1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Renesas R-Car Gen2/Gen3 DMA Controller Driver
4 *
5 * Copyright (C) 2014-2019 Renesas Electronics Inc.
6 *
7 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
8 */
9
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_dma.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24
25 #include "../dmaengine.h"
26
27 /*
28 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
29 * @node: entry in the parent's chunks list
30 * @src_addr: device source address
31 * @dst_addr: device destination address
32 * @size: transfer size in bytes
33 */
34 struct rcar_dmac_xfer_chunk {
35 struct list_head node;
36
37 dma_addr_t src_addr;
38 dma_addr_t dst_addr;
39 u32 size;
40 };
41
42 /*
43 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
44 * @sar: value of the SAR register (source address)
45 * @dar: value of the DAR register (destination address)
46 * @tcr: value of the TCR register (transfer count)
47 */
48 struct rcar_dmac_hw_desc {
49 u32 sar;
50 u32 dar;
51 u32 tcr;
52 u32 reserved;
53 } __attribute__((__packed__));
54
55 /*
56 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
57 * @async_tx: base DMA asynchronous transaction descriptor
58 * @direction: direction of the DMA transfer
59 * @xfer_shift: log2 of the transfer size
60 * @chcr: value of the channel configuration register for this transfer
61 * @node: entry in the channel's descriptors lists
62 * @chunks: list of transfer chunks for this transfer
63 * @running: the transfer chunk being currently processed
64 * @nchunks: number of transfer chunks for this transfer
65 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
66 * @hwdescs.mem: hardware descriptors memory for the transfer
67 * @hwdescs.dma: device address of the hardware descriptors memory
68 * @hwdescs.size: size of the hardware descriptors in bytes
69 * @size: transfer size in bytes
70 * @cyclic: when set indicates that the DMA transfer is cyclic
71 */
72 struct rcar_dmac_desc {
73 struct dma_async_tx_descriptor async_tx;
74 enum dma_transfer_direction direction;
75 unsigned int xfer_shift;
76 u32 chcr;
77
78 struct list_head node;
79 struct list_head chunks;
80 struct rcar_dmac_xfer_chunk *running;
81 unsigned int nchunks;
82
83 struct {
84 bool use;
85 struct rcar_dmac_hw_desc *mem;
86 dma_addr_t dma;
87 size_t size;
88 } hwdescs;
89
90 unsigned int size;
91 bool cyclic;
92 };
93
94 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
95
96 /*
97 * struct rcar_dmac_desc_page - One page worth of descriptors
98 * @node: entry in the channel's pages list
99 * @descs: array of DMA descriptors
100 * @chunks: array of transfer chunk descriptors
101 */
102 struct rcar_dmac_desc_page {
103 struct list_head node;
104
105 union {
106 DECLARE_FLEX_ARRAY(struct rcar_dmac_desc, descs);
107 DECLARE_FLEX_ARRAY(struct rcar_dmac_xfer_chunk, chunks);
108 };
109 };
110
111 #define RCAR_DMAC_DESCS_PER_PAGE \
112 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
113 sizeof(struct rcar_dmac_desc))
114 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
115 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
116 sizeof(struct rcar_dmac_xfer_chunk))
117
118 /*
119 * struct rcar_dmac_chan_slave - Slave configuration
120 * @slave_addr: slave memory address
121 * @xfer_size: size (in bytes) of hardware transfers
122 */
123 struct rcar_dmac_chan_slave {
124 phys_addr_t slave_addr;
125 unsigned int xfer_size;
126 };
127
128 /*
129 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
130 * @addr: slave dma address
131 * @dir: direction of mapping
132 * @slave: slave configuration that is mapped
133 */
134 struct rcar_dmac_chan_map {
135 dma_addr_t addr;
136 enum dma_data_direction dir;
137 struct rcar_dmac_chan_slave slave;
138 };
139
140 /*
141 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
142 * @chan: base DMA channel object
143 * @iomem: channel I/O memory base
144 * @index: index of this channel in the controller
145 * @irq: channel IRQ
146 * @src: slave memory address and size on the source side
147 * @dst: slave memory address and size on the destination side
148 * @mid_rid: hardware MID/RID for the DMA client using this channel
149 * @lock: protects the channel CHCR register and the desc members
150 * @desc.free: list of free descriptors
151 * @desc.pending: list of pending descriptors (submitted with tx_submit)
152 * @desc.active: list of active descriptors (activated with issue_pending)
153 * @desc.done: list of completed descriptors
154 * @desc.wait: list of descriptors waiting for an ack
155 * @desc.running: the descriptor being processed (a member of the active list)
156 * @desc.chunks_free: list of free transfer chunk descriptors
157 * @desc.pages: list of pages used by allocated descriptors
158 */
159 struct rcar_dmac_chan {
160 struct dma_chan chan;
161 void __iomem *iomem;
162 unsigned int index;
163 int irq;
164
165 struct rcar_dmac_chan_slave src;
166 struct rcar_dmac_chan_slave dst;
167 struct rcar_dmac_chan_map map;
168 int mid_rid;
169
170 spinlock_t lock;
171
172 struct {
173 struct list_head free;
174 struct list_head pending;
175 struct list_head active;
176 struct list_head done;
177 struct list_head wait;
178 struct rcar_dmac_desc *running;
179
180 struct list_head chunks_free;
181
182 struct list_head pages;
183 } desc;
184 };
185
186 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
187
188 /*
189 * struct rcar_dmac - R-Car Gen2 DMA Controller
190 * @engine: base DMA engine object
191 * @dev: the hardware device
192 * @dmac_base: remapped base register block
193 * @chan_base: remapped channel register block (optional)
194 * @n_channels: number of available channels
195 * @channels: array of DMAC channels
196 * @channels_mask: bitfield of which DMA channels are managed by this driver
197 * @modules: bitmask of client modules in use
198 */
199 struct rcar_dmac {
200 struct dma_device engine;
201 struct device *dev;
202 void __iomem *dmac_base;
203 void __iomem *chan_base;
204
205 unsigned int n_channels;
206 struct rcar_dmac_chan *channels;
207 u32 channels_mask;
208
209 DECLARE_BITMAP(modules, 256);
210 };
211
212 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
213
214 #define for_each_rcar_dmac_chan(i, dmac, chan) \
215 for (i = 0, chan = &(dmac)->channels[0]; i < (dmac)->n_channels; i++, chan++) \
216 if (!((dmac)->channels_mask & BIT(i))) continue; else
217
218 /*
219 * struct rcar_dmac_of_data - This driver's OF data
220 * @chan_offset_base: DMAC channels base offset
221 * @chan_offset_stride: DMAC channels offset stride
222 */
223 struct rcar_dmac_of_data {
224 u32 chan_offset_base;
225 u32 chan_offset_stride;
226 };
227
228 /* -----------------------------------------------------------------------------
229 * Registers
230 */
231
232 #define RCAR_DMAISTA 0x0020
233 #define RCAR_DMASEC 0x0030
234 #define RCAR_DMAOR 0x0060
235 #define RCAR_DMAOR_PRI_FIXED (0 << 8)
236 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
237 #define RCAR_DMAOR_AE (1 << 2)
238 #define RCAR_DMAOR_DME (1 << 0)
239 #define RCAR_DMACHCLR 0x0080 /* Not on R-Car Gen4 */
240 #define RCAR_DMADPSEC 0x00a0
241
242 #define RCAR_DMASAR 0x0000
243 #define RCAR_DMADAR 0x0004
244 #define RCAR_DMATCR 0x0008
245 #define RCAR_DMATCR_MASK 0x00ffffff
246 #define RCAR_DMATSR 0x0028
247 #define RCAR_DMACHCR 0x000c
248 #define RCAR_DMACHCR_CAE (1 << 31)
249 #define RCAR_DMACHCR_CAIE (1 << 30)
250 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
251 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
252 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
253 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
254 #define RCAR_DMACHCR_RPT_SAR (1 << 27)
255 #define RCAR_DMACHCR_RPT_DAR (1 << 26)
256 #define RCAR_DMACHCR_RPT_TCR (1 << 25)
257 #define RCAR_DMACHCR_DPB (1 << 22)
258 #define RCAR_DMACHCR_DSE (1 << 19)
259 #define RCAR_DMACHCR_DSIE (1 << 18)
260 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
261 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
262 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
263 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
264 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
265 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
266 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
267 #define RCAR_DMACHCR_DM_FIXED (0 << 14)
268 #define RCAR_DMACHCR_DM_INC (1 << 14)
269 #define RCAR_DMACHCR_DM_DEC (2 << 14)
270 #define RCAR_DMACHCR_SM_FIXED (0 << 12)
271 #define RCAR_DMACHCR_SM_INC (1 << 12)
272 #define RCAR_DMACHCR_SM_DEC (2 << 12)
273 #define RCAR_DMACHCR_RS_AUTO (4 << 8)
274 #define RCAR_DMACHCR_RS_DMARS (8 << 8)
275 #define RCAR_DMACHCR_IE (1 << 2)
276 #define RCAR_DMACHCR_TE (1 << 1)
277 #define RCAR_DMACHCR_DE (1 << 0)
278 #define RCAR_DMATCRB 0x0018
279 #define RCAR_DMATSRB 0x0038
280 #define RCAR_DMACHCRB 0x001c
281 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
282 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
283 #define RCAR_DMACHCRB_DPTR_SHIFT 16
284 #define RCAR_DMACHCRB_DRST (1 << 15)
285 #define RCAR_DMACHCRB_DTS (1 << 8)
286 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
287 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
288 #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
289 #define RCAR_DMARS 0x0040
290 #define RCAR_DMABUFCR 0x0048
291 #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
292 #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
293 #define RCAR_DMADPBASE 0x0050
294 #define RCAR_DMADPBASE_MASK 0xfffffff0
295 #define RCAR_DMADPBASE_SEL (1 << 0)
296 #define RCAR_DMADPCR 0x0054
297 #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
298 #define RCAR_DMAFIXSAR 0x0010
299 #define RCAR_DMAFIXDAR 0x0014
300 #define RCAR_DMAFIXDPBASE 0x0060
301
302 /* For R-Car Gen4 */
303 #define RCAR_GEN4_DMACHCLR 0x0100
304
305 /* Hardcode the MEMCPY transfer size to 4 bytes. */
306 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
307
308 /* -----------------------------------------------------------------------------
309 * Device access
310 */
311
rcar_dmac_write(struct rcar_dmac * dmac,u32 reg,u32 data)312 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
313 {
314 if (reg == RCAR_DMAOR)
315 writew(data, dmac->dmac_base + reg);
316 else
317 writel(data, dmac->dmac_base + reg);
318 }
319
rcar_dmac_read(struct rcar_dmac * dmac,u32 reg)320 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
321 {
322 if (reg == RCAR_DMAOR)
323 return readw(dmac->dmac_base + reg);
324 else
325 return readl(dmac->dmac_base + reg);
326 }
327
rcar_dmac_chan_read(struct rcar_dmac_chan * chan,u32 reg)328 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
329 {
330 if (reg == RCAR_DMARS)
331 return readw(chan->iomem + reg);
332 else
333 return readl(chan->iomem + reg);
334 }
335
rcar_dmac_chan_write(struct rcar_dmac_chan * chan,u32 reg,u32 data)336 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
337 {
338 if (reg == RCAR_DMARS)
339 writew(data, chan->iomem + reg);
340 else
341 writel(data, chan->iomem + reg);
342 }
343
rcar_dmac_chan_clear(struct rcar_dmac * dmac,struct rcar_dmac_chan * chan)344 static void rcar_dmac_chan_clear(struct rcar_dmac *dmac,
345 struct rcar_dmac_chan *chan)
346 {
347 if (dmac->chan_base)
348 rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
349 else
350 rcar_dmac_write(dmac, RCAR_DMACHCLR, BIT(chan->index));
351 }
352
rcar_dmac_chan_clear_all(struct rcar_dmac * dmac)353 static void rcar_dmac_chan_clear_all(struct rcar_dmac *dmac)
354 {
355 struct rcar_dmac_chan *chan;
356 unsigned int i;
357
358 if (dmac->chan_base) {
359 for_each_rcar_dmac_chan(i, dmac, chan)
360 rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1);
361 } else {
362 rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask);
363 }
364 }
365
366 /* -----------------------------------------------------------------------------
367 * Initialization and configuration
368 */
369
rcar_dmac_chan_is_busy(struct rcar_dmac_chan * chan)370 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
371 {
372 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
373
374 return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
375 }
376
rcar_dmac_chan_start_xfer(struct rcar_dmac_chan * chan)377 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
378 {
379 struct rcar_dmac_desc *desc = chan->desc.running;
380 u32 chcr = desc->chcr;
381
382 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
383
384 if (chan->mid_rid >= 0)
385 rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
386
387 if (desc->hwdescs.use) {
388 struct rcar_dmac_xfer_chunk *chunk =
389 list_first_entry(&desc->chunks,
390 struct rcar_dmac_xfer_chunk, node);
391
392 dev_dbg(chan->chan.device->dev,
393 "chan%u: queue desc %p: %u@%pad\n",
394 chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
395
396 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
397 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
398 chunk->src_addr >> 32);
399 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
400 chunk->dst_addr >> 32);
401 rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
402 desc->hwdescs.dma >> 32);
403 #endif
404 rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
405 (desc->hwdescs.dma & 0xfffffff0) |
406 RCAR_DMADPBASE_SEL);
407 rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
408 RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
409 RCAR_DMACHCRB_DRST);
410
411 /*
412 * Errata: When descriptor memory is accessed through an IOMMU
413 * the DMADAR register isn't initialized automatically from the
414 * first descriptor at beginning of transfer by the DMAC like it
415 * should. Initialize it manually with the destination address
416 * of the first chunk.
417 */
418 rcar_dmac_chan_write(chan, RCAR_DMADAR,
419 chunk->dst_addr & 0xffffffff);
420
421 /*
422 * Program the descriptor stage interrupt to occur after the end
423 * of the first stage.
424 */
425 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
426
427 chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
428 | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
429
430 /*
431 * If the descriptor isn't cyclic enable normal descriptor mode
432 * and the transfer completion interrupt.
433 */
434 if (!desc->cyclic)
435 chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
436 /*
437 * If the descriptor is cyclic and has a callback enable the
438 * descriptor stage interrupt in infinite repeat mode.
439 */
440 else if (desc->async_tx.callback)
441 chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
442 /*
443 * Otherwise just select infinite repeat mode without any
444 * interrupt.
445 */
446 else
447 chcr |= RCAR_DMACHCR_DPM_INFINITE;
448 } else {
449 struct rcar_dmac_xfer_chunk *chunk = desc->running;
450
451 dev_dbg(chan->chan.device->dev,
452 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
453 chan->index, chunk, chunk->size, &chunk->src_addr,
454 &chunk->dst_addr);
455
456 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
457 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
458 chunk->src_addr >> 32);
459 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
460 chunk->dst_addr >> 32);
461 #endif
462 rcar_dmac_chan_write(chan, RCAR_DMASAR,
463 chunk->src_addr & 0xffffffff);
464 rcar_dmac_chan_write(chan, RCAR_DMADAR,
465 chunk->dst_addr & 0xffffffff);
466 rcar_dmac_chan_write(chan, RCAR_DMATCR,
467 chunk->size >> desc->xfer_shift);
468
469 chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
470 }
471
472 rcar_dmac_chan_write(chan, RCAR_DMACHCR,
473 chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
474 }
475
rcar_dmac_init(struct rcar_dmac * dmac)476 static int rcar_dmac_init(struct rcar_dmac *dmac)
477 {
478 u16 dmaor;
479
480 /* Clear all channels and enable the DMAC globally. */
481 rcar_dmac_chan_clear_all(dmac);
482 rcar_dmac_write(dmac, RCAR_DMAOR,
483 RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
484
485 dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
486 if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
487 dev_warn(dmac->dev, "DMAOR initialization failed.\n");
488 return -EIO;
489 }
490
491 return 0;
492 }
493
494 /* -----------------------------------------------------------------------------
495 * Descriptors submission
496 */
497
rcar_dmac_tx_submit(struct dma_async_tx_descriptor * tx)498 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
499 {
500 struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
501 struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
502 unsigned long flags;
503 dma_cookie_t cookie;
504
505 spin_lock_irqsave(&chan->lock, flags);
506
507 cookie = dma_cookie_assign(tx);
508
509 dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
510 chan->index, tx->cookie, desc);
511
512 list_add_tail(&desc->node, &chan->desc.pending);
513 desc->running = list_first_entry(&desc->chunks,
514 struct rcar_dmac_xfer_chunk, node);
515
516 spin_unlock_irqrestore(&chan->lock, flags);
517
518 return cookie;
519 }
520
521 /* -----------------------------------------------------------------------------
522 * Descriptors allocation and free
523 */
524
525 /*
526 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
527 * @chan: the DMA channel
528 * @gfp: allocation flags
529 */
rcar_dmac_desc_alloc(struct rcar_dmac_chan * chan,gfp_t gfp)530 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
531 {
532 struct rcar_dmac_desc_page *page;
533 unsigned long flags;
534 LIST_HEAD(list);
535 unsigned int i;
536
537 page = (void *)get_zeroed_page(gfp);
538 if (!page)
539 return -ENOMEM;
540
541 for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
542 struct rcar_dmac_desc *desc = &page->descs[i];
543
544 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
545 desc->async_tx.tx_submit = rcar_dmac_tx_submit;
546 INIT_LIST_HEAD(&desc->chunks);
547
548 list_add_tail(&desc->node, &list);
549 }
550
551 spin_lock_irqsave(&chan->lock, flags);
552 list_splice_tail(&list, &chan->desc.free);
553 list_add_tail(&page->node, &chan->desc.pages);
554 spin_unlock_irqrestore(&chan->lock, flags);
555
556 return 0;
557 }
558
559 /*
560 * rcar_dmac_desc_put - Release a DMA transfer descriptor
561 * @chan: the DMA channel
562 * @desc: the descriptor
563 *
564 * Put the descriptor and its transfer chunk descriptors back in the channel's
565 * free descriptors lists. The descriptor's chunks list will be reinitialized to
566 * an empty list as a result.
567 *
568 * The descriptor must have been removed from the channel's lists before calling
569 * this function.
570 */
rcar_dmac_desc_put(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc)571 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
572 struct rcar_dmac_desc *desc)
573 {
574 unsigned long flags;
575
576 spin_lock_irqsave(&chan->lock, flags);
577 list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
578 list_add(&desc->node, &chan->desc.free);
579 spin_unlock_irqrestore(&chan->lock, flags);
580 }
581
rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan * chan)582 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
583 {
584 struct rcar_dmac_desc *desc, *_desc;
585 unsigned long flags;
586 LIST_HEAD(list);
587
588 /*
589 * We have to temporarily move all descriptors from the wait list to a
590 * local list as iterating over the wait list, even with
591 * list_for_each_entry_safe, isn't safe if we release the channel lock
592 * around the rcar_dmac_desc_put() call.
593 */
594 spin_lock_irqsave(&chan->lock, flags);
595 list_splice_init(&chan->desc.wait, &list);
596 spin_unlock_irqrestore(&chan->lock, flags);
597
598 list_for_each_entry_safe(desc, _desc, &list, node) {
599 if (async_tx_test_ack(&desc->async_tx)) {
600 list_del(&desc->node);
601 rcar_dmac_desc_put(chan, desc);
602 }
603 }
604
605 if (list_empty(&list))
606 return;
607
608 /* Put the remaining descriptors back in the wait list. */
609 spin_lock_irqsave(&chan->lock, flags);
610 list_splice(&list, &chan->desc.wait);
611 spin_unlock_irqrestore(&chan->lock, flags);
612 }
613
614 /*
615 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
616 * @chan: the DMA channel
617 *
618 * Locking: This function must be called in a non-atomic context.
619 *
620 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
621 * be allocated.
622 */
rcar_dmac_desc_get(struct rcar_dmac_chan * chan)623 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
624 {
625 struct rcar_dmac_desc *desc;
626 unsigned long flags;
627 int ret;
628
629 /* Recycle acked descriptors before attempting allocation. */
630 rcar_dmac_desc_recycle_acked(chan);
631
632 spin_lock_irqsave(&chan->lock, flags);
633
634 while (list_empty(&chan->desc.free)) {
635 /*
636 * No free descriptors, allocate a page worth of them and try
637 * again, as someone else could race us to get the newly
638 * allocated descriptors. If the allocation fails return an
639 * error.
640 */
641 spin_unlock_irqrestore(&chan->lock, flags);
642 ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
643 if (ret < 0)
644 return NULL;
645 spin_lock_irqsave(&chan->lock, flags);
646 }
647
648 desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
649 list_del(&desc->node);
650
651 spin_unlock_irqrestore(&chan->lock, flags);
652
653 return desc;
654 }
655
656 /*
657 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
658 * @chan: the DMA channel
659 * @gfp: allocation flags
660 */
rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan * chan,gfp_t gfp)661 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
662 {
663 struct rcar_dmac_desc_page *page;
664 unsigned long flags;
665 LIST_HEAD(list);
666 unsigned int i;
667
668 page = (void *)get_zeroed_page(gfp);
669 if (!page)
670 return -ENOMEM;
671
672 for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
673 struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
674
675 list_add_tail(&chunk->node, &list);
676 }
677
678 spin_lock_irqsave(&chan->lock, flags);
679 list_splice_tail(&list, &chan->desc.chunks_free);
680 list_add_tail(&page->node, &chan->desc.pages);
681 spin_unlock_irqrestore(&chan->lock, flags);
682
683 return 0;
684 }
685
686 /*
687 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
688 * @chan: the DMA channel
689 *
690 * Locking: This function must be called in a non-atomic context.
691 *
692 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
693 * descriptor can be allocated.
694 */
695 static struct rcar_dmac_xfer_chunk *
rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan * chan)696 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
697 {
698 struct rcar_dmac_xfer_chunk *chunk;
699 unsigned long flags;
700 int ret;
701
702 spin_lock_irqsave(&chan->lock, flags);
703
704 while (list_empty(&chan->desc.chunks_free)) {
705 /*
706 * No free descriptors, allocate a page worth of them and try
707 * again, as someone else could race us to get the newly
708 * allocated descriptors. If the allocation fails return an
709 * error.
710 */
711 spin_unlock_irqrestore(&chan->lock, flags);
712 ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
713 if (ret < 0)
714 return NULL;
715 spin_lock_irqsave(&chan->lock, flags);
716 }
717
718 chunk = list_first_entry(&chan->desc.chunks_free,
719 struct rcar_dmac_xfer_chunk, node);
720 list_del(&chunk->node);
721
722 spin_unlock_irqrestore(&chan->lock, flags);
723
724 return chunk;
725 }
726
rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc,size_t size)727 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
728 struct rcar_dmac_desc *desc, size_t size)
729 {
730 /*
731 * dma_alloc_coherent() allocates memory in page size increments. To
732 * avoid reallocating the hardware descriptors when the allocated size
733 * wouldn't change align the requested size to a multiple of the page
734 * size.
735 */
736 size = PAGE_ALIGN(size);
737
738 if (desc->hwdescs.size == size)
739 return;
740
741 if (desc->hwdescs.mem) {
742 dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
743 desc->hwdescs.mem, desc->hwdescs.dma);
744 desc->hwdescs.mem = NULL;
745 desc->hwdescs.size = 0;
746 }
747
748 if (!size)
749 return;
750
751 desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
752 &desc->hwdescs.dma, GFP_NOWAIT);
753 if (!desc->hwdescs.mem)
754 return;
755
756 desc->hwdescs.size = size;
757 }
758
rcar_dmac_fill_hwdesc(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc)759 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
760 struct rcar_dmac_desc *desc)
761 {
762 struct rcar_dmac_xfer_chunk *chunk;
763 struct rcar_dmac_hw_desc *hwdesc;
764
765 rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
766
767 hwdesc = desc->hwdescs.mem;
768 if (!hwdesc)
769 return -ENOMEM;
770
771 list_for_each_entry(chunk, &desc->chunks, node) {
772 hwdesc->sar = chunk->src_addr;
773 hwdesc->dar = chunk->dst_addr;
774 hwdesc->tcr = chunk->size >> desc->xfer_shift;
775 hwdesc++;
776 }
777
778 return 0;
779 }
780
781 /* -----------------------------------------------------------------------------
782 * Stop and reset
783 */
rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan * chan)784 static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
785 {
786 u32 chcr;
787 unsigned int i;
788
789 /*
790 * Ensure that the setting of the DE bit is actually 0 after
791 * clearing it.
792 */
793 for (i = 0; i < 1024; i++) {
794 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
795 if (!(chcr & RCAR_DMACHCR_DE))
796 return;
797 udelay(1);
798 }
799
800 dev_err(chan->chan.device->dev, "CHCR DE check error\n");
801 }
802
rcar_dmac_clear_chcr_de(struct rcar_dmac_chan * chan)803 static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
804 {
805 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
806
807 /* set DE=0 and flush remaining data */
808 rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
809
810 /* make sure all remaining data was flushed */
811 rcar_dmac_chcr_de_barrier(chan);
812 }
813
rcar_dmac_chan_halt(struct rcar_dmac_chan * chan)814 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
815 {
816 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
817
818 chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
819 RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
820 RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
821 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
822 rcar_dmac_chcr_de_barrier(chan);
823 }
824
rcar_dmac_chan_reinit(struct rcar_dmac_chan * chan)825 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
826 {
827 struct rcar_dmac_desc *desc, *_desc;
828 unsigned long flags;
829 LIST_HEAD(descs);
830
831 spin_lock_irqsave(&chan->lock, flags);
832
833 /* Move all non-free descriptors to the local lists. */
834 list_splice_init(&chan->desc.pending, &descs);
835 list_splice_init(&chan->desc.active, &descs);
836 list_splice_init(&chan->desc.done, &descs);
837 list_splice_init(&chan->desc.wait, &descs);
838
839 chan->desc.running = NULL;
840
841 spin_unlock_irqrestore(&chan->lock, flags);
842
843 list_for_each_entry_safe(desc, _desc, &descs, node) {
844 list_del(&desc->node);
845 rcar_dmac_desc_put(chan, desc);
846 }
847 }
848
rcar_dmac_stop_all_chan(struct rcar_dmac * dmac)849 static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
850 {
851 struct rcar_dmac_chan *chan;
852 unsigned int i;
853
854 /* Stop all channels. */
855 for_each_rcar_dmac_chan(i, dmac, chan) {
856 /* Stop and reinitialize the channel. */
857 spin_lock_irq(&chan->lock);
858 rcar_dmac_chan_halt(chan);
859 spin_unlock_irq(&chan->lock);
860 }
861 }
862
rcar_dmac_chan_pause(struct dma_chan * chan)863 static int rcar_dmac_chan_pause(struct dma_chan *chan)
864 {
865 unsigned long flags;
866 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
867
868 spin_lock_irqsave(&rchan->lock, flags);
869 rcar_dmac_clear_chcr_de(rchan);
870 spin_unlock_irqrestore(&rchan->lock, flags);
871
872 return 0;
873 }
874
875 /* -----------------------------------------------------------------------------
876 * Descriptors preparation
877 */
878
rcar_dmac_chan_configure_desc(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc)879 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
880 struct rcar_dmac_desc *desc)
881 {
882 static const u32 chcr_ts[] = {
883 RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
884 RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
885 RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
886 RCAR_DMACHCR_TS_64B,
887 };
888
889 unsigned int xfer_size;
890 u32 chcr;
891
892 switch (desc->direction) {
893 case DMA_DEV_TO_MEM:
894 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
895 | RCAR_DMACHCR_RS_DMARS;
896 xfer_size = chan->src.xfer_size;
897 break;
898
899 case DMA_MEM_TO_DEV:
900 chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
901 | RCAR_DMACHCR_RS_DMARS;
902 xfer_size = chan->dst.xfer_size;
903 break;
904
905 case DMA_MEM_TO_MEM:
906 default:
907 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
908 | RCAR_DMACHCR_RS_AUTO;
909 xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
910 break;
911 }
912
913 desc->xfer_shift = ilog2(xfer_size);
914 desc->chcr = chcr | chcr_ts[desc->xfer_shift];
915 }
916
917 /*
918 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
919 *
920 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
921 * converted to scatter-gather to guarantee consistent locking and a correct
922 * list manipulation. For slave DMA direction carries the usual meaning, and,
923 * logically, the SG list is RAM and the addr variable contains slave address,
924 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
925 * and the SG list contains only one element and points at the source buffer.
926 */
927 static struct dma_async_tx_descriptor *
rcar_dmac_chan_prep_sg(struct rcar_dmac_chan * chan,struct scatterlist * sgl,unsigned int sg_len,dma_addr_t dev_addr,enum dma_transfer_direction dir,unsigned long dma_flags,bool cyclic)928 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
929 unsigned int sg_len, dma_addr_t dev_addr,
930 enum dma_transfer_direction dir, unsigned long dma_flags,
931 bool cyclic)
932 {
933 struct rcar_dmac_xfer_chunk *chunk;
934 struct rcar_dmac_desc *desc;
935 struct scatterlist *sg;
936 unsigned int nchunks = 0;
937 unsigned int max_chunk_size;
938 unsigned int full_size = 0;
939 bool cross_boundary = false;
940 unsigned int i;
941 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
942 u32 high_dev_addr;
943 u32 high_mem_addr;
944 #endif
945
946 desc = rcar_dmac_desc_get(chan);
947 if (!desc)
948 return NULL;
949
950 desc->async_tx.flags = dma_flags;
951 desc->async_tx.cookie = -EBUSY;
952
953 desc->cyclic = cyclic;
954 desc->direction = dir;
955
956 rcar_dmac_chan_configure_desc(chan, desc);
957
958 max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
959
960 /*
961 * Allocate and fill the transfer chunk descriptors. We own the only
962 * reference to the DMA descriptor, there's no need for locking.
963 */
964 for_each_sg(sgl, sg, sg_len, i) {
965 dma_addr_t mem_addr = sg_dma_address(sg);
966 unsigned int len = sg_dma_len(sg);
967
968 full_size += len;
969
970 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
971 if (i == 0) {
972 high_dev_addr = dev_addr >> 32;
973 high_mem_addr = mem_addr >> 32;
974 }
975
976 if ((dev_addr >> 32 != high_dev_addr) ||
977 (mem_addr >> 32 != high_mem_addr))
978 cross_boundary = true;
979 #endif
980 while (len) {
981 unsigned int size = min(len, max_chunk_size);
982
983 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
984 /*
985 * Prevent individual transfers from crossing 4GB
986 * boundaries.
987 */
988 if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
989 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
990 cross_boundary = true;
991 }
992 if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
993 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
994 cross_boundary = true;
995 }
996 #endif
997
998 chunk = rcar_dmac_xfer_chunk_get(chan);
999 if (!chunk) {
1000 rcar_dmac_desc_put(chan, desc);
1001 return NULL;
1002 }
1003
1004 if (dir == DMA_DEV_TO_MEM) {
1005 chunk->src_addr = dev_addr;
1006 chunk->dst_addr = mem_addr;
1007 } else {
1008 chunk->src_addr = mem_addr;
1009 chunk->dst_addr = dev_addr;
1010 }
1011
1012 chunk->size = size;
1013
1014 dev_dbg(chan->chan.device->dev,
1015 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
1016 chan->index, chunk, desc, i, sg, size, len,
1017 &chunk->src_addr, &chunk->dst_addr);
1018
1019 mem_addr += size;
1020 if (dir == DMA_MEM_TO_MEM)
1021 dev_addr += size;
1022
1023 len -= size;
1024
1025 list_add_tail(&chunk->node, &desc->chunks);
1026 nchunks++;
1027 }
1028 }
1029
1030 desc->nchunks = nchunks;
1031 desc->size = full_size;
1032
1033 /*
1034 * Use hardware descriptor lists if possible when more than one chunk
1035 * needs to be transferred (otherwise they don't make much sense).
1036 *
1037 * Source/Destination address should be located in same 4GiB region
1038 * in the 40bit address space when it uses Hardware descriptor,
1039 * and cross_boundary is checking it.
1040 */
1041 desc->hwdescs.use = !cross_boundary && nchunks > 1;
1042 if (desc->hwdescs.use) {
1043 if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
1044 desc->hwdescs.use = false;
1045 }
1046
1047 return &desc->async_tx;
1048 }
1049
1050 /* -----------------------------------------------------------------------------
1051 * DMA engine operations
1052 */
1053
rcar_dmac_alloc_chan_resources(struct dma_chan * chan)1054 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
1055 {
1056 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1057 int ret;
1058
1059 INIT_LIST_HEAD(&rchan->desc.chunks_free);
1060 INIT_LIST_HEAD(&rchan->desc.pages);
1061
1062 /* Preallocate descriptors. */
1063 ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
1064 if (ret < 0)
1065 return -ENOMEM;
1066
1067 ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
1068 if (ret < 0)
1069 return -ENOMEM;
1070
1071 return pm_runtime_get_sync(chan->device->dev);
1072 }
1073
rcar_dmac_free_chan_resources(struct dma_chan * chan)1074 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1075 {
1076 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1077 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1078 struct rcar_dmac_chan_map *map = &rchan->map;
1079 struct rcar_dmac_desc_page *page, *_page;
1080 struct rcar_dmac_desc *desc;
1081 LIST_HEAD(list);
1082
1083 /* Protect against ISR */
1084 spin_lock_irq(&rchan->lock);
1085 rcar_dmac_chan_halt(rchan);
1086 spin_unlock_irq(&rchan->lock);
1087
1088 /*
1089 * Now no new interrupts will occur, but one might already be
1090 * running. Wait for it to finish before freeing resources.
1091 */
1092 synchronize_irq(rchan->irq);
1093
1094 if (rchan->mid_rid >= 0) {
1095 /* The caller is holding dma_list_mutex */
1096 clear_bit(rchan->mid_rid, dmac->modules);
1097 rchan->mid_rid = -EINVAL;
1098 }
1099
1100 list_splice_init(&rchan->desc.free, &list);
1101 list_splice_init(&rchan->desc.pending, &list);
1102 list_splice_init(&rchan->desc.active, &list);
1103 list_splice_init(&rchan->desc.done, &list);
1104 list_splice_init(&rchan->desc.wait, &list);
1105
1106 rchan->desc.running = NULL;
1107
1108 list_for_each_entry(desc, &list, node)
1109 rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1110
1111 list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1112 list_del(&page->node);
1113 free_page((unsigned long)page);
1114 }
1115
1116 /* Remove slave mapping if present. */
1117 if (map->slave.xfer_size) {
1118 dma_unmap_resource(chan->device->dev, map->addr,
1119 map->slave.xfer_size, map->dir, 0);
1120 map->slave.xfer_size = 0;
1121 }
1122
1123 pm_runtime_put(chan->device->dev);
1124 }
1125
1126 static struct dma_async_tx_descriptor *
rcar_dmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dma_dest,dma_addr_t dma_src,size_t len,unsigned long flags)1127 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1128 dma_addr_t dma_src, size_t len, unsigned long flags)
1129 {
1130 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1131 struct scatterlist sgl;
1132
1133 if (!len)
1134 return NULL;
1135
1136 sg_init_table(&sgl, 1);
1137 sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1138 offset_in_page(dma_src));
1139 sg_dma_address(&sgl) = dma_src;
1140 sg_dma_len(&sgl) = len;
1141
1142 return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1143 DMA_MEM_TO_MEM, flags, false);
1144 }
1145
rcar_dmac_map_slave_addr(struct dma_chan * chan,enum dma_transfer_direction dir)1146 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1147 enum dma_transfer_direction dir)
1148 {
1149 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1150 struct rcar_dmac_chan_map *map = &rchan->map;
1151 phys_addr_t dev_addr;
1152 size_t dev_size;
1153 enum dma_data_direction dev_dir;
1154
1155 if (dir == DMA_DEV_TO_MEM) {
1156 dev_addr = rchan->src.slave_addr;
1157 dev_size = rchan->src.xfer_size;
1158 dev_dir = DMA_TO_DEVICE;
1159 } else {
1160 dev_addr = rchan->dst.slave_addr;
1161 dev_size = rchan->dst.xfer_size;
1162 dev_dir = DMA_FROM_DEVICE;
1163 }
1164
1165 /* Reuse current map if possible. */
1166 if (dev_addr == map->slave.slave_addr &&
1167 dev_size == map->slave.xfer_size &&
1168 dev_dir == map->dir)
1169 return 0;
1170
1171 /* Remove old mapping if present. */
1172 if (map->slave.xfer_size)
1173 dma_unmap_resource(chan->device->dev, map->addr,
1174 map->slave.xfer_size, map->dir, 0);
1175 map->slave.xfer_size = 0;
1176
1177 /* Create new slave address map. */
1178 map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1179 dev_dir, 0);
1180
1181 if (dma_mapping_error(chan->device->dev, map->addr)) {
1182 dev_err(chan->device->dev,
1183 "chan%u: failed to map %zx@%pap", rchan->index,
1184 dev_size, &dev_addr);
1185 return -EIO;
1186 }
1187
1188 dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1189 rchan->index, dev_size, &dev_addr, &map->addr,
1190 dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1191
1192 map->slave.slave_addr = dev_addr;
1193 map->slave.xfer_size = dev_size;
1194 map->dir = dev_dir;
1195
1196 return 0;
1197 }
1198
1199 static struct dma_async_tx_descriptor *
rcar_dmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,void * context)1200 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1201 unsigned int sg_len, enum dma_transfer_direction dir,
1202 unsigned long flags, void *context)
1203 {
1204 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1205
1206 /* Someone calling slave DMA on a generic channel? */
1207 if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
1208 dev_warn(chan->device->dev,
1209 "%s: bad parameter: len=%d, id=%d\n",
1210 __func__, sg_len, rchan->mid_rid);
1211 return NULL;
1212 }
1213
1214 if (rcar_dmac_map_slave_addr(chan, dir))
1215 return NULL;
1216
1217 return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1218 dir, flags, false);
1219 }
1220
1221 #define RCAR_DMAC_MAX_SG_LEN 32
1222
1223 static struct dma_async_tx_descriptor *
rcar_dmac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1224 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1225 size_t buf_len, size_t period_len,
1226 enum dma_transfer_direction dir, unsigned long flags)
1227 {
1228 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1229 struct dma_async_tx_descriptor *desc;
1230 struct scatterlist *sgl;
1231 unsigned int sg_len;
1232 unsigned int i;
1233
1234 /* Someone calling slave DMA on a generic channel? */
1235 if (rchan->mid_rid < 0 || buf_len < period_len) {
1236 dev_warn(chan->device->dev,
1237 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1238 __func__, buf_len, period_len, rchan->mid_rid);
1239 return NULL;
1240 }
1241
1242 if (rcar_dmac_map_slave_addr(chan, dir))
1243 return NULL;
1244
1245 sg_len = buf_len / period_len;
1246 if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1247 dev_err(chan->device->dev,
1248 "chan%u: sg length %d exceeds limit %d",
1249 rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1250 return NULL;
1251 }
1252
1253 /*
1254 * Allocate the sg list dynamically as it would consume too much stack
1255 * space.
1256 */
1257 sgl = kmalloc_array(sg_len, sizeof(*sgl), GFP_NOWAIT);
1258 if (!sgl)
1259 return NULL;
1260
1261 sg_init_table(sgl, sg_len);
1262
1263 for (i = 0; i < sg_len; ++i) {
1264 dma_addr_t src = buf_addr + (period_len * i);
1265
1266 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1267 offset_in_page(src));
1268 sg_dma_address(&sgl[i]) = src;
1269 sg_dma_len(&sgl[i]) = period_len;
1270 }
1271
1272 desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1273 dir, flags, true);
1274
1275 kfree(sgl);
1276 return desc;
1277 }
1278
rcar_dmac_device_config(struct dma_chan * chan,struct dma_slave_config * cfg)1279 static int rcar_dmac_device_config(struct dma_chan *chan,
1280 struct dma_slave_config *cfg)
1281 {
1282 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1283
1284 /*
1285 * We could lock this, but you shouldn't be configuring the
1286 * channel, while using it...
1287 */
1288 rchan->src.slave_addr = cfg->src_addr;
1289 rchan->dst.slave_addr = cfg->dst_addr;
1290 rchan->src.xfer_size = cfg->src_addr_width;
1291 rchan->dst.xfer_size = cfg->dst_addr_width;
1292
1293 return 0;
1294 }
1295
rcar_dmac_chan_terminate_all(struct dma_chan * chan)1296 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1297 {
1298 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1299 unsigned long flags;
1300
1301 spin_lock_irqsave(&rchan->lock, flags);
1302 rcar_dmac_chan_halt(rchan);
1303 spin_unlock_irqrestore(&rchan->lock, flags);
1304
1305 /*
1306 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1307 * be running.
1308 */
1309
1310 rcar_dmac_chan_reinit(rchan);
1311
1312 return 0;
1313 }
1314
rcar_dmac_chan_get_residue(struct rcar_dmac_chan * chan,dma_cookie_t cookie)1315 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1316 dma_cookie_t cookie)
1317 {
1318 struct rcar_dmac_desc *desc = chan->desc.running;
1319 struct rcar_dmac_xfer_chunk *running = NULL;
1320 struct rcar_dmac_xfer_chunk *chunk;
1321 enum dma_status status;
1322 unsigned int residue = 0;
1323 unsigned int dptr = 0;
1324 unsigned int chcrb;
1325 unsigned int tcrb;
1326 unsigned int i;
1327
1328 if (!desc)
1329 return 0;
1330
1331 /*
1332 * If the cookie corresponds to a descriptor that has been completed
1333 * there is no residue. The same check has already been performed by the
1334 * caller but without holding the channel lock, so the descriptor could
1335 * now be complete.
1336 */
1337 status = dma_cookie_status(&chan->chan, cookie, NULL);
1338 if (status == DMA_COMPLETE)
1339 return 0;
1340
1341 /*
1342 * If the cookie doesn't correspond to the currently running transfer
1343 * then the descriptor hasn't been processed yet, and the residue is
1344 * equal to the full descriptor size.
1345 * Also, a client driver is possible to call this function before
1346 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1347 * will be the next descriptor, and the done list will appear. So, if
1348 * the argument cookie matches the done list's cookie, we can assume
1349 * the residue is zero.
1350 */
1351 if (cookie != desc->async_tx.cookie) {
1352 list_for_each_entry(desc, &chan->desc.done, node) {
1353 if (cookie == desc->async_tx.cookie)
1354 return 0;
1355 }
1356 list_for_each_entry(desc, &chan->desc.pending, node) {
1357 if (cookie == desc->async_tx.cookie)
1358 return desc->size;
1359 }
1360 list_for_each_entry(desc, &chan->desc.active, node) {
1361 if (cookie == desc->async_tx.cookie)
1362 return desc->size;
1363 }
1364
1365 /*
1366 * No descriptor found for the cookie, there's thus no residue.
1367 * This shouldn't happen if the calling driver passes a correct
1368 * cookie value.
1369 */
1370 WARN(1, "No descriptor for cookie!");
1371 return 0;
1372 }
1373
1374 /*
1375 * We need to read two registers.
1376 * Make sure the control register does not skip to next chunk
1377 * while reading the counter.
1378 * Trying it 3 times should be enough: Initial read, retry, retry
1379 * for the paranoid.
1380 */
1381 for (i = 0; i < 3; i++) {
1382 chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1383 RCAR_DMACHCRB_DPTR_MASK;
1384 tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB);
1385 /* Still the same? */
1386 if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1387 RCAR_DMACHCRB_DPTR_MASK))
1388 break;
1389 }
1390 WARN_ONCE(i >= 3, "residue might be not continuous!");
1391
1392 /*
1393 * In descriptor mode the descriptor running pointer is not maintained
1394 * by the interrupt handler, find the running descriptor from the
1395 * descriptor pointer field in the CHCRB register. In non-descriptor
1396 * mode just use the running descriptor pointer.
1397 */
1398 if (desc->hwdescs.use) {
1399 dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT;
1400 if (dptr == 0)
1401 dptr = desc->nchunks;
1402 dptr--;
1403 WARN_ON(dptr >= desc->nchunks);
1404 } else {
1405 running = desc->running;
1406 }
1407
1408 /* Compute the size of all chunks still to be transferred. */
1409 list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1410 if (chunk == running || ++dptr == desc->nchunks)
1411 break;
1412
1413 residue += chunk->size;
1414 }
1415
1416 /* Add the residue for the current chunk. */
1417 residue += tcrb << desc->xfer_shift;
1418
1419 return residue;
1420 }
1421
rcar_dmac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1422 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1423 dma_cookie_t cookie,
1424 struct dma_tx_state *txstate)
1425 {
1426 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1427 enum dma_status status;
1428 unsigned long flags;
1429 unsigned int residue;
1430 bool cyclic;
1431
1432 status = dma_cookie_status(chan, cookie, txstate);
1433 if (status == DMA_COMPLETE || !txstate)
1434 return status;
1435
1436 spin_lock_irqsave(&rchan->lock, flags);
1437 residue = rcar_dmac_chan_get_residue(rchan, cookie);
1438 cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
1439 spin_unlock_irqrestore(&rchan->lock, flags);
1440
1441 /* if there's no residue, the cookie is complete */
1442 if (!residue && !cyclic)
1443 return DMA_COMPLETE;
1444
1445 dma_set_residue(txstate, residue);
1446
1447 return status;
1448 }
1449
rcar_dmac_issue_pending(struct dma_chan * chan)1450 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1451 {
1452 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1453 unsigned long flags;
1454
1455 spin_lock_irqsave(&rchan->lock, flags);
1456
1457 if (list_empty(&rchan->desc.pending))
1458 goto done;
1459
1460 /* Append the pending list to the active list. */
1461 list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1462
1463 /*
1464 * If no transfer is running pick the first descriptor from the active
1465 * list and start the transfer.
1466 */
1467 if (!rchan->desc.running) {
1468 struct rcar_dmac_desc *desc;
1469
1470 desc = list_first_entry(&rchan->desc.active,
1471 struct rcar_dmac_desc, node);
1472 rchan->desc.running = desc;
1473
1474 rcar_dmac_chan_start_xfer(rchan);
1475 }
1476
1477 done:
1478 spin_unlock_irqrestore(&rchan->lock, flags);
1479 }
1480
rcar_dmac_device_synchronize(struct dma_chan * chan)1481 static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1482 {
1483 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1484
1485 synchronize_irq(rchan->irq);
1486 }
1487
1488 /* -----------------------------------------------------------------------------
1489 * IRQ handling
1490 */
1491
rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan * chan)1492 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1493 {
1494 struct rcar_dmac_desc *desc = chan->desc.running;
1495 unsigned int stage;
1496
1497 if (WARN_ON(!desc || !desc->cyclic)) {
1498 /*
1499 * This should never happen, there should always be a running
1500 * cyclic descriptor when a descriptor stage end interrupt is
1501 * triggered. Warn and return.
1502 */
1503 return IRQ_NONE;
1504 }
1505
1506 /* Program the interrupt pointer to the next stage. */
1507 stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1508 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1509 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1510
1511 return IRQ_WAKE_THREAD;
1512 }
1513
rcar_dmac_isr_transfer_end(struct rcar_dmac_chan * chan)1514 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1515 {
1516 struct rcar_dmac_desc *desc = chan->desc.running;
1517 irqreturn_t ret = IRQ_WAKE_THREAD;
1518
1519 if (WARN_ON_ONCE(!desc)) {
1520 /*
1521 * This should never happen, there should always be a running
1522 * descriptor when a transfer end interrupt is triggered. Warn
1523 * and return.
1524 */
1525 return IRQ_NONE;
1526 }
1527
1528 /*
1529 * The transfer end interrupt isn't generated for each chunk when using
1530 * descriptor mode. Only update the running chunk pointer in
1531 * non-descriptor mode.
1532 */
1533 if (!desc->hwdescs.use) {
1534 /*
1535 * If we haven't completed the last transfer chunk simply move
1536 * to the next one. Only wake the IRQ thread if the transfer is
1537 * cyclic.
1538 */
1539 if (!list_is_last(&desc->running->node, &desc->chunks)) {
1540 desc->running = list_next_entry(desc->running, node);
1541 if (!desc->cyclic)
1542 ret = IRQ_HANDLED;
1543 goto done;
1544 }
1545
1546 /*
1547 * We've completed the last transfer chunk. If the transfer is
1548 * cyclic, move back to the first one.
1549 */
1550 if (desc->cyclic) {
1551 desc->running =
1552 list_first_entry(&desc->chunks,
1553 struct rcar_dmac_xfer_chunk,
1554 node);
1555 goto done;
1556 }
1557 }
1558
1559 /* The descriptor is complete, move it to the done list. */
1560 list_move_tail(&desc->node, &chan->desc.done);
1561
1562 /* Queue the next descriptor, if any. */
1563 if (!list_empty(&chan->desc.active))
1564 chan->desc.running = list_first_entry(&chan->desc.active,
1565 struct rcar_dmac_desc,
1566 node);
1567 else
1568 chan->desc.running = NULL;
1569
1570 done:
1571 if (chan->desc.running)
1572 rcar_dmac_chan_start_xfer(chan);
1573
1574 return ret;
1575 }
1576
rcar_dmac_isr_channel(int irq,void * dev)1577 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1578 {
1579 u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1580 struct rcar_dmac_chan *chan = dev;
1581 irqreturn_t ret = IRQ_NONE;
1582 bool reinit = false;
1583 u32 chcr;
1584
1585 spin_lock(&chan->lock);
1586
1587 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1588 if (chcr & RCAR_DMACHCR_CAE) {
1589 struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
1590
1591 /*
1592 * We don't need to call rcar_dmac_chan_halt()
1593 * because channel is already stopped in error case.
1594 * We need to clear register and check DE bit as recovery.
1595 */
1596 rcar_dmac_chan_clear(dmac, chan);
1597 rcar_dmac_chcr_de_barrier(chan);
1598 reinit = true;
1599 goto spin_lock_end;
1600 }
1601
1602 if (chcr & RCAR_DMACHCR_TE)
1603 mask |= RCAR_DMACHCR_DE;
1604 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1605 if (mask & RCAR_DMACHCR_DE)
1606 rcar_dmac_chcr_de_barrier(chan);
1607
1608 if (chcr & RCAR_DMACHCR_DSE)
1609 ret |= rcar_dmac_isr_desc_stage_end(chan);
1610
1611 if (chcr & RCAR_DMACHCR_TE)
1612 ret |= rcar_dmac_isr_transfer_end(chan);
1613
1614 spin_lock_end:
1615 spin_unlock(&chan->lock);
1616
1617 if (reinit) {
1618 dev_err(chan->chan.device->dev, "Channel Address Error\n");
1619
1620 rcar_dmac_chan_reinit(chan);
1621 ret = IRQ_HANDLED;
1622 }
1623
1624 return ret;
1625 }
1626
rcar_dmac_isr_channel_thread(int irq,void * dev)1627 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1628 {
1629 struct rcar_dmac_chan *chan = dev;
1630 struct rcar_dmac_desc *desc;
1631 struct dmaengine_desc_callback cb;
1632
1633 spin_lock_irq(&chan->lock);
1634
1635 /* For cyclic transfers notify the user after every chunk. */
1636 if (chan->desc.running && chan->desc.running->cyclic) {
1637 desc = chan->desc.running;
1638 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1639
1640 if (dmaengine_desc_callback_valid(&cb)) {
1641 spin_unlock_irq(&chan->lock);
1642 dmaengine_desc_callback_invoke(&cb, NULL);
1643 spin_lock_irq(&chan->lock);
1644 }
1645 }
1646
1647 /*
1648 * Call the callback function for all descriptors on the done list and
1649 * move them to the ack wait list.
1650 */
1651 while (!list_empty(&chan->desc.done)) {
1652 desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1653 node);
1654 dma_cookie_complete(&desc->async_tx);
1655 list_del(&desc->node);
1656
1657 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1658 if (dmaengine_desc_callback_valid(&cb)) {
1659 spin_unlock_irq(&chan->lock);
1660 /*
1661 * We own the only reference to this descriptor, we can
1662 * safely dereference it without holding the channel
1663 * lock.
1664 */
1665 dmaengine_desc_callback_invoke(&cb, NULL);
1666 spin_lock_irq(&chan->lock);
1667 }
1668
1669 list_add_tail(&desc->node, &chan->desc.wait);
1670 }
1671
1672 spin_unlock_irq(&chan->lock);
1673
1674 /* Recycle all acked descriptors. */
1675 rcar_dmac_desc_recycle_acked(chan);
1676
1677 return IRQ_HANDLED;
1678 }
1679
1680 /* -----------------------------------------------------------------------------
1681 * OF xlate and channel filter
1682 */
1683
rcar_dmac_chan_filter(struct dma_chan * chan,void * arg)1684 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1685 {
1686 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1687 struct of_phandle_args *dma_spec = arg;
1688
1689 /*
1690 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1691 * function knows from which device it wants to allocate a channel from,
1692 * and would be perfectly capable of selecting the channel it wants.
1693 * Forcing it to call dma_request_channel() and iterate through all
1694 * channels from all controllers is just pointless.
1695 */
1696 if (chan->device->device_config != rcar_dmac_device_config)
1697 return false;
1698
1699 return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1700 }
1701
rcar_dmac_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1702 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1703 struct of_dma *ofdma)
1704 {
1705 struct rcar_dmac_chan *rchan;
1706 struct dma_chan *chan;
1707 dma_cap_mask_t mask;
1708
1709 if (dma_spec->args_count != 1)
1710 return NULL;
1711
1712 /* Only slave DMA channels can be allocated via DT */
1713 dma_cap_zero(mask);
1714 dma_cap_set(DMA_SLAVE, mask);
1715
1716 chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec,
1717 ofdma->of_node);
1718 if (!chan)
1719 return NULL;
1720
1721 rchan = to_rcar_dmac_chan(chan);
1722 rchan->mid_rid = dma_spec->args[0];
1723
1724 return chan;
1725 }
1726
1727 /* -----------------------------------------------------------------------------
1728 * Power management
1729 */
1730
1731 #ifdef CONFIG_PM
rcar_dmac_runtime_suspend(struct device * dev)1732 static int rcar_dmac_runtime_suspend(struct device *dev)
1733 {
1734 return 0;
1735 }
1736
rcar_dmac_runtime_resume(struct device * dev)1737 static int rcar_dmac_runtime_resume(struct device *dev)
1738 {
1739 struct rcar_dmac *dmac = dev_get_drvdata(dev);
1740
1741 return rcar_dmac_init(dmac);
1742 }
1743 #endif
1744
1745 static const struct dev_pm_ops rcar_dmac_pm = {
1746 /*
1747 * TODO for system sleep/resume:
1748 * - Wait for the current transfer to complete and stop the device,
1749 * - Resume transfers, if any.
1750 */
1751 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1752 pm_runtime_force_resume)
1753 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1754 NULL)
1755 };
1756
1757 /* -----------------------------------------------------------------------------
1758 * Probe and remove
1759 */
1760
rcar_dmac_chan_probe(struct rcar_dmac * dmac,struct rcar_dmac_chan * rchan)1761 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1762 struct rcar_dmac_chan *rchan)
1763 {
1764 struct platform_device *pdev = to_platform_device(dmac->dev);
1765 struct dma_chan *chan = &rchan->chan;
1766 char pdev_irqname[5];
1767 char *irqname;
1768 int ret;
1769
1770 rchan->mid_rid = -EINVAL;
1771
1772 spin_lock_init(&rchan->lock);
1773
1774 INIT_LIST_HEAD(&rchan->desc.free);
1775 INIT_LIST_HEAD(&rchan->desc.pending);
1776 INIT_LIST_HEAD(&rchan->desc.active);
1777 INIT_LIST_HEAD(&rchan->desc.done);
1778 INIT_LIST_HEAD(&rchan->desc.wait);
1779
1780 /* Request the channel interrupt. */
1781 sprintf(pdev_irqname, "ch%u", rchan->index);
1782 rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1783 if (rchan->irq < 0)
1784 return -ENODEV;
1785
1786 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1787 dev_name(dmac->dev), rchan->index);
1788 if (!irqname)
1789 return -ENOMEM;
1790
1791 /*
1792 * Initialize the DMA engine channel and add it to the DMA engine
1793 * channels list.
1794 */
1795 chan->device = &dmac->engine;
1796 dma_cookie_init(chan);
1797
1798 list_add_tail(&chan->device_node, &dmac->engine.channels);
1799
1800 ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1801 rcar_dmac_isr_channel,
1802 rcar_dmac_isr_channel_thread, 0,
1803 irqname, rchan);
1804 if (ret) {
1805 dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1806 rchan->irq, ret);
1807 return ret;
1808 }
1809
1810 return 0;
1811 }
1812
1813 #define RCAR_DMAC_MAX_CHANNELS 32
1814
rcar_dmac_parse_of(struct device * dev,struct rcar_dmac * dmac)1815 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1816 {
1817 struct device_node *np = dev->of_node;
1818 int ret;
1819
1820 ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1821 if (ret < 0) {
1822 dev_err(dev, "unable to read dma-channels property\n");
1823 return ret;
1824 }
1825
1826 /* The hardware and driver don't support more than 32 bits in CHCLR */
1827 if (dmac->n_channels <= 0 ||
1828 dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) {
1829 dev_err(dev, "invalid number of channels %u\n",
1830 dmac->n_channels);
1831 return -EINVAL;
1832 }
1833
1834 /*
1835 * If the driver is unable to read dma-channel-mask property,
1836 * the driver assumes that it can use all channels.
1837 */
1838 dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0);
1839 of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask);
1840
1841 /* If the property has out-of-channel mask, this driver clears it */
1842 dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0);
1843
1844 return 0;
1845 }
1846
rcar_dmac_probe(struct platform_device * pdev)1847 static int rcar_dmac_probe(struct platform_device *pdev)
1848 {
1849 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1850 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1851 DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1852 DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1853 const struct rcar_dmac_of_data *data;
1854 struct rcar_dmac_chan *chan;
1855 struct dma_device *engine;
1856 void __iomem *chan_base;
1857 struct rcar_dmac *dmac;
1858 unsigned int i;
1859 int ret;
1860
1861 data = of_device_get_match_data(&pdev->dev);
1862 if (!data)
1863 return -EINVAL;
1864
1865 dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1866 if (!dmac)
1867 return -ENOMEM;
1868
1869 dmac->dev = &pdev->dev;
1870 platform_set_drvdata(pdev, dmac);
1871 ret = dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
1872 if (ret)
1873 return ret;
1874
1875 ret = dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1876 if (ret)
1877 return ret;
1878
1879 ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1880 if (ret < 0)
1881 return ret;
1882
1883 /*
1884 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1885 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1886 * is connected to microTLB 0 on currently supported platforms, so we
1887 * can't use it with the IPMMU. As the IOMMU API operates at the device
1888 * level we can't disable it selectively, so ignore channel 0 for now if
1889 * the device is part of an IOMMU group.
1890 */
1891 if (device_iommu_mapped(&pdev->dev))
1892 dmac->channels_mask &= ~BIT(0);
1893
1894 dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1895 sizeof(*dmac->channels), GFP_KERNEL);
1896 if (!dmac->channels)
1897 return -ENOMEM;
1898
1899 /* Request resources. */
1900 dmac->dmac_base = devm_platform_ioremap_resource(pdev, 0);
1901 if (IS_ERR(dmac->dmac_base))
1902 return PTR_ERR(dmac->dmac_base);
1903
1904 if (!data->chan_offset_base) {
1905 dmac->chan_base = devm_platform_ioremap_resource(pdev, 1);
1906 if (IS_ERR(dmac->chan_base))
1907 return PTR_ERR(dmac->chan_base);
1908
1909 chan_base = dmac->chan_base;
1910 } else {
1911 chan_base = dmac->dmac_base + data->chan_offset_base;
1912 }
1913
1914 for_each_rcar_dmac_chan(i, dmac, chan) {
1915 chan->index = i;
1916 chan->iomem = chan_base + i * data->chan_offset_stride;
1917 }
1918
1919 /* Enable runtime PM and initialize the device. */
1920 pm_runtime_enable(&pdev->dev);
1921 ret = pm_runtime_resume_and_get(&pdev->dev);
1922 if (ret < 0) {
1923 dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1924 goto err_pm_disable;
1925 }
1926
1927 ret = rcar_dmac_init(dmac);
1928 pm_runtime_put(&pdev->dev);
1929
1930 if (ret) {
1931 dev_err(&pdev->dev, "failed to reset device\n");
1932 goto err_pm_disable;
1933 }
1934
1935 /* Initialize engine */
1936 engine = &dmac->engine;
1937
1938 dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1939 dma_cap_set(DMA_SLAVE, engine->cap_mask);
1940
1941 engine->dev = &pdev->dev;
1942 engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1943
1944 engine->src_addr_widths = widths;
1945 engine->dst_addr_widths = widths;
1946 engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1947 engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1948
1949 engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1950 engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1951 engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1952 engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1953 engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1954 engine->device_config = rcar_dmac_device_config;
1955 engine->device_pause = rcar_dmac_chan_pause;
1956 engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1957 engine->device_tx_status = rcar_dmac_tx_status;
1958 engine->device_issue_pending = rcar_dmac_issue_pending;
1959 engine->device_synchronize = rcar_dmac_device_synchronize;
1960
1961 INIT_LIST_HEAD(&engine->channels);
1962
1963 for_each_rcar_dmac_chan(i, dmac, chan) {
1964 ret = rcar_dmac_chan_probe(dmac, chan);
1965 if (ret < 0)
1966 goto err_pm_disable;
1967 }
1968
1969 /* Register the DMAC as a DMA provider for DT. */
1970 ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1971 NULL);
1972 if (ret < 0)
1973 goto err_pm_disable;
1974
1975 /*
1976 * Register the DMA engine device.
1977 *
1978 * Default transfer size of 32 bytes requires 32-byte alignment.
1979 */
1980 ret = dma_async_device_register(engine);
1981 if (ret < 0)
1982 goto err_dma_free;
1983
1984 return 0;
1985
1986 err_dma_free:
1987 of_dma_controller_free(pdev->dev.of_node);
1988 err_pm_disable:
1989 pm_runtime_disable(&pdev->dev);
1990 return ret;
1991 }
1992
rcar_dmac_remove(struct platform_device * pdev)1993 static int rcar_dmac_remove(struct platform_device *pdev)
1994 {
1995 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1996
1997 of_dma_controller_free(pdev->dev.of_node);
1998 dma_async_device_unregister(&dmac->engine);
1999
2000 pm_runtime_disable(&pdev->dev);
2001
2002 return 0;
2003 }
2004
rcar_dmac_shutdown(struct platform_device * pdev)2005 static void rcar_dmac_shutdown(struct platform_device *pdev)
2006 {
2007 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
2008
2009 rcar_dmac_stop_all_chan(dmac);
2010 }
2011
2012 static const struct rcar_dmac_of_data rcar_dmac_data = {
2013 .chan_offset_base = 0x8000,
2014 .chan_offset_stride = 0x80,
2015 };
2016
2017 static const struct rcar_dmac_of_data rcar_gen4_dmac_data = {
2018 .chan_offset_base = 0x0,
2019 .chan_offset_stride = 0x1000,
2020 };
2021
2022 static const struct of_device_id rcar_dmac_of_ids[] = {
2023 {
2024 .compatible = "renesas,rcar-dmac",
2025 .data = &rcar_dmac_data,
2026 }, {
2027 .compatible = "renesas,rcar-gen4-dmac",
2028 .data = &rcar_gen4_dmac_data,
2029 }, {
2030 .compatible = "renesas,dmac-r8a779a0",
2031 .data = &rcar_gen4_dmac_data,
2032 },
2033 { /* Sentinel */ }
2034 };
2035 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
2036
2037 static struct platform_driver rcar_dmac_driver = {
2038 .driver = {
2039 .pm = &rcar_dmac_pm,
2040 .name = "rcar-dmac",
2041 .of_match_table = rcar_dmac_of_ids,
2042 },
2043 .probe = rcar_dmac_probe,
2044 .remove = rcar_dmac_remove,
2045 .shutdown = rcar_dmac_shutdown,
2046 };
2047
2048 module_platform_driver(rcar_dmac_driver);
2049
2050 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
2051 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
2052 MODULE_LICENSE("GPL v2");
2053