1 /*
2 * ARM hflags
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "cpu.h"
10 #include "internals.h"
11 #include "cpu-features.h"
12 #include "exec/helper-proto.h"
13 #include "cpregs.h"
14
fgt_svc(CPUARMState * env,int el)15 static inline bool fgt_svc(CPUARMState *env, int el)
16 {
17 /*
18 * Assuming fine-grained-traps are active, return true if we
19 * should be trapping on SVC instructions. Only AArch64 can
20 * trap on an SVC at EL1, but we don't need to special-case this
21 * because if this is AArch32 EL1 then arm_fgt_active() is false.
22 * We also know el is 0 or 1.
23 */
24 return el == 0 ?
25 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
26 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
27 }
28
29 /* Return true if memory alignment should be enforced. */
aprofile_require_alignment(CPUARMState * env,int el,uint64_t sctlr)30 static bool aprofile_require_alignment(CPUARMState *env, int el, uint64_t sctlr)
31 {
32 #ifdef CONFIG_USER_ONLY
33 return false;
34 #else
35 /* Check the alignment enable bit. */
36 if (sctlr & SCTLR_A) {
37 return true;
38 }
39
40 /*
41 * With PMSA, when the MPU is disabled, all memory types in the
42 * default map are Normal, so don't need aligment enforcing.
43 */
44 if (arm_feature(env, ARM_FEATURE_PMSA)) {
45 return false;
46 }
47
48 /*
49 * With VMSA, if translation is disabled, then the default memory type
50 * is Device(-nGnRnE) instead of Normal, which requires that alignment
51 * be enforced. Since this affects all ram, it is most efficient
52 * to handle this during translation.
53 */
54 if (sctlr & SCTLR_M) {
55 /* Translation enabled: memory type in PTE via MAIR_ELx. */
56 return false;
57 }
58 if (el < 2 && (arm_hcr_el2_eff(env) & (HCR_DC | HCR_VM))) {
59 /* Stage 2 translation enabled: memory type in PTE. */
60 return false;
61 }
62 return true;
63 #endif
64 }
65
rebuild_hflags_common(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx,CPUARMTBFlags flags)66 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
67 ARMMMUIdx mmu_idx,
68 CPUARMTBFlags flags)
69 {
70 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
71 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
72
73 if (arm_singlestep_active(env)) {
74 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
75 }
76
77 return flags;
78 }
79
rebuild_hflags_common_32(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx,CPUARMTBFlags flags)80 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
81 ARMMMUIdx mmu_idx,
82 CPUARMTBFlags flags)
83 {
84 bool sctlr_b = arm_sctlr_b(env);
85
86 if (sctlr_b) {
87 DP_TBFLAG_A32(flags, SCTLR__B, 1);
88 }
89 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
90 DP_TBFLAG_ANY(flags, BE_DATA, 1);
91 }
92 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
93
94 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
95 }
96
rebuild_hflags_m32(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx)97 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
98 ARMMMUIdx mmu_idx)
99 {
100 CPUARMTBFlags flags = {};
101 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
102
103 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
104 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
105 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
106 }
107
108 if (arm_v7m_is_handler_mode(env)) {
109 DP_TBFLAG_M32(flags, HANDLER, 1);
110 }
111
112 /*
113 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
114 * is suppressing them because the requested execution priority
115 * is less than 0.
116 */
117 if (arm_feature(env, ARM_FEATURE_V8) &&
118 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
119 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
120 DP_TBFLAG_M32(flags, STACKCHECK, 1);
121 }
122
123 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
124 DP_TBFLAG_M32(flags, SECURE, 1);
125 }
126
127 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
128 }
129
130 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
sme_fa64(CPUARMState * env,int el)131 static bool sme_fa64(CPUARMState *env, int el)
132 {
133 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
134 return false;
135 }
136
137 if (el <= 1 && !el_is_in_host(env, el)) {
138 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
139 return false;
140 }
141 }
142 if (el <= 2 && arm_is_el2_enabled(env)) {
143 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
144 return false;
145 }
146 }
147 if (arm_feature(env, ARM_FEATURE_EL3)) {
148 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
149 return false;
150 }
151 }
152
153 return true;
154 }
155
rebuild_hflags_a32(CPUARMState * env,int fp_el,ARMMMUIdx mmu_idx)156 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
157 ARMMMUIdx mmu_idx)
158 {
159 CPUARMTBFlags flags = {};
160 int el = arm_current_el(env);
161 uint64_t sctlr = arm_sctlr(env, el);
162
163 if (aprofile_require_alignment(env, el, sctlr)) {
164 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
165 }
166
167 if (arm_el_is_aa64(env, 1)) {
168 DP_TBFLAG_A32(flags, VFPEN, 1);
169 }
170
171 if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
172 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
173 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
174 }
175
176 if (arm_fgt_active(env, el)) {
177 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
178 if (fgt_svc(env, el)) {
179 DP_TBFLAG_ANY(flags, FGT_SVC, 1);
180 }
181 }
182
183 if (env->uncached_cpsr & CPSR_IL) {
184 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
185 }
186
187 /*
188 * The SME exception we are testing for is raised via
189 * AArch64.CheckFPAdvSIMDEnabled(), as called from
190 * AArch32.CheckAdvSIMDOrFPEnabled().
191 */
192 if (el == 0
193 && FIELD_EX64(env->svcr, SVCR, SM)
194 && (!arm_is_el2_enabled(env)
195 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
196 && arm_el_is_aa64(env, 1)
197 && !sme_fa64(env, el)) {
198 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
199 }
200
201 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
202 }
203
rebuild_hflags_a64(CPUARMState * env,int el,int fp_el,ARMMMUIdx mmu_idx)204 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
205 ARMMMUIdx mmu_idx)
206 {
207 CPUARMTBFlags flags = {};
208 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
209 uint64_t tcr = regime_tcr(env, mmu_idx);
210 uint64_t hcr = arm_hcr_el2_eff(env);
211 uint64_t sctlr;
212 int tbii, tbid;
213
214 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
215
216 /* Get control bits for tagged addresses. */
217 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
218 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
219
220 DP_TBFLAG_A64(flags, TBII, tbii);
221 DP_TBFLAG_A64(flags, TBID, tbid);
222
223 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
224 int sve_el = sve_exception_el(env, el);
225
226 /*
227 * If either FP or SVE are disabled, translator does not need len.
228 * If SVE EL > FP EL, FP exception has precedence, and translator
229 * does not need SVE EL. Save potential re-translations by forcing
230 * the unneeded data to zero.
231 */
232 if (fp_el != 0) {
233 if (sve_el > fp_el) {
234 sve_el = 0;
235 }
236 } else if (sve_el == 0) {
237 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
238 }
239 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
240 }
241 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
242 int sme_el = sme_exception_el(env, el);
243 bool sm = FIELD_EX64(env->svcr, SVCR, SM);
244
245 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
246 if (sme_el == 0) {
247 /* Similarly, do not compute SVL if SME is disabled. */
248 int svl = sve_vqm1_for_el_sm(env, el, true);
249 DP_TBFLAG_A64(flags, SVL, svl);
250 if (sm) {
251 /* If SVE is disabled, we will not have set VL above. */
252 DP_TBFLAG_A64(flags, VL, svl);
253 }
254 }
255 if (sm) {
256 DP_TBFLAG_A64(flags, PSTATE_SM, 1);
257 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
258 }
259 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
260 }
261
262 sctlr = regime_sctlr(env, stage1);
263
264 if (aprofile_require_alignment(env, el, sctlr)) {
265 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
266 }
267
268 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
269 DP_TBFLAG_ANY(flags, BE_DATA, 1);
270 }
271
272 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
273 /*
274 * In order to save space in flags, we record only whether
275 * pauth is "inactive", meaning all insns are implemented as
276 * a nop, or "active" when some action must be performed.
277 * The decision of which action to take is left to a helper.
278 */
279 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
280 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
281 }
282 }
283
284 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
285 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
286 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
287 DP_TBFLAG_A64(flags, BT, 1);
288 }
289 }
290
291 if (cpu_isar_feature(aa64_lse2, env_archcpu(env))) {
292 if (sctlr & SCTLR_nAA) {
293 DP_TBFLAG_A64(flags, NAA, 1);
294 }
295 }
296
297 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
298 if (!(env->pstate & PSTATE_UAO)) {
299 switch (mmu_idx) {
300 case ARMMMUIdx_E10_1:
301 case ARMMMUIdx_E10_1_PAN:
302 /* FEAT_NV: NV,NV1 == 1,1 means we don't do UNPRIV accesses */
303 if ((hcr & (HCR_NV | HCR_NV1)) != (HCR_NV | HCR_NV1)) {
304 DP_TBFLAG_A64(flags, UNPRIV, 1);
305 }
306 break;
307 case ARMMMUIdx_E20_2:
308 case ARMMMUIdx_E20_2_PAN:
309 /*
310 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
311 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
312 */
313 if (env->cp15.hcr_el2 & HCR_TGE) {
314 DP_TBFLAG_A64(flags, UNPRIV, 1);
315 }
316 break;
317 default:
318 break;
319 }
320 }
321
322 if (env->pstate & PSTATE_IL) {
323 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
324 }
325
326 if (arm_fgt_active(env, el)) {
327 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
328 if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
329 DP_TBFLAG_A64(flags, TRAP_ERET, 1);
330 }
331 if (fgt_svc(env, el)) {
332 DP_TBFLAG_ANY(flags, FGT_SVC, 1);
333 }
334 }
335
336 /*
337 * ERET can also be trapped for FEAT_NV. arm_hcr_el2_eff() takes care
338 * of "is EL2 enabled" and the NV bit can only be set if FEAT_NV is present.
339 */
340 if (el == 1 && (hcr & HCR_NV)) {
341 DP_TBFLAG_A64(flags, TRAP_ERET, 1);
342 DP_TBFLAG_A64(flags, NV, 1);
343 if (hcr & HCR_NV1) {
344 DP_TBFLAG_A64(flags, NV1, 1);
345 }
346 if (hcr & HCR_NV2) {
347 DP_TBFLAG_A64(flags, NV2, 1);
348 if (hcr & HCR_E2H) {
349 DP_TBFLAG_A64(flags, NV2_MEM_E20, 1);
350 }
351 if (env->cp15.sctlr_el[2] & SCTLR_EE) {
352 DP_TBFLAG_A64(flags, NV2_MEM_BE, 1);
353 }
354 }
355 }
356
357 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
358 /*
359 * Set MTE_ACTIVE if any access may be Checked, and leave clear
360 * if all accesses must be Unchecked:
361 * 1) If no TBI, then there are no tags in the address to check,
362 * 2) If Tag Check Override, then all accesses are Unchecked,
363 * 3) If Tag Check Fail == 0, then Checked access have no effect,
364 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
365 */
366 if (allocation_tag_access_enabled(env, el, sctlr)) {
367 DP_TBFLAG_A64(flags, ATA, 1);
368 if (tbid
369 && !(env->pstate & PSTATE_TCO)
370 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
371 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
372 if (!EX_TBFLAG_A64(flags, UNPRIV)) {
373 /*
374 * In non-unpriv contexts (eg EL0), unpriv load/stores
375 * act like normal ones; duplicate the MTE info to
376 * avoid translate-a64.c having to check UNPRIV to see
377 * whether it is OK to index into MTE_ACTIVE[].
378 */
379 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
380 }
381 }
382 }
383 /* And again for unprivileged accesses, if required. */
384 if (EX_TBFLAG_A64(flags, UNPRIV)
385 && tbid
386 && !(env->pstate & PSTATE_TCO)
387 && (sctlr & SCTLR_TCF0)
388 && allocation_tag_access_enabled(env, 0, sctlr)) {
389 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
390 }
391 /*
392 * For unpriv tag-setting accesses we also need ATA0. Again, in
393 * contexts where unpriv and normal insns are the same we
394 * duplicate the ATA bit to save effort for translate-a64.c.
395 */
396 if (EX_TBFLAG_A64(flags, UNPRIV)) {
397 if (allocation_tag_access_enabled(env, 0, sctlr)) {
398 DP_TBFLAG_A64(flags, ATA0, 1);
399 }
400 } else {
401 DP_TBFLAG_A64(flags, ATA0, EX_TBFLAG_A64(flags, ATA));
402 }
403 /* Cache TCMA as well as TBI. */
404 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
405 }
406
407 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
408 }
409
rebuild_hflags_internal(CPUARMState * env)410 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
411 {
412 int el = arm_current_el(env);
413 int fp_el = fp_exception_el(env, el);
414 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
415
416 if (is_a64(env)) {
417 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
418 } else if (arm_feature(env, ARM_FEATURE_M)) {
419 return rebuild_hflags_m32(env, fp_el, mmu_idx);
420 } else {
421 return rebuild_hflags_a32(env, fp_el, mmu_idx);
422 }
423 }
424
arm_rebuild_hflags(CPUARMState * env)425 void arm_rebuild_hflags(CPUARMState *env)
426 {
427 env->hflags = rebuild_hflags_internal(env);
428 }
429
430 /*
431 * If we have triggered a EL state change we can't rely on the
432 * translator having passed it to us, we need to recompute.
433 */
HELPER(rebuild_hflags_m32_newel)434 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
435 {
436 int el = arm_current_el(env);
437 int fp_el = fp_exception_el(env, el);
438 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
439
440 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
441 }
442
HELPER(rebuild_hflags_m32)443 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
444 {
445 int fp_el = fp_exception_el(env, el);
446 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
447
448 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
449 }
450
451 /*
452 * If we have triggered a EL state change we can't rely on the
453 * translator having passed it to us, we need to recompute.
454 */
HELPER(rebuild_hflags_a32_newel)455 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
456 {
457 int el = arm_current_el(env);
458 int fp_el = fp_exception_el(env, el);
459 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
460 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
461 }
462
HELPER(rebuild_hflags_a32)463 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
464 {
465 int fp_el = fp_exception_el(env, el);
466 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
467
468 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
469 }
470
HELPER(rebuild_hflags_a64)471 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
472 {
473 int fp_el = fp_exception_el(env, el);
474 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
475
476 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
477 }
478
assert_hflags_rebuild_correctly(CPUARMState * env)479 void assert_hflags_rebuild_correctly(CPUARMState *env)
480 {
481 #ifdef CONFIG_DEBUG_TCG
482 CPUARMTBFlags c = env->hflags;
483 CPUARMTBFlags r = rebuild_hflags_internal(env);
484
485 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
486 fprintf(stderr, "TCG hflags mismatch "
487 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
488 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
489 c.flags, c.flags2, r.flags, r.flags2);
490 abort();
491 }
492 #endif
493 }
494