xref: /openbmc/linux/include/linux/seqlock.h (revision 45eec49f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_SEQLOCK_H
3 #define __LINUX_SEQLOCK_H
4 
5 /*
6  * seqcount_t / seqlock_t - a reader-writer consistency mechanism with
7  * lockless readers (read-only retry loops), and no writer starvation.
8  *
9  * See Documentation/locking/seqlock.rst
10  *
11  * Copyrights:
12  * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli
13  * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH
14  */
15 
16 #include <linux/compiler.h>
17 #include <linux/kcsan-checks.h>
18 #include <linux/lockdep.h>
19 #include <linux/mutex.h>
20 #include <linux/preempt.h>
21 #include <linux/spinlock.h>
22 
23 #include <asm/processor.h>
24 
25 /*
26  * The seqlock seqcount_t interface does not prescribe a precise sequence of
27  * read begin/retry/end. For readers, typically there is a call to
28  * read_seqcount_begin() and read_seqcount_retry(), however, there are more
29  * esoteric cases which do not follow this pattern.
30  *
31  * As a consequence, we take the following best-effort approach for raw usage
32  * via seqcount_t under KCSAN: upon beginning a seq-reader critical section,
33  * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as
34  * atomics; if there is a matching read_seqcount_retry() call, no following
35  * memory operations are considered atomic. Usage of the seqlock_t interface
36  * is not affected.
37  */
38 #define KCSAN_SEQLOCK_REGION_MAX 1000
39 
40 /*
41  * Sequence counters (seqcount_t)
42  *
43  * This is the raw counting mechanism, without any writer protection.
44  *
45  * Write side critical sections must be serialized and non-preemptible.
46  *
47  * If readers can be invoked from hardirq or softirq contexts,
48  * interrupts or bottom halves must also be respectively disabled before
49  * entering the write section.
50  *
51  * This mechanism can't be used if the protected data contains pointers,
52  * as the writer can invalidate a pointer that a reader is following.
53  *
54  * If the write serialization mechanism is one of the common kernel
55  * locking primitives, use a sequence counter with associated lock
56  * (seqcount_LOCKNAME_t) instead.
57  *
58  * If it's desired to automatically handle the sequence counter writer
59  * serialization and non-preemptibility requirements, use a sequential
60  * lock (seqlock_t) instead.
61  *
62  * See Documentation/locking/seqlock.rst
63  */
64 typedef struct seqcount {
65 	unsigned sequence;
66 #ifdef CONFIG_DEBUG_LOCK_ALLOC
67 	struct lockdep_map dep_map;
68 #endif
69 } seqcount_t;
70 
__seqcount_init(seqcount_t * s,const char * name,struct lock_class_key * key)71 static inline void __seqcount_init(seqcount_t *s, const char *name,
72 					  struct lock_class_key *key)
73 {
74 	/*
75 	 * Make sure we are not reinitializing a held lock:
76 	 */
77 	lockdep_init_map(&s->dep_map, name, key, 0);
78 	s->sequence = 0;
79 }
80 
81 #ifdef CONFIG_DEBUG_LOCK_ALLOC
82 
83 # define SEQCOUNT_DEP_MAP_INIT(lockname)				\
84 		.dep_map = { .name = #lockname }
85 
86 /**
87  * seqcount_init() - runtime initializer for seqcount_t
88  * @s: Pointer to the seqcount_t instance
89  */
90 # define seqcount_init(s)						\
91 	do {								\
92 		static struct lock_class_key __key;			\
93 		__seqcount_init((s), #s, &__key);			\
94 	} while (0)
95 
seqcount_lockdep_reader_access(const seqcount_t * s)96 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
97 {
98 	seqcount_t *l = (seqcount_t *)s;
99 	unsigned long flags;
100 
101 	local_irq_save(flags);
102 	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
103 	seqcount_release(&l->dep_map, _RET_IP_);
104 	local_irq_restore(flags);
105 }
106 
107 #else
108 # define SEQCOUNT_DEP_MAP_INIT(lockname)
109 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
110 # define seqcount_lockdep_reader_access(x)
111 #endif
112 
113 /**
114  * SEQCNT_ZERO() - static initializer for seqcount_t
115  * @name: Name of the seqcount_t instance
116  */
117 #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) }
118 
119 /*
120  * Sequence counters with associated locks (seqcount_LOCKNAME_t)
121  *
122  * A sequence counter which associates the lock used for writer
123  * serialization at initialization time. This enables lockdep to validate
124  * that the write side critical section is properly serialized.
125  *
126  * For associated locks which do not implicitly disable preemption,
127  * preemption protection is enforced in the write side function.
128  *
129  * Lockdep is never used in any for the raw write variants.
130  *
131  * See Documentation/locking/seqlock.rst
132  */
133 
134 /*
135  * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot
136  * disable preemption. It can lead to higher latencies, and the write side
137  * sections will not be able to acquire locks which become sleeping locks
138  * (e.g. spinlock_t).
139  *
140  * To remain preemptible while avoiding a possible livelock caused by the
141  * reader preempting the writer, use a different technique: let the reader
142  * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the
143  * case, acquire then release the associated LOCKNAME writer serialization
144  * lock. This will allow any possibly-preempted writer to make progress
145  * until the end of its writer serialization lock critical section.
146  *
147  * This lock-unlock technique must be implemented for all of PREEMPT_RT
148  * sleeping locks.  See Documentation/locking/locktypes.rst
149  */
150 #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT)
151 #define __SEQ_LOCK(expr)	expr
152 #else
153 #define __SEQ_LOCK(expr)
154 #endif
155 
156 /*
157  * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated
158  * @seqcount:	The real sequence counter
159  * @lock:	Pointer to the associated lock
160  *
161  * A plain sequence counter with external writer synchronization by
162  * LOCKNAME @lock. The lock is associated to the sequence counter in the
163  * static initializer or init function. This enables lockdep to validate
164  * that the write side critical section is properly serialized.
165  *
166  * LOCKNAME:	raw_spinlock, spinlock, rwlock or mutex
167  */
168 
169 /*
170  * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t
171  * @s:		Pointer to the seqcount_LOCKNAME_t instance
172  * @lock:	Pointer to the associated lock
173  */
174 
175 #define seqcount_LOCKNAME_init(s, _lock, lockname)			\
176 	do {								\
177 		seqcount_##lockname##_t *____s = (s);			\
178 		seqcount_init(&____s->seqcount);			\
179 		__SEQ_LOCK(____s->lock = (_lock));			\
180 	} while (0)
181 
182 #define seqcount_raw_spinlock_init(s, lock)	seqcount_LOCKNAME_init(s, lock, raw_spinlock)
183 #define seqcount_spinlock_init(s, lock)		seqcount_LOCKNAME_init(s, lock, spinlock)
184 #define seqcount_rwlock_init(s, lock)		seqcount_LOCKNAME_init(s, lock, rwlock)
185 #define seqcount_mutex_init(s, lock)		seqcount_LOCKNAME_init(s, lock, mutex)
186 
187 /*
188  * SEQCOUNT_LOCKNAME()	- Instantiate seqcount_LOCKNAME_t and helpers
189  * seqprop_LOCKNAME_*()	- Property accessors for seqcount_LOCKNAME_t
190  *
191  * @lockname:		"LOCKNAME" part of seqcount_LOCKNAME_t
192  * @locktype:		LOCKNAME canonical C data type
193  * @preemptible:	preemptibility of above locktype
194  * @lockmember:		argument for lockdep_assert_held()
195  * @lockbase:		associated lock release function (prefix only)
196  * @lock_acquire:	associated lock acquisition function (full call)
197  */
198 #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \
199 typedef struct seqcount_##lockname {					\
200 	seqcount_t		seqcount;				\
201 	__SEQ_LOCK(locktype	*lock);					\
202 } seqcount_##lockname##_t;						\
203 									\
204 static __always_inline seqcount_t *					\
205 __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s)			\
206 {									\
207 	return &s->seqcount;						\
208 }									\
209 									\
210 static __always_inline unsigned						\
211 __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s)	\
212 {									\
213 	unsigned seq = READ_ONCE(s->seqcount.sequence);			\
214 									\
215 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))				\
216 		return seq;						\
217 									\
218 	if (preemptible && unlikely(seq & 1)) {				\
219 		__SEQ_LOCK(lock_acquire);				\
220 		__SEQ_LOCK(lockbase##_unlock(s->lock));			\
221 									\
222 		/*							\
223 		 * Re-read the sequence counter since the (possibly	\
224 		 * preempted) writer made progress.			\
225 		 */							\
226 		seq = READ_ONCE(s->seqcount.sequence);			\
227 	}								\
228 									\
229 	return seq;							\
230 }									\
231 									\
232 static __always_inline bool						\
233 __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s)	\
234 {									\
235 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))				\
236 		return preemptible;					\
237 									\
238 	/* PREEMPT_RT relies on the above LOCK+UNLOCK */		\
239 	return false;							\
240 }									\
241 									\
242 static __always_inline void						\
243 __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s)		\
244 {									\
245 	__SEQ_LOCK(lockdep_assert_held(lockmember));			\
246 }
247 
248 /*
249  * __seqprop() for seqcount_t
250  */
251 
__seqprop_ptr(seqcount_t * s)252 static inline seqcount_t *__seqprop_ptr(seqcount_t *s)
253 {
254 	return s;
255 }
256 
__seqprop_sequence(const seqcount_t * s)257 static inline unsigned __seqprop_sequence(const seqcount_t *s)
258 {
259 	return READ_ONCE(s->sequence);
260 }
261 
__seqprop_preemptible(const seqcount_t * s)262 static inline bool __seqprop_preemptible(const seqcount_t *s)
263 {
264 	return false;
265 }
266 
__seqprop_assert(const seqcount_t * s)267 static inline void __seqprop_assert(const seqcount_t *s)
268 {
269 	lockdep_assert_preemption_disabled();
270 }
271 
272 #define __SEQ_RT	IS_ENABLED(CONFIG_PREEMPT_RT)
273 
274 SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t,  false,    s->lock,        raw_spin, raw_spin_lock(s->lock))
275 SEQCOUNT_LOCKNAME(spinlock,     spinlock_t,      __SEQ_RT, s->lock,        spin,     spin_lock(s->lock))
276 SEQCOUNT_LOCKNAME(rwlock,       rwlock_t,        __SEQ_RT, s->lock,        read,     read_lock(s->lock))
277 SEQCOUNT_LOCKNAME(mutex,        struct mutex,    true,     s->lock,        mutex,    mutex_lock(s->lock))
278 
279 /*
280  * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t
281  * @name:	Name of the seqcount_LOCKNAME_t instance
282  * @lock:	Pointer to the associated LOCKNAME
283  */
284 
285 #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) {			\
286 	.seqcount		= SEQCNT_ZERO(seq_name.seqcount),	\
287 	__SEQ_LOCK(.lock	= (assoc_lock))				\
288 }
289 
290 #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock)	SEQCOUNT_LOCKNAME_ZERO(name, lock)
291 #define SEQCNT_SPINLOCK_ZERO(name, lock)	SEQCOUNT_LOCKNAME_ZERO(name, lock)
292 #define SEQCNT_RWLOCK_ZERO(name, lock)		SEQCOUNT_LOCKNAME_ZERO(name, lock)
293 #define SEQCNT_MUTEX_ZERO(name, lock)		SEQCOUNT_LOCKNAME_ZERO(name, lock)
294 #define SEQCNT_WW_MUTEX_ZERO(name, lock) 	SEQCOUNT_LOCKNAME_ZERO(name, lock)
295 
296 #define __seqprop_case(s, lockname, prop)				\
297 	seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s))
298 
299 #define __seqprop(s, prop) _Generic(*(s),				\
300 	seqcount_t:		__seqprop_##prop((void *)(s)),		\
301 	__seqprop_case((s),	raw_spinlock,	prop),			\
302 	__seqprop_case((s),	spinlock,	prop),			\
303 	__seqprop_case((s),	rwlock,		prop),			\
304 	__seqprop_case((s),	mutex,		prop))
305 
306 #define seqprop_ptr(s)			__seqprop(s, ptr)
307 #define seqprop_sequence(s)		__seqprop(s, sequence)
308 #define seqprop_preemptible(s)		__seqprop(s, preemptible)
309 #define seqprop_assert(s)		__seqprop(s, assert)
310 
311 /**
312  * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier
313  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
314  *
315  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
316  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
317  * provided before actually loading any of the variables that are to be
318  * protected in this critical section.
319  *
320  * Use carefully, only in critical code, and comment how the barrier is
321  * provided.
322  *
323  * Return: count to be passed to read_seqcount_retry()
324  */
325 #define __read_seqcount_begin(s)					\
326 ({									\
327 	unsigned __seq;							\
328 									\
329 	while ((__seq = seqprop_sequence(s)) & 1)			\
330 		cpu_relax();						\
331 									\
332 	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);			\
333 	__seq;								\
334 })
335 
336 /**
337  * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep
338  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
339  *
340  * Return: count to be passed to read_seqcount_retry()
341  */
342 #define raw_read_seqcount_begin(s)					\
343 ({									\
344 	unsigned _seq = __read_seqcount_begin(s);			\
345 									\
346 	smp_rmb();							\
347 	_seq;								\
348 })
349 
350 /**
351  * read_seqcount_begin() - begin a seqcount_t read critical section
352  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
353  *
354  * Return: count to be passed to read_seqcount_retry()
355  */
356 #define read_seqcount_begin(s)						\
357 ({									\
358 	seqcount_lockdep_reader_access(seqprop_ptr(s));			\
359 	raw_read_seqcount_begin(s);					\
360 })
361 
362 /**
363  * raw_read_seqcount() - read the raw seqcount_t counter value
364  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
365  *
366  * raw_read_seqcount opens a read critical section of the given
367  * seqcount_t, without any lockdep checking, and without checking or
368  * masking the sequence counter LSB. Calling code is responsible for
369  * handling that.
370  *
371  * Return: count to be passed to read_seqcount_retry()
372  */
373 #define raw_read_seqcount(s)						\
374 ({									\
375 	unsigned __seq = seqprop_sequence(s);				\
376 									\
377 	smp_rmb();							\
378 	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);			\
379 	__seq;								\
380 })
381 
382 /**
383  * raw_seqcount_begin() - begin a seqcount_t read critical section w/o
384  *                        lockdep and w/o counter stabilization
385  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
386  *
387  * raw_seqcount_begin opens a read critical section of the given
388  * seqcount_t. Unlike read_seqcount_begin(), this function will not wait
389  * for the count to stabilize. If a writer is active when it begins, it
390  * will fail the read_seqcount_retry() at the end of the read critical
391  * section instead of stabilizing at the beginning of it.
392  *
393  * Use this only in special kernel hot paths where the read section is
394  * small and has a high probability of success through other external
395  * means. It will save a single branching instruction.
396  *
397  * Return: count to be passed to read_seqcount_retry()
398  */
399 #define raw_seqcount_begin(s)						\
400 ({									\
401 	/*								\
402 	 * If the counter is odd, let read_seqcount_retry() fail	\
403 	 * by decrementing the counter.					\
404 	 */								\
405 	raw_read_seqcount(s) & ~1;					\
406 })
407 
408 /**
409  * __read_seqcount_retry() - end a seqcount_t read section w/o barrier
410  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
411  * @start: count, from read_seqcount_begin()
412  *
413  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
414  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
415  * provided before actually loading any of the variables that are to be
416  * protected in this critical section.
417  *
418  * Use carefully, only in critical code, and comment how the barrier is
419  * provided.
420  *
421  * Return: true if a read section retry is required, else false
422  */
423 #define __read_seqcount_retry(s, start)					\
424 	do___read_seqcount_retry(seqprop_ptr(s), start)
425 
do___read_seqcount_retry(const seqcount_t * s,unsigned start)426 static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start)
427 {
428 	kcsan_atomic_next(0);
429 	return unlikely(READ_ONCE(s->sequence) != start);
430 }
431 
432 /**
433  * read_seqcount_retry() - end a seqcount_t read critical section
434  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
435  * @start: count, from read_seqcount_begin()
436  *
437  * read_seqcount_retry closes the read critical section of given
438  * seqcount_t.  If the critical section was invalid, it must be ignored
439  * (and typically retried).
440  *
441  * Return: true if a read section retry is required, else false
442  */
443 #define read_seqcount_retry(s, start)					\
444 	do_read_seqcount_retry(seqprop_ptr(s), start)
445 
do_read_seqcount_retry(const seqcount_t * s,unsigned start)446 static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start)
447 {
448 	smp_rmb();
449 	return do___read_seqcount_retry(s, start);
450 }
451 
452 /**
453  * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep
454  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
455  *
456  * Context: check write_seqcount_begin()
457  */
458 #define raw_write_seqcount_begin(s)					\
459 do {									\
460 	if (seqprop_preemptible(s))					\
461 		preempt_disable();					\
462 									\
463 	do_raw_write_seqcount_begin(seqprop_ptr(s));			\
464 } while (0)
465 
do_raw_write_seqcount_begin(seqcount_t * s)466 static inline void do_raw_write_seqcount_begin(seqcount_t *s)
467 {
468 	kcsan_nestable_atomic_begin();
469 	s->sequence++;
470 	smp_wmb();
471 }
472 
473 /**
474  * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep
475  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
476  *
477  * Context: check write_seqcount_end()
478  */
479 #define raw_write_seqcount_end(s)					\
480 do {									\
481 	do_raw_write_seqcount_end(seqprop_ptr(s));			\
482 									\
483 	if (seqprop_preemptible(s))					\
484 		preempt_enable();					\
485 } while (0)
486 
do_raw_write_seqcount_end(seqcount_t * s)487 static inline void do_raw_write_seqcount_end(seqcount_t *s)
488 {
489 	smp_wmb();
490 	s->sequence++;
491 	kcsan_nestable_atomic_end();
492 }
493 
494 /**
495  * write_seqcount_begin_nested() - start a seqcount_t write section with
496  *                                 custom lockdep nesting level
497  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
498  * @subclass: lockdep nesting level
499  *
500  * See Documentation/locking/lockdep-design.rst
501  * Context: check write_seqcount_begin()
502  */
503 #define write_seqcount_begin_nested(s, subclass)			\
504 do {									\
505 	seqprop_assert(s);						\
506 									\
507 	if (seqprop_preemptible(s))					\
508 		preempt_disable();					\
509 									\
510 	do_write_seqcount_begin_nested(seqprop_ptr(s), subclass);	\
511 } while (0)
512 
do_write_seqcount_begin_nested(seqcount_t * s,int subclass)513 static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass)
514 {
515 	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
516 	do_raw_write_seqcount_begin(s);
517 }
518 
519 /**
520  * write_seqcount_begin() - start a seqcount_t write side critical section
521  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
522  *
523  * Context: sequence counter write side sections must be serialized and
524  * non-preemptible. Preemption will be automatically disabled if and
525  * only if the seqcount write serialization lock is associated, and
526  * preemptible.  If readers can be invoked from hardirq or softirq
527  * context, interrupts or bottom halves must be respectively disabled.
528  */
529 #define write_seqcount_begin(s)						\
530 do {									\
531 	seqprop_assert(s);						\
532 									\
533 	if (seqprop_preemptible(s))					\
534 		preempt_disable();					\
535 									\
536 	do_write_seqcount_begin(seqprop_ptr(s));			\
537 } while (0)
538 
do_write_seqcount_begin(seqcount_t * s)539 static inline void do_write_seqcount_begin(seqcount_t *s)
540 {
541 	do_write_seqcount_begin_nested(s, 0);
542 }
543 
544 /**
545  * write_seqcount_end() - end a seqcount_t write side critical section
546  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
547  *
548  * Context: Preemption will be automatically re-enabled if and only if
549  * the seqcount write serialization lock is associated, and preemptible.
550  */
551 #define write_seqcount_end(s)						\
552 do {									\
553 	do_write_seqcount_end(seqprop_ptr(s));				\
554 									\
555 	if (seqprop_preemptible(s))					\
556 		preempt_enable();					\
557 } while (0)
558 
do_write_seqcount_end(seqcount_t * s)559 static inline void do_write_seqcount_end(seqcount_t *s)
560 {
561 	seqcount_release(&s->dep_map, _RET_IP_);
562 	do_raw_write_seqcount_end(s);
563 }
564 
565 /**
566  * raw_write_seqcount_barrier() - do a seqcount_t write barrier
567  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
568  *
569  * This can be used to provide an ordering guarantee instead of the usual
570  * consistency guarantee. It is one wmb cheaper, because it can collapse
571  * the two back-to-back wmb()s.
572  *
573  * Note that writes surrounding the barrier should be declared atomic (e.g.
574  * via WRITE_ONCE): a) to ensure the writes become visible to other threads
575  * atomically, avoiding compiler optimizations; b) to document which writes are
576  * meant to propagate to the reader critical section. This is necessary because
577  * neither writes before and after the barrier are enclosed in a seq-writer
578  * critical section that would ensure readers are aware of ongoing writes::
579  *
580  *	seqcount_t seq;
581  *	bool X = true, Y = false;
582  *
583  *	void read(void)
584  *	{
585  *		bool x, y;
586  *
587  *		do {
588  *			int s = read_seqcount_begin(&seq);
589  *
590  *			x = X; y = Y;
591  *
592  *		} while (read_seqcount_retry(&seq, s));
593  *
594  *		BUG_ON(!x && !y);
595  *      }
596  *
597  *      void write(void)
598  *      {
599  *		WRITE_ONCE(Y, true);
600  *
601  *		raw_write_seqcount_barrier(seq);
602  *
603  *		WRITE_ONCE(X, false);
604  *      }
605  */
606 #define raw_write_seqcount_barrier(s)					\
607 	do_raw_write_seqcount_barrier(seqprop_ptr(s))
608 
do_raw_write_seqcount_barrier(seqcount_t * s)609 static inline void do_raw_write_seqcount_barrier(seqcount_t *s)
610 {
611 	kcsan_nestable_atomic_begin();
612 	s->sequence++;
613 	smp_wmb();
614 	s->sequence++;
615 	kcsan_nestable_atomic_end();
616 }
617 
618 /**
619  * write_seqcount_invalidate() - invalidate in-progress seqcount_t read
620  *                               side operations
621  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
622  *
623  * After write_seqcount_invalidate, no seqcount_t read side operations
624  * will complete successfully and see data older than this.
625  */
626 #define write_seqcount_invalidate(s)					\
627 	do_write_seqcount_invalidate(seqprop_ptr(s))
628 
do_write_seqcount_invalidate(seqcount_t * s)629 static inline void do_write_seqcount_invalidate(seqcount_t *s)
630 {
631 	smp_wmb();
632 	kcsan_nestable_atomic_begin();
633 	s->sequence+=2;
634 	kcsan_nestable_atomic_end();
635 }
636 
637 /*
638  * Latch sequence counters (seqcount_latch_t)
639  *
640  * A sequence counter variant where the counter even/odd value is used to
641  * switch between two copies of protected data. This allows the read path,
642  * typically NMIs, to safely interrupt the write side critical section.
643  *
644  * As the write sections are fully preemptible, no special handling for
645  * PREEMPT_RT is needed.
646  */
647 typedef struct {
648 	seqcount_t seqcount;
649 } seqcount_latch_t;
650 
651 /**
652  * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t
653  * @seq_name: Name of the seqcount_latch_t instance
654  */
655 #define SEQCNT_LATCH_ZERO(seq_name) {					\
656 	.seqcount		= SEQCNT_ZERO(seq_name.seqcount),	\
657 }
658 
659 /**
660  * seqcount_latch_init() - runtime initializer for seqcount_latch_t
661  * @s: Pointer to the seqcount_latch_t instance
662  */
663 #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount)
664 
665 /**
666  * raw_read_seqcount_latch() - pick even/odd latch data copy
667  * @s: Pointer to seqcount_latch_t
668  *
669  * See raw_write_seqcount_latch() for details and a full reader/writer
670  * usage example.
671  *
672  * Return: sequence counter raw value. Use the lowest bit as an index for
673  * picking which data copy to read. The full counter must then be checked
674  * with raw_read_seqcount_latch_retry().
675  */
raw_read_seqcount_latch(const seqcount_latch_t * s)676 static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s)
677 {
678 	/*
679 	 * Pairs with the first smp_wmb() in raw_write_seqcount_latch().
680 	 * Due to the dependent load, a full smp_rmb() is not needed.
681 	 */
682 	return READ_ONCE(s->seqcount.sequence);
683 }
684 
685 /**
686  * read_seqcount_latch() - pick even/odd latch data copy
687  * @s: Pointer to seqcount_latch_t
688  *
689  * See write_seqcount_latch() for details and a full reader/writer usage
690  * example.
691  *
692  * Return: sequence counter raw value. Use the lowest bit as an index for
693  * picking which data copy to read. The full counter must then be checked
694  * with read_seqcount_latch_retry().
695  */
read_seqcount_latch(const seqcount_latch_t * s)696 static __always_inline unsigned read_seqcount_latch(const seqcount_latch_t *s)
697 {
698 	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);
699 	return raw_read_seqcount_latch(s);
700 }
701 
702 /**
703  * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section
704  * @s:		Pointer to seqcount_latch_t
705  * @start:	count, from raw_read_seqcount_latch()
706  *
707  * Return: true if a read section retry is required, else false
708  */
709 static __always_inline int
raw_read_seqcount_latch_retry(const seqcount_latch_t * s,unsigned start)710 raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start)
711 {
712 	smp_rmb();
713 	return unlikely(READ_ONCE(s->seqcount.sequence) != start);
714 }
715 
716 /**
717  * read_seqcount_latch_retry() - end a seqcount_latch_t read section
718  * @s:		Pointer to seqcount_latch_t
719  * @start:	count, from read_seqcount_latch()
720  *
721  * Return: true if a read section retry is required, else false
722  */
723 static __always_inline int
read_seqcount_latch_retry(const seqcount_latch_t * s,unsigned start)724 read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start)
725 {
726 	kcsan_atomic_next(0);
727 	return raw_read_seqcount_latch_retry(s, start);
728 }
729 
730 /**
731  * raw_write_seqcount_latch() - redirect latch readers to even/odd copy
732  * @s: Pointer to seqcount_latch_t
733  */
raw_write_seqcount_latch(seqcount_latch_t * s)734 static __always_inline void raw_write_seqcount_latch(seqcount_latch_t *s)
735 {
736 	smp_wmb();	/* prior stores before incrementing "sequence" */
737 	s->seqcount.sequence++;
738 	smp_wmb();      /* increment "sequence" before following stores */
739 }
740 
741 /**
742  * write_seqcount_latch_begin() - redirect latch readers to odd copy
743  * @s: Pointer to seqcount_latch_t
744  *
745  * The latch technique is a multiversion concurrency control method that allows
746  * queries during non-atomic modifications. If you can guarantee queries never
747  * interrupt the modification -- e.g. the concurrency is strictly between CPUs
748  * -- you most likely do not need this.
749  *
750  * Where the traditional RCU/lockless data structures rely on atomic
751  * modifications to ensure queries observe either the old or the new state the
752  * latch allows the same for non-atomic updates. The trade-off is doubling the
753  * cost of storage; we have to maintain two copies of the entire data
754  * structure.
755  *
756  * Very simply put: we first modify one copy and then the other. This ensures
757  * there is always one copy in a stable state, ready to give us an answer.
758  *
759  * The basic form is a data structure like::
760  *
761  *	struct latch_struct {
762  *		seqcount_latch_t	seq;
763  *		struct data_struct	data[2];
764  *	};
765  *
766  * Where a modification, which is assumed to be externally serialized, does the
767  * following::
768  *
769  *	void latch_modify(struct latch_struct *latch, ...)
770  *	{
771  *		write_seqcount_latch_begin(&latch->seq);
772  *		modify(latch->data[0], ...);
773  *		write_seqcount_latch(&latch->seq);
774  *		modify(latch->data[1], ...);
775  *		write_seqcount_latch_end(&latch->seq);
776  *	}
777  *
778  * The query will have a form like::
779  *
780  *	struct entry *latch_query(struct latch_struct *latch, ...)
781  *	{
782  *		struct entry *entry;
783  *		unsigned seq, idx;
784  *
785  *		do {
786  *			seq = read_seqcount_latch(&latch->seq);
787  *
788  *			idx = seq & 0x01;
789  *			entry = data_query(latch->data[idx], ...);
790  *
791  *		// This includes needed smp_rmb()
792  *		} while (read_seqcount_latch_retry(&latch->seq, seq));
793  *
794  *		return entry;
795  *	}
796  *
797  * So during the modification, queries are first redirected to data[1]. Then we
798  * modify data[0]. When that is complete, we redirect queries back to data[0]
799  * and we can modify data[1].
800  *
801  * NOTE:
802  *
803  *	The non-requirement for atomic modifications does _NOT_ include
804  *	the publishing of new entries in the case where data is a dynamic
805  *	data structure.
806  *
807  *	An iteration might start in data[0] and get suspended long enough
808  *	to miss an entire modification sequence, once it resumes it might
809  *	observe the new entry.
810  *
811  * NOTE2:
812  *
813  *	When data is a dynamic data structure; one should use regular RCU
814  *	patterns to manage the lifetimes of the objects within.
815  */
write_seqcount_latch_begin(seqcount_latch_t * s)816 static __always_inline void write_seqcount_latch_begin(seqcount_latch_t *s)
817 {
818 	kcsan_nestable_atomic_begin();
819 	raw_write_seqcount_latch(s);
820 }
821 
822 /**
823  * write_seqcount_latch() - redirect latch readers to even copy
824  * @s: Pointer to seqcount_latch_t
825  */
write_seqcount_latch(seqcount_latch_t * s)826 static __always_inline void write_seqcount_latch(seqcount_latch_t *s)
827 {
828 	raw_write_seqcount_latch(s);
829 }
830 
831 /**
832  * write_seqcount_latch_end() - end a seqcount_latch_t write section
833  * @s:		Pointer to seqcount_latch_t
834  *
835  * Marks the end of a seqcount_latch_t writer section, after all copies of the
836  * latch-protected data have been updated.
837  */
write_seqcount_latch_end(seqcount_latch_t * s)838 static __always_inline void write_seqcount_latch_end(seqcount_latch_t *s)
839 {
840 	kcsan_nestable_atomic_end();
841 }
842 
843 /*
844  * Sequential locks (seqlock_t)
845  *
846  * Sequence counters with an embedded spinlock for writer serialization
847  * and non-preemptibility.
848  *
849  * For more info, see:
850  *    - Comments on top of seqcount_t
851  *    - Documentation/locking/seqlock.rst
852  */
853 typedef struct {
854 	/*
855 	 * Make sure that readers don't starve writers on PREEMPT_RT: use
856 	 * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK().
857 	 */
858 	seqcount_spinlock_t seqcount;
859 	spinlock_t lock;
860 } seqlock_t;
861 
862 #define __SEQLOCK_UNLOCKED(lockname)					\
863 	{								\
864 		.seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \
865 		.lock =	__SPIN_LOCK_UNLOCKED(lockname)			\
866 	}
867 
868 /**
869  * seqlock_init() - dynamic initializer for seqlock_t
870  * @sl: Pointer to the seqlock_t instance
871  */
872 #define seqlock_init(sl)						\
873 	do {								\
874 		spin_lock_init(&(sl)->lock);				\
875 		seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock);	\
876 	} while (0)
877 
878 /**
879  * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t
880  * @sl: Name of the seqlock_t instance
881  */
882 #define DEFINE_SEQLOCK(sl) \
883 		seqlock_t sl = __SEQLOCK_UNLOCKED(sl)
884 
885 /**
886  * read_seqbegin() - start a seqlock_t read side critical section
887  * @sl: Pointer to seqlock_t
888  *
889  * Return: count, to be passed to read_seqretry()
890  */
read_seqbegin(const seqlock_t * sl)891 static inline unsigned read_seqbegin(const seqlock_t *sl)
892 {
893 	return read_seqcount_begin(&sl->seqcount);
894 }
895 
896 /**
897  * read_seqretry() - end a seqlock_t read side section
898  * @sl: Pointer to seqlock_t
899  * @start: count, from read_seqbegin()
900  *
901  * read_seqretry closes the read side critical section of given seqlock_t.
902  * If the critical section was invalid, it must be ignored (and typically
903  * retried).
904  *
905  * Return: true if a read section retry is required, else false
906  */
read_seqretry(const seqlock_t * sl,unsigned start)907 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
908 {
909 	return read_seqcount_retry(&sl->seqcount, start);
910 }
911 
912 /*
913  * For all seqlock_t write side functions, use the the internal
914  * do_write_seqcount_begin() instead of generic write_seqcount_begin().
915  * This way, no redundant lockdep_assert_held() checks are added.
916  */
917 
918 /**
919  * write_seqlock() - start a seqlock_t write side critical section
920  * @sl: Pointer to seqlock_t
921  *
922  * write_seqlock opens a write side critical section for the given
923  * seqlock_t.  It also implicitly acquires the spinlock_t embedded inside
924  * that sequential lock. All seqlock_t write side sections are thus
925  * automatically serialized and non-preemptible.
926  *
927  * Context: if the seqlock_t read section, or other write side critical
928  * sections, can be invoked from hardirq or softirq contexts, use the
929  * _irqsave or _bh variants of this function instead.
930  */
write_seqlock(seqlock_t * sl)931 static inline void write_seqlock(seqlock_t *sl)
932 {
933 	spin_lock(&sl->lock);
934 	do_write_seqcount_begin(&sl->seqcount.seqcount);
935 }
936 
937 /**
938  * write_sequnlock() - end a seqlock_t write side critical section
939  * @sl: Pointer to seqlock_t
940  *
941  * write_sequnlock closes the (serialized and non-preemptible) write side
942  * critical section of given seqlock_t.
943  */
write_sequnlock(seqlock_t * sl)944 static inline void write_sequnlock(seqlock_t *sl)
945 {
946 	do_write_seqcount_end(&sl->seqcount.seqcount);
947 	spin_unlock(&sl->lock);
948 }
949 
950 /**
951  * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section
952  * @sl: Pointer to seqlock_t
953  *
954  * _bh variant of write_seqlock(). Use only if the read side section, or
955  * other write side sections, can be invoked from softirq contexts.
956  */
write_seqlock_bh(seqlock_t * sl)957 static inline void write_seqlock_bh(seqlock_t *sl)
958 {
959 	spin_lock_bh(&sl->lock);
960 	do_write_seqcount_begin(&sl->seqcount.seqcount);
961 }
962 
963 /**
964  * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section
965  * @sl: Pointer to seqlock_t
966  *
967  * write_sequnlock_bh closes the serialized, non-preemptible, and
968  * softirqs-disabled, seqlock_t write side critical section opened with
969  * write_seqlock_bh().
970  */
write_sequnlock_bh(seqlock_t * sl)971 static inline void write_sequnlock_bh(seqlock_t *sl)
972 {
973 	do_write_seqcount_end(&sl->seqcount.seqcount);
974 	spin_unlock_bh(&sl->lock);
975 }
976 
977 /**
978  * write_seqlock_irq() - start a non-interruptible seqlock_t write section
979  * @sl: Pointer to seqlock_t
980  *
981  * _irq variant of write_seqlock(). Use only if the read side section, or
982  * other write sections, can be invoked from hardirq contexts.
983  */
write_seqlock_irq(seqlock_t * sl)984 static inline void write_seqlock_irq(seqlock_t *sl)
985 {
986 	spin_lock_irq(&sl->lock);
987 	do_write_seqcount_begin(&sl->seqcount.seqcount);
988 }
989 
990 /**
991  * write_sequnlock_irq() - end a non-interruptible seqlock_t write section
992  * @sl: Pointer to seqlock_t
993  *
994  * write_sequnlock_irq closes the serialized and non-interruptible
995  * seqlock_t write side section opened with write_seqlock_irq().
996  */
write_sequnlock_irq(seqlock_t * sl)997 static inline void write_sequnlock_irq(seqlock_t *sl)
998 {
999 	do_write_seqcount_end(&sl->seqcount.seqcount);
1000 	spin_unlock_irq(&sl->lock);
1001 }
1002 
__write_seqlock_irqsave(seqlock_t * sl)1003 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
1004 {
1005 	unsigned long flags;
1006 
1007 	spin_lock_irqsave(&sl->lock, flags);
1008 	do_write_seqcount_begin(&sl->seqcount.seqcount);
1009 	return flags;
1010 }
1011 
1012 /**
1013  * write_seqlock_irqsave() - start a non-interruptible seqlock_t write
1014  *                           section
1015  * @lock:  Pointer to seqlock_t
1016  * @flags: Stack-allocated storage for saving caller's local interrupt
1017  *         state, to be passed to write_sequnlock_irqrestore().
1018  *
1019  * _irqsave variant of write_seqlock(). Use it only if the read side
1020  * section, or other write sections, can be invoked from hardirq context.
1021  */
1022 #define write_seqlock_irqsave(lock, flags)				\
1023 	do { flags = __write_seqlock_irqsave(lock); } while (0)
1024 
1025 /**
1026  * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write
1027  *                                section
1028  * @sl:    Pointer to seqlock_t
1029  * @flags: Caller's saved interrupt state, from write_seqlock_irqsave()
1030  *
1031  * write_sequnlock_irqrestore closes the serialized and non-interruptible
1032  * seqlock_t write section previously opened with write_seqlock_irqsave().
1033  */
1034 static inline void
write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)1035 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
1036 {
1037 	do_write_seqcount_end(&sl->seqcount.seqcount);
1038 	spin_unlock_irqrestore(&sl->lock, flags);
1039 }
1040 
1041 /**
1042  * read_seqlock_excl() - begin a seqlock_t locking reader section
1043  * @sl:	Pointer to seqlock_t
1044  *
1045  * read_seqlock_excl opens a seqlock_t locking reader critical section.  A
1046  * locking reader exclusively locks out *both* other writers *and* other
1047  * locking readers, but it does not update the embedded sequence number.
1048  *
1049  * Locking readers act like a normal spin_lock()/spin_unlock().
1050  *
1051  * Context: if the seqlock_t write section, *or other read sections*, can
1052  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1053  * variant of this function instead.
1054  *
1055  * The opened read section must be closed with read_sequnlock_excl().
1056  */
read_seqlock_excl(seqlock_t * sl)1057 static inline void read_seqlock_excl(seqlock_t *sl)
1058 {
1059 	spin_lock(&sl->lock);
1060 }
1061 
1062 /**
1063  * read_sequnlock_excl() - end a seqlock_t locking reader critical section
1064  * @sl: Pointer to seqlock_t
1065  */
read_sequnlock_excl(seqlock_t * sl)1066 static inline void read_sequnlock_excl(seqlock_t *sl)
1067 {
1068 	spin_unlock(&sl->lock);
1069 }
1070 
1071 /**
1072  * read_seqlock_excl_bh() - start a seqlock_t locking reader section with
1073  *			    softirqs disabled
1074  * @sl: Pointer to seqlock_t
1075  *
1076  * _bh variant of read_seqlock_excl(). Use this variant only if the
1077  * seqlock_t write side section, *or other read sections*, can be invoked
1078  * from softirq contexts.
1079  */
read_seqlock_excl_bh(seqlock_t * sl)1080 static inline void read_seqlock_excl_bh(seqlock_t *sl)
1081 {
1082 	spin_lock_bh(&sl->lock);
1083 }
1084 
1085 /**
1086  * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking
1087  *			      reader section
1088  * @sl: Pointer to seqlock_t
1089  */
read_sequnlock_excl_bh(seqlock_t * sl)1090 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
1091 {
1092 	spin_unlock_bh(&sl->lock);
1093 }
1094 
1095 /**
1096  * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking
1097  *			     reader section
1098  * @sl: Pointer to seqlock_t
1099  *
1100  * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t
1101  * write side section, *or other read sections*, can be invoked from a
1102  * hardirq context.
1103  */
read_seqlock_excl_irq(seqlock_t * sl)1104 static inline void read_seqlock_excl_irq(seqlock_t *sl)
1105 {
1106 	spin_lock_irq(&sl->lock);
1107 }
1108 
1109 /**
1110  * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t
1111  *                             locking reader section
1112  * @sl: Pointer to seqlock_t
1113  */
read_sequnlock_excl_irq(seqlock_t * sl)1114 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
1115 {
1116 	spin_unlock_irq(&sl->lock);
1117 }
1118 
__read_seqlock_excl_irqsave(seqlock_t * sl)1119 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
1120 {
1121 	unsigned long flags;
1122 
1123 	spin_lock_irqsave(&sl->lock, flags);
1124 	return flags;
1125 }
1126 
1127 /**
1128  * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t
1129  *				 locking reader section
1130  * @lock:  Pointer to seqlock_t
1131  * @flags: Stack-allocated storage for saving caller's local interrupt
1132  *         state, to be passed to read_sequnlock_excl_irqrestore().
1133  *
1134  * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t
1135  * write side section, *or other read sections*, can be invoked from a
1136  * hardirq context.
1137  */
1138 #define read_seqlock_excl_irqsave(lock, flags)				\
1139 	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
1140 
1141 /**
1142  * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t
1143  *				      locking reader section
1144  * @sl:    Pointer to seqlock_t
1145  * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave()
1146  */
1147 static inline void
read_sequnlock_excl_irqrestore(seqlock_t * sl,unsigned long flags)1148 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
1149 {
1150 	spin_unlock_irqrestore(&sl->lock, flags);
1151 }
1152 
1153 /**
1154  * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader
1155  * @lock: Pointer to seqlock_t
1156  * @seq : Marker and return parameter. If the passed value is even, the
1157  * reader will become a *lockless* seqlock_t reader as in read_seqbegin().
1158  * If the passed value is odd, the reader will become a *locking* reader
1159  * as in read_seqlock_excl().  In the first call to this function, the
1160  * caller *must* initialize and pass an even value to @seq; this way, a
1161  * lockless read can be optimistically tried first.
1162  *
1163  * read_seqbegin_or_lock is an API designed to optimistically try a normal
1164  * lockless seqlock_t read section first.  If an odd counter is found, the
1165  * lockless read trial has failed, and the next read iteration transforms
1166  * itself into a full seqlock_t locking reader.
1167  *
1168  * This is typically used to avoid seqlock_t lockless readers starvation
1169  * (too much retry loops) in the case of a sharp spike in write side
1170  * activity.
1171  *
1172  * Context: if the seqlock_t write section, *or other read sections*, can
1173  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1174  * variant of this function instead.
1175  *
1176  * Check Documentation/locking/seqlock.rst for template example code.
1177  *
1178  * Return: the encountered sequence counter value, through the @seq
1179  * parameter, which is overloaded as a return parameter. This returned
1180  * value must be checked with need_seqretry(). If the read section need to
1181  * be retried, this returned value must also be passed as the @seq
1182  * parameter of the next read_seqbegin_or_lock() iteration.
1183  */
read_seqbegin_or_lock(seqlock_t * lock,int * seq)1184 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
1185 {
1186 	if (!(*seq & 1))	/* Even */
1187 		*seq = read_seqbegin(lock);
1188 	else			/* Odd */
1189 		read_seqlock_excl(lock);
1190 }
1191 
1192 /**
1193  * need_seqretry() - validate seqlock_t "locking or lockless" read section
1194  * @lock: Pointer to seqlock_t
1195  * @seq: sequence count, from read_seqbegin_or_lock()
1196  *
1197  * Return: true if a read section retry is required, false otherwise
1198  */
need_seqretry(seqlock_t * lock,int seq)1199 static inline int need_seqretry(seqlock_t *lock, int seq)
1200 {
1201 	return !(seq & 1) && read_seqretry(lock, seq);
1202 }
1203 
1204 /**
1205  * done_seqretry() - end seqlock_t "locking or lockless" reader section
1206  * @lock: Pointer to seqlock_t
1207  * @seq: count, from read_seqbegin_or_lock()
1208  *
1209  * done_seqretry finishes the seqlock_t read side critical section started
1210  * with read_seqbegin_or_lock() and validated by need_seqretry().
1211  */
done_seqretry(seqlock_t * lock,int seq)1212 static inline void done_seqretry(seqlock_t *lock, int seq)
1213 {
1214 	if (seq & 1)
1215 		read_sequnlock_excl(lock);
1216 }
1217 
1218 /**
1219  * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or
1220  *                                   a non-interruptible locking reader
1221  * @lock: Pointer to seqlock_t
1222  * @seq:  Marker and return parameter. Check read_seqbegin_or_lock().
1223  *
1224  * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if
1225  * the seqlock_t write section, *or other read sections*, can be invoked
1226  * from hardirq context.
1227  *
1228  * Note: Interrupts will be disabled only for "locking reader" mode.
1229  *
1230  * Return:
1231  *
1232  *   1. The saved local interrupts state in case of a locking reader, to
1233  *      be passed to done_seqretry_irqrestore().
1234  *
1235  *   2. The encountered sequence counter value, returned through @seq
1236  *      overloaded as a return parameter. Check read_seqbegin_or_lock().
1237  */
1238 static inline unsigned long
read_seqbegin_or_lock_irqsave(seqlock_t * lock,int * seq)1239 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
1240 {
1241 	unsigned long flags = 0;
1242 
1243 	if (!(*seq & 1))	/* Even */
1244 		*seq = read_seqbegin(lock);
1245 	else			/* Odd */
1246 		read_seqlock_excl_irqsave(lock, flags);
1247 
1248 	return flags;
1249 }
1250 
1251 /**
1252  * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a
1253  *				non-interruptible locking reader section
1254  * @lock:  Pointer to seqlock_t
1255  * @seq:   Count, from read_seqbegin_or_lock_irqsave()
1256  * @flags: Caller's saved local interrupt state in case of a locking
1257  *	   reader, also from read_seqbegin_or_lock_irqsave()
1258  *
1259  * This is the _irqrestore variant of done_seqretry(). The read section
1260  * must've been opened with read_seqbegin_or_lock_irqsave(), and validated
1261  * by need_seqretry().
1262  */
1263 static inline void
done_seqretry_irqrestore(seqlock_t * lock,int seq,unsigned long flags)1264 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
1265 {
1266 	if (seq & 1)
1267 		read_sequnlock_excl_irqrestore(lock, flags);
1268 }
1269 #endif /* __LINUX_SEQLOCK_H */
1270