1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * devfreq_cooling: Thermal cooling device implementation for devices using
4 * devfreq
5 *
6 * Copyright (C) 2014-2015 ARM Limited
7 *
8 * TODO:
9 * - If OPPs are added or removed after devfreq cooling has
10 * registered, the devfreq cooling won't react to it.
11 */
12
13 #include <linux/devfreq.h>
14 #include <linux/devfreq_cooling.h>
15 #include <linux/energy_model.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/pm_opp.h>
19 #include <linux/pm_qos.h>
20 #include <linux/thermal.h>
21 #include <linux/units.h>
22
23 #include "thermal_trace.h"
24
25 #define SCALE_ERROR_MITIGATION 100
26
27 /**
28 * struct devfreq_cooling_device - Devfreq cooling device
29 * devfreq_cooling_device registered.
30 * @cdev: Pointer to associated thermal cooling device.
31 * @cooling_ops: devfreq callbacks to thermal cooling device ops
32 * @devfreq: Pointer to associated devfreq device.
33 * @cooling_state: Current cooling state.
34 * @freq_table: Pointer to a table with the frequencies sorted in descending
35 * order. You can index the table by cooling device state
36 * @max_state: It is the last index, that is, one less than the number of the
37 * OPPs
38 * @power_ops: Pointer to devfreq_cooling_power, a more precised model.
39 * @res_util: Resource utilization scaling factor for the power.
40 * It is multiplied by 100 to minimize the error. It is used
41 * for estimation of the power budget instead of using
42 * 'utilization' (which is 'busy_time' / 'total_time').
43 * The 'res_util' range is from 100 to power * 100 for the
44 * corresponding 'state'.
45 * @capped_state: index to cooling state with in dynamic power budget
46 * @req_max_freq: PM QoS request for limiting the maximum frequency
47 * of the devfreq device.
48 * @em_pd: Energy Model for the associated Devfreq device
49 */
50 struct devfreq_cooling_device {
51 struct thermal_cooling_device *cdev;
52 struct thermal_cooling_device_ops cooling_ops;
53 struct devfreq *devfreq;
54 unsigned long cooling_state;
55 u32 *freq_table;
56 size_t max_state;
57 struct devfreq_cooling_power *power_ops;
58 u32 res_util;
59 int capped_state;
60 struct dev_pm_qos_request req_max_freq;
61 struct em_perf_domain *em_pd;
62 };
63
devfreq_cooling_get_max_state(struct thermal_cooling_device * cdev,unsigned long * state)64 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
65 unsigned long *state)
66 {
67 struct devfreq_cooling_device *dfc = cdev->devdata;
68
69 *state = dfc->max_state;
70
71 return 0;
72 }
73
devfreq_cooling_get_cur_state(struct thermal_cooling_device * cdev,unsigned long * state)74 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
75 unsigned long *state)
76 {
77 struct devfreq_cooling_device *dfc = cdev->devdata;
78
79 *state = dfc->cooling_state;
80
81 return 0;
82 }
83
devfreq_cooling_set_cur_state(struct thermal_cooling_device * cdev,unsigned long state)84 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
85 unsigned long state)
86 {
87 struct devfreq_cooling_device *dfc = cdev->devdata;
88 struct devfreq *df = dfc->devfreq;
89 struct device *dev = df->dev.parent;
90 unsigned long freq;
91 int perf_idx;
92
93 if (state == dfc->cooling_state)
94 return 0;
95
96 dev_dbg(dev, "Setting cooling state %lu\n", state);
97
98 if (state > dfc->max_state)
99 return -EINVAL;
100
101 if (dfc->em_pd) {
102 perf_idx = dfc->max_state - state;
103 freq = dfc->em_pd->table[perf_idx].frequency * 1000;
104 } else {
105 freq = dfc->freq_table[state];
106 }
107
108 dev_pm_qos_update_request(&dfc->req_max_freq,
109 DIV_ROUND_UP(freq, HZ_PER_KHZ));
110
111 dfc->cooling_state = state;
112
113 return 0;
114 }
115
116 /**
117 * get_perf_idx() - get the performance index corresponding to a frequency
118 * @em_pd: Pointer to device's Energy Model
119 * @freq: frequency in kHz
120 *
121 * Return: the performance index associated with the @freq, or
122 * -EINVAL if it wasn't found.
123 */
get_perf_idx(struct em_perf_domain * em_pd,unsigned long freq)124 static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq)
125 {
126 int i;
127
128 for (i = 0; i < em_pd->nr_perf_states; i++) {
129 if (em_pd->table[i].frequency == freq)
130 return i;
131 }
132
133 return -EINVAL;
134 }
135
get_voltage(struct devfreq * df,unsigned long freq)136 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
137 {
138 struct device *dev = df->dev.parent;
139 unsigned long voltage;
140 struct dev_pm_opp *opp;
141
142 opp = dev_pm_opp_find_freq_exact(dev, freq, true);
143 if (PTR_ERR(opp) == -ERANGE)
144 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
145
146 if (IS_ERR(opp)) {
147 dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
148 freq, PTR_ERR(opp));
149 return 0;
150 }
151
152 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
153 dev_pm_opp_put(opp);
154
155 if (voltage == 0) {
156 dev_err_ratelimited(dev,
157 "Failed to get voltage for frequency %lu\n",
158 freq);
159 }
160
161 return voltage;
162 }
163
_normalize_load(struct devfreq_dev_status * status)164 static void _normalize_load(struct devfreq_dev_status *status)
165 {
166 if (status->total_time > 0xfffff) {
167 status->total_time >>= 10;
168 status->busy_time >>= 10;
169 }
170
171 status->busy_time <<= 10;
172 status->busy_time /= status->total_time ? : 1;
173
174 status->busy_time = status->busy_time ? : 1;
175 status->total_time = 1024;
176 }
177
devfreq_cooling_get_requested_power(struct thermal_cooling_device * cdev,u32 * power)178 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
179 u32 *power)
180 {
181 struct devfreq_cooling_device *dfc = cdev->devdata;
182 struct devfreq *df = dfc->devfreq;
183 struct devfreq_dev_status status;
184 unsigned long state;
185 unsigned long freq;
186 unsigned long voltage;
187 int res, perf_idx;
188
189 mutex_lock(&df->lock);
190 status = df->last_status;
191 mutex_unlock(&df->lock);
192
193 freq = status.current_frequency;
194
195 if (dfc->power_ops && dfc->power_ops->get_real_power) {
196 voltage = get_voltage(df, freq);
197 if (voltage == 0) {
198 res = -EINVAL;
199 goto fail;
200 }
201
202 res = dfc->power_ops->get_real_power(df, power, freq, voltage);
203 if (!res) {
204 state = dfc->max_state - dfc->capped_state;
205
206 /* Convert EM power into milli-Watts first */
207 dfc->res_util = dfc->em_pd->table[state].power;
208 dfc->res_util /= MICROWATT_PER_MILLIWATT;
209
210 dfc->res_util *= SCALE_ERROR_MITIGATION;
211
212 if (*power > 1)
213 dfc->res_util /= *power;
214 } else {
215 goto fail;
216 }
217 } else {
218 /* Energy Model frequencies are in kHz */
219 perf_idx = get_perf_idx(dfc->em_pd, freq / 1000);
220 if (perf_idx < 0) {
221 res = -EAGAIN;
222 goto fail;
223 }
224
225 _normalize_load(&status);
226
227 /* Convert EM power into milli-Watts first */
228 *power = dfc->em_pd->table[perf_idx].power;
229 *power /= MICROWATT_PER_MILLIWATT;
230 /* Scale power for utilization */
231 *power *= status.busy_time;
232 *power >>= 10;
233 }
234
235 trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
236
237 return 0;
238 fail:
239 /* It is safe to set max in this case */
240 dfc->res_util = SCALE_ERROR_MITIGATION;
241 return res;
242 }
243
devfreq_cooling_state2power(struct thermal_cooling_device * cdev,unsigned long state,u32 * power)244 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
245 unsigned long state, u32 *power)
246 {
247 struct devfreq_cooling_device *dfc = cdev->devdata;
248 int perf_idx;
249
250 if (state > dfc->max_state)
251 return -EINVAL;
252
253 perf_idx = dfc->max_state - state;
254 *power = dfc->em_pd->table[perf_idx].power;
255 *power /= MICROWATT_PER_MILLIWATT;
256
257 return 0;
258 }
259
devfreq_cooling_power2state(struct thermal_cooling_device * cdev,u32 power,unsigned long * state)260 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
261 u32 power, unsigned long *state)
262 {
263 struct devfreq_cooling_device *dfc = cdev->devdata;
264 struct devfreq *df = dfc->devfreq;
265 struct devfreq_dev_status status;
266 unsigned long freq, em_power_mw;
267 s32 est_power;
268 int i;
269
270 mutex_lock(&df->lock);
271 status = df->last_status;
272 mutex_unlock(&df->lock);
273
274 freq = status.current_frequency;
275
276 if (dfc->power_ops && dfc->power_ops->get_real_power) {
277 /* Scale for resource utilization */
278 est_power = power * dfc->res_util;
279 est_power /= SCALE_ERROR_MITIGATION;
280 } else {
281 /* Scale dynamic power for utilization */
282 _normalize_load(&status);
283 est_power = power << 10;
284 est_power /= status.busy_time;
285 }
286
287 /*
288 * Find the first cooling state that is within the power
289 * budget. The EM power table is sorted ascending.
290 */
291 for (i = dfc->max_state; i > 0; i--) {
292 /* Convert EM power to milli-Watts to make safe comparison */
293 em_power_mw = dfc->em_pd->table[i].power;
294 em_power_mw /= MICROWATT_PER_MILLIWATT;
295 if (est_power >= em_power_mw)
296 break;
297 }
298
299 *state = dfc->max_state - i;
300 dfc->capped_state = *state;
301
302 trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
303 return 0;
304 }
305
306 /**
307 * devfreq_cooling_gen_tables() - Generate frequency table.
308 * @dfc: Pointer to devfreq cooling device.
309 * @num_opps: Number of OPPs
310 *
311 * Generate frequency table which holds the frequencies in descending
312 * order. That way its indexed by cooling device state. This is for
313 * compatibility with drivers which do not register Energy Model.
314 *
315 * Return: 0 on success, negative error code on failure.
316 */
devfreq_cooling_gen_tables(struct devfreq_cooling_device * dfc,int num_opps)317 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
318 int num_opps)
319 {
320 struct devfreq *df = dfc->devfreq;
321 struct device *dev = df->dev.parent;
322 unsigned long freq;
323 int i;
324
325 dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
326 GFP_KERNEL);
327 if (!dfc->freq_table)
328 return -ENOMEM;
329
330 for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
331 struct dev_pm_opp *opp;
332
333 opp = dev_pm_opp_find_freq_floor(dev, &freq);
334 if (IS_ERR(opp)) {
335 kfree(dfc->freq_table);
336 return PTR_ERR(opp);
337 }
338
339 dev_pm_opp_put(opp);
340 dfc->freq_table[i] = freq;
341 }
342
343 return 0;
344 }
345
346 /**
347 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
348 * with OF and power information.
349 * @np: Pointer to OF device_node.
350 * @df: Pointer to devfreq device.
351 * @dfc_power: Pointer to devfreq_cooling_power.
352 *
353 * Register a devfreq cooling device. The available OPPs must be
354 * registered on the device.
355 *
356 * If @dfc_power is provided, the cooling device is registered with the
357 * power extensions. For the power extensions to work correctly,
358 * devfreq should use the simple_ondemand governor, other governors
359 * are not currently supported.
360 */
361 struct thermal_cooling_device *
of_devfreq_cooling_register_power(struct device_node * np,struct devfreq * df,struct devfreq_cooling_power * dfc_power)362 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
363 struct devfreq_cooling_power *dfc_power)
364 {
365 struct thermal_cooling_device *cdev;
366 struct device *dev = df->dev.parent;
367 struct devfreq_cooling_device *dfc;
368 struct em_perf_domain *em;
369 struct thermal_cooling_device_ops *ops;
370 char *name;
371 int err, num_opps;
372
373
374 dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
375 if (!dfc)
376 return ERR_PTR(-ENOMEM);
377
378 dfc->devfreq = df;
379
380 ops = &dfc->cooling_ops;
381 ops->get_max_state = devfreq_cooling_get_max_state;
382 ops->get_cur_state = devfreq_cooling_get_cur_state;
383 ops->set_cur_state = devfreq_cooling_set_cur_state;
384
385 em = em_pd_get(dev);
386 if (em && !em_is_artificial(em)) {
387 dfc->em_pd = em;
388 ops->get_requested_power =
389 devfreq_cooling_get_requested_power;
390 ops->state2power = devfreq_cooling_state2power;
391 ops->power2state = devfreq_cooling_power2state;
392
393 dfc->power_ops = dfc_power;
394
395 num_opps = em_pd_nr_perf_states(dfc->em_pd);
396 } else {
397 /* Backward compatibility for drivers which do not use IPA */
398 dev_dbg(dev, "missing proper EM for cooling device\n");
399
400 num_opps = dev_pm_opp_get_opp_count(dev);
401
402 err = devfreq_cooling_gen_tables(dfc, num_opps);
403 if (err)
404 goto free_dfc;
405 }
406
407 if (num_opps <= 0) {
408 err = -EINVAL;
409 goto free_dfc;
410 }
411
412 /* max_state is an index, not a counter */
413 dfc->max_state = num_opps - 1;
414
415 err = dev_pm_qos_add_request(dev, &dfc->req_max_freq,
416 DEV_PM_QOS_MAX_FREQUENCY,
417 PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
418 if (err < 0)
419 goto free_table;
420
421 err = -ENOMEM;
422 name = kasprintf(GFP_KERNEL, "devfreq-%s", dev_name(dev));
423 if (!name)
424 goto remove_qos_req;
425
426 cdev = thermal_of_cooling_device_register(np, name, dfc, ops);
427 kfree(name);
428
429 if (IS_ERR(cdev)) {
430 err = PTR_ERR(cdev);
431 dev_err(dev,
432 "Failed to register devfreq cooling device (%d)\n",
433 err);
434 goto remove_qos_req;
435 }
436
437 dfc->cdev = cdev;
438
439 return cdev;
440
441 remove_qos_req:
442 dev_pm_qos_remove_request(&dfc->req_max_freq);
443 free_table:
444 kfree(dfc->freq_table);
445 free_dfc:
446 kfree(dfc);
447
448 return ERR_PTR(err);
449 }
450 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
451
452 /**
453 * of_devfreq_cooling_register() - Register devfreq cooling device,
454 * with OF information.
455 * @np: Pointer to OF device_node.
456 * @df: Pointer to devfreq device.
457 */
458 struct thermal_cooling_device *
of_devfreq_cooling_register(struct device_node * np,struct devfreq * df)459 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
460 {
461 return of_devfreq_cooling_register_power(np, df, NULL);
462 }
463 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
464
465 /**
466 * devfreq_cooling_register() - Register devfreq cooling device.
467 * @df: Pointer to devfreq device.
468 */
devfreq_cooling_register(struct devfreq * df)469 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
470 {
471 return of_devfreq_cooling_register(NULL, df);
472 }
473 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
474
475 /**
476 * devfreq_cooling_em_register() - Register devfreq cooling device with
477 * power information and automatically register Energy Model (EM)
478 * @df: Pointer to devfreq device.
479 * @dfc_power: Pointer to devfreq_cooling_power.
480 *
481 * Register a devfreq cooling device and automatically register EM. The
482 * available OPPs must be registered for the device.
483 *
484 * If @dfc_power is provided, the cooling device is registered with the
485 * power extensions. It is using the simple Energy Model which requires
486 * "dynamic-power-coefficient" a devicetree property. To not break drivers
487 * which miss that DT property, the function won't bail out when the EM
488 * registration failed. The cooling device will be registered if everything
489 * else is OK.
490 */
491 struct thermal_cooling_device *
devfreq_cooling_em_register(struct devfreq * df,struct devfreq_cooling_power * dfc_power)492 devfreq_cooling_em_register(struct devfreq *df,
493 struct devfreq_cooling_power *dfc_power)
494 {
495 struct thermal_cooling_device *cdev;
496 struct device *dev;
497 int ret;
498
499 if (IS_ERR_OR_NULL(df))
500 return ERR_PTR(-EINVAL);
501
502 dev = df->dev.parent;
503
504 ret = dev_pm_opp_of_register_em(dev, NULL);
505 if (ret)
506 dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n",
507 ret);
508
509 cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power);
510
511 if (IS_ERR_OR_NULL(cdev))
512 em_dev_unregister_perf_domain(dev);
513
514 return cdev;
515 }
516 EXPORT_SYMBOL_GPL(devfreq_cooling_em_register);
517
518 /**
519 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
520 * @cdev: Pointer to devfreq cooling device to unregister.
521 *
522 * Unregisters devfreq cooling device and related Energy Model if it was
523 * present.
524 */
devfreq_cooling_unregister(struct thermal_cooling_device * cdev)525 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
526 {
527 struct devfreq_cooling_device *dfc;
528 struct device *dev;
529
530 if (IS_ERR_OR_NULL(cdev))
531 return;
532
533 dfc = cdev->devdata;
534 dev = dfc->devfreq->dev.parent;
535
536 thermal_cooling_device_unregister(dfc->cdev);
537 dev_pm_qos_remove_request(&dfc->req_max_freq);
538
539 em_dev_unregister_perf_domain(dev);
540
541 kfree(dfc->freq_table);
542 kfree(dfc);
543 }
544 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
545