1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/cpumask.h>
33 #include <linux/context_tracking_irq.h>
34
35 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
36 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
37 #define ulong2long(a) (*(long *)(&(a)))
38 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
39 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
40
41 /* Exported common interfaces */
42 void call_rcu(struct rcu_head *head, rcu_callback_t func);
43 void rcu_barrier_tasks(void);
44 void rcu_barrier_tasks_rude(void);
45 void synchronize_rcu(void);
46
47 struct rcu_gp_oldstate;
48 unsigned long get_completed_synchronize_rcu(void);
49 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
50
51 // Maximum number of unsigned long values corresponding to
52 // not-yet-completed RCU grace periods.
53 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
54
55 /**
56 * same_state_synchronize_rcu - Are two old-state values identical?
57 * @oldstate1: First old-state value.
58 * @oldstate2: Second old-state value.
59 *
60 * The two old-state values must have been obtained from either
61 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
62 * get_completed_synchronize_rcu(). Returns @true if the two values are
63 * identical and @false otherwise. This allows structures whose lifetimes
64 * are tracked by old-state values to push these values to a list header,
65 * allowing those structures to be slightly smaller.
66 */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)67 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
68 {
69 return oldstate1 == oldstate2;
70 }
71
72 #ifdef CONFIG_PREEMPT_RCU
73
74 void __rcu_read_lock(void);
75 void __rcu_read_unlock(void);
76
77 /*
78 * Defined as a macro as it is a very low level header included from
79 * areas that don't even know about current. This gives the rcu_read_lock()
80 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
81 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
82 */
83 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
84
85 #else /* #ifdef CONFIG_PREEMPT_RCU */
86
87 #ifdef CONFIG_TINY_RCU
88 #define rcu_read_unlock_strict() do { } while (0)
89 #else
90 void rcu_read_unlock_strict(void);
91 #endif
92
__rcu_read_lock(void)93 static inline void __rcu_read_lock(void)
94 {
95 preempt_disable();
96 }
97
__rcu_read_unlock(void)98 static inline void __rcu_read_unlock(void)
99 {
100 preempt_enable();
101 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
102 rcu_read_unlock_strict();
103 }
104
rcu_preempt_depth(void)105 static inline int rcu_preempt_depth(void)
106 {
107 return 0;
108 }
109
110 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
111
112 #ifdef CONFIG_RCU_LAZY
113 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
114 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)115 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
116 {
117 call_rcu(head, func);
118 }
119 #endif
120
121 /* Internal to kernel */
122 void rcu_init(void);
123 extern int rcu_scheduler_active;
124 void rcu_sched_clock_irq(int user);
125 void rcu_report_dead(unsigned int cpu);
126 void rcutree_migrate_callbacks(int cpu);
127
128 #ifdef CONFIG_TASKS_RCU_GENERIC
129 void rcu_init_tasks_generic(void);
130 #else
rcu_init_tasks_generic(void)131 static inline void rcu_init_tasks_generic(void) { }
132 #endif
133
134 #ifdef CONFIG_RCU_STALL_COMMON
135 void rcu_sysrq_start(void);
136 void rcu_sysrq_end(void);
137 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)138 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)139 static inline void rcu_sysrq_end(void) { }
140 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
141
142 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
143 void rcu_irq_work_resched(void);
144 #else
rcu_irq_work_resched(void)145 static inline void rcu_irq_work_resched(void) { }
146 #endif
147
148 #ifdef CONFIG_RCU_NOCB_CPU
149 void rcu_init_nohz(void);
150 int rcu_nocb_cpu_offload(int cpu);
151 int rcu_nocb_cpu_deoffload(int cpu);
152 void rcu_nocb_flush_deferred_wakeup(void);
153 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)154 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)155 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)156 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)157 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
158 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
159
160 /*
161 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
162 * This is a macro rather than an inline function to avoid #include hell.
163 */
164 #ifdef CONFIG_TASKS_RCU_GENERIC
165
166 # ifdef CONFIG_TASKS_RCU
167 # define rcu_tasks_classic_qs(t, preempt) \
168 do { \
169 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
170 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
171 } while (0)
172 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
173 void synchronize_rcu_tasks(void);
174 # else
175 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
176 # define call_rcu_tasks call_rcu
177 # define synchronize_rcu_tasks synchronize_rcu
178 # endif
179
180 # ifdef CONFIG_TASKS_TRACE_RCU
181 // Bits for ->trc_reader_special.b.need_qs field.
182 #define TRC_NEED_QS 0x1 // Task needs a quiescent state.
183 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
184
185 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
186 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
187
188 # define rcu_tasks_trace_qs(t) \
189 do { \
190 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
191 \
192 if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) && \
193 likely(!___rttq_nesting)) { \
194 rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED); \
195 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
196 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
197 rcu_tasks_trace_qs_blkd(t); \
198 } \
199 } while (0)
200 # else
201 # define rcu_tasks_trace_qs(t) do { } while (0)
202 # endif
203
204 #define rcu_tasks_qs(t, preempt) \
205 do { \
206 rcu_tasks_classic_qs((t), (preempt)); \
207 rcu_tasks_trace_qs(t); \
208 } while (0)
209
210 # ifdef CONFIG_TASKS_RUDE_RCU
211 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
212 void synchronize_rcu_tasks_rude(void);
213 # endif
214
215 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
216 void exit_tasks_rcu_start(void);
217 void exit_tasks_rcu_stop(void);
218 void exit_tasks_rcu_finish(void);
219 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
220 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
221 #define rcu_tasks_qs(t, preempt) do { } while (0)
222 #define rcu_note_voluntary_context_switch(t) do { } while (0)
223 #define call_rcu_tasks call_rcu
224 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)225 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)226 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)227 static inline void exit_tasks_rcu_finish(void) { }
228 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
229
230 /**
231 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
232 *
233 * As an accident of implementation, an RCU Tasks Trace grace period also
234 * acts as an RCU grace period. However, this could change at any time.
235 * Code relying on this accident must call this function to verify that
236 * this accident is still happening.
237 *
238 * You have been warned!
239 */
rcu_trace_implies_rcu_gp(void)240 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
241
242 /**
243 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
244 *
245 * This macro resembles cond_resched(), except that it is defined to
246 * report potential quiescent states to RCU-tasks even if the cond_resched()
247 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
248 */
249 #define cond_resched_tasks_rcu_qs() \
250 do { \
251 rcu_tasks_qs(current, false); \
252 cond_resched(); \
253 } while (0)
254
255 /**
256 * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
257 * @old_ts: jiffies at start of processing.
258 *
259 * This helper is for long-running softirq handlers, such as NAPI threads in
260 * networking. The caller should initialize the variable passed in as @old_ts
261 * at the beginning of the softirq handler. When invoked frequently, this macro
262 * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
263 * provide both RCU and RCU-Tasks quiescent states. Note that this macro
264 * modifies its old_ts argument.
265 *
266 * Because regions of code that have disabled softirq act as RCU read-side
267 * critical sections, this macro should be invoked with softirq (and
268 * preemption) enabled.
269 *
270 * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
271 * have more chance to invoke schedule() calls and provide necessary quiescent
272 * states. As a contrast, calling cond_resched() only won't achieve the same
273 * effect because cond_resched() does not provide RCU-Tasks quiescent states.
274 */
275 #define rcu_softirq_qs_periodic(old_ts) \
276 do { \
277 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
278 time_after(jiffies, (old_ts) + HZ / 10)) { \
279 preempt_disable(); \
280 rcu_softirq_qs(); \
281 preempt_enable(); \
282 (old_ts) = jiffies; \
283 } \
284 } while (0)
285
286 /*
287 * Infrastructure to implement the synchronize_() primitives in
288 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
289 */
290
291 #if defined(CONFIG_TREE_RCU)
292 #include <linux/rcutree.h>
293 #elif defined(CONFIG_TINY_RCU)
294 #include <linux/rcutiny.h>
295 #else
296 #error "Unknown RCU implementation specified to kernel configuration"
297 #endif
298
299 /*
300 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
301 * are needed for dynamic initialization and destruction of rcu_head
302 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
303 * dynamic initialization and destruction of statically allocated rcu_head
304 * structures. However, rcu_head structures allocated dynamically in the
305 * heap don't need any initialization.
306 */
307 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
308 void init_rcu_head(struct rcu_head *head);
309 void destroy_rcu_head(struct rcu_head *head);
310 void init_rcu_head_on_stack(struct rcu_head *head);
311 void destroy_rcu_head_on_stack(struct rcu_head *head);
312 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)313 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)314 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)315 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)316 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
317 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
318
319 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
320 bool rcu_lockdep_current_cpu_online(void);
321 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)322 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
323 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
324
325 extern struct lockdep_map rcu_lock_map;
326 extern struct lockdep_map rcu_bh_lock_map;
327 extern struct lockdep_map rcu_sched_lock_map;
328 extern struct lockdep_map rcu_callback_map;
329
330 #ifdef CONFIG_DEBUG_LOCK_ALLOC
331
rcu_lock_acquire(struct lockdep_map * map)332 static inline void rcu_lock_acquire(struct lockdep_map *map)
333 {
334 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
335 }
336
rcu_try_lock_acquire(struct lockdep_map * map)337 static inline void rcu_try_lock_acquire(struct lockdep_map *map)
338 {
339 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
340 }
341
rcu_lock_release(struct lockdep_map * map)342 static inline void rcu_lock_release(struct lockdep_map *map)
343 {
344 lock_release(map, _THIS_IP_);
345 }
346
347 int debug_lockdep_rcu_enabled(void);
348 int rcu_read_lock_held(void);
349 int rcu_read_lock_bh_held(void);
350 int rcu_read_lock_sched_held(void);
351 int rcu_read_lock_any_held(void);
352
353 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
354
355 # define rcu_lock_acquire(a) do { } while (0)
356 # define rcu_try_lock_acquire(a) do { } while (0)
357 # define rcu_lock_release(a) do { } while (0)
358
rcu_read_lock_held(void)359 static inline int rcu_read_lock_held(void)
360 {
361 return 1;
362 }
363
rcu_read_lock_bh_held(void)364 static inline int rcu_read_lock_bh_held(void)
365 {
366 return 1;
367 }
368
rcu_read_lock_sched_held(void)369 static inline int rcu_read_lock_sched_held(void)
370 {
371 return !preemptible();
372 }
373
rcu_read_lock_any_held(void)374 static inline int rcu_read_lock_any_held(void)
375 {
376 return !preemptible();
377 }
378
debug_lockdep_rcu_enabled(void)379 static inline int debug_lockdep_rcu_enabled(void)
380 {
381 return 0;
382 }
383
384 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
385
386 #ifdef CONFIG_PROVE_RCU
387
388 /**
389 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
390 * @c: condition to check
391 * @s: informative message
392 *
393 * This checks debug_lockdep_rcu_enabled() before checking (c) to
394 * prevent early boot splats due to lockdep not yet being initialized,
395 * and rechecks it after checking (c) to prevent false-positive splats
396 * due to races with lockdep being disabled. See commit 3066820034b5dd
397 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
398 */
399 #define RCU_LOCKDEP_WARN(c, s) \
400 do { \
401 static bool __section(".data.unlikely") __warned; \
402 if (debug_lockdep_rcu_enabled() && (c) && \
403 debug_lockdep_rcu_enabled() && !__warned) { \
404 __warned = true; \
405 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
406 } \
407 } while (0)
408
409 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)410 static inline void rcu_preempt_sleep_check(void)
411 {
412 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
413 "Illegal context switch in RCU read-side critical section");
414 }
415 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)416 static inline void rcu_preempt_sleep_check(void) { }
417 #endif /* #else #ifdef CONFIG_PROVE_RCU */
418
419 #define rcu_sleep_check() \
420 do { \
421 rcu_preempt_sleep_check(); \
422 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
423 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
424 "Illegal context switch in RCU-bh read-side critical section"); \
425 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
426 "Illegal context switch in RCU-sched read-side critical section"); \
427 } while (0)
428
429 #else /* #ifdef CONFIG_PROVE_RCU */
430
431 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
432 #define rcu_sleep_check() do { } while (0)
433
434 #endif /* #else #ifdef CONFIG_PROVE_RCU */
435
436 /*
437 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
438 * and rcu_assign_pointer(). Some of these could be folded into their
439 * callers, but they are left separate in order to ease introduction of
440 * multiple pointers markings to match different RCU implementations
441 * (e.g., __srcu), should this make sense in the future.
442 */
443
444 #ifdef __CHECKER__
445 #define rcu_check_sparse(p, space) \
446 ((void)(((typeof(*p) space *)p) == p))
447 #else /* #ifdef __CHECKER__ */
448 #define rcu_check_sparse(p, space)
449 #endif /* #else #ifdef __CHECKER__ */
450
451 #define __unrcu_pointer(p, local) \
452 ({ \
453 typeof(*p) *local = (typeof(*p) *__force)(p); \
454 rcu_check_sparse(p, __rcu); \
455 ((typeof(*p) __force __kernel *)(local)); \
456 })
457 /**
458 * unrcu_pointer - mark a pointer as not being RCU protected
459 * @p: pointer needing to lose its __rcu property
460 *
461 * Converts @p from an __rcu pointer to a __kernel pointer.
462 * This allows an __rcu pointer to be used with xchg() and friends.
463 */
464 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
465
466 #define __rcu_access_pointer(p, local, space) \
467 ({ \
468 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
469 rcu_check_sparse(p, space); \
470 ((typeof(*p) __force __kernel *)(local)); \
471 })
472 #define __rcu_dereference_check(p, local, c, space) \
473 ({ \
474 /* Dependency order vs. p above. */ \
475 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
476 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
477 rcu_check_sparse(p, space); \
478 ((typeof(*p) __force __kernel *)(local)); \
479 })
480 #define __rcu_dereference_protected(p, local, c, space) \
481 ({ \
482 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
483 rcu_check_sparse(p, space); \
484 ((typeof(*p) __force __kernel *)(p)); \
485 })
486 #define __rcu_dereference_raw(p, local) \
487 ({ \
488 /* Dependency order vs. p above. */ \
489 typeof(p) local = READ_ONCE(p); \
490 ((typeof(*p) __force __kernel *)(local)); \
491 })
492 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
493
494 /**
495 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
496 * @v: The value to statically initialize with.
497 */
498 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
499
500 /**
501 * rcu_assign_pointer() - assign to RCU-protected pointer
502 * @p: pointer to assign to
503 * @v: value to assign (publish)
504 *
505 * Assigns the specified value to the specified RCU-protected
506 * pointer, ensuring that any concurrent RCU readers will see
507 * any prior initialization.
508 *
509 * Inserts memory barriers on architectures that require them
510 * (which is most of them), and also prevents the compiler from
511 * reordering the code that initializes the structure after the pointer
512 * assignment. More importantly, this call documents which pointers
513 * will be dereferenced by RCU read-side code.
514 *
515 * In some special cases, you may use RCU_INIT_POINTER() instead
516 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
517 * to the fact that it does not constrain either the CPU or the compiler.
518 * That said, using RCU_INIT_POINTER() when you should have used
519 * rcu_assign_pointer() is a very bad thing that results in
520 * impossible-to-diagnose memory corruption. So please be careful.
521 * See the RCU_INIT_POINTER() comment header for details.
522 *
523 * Note that rcu_assign_pointer() evaluates each of its arguments only
524 * once, appearances notwithstanding. One of the "extra" evaluations
525 * is in typeof() and the other visible only to sparse (__CHECKER__),
526 * neither of which actually execute the argument. As with most cpp
527 * macros, this execute-arguments-only-once property is important, so
528 * please be careful when making changes to rcu_assign_pointer() and the
529 * other macros that it invokes.
530 */
531 #define rcu_assign_pointer(p, v) \
532 do { \
533 uintptr_t _r_a_p__v = (uintptr_t)(v); \
534 rcu_check_sparse(p, __rcu); \
535 \
536 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
537 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
538 else \
539 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
540 } while (0)
541
542 /**
543 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
544 * @rcu_ptr: RCU pointer, whose old value is returned
545 * @ptr: regular pointer
546 * @c: the lockdep conditions under which the dereference will take place
547 *
548 * Perform a replacement, where @rcu_ptr is an RCU-annotated
549 * pointer and @c is the lockdep argument that is passed to the
550 * rcu_dereference_protected() call used to read that pointer. The old
551 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
552 */
553 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
554 ({ \
555 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
556 rcu_assign_pointer((rcu_ptr), (ptr)); \
557 __tmp; \
558 })
559
560 /**
561 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
562 * @p: The pointer to read
563 *
564 * Return the value of the specified RCU-protected pointer, but omit the
565 * lockdep checks for being in an RCU read-side critical section. This is
566 * useful when the value of this pointer is accessed, but the pointer is
567 * not dereferenced, for example, when testing an RCU-protected pointer
568 * against NULL. Although rcu_access_pointer() may also be used in cases
569 * where update-side locks prevent the value of the pointer from changing,
570 * you should instead use rcu_dereference_protected() for this use case.
571 * Within an RCU read-side critical section, there is little reason to
572 * use rcu_access_pointer().
573 *
574 * It is usually best to test the rcu_access_pointer() return value
575 * directly in order to avoid accidental dereferences being introduced
576 * by later inattentive changes. In other words, assigning the
577 * rcu_access_pointer() return value to a local variable results in an
578 * accident waiting to happen.
579 *
580 * It is also permissible to use rcu_access_pointer() when read-side
581 * access to the pointer was removed at least one grace period ago, as is
582 * the case in the context of the RCU callback that is freeing up the data,
583 * or after a synchronize_rcu() returns. This can be useful when tearing
584 * down multi-linked structures after a grace period has elapsed. However,
585 * rcu_dereference_protected() is normally preferred for this use case.
586 */
587 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
588
589 /**
590 * rcu_dereference_check() - rcu_dereference with debug checking
591 * @p: The pointer to read, prior to dereferencing
592 * @c: The conditions under which the dereference will take place
593 *
594 * Do an rcu_dereference(), but check that the conditions under which the
595 * dereference will take place are correct. Typically the conditions
596 * indicate the various locking conditions that should be held at that
597 * point. The check should return true if the conditions are satisfied.
598 * An implicit check for being in an RCU read-side critical section
599 * (rcu_read_lock()) is included.
600 *
601 * For example:
602 *
603 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
604 *
605 * could be used to indicate to lockdep that foo->bar may only be dereferenced
606 * if either rcu_read_lock() is held, or that the lock required to replace
607 * the bar struct at foo->bar is held.
608 *
609 * Note that the list of conditions may also include indications of when a lock
610 * need not be held, for example during initialisation or destruction of the
611 * target struct:
612 *
613 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
614 * atomic_read(&foo->usage) == 0);
615 *
616 * Inserts memory barriers on architectures that require them
617 * (currently only the Alpha), prevents the compiler from refetching
618 * (and from merging fetches), and, more importantly, documents exactly
619 * which pointers are protected by RCU and checks that the pointer is
620 * annotated as __rcu.
621 */
622 #define rcu_dereference_check(p, c) \
623 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
624 (c) || rcu_read_lock_held(), __rcu)
625
626 /**
627 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
628 * @p: The pointer to read, prior to dereferencing
629 * @c: The conditions under which the dereference will take place
630 *
631 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
632 * please note that starting in v5.0 kernels, vanilla RCU grace periods
633 * wait for local_bh_disable() regions of code in addition to regions of
634 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
635 * that synchronize_rcu(), call_rcu, and friends all take not only
636 * rcu_read_lock() but also rcu_read_lock_bh() into account.
637 */
638 #define rcu_dereference_bh_check(p, c) \
639 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
640 (c) || rcu_read_lock_bh_held(), __rcu)
641
642 /**
643 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
644 * @p: The pointer to read, prior to dereferencing
645 * @c: The conditions under which the dereference will take place
646 *
647 * This is the RCU-sched counterpart to rcu_dereference_check().
648 * However, please note that starting in v5.0 kernels, vanilla RCU grace
649 * periods wait for preempt_disable() regions of code in addition to
650 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
651 * This means that synchronize_rcu(), call_rcu, and friends all take not
652 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
653 */
654 #define rcu_dereference_sched_check(p, c) \
655 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
656 (c) || rcu_read_lock_sched_held(), \
657 __rcu)
658
659 /*
660 * The tracing infrastructure traces RCU (we want that), but unfortunately
661 * some of the RCU checks causes tracing to lock up the system.
662 *
663 * The no-tracing version of rcu_dereference_raw() must not call
664 * rcu_read_lock_held().
665 */
666 #define rcu_dereference_raw_check(p) \
667 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
668
669 /**
670 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
671 * @p: The pointer to read, prior to dereferencing
672 * @c: The conditions under which the dereference will take place
673 *
674 * Return the value of the specified RCU-protected pointer, but omit
675 * the READ_ONCE(). This is useful in cases where update-side locks
676 * prevent the value of the pointer from changing. Please note that this
677 * primitive does *not* prevent the compiler from repeating this reference
678 * or combining it with other references, so it should not be used without
679 * protection of appropriate locks.
680 *
681 * This function is only for update-side use. Using this function
682 * when protected only by rcu_read_lock() will result in infrequent
683 * but very ugly failures.
684 */
685 #define rcu_dereference_protected(p, c) \
686 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
687
688
689 /**
690 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
691 * @p: The pointer to read, prior to dereferencing
692 *
693 * This is a simple wrapper around rcu_dereference_check().
694 */
695 #define rcu_dereference(p) rcu_dereference_check(p, 0)
696
697 /**
698 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
699 * @p: The pointer to read, prior to dereferencing
700 *
701 * Makes rcu_dereference_check() do the dirty work.
702 */
703 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
704
705 /**
706 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
707 * @p: The pointer to read, prior to dereferencing
708 *
709 * Makes rcu_dereference_check() do the dirty work.
710 */
711 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
712
713 /**
714 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
715 * @p: The pointer to hand off
716 *
717 * This is simply an identity function, but it documents where a pointer
718 * is handed off from RCU to some other synchronization mechanism, for
719 * example, reference counting or locking. In C11, it would map to
720 * kill_dependency(). It could be used as follows::
721 *
722 * rcu_read_lock();
723 * p = rcu_dereference(gp);
724 * long_lived = is_long_lived(p);
725 * if (long_lived) {
726 * if (!atomic_inc_not_zero(p->refcnt))
727 * long_lived = false;
728 * else
729 * p = rcu_pointer_handoff(p);
730 * }
731 * rcu_read_unlock();
732 */
733 #define rcu_pointer_handoff(p) (p)
734
735 /**
736 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
737 *
738 * When synchronize_rcu() is invoked on one CPU while other CPUs
739 * are within RCU read-side critical sections, then the
740 * synchronize_rcu() is guaranteed to block until after all the other
741 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
742 * on one CPU while other CPUs are within RCU read-side critical
743 * sections, invocation of the corresponding RCU callback is deferred
744 * until after the all the other CPUs exit their critical sections.
745 *
746 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
747 * wait for regions of code with preemption disabled, including regions of
748 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
749 * define synchronize_sched(), only code enclosed within rcu_read_lock()
750 * and rcu_read_unlock() are guaranteed to be waited for.
751 *
752 * Note, however, that RCU callbacks are permitted to run concurrently
753 * with new RCU read-side critical sections. One way that this can happen
754 * is via the following sequence of events: (1) CPU 0 enters an RCU
755 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
756 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
757 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
758 * callback is invoked. This is legal, because the RCU read-side critical
759 * section that was running concurrently with the call_rcu() (and which
760 * therefore might be referencing something that the corresponding RCU
761 * callback would free up) has completed before the corresponding
762 * RCU callback is invoked.
763 *
764 * RCU read-side critical sections may be nested. Any deferred actions
765 * will be deferred until the outermost RCU read-side critical section
766 * completes.
767 *
768 * You can avoid reading and understanding the next paragraph by
769 * following this rule: don't put anything in an rcu_read_lock() RCU
770 * read-side critical section that would block in a !PREEMPTION kernel.
771 * But if you want the full story, read on!
772 *
773 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
774 * it is illegal to block while in an RCU read-side critical section.
775 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
776 * kernel builds, RCU read-side critical sections may be preempted,
777 * but explicit blocking is illegal. Finally, in preemptible RCU
778 * implementations in real-time (with -rt patchset) kernel builds, RCU
779 * read-side critical sections may be preempted and they may also block, but
780 * only when acquiring spinlocks that are subject to priority inheritance.
781 */
rcu_read_lock(void)782 static __always_inline void rcu_read_lock(void)
783 {
784 __rcu_read_lock();
785 __acquire(RCU);
786 rcu_lock_acquire(&rcu_lock_map);
787 RCU_LOCKDEP_WARN(!rcu_is_watching(),
788 "rcu_read_lock() used illegally while idle");
789 }
790
791 /*
792 * So where is rcu_write_lock()? It does not exist, as there is no
793 * way for writers to lock out RCU readers. This is a feature, not
794 * a bug -- this property is what provides RCU's performance benefits.
795 * Of course, writers must coordinate with each other. The normal
796 * spinlock primitives work well for this, but any other technique may be
797 * used as well. RCU does not care how the writers keep out of each
798 * others' way, as long as they do so.
799 */
800
801 /**
802 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
803 *
804 * In almost all situations, rcu_read_unlock() is immune from deadlock.
805 * In recent kernels that have consolidated synchronize_sched() and
806 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
807 * also extends to the scheduler's runqueue and priority-inheritance
808 * spinlocks, courtesy of the quiescent-state deferral that is carried
809 * out when rcu_read_unlock() is invoked with interrupts disabled.
810 *
811 * See rcu_read_lock() for more information.
812 */
rcu_read_unlock(void)813 static inline void rcu_read_unlock(void)
814 {
815 RCU_LOCKDEP_WARN(!rcu_is_watching(),
816 "rcu_read_unlock() used illegally while idle");
817 __release(RCU);
818 __rcu_read_unlock();
819 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
820 }
821
822 /**
823 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
824 *
825 * This is equivalent to rcu_read_lock(), but also disables softirqs.
826 * Note that anything else that disables softirqs can also serve as an RCU
827 * read-side critical section. However, please note that this equivalence
828 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
829 * rcu_read_lock_bh() were unrelated.
830 *
831 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
832 * must occur in the same context, for example, it is illegal to invoke
833 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
834 * was invoked from some other task.
835 */
rcu_read_lock_bh(void)836 static inline void rcu_read_lock_bh(void)
837 {
838 local_bh_disable();
839 __acquire(RCU_BH);
840 rcu_lock_acquire(&rcu_bh_lock_map);
841 RCU_LOCKDEP_WARN(!rcu_is_watching(),
842 "rcu_read_lock_bh() used illegally while idle");
843 }
844
845 /**
846 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
847 *
848 * See rcu_read_lock_bh() for more information.
849 */
rcu_read_unlock_bh(void)850 static inline void rcu_read_unlock_bh(void)
851 {
852 RCU_LOCKDEP_WARN(!rcu_is_watching(),
853 "rcu_read_unlock_bh() used illegally while idle");
854 rcu_lock_release(&rcu_bh_lock_map);
855 __release(RCU_BH);
856 local_bh_enable();
857 }
858
859 /**
860 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
861 *
862 * This is equivalent to rcu_read_lock(), but also disables preemption.
863 * Read-side critical sections can also be introduced by anything else that
864 * disables preemption, including local_irq_disable() and friends. However,
865 * please note that the equivalence to rcu_read_lock() applies only to
866 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
867 * were unrelated.
868 *
869 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
870 * must occur in the same context, for example, it is illegal to invoke
871 * rcu_read_unlock_sched() from process context if the matching
872 * rcu_read_lock_sched() was invoked from an NMI handler.
873 */
rcu_read_lock_sched(void)874 static inline void rcu_read_lock_sched(void)
875 {
876 preempt_disable();
877 __acquire(RCU_SCHED);
878 rcu_lock_acquire(&rcu_sched_lock_map);
879 RCU_LOCKDEP_WARN(!rcu_is_watching(),
880 "rcu_read_lock_sched() used illegally while idle");
881 }
882
883 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)884 static inline notrace void rcu_read_lock_sched_notrace(void)
885 {
886 preempt_disable_notrace();
887 __acquire(RCU_SCHED);
888 }
889
890 /**
891 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
892 *
893 * See rcu_read_lock_sched() for more information.
894 */
rcu_read_unlock_sched(void)895 static inline void rcu_read_unlock_sched(void)
896 {
897 RCU_LOCKDEP_WARN(!rcu_is_watching(),
898 "rcu_read_unlock_sched() used illegally while idle");
899 rcu_lock_release(&rcu_sched_lock_map);
900 __release(RCU_SCHED);
901 preempt_enable();
902 }
903
904 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)905 static inline notrace void rcu_read_unlock_sched_notrace(void)
906 {
907 __release(RCU_SCHED);
908 preempt_enable_notrace();
909 }
910
911 /**
912 * RCU_INIT_POINTER() - initialize an RCU protected pointer
913 * @p: The pointer to be initialized.
914 * @v: The value to initialized the pointer to.
915 *
916 * Initialize an RCU-protected pointer in special cases where readers
917 * do not need ordering constraints on the CPU or the compiler. These
918 * special cases are:
919 *
920 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
921 * 2. The caller has taken whatever steps are required to prevent
922 * RCU readers from concurrently accessing this pointer *or*
923 * 3. The referenced data structure has already been exposed to
924 * readers either at compile time or via rcu_assign_pointer() *and*
925 *
926 * a. You have not made *any* reader-visible changes to
927 * this structure since then *or*
928 * b. It is OK for readers accessing this structure from its
929 * new location to see the old state of the structure. (For
930 * example, the changes were to statistical counters or to
931 * other state where exact synchronization is not required.)
932 *
933 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
934 * result in impossible-to-diagnose memory corruption. As in the structures
935 * will look OK in crash dumps, but any concurrent RCU readers might
936 * see pre-initialized values of the referenced data structure. So
937 * please be very careful how you use RCU_INIT_POINTER()!!!
938 *
939 * If you are creating an RCU-protected linked structure that is accessed
940 * by a single external-to-structure RCU-protected pointer, then you may
941 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
942 * pointers, but you must use rcu_assign_pointer() to initialize the
943 * external-to-structure pointer *after* you have completely initialized
944 * the reader-accessible portions of the linked structure.
945 *
946 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
947 * ordering guarantees for either the CPU or the compiler.
948 */
949 #define RCU_INIT_POINTER(p, v) \
950 do { \
951 rcu_check_sparse(p, __rcu); \
952 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
953 } while (0)
954
955 /**
956 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
957 * @p: The pointer to be initialized.
958 * @v: The value to initialized the pointer to.
959 *
960 * GCC-style initialization for an RCU-protected pointer in a structure field.
961 */
962 #define RCU_POINTER_INITIALIZER(p, v) \
963 .p = RCU_INITIALIZER(v)
964
965 /*
966 * Does the specified offset indicate that the corresponding rcu_head
967 * structure can be handled by kvfree_rcu()?
968 */
969 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
970
971 /**
972 * kfree_rcu() - kfree an object after a grace period.
973 * @ptr: pointer to kfree for double-argument invocations.
974 * @rhf: the name of the struct rcu_head within the type of @ptr.
975 *
976 * Many rcu callbacks functions just call kfree() on the base structure.
977 * These functions are trivial, but their size adds up, and furthermore
978 * when they are used in a kernel module, that module must invoke the
979 * high-latency rcu_barrier() function at module-unload time.
980 *
981 * The kfree_rcu() function handles this issue. Rather than encoding a
982 * function address in the embedded rcu_head structure, kfree_rcu() instead
983 * encodes the offset of the rcu_head structure within the base structure.
984 * Because the functions are not allowed in the low-order 4096 bytes of
985 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
986 * If the offset is larger than 4095 bytes, a compile-time error will
987 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
988 * either fall back to use of call_rcu() or rearrange the structure to
989 * position the rcu_head structure into the first 4096 bytes.
990 *
991 * The object to be freed can be allocated either by kmalloc() or
992 * kmem_cache_alloc().
993 *
994 * Note that the allowable offset might decrease in the future.
995 *
996 * The BUILD_BUG_ON check must not involve any function calls, hence the
997 * checks are done in macros here.
998 */
999 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1000 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1001
1002 /**
1003 * kfree_rcu_mightsleep() - kfree an object after a grace period.
1004 * @ptr: pointer to kfree for single-argument invocations.
1005 *
1006 * When it comes to head-less variant, only one argument
1007 * is passed and that is just a pointer which has to be
1008 * freed after a grace period. Therefore the semantic is
1009 *
1010 * kfree_rcu_mightsleep(ptr);
1011 *
1012 * where @ptr is the pointer to be freed by kvfree().
1013 *
1014 * Please note, head-less way of freeing is permitted to
1015 * use from a context that has to follow might_sleep()
1016 * annotation. Otherwise, please switch and embed the
1017 * rcu_head structure within the type of @ptr.
1018 */
1019 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1020 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1021
1022 #define kvfree_rcu_arg_2(ptr, rhf) \
1023 do { \
1024 typeof (ptr) ___p = (ptr); \
1025 \
1026 if (___p) { \
1027 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
1028 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \
1029 } \
1030 } while (0)
1031
1032 #define kvfree_rcu_arg_1(ptr) \
1033 do { \
1034 typeof(ptr) ___p = (ptr); \
1035 \
1036 if (___p) \
1037 kvfree_call_rcu(NULL, (void *) (___p)); \
1038 } while (0)
1039
1040 /*
1041 * Place this after a lock-acquisition primitive to guarantee that
1042 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1043 * if the UNLOCK and LOCK are executed by the same CPU or if the
1044 * UNLOCK and LOCK operate on the same lock variable.
1045 */
1046 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1047 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1048 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1049 #define smp_mb__after_unlock_lock() do { } while (0)
1050 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1051
1052
1053 /* Has the specified rcu_head structure been handed to call_rcu()? */
1054
1055 /**
1056 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1057 * @rhp: The rcu_head structure to initialize.
1058 *
1059 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1060 * given rcu_head structure has already been passed to call_rcu(), then
1061 * you must also invoke this rcu_head_init() function on it just after
1062 * allocating that structure. Calls to this function must not race with
1063 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1064 */
rcu_head_init(struct rcu_head * rhp)1065 static inline void rcu_head_init(struct rcu_head *rhp)
1066 {
1067 rhp->func = (rcu_callback_t)~0L;
1068 }
1069
1070 /**
1071 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1072 * @rhp: The rcu_head structure to test.
1073 * @f: The function passed to call_rcu() along with @rhp.
1074 *
1075 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1076 * and @false otherwise. Emits a warning in any other case, including
1077 * the case where @rhp has already been invoked after a grace period.
1078 * Calls to this function must not race with callback invocation. One way
1079 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1080 * in an RCU read-side critical section that includes a read-side fetch
1081 * of the pointer to the structure containing @rhp.
1082 */
1083 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1084 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1085 {
1086 rcu_callback_t func = READ_ONCE(rhp->func);
1087
1088 if (func == f)
1089 return true;
1090 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1091 return false;
1092 }
1093
1094 /* kernel/ksysfs.c definitions */
1095 extern int rcu_expedited;
1096 extern int rcu_normal;
1097
1098 DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
1099
1100 #endif /* __LINUX_RCUPDATE_H */
1101