xref: /openbmc/linux/drivers/crypto/ccp/ccp-crypto-aes-cmac.c (revision 7ae9fb1b7ecbb5d85d07857943f677fd1a559b18)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * AMD Cryptographic Coprocessor (CCP) AES CMAC crypto API support
4   *
5   * Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
6   *
7   * Author: Tom Lendacky <thomas.lendacky@amd.com>
8   */
9  
10  #include <linux/module.h>
11  #include <linux/sched.h>
12  #include <linux/delay.h>
13  #include <linux/scatterlist.h>
14  #include <linux/crypto.h>
15  #include <crypto/algapi.h>
16  #include <crypto/aes.h>
17  #include <crypto/hash.h>
18  #include <crypto/internal/hash.h>
19  #include <crypto/scatterwalk.h>
20  
21  #include "ccp-crypto.h"
22  
ccp_aes_cmac_complete(struct crypto_async_request * async_req,int ret)23  static int ccp_aes_cmac_complete(struct crypto_async_request *async_req,
24  				 int ret)
25  {
26  	struct ahash_request *req = ahash_request_cast(async_req);
27  	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
28  	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
29  	unsigned int digest_size = crypto_ahash_digestsize(tfm);
30  
31  	if (ret)
32  		goto e_free;
33  
34  	if (rctx->hash_rem) {
35  		/* Save remaining data to buffer */
36  		unsigned int offset = rctx->nbytes - rctx->hash_rem;
37  
38  		scatterwalk_map_and_copy(rctx->buf, rctx->src,
39  					 offset, rctx->hash_rem, 0);
40  		rctx->buf_count = rctx->hash_rem;
41  	} else {
42  		rctx->buf_count = 0;
43  	}
44  
45  	/* Update result area if supplied */
46  	if (req->result && rctx->final)
47  		memcpy(req->result, rctx->iv, digest_size);
48  
49  e_free:
50  	sg_free_table(&rctx->data_sg);
51  
52  	return ret;
53  }
54  
ccp_do_cmac_update(struct ahash_request * req,unsigned int nbytes,unsigned int final)55  static int ccp_do_cmac_update(struct ahash_request *req, unsigned int nbytes,
56  			      unsigned int final)
57  {
58  	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
59  	struct ccp_ctx *ctx = crypto_ahash_ctx_dma(tfm);
60  	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
61  	struct scatterlist *sg, *cmac_key_sg = NULL;
62  	unsigned int block_size =
63  		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
64  	unsigned int need_pad, sg_count;
65  	gfp_t gfp;
66  	u64 len;
67  	int ret;
68  
69  	if (!ctx->u.aes.key_len)
70  		return -EINVAL;
71  
72  	if (nbytes)
73  		rctx->null_msg = 0;
74  
75  	len = (u64)rctx->buf_count + (u64)nbytes;
76  
77  	if (!final && (len <= block_size)) {
78  		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
79  					 0, nbytes, 0);
80  		rctx->buf_count += nbytes;
81  
82  		return 0;
83  	}
84  
85  	rctx->src = req->src;
86  	rctx->nbytes = nbytes;
87  
88  	rctx->final = final;
89  	rctx->hash_rem = final ? 0 : len & (block_size - 1);
90  	rctx->hash_cnt = len - rctx->hash_rem;
91  	if (!final && !rctx->hash_rem) {
92  		/* CCP can't do zero length final, so keep some data around */
93  		rctx->hash_cnt -= block_size;
94  		rctx->hash_rem = block_size;
95  	}
96  
97  	if (final && (rctx->null_msg || (len & (block_size - 1))))
98  		need_pad = 1;
99  	else
100  		need_pad = 0;
101  
102  	sg_init_one(&rctx->iv_sg, rctx->iv, sizeof(rctx->iv));
103  
104  	/* Build the data scatterlist table - allocate enough entries for all
105  	 * possible data pieces (buffer, input data, padding)
106  	 */
107  	sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2;
108  	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
109  		GFP_KERNEL : GFP_ATOMIC;
110  	ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
111  	if (ret)
112  		return ret;
113  
114  	sg = NULL;
115  	if (rctx->buf_count) {
116  		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
117  		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
118  		if (!sg) {
119  			ret = -EINVAL;
120  			goto e_free;
121  		}
122  	}
123  
124  	if (nbytes) {
125  		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
126  		if (!sg) {
127  			ret = -EINVAL;
128  			goto e_free;
129  		}
130  	}
131  
132  	if (need_pad) {
133  		int pad_length = block_size - (len & (block_size - 1));
134  
135  		rctx->hash_cnt += pad_length;
136  
137  		memset(rctx->pad, 0, sizeof(rctx->pad));
138  		rctx->pad[0] = 0x80;
139  		sg_init_one(&rctx->pad_sg, rctx->pad, pad_length);
140  		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg);
141  		if (!sg) {
142  			ret = -EINVAL;
143  			goto e_free;
144  		}
145  	}
146  	if (sg) {
147  		sg_mark_end(sg);
148  		sg = rctx->data_sg.sgl;
149  	}
150  
151  	/* Initialize the K1/K2 scatterlist */
152  	if (final)
153  		cmac_key_sg = (need_pad) ? &ctx->u.aes.k2_sg
154  					 : &ctx->u.aes.k1_sg;
155  
156  	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
157  	INIT_LIST_HEAD(&rctx->cmd.entry);
158  	rctx->cmd.engine = CCP_ENGINE_AES;
159  	rctx->cmd.u.aes.type = ctx->u.aes.type;
160  	rctx->cmd.u.aes.mode = ctx->u.aes.mode;
161  	rctx->cmd.u.aes.action = CCP_AES_ACTION_ENCRYPT;
162  	rctx->cmd.u.aes.key = &ctx->u.aes.key_sg;
163  	rctx->cmd.u.aes.key_len = ctx->u.aes.key_len;
164  	rctx->cmd.u.aes.iv = &rctx->iv_sg;
165  	rctx->cmd.u.aes.iv_len = AES_BLOCK_SIZE;
166  	rctx->cmd.u.aes.src = sg;
167  	rctx->cmd.u.aes.src_len = rctx->hash_cnt;
168  	rctx->cmd.u.aes.dst = NULL;
169  	rctx->cmd.u.aes.cmac_key = cmac_key_sg;
170  	rctx->cmd.u.aes.cmac_key_len = ctx->u.aes.kn_len;
171  	rctx->cmd.u.aes.cmac_final = final;
172  
173  	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
174  
175  	return ret;
176  
177  e_free:
178  	sg_free_table(&rctx->data_sg);
179  
180  	return ret;
181  }
182  
ccp_aes_cmac_init(struct ahash_request * req)183  static int ccp_aes_cmac_init(struct ahash_request *req)
184  {
185  	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
186  
187  	memset(rctx, 0, sizeof(*rctx));
188  
189  	rctx->null_msg = 1;
190  
191  	return 0;
192  }
193  
ccp_aes_cmac_update(struct ahash_request * req)194  static int ccp_aes_cmac_update(struct ahash_request *req)
195  {
196  	return ccp_do_cmac_update(req, req->nbytes, 0);
197  }
198  
ccp_aes_cmac_final(struct ahash_request * req)199  static int ccp_aes_cmac_final(struct ahash_request *req)
200  {
201  	return ccp_do_cmac_update(req, 0, 1);
202  }
203  
ccp_aes_cmac_finup(struct ahash_request * req)204  static int ccp_aes_cmac_finup(struct ahash_request *req)
205  {
206  	return ccp_do_cmac_update(req, req->nbytes, 1);
207  }
208  
ccp_aes_cmac_digest(struct ahash_request * req)209  static int ccp_aes_cmac_digest(struct ahash_request *req)
210  {
211  	int ret;
212  
213  	ret = ccp_aes_cmac_init(req);
214  	if (ret)
215  		return ret;
216  
217  	return ccp_aes_cmac_finup(req);
218  }
219  
ccp_aes_cmac_export(struct ahash_request * req,void * out)220  static int ccp_aes_cmac_export(struct ahash_request *req, void *out)
221  {
222  	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
223  	struct ccp_aes_cmac_exp_ctx state;
224  
225  	/* Don't let anything leak to 'out' */
226  	memset(&state, 0, sizeof(state));
227  
228  	state.null_msg = rctx->null_msg;
229  	memcpy(state.iv, rctx->iv, sizeof(state.iv));
230  	state.buf_count = rctx->buf_count;
231  	memcpy(state.buf, rctx->buf, sizeof(state.buf));
232  
233  	/* 'out' may not be aligned so memcpy from local variable */
234  	memcpy(out, &state, sizeof(state));
235  
236  	return 0;
237  }
238  
ccp_aes_cmac_import(struct ahash_request * req,const void * in)239  static int ccp_aes_cmac_import(struct ahash_request *req, const void *in)
240  {
241  	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
242  	struct ccp_aes_cmac_exp_ctx state;
243  
244  	/* 'in' may not be aligned so memcpy to local variable */
245  	memcpy(&state, in, sizeof(state));
246  
247  	memset(rctx, 0, sizeof(*rctx));
248  	rctx->null_msg = state.null_msg;
249  	memcpy(rctx->iv, state.iv, sizeof(rctx->iv));
250  	rctx->buf_count = state.buf_count;
251  	memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
252  
253  	return 0;
254  }
255  
ccp_aes_cmac_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int key_len)256  static int ccp_aes_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
257  			       unsigned int key_len)
258  {
259  	struct ccp_ctx *ctx = crypto_ahash_ctx_dma(tfm);
260  	struct ccp_crypto_ahash_alg *alg =
261  		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
262  	u64 k0_hi, k0_lo, k1_hi, k1_lo, k2_hi, k2_lo;
263  	u64 rb_hi = 0x00, rb_lo = 0x87;
264  	struct crypto_aes_ctx aes;
265  	__be64 *gk;
266  	int ret;
267  
268  	switch (key_len) {
269  	case AES_KEYSIZE_128:
270  		ctx->u.aes.type = CCP_AES_TYPE_128;
271  		break;
272  	case AES_KEYSIZE_192:
273  		ctx->u.aes.type = CCP_AES_TYPE_192;
274  		break;
275  	case AES_KEYSIZE_256:
276  		ctx->u.aes.type = CCP_AES_TYPE_256;
277  		break;
278  	default:
279  		return -EINVAL;
280  	}
281  	ctx->u.aes.mode = alg->mode;
282  
283  	/* Set to zero until complete */
284  	ctx->u.aes.key_len = 0;
285  
286  	/* Set the key for the AES cipher used to generate the keys */
287  	ret = aes_expandkey(&aes, key, key_len);
288  	if (ret)
289  		return ret;
290  
291  	/* Encrypt a block of zeroes - use key area in context */
292  	memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
293  	aes_encrypt(&aes, ctx->u.aes.key, ctx->u.aes.key);
294  	memzero_explicit(&aes, sizeof(aes));
295  
296  	/* Generate K1 and K2 */
297  	k0_hi = be64_to_cpu(*((__be64 *)ctx->u.aes.key));
298  	k0_lo = be64_to_cpu(*((__be64 *)ctx->u.aes.key + 1));
299  
300  	k1_hi = (k0_hi << 1) | (k0_lo >> 63);
301  	k1_lo = k0_lo << 1;
302  	if (ctx->u.aes.key[0] & 0x80) {
303  		k1_hi ^= rb_hi;
304  		k1_lo ^= rb_lo;
305  	}
306  	gk = (__be64 *)ctx->u.aes.k1;
307  	*gk = cpu_to_be64(k1_hi);
308  	gk++;
309  	*gk = cpu_to_be64(k1_lo);
310  
311  	k2_hi = (k1_hi << 1) | (k1_lo >> 63);
312  	k2_lo = k1_lo << 1;
313  	if (ctx->u.aes.k1[0] & 0x80) {
314  		k2_hi ^= rb_hi;
315  		k2_lo ^= rb_lo;
316  	}
317  	gk = (__be64 *)ctx->u.aes.k2;
318  	*gk = cpu_to_be64(k2_hi);
319  	gk++;
320  	*gk = cpu_to_be64(k2_lo);
321  
322  	ctx->u.aes.kn_len = sizeof(ctx->u.aes.k1);
323  	sg_init_one(&ctx->u.aes.k1_sg, ctx->u.aes.k1, sizeof(ctx->u.aes.k1));
324  	sg_init_one(&ctx->u.aes.k2_sg, ctx->u.aes.k2, sizeof(ctx->u.aes.k2));
325  
326  	/* Save the supplied key */
327  	memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
328  	memcpy(ctx->u.aes.key, key, key_len);
329  	ctx->u.aes.key_len = key_len;
330  	sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
331  
332  	return ret;
333  }
334  
ccp_aes_cmac_cra_init(struct crypto_tfm * tfm)335  static int ccp_aes_cmac_cra_init(struct crypto_tfm *tfm)
336  {
337  	struct ccp_ctx *ctx = crypto_tfm_ctx_dma(tfm);
338  	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
339  
340  	ctx->complete = ccp_aes_cmac_complete;
341  	ctx->u.aes.key_len = 0;
342  
343  	crypto_ahash_set_reqsize_dma(ahash,
344  				     sizeof(struct ccp_aes_cmac_req_ctx));
345  
346  	return 0;
347  }
348  
ccp_register_aes_cmac_algs(struct list_head * head)349  int ccp_register_aes_cmac_algs(struct list_head *head)
350  {
351  	struct ccp_crypto_ahash_alg *ccp_alg;
352  	struct ahash_alg *alg;
353  	struct hash_alg_common *halg;
354  	struct crypto_alg *base;
355  	int ret;
356  
357  	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
358  	if (!ccp_alg)
359  		return -ENOMEM;
360  
361  	INIT_LIST_HEAD(&ccp_alg->entry);
362  	ccp_alg->mode = CCP_AES_MODE_CMAC;
363  
364  	alg = &ccp_alg->alg;
365  	alg->init = ccp_aes_cmac_init;
366  	alg->update = ccp_aes_cmac_update;
367  	alg->final = ccp_aes_cmac_final;
368  	alg->finup = ccp_aes_cmac_finup;
369  	alg->digest = ccp_aes_cmac_digest;
370  	alg->export = ccp_aes_cmac_export;
371  	alg->import = ccp_aes_cmac_import;
372  	alg->setkey = ccp_aes_cmac_setkey;
373  
374  	halg = &alg->halg;
375  	halg->digestsize = AES_BLOCK_SIZE;
376  	halg->statesize = sizeof(struct ccp_aes_cmac_exp_ctx);
377  
378  	base = &halg->base;
379  	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "cmac(aes)");
380  	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "cmac-aes-ccp");
381  	base->cra_flags = CRYPTO_ALG_ASYNC |
382  			  CRYPTO_ALG_ALLOCATES_MEMORY |
383  			  CRYPTO_ALG_KERN_DRIVER_ONLY |
384  			  CRYPTO_ALG_NEED_FALLBACK;
385  	base->cra_blocksize = AES_BLOCK_SIZE;
386  	base->cra_ctxsize = sizeof(struct ccp_ctx) + crypto_dma_padding();
387  	base->cra_priority = CCP_CRA_PRIORITY;
388  	base->cra_init = ccp_aes_cmac_cra_init;
389  	base->cra_module = THIS_MODULE;
390  
391  	ret = crypto_register_ahash(alg);
392  	if (ret) {
393  		pr_err("%s ahash algorithm registration error (%d)\n",
394  		       base->cra_name, ret);
395  		kfree(ccp_alg);
396  		return ret;
397  	}
398  
399  	list_add(&ccp_alg->entry, head);
400  
401  	return 0;
402  }
403