lru(folio);
1738 if (folio_mapped(folio))
1739 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1740 continue;
1741 }
1742
1743 if (!get_page_unless_zero(page))
1744 continue;
1745 /*
1746 * We can skip free pages. And we can deal with pages on
1747 * LRU and non-lru movable pages.
1748 */
1749 if (PageLRU(page))
1750 isolated = isolate_lru_page(page);
1751 else
1752 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1753 if (isolated) {
1754 list_add_tail(&page->lru, &source);
1755 if (!__PageMovable(page))
1756 inc_node_page_state(page, NR_ISOLATED_ANON +
1757 page_is_file_lru(page));
1758
1759 } else {
1760 if (__ratelimit(&migrate_rs)) {
1761 pr_warn("failed to isolate pfn %lx\n", pfn);
1762 dump_page(page, "isolation failed");
1763 }
1764 }
1765 put_page(page);
1766 }
1767 if (!list_empty(&source)) {
1768 nodemask_t nmask = node_states[N_MEMORY];
1769 struct migration_target_control mtc = {
1770 .nmask = &nmask,
1771 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1772 };
1773 int ret;
1774
1775 /*
1776 * We have checked that migration range is on a single zone so
1777 * we can use the nid of the first page to all the others.
1778 */
1779 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1780
1781 /*
1782 * try to allocate from a different node but reuse this node
1783 * if there are no other online nodes to be used (e.g. we are
1784 * offlining a part of the only existing node)
1785 */
1786 node_clear(mtc.nid, nmask);
1787 if (nodes_empty(nmask))
1788 node_set(mtc.nid, nmask);
1789 ret = migrate_pages(&source, alloc_migration_target, NULL,
1790 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1791 if (ret) {
1792 list_for_each_entry(page, &source, lru) {
1793 if (__ratelimit(&migrate_rs)) {
1794 pr_warn("migrating pfn %lx failed ret:%d\n",
1795 page_to_pfn(page), ret);
1796 dump_page(page, "migration failure");
1797 }
1798 }
1799 putback_movable_pages(&source);
1800 }
1801 }
1802 }
1803
cmdline_parse_movable_node(char * p)1804 static int __init cmdline_parse_movable_node(char *p)
1805 {
1806 movable_node_enabled = true;
1807 return 0;
1808 }
1809 early_param("movable_node", cmdline_parse_movable_node);
1810
1811 /* check which state of node_states will be changed when offline memory */
node_states_check_changes_offline(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)1812 static void node_states_check_changes_offline(unsigned long nr_pages,
1813 struct zone *zone, struct memory_notify *arg)
1814 {
1815 struct pglist_data *pgdat = zone->zone_pgdat;
1816 unsigned long present_pages = 0;
1817 enum zone_type zt;
1818
1819 arg->status_change_nid = NUMA_NO_NODE;
1820 arg->status_change_nid_normal = NUMA_NO_NODE;
1821
1822 /*
1823 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1824 * If the memory to be offline is within the range
1825 * [0..ZONE_NORMAL], and it is the last present memory there,
1826 * the zones in that range will become empty after the offlining,
1827 * thus we can determine that we need to clear the node from
1828 * node_states[N_NORMAL_MEMORY].
1829 */
1830 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1831 present_pages += pgdat->node_zones[zt].present_pages;
1832 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1833 arg->status_change_nid_normal = zone_to_nid(zone);
1834
1835 /*
1836 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1837 * does not apply as we don't support 32bit.
1838 * Here we count the possible pages from ZONE_MOVABLE.
1839 * If after having accounted all the pages, we see that the nr_pages
1840 * to be offlined is over or equal to the accounted pages,
1841 * we know that the node will become empty, and so, we can clear
1842 * it for N_MEMORY as well.
1843 */
1844 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1845
1846 if (nr_pages >= present_pages)
1847 arg->status_change_nid = zone_to_nid(zone);
1848 }
1849
node_states_clear_node(int node,struct memory_notify * arg)1850 static void node_states_clear_node(int node, struct memory_notify *arg)
1851 {
1852 if (arg->status_change_nid_normal >= 0)
1853 node_clear_state(node, N_NORMAL_MEMORY);
1854
1855 if (arg->status_change_nid >= 0)
1856 node_clear_state(node, N_MEMORY);
1857 }
1858
count_system_ram_pages_cb(unsigned long start_pfn,unsigned long nr_pages,void * data)1859 static int count_system_ram_pages_cb(unsigned long start_pfn,
1860 unsigned long nr_pages, void *data)
1861 {
1862 unsigned long *nr_system_ram_pages = data;
1863
1864 *nr_system_ram_pages += nr_pages;
1865 return 0;
1866 }
1867
1868 /*
1869 * Must be called with mem_hotplug_lock in write mode.
1870 */
offline_pages(unsigned long start_pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1871 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1872 struct zone *zone, struct memory_group *group)
1873 {
1874 const unsigned long end_pfn = start_pfn + nr_pages;
1875 unsigned long pfn, system_ram_pages = 0;
1876 const int node = zone_to_nid(zone);
1877 unsigned long flags;
1878 struct memory_notify arg;
1879 char *reason;
1880 int ret;
1881
1882 /*
1883 * {on,off}lining is constrained to full memory sections (or more
1884 * precisely to memory blocks from the user space POV).
1885 * memmap_on_memory is an exception because it reserves initial part
1886 * of the physical memory space for vmemmaps. That space is pageblock
1887 * aligned.
1888 */
1889 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1890 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1891 return -EINVAL;
1892
1893 /*
1894 * Don't allow to offline memory blocks that contain holes.
1895 * Consequently, memory blocks with holes can never get onlined
1896 * via the hotplug path - online_pages() - as hotplugged memory has
1897 * no holes. This way, we e.g., don't have to worry about marking
1898 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1899 * avoid using walk_system_ram_range() later.
1900 */
1901 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1902 count_system_ram_pages_cb);
1903 if (system_ram_pages != nr_pages) {
1904 ret = -EINVAL;
1905 reason = "memory holes";
1906 goto failed_removal;
1907 }
1908
1909 /*
1910 * We only support offlining of memory blocks managed by a single zone,
1911 * checked by calling code. This is just a sanity check that we might
1912 * want to remove in the future.
1913 */
1914 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1915 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1916 ret = -EINVAL;
1917 reason = "multizone range";
1918 goto failed_removal;
1919 }
1920
1921 /*
1922 * Disable pcplists so that page isolation cannot race with freeing
1923 * in a way that pages from isolated pageblock are left on pcplists.
1924 */
1925 zone_pcp_disable(zone);
1926 lru_cache_disable();
1927
1928 /* set above range as isolated */
1929 ret = start_isolate_page_range(start_pfn, end_pfn,
1930 MIGRATE_MOVABLE,
1931 MEMORY_OFFLINE | REPORT_FAILURE,
1932 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1933 if (ret) {
1934 reason = "failure to isolate range";
1935 goto failed_removal_pcplists_disabled;
1936 }
1937
1938 arg.start_pfn = start_pfn;
1939 arg.nr_pages = nr_pages;
1940 node_states_check_changes_offline(nr_pages, zone, &arg);
1941
1942 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1943 ret = notifier_to_errno(ret);
1944 if (ret) {
1945 reason = "notifier failure";
1946 goto failed_removal_isolated;
1947 }
1948
1949 do {
1950 pfn = start_pfn;
1951 do {
1952 /*
1953 * Historically we always checked for any signal and
1954 * can't limit it to fatal signals without eventually
1955 * breaking user space.
1956 */
1957 if (signal_pending(current)) {
1958 ret = -EINTR;
1959 reason = "signal backoff";
1960 goto failed_removal_isolated;
1961 }
1962
1963 cond_resched();
1964
1965 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1966 if (!ret) {
1967 /*
1968 * TODO: fatal migration failures should bail
1969 * out
1970 */
1971 do_migrate_range(pfn, end_pfn);
1972 }
1973 } while (!ret);
1974
1975 if (ret != -ENOENT) {
1976 reason = "unmovable page";
1977 goto failed_removal_isolated;
1978 }
1979
1980 /*
1981 * Dissolve free hugepages in the memory block before doing
1982 * offlining actually in order to make hugetlbfs's object
1983 * counting consistent.
1984 */
1985 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1986 if (ret) {
1987 reason = "failure to dissolve huge pages";
1988 goto failed_removal_isolated;
1989 }
1990
1991 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1992
1993 } while (ret);
1994
1995 /* Mark all sections offline and remove free pages from the buddy. */
1996 __offline_isolated_pages(start_pfn, end_pfn);
1997 pr_debug("Offlined Pages %ld\n", nr_pages);
1998
1999 /*
2000 * The memory sections are marked offline, and the pageblock flags
2001 * effectively stale; nobody should be touching them. Fixup the number
2002 * of isolated pageblocks, memory onlining will properly revert this.
2003 */
2004 spin_lock_irqsave(&zone->lock, flags);
2005 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2006 spin_unlock_irqrestore(&zone->lock, flags);
2007
2008 lru_cache_enable();
2009 zone_pcp_enable(zone);
2010
2011 /* removal success */
2012 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2013 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2014
2015 /* reinitialise watermarks and update pcp limits */
2016 init_per_zone_wmark_min();
2017
2018 if (!populated_zone(zone)) {
2019 zone_pcp_reset(zone);
2020 build_all_zonelists(NULL);
2021 }
2022
2023 node_states_clear_node(node, &arg);
2024 if (arg.status_change_nid >= 0) {
2025 kcompactd_stop(node);
2026 kswapd_stop(node);
2027 }
2028
2029 writeback_set_ratelimit();
2030
2031 memory_notify(MEM_OFFLINE, &arg);
2032 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2033 return 0;
2034
2035 failed_removal_isolated:
2036 /* pushback to free area */
2037 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2038 memory_notify(MEM_CANCEL_OFFLINE, &arg);
2039 failed_removal_pcplists_disabled:
2040 lru_cache_enable();
2041 zone_pcp_enable(zone);
2042 failed_removal:
2043 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2044 (unsigned long long) start_pfn << PAGE_SHIFT,
2045 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2046 reason);
2047 return ret;
2048 }
2049
check_memblock_offlined_cb(struct memory_block * mem,void * arg)2050 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2051 {
2052 int *nid = arg;
2053
2054 *nid = mem->nid;
2055 if (unlikely(mem->state != MEM_OFFLINE)) {
2056 phys_addr_t beginpa, endpa;
2057
2058 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2059 endpa = beginpa + memory_block_size_bytes() - 1;
2060 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2061 &beginpa, &endpa);
2062
2063 return -EBUSY;
2064 }
2065 return 0;
2066 }
2067
test_has_altmap_cb(struct memory_block * mem,void * arg)2068 static int test_has_altmap_cb(struct memory_block *mem, void *arg)
2069 {
2070 struct memory_block **mem_ptr = (struct memory_block **)arg;
2071 /*
2072 * return the memblock if we have altmap
2073 * and break callback.
2074 */
2075 if (mem->altmap) {
2076 *mem_ptr = mem;
2077 return 1;
2078 }
2079 return 0;
2080 }
2081
check_cpu_on_node(int nid)2082 static int check_cpu_on_node(int nid)
2083 {
2084 int cpu;
2085
2086 for_each_present_cpu(cpu) {
2087 if (cpu_to_node(cpu) == nid)
2088 /*
2089 * the cpu on this node isn't removed, and we can't
2090 * offline this node.
2091 */
2092 return -EBUSY;
2093 }
2094
2095 return 0;
2096 }
2097
check_no_memblock_for_node_cb(struct memory_block * mem,void * arg)2098 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2099 {
2100 int nid = *(int *)arg;
2101
2102 /*
2103 * If a memory block belongs to multiple nodes, the stored nid is not
2104 * reliable. However, such blocks are always online (e.g., cannot get
2105 * offlined) and, therefore, are still spanned by the node.
2106 */
2107 return mem->nid == nid ? -EEXIST : 0;
2108 }
2109
2110 /**
2111 * try_offline_node
2112 * @nid: the node ID
2113 *
2114 * Offline a node if all memory sections and cpus of the node are removed.
2115 *
2116 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2117 * and online/offline operations before this call.
2118 */
try_offline_node(int nid)2119 void try_offline_node(int nid)
2120 {
2121 int rc;
2122
2123 /*
2124 * If the node still spans pages (especially ZONE_DEVICE), don't
2125 * offline it. A node spans memory after move_pfn_range_to_zone(),
2126 * e.g., after the memory block was onlined.
2127 */
2128 if (node_spanned_pages(nid))
2129 return;
2130
2131 /*
2132 * Especially offline memory blocks might not be spanned by the
2133 * node. They will get spanned by the node once they get onlined.
2134 * However, they link to the node in sysfs and can get onlined later.
2135 */
2136 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2137 if (rc)
2138 return;
2139
2140 if (check_cpu_on_node(nid))
2141 return;
2142
2143 /*
2144 * all memory/cpu of this node are removed, we can offline this
2145 * node now.
2146 */
2147 node_set_offline(nid);
2148 unregister_one_node(nid);
2149 }
2150 EXPORT_SYMBOL(try_offline_node);
2151
try_remove_memory(u64 start,u64 size)2152 static int __ref try_remove_memory(u64 start, u64 size)
2153 {
2154 struct memory_block *mem;
2155 int rc = 0, nid = NUMA_NO_NODE;
2156 struct vmem_altmap *altmap = NULL;
2157
2158 BUG_ON(check_hotplug_memory_range(start, size));
2159
2160 /*
2161 * All memory blocks must be offlined before removing memory. Check
2162 * whether all memory blocks in question are offline and return error
2163 * if this is not the case.
2164 *
2165 * While at it, determine the nid. Note that if we'd have mixed nodes,
2166 * we'd only try to offline the last determined one -- which is good
2167 * enough for the cases we care about.
2168 */
2169 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2170 if (rc)
2171 return rc;
2172
2173 /*
2174 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2175 * the same granularity it was added - a single memory block.
2176 */
2177 if (mhp_memmap_on_memory()) {
2178 rc = walk_memory_blocks(start, size, &mem, test_has_altmap_cb);
2179 if (rc) {
2180 if (size != memory_block_size_bytes()) {
2181 pr_warn("Refuse to remove %#llx - %#llx,"
2182 "wrong granularity\n",
2183 start, start + size);
2184 return -EINVAL;
2185 }
2186 altmap = mem->altmap;
2187 /*
2188 * Mark altmap NULL so that we can add a debug
2189 * check on memblock free.
2190 */
2191 mem->altmap = NULL;
2192 }
2193 }
2194
2195 /* remove memmap entry */
2196 firmware_map_remove(start, start + size, "System RAM");
2197
2198 /*
2199 * Memory block device removal under the device_hotplug_lock is
2200 * a barrier against racing online attempts.
2201 */
2202 remove_memory_block_devices(start, size);
2203
2204 mem_hotplug_begin();
2205
2206 arch_remove_memory(start, size, altmap);
2207
2208 /* Verify that all vmemmap pages have actually been freed. */
2209 if (altmap) {
2210 WARN(altmap->alloc, "Altmap not fully unmapped");
2211 kfree(altmap);
2212 }
2213
2214 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2215 memblock_phys_free(start, size);
2216 memblock_remove(start, size);
2217 }
2218
2219 release_mem_region_adjustable(start, size);
2220
2221 if (nid != NUMA_NO_NODE)
2222 try_offline_node(nid);
2223
2224 mem_hotplug_done();
2225 return 0;
2226 }
2227
2228 /**
2229 * __remove_memory - Remove memory if every memory block is offline
2230 * @start: physical address of the region to remove
2231 * @size: size of the region to remove
2232 *
2233 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2234 * and online/offline operations before this call, as required by
2235 * try_offline_node().
2236 */
__remove_memory(u64 start,u64 size)2237 void __remove_memory(u64 start, u64 size)
2238 {
2239
2240 /*
2241 * trigger BUG() if some memory is not offlined prior to calling this
2242 * function
2243 */
2244 if (try_remove_memory(start, size))
2245 BUG();
2246 }
2247
2248 /*
2249 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2250 * some memory is not offline
2251 */
remove_memory(u64 start,u64 size)2252 int remove_memory(u64 start, u64 size)
2253 {
2254 int rc;
2255
2256 lock_device_hotplug();
2257 rc = try_remove_memory(start, size);
2258 unlock_device_hotplug();
2259
2260 return rc;
2261 }
2262 EXPORT_SYMBOL_GPL(remove_memory);
2263
try_offline_memory_block(struct memory_block * mem,void * arg)2264 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2265 {
2266 uint8_t online_type = MMOP_ONLINE_KERNEL;
2267 uint8_t **online_types = arg;
2268 struct page *page;
2269 int rc;
2270
2271 /*
2272 * Sense the online_type via the zone of the memory block. Offlining
2273 * with multiple zones within one memory block will be rejected
2274 * by offlining code ... so we don't care about that.
2275 */
2276 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2277 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2278 online_type = MMOP_ONLINE_MOVABLE;
2279
2280 rc = device_offline(&mem->dev);
2281 /*
2282 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2283 * so try_reonline_memory_block() can do the right thing.
2284 */
2285 if (!rc)
2286 **online_types = online_type;
2287
2288 (*online_types)++;
2289 /* Ignore if already offline. */
2290 return rc < 0 ? rc : 0;
2291 }
2292
try_reonline_memory_block(struct memory_block * mem,void * arg)2293 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2294 {
2295 uint8_t **online_types = arg;
2296 int rc;
2297
2298 if (**online_types != MMOP_OFFLINE) {
2299 mem->online_type = **online_types;
2300 rc = device_online(&mem->dev);
2301 if (rc < 0)
2302 pr_warn("%s: Failed to re-online memory: %d",
2303 __func__, rc);
2304 }
2305
2306 /* Continue processing all remaining memory blocks. */
2307 (*online_types)++;
2308 return 0;
2309 }
2310
2311 /*
2312 * Try to offline and remove memory. Might take a long time to finish in case
2313 * memory is still in use. Primarily useful for memory devices that logically
2314 * unplugged all memory (so it's no longer in use) and want to offline + remove
2315 * that memory.
2316 */
offline_and_remove_memory(u64 start,u64 size)2317 int offline_and_remove_memory(u64 start, u64 size)
2318 {
2319 const unsigned long mb_count = size / memory_block_size_bytes();
2320 uint8_t *online_types, *tmp;
2321 int rc;
2322
2323 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2324 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2325 return -EINVAL;
2326
2327 /*
2328 * We'll remember the old online type of each memory block, so we can
2329 * try to revert whatever we did when offlining one memory block fails
2330 * after offlining some others succeeded.
2331 */
2332 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2333 GFP_KERNEL);
2334 if (!online_types)
2335 return -ENOMEM;
2336 /*
2337 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2338 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2339 * try_reonline_memory_block().
2340 */
2341 memset(online_types, MMOP_OFFLINE, mb_count);
2342
2343 lock_device_hotplug();
2344
2345 tmp = online_types;
2346 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2347
2348 /*
2349 * In case we succeeded to offline all memory, remove it.
2350 * This cannot fail as it cannot get onlined in the meantime.
2351 */
2352 if (!rc) {
2353 rc = try_remove_memory(start, size);
2354 if (rc)
2355 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2356 }
2357
2358 /*
2359 * Rollback what we did. While memory onlining might theoretically fail
2360 * (nacked by a notifier), it barely ever happens.
2361 */
2362 if (rc) {
2363 tmp = online_types;
2364 walk_memory_blocks(start, size, &tmp,
2365 try_reonline_memory_block);
2366 }
2367 unlock_device_hotplug();
2368
2369 kfree(online_types);
2370 return rc;
2371 }
2372 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2373 #endif /* CONFIG_MEMORY_HOTREMOVE */
2374