1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration-stats.h"
39 #include "migration/register.h"
40 #include "migration/misc.h"
41 #include "qemu-file.h"
42 #include "postcopy-ram.h"
43 #include "page_cache.h"
44 #include "qemu/error-report.h"
45 #include "qapi/error.h"
46 #include "qapi/qapi-types-migration.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qapi-commands-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "system/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "system/cpu-throttle.h"
56 #include "savevm.h"
57 #include "qemu/iov.h"
58 #include "multifd.h"
59 #include "system/runstate.h"
60 #include "rdma.h"
61 #include "options.h"
62 #include "system/dirtylimit.h"
63 #include "system/kvm.h"
64
65 #include "hw/boards.h" /* for machine_dump_guest_core() */
66
67 #if defined(__linux__)
68 #include "qemu/userfaultfd.h"
69 #endif /* defined(__linux__) */
70
71 /***********************************************************/
72 /* ram save/restore */
73
74 /*
75 * mapped-ram migration supports O_DIRECT, so we need to make sure the
76 * userspace buffer, the IO operation size and the file offset are
77 * aligned according to the underlying device's block size. The first
78 * two are already aligned to page size, but we need to add padding to
79 * the file to align the offset. We cannot read the block size
80 * dynamically because the migration file can be moved between
81 * different systems, so use 1M to cover most block sizes and to keep
82 * the file offset aligned at page size as well.
83 */
84 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
85
86 /*
87 * When doing mapped-ram migration, this is the amount we read from
88 * the pages region in the migration file at a time.
89 */
90 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
91
92 XBZRLECacheStats xbzrle_counters;
93
94 /*
95 * This structure locates a specific location of a guest page. In QEMU,
96 * it's described in a tuple of (ramblock, offset).
97 */
98 struct PageLocation {
99 RAMBlock *block;
100 unsigned long offset;
101 };
102 typedef struct PageLocation PageLocation;
103
104 /**
105 * PageLocationHint: describes a hint to a page location
106 *
107 * @valid set if the hint is vaild and to be consumed
108 * @location: the hint content
109 *
110 * In postcopy preempt mode, the urgent channel may provide hints to the
111 * background channel, so that QEMU source can try to migrate whatever is
112 * right after the requested urgent pages.
113 *
114 * This is based on the assumption that the VM (already running on the
115 * destination side) tends to access the memory with spatial locality.
116 * This is also the default behavior of vanilla postcopy (preempt off).
117 */
118 struct PageLocationHint {
119 bool valid;
120 PageLocation location;
121 };
122 typedef struct PageLocationHint PageLocationHint;
123
124 /* used by the search for pages to send */
125 struct PageSearchStatus {
126 /* The migration channel used for a specific host page */
127 QEMUFile *pss_channel;
128 /* Last block from where we have sent data */
129 RAMBlock *last_sent_block;
130 /* Current block being searched */
131 RAMBlock *block;
132 /* Current page to search from */
133 unsigned long page;
134 /* Set once we wrap around */
135 bool complete_round;
136 /* Whether we're sending a host page */
137 bool host_page_sending;
138 /* The start/end of current host page. Invalid if host_page_sending==false */
139 unsigned long host_page_start;
140 unsigned long host_page_end;
141 };
142 typedef struct PageSearchStatus PageSearchStatus;
143
144 /* struct contains XBZRLE cache and a static page
145 used by the compression */
146 static struct {
147 /* buffer used for XBZRLE encoding */
148 uint8_t *encoded_buf;
149 /* buffer for storing page content */
150 uint8_t *current_buf;
151 /* Cache for XBZRLE, Protected by lock. */
152 PageCache *cache;
153 QemuMutex lock;
154 /* it will store a page full of zeros */
155 uint8_t *zero_target_page;
156 /* buffer used for XBZRLE decoding */
157 uint8_t *decoded_buf;
158 } XBZRLE;
159
XBZRLE_cache_lock(void)160 static void XBZRLE_cache_lock(void)
161 {
162 if (migrate_xbzrle()) {
163 qemu_mutex_lock(&XBZRLE.lock);
164 }
165 }
166
XBZRLE_cache_unlock(void)167 static void XBZRLE_cache_unlock(void)
168 {
169 if (migrate_xbzrle()) {
170 qemu_mutex_unlock(&XBZRLE.lock);
171 }
172 }
173
174 /**
175 * xbzrle_cache_resize: resize the xbzrle cache
176 *
177 * This function is called from migrate_params_apply in main
178 * thread, possibly while a migration is in progress. A running
179 * migration may be using the cache and might finish during this call,
180 * hence changes to the cache are protected by XBZRLE.lock().
181 *
182 * Returns 0 for success or -1 for error
183 *
184 * @new_size: new cache size
185 * @errp: set *errp if the check failed, with reason
186 */
xbzrle_cache_resize(uint64_t new_size,Error ** errp)187 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
188 {
189 PageCache *new_cache;
190 int64_t ret = 0;
191
192 /* Check for truncation */
193 if (new_size != (size_t)new_size) {
194 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
195 "exceeding address space");
196 return -1;
197 }
198
199 if (new_size == migrate_xbzrle_cache_size()) {
200 /* nothing to do */
201 return 0;
202 }
203
204 XBZRLE_cache_lock();
205
206 if (XBZRLE.cache != NULL) {
207 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
208 if (!new_cache) {
209 ret = -1;
210 goto out;
211 }
212
213 cache_fini(XBZRLE.cache);
214 XBZRLE.cache = new_cache;
215 }
216 out:
217 XBZRLE_cache_unlock();
218 return ret;
219 }
220
postcopy_preempt_active(void)221 static bool postcopy_preempt_active(void)
222 {
223 return migrate_postcopy_preempt() && migration_in_postcopy();
224 }
225
migrate_ram_is_ignored(RAMBlock * block)226 bool migrate_ram_is_ignored(RAMBlock *block)
227 {
228 MigMode mode = migrate_mode();
229 return !qemu_ram_is_migratable(block) ||
230 mode == MIG_MODE_CPR_TRANSFER ||
231 (migrate_ignore_shared() && qemu_ram_is_shared(block)
232 && qemu_ram_is_named_file(block));
233 }
234
235 #undef RAMBLOCK_FOREACH
236
foreach_not_ignored_block(RAMBlockIterFunc func,void * opaque)237 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
238 {
239 RAMBlock *block;
240 int ret = 0;
241
242 RCU_READ_LOCK_GUARD();
243
244 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
245 ret = func(block, opaque);
246 if (ret) {
247 break;
248 }
249 }
250 return ret;
251 }
252
ramblock_recv_map_init(void)253 static void ramblock_recv_map_init(void)
254 {
255 RAMBlock *rb;
256
257 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
258 assert(!rb->receivedmap);
259 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
260 }
261 }
262
ramblock_recv_bitmap_test(RAMBlock * rb,void * host_addr)263 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
264 {
265 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
266 rb->receivedmap);
267 }
268
ramblock_recv_bitmap_test_byte_offset(RAMBlock * rb,uint64_t byte_offset)269 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
270 {
271 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
272 }
273
ramblock_recv_bitmap_set(RAMBlock * rb,void * host_addr)274 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
275 {
276 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
277 }
278
ramblock_recv_bitmap_set_range(RAMBlock * rb,void * host_addr,size_t nr)279 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
280 size_t nr)
281 {
282 bitmap_set_atomic(rb->receivedmap,
283 ramblock_recv_bitmap_offset(host_addr, rb),
284 nr);
285 }
286
ramblock_recv_bitmap_set_offset(RAMBlock * rb,uint64_t byte_offset)287 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
288 {
289 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
290 }
291 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
292
293 /*
294 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
295 *
296 * Returns >0 if success with sent bytes, or <0 if error.
297 */
ramblock_recv_bitmap_send(QEMUFile * file,const char * block_name)298 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
299 const char *block_name)
300 {
301 RAMBlock *block = qemu_ram_block_by_name(block_name);
302 unsigned long *le_bitmap, nbits;
303 uint64_t size;
304
305 if (!block) {
306 error_report("%s: invalid block name: %s", __func__, block_name);
307 return -1;
308 }
309
310 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
311
312 /*
313 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
314 * machines we may need 4 more bytes for padding (see below
315 * comment). So extend it a bit before hand.
316 */
317 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
318
319 /*
320 * Always use little endian when sending the bitmap. This is
321 * required that when source and destination VMs are not using the
322 * same endianness. (Note: big endian won't work.)
323 */
324 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
325
326 /* Size of the bitmap, in bytes */
327 size = DIV_ROUND_UP(nbits, 8);
328
329 /*
330 * size is always aligned to 8 bytes for 64bit machines, but it
331 * may not be true for 32bit machines. We need this padding to
332 * make sure the migration can survive even between 32bit and
333 * 64bit machines.
334 */
335 size = ROUND_UP(size, 8);
336
337 qemu_put_be64(file, size);
338 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
339 g_free(le_bitmap);
340 /*
341 * Mark as an end, in case the middle part is screwed up due to
342 * some "mysterious" reason.
343 */
344 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
345 int ret = qemu_fflush(file);
346 if (ret) {
347 return ret;
348 }
349
350 return size + sizeof(size);
351 }
352
353 /*
354 * An outstanding page request, on the source, having been received
355 * and queued
356 */
357 struct RAMSrcPageRequest {
358 RAMBlock *rb;
359 hwaddr offset;
360 hwaddr len;
361
362 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
363 };
364
365 /* State of RAM for migration */
366 struct RAMState {
367 /*
368 * PageSearchStatus structures for the channels when send pages.
369 * Protected by the bitmap_mutex.
370 */
371 PageSearchStatus pss[RAM_CHANNEL_MAX];
372 /* UFFD file descriptor, used in 'write-tracking' migration */
373 int uffdio_fd;
374 /* total ram size in bytes */
375 uint64_t ram_bytes_total;
376 /* Last block that we have visited searching for dirty pages */
377 RAMBlock *last_seen_block;
378 /* Last dirty target page we have sent */
379 ram_addr_t last_page;
380 /* last ram version we have seen */
381 uint32_t last_version;
382 /* How many times we have dirty too many pages */
383 int dirty_rate_high_cnt;
384 /* these variables are used for bitmap sync */
385 /* last time we did a full bitmap_sync */
386 int64_t time_last_bitmap_sync;
387 /* bytes transferred at start_time */
388 uint64_t bytes_xfer_prev;
389 /* number of dirty pages since start_time */
390 uint64_t num_dirty_pages_period;
391 /* xbzrle misses since the beginning of the period */
392 uint64_t xbzrle_cache_miss_prev;
393 /* Amount of xbzrle pages since the beginning of the period */
394 uint64_t xbzrle_pages_prev;
395 /* Amount of xbzrle encoded bytes since the beginning of the period */
396 uint64_t xbzrle_bytes_prev;
397 /* Are we really using XBZRLE (e.g., after the first round). */
398 bool xbzrle_started;
399 /* Are we on the last stage of migration */
400 bool last_stage;
401
402 /* total handled target pages at the beginning of period */
403 uint64_t target_page_count_prev;
404 /* total handled target pages since start */
405 uint64_t target_page_count;
406 /* number of dirty bits in the bitmap */
407 uint64_t migration_dirty_pages;
408 /*
409 * Protects:
410 * - dirty/clear bitmap
411 * - migration_dirty_pages
412 * - pss structures
413 */
414 QemuMutex bitmap_mutex;
415 /* The RAMBlock used in the last src_page_requests */
416 RAMBlock *last_req_rb;
417 /* Queue of outstanding page requests from the destination */
418 QemuMutex src_page_req_mutex;
419 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
420
421 /*
422 * This is only used when postcopy is in recovery phase, to communicate
423 * between the migration thread and the return path thread on dirty
424 * bitmap synchronizations. This field is unused in other stages of
425 * RAM migration.
426 */
427 unsigned int postcopy_bmap_sync_requested;
428 /*
429 * Page hint during postcopy when preempt mode is on. Return path
430 * thread sets it, while background migration thread consumes it.
431 *
432 * Protected by @bitmap_mutex.
433 */
434 PageLocationHint page_hint;
435 };
436 typedef struct RAMState RAMState;
437
438 static RAMState *ram_state;
439
440 static NotifierWithReturnList precopy_notifier_list;
441
442 /* Whether postcopy has queued requests? */
postcopy_has_request(RAMState * rs)443 static bool postcopy_has_request(RAMState *rs)
444 {
445 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
446 }
447
precopy_infrastructure_init(void)448 void precopy_infrastructure_init(void)
449 {
450 notifier_with_return_list_init(&precopy_notifier_list);
451 }
452
precopy_add_notifier(NotifierWithReturn * n)453 void precopy_add_notifier(NotifierWithReturn *n)
454 {
455 notifier_with_return_list_add(&precopy_notifier_list, n);
456 }
457
precopy_remove_notifier(NotifierWithReturn * n)458 void precopy_remove_notifier(NotifierWithReturn *n)
459 {
460 notifier_with_return_remove(n);
461 }
462
precopy_notify(PrecopyNotifyReason reason,Error ** errp)463 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
464 {
465 PrecopyNotifyData pnd;
466 pnd.reason = reason;
467
468 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
469 }
470
ram_bytes_remaining(void)471 uint64_t ram_bytes_remaining(void)
472 {
473 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
474 0;
475 }
476
ram_transferred_add(uint64_t bytes)477 void ram_transferred_add(uint64_t bytes)
478 {
479 if (runstate_is_running()) {
480 stat64_add(&mig_stats.precopy_bytes, bytes);
481 } else if (migration_in_postcopy()) {
482 stat64_add(&mig_stats.postcopy_bytes, bytes);
483 } else {
484 stat64_add(&mig_stats.downtime_bytes, bytes);
485 }
486 }
487
488 static int ram_save_host_page_urgent(PageSearchStatus *pss);
489
490 /* NOTE: page is the PFN not real ram_addr_t. */
pss_init(PageSearchStatus * pss,RAMBlock * rb,ram_addr_t page)491 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
492 {
493 pss->block = rb;
494 pss->page = page;
495 pss->complete_round = false;
496 }
497
498 /*
499 * Check whether two PSSs are actively sending the same page. Return true
500 * if it is, false otherwise.
501 */
pss_overlap(PageSearchStatus * pss1,PageSearchStatus * pss2)502 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
503 {
504 return pss1->host_page_sending && pss2->host_page_sending &&
505 (pss1->host_page_start == pss2->host_page_start);
506 }
507
508 /**
509 * save_page_header: write page header to wire
510 *
511 * If this is the 1st block, it also writes the block identification
512 *
513 * Returns the number of bytes written
514 *
515 * @pss: current PSS channel status
516 * @block: block that contains the page we want to send
517 * @offset: offset inside the block for the page
518 * in the lower bits, it contains flags
519 */
save_page_header(PageSearchStatus * pss,QEMUFile * f,RAMBlock * block,ram_addr_t offset)520 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
521 RAMBlock *block, ram_addr_t offset)
522 {
523 size_t size, len;
524 bool same_block = (block == pss->last_sent_block);
525
526 if (same_block) {
527 offset |= RAM_SAVE_FLAG_CONTINUE;
528 }
529 qemu_put_be64(f, offset);
530 size = 8;
531
532 if (!same_block) {
533 len = strlen(block->idstr);
534 qemu_put_byte(f, len);
535 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
536 size += 1 + len;
537 pss->last_sent_block = block;
538 }
539 return size;
540 }
541
542 /**
543 * mig_throttle_guest_down: throttle down the guest
544 *
545 * Reduce amount of guest cpu execution to hopefully slow down memory
546 * writes. If guest dirty memory rate is reduced below the rate at
547 * which we can transfer pages to the destination then we should be
548 * able to complete migration. Some workloads dirty memory way too
549 * fast and will not effectively converge, even with auto-converge.
550 */
mig_throttle_guest_down(uint64_t bytes_dirty_period,uint64_t bytes_dirty_threshold)551 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
552 uint64_t bytes_dirty_threshold)
553 {
554 uint64_t pct_initial = migrate_cpu_throttle_initial();
555 uint64_t pct_increment = migrate_cpu_throttle_increment();
556 bool pct_tailslow = migrate_cpu_throttle_tailslow();
557 int pct_max = migrate_max_cpu_throttle();
558
559 uint64_t throttle_now = cpu_throttle_get_percentage();
560 uint64_t cpu_now, cpu_ideal, throttle_inc;
561
562 /* We have not started throttling yet. Let's start it. */
563 if (!cpu_throttle_active()) {
564 cpu_throttle_set(pct_initial);
565 } else {
566 /* Throttling already on, just increase the rate */
567 if (!pct_tailslow) {
568 throttle_inc = pct_increment;
569 } else {
570 /* Compute the ideal CPU percentage used by Guest, which may
571 * make the dirty rate match the dirty rate threshold. */
572 cpu_now = 100 - throttle_now;
573 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
574 bytes_dirty_period);
575 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
576 }
577 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
578 }
579 }
580
mig_throttle_counter_reset(void)581 void mig_throttle_counter_reset(void)
582 {
583 RAMState *rs = ram_state;
584
585 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
586 rs->num_dirty_pages_period = 0;
587 rs->bytes_xfer_prev = migration_transferred_bytes();
588 }
589
590 /**
591 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
592 *
593 * @current_addr: address for the zero page
594 *
595 * Update the xbzrle cache to reflect a page that's been sent as all 0.
596 * The important thing is that a stale (not-yet-0'd) page be replaced
597 * by the new data.
598 * As a bonus, if the page wasn't in the cache it gets added so that
599 * when a small write is made into the 0'd page it gets XBZRLE sent.
600 */
xbzrle_cache_zero_page(ram_addr_t current_addr)601 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
602 {
603 /* We don't care if this fails to allocate a new cache page
604 * as long as it updated an old one */
605 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
606 stat64_get(&mig_stats.dirty_sync_count));
607 }
608
609 #define ENCODING_FLAG_XBZRLE 0x1
610
611 /**
612 * save_xbzrle_page: compress and send current page
613 *
614 * Returns: 1 means that we wrote the page
615 * 0 means that page is identical to the one already sent
616 * -1 means that xbzrle would be longer than normal
617 *
618 * @rs: current RAM state
619 * @pss: current PSS channel
620 * @current_data: pointer to the address of the page contents
621 * @current_addr: addr of the page
622 * @block: block that contains the page we want to send
623 * @offset: offset inside the block for the page
624 */
save_xbzrle_page(RAMState * rs,PageSearchStatus * pss,uint8_t ** current_data,ram_addr_t current_addr,RAMBlock * block,ram_addr_t offset)625 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
626 uint8_t **current_data, ram_addr_t current_addr,
627 RAMBlock *block, ram_addr_t offset)
628 {
629 int encoded_len = 0, bytes_xbzrle;
630 uint8_t *prev_cached_page;
631 QEMUFile *file = pss->pss_channel;
632 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
633
634 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
635 xbzrle_counters.cache_miss++;
636 if (!rs->last_stage) {
637 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
638 generation) == -1) {
639 return -1;
640 } else {
641 /* update *current_data when the page has been
642 inserted into cache */
643 *current_data = get_cached_data(XBZRLE.cache, current_addr);
644 }
645 }
646 return -1;
647 }
648
649 /*
650 * Reaching here means the page has hit the xbzrle cache, no matter what
651 * encoding result it is (normal encoding, overflow or skipping the page),
652 * count the page as encoded. This is used to calculate the encoding rate.
653 *
654 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
655 * 2nd page turns out to be skipped (i.e. no new bytes written to the
656 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
657 * skipped page included. In this way, the encoding rate can tell if the
658 * guest page is good for xbzrle encoding.
659 */
660 xbzrle_counters.pages++;
661 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
662
663 /* save current buffer into memory */
664 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
665
666 /* XBZRLE encoding (if there is no overflow) */
667 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
668 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
669 TARGET_PAGE_SIZE);
670
671 /*
672 * Update the cache contents, so that it corresponds to the data
673 * sent, in all cases except where we skip the page.
674 */
675 if (!rs->last_stage && encoded_len != 0) {
676 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
677 /*
678 * In the case where we couldn't compress, ensure that the caller
679 * sends the data from the cache, since the guest might have
680 * changed the RAM since we copied it.
681 */
682 *current_data = prev_cached_page;
683 }
684
685 if (encoded_len == 0) {
686 trace_save_xbzrle_page_skipping();
687 return 0;
688 } else if (encoded_len == -1) {
689 trace_save_xbzrle_page_overflow();
690 xbzrle_counters.overflow++;
691 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
692 return -1;
693 }
694
695 /* Send XBZRLE based compressed page */
696 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
697 offset | RAM_SAVE_FLAG_XBZRLE);
698 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
699 qemu_put_be16(file, encoded_len);
700 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
701 bytes_xbzrle += encoded_len + 1 + 2;
702 /*
703 * The xbzrle encoded bytes don't count the 8 byte header with
704 * RAM_SAVE_FLAG_CONTINUE.
705 */
706 xbzrle_counters.bytes += bytes_xbzrle - 8;
707 ram_transferred_add(bytes_xbzrle);
708
709 return 1;
710 }
711
712 /**
713 * pss_find_next_dirty: find the next dirty page of current ramblock
714 *
715 * This function updates pss->page to point to the next dirty page index
716 * within the ramblock to migrate, or the end of ramblock when nothing
717 * found. Note that when pss->host_page_sending==true it means we're
718 * during sending a host page, so we won't look for dirty page that is
719 * outside the host page boundary.
720 *
721 * @pss: the current page search status
722 */
pss_find_next_dirty(PageSearchStatus * pss)723 static void pss_find_next_dirty(PageSearchStatus *pss)
724 {
725 RAMBlock *rb = pss->block;
726 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
727 unsigned long *bitmap = rb->bmap;
728
729 if (migrate_ram_is_ignored(rb)) {
730 /* Points directly to the end, so we know no dirty page */
731 pss->page = size;
732 return;
733 }
734
735 /*
736 * If during sending a host page, only look for dirty pages within the
737 * current host page being send.
738 */
739 if (pss->host_page_sending) {
740 assert(pss->host_page_end);
741 size = MIN(size, pss->host_page_end);
742 }
743
744 pss->page = find_next_bit(bitmap, size, pss->page);
745 }
746
migration_clear_memory_region_dirty_bitmap(RAMBlock * rb,unsigned long page)747 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
748 unsigned long page)
749 {
750 uint8_t shift;
751 hwaddr size, start;
752
753 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
754 return;
755 }
756
757 shift = rb->clear_bmap_shift;
758 /*
759 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
760 * can make things easier sometimes since then start address
761 * of the small chunk will always be 64 pages aligned so the
762 * bitmap will always be aligned to unsigned long. We should
763 * even be able to remove this restriction but I'm simply
764 * keeping it.
765 */
766 assert(shift >= 6);
767
768 size = 1ULL << (TARGET_PAGE_BITS + shift);
769 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
770 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
771 memory_region_clear_dirty_bitmap(rb->mr, start, size);
772 }
773
774 static void
migration_clear_memory_region_dirty_bitmap_range(RAMBlock * rb,unsigned long start,unsigned long npages)775 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
776 unsigned long start,
777 unsigned long npages)
778 {
779 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
780 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
781 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
782
783 /*
784 * Clear pages from start to start + npages - 1, so the end boundary is
785 * exclusive.
786 */
787 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
788 migration_clear_memory_region_dirty_bitmap(rb, i);
789 }
790 }
791
792 /*
793 * colo_bitmap_find_diry:find contiguous dirty pages from start
794 *
795 * Returns the page offset within memory region of the start of the contiguout
796 * dirty page
797 *
798 * @rs: current RAM state
799 * @rb: RAMBlock where to search for dirty pages
800 * @start: page where we start the search
801 * @num: the number of contiguous dirty pages
802 */
803 static inline
colo_bitmap_find_dirty(RAMState * rs,RAMBlock * rb,unsigned long start,unsigned long * num)804 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
805 unsigned long start, unsigned long *num)
806 {
807 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
808 unsigned long *bitmap = rb->bmap;
809 unsigned long first, next;
810
811 *num = 0;
812
813 if (migrate_ram_is_ignored(rb)) {
814 return size;
815 }
816
817 first = find_next_bit(bitmap, size, start);
818 if (first >= size) {
819 return first;
820 }
821 next = find_next_zero_bit(bitmap, size, first + 1);
822 assert(next >= first);
823 *num = next - first;
824 return first;
825 }
826
migration_bitmap_clear_dirty(RAMState * rs,RAMBlock * rb,unsigned long page)827 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
828 RAMBlock *rb,
829 unsigned long page)
830 {
831 bool ret;
832
833 /*
834 * During the last stage (after source VM stopped), resetting the write
835 * protections isn't needed as we know there will be either (1) no
836 * further writes if migration will complete, or (2) migration fails
837 * at last then tracking isn't needed either.
838 *
839 * Do the same for postcopy due to the same reason.
840 */
841 if (!rs->last_stage && !migration_in_postcopy()) {
842 /*
843 * Clear dirty bitmap if needed. This _must_ be called before we
844 * send any of the page in the chunk because we need to make sure
845 * we can capture further page content changes when we sync dirty
846 * log the next time. So as long as we are going to send any of
847 * the page in the chunk we clear the remote dirty bitmap for all.
848 * Clearing it earlier won't be a problem, but too late will.
849 */
850 migration_clear_memory_region_dirty_bitmap(rb, page);
851 }
852
853 ret = test_and_clear_bit(page, rb->bmap);
854 if (ret) {
855 rs->migration_dirty_pages--;
856 }
857
858 return ret;
859 }
860
dirty_bitmap_clear_section(MemoryRegionSection * section,void * opaque)861 static int dirty_bitmap_clear_section(MemoryRegionSection *section,
862 void *opaque)
863 {
864 const hwaddr offset = section->offset_within_region;
865 const hwaddr size = int128_get64(section->size);
866 const unsigned long start = offset >> TARGET_PAGE_BITS;
867 const unsigned long npages = size >> TARGET_PAGE_BITS;
868 RAMBlock *rb = section->mr->ram_block;
869 uint64_t *cleared_bits = opaque;
870
871 /*
872 * We don't grab ram_state->bitmap_mutex because we expect to run
873 * only when starting migration or during postcopy recovery where
874 * we don't have concurrent access.
875 */
876 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
877 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
878 }
879 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
880 bitmap_clear(rb->bmap, start, npages);
881 return 0;
882 }
883
884 /*
885 * Exclude all dirty pages from migration that fall into a discarded range as
886 * managed by a RamDiscardManager responsible for the mapped memory region of
887 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
888 *
889 * Discarded pages ("logically unplugged") have undefined content and must
890 * not get migrated, because even reading these pages for migration might
891 * result in undesired behavior.
892 *
893 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
894 *
895 * Note: The result is only stable while migrating (precopy/postcopy).
896 */
ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock * rb)897 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
898 {
899 uint64_t cleared_bits = 0;
900
901 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
902 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
903 MemoryRegionSection section = {
904 .mr = rb->mr,
905 .offset_within_region = 0,
906 .size = int128_make64(qemu_ram_get_used_length(rb)),
907 };
908
909 ram_discard_manager_replay_discarded(rdm, §ion,
910 dirty_bitmap_clear_section,
911 &cleared_bits);
912 }
913 return cleared_bits;
914 }
915
916 /*
917 * Check if a host-page aligned page falls into a discarded range as managed by
918 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
919 *
920 * Note: The result is only stable while migrating (precopy/postcopy).
921 */
ramblock_page_is_discarded(RAMBlock * rb,ram_addr_t start)922 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
923 {
924 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
925 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
926 MemoryRegionSection section = {
927 .mr = rb->mr,
928 .offset_within_region = start,
929 .size = int128_make64(qemu_ram_pagesize(rb)),
930 };
931
932 return !ram_discard_manager_is_populated(rdm, §ion);
933 }
934 return false;
935 }
936
937 /* Called with RCU critical section */
ramblock_sync_dirty_bitmap(RAMState * rs,RAMBlock * rb)938 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
939 {
940 uint64_t new_dirty_pages =
941 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
942
943 rs->migration_dirty_pages += new_dirty_pages;
944 rs->num_dirty_pages_period += new_dirty_pages;
945 }
946
947 /**
948 * ram_pagesize_summary: calculate all the pagesizes of a VM
949 *
950 * Returns a summary bitmap of the page sizes of all RAMBlocks
951 *
952 * For VMs with just normal pages this is equivalent to the host page
953 * size. If it's got some huge pages then it's the OR of all the
954 * different page sizes.
955 */
ram_pagesize_summary(void)956 uint64_t ram_pagesize_summary(void)
957 {
958 RAMBlock *block;
959 uint64_t summary = 0;
960
961 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
962 summary |= block->page_size;
963 }
964
965 return summary;
966 }
967
ram_get_total_transferred_pages(void)968 uint64_t ram_get_total_transferred_pages(void)
969 {
970 return stat64_get(&mig_stats.normal_pages) +
971 stat64_get(&mig_stats.zero_pages) +
972 xbzrle_counters.pages;
973 }
974
migration_update_rates(RAMState * rs,int64_t end_time)975 static void migration_update_rates(RAMState *rs, int64_t end_time)
976 {
977 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
978
979 /* calculate period counters */
980 stat64_set(&mig_stats.dirty_pages_rate,
981 rs->num_dirty_pages_period * 1000 /
982 (end_time - rs->time_last_bitmap_sync));
983
984 if (!page_count) {
985 return;
986 }
987
988 if (migrate_xbzrle()) {
989 double encoded_size, unencoded_size;
990
991 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
992 rs->xbzrle_cache_miss_prev) / page_count;
993 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
994 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
995 TARGET_PAGE_SIZE;
996 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
997 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
998 xbzrle_counters.encoding_rate = 0;
999 } else {
1000 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
1001 }
1002 rs->xbzrle_pages_prev = xbzrle_counters.pages;
1003 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
1004 }
1005 }
1006
1007 /*
1008 * Enable dirty-limit to throttle down the guest
1009 */
migration_dirty_limit_guest(void)1010 static void migration_dirty_limit_guest(void)
1011 {
1012 /*
1013 * dirty page rate quota for all vCPUs fetched from
1014 * migration parameter 'vcpu_dirty_limit'
1015 */
1016 static int64_t quota_dirtyrate;
1017 MigrationState *s = migrate_get_current();
1018
1019 /*
1020 * If dirty limit already enabled and migration parameter
1021 * vcpu-dirty-limit untouched.
1022 */
1023 if (dirtylimit_in_service() &&
1024 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1025 return;
1026 }
1027
1028 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1029
1030 /*
1031 * Set all vCPU a quota dirtyrate, note that the second
1032 * parameter will be ignored if setting all vCPU for the vm
1033 */
1034 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1035 trace_migration_dirty_limit_guest(quota_dirtyrate);
1036 }
1037
migration_trigger_throttle(RAMState * rs)1038 static void migration_trigger_throttle(RAMState *rs)
1039 {
1040 uint64_t threshold = migrate_throttle_trigger_threshold();
1041 uint64_t bytes_xfer_period =
1042 migration_transferred_bytes() - rs->bytes_xfer_prev;
1043 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1044 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1045
1046 /*
1047 * The following detection logic can be refined later. For now:
1048 * Check to see if the ratio between dirtied bytes and the approx.
1049 * amount of bytes that just got transferred since the last time
1050 * we were in this routine reaches the threshold. If that happens
1051 * twice, start or increase throttling.
1052 */
1053 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1054 (++rs->dirty_rate_high_cnt >= 2)) {
1055 rs->dirty_rate_high_cnt = 0;
1056 if (migrate_auto_converge()) {
1057 trace_migration_throttle();
1058 mig_throttle_guest_down(bytes_dirty_period,
1059 bytes_dirty_threshold);
1060 } else if (migrate_dirty_limit()) {
1061 migration_dirty_limit_guest();
1062 }
1063 }
1064 }
1065
migration_bitmap_sync(RAMState * rs,bool last_stage)1066 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1067 {
1068 RAMBlock *block;
1069 int64_t end_time;
1070
1071 stat64_add(&mig_stats.dirty_sync_count, 1);
1072
1073 if (!rs->time_last_bitmap_sync) {
1074 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1075 }
1076
1077 trace_migration_bitmap_sync_start();
1078 memory_global_dirty_log_sync(last_stage);
1079
1080 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
1081 WITH_RCU_READ_LOCK_GUARD() {
1082 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1083 ramblock_sync_dirty_bitmap(rs, block);
1084 }
1085 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1086 }
1087 }
1088
1089 memory_global_after_dirty_log_sync();
1090 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1091
1092 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1093
1094 /* more than 1 second = 1000 millisecons */
1095 if (end_time > rs->time_last_bitmap_sync + 1000) {
1096 migration_trigger_throttle(rs);
1097
1098 migration_update_rates(rs, end_time);
1099
1100 rs->target_page_count_prev = rs->target_page_count;
1101
1102 /* reset period counters */
1103 rs->time_last_bitmap_sync = end_time;
1104 rs->num_dirty_pages_period = 0;
1105 rs->bytes_xfer_prev = migration_transferred_bytes();
1106 }
1107 if (migrate_events()) {
1108 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1109 qapi_event_send_migration_pass(generation);
1110 }
1111 }
1112
migration_bitmap_sync_precopy(bool last_stage)1113 void migration_bitmap_sync_precopy(bool last_stage)
1114 {
1115 Error *local_err = NULL;
1116 assert(ram_state);
1117
1118 /*
1119 * The current notifier usage is just an optimization to migration, so we
1120 * don't stop the normal migration process in the error case.
1121 */
1122 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1123 error_report_err(local_err);
1124 local_err = NULL;
1125 }
1126
1127 migration_bitmap_sync(ram_state, last_stage);
1128
1129 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1130 error_report_err(local_err);
1131 }
1132 }
1133
ram_release_page(const char * rbname,uint64_t offset)1134 void ram_release_page(const char *rbname, uint64_t offset)
1135 {
1136 if (!migrate_release_ram() || !migration_in_postcopy()) {
1137 return;
1138 }
1139
1140 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1141 }
1142
1143 /**
1144 * save_zero_page: send the zero page to the stream
1145 *
1146 * Returns the number of pages written.
1147 *
1148 * @rs: current RAM state
1149 * @pss: current PSS channel
1150 * @offset: offset inside the block for the page
1151 */
save_zero_page(RAMState * rs,PageSearchStatus * pss,ram_addr_t offset)1152 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1153 ram_addr_t offset)
1154 {
1155 uint8_t *p = pss->block->host + offset;
1156 QEMUFile *file = pss->pss_channel;
1157 int len = 0;
1158
1159 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1160 return 0;
1161 }
1162
1163 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1164 return 0;
1165 }
1166
1167 stat64_add(&mig_stats.zero_pages, 1);
1168
1169 if (migrate_mapped_ram()) {
1170 /* zero pages are not transferred with mapped-ram */
1171 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1172 return 1;
1173 }
1174
1175 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1176 qemu_put_byte(file, 0);
1177 len += 1;
1178 ram_release_page(pss->block->idstr, offset);
1179 ram_transferred_add(len);
1180
1181 /*
1182 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1183 * page would be stale.
1184 */
1185 if (rs->xbzrle_started) {
1186 XBZRLE_cache_lock();
1187 xbzrle_cache_zero_page(pss->block->offset + offset);
1188 XBZRLE_cache_unlock();
1189 }
1190
1191 return len;
1192 }
1193
1194 /*
1195 * directly send the page to the stream
1196 *
1197 * Returns the number of pages written.
1198 *
1199 * @pss: current PSS channel
1200 * @block: block that contains the page we want to send
1201 * @offset: offset inside the block for the page
1202 * @buf: the page to be sent
1203 * @async: send to page asyncly
1204 */
save_normal_page(PageSearchStatus * pss,RAMBlock * block,ram_addr_t offset,uint8_t * buf,bool async)1205 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1206 ram_addr_t offset, uint8_t *buf, bool async)
1207 {
1208 QEMUFile *file = pss->pss_channel;
1209
1210 if (migrate_mapped_ram()) {
1211 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1212 block->pages_offset + offset);
1213 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1214 } else {
1215 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1216 offset | RAM_SAVE_FLAG_PAGE));
1217 if (async) {
1218 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1219 migrate_release_ram() &&
1220 migration_in_postcopy());
1221 } else {
1222 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1223 }
1224 }
1225 ram_transferred_add(TARGET_PAGE_SIZE);
1226 stat64_add(&mig_stats.normal_pages, 1);
1227 return 1;
1228 }
1229
1230 /**
1231 * ram_save_page: send the given page to the stream
1232 *
1233 * Returns the number of pages written.
1234 * < 0 - error
1235 * >=0 - Number of pages written - this might legally be 0
1236 * if xbzrle noticed the page was the same.
1237 *
1238 * @rs: current RAM state
1239 * @block: block that contains the page we want to send
1240 * @offset: offset inside the block for the page
1241 */
ram_save_page(RAMState * rs,PageSearchStatus * pss)1242 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1243 {
1244 int pages = -1;
1245 uint8_t *p;
1246 bool send_async = true;
1247 RAMBlock *block = pss->block;
1248 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1249 ram_addr_t current_addr = block->offset + offset;
1250
1251 p = block->host + offset;
1252 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1253
1254 XBZRLE_cache_lock();
1255 if (rs->xbzrle_started && !migration_in_postcopy()) {
1256 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1257 block, offset);
1258 if (!rs->last_stage) {
1259 /* Can't send this cached data async, since the cache page
1260 * might get updated before it gets to the wire
1261 */
1262 send_async = false;
1263 }
1264 }
1265
1266 /* XBZRLE overflow or normal page */
1267 if (pages == -1) {
1268 pages = save_normal_page(pss, block, offset, p, send_async);
1269 }
1270
1271 XBZRLE_cache_unlock();
1272
1273 return pages;
1274 }
1275
ram_save_multifd_page(RAMBlock * block,ram_addr_t offset)1276 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1277 {
1278 if (!multifd_queue_page(block, offset)) {
1279 return -1;
1280 }
1281
1282 return 1;
1283 }
1284
1285
1286 #define PAGE_ALL_CLEAN 0
1287 #define PAGE_TRY_AGAIN 1
1288 #define PAGE_DIRTY_FOUND 2
1289 /**
1290 * find_dirty_block: find the next dirty page and update any state
1291 * associated with the search process.
1292 *
1293 * Returns:
1294 * <0: An error happened
1295 * PAGE_ALL_CLEAN: no dirty page found, give up
1296 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1297 * PAGE_DIRTY_FOUND: dirty page found
1298 *
1299 * @rs: current RAM state
1300 * @pss: data about the state of the current dirty page scan
1301 * @again: set to false if the search has scanned the whole of RAM
1302 */
find_dirty_block(RAMState * rs,PageSearchStatus * pss)1303 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1304 {
1305 /* Update pss->page for the next dirty bit in ramblock */
1306 pss_find_next_dirty(pss);
1307
1308 if (pss->complete_round && pss->block == rs->last_seen_block &&
1309 pss->page >= rs->last_page) {
1310 /*
1311 * We've been once around the RAM and haven't found anything.
1312 * Give up.
1313 */
1314 return PAGE_ALL_CLEAN;
1315 }
1316 if (!offset_in_ramblock(pss->block,
1317 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1318 /* Didn't find anything in this RAM Block */
1319 pss->page = 0;
1320 pss->block = QLIST_NEXT_RCU(pss->block, next);
1321 if (!pss->block) {
1322 if (multifd_ram_sync_per_round()) {
1323 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1324 int ret = multifd_ram_flush_and_sync(f);
1325 if (ret < 0) {
1326 return ret;
1327 }
1328 }
1329
1330 /* Hit the end of the list */
1331 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1332 /* Flag that we've looped */
1333 pss->complete_round = true;
1334 /* After the first round, enable XBZRLE. */
1335 if (migrate_xbzrle()) {
1336 rs->xbzrle_started = true;
1337 }
1338 }
1339 /* Didn't find anything this time, but try again on the new block */
1340 return PAGE_TRY_AGAIN;
1341 } else {
1342 /* We've found something */
1343 return PAGE_DIRTY_FOUND;
1344 }
1345 }
1346
1347 /**
1348 * unqueue_page: gets a page of the queue
1349 *
1350 * Helper for 'get_queued_page' - gets a page off the queue
1351 *
1352 * Returns the block of the page (or NULL if none available)
1353 *
1354 * @rs: current RAM state
1355 * @offset: used to return the offset within the RAMBlock
1356 */
unqueue_page(RAMState * rs,ram_addr_t * offset)1357 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1358 {
1359 struct RAMSrcPageRequest *entry;
1360 RAMBlock *block = NULL;
1361
1362 if (!postcopy_has_request(rs)) {
1363 return NULL;
1364 }
1365
1366 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1367
1368 /*
1369 * This should _never_ change even after we take the lock, because no one
1370 * should be taking anything off the request list other than us.
1371 */
1372 assert(postcopy_has_request(rs));
1373
1374 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1375 block = entry->rb;
1376 *offset = entry->offset;
1377
1378 if (entry->len > TARGET_PAGE_SIZE) {
1379 entry->len -= TARGET_PAGE_SIZE;
1380 entry->offset += TARGET_PAGE_SIZE;
1381 } else {
1382 memory_region_unref(block->mr);
1383 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1384 g_free(entry);
1385 migration_consume_urgent_request();
1386 }
1387
1388 return block;
1389 }
1390
1391 #if defined(__linux__)
1392 /**
1393 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1394 * is found, return RAM block pointer and page offset
1395 *
1396 * Returns pointer to the RAMBlock containing faulting page,
1397 * NULL if no write faults are pending
1398 *
1399 * @rs: current RAM state
1400 * @offset: page offset from the beginning of the block
1401 */
poll_fault_page(RAMState * rs,ram_addr_t * offset)1402 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1403 {
1404 struct uffd_msg uffd_msg;
1405 void *page_address;
1406 RAMBlock *block;
1407 int res;
1408
1409 if (!migrate_background_snapshot()) {
1410 return NULL;
1411 }
1412
1413 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1414 if (res <= 0) {
1415 return NULL;
1416 }
1417
1418 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1419 block = qemu_ram_block_from_host(page_address, false, offset);
1420 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1421 return block;
1422 }
1423
1424 /**
1425 * ram_save_release_protection: release UFFD write protection after
1426 * a range of pages has been saved
1427 *
1428 * @rs: current RAM state
1429 * @pss: page-search-status structure
1430 * @start_page: index of the first page in the range relative to pss->block
1431 *
1432 * Returns 0 on success, negative value in case of an error
1433 */
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1434 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1435 unsigned long start_page)
1436 {
1437 int res = 0;
1438
1439 /* Check if page is from UFFD-managed region. */
1440 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1441 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1442 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1443
1444 /* Flush async buffers before un-protect. */
1445 qemu_fflush(pss->pss_channel);
1446 /* Un-protect memory range. */
1447 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1448 false, false);
1449 }
1450
1451 return res;
1452 }
1453
1454 /* ram_write_tracking_available: check if kernel supports required UFFD features
1455 *
1456 * Returns true if supports, false otherwise
1457 */
ram_write_tracking_available(void)1458 bool ram_write_tracking_available(void)
1459 {
1460 uint64_t uffd_features;
1461 int res;
1462
1463 res = uffd_query_features(&uffd_features);
1464 return (res == 0 &&
1465 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1466 }
1467
1468 /* ram_write_tracking_compatible: check if guest configuration is
1469 * compatible with 'write-tracking'
1470 *
1471 * Returns true if compatible, false otherwise
1472 */
ram_write_tracking_compatible(void)1473 bool ram_write_tracking_compatible(void)
1474 {
1475 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1476 int uffd_fd;
1477 RAMBlock *block;
1478 bool ret = false;
1479
1480 /* Open UFFD file descriptor */
1481 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1482 if (uffd_fd < 0) {
1483 return false;
1484 }
1485
1486 RCU_READ_LOCK_GUARD();
1487
1488 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1489 uint64_t uffd_ioctls;
1490
1491 /* Nothing to do with read-only and MMIO-writable regions */
1492 if (block->mr->readonly || block->mr->rom_device) {
1493 continue;
1494 }
1495 /* Try to register block memory via UFFD-IO to track writes */
1496 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1497 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1498 goto out;
1499 }
1500 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1501 goto out;
1502 }
1503 }
1504 ret = true;
1505
1506 out:
1507 uffd_close_fd(uffd_fd);
1508 return ret;
1509 }
1510
populate_read_range(RAMBlock * block,ram_addr_t offset,ram_addr_t size)1511 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1512 ram_addr_t size)
1513 {
1514 const ram_addr_t end = offset + size;
1515
1516 /*
1517 * We read one byte of each page; this will preallocate page tables if
1518 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1519 * where no page was populated yet. This might require adaption when
1520 * supporting other mappings, like shmem.
1521 */
1522 for (; offset < end; offset += block->page_size) {
1523 char tmp = *((char *)block->host + offset);
1524
1525 /* Don't optimize the read out */
1526 asm volatile("" : "+r" (tmp));
1527 }
1528 }
1529
populate_read_section(MemoryRegionSection * section,void * opaque)1530 static inline int populate_read_section(MemoryRegionSection *section,
1531 void *opaque)
1532 {
1533 const hwaddr size = int128_get64(section->size);
1534 hwaddr offset = section->offset_within_region;
1535 RAMBlock *block = section->mr->ram_block;
1536
1537 populate_read_range(block, offset, size);
1538 return 0;
1539 }
1540
1541 /*
1542 * ram_block_populate_read: preallocate page tables and populate pages in the
1543 * RAM block by reading a byte of each page.
1544 *
1545 * Since it's solely used for userfault_fd WP feature, here we just
1546 * hardcode page size to qemu_real_host_page_size.
1547 *
1548 * @block: RAM block to populate
1549 */
ram_block_populate_read(RAMBlock * rb)1550 static void ram_block_populate_read(RAMBlock *rb)
1551 {
1552 /*
1553 * Skip populating all pages that fall into a discarded range as managed by
1554 * a RamDiscardManager responsible for the mapped memory region of the
1555 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1556 * must not get populated automatically. We don't have to track
1557 * modifications via userfaultfd WP reliably, because these pages will
1558 * not be part of the migration stream either way -- see
1559 * ramblock_dirty_bitmap_exclude_discarded_pages().
1560 *
1561 * Note: The result is only stable while migrating (precopy/postcopy).
1562 */
1563 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1564 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1565 MemoryRegionSection section = {
1566 .mr = rb->mr,
1567 .offset_within_region = 0,
1568 .size = rb->mr->size,
1569 };
1570
1571 ram_discard_manager_replay_populated(rdm, §ion,
1572 populate_read_section, NULL);
1573 } else {
1574 populate_read_range(rb, 0, rb->used_length);
1575 }
1576 }
1577
1578 /*
1579 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1580 */
ram_write_tracking_prepare(void)1581 void ram_write_tracking_prepare(void)
1582 {
1583 RAMBlock *block;
1584
1585 RCU_READ_LOCK_GUARD();
1586
1587 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1588 /* Nothing to do with read-only and MMIO-writable regions */
1589 if (block->mr->readonly || block->mr->rom_device) {
1590 continue;
1591 }
1592
1593 /*
1594 * Populate pages of the RAM block before enabling userfault_fd
1595 * write protection.
1596 *
1597 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1598 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1599 * pages with pte_none() entries in page table.
1600 */
1601 ram_block_populate_read(block);
1602 }
1603 }
1604
uffd_protect_section(MemoryRegionSection * section,void * opaque)1605 static inline int uffd_protect_section(MemoryRegionSection *section,
1606 void *opaque)
1607 {
1608 const hwaddr size = int128_get64(section->size);
1609 const hwaddr offset = section->offset_within_region;
1610 RAMBlock *rb = section->mr->ram_block;
1611 int uffd_fd = (uintptr_t)opaque;
1612
1613 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1614 false);
1615 }
1616
ram_block_uffd_protect(RAMBlock * rb,int uffd_fd)1617 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1618 {
1619 assert(rb->flags & RAM_UF_WRITEPROTECT);
1620
1621 /* See ram_block_populate_read() */
1622 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1623 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1624 MemoryRegionSection section = {
1625 .mr = rb->mr,
1626 .offset_within_region = 0,
1627 .size = rb->mr->size,
1628 };
1629
1630 return ram_discard_manager_replay_populated(rdm, §ion,
1631 uffd_protect_section,
1632 (void *)(uintptr_t)uffd_fd);
1633 }
1634 return uffd_change_protection(uffd_fd, rb->host,
1635 rb->used_length, true, false);
1636 }
1637
1638 /*
1639 * ram_write_tracking_start: start UFFD-WP memory tracking
1640 *
1641 * Returns 0 for success or negative value in case of error
1642 */
ram_write_tracking_start(void)1643 int ram_write_tracking_start(void)
1644 {
1645 int uffd_fd;
1646 RAMState *rs = ram_state;
1647 RAMBlock *block;
1648
1649 /* Open UFFD file descriptor */
1650 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1651 if (uffd_fd < 0) {
1652 return uffd_fd;
1653 }
1654 rs->uffdio_fd = uffd_fd;
1655
1656 RCU_READ_LOCK_GUARD();
1657
1658 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1659 /* Nothing to do with read-only and MMIO-writable regions */
1660 if (block->mr->readonly || block->mr->rom_device) {
1661 continue;
1662 }
1663
1664 /* Register block memory with UFFD to track writes */
1665 if (uffd_register_memory(rs->uffdio_fd, block->host,
1666 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1667 goto fail;
1668 }
1669 block->flags |= RAM_UF_WRITEPROTECT;
1670 memory_region_ref(block->mr);
1671
1672 /* Apply UFFD write protection to the block memory range */
1673 if (ram_block_uffd_protect(block, uffd_fd)) {
1674 goto fail;
1675 }
1676
1677 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1678 block->host, block->max_length);
1679 }
1680
1681 return 0;
1682
1683 fail:
1684 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1685
1686 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1687 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1688 continue;
1689 }
1690 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1691 /* Cleanup flags and remove reference */
1692 block->flags &= ~RAM_UF_WRITEPROTECT;
1693 memory_region_unref(block->mr);
1694 }
1695
1696 uffd_close_fd(uffd_fd);
1697 rs->uffdio_fd = -1;
1698 return -1;
1699 }
1700
1701 /**
1702 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1703 */
ram_write_tracking_stop(void)1704 void ram_write_tracking_stop(void)
1705 {
1706 RAMState *rs = ram_state;
1707 RAMBlock *block;
1708
1709 RCU_READ_LOCK_GUARD();
1710
1711 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1712 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1713 continue;
1714 }
1715 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1716
1717 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1718 block->host, block->max_length);
1719
1720 /* Cleanup flags and remove reference */
1721 block->flags &= ~RAM_UF_WRITEPROTECT;
1722 memory_region_unref(block->mr);
1723 }
1724
1725 /* Finally close UFFD file descriptor */
1726 uffd_close_fd(rs->uffdio_fd);
1727 rs->uffdio_fd = -1;
1728 }
1729
1730 #else
1731 /* No target OS support, stubs just fail or ignore */
1732
poll_fault_page(RAMState * rs,ram_addr_t * offset)1733 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1734 {
1735 (void) rs;
1736 (void) offset;
1737
1738 return NULL;
1739 }
1740
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1741 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1742 unsigned long start_page)
1743 {
1744 (void) rs;
1745 (void) pss;
1746 (void) start_page;
1747
1748 return 0;
1749 }
1750
ram_write_tracking_available(void)1751 bool ram_write_tracking_available(void)
1752 {
1753 return false;
1754 }
1755
ram_write_tracking_compatible(void)1756 bool ram_write_tracking_compatible(void)
1757 {
1758 g_assert_not_reached();
1759 }
1760
ram_write_tracking_start(void)1761 int ram_write_tracking_start(void)
1762 {
1763 g_assert_not_reached();
1764 }
1765
ram_write_tracking_stop(void)1766 void ram_write_tracking_stop(void)
1767 {
1768 g_assert_not_reached();
1769 }
1770 #endif /* defined(__linux__) */
1771
1772 /**
1773 * get_queued_page: unqueue a page from the postcopy requests
1774 *
1775 * Skips pages that are already sent (!dirty)
1776 *
1777 * Returns true if a queued page is found
1778 *
1779 * @rs: current RAM state
1780 * @pss: data about the state of the current dirty page scan
1781 */
get_queued_page(RAMState * rs,PageSearchStatus * pss)1782 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1783 {
1784 RAMBlock *block;
1785 ram_addr_t offset;
1786 bool dirty = false;
1787
1788 do {
1789 block = unqueue_page(rs, &offset);
1790 /*
1791 * We're sending this page, and since it's postcopy nothing else
1792 * will dirty it, and we must make sure it doesn't get sent again
1793 * even if this queue request was received after the background
1794 * search already sent it.
1795 */
1796 if (block) {
1797 unsigned long page;
1798
1799 page = offset >> TARGET_PAGE_BITS;
1800 dirty = test_bit(page, block->bmap);
1801 if (!dirty) {
1802 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1803 page);
1804 } else {
1805 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1806 }
1807 }
1808
1809 } while (block && !dirty);
1810
1811 if (!block) {
1812 /*
1813 * Poll write faults too if background snapshot is enabled; that's
1814 * when we have vcpus got blocked by the write protected pages.
1815 */
1816 block = poll_fault_page(rs, &offset);
1817 }
1818
1819 if (block) {
1820 /*
1821 * We want the background search to continue from the queued page
1822 * since the guest is likely to want other pages near to the page
1823 * it just requested.
1824 */
1825 pss->block = block;
1826 pss->page = offset >> TARGET_PAGE_BITS;
1827
1828 /*
1829 * This unqueued page would break the "one round" check, even is
1830 * really rare.
1831 */
1832 pss->complete_round = false;
1833 }
1834
1835 return !!block;
1836 }
1837
1838 /**
1839 * migration_page_queue_free: drop any remaining pages in the ram
1840 * request queue
1841 *
1842 * It should be empty at the end anyway, but in error cases there may
1843 * be some left. in case that there is any page left, we drop it.
1844 *
1845 */
migration_page_queue_free(RAMState * rs)1846 static void migration_page_queue_free(RAMState *rs)
1847 {
1848 struct RAMSrcPageRequest *mspr, *next_mspr;
1849 /* This queue generally should be empty - but in the case of a failed
1850 * migration might have some droppings in.
1851 */
1852 RCU_READ_LOCK_GUARD();
1853 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1854 memory_region_unref(mspr->rb->mr);
1855 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1856 g_free(mspr);
1857 }
1858 }
1859
1860 /**
1861 * ram_save_queue_pages: queue the page for transmission
1862 *
1863 * A request from postcopy destination for example.
1864 *
1865 * Returns zero on success or negative on error
1866 *
1867 * @rbname: Name of the RAMBLock of the request. NULL means the
1868 * same that last one.
1869 * @start: starting address from the start of the RAMBlock
1870 * @len: length (in bytes) to send
1871 */
ram_save_queue_pages(const char * rbname,ram_addr_t start,ram_addr_t len,Error ** errp)1872 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1873 Error **errp)
1874 {
1875 RAMBlock *ramblock;
1876 RAMState *rs = ram_state;
1877
1878 stat64_add(&mig_stats.postcopy_requests, 1);
1879 RCU_READ_LOCK_GUARD();
1880
1881 if (!rbname) {
1882 /* Reuse last RAMBlock */
1883 ramblock = rs->last_req_rb;
1884
1885 if (!ramblock) {
1886 /*
1887 * Shouldn't happen, we can't reuse the last RAMBlock if
1888 * it's the 1st request.
1889 */
1890 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1891 return -1;
1892 }
1893 } else {
1894 ramblock = qemu_ram_block_by_name(rbname);
1895
1896 if (!ramblock) {
1897 /* We shouldn't be asked for a non-existent RAMBlock */
1898 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1899 return -1;
1900 }
1901 rs->last_req_rb = ramblock;
1902 }
1903 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1904 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1905 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1906 "start=" RAM_ADDR_FMT " len="
1907 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1908 start, len, ramblock->used_length);
1909 return -1;
1910 }
1911
1912 /*
1913 * When with postcopy preempt, we send back the page directly in the
1914 * rp-return thread.
1915 */
1916 if (postcopy_preempt_active()) {
1917 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1918 size_t page_size = qemu_ram_pagesize(ramblock);
1919 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1920 int ret = 0;
1921
1922 qemu_mutex_lock(&rs->bitmap_mutex);
1923
1924 pss_init(pss, ramblock, page_start);
1925 /*
1926 * Always use the preempt channel, and make sure it's there. It's
1927 * safe to access without lock, because when rp-thread is running
1928 * we should be the only one who operates on the qemufile
1929 */
1930 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1931 assert(pss->pss_channel);
1932
1933 /*
1934 * It must be either one or multiple of host page size. Just
1935 * assert; if something wrong we're mostly split brain anyway.
1936 */
1937 assert(len % page_size == 0);
1938 while (len) {
1939 if (ram_save_host_page_urgent(pss)) {
1940 error_setg(errp, "ram_save_host_page_urgent() failed: "
1941 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1942 ramblock->idstr, start);
1943 ret = -1;
1944 break;
1945 }
1946 /*
1947 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1948 * will automatically be moved and point to the next host page
1949 * we're going to send, so no need to update here.
1950 *
1951 * Normally QEMU never sends >1 host page in requests, so
1952 * logically we don't even need that as the loop should only
1953 * run once, but just to be consistent.
1954 */
1955 len -= page_size;
1956 };
1957 qemu_mutex_unlock(&rs->bitmap_mutex);
1958
1959 return ret;
1960 }
1961
1962 struct RAMSrcPageRequest *new_entry =
1963 g_new0(struct RAMSrcPageRequest, 1);
1964 new_entry->rb = ramblock;
1965 new_entry->offset = start;
1966 new_entry->len = len;
1967
1968 memory_region_ref(ramblock->mr);
1969 qemu_mutex_lock(&rs->src_page_req_mutex);
1970 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1971 migration_make_urgent_request();
1972 qemu_mutex_unlock(&rs->src_page_req_mutex);
1973
1974 return 0;
1975 }
1976
1977 /**
1978 * ram_save_target_page: save one target page to the precopy thread
1979 * OR to multifd workers.
1980 *
1981 * @rs: current RAM state
1982 * @pss: data about the page we want to send
1983 */
ram_save_target_page(RAMState * rs,PageSearchStatus * pss)1984 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss)
1985 {
1986 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1987 int res;
1988
1989 /* Hand over to RDMA first */
1990 if (migrate_rdma()) {
1991 res = rdma_control_save_page(pss->pss_channel, pss->block->offset,
1992 offset, TARGET_PAGE_SIZE);
1993
1994 if (res == RAM_SAVE_CONTROL_DELAYED) {
1995 res = 1;
1996 }
1997 return res;
1998 }
1999
2000 if (!migrate_multifd()
2001 || migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
2002 if (save_zero_page(rs, pss, offset)) {
2003 return 1;
2004 }
2005 }
2006
2007 if (migrate_multifd() && !migration_in_postcopy()) {
2008 return ram_save_multifd_page(pss->block, offset);
2009 }
2010
2011 return ram_save_page(rs, pss);
2012 }
2013
2014 /* Should be called before sending a host page */
pss_host_page_prepare(PageSearchStatus * pss)2015 static void pss_host_page_prepare(PageSearchStatus *pss)
2016 {
2017 /* How many guest pages are there in one host page? */
2018 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2019
2020 pss->host_page_sending = true;
2021 if (guest_pfns <= 1) {
2022 /*
2023 * This covers both when guest psize == host psize, or when guest
2024 * has larger psize than the host (guest_pfns==0).
2025 *
2026 * For the latter, we always send one whole guest page per
2027 * iteration of the host page (example: an Alpha VM on x86 host
2028 * will have guest psize 8K while host psize 4K).
2029 */
2030 pss->host_page_start = pss->page;
2031 pss->host_page_end = pss->page + 1;
2032 } else {
2033 /*
2034 * The host page spans over multiple guest pages, we send them
2035 * within the same host page iteration.
2036 */
2037 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2038 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2039 }
2040 }
2041
2042 /*
2043 * Whether the page pointed by PSS is within the host page being sent.
2044 * Must be called after a previous pss_host_page_prepare().
2045 */
pss_within_range(PageSearchStatus * pss)2046 static bool pss_within_range(PageSearchStatus *pss)
2047 {
2048 ram_addr_t ram_addr;
2049
2050 assert(pss->host_page_sending);
2051
2052 /* Over host-page boundary? */
2053 if (pss->page >= pss->host_page_end) {
2054 return false;
2055 }
2056
2057 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2058
2059 return offset_in_ramblock(pss->block, ram_addr);
2060 }
2061
pss_host_page_finish(PageSearchStatus * pss)2062 static void pss_host_page_finish(PageSearchStatus *pss)
2063 {
2064 pss->host_page_sending = false;
2065 /* This is not needed, but just to reset it */
2066 pss->host_page_start = pss->host_page_end = 0;
2067 }
2068
ram_page_hint_update(RAMState * rs,PageSearchStatus * pss)2069 static void ram_page_hint_update(RAMState *rs, PageSearchStatus *pss)
2070 {
2071 PageLocationHint *hint = &rs->page_hint;
2072
2073 /* If there's a pending hint not consumed, don't bother */
2074 if (hint->valid) {
2075 return;
2076 }
2077
2078 /* Provide a hint to the background stream otherwise */
2079 hint->location.block = pss->block;
2080 hint->location.offset = pss->page;
2081 hint->valid = true;
2082 }
2083
2084 /*
2085 * Send an urgent host page specified by `pss'. Need to be called with
2086 * bitmap_mutex held.
2087 *
2088 * Returns 0 if save host page succeeded, false otherwise.
2089 */
ram_save_host_page_urgent(PageSearchStatus * pss)2090 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2091 {
2092 bool page_dirty, sent = false;
2093 RAMState *rs = ram_state;
2094 int ret = 0;
2095
2096 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2097 pss_host_page_prepare(pss);
2098
2099 /*
2100 * If precopy is sending the same page, let it be done in precopy, or
2101 * we could send the same page in two channels and none of them will
2102 * receive the whole page.
2103 */
2104 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2105 trace_postcopy_preempt_hit(pss->block->idstr,
2106 pss->page << TARGET_PAGE_BITS);
2107 return 0;
2108 }
2109
2110 do {
2111 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2112
2113 if (page_dirty) {
2114 /* Be strict to return code; it must be 1, or what else? */
2115 if (ram_save_target_page(rs, pss) != 1) {
2116 error_report_once("%s: ram_save_target_page failed", __func__);
2117 ret = -1;
2118 goto out;
2119 }
2120 sent = true;
2121 }
2122 pss_find_next_dirty(pss);
2123 } while (pss_within_range(pss));
2124 out:
2125 pss_host_page_finish(pss);
2126 /* For urgent requests, flush immediately if sent */
2127 if (sent) {
2128 qemu_fflush(pss->pss_channel);
2129 ram_page_hint_update(rs, pss);
2130 }
2131 return ret;
2132 }
2133
2134 /**
2135 * ram_save_host_page: save a whole host page
2136 *
2137 * Starting at *offset send pages up to the end of the current host
2138 * page. It's valid for the initial offset to point into the middle of
2139 * a host page in which case the remainder of the hostpage is sent.
2140 * Only dirty target pages are sent. Note that the host page size may
2141 * be a huge page for this block.
2142 *
2143 * The saving stops at the boundary of the used_length of the block
2144 * if the RAMBlock isn't a multiple of the host page size.
2145 *
2146 * The caller must be with ram_state.bitmap_mutex held to call this
2147 * function. Note that this function can temporarily release the lock, but
2148 * when the function is returned it'll make sure the lock is still held.
2149 *
2150 * Returns the number of pages written or negative on error
2151 *
2152 * @rs: current RAM state
2153 * @pss: data about the page we want to send
2154 */
ram_save_host_page(RAMState * rs,PageSearchStatus * pss)2155 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2156 {
2157 bool page_dirty, preempt_active = postcopy_preempt_active();
2158 int tmppages, pages = 0;
2159 size_t pagesize_bits =
2160 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2161 unsigned long start_page = pss->page;
2162 int res;
2163
2164 if (migrate_ram_is_ignored(pss->block)) {
2165 error_report("block %s should not be migrated !", pss->block->idstr);
2166 return 0;
2167 }
2168
2169 /* Update host page boundary information */
2170 pss_host_page_prepare(pss);
2171
2172 do {
2173 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2174
2175 /* Check the pages is dirty and if it is send it */
2176 if (page_dirty) {
2177 /*
2178 * Properly yield the lock only in postcopy preempt mode
2179 * because both migration thread and rp-return thread can
2180 * operate on the bitmaps.
2181 */
2182 if (preempt_active) {
2183 qemu_mutex_unlock(&rs->bitmap_mutex);
2184 }
2185 tmppages = ram_save_target_page(rs, pss);
2186 if (tmppages >= 0) {
2187 pages += tmppages;
2188 /*
2189 * Allow rate limiting to happen in the middle of huge pages if
2190 * something is sent in the current iteration.
2191 */
2192 if (pagesize_bits > 1 && tmppages > 0) {
2193 migration_rate_limit();
2194 }
2195 }
2196 if (preempt_active) {
2197 qemu_mutex_lock(&rs->bitmap_mutex);
2198 }
2199 } else {
2200 tmppages = 0;
2201 }
2202
2203 if (tmppages < 0) {
2204 pss_host_page_finish(pss);
2205 return tmppages;
2206 }
2207
2208 pss_find_next_dirty(pss);
2209 } while (pss_within_range(pss));
2210
2211 pss_host_page_finish(pss);
2212
2213 res = ram_save_release_protection(rs, pss, start_page);
2214 return (res < 0 ? res : pages);
2215 }
2216
ram_page_hint_valid(RAMState * rs)2217 static bool ram_page_hint_valid(RAMState *rs)
2218 {
2219 /* There's only page hint during postcopy preempt mode */
2220 if (!postcopy_preempt_active()) {
2221 return false;
2222 }
2223
2224 return rs->page_hint.valid;
2225 }
2226
ram_page_hint_collect(RAMState * rs,RAMBlock ** block,unsigned long * page)2227 static void ram_page_hint_collect(RAMState *rs, RAMBlock **block,
2228 unsigned long *page)
2229 {
2230 PageLocationHint *hint = &rs->page_hint;
2231
2232 assert(hint->valid);
2233
2234 *block = hint->location.block;
2235 *page = hint->location.offset;
2236
2237 /* Mark the hint consumed */
2238 hint->valid = false;
2239 }
2240
2241 /**
2242 * ram_find_and_save_block: finds a dirty page and sends it to f
2243 *
2244 * Called within an RCU critical section.
2245 *
2246 * Returns the number of pages written where zero means no dirty pages,
2247 * or negative on error
2248 *
2249 * @rs: current RAM state
2250 *
2251 * On systems where host-page-size > target-page-size it will send all the
2252 * pages in a host page that are dirty.
2253 */
ram_find_and_save_block(RAMState * rs)2254 static int ram_find_and_save_block(RAMState *rs)
2255 {
2256 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2257 unsigned long next_page;
2258 RAMBlock *next_block;
2259 int pages = 0;
2260
2261 /* No dirty page as there is zero RAM */
2262 if (!rs->ram_bytes_total) {
2263 return pages;
2264 }
2265
2266 /*
2267 * Always keep last_seen_block/last_page valid during this procedure,
2268 * because find_dirty_block() relies on these values (e.g., we compare
2269 * last_seen_block with pss.block to see whether we searched all the
2270 * ramblocks) to detect the completion of migration. Having NULL value
2271 * of last_seen_block can conditionally cause below loop to run forever.
2272 */
2273 if (!rs->last_seen_block) {
2274 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2275 rs->last_page = 0;
2276 }
2277
2278 if (ram_page_hint_valid(rs)) {
2279 ram_page_hint_collect(rs, &next_block, &next_page);
2280 } else {
2281 next_block = rs->last_seen_block;
2282 next_page = rs->last_page;
2283 }
2284
2285 pss_init(pss, next_block, next_page);
2286
2287 while (true){
2288 if (!get_queued_page(rs, pss)) {
2289 /* priority queue empty, so just search for something dirty */
2290 int res = find_dirty_block(rs, pss);
2291
2292 if (res == PAGE_ALL_CLEAN) {
2293 break;
2294 } else if (res == PAGE_TRY_AGAIN) {
2295 continue;
2296 } else if (res < 0) {
2297 pages = res;
2298 break;
2299 }
2300
2301 /* Otherwise we must have a dirty page to move */
2302 assert(res == PAGE_DIRTY_FOUND);
2303 }
2304 pages = ram_save_host_page(rs, pss);
2305 if (pages) {
2306 break;
2307 }
2308 }
2309
2310 rs->last_seen_block = pss->block;
2311 rs->last_page = pss->page;
2312
2313 return pages;
2314 }
2315
ram_bytes_total_with_ignored(void)2316 static uint64_t ram_bytes_total_with_ignored(void)
2317 {
2318 RAMBlock *block;
2319 uint64_t total = 0;
2320
2321 RCU_READ_LOCK_GUARD();
2322
2323 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2324 total += block->used_length;
2325 }
2326 return total;
2327 }
2328
ram_bytes_total(void)2329 uint64_t ram_bytes_total(void)
2330 {
2331 RAMBlock *block;
2332 uint64_t total = 0;
2333
2334 RCU_READ_LOCK_GUARD();
2335
2336 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2337 total += block->used_length;
2338 }
2339 return total;
2340 }
2341
xbzrle_load_setup(void)2342 static void xbzrle_load_setup(void)
2343 {
2344 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2345 }
2346
xbzrle_load_cleanup(void)2347 static void xbzrle_load_cleanup(void)
2348 {
2349 g_free(XBZRLE.decoded_buf);
2350 XBZRLE.decoded_buf = NULL;
2351 }
2352
ram_state_cleanup(RAMState ** rsp)2353 static void ram_state_cleanup(RAMState **rsp)
2354 {
2355 if (*rsp) {
2356 migration_page_queue_free(*rsp);
2357 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2358 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2359 g_free(*rsp);
2360 *rsp = NULL;
2361 }
2362 }
2363
xbzrle_cleanup(void)2364 static void xbzrle_cleanup(void)
2365 {
2366 XBZRLE_cache_lock();
2367 if (XBZRLE.cache) {
2368 cache_fini(XBZRLE.cache);
2369 g_free(XBZRLE.encoded_buf);
2370 g_free(XBZRLE.current_buf);
2371 g_free(XBZRLE.zero_target_page);
2372 XBZRLE.cache = NULL;
2373 XBZRLE.encoded_buf = NULL;
2374 XBZRLE.current_buf = NULL;
2375 XBZRLE.zero_target_page = NULL;
2376 }
2377 XBZRLE_cache_unlock();
2378 }
2379
ram_bitmaps_destroy(void)2380 static void ram_bitmaps_destroy(void)
2381 {
2382 RAMBlock *block;
2383
2384 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2385 g_free(block->clear_bmap);
2386 block->clear_bmap = NULL;
2387 g_free(block->bmap);
2388 block->bmap = NULL;
2389 g_free(block->file_bmap);
2390 block->file_bmap = NULL;
2391 }
2392 }
2393
ram_save_cleanup(void * opaque)2394 static void ram_save_cleanup(void *opaque)
2395 {
2396 RAMState **rsp = opaque;
2397
2398 /* We don't use dirty log with background snapshots */
2399 if (!migrate_background_snapshot()) {
2400 /* caller have hold BQL or is in a bh, so there is
2401 * no writing race against the migration bitmap
2402 */
2403 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2404 /*
2405 * do not stop dirty log without starting it, since
2406 * memory_global_dirty_log_stop will assert that
2407 * memory_global_dirty_log_start/stop used in pairs
2408 */
2409 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2410 }
2411 }
2412
2413 ram_bitmaps_destroy();
2414
2415 xbzrle_cleanup();
2416 multifd_ram_save_cleanup();
2417 ram_state_cleanup(rsp);
2418 }
2419
ram_page_hint_reset(PageLocationHint * hint)2420 static void ram_page_hint_reset(PageLocationHint *hint)
2421 {
2422 hint->location.block = NULL;
2423 hint->location.offset = 0;
2424 hint->valid = false;
2425 }
2426
ram_state_reset(RAMState * rs)2427 static void ram_state_reset(RAMState *rs)
2428 {
2429 int i;
2430
2431 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2432 rs->pss[i].last_sent_block = NULL;
2433 }
2434
2435 rs->last_seen_block = NULL;
2436 rs->last_page = 0;
2437 rs->last_version = ram_list.version;
2438 rs->xbzrle_started = false;
2439
2440 ram_page_hint_reset(&rs->page_hint);
2441 }
2442
2443 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2444
2445 /* **** functions for postcopy ***** */
2446
ram_postcopy_migrated_memory_release(MigrationState * ms)2447 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2448 {
2449 struct RAMBlock *block;
2450
2451 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2452 unsigned long *bitmap = block->bmap;
2453 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2454 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2455
2456 while (run_start < range) {
2457 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2458 ram_discard_range(block->idstr,
2459 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2460 ((ram_addr_t)(run_end - run_start))
2461 << TARGET_PAGE_BITS);
2462 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2463 }
2464 }
2465 }
2466
2467 /**
2468 * postcopy_send_discard_bm_ram: discard a RAMBlock
2469 *
2470 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2471 *
2472 * @ms: current migration state
2473 * @block: RAMBlock to discard
2474 */
postcopy_send_discard_bm_ram(MigrationState * ms,RAMBlock * block)2475 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2476 {
2477 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2478 unsigned long current;
2479 unsigned long *bitmap = block->bmap;
2480
2481 for (current = 0; current < end; ) {
2482 unsigned long one = find_next_bit(bitmap, end, current);
2483 unsigned long zero, discard_length;
2484
2485 if (one >= end) {
2486 break;
2487 }
2488
2489 zero = find_next_zero_bit(bitmap, end, one + 1);
2490
2491 if (zero >= end) {
2492 discard_length = end - one;
2493 } else {
2494 discard_length = zero - one;
2495 }
2496 postcopy_discard_send_range(ms, one, discard_length);
2497 current = one + discard_length;
2498 }
2499 }
2500
2501 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2502
2503 /**
2504 * postcopy_each_ram_send_discard: discard all RAMBlocks
2505 *
2506 * Utility for the outgoing postcopy code.
2507 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2508 * passing it bitmap indexes and name.
2509 * (qemu_ram_foreach_block ends up passing unscaled lengths
2510 * which would mean postcopy code would have to deal with target page)
2511 *
2512 * @ms: current migration state
2513 */
postcopy_each_ram_send_discard(MigrationState * ms)2514 static void postcopy_each_ram_send_discard(MigrationState *ms)
2515 {
2516 struct RAMBlock *block;
2517
2518 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2519 postcopy_discard_send_init(ms, block->idstr);
2520
2521 /*
2522 * Deal with TPS != HPS and huge pages. It discard any partially sent
2523 * host-page size chunks, mark any partially dirty host-page size
2524 * chunks as all dirty. In this case the host-page is the host-page
2525 * for the particular RAMBlock, i.e. it might be a huge page.
2526 */
2527 postcopy_chunk_hostpages_pass(ms, block);
2528
2529 /*
2530 * Postcopy sends chunks of bitmap over the wire, but it
2531 * just needs indexes at this point, avoids it having
2532 * target page specific code.
2533 */
2534 postcopy_send_discard_bm_ram(ms, block);
2535 postcopy_discard_send_finish(ms);
2536 }
2537 }
2538
2539 /**
2540 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2541 *
2542 * Helper for postcopy_chunk_hostpages; it's called twice to
2543 * canonicalize the two bitmaps, that are similar, but one is
2544 * inverted.
2545 *
2546 * Postcopy requires that all target pages in a hostpage are dirty or
2547 * clean, not a mix. This function canonicalizes the bitmaps.
2548 *
2549 * @ms: current migration state
2550 * @block: block that contains the page we want to canonicalize
2551 */
postcopy_chunk_hostpages_pass(MigrationState * ms,RAMBlock * block)2552 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2553 {
2554 RAMState *rs = ram_state;
2555 unsigned long *bitmap = block->bmap;
2556 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2557 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2558 unsigned long run_start;
2559
2560 if (block->page_size == TARGET_PAGE_SIZE) {
2561 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2562 return;
2563 }
2564
2565 /* Find a dirty page */
2566 run_start = find_next_bit(bitmap, pages, 0);
2567
2568 while (run_start < pages) {
2569
2570 /*
2571 * If the start of this run of pages is in the middle of a host
2572 * page, then we need to fixup this host page.
2573 */
2574 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2575 /* Find the end of this run */
2576 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2577 /*
2578 * If the end isn't at the start of a host page, then the
2579 * run doesn't finish at the end of a host page
2580 * and we need to discard.
2581 */
2582 }
2583
2584 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2585 unsigned long page;
2586 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2587 host_ratio);
2588 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2589
2590 /* Clean up the bitmap */
2591 for (page = fixup_start_addr;
2592 page < fixup_start_addr + host_ratio; page++) {
2593 /*
2594 * Remark them as dirty, updating the count for any pages
2595 * that weren't previously dirty.
2596 */
2597 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2598 }
2599 }
2600
2601 /* Find the next dirty page for the next iteration */
2602 run_start = find_next_bit(bitmap, pages, run_start);
2603 }
2604 }
2605
2606 /**
2607 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2608 *
2609 * Transmit the set of pages to be discarded after precopy to the target
2610 * these are pages that:
2611 * a) Have been previously transmitted but are now dirty again
2612 * b) Pages that have never been transmitted, this ensures that
2613 * any pages on the destination that have been mapped by background
2614 * tasks get discarded (transparent huge pages is the specific concern)
2615 * Hopefully this is pretty sparse
2616 *
2617 * @ms: current migration state
2618 */
ram_postcopy_send_discard_bitmap(MigrationState * ms)2619 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2620 {
2621 RAMState *rs = ram_state;
2622
2623 RCU_READ_LOCK_GUARD();
2624
2625 /* This should be our last sync, the src is now paused */
2626 migration_bitmap_sync(rs, false);
2627
2628 /* Easiest way to make sure we don't resume in the middle of a host-page */
2629 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2630 rs->last_seen_block = NULL;
2631 rs->last_page = 0;
2632
2633 postcopy_each_ram_send_discard(ms);
2634
2635 trace_ram_postcopy_send_discard_bitmap();
2636 }
2637
2638 /**
2639 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2640 *
2641 * Returns zero on success
2642 *
2643 * @rbname: name of the RAMBlock of the request. NULL means the
2644 * same that last one.
2645 * @start: RAMBlock starting page
2646 * @length: RAMBlock size
2647 */
ram_discard_range(const char * rbname,uint64_t start,size_t length)2648 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2649 {
2650 trace_ram_discard_range(rbname, start, length);
2651
2652 RCU_READ_LOCK_GUARD();
2653 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2654
2655 if (!rb) {
2656 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2657 return -1;
2658 }
2659
2660 /*
2661 * On source VM, we don't need to update the received bitmap since
2662 * we don't even have one.
2663 */
2664 if (rb->receivedmap) {
2665 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2666 length >> qemu_target_page_bits());
2667 }
2668
2669 return ram_block_discard_range(rb, start, length);
2670 }
2671
2672 /*
2673 * For every allocation, we will try not to crash the VM if the
2674 * allocation failed.
2675 */
xbzrle_init(Error ** errp)2676 static bool xbzrle_init(Error **errp)
2677 {
2678 if (!migrate_xbzrle()) {
2679 return true;
2680 }
2681
2682 XBZRLE_cache_lock();
2683
2684 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2685 if (!XBZRLE.zero_target_page) {
2686 error_setg(errp, "%s: Error allocating zero page", __func__);
2687 goto err_out;
2688 }
2689
2690 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2691 TARGET_PAGE_SIZE, errp);
2692 if (!XBZRLE.cache) {
2693 goto free_zero_page;
2694 }
2695
2696 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2697 if (!XBZRLE.encoded_buf) {
2698 error_setg(errp, "%s: Error allocating encoded_buf", __func__);
2699 goto free_cache;
2700 }
2701
2702 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2703 if (!XBZRLE.current_buf) {
2704 error_setg(errp, "%s: Error allocating current_buf", __func__);
2705 goto free_encoded_buf;
2706 }
2707
2708 /* We are all good */
2709 XBZRLE_cache_unlock();
2710 return true;
2711
2712 free_encoded_buf:
2713 g_free(XBZRLE.encoded_buf);
2714 XBZRLE.encoded_buf = NULL;
2715 free_cache:
2716 cache_fini(XBZRLE.cache);
2717 XBZRLE.cache = NULL;
2718 free_zero_page:
2719 g_free(XBZRLE.zero_target_page);
2720 XBZRLE.zero_target_page = NULL;
2721 err_out:
2722 XBZRLE_cache_unlock();
2723 return false;
2724 }
2725
ram_state_init(RAMState ** rsp,Error ** errp)2726 static bool ram_state_init(RAMState **rsp, Error **errp)
2727 {
2728 *rsp = g_try_new0(RAMState, 1);
2729
2730 if (!*rsp) {
2731 error_setg(errp, "%s: Init ramstate fail", __func__);
2732 return false;
2733 }
2734
2735 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2736 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2737 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2738 (*rsp)->ram_bytes_total = ram_bytes_total();
2739
2740 /*
2741 * Count the total number of pages used by ram blocks not including any
2742 * gaps due to alignment or unplugs.
2743 * This must match with the initial values of dirty bitmap.
2744 */
2745 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2746 ram_state_reset(*rsp);
2747
2748 return true;
2749 }
2750
ram_list_init_bitmaps(void)2751 static void ram_list_init_bitmaps(void)
2752 {
2753 MigrationState *ms = migrate_get_current();
2754 RAMBlock *block;
2755 unsigned long pages;
2756 uint8_t shift;
2757
2758 /* Skip setting bitmap if there is no RAM */
2759 if (ram_bytes_total()) {
2760 shift = ms->clear_bitmap_shift;
2761 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2762 error_report("clear_bitmap_shift (%u) too big, using "
2763 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2764 shift = CLEAR_BITMAP_SHIFT_MAX;
2765 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2766 error_report("clear_bitmap_shift (%u) too small, using "
2767 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2768 shift = CLEAR_BITMAP_SHIFT_MIN;
2769 }
2770
2771 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2772 pages = block->max_length >> TARGET_PAGE_BITS;
2773 /*
2774 * The initial dirty bitmap for migration must be set with all
2775 * ones to make sure we'll migrate every guest RAM page to
2776 * destination.
2777 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2778 * new migration after a failed migration, ram_list.
2779 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2780 * guest memory.
2781 */
2782 block->bmap = bitmap_new(pages);
2783 bitmap_set(block->bmap, 0, pages);
2784 if (migrate_mapped_ram()) {
2785 block->file_bmap = bitmap_new(pages);
2786 }
2787 block->clear_bmap_shift = shift;
2788 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2789 }
2790 }
2791 }
2792
migration_bitmap_clear_discarded_pages(RAMState * rs)2793 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2794 {
2795 unsigned long pages;
2796 RAMBlock *rb;
2797
2798 RCU_READ_LOCK_GUARD();
2799
2800 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2801 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2802 rs->migration_dirty_pages -= pages;
2803 }
2804 }
2805
ram_init_bitmaps(RAMState * rs,Error ** errp)2806 static bool ram_init_bitmaps(RAMState *rs, Error **errp)
2807 {
2808 bool ret = true;
2809
2810 qemu_mutex_lock_ramlist();
2811
2812 WITH_RCU_READ_LOCK_GUARD() {
2813 ram_list_init_bitmaps();
2814 /* We don't use dirty log with background snapshots */
2815 if (!migrate_background_snapshot()) {
2816 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
2817 if (!ret) {
2818 goto out_unlock;
2819 }
2820 migration_bitmap_sync_precopy(false);
2821 }
2822 }
2823 out_unlock:
2824 qemu_mutex_unlock_ramlist();
2825
2826 if (!ret) {
2827 ram_bitmaps_destroy();
2828 return false;
2829 }
2830
2831 /*
2832 * After an eventual first bitmap sync, fixup the initial bitmap
2833 * containing all 1s to exclude any discarded pages from migration.
2834 */
2835 migration_bitmap_clear_discarded_pages(rs);
2836 return true;
2837 }
2838
ram_init_all(RAMState ** rsp,Error ** errp)2839 static int ram_init_all(RAMState **rsp, Error **errp)
2840 {
2841 if (!ram_state_init(rsp, errp)) {
2842 return -1;
2843 }
2844
2845 if (!xbzrle_init(errp)) {
2846 ram_state_cleanup(rsp);
2847 return -1;
2848 }
2849
2850 if (!ram_init_bitmaps(*rsp, errp)) {
2851 return -1;
2852 }
2853
2854 return 0;
2855 }
2856
ram_state_resume_prepare(RAMState * rs,QEMUFile * out)2857 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2858 {
2859 RAMBlock *block;
2860 uint64_t pages = 0;
2861
2862 /*
2863 * Postcopy is not using xbzrle/compression, so no need for that.
2864 * Also, since source are already halted, we don't need to care
2865 * about dirty page logging as well.
2866 */
2867
2868 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2869 pages += bitmap_count_one(block->bmap,
2870 block->used_length >> TARGET_PAGE_BITS);
2871 }
2872
2873 /* This may not be aligned with current bitmaps. Recalculate. */
2874 rs->migration_dirty_pages = pages;
2875
2876 ram_state_reset(rs);
2877
2878 /* Update RAMState cache of output QEMUFile */
2879 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2880
2881 trace_ram_state_resume_prepare(pages);
2882 }
2883
2884 /*
2885 * This function clears bits of the free pages reported by the caller from the
2886 * migration dirty bitmap. @addr is the host address corresponding to the
2887 * start of the continuous guest free pages, and @len is the total bytes of
2888 * those pages.
2889 */
qemu_guest_free_page_hint(void * addr,size_t len)2890 void qemu_guest_free_page_hint(void *addr, size_t len)
2891 {
2892 RAMBlock *block;
2893 ram_addr_t offset;
2894 size_t used_len, start, npages;
2895
2896 /* This function is currently expected to be used during live migration */
2897 if (!migration_is_running()) {
2898 return;
2899 }
2900
2901 for (; len > 0; len -= used_len, addr += used_len) {
2902 block = qemu_ram_block_from_host(addr, false, &offset);
2903 if (unlikely(!block || offset >= block->used_length)) {
2904 /*
2905 * The implementation might not support RAMBlock resize during
2906 * live migration, but it could happen in theory with future
2907 * updates. So we add a check here to capture that case.
2908 */
2909 error_report_once("%s unexpected error", __func__);
2910 return;
2911 }
2912
2913 if (len <= block->used_length - offset) {
2914 used_len = len;
2915 } else {
2916 used_len = block->used_length - offset;
2917 }
2918
2919 start = offset >> TARGET_PAGE_BITS;
2920 npages = used_len >> TARGET_PAGE_BITS;
2921
2922 qemu_mutex_lock(&ram_state->bitmap_mutex);
2923 /*
2924 * The skipped free pages are equavalent to be sent from clear_bmap's
2925 * perspective, so clear the bits from the memory region bitmap which
2926 * are initially set. Otherwise those skipped pages will be sent in
2927 * the next round after syncing from the memory region bitmap.
2928 */
2929 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2930 ram_state->migration_dirty_pages -=
2931 bitmap_count_one_with_offset(block->bmap, start, npages);
2932 bitmap_clear(block->bmap, start, npages);
2933 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2934 }
2935 }
2936
2937 #define MAPPED_RAM_HDR_VERSION 1
2938 struct MappedRamHeader {
2939 uint32_t version;
2940 /*
2941 * The target's page size, so we know how many pages are in the
2942 * bitmap.
2943 */
2944 uint64_t page_size;
2945 /*
2946 * The offset in the migration file where the pages bitmap is
2947 * stored.
2948 */
2949 uint64_t bitmap_offset;
2950 /*
2951 * The offset in the migration file where the actual pages (data)
2952 * are stored.
2953 */
2954 uint64_t pages_offset;
2955 } QEMU_PACKED;
2956 typedef struct MappedRamHeader MappedRamHeader;
2957
mapped_ram_setup_ramblock(QEMUFile * file,RAMBlock * block)2958 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2959 {
2960 g_autofree MappedRamHeader *header = NULL;
2961 size_t header_size, bitmap_size;
2962 long num_pages;
2963
2964 header = g_new0(MappedRamHeader, 1);
2965 header_size = sizeof(MappedRamHeader);
2966
2967 num_pages = block->used_length >> TARGET_PAGE_BITS;
2968 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
2969
2970 /*
2971 * Save the file offsets of where the bitmap and the pages should
2972 * go as they are written at the end of migration and during the
2973 * iterative phase, respectively.
2974 */
2975 block->bitmap_offset = qemu_get_offset(file) + header_size;
2976 block->pages_offset = ROUND_UP(block->bitmap_offset +
2977 bitmap_size,
2978 MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
2979
2980 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
2981 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
2982 header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
2983 header->pages_offset = cpu_to_be64(block->pages_offset);
2984
2985 qemu_put_buffer(file, (uint8_t *) header, header_size);
2986
2987 /* prepare offset for next ramblock */
2988 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
2989 }
2990
mapped_ram_read_header(QEMUFile * file,MappedRamHeader * header,Error ** errp)2991 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
2992 Error **errp)
2993 {
2994 size_t ret, header_size = sizeof(MappedRamHeader);
2995
2996 ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
2997 if (ret != header_size) {
2998 error_setg(errp, "Could not read whole mapped-ram migration header "
2999 "(expected %zd, got %zd bytes)", header_size, ret);
3000 return false;
3001 }
3002
3003 /* migration stream is big-endian */
3004 header->version = be32_to_cpu(header->version);
3005
3006 if (header->version > MAPPED_RAM_HDR_VERSION) {
3007 error_setg(errp, "Migration mapped-ram capability version not "
3008 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
3009 header->version);
3010 return false;
3011 }
3012
3013 header->page_size = be64_to_cpu(header->page_size);
3014 header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3015 header->pages_offset = be64_to_cpu(header->pages_offset);
3016
3017 return true;
3018 }
3019
3020 /*
3021 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3022 * long-running RCU critical section. When rcu-reclaims in the code
3023 * start to become numerous it will be necessary to reduce the
3024 * granularity of these critical sections.
3025 */
3026
3027 /**
3028 * ram_save_setup: Setup RAM for migration
3029 *
3030 * Returns zero to indicate success and negative for error
3031 *
3032 * @f: QEMUFile where to send the data
3033 * @opaque: RAMState pointer
3034 * @errp: pointer to Error*, to store an error if it happens.
3035 */
ram_save_setup(QEMUFile * f,void * opaque,Error ** errp)3036 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
3037 {
3038 RAMState **rsp = opaque;
3039 RAMBlock *block;
3040 int ret, max_hg_page_size;
3041
3042 /* migration has already setup the bitmap, reuse it. */
3043 if (!migration_in_colo_state()) {
3044 if (ram_init_all(rsp, errp) != 0) {
3045 return -1;
3046 }
3047 }
3048 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3049
3050 /*
3051 * ??? Mirrors the previous value of qemu_host_page_size,
3052 * but is this really what was intended for the migration?
3053 */
3054 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3055
3056 WITH_RCU_READ_LOCK_GUARD() {
3057 qemu_put_be64(f, ram_bytes_total_with_ignored()
3058 | RAM_SAVE_FLAG_MEM_SIZE);
3059
3060 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3061 qemu_put_byte(f, strlen(block->idstr));
3062 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3063 qemu_put_be64(f, block->used_length);
3064 if (migrate_postcopy_ram() &&
3065 block->page_size != max_hg_page_size) {
3066 qemu_put_be64(f, block->page_size);
3067 }
3068 if (migrate_ignore_shared()) {
3069 qemu_put_be64(f, block->mr->addr);
3070 }
3071
3072 if (migrate_mapped_ram()) {
3073 mapped_ram_setup_ramblock(f, block);
3074 }
3075 }
3076 }
3077
3078 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3079 if (ret < 0) {
3080 error_setg(errp, "%s: failed to start RDMA registration", __func__);
3081 qemu_file_set_error(f, ret);
3082 return ret;
3083 }
3084
3085 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3086 if (ret < 0) {
3087 error_setg(errp, "%s: failed to stop RDMA registration", __func__);
3088 qemu_file_set_error(f, ret);
3089 return ret;
3090 }
3091
3092 if (migrate_multifd()) {
3093 multifd_ram_save_setup();
3094 }
3095
3096 /*
3097 * This operation is unfortunate..
3098 *
3099 * For legacy QEMUs using per-section sync
3100 * =======================================
3101 *
3102 * This must exist because the EOS below requires the SYNC messages
3103 * per-channel to work.
3104 *
3105 * For modern QEMUs using per-round sync
3106 * =====================================
3107 *
3108 * Logically such sync is not needed, and recv threads should not run
3109 * until setup ready (using things like channels_ready on src). Then
3110 * we should be all fine.
3111 *
3112 * However even if we add channels_ready to recv side in new QEMUs, old
3113 * QEMU won't have them so this sync will still be needed to make sure
3114 * multifd recv threads won't start processing guest pages early before
3115 * ram_load_setup() is properly done.
3116 *
3117 * Let's stick with this. Fortunately the overhead is low to sync
3118 * during setup because the VM is running, so at least it's not
3119 * accounted as part of downtime.
3120 */
3121 bql_unlock();
3122 ret = multifd_ram_flush_and_sync(f);
3123 bql_lock();
3124 if (ret < 0) {
3125 error_setg(errp, "%s: multifd synchronization failed", __func__);
3126 return ret;
3127 }
3128
3129 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3130 ret = qemu_fflush(f);
3131 if (ret < 0) {
3132 error_setg_errno(errp, -ret, "%s failed", __func__);
3133 }
3134 return ret;
3135 }
3136
ram_save_file_bmap(QEMUFile * f)3137 static void ram_save_file_bmap(QEMUFile *f)
3138 {
3139 RAMBlock *block;
3140
3141 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3142 long num_pages = block->used_length >> TARGET_PAGE_BITS;
3143 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3144
3145 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3146 block->bitmap_offset);
3147 ram_transferred_add(bitmap_size);
3148
3149 /*
3150 * Free the bitmap here to catch any synchronization issues
3151 * with multifd channels. No channels should be sending pages
3152 * after we've written the bitmap to file.
3153 */
3154 g_free(block->file_bmap);
3155 block->file_bmap = NULL;
3156 }
3157 }
3158
ramblock_set_file_bmap_atomic(RAMBlock * block,ram_addr_t offset,bool set)3159 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3160 {
3161 if (set) {
3162 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3163 } else {
3164 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3165 }
3166 }
3167
3168 /**
3169 * ram_save_iterate: iterative stage for migration
3170 *
3171 * Returns zero to indicate success and negative for error
3172 *
3173 * @f: QEMUFile where to send the data
3174 * @opaque: RAMState pointer
3175 */
ram_save_iterate(QEMUFile * f,void * opaque)3176 static int ram_save_iterate(QEMUFile *f, void *opaque)
3177 {
3178 RAMState **temp = opaque;
3179 RAMState *rs = *temp;
3180 int ret = 0;
3181 int i;
3182 int64_t t0;
3183 int done = 0;
3184
3185 /*
3186 * We'll take this lock a little bit long, but it's okay for two reasons.
3187 * Firstly, the only possible other thread to take it is who calls
3188 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3189 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3190 * guarantees that we'll at least released it in a regular basis.
3191 */
3192 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3193 WITH_RCU_READ_LOCK_GUARD() {
3194 if (ram_list.version != rs->last_version) {
3195 ram_state_reset(rs);
3196 }
3197
3198 /* Read version before ram_list.blocks */
3199 smp_rmb();
3200
3201 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3202 if (ret < 0) {
3203 qemu_file_set_error(f, ret);
3204 goto out;
3205 }
3206
3207 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3208 i = 0;
3209 while ((ret = migration_rate_exceeded(f)) == 0 ||
3210 postcopy_has_request(rs)) {
3211 int pages;
3212
3213 if (qemu_file_get_error(f)) {
3214 break;
3215 }
3216
3217 pages = ram_find_and_save_block(rs);
3218 /* no more pages to sent */
3219 if (pages == 0) {
3220 done = 1;
3221 break;
3222 }
3223
3224 if (pages < 0) {
3225 qemu_file_set_error(f, pages);
3226 break;
3227 }
3228
3229 rs->target_page_count += pages;
3230
3231 /*
3232 * we want to check in the 1st loop, just in case it was the 1st
3233 * time and we had to sync the dirty bitmap.
3234 * qemu_clock_get_ns() is a bit expensive, so we only check each
3235 * some iterations
3236 */
3237 if ((i & 63) == 0) {
3238 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3239 1000000;
3240 if (t1 > MAX_WAIT) {
3241 trace_ram_save_iterate_big_wait(t1, i);
3242 break;
3243 }
3244 }
3245 i++;
3246 }
3247 }
3248 }
3249
3250 /*
3251 * Must occur before EOS (or any QEMUFile operation)
3252 * because of RDMA protocol.
3253 */
3254 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3255 if (ret < 0) {
3256 qemu_file_set_error(f, ret);
3257 }
3258
3259 out:
3260 if (ret >= 0 && migration_is_running()) {
3261 if (multifd_ram_sync_per_section()) {
3262 ret = multifd_ram_flush_and_sync(f);
3263 if (ret < 0) {
3264 return ret;
3265 }
3266 }
3267
3268 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3269 ram_transferred_add(8);
3270 ret = qemu_fflush(f);
3271 }
3272 if (ret < 0) {
3273 return ret;
3274 }
3275
3276 return done;
3277 }
3278
3279 /**
3280 * ram_save_complete: function called to send the remaining amount of ram
3281 *
3282 * Returns zero to indicate success or negative on error
3283 *
3284 * Called with the BQL
3285 *
3286 * @f: QEMUFile where to send the data
3287 * @opaque: RAMState pointer
3288 */
ram_save_complete(QEMUFile * f,void * opaque)3289 static int ram_save_complete(QEMUFile *f, void *opaque)
3290 {
3291 RAMState **temp = opaque;
3292 RAMState *rs = *temp;
3293 int ret = 0;
3294
3295 trace_ram_save_complete(rs->migration_dirty_pages, 0);
3296
3297 rs->last_stage = !migration_in_colo_state();
3298
3299 WITH_RCU_READ_LOCK_GUARD() {
3300 if (!migration_in_postcopy()) {
3301 migration_bitmap_sync_precopy(true);
3302 }
3303
3304 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3305 if (ret < 0) {
3306 qemu_file_set_error(f, ret);
3307 return ret;
3308 }
3309
3310 /* try transferring iterative blocks of memory */
3311
3312 /* flush all remaining blocks regardless of rate limiting */
3313 qemu_mutex_lock(&rs->bitmap_mutex);
3314 while (true) {
3315 int pages;
3316
3317 pages = ram_find_and_save_block(rs);
3318 /* no more blocks to sent */
3319 if (pages == 0) {
3320 break;
3321 }
3322 if (pages < 0) {
3323 qemu_mutex_unlock(&rs->bitmap_mutex);
3324 return pages;
3325 }
3326 }
3327 qemu_mutex_unlock(&rs->bitmap_mutex);
3328
3329 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3330 if (ret < 0) {
3331 qemu_file_set_error(f, ret);
3332 return ret;
3333 }
3334 }
3335
3336 if (multifd_ram_sync_per_section()) {
3337 /*
3338 * Only the old dest QEMU will need this sync, because each EOS
3339 * will require one SYNC message on each channel.
3340 */
3341 ret = multifd_ram_flush_and_sync(f);
3342 if (ret < 0) {
3343 return ret;
3344 }
3345 }
3346
3347 if (migrate_mapped_ram()) {
3348 ram_save_file_bmap(f);
3349
3350 if (qemu_file_get_error(f)) {
3351 Error *local_err = NULL;
3352 int err = qemu_file_get_error_obj(f, &local_err);
3353
3354 error_reportf_err(local_err, "Failed to write bitmap to file: ");
3355 return -err;
3356 }
3357 }
3358
3359 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3360
3361 trace_ram_save_complete(rs->migration_dirty_pages, 1);
3362
3363 return qemu_fflush(f);
3364 }
3365
ram_state_pending_estimate(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3366 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3367 uint64_t *can_postcopy)
3368 {
3369 RAMState **temp = opaque;
3370 RAMState *rs = *temp;
3371
3372 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3373
3374 if (migrate_postcopy_ram()) {
3375 /* We can do postcopy, and all the data is postcopiable */
3376 *can_postcopy += remaining_size;
3377 } else {
3378 *must_precopy += remaining_size;
3379 }
3380 }
3381
ram_state_pending_exact(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3382 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3383 uint64_t *can_postcopy)
3384 {
3385 RAMState **temp = opaque;
3386 RAMState *rs = *temp;
3387 uint64_t remaining_size;
3388
3389 if (!migration_in_postcopy()) {
3390 bql_lock();
3391 WITH_RCU_READ_LOCK_GUARD() {
3392 migration_bitmap_sync_precopy(false);
3393 }
3394 bql_unlock();
3395 }
3396
3397 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3398
3399 if (migrate_postcopy_ram()) {
3400 /* We can do postcopy, and all the data is postcopiable */
3401 *can_postcopy += remaining_size;
3402 } else {
3403 *must_precopy += remaining_size;
3404 }
3405 }
3406
load_xbzrle(QEMUFile * f,ram_addr_t addr,void * host)3407 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3408 {
3409 unsigned int xh_len;
3410 int xh_flags;
3411 uint8_t *loaded_data;
3412
3413 /* extract RLE header */
3414 xh_flags = qemu_get_byte(f);
3415 xh_len = qemu_get_be16(f);
3416
3417 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3418 error_report("Failed to load XBZRLE page - wrong compression!");
3419 return -1;
3420 }
3421
3422 if (xh_len > TARGET_PAGE_SIZE) {
3423 error_report("Failed to load XBZRLE page - len overflow!");
3424 return -1;
3425 }
3426 loaded_data = XBZRLE.decoded_buf;
3427 /* load data and decode */
3428 /* it can change loaded_data to point to an internal buffer */
3429 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3430
3431 /* decode RLE */
3432 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3433 TARGET_PAGE_SIZE) == -1) {
3434 error_report("Failed to load XBZRLE page - decode error!");
3435 return -1;
3436 }
3437
3438 return 0;
3439 }
3440
3441 /**
3442 * ram_block_from_stream: read a RAMBlock id from the migration stream
3443 *
3444 * Must be called from within a rcu critical section.
3445 *
3446 * Returns a pointer from within the RCU-protected ram_list.
3447 *
3448 * @mis: the migration incoming state pointer
3449 * @f: QEMUFile where to read the data from
3450 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3451 * @channel: the channel we're using
3452 */
ram_block_from_stream(MigrationIncomingState * mis,QEMUFile * f,int flags,int channel)3453 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3454 QEMUFile *f, int flags,
3455 int channel)
3456 {
3457 RAMBlock *block = mis->last_recv_block[channel];
3458 char id[256];
3459 uint8_t len;
3460
3461 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3462 if (!block) {
3463 error_report("Ack, bad migration stream!");
3464 return NULL;
3465 }
3466 return block;
3467 }
3468
3469 len = qemu_get_byte(f);
3470 qemu_get_buffer(f, (uint8_t *)id, len);
3471 id[len] = 0;
3472
3473 block = qemu_ram_block_by_name(id);
3474 if (!block) {
3475 error_report("Can't find block %s", id);
3476 return NULL;
3477 }
3478
3479 if (migrate_ram_is_ignored(block)) {
3480 error_report("block %s should not be migrated !", id);
3481 return NULL;
3482 }
3483
3484 mis->last_recv_block[channel] = block;
3485
3486 return block;
3487 }
3488
host_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3489 static inline void *host_from_ram_block_offset(RAMBlock *block,
3490 ram_addr_t offset)
3491 {
3492 if (!offset_in_ramblock(block, offset)) {
3493 return NULL;
3494 }
3495
3496 return block->host + offset;
3497 }
3498
host_page_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3499 static void *host_page_from_ram_block_offset(RAMBlock *block,
3500 ram_addr_t offset)
3501 {
3502 /* Note: Explicitly no check against offset_in_ramblock(). */
3503 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3504 block->page_size);
3505 }
3506
host_page_offset_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3507 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3508 ram_addr_t offset)
3509 {
3510 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3511 }
3512
colo_record_bitmap(RAMBlock * block,ram_addr_t * normal,uint32_t pages)3513 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3514 {
3515 qemu_mutex_lock(&ram_state->bitmap_mutex);
3516 for (int i = 0; i < pages; i++) {
3517 ram_addr_t offset = normal[i];
3518 ram_state->migration_dirty_pages += !test_and_set_bit(
3519 offset >> TARGET_PAGE_BITS,
3520 block->bmap);
3521 }
3522 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3523 }
3524
colo_cache_from_block_offset(RAMBlock * block,ram_addr_t offset,bool record_bitmap)3525 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3526 ram_addr_t offset, bool record_bitmap)
3527 {
3528 if (!offset_in_ramblock(block, offset)) {
3529 return NULL;
3530 }
3531 if (!block->colo_cache) {
3532 error_report("%s: colo_cache is NULL in block :%s",
3533 __func__, block->idstr);
3534 return NULL;
3535 }
3536
3537 /*
3538 * During colo checkpoint, we need bitmap of these migrated pages.
3539 * It help us to decide which pages in ram cache should be flushed
3540 * into VM's RAM later.
3541 */
3542 if (record_bitmap) {
3543 colo_record_bitmap(block, &offset, 1);
3544 }
3545 return block->colo_cache + offset;
3546 }
3547
3548 /**
3549 * ram_handle_zero: handle the zero page case
3550 *
3551 * If a page (or a whole RDMA chunk) has been
3552 * determined to be zero, then zap it.
3553 *
3554 * @host: host address for the zero page
3555 * @ch: what the page is filled from. We only support zero
3556 * @size: size of the zero page
3557 */
ram_handle_zero(void * host,uint64_t size)3558 void ram_handle_zero(void *host, uint64_t size)
3559 {
3560 if (!buffer_is_zero(host, size)) {
3561 memset(host, 0, size);
3562 }
3563 }
3564
colo_init_ram_state(void)3565 static void colo_init_ram_state(void)
3566 {
3567 Error *local_err = NULL;
3568
3569 if (!ram_state_init(&ram_state, &local_err)) {
3570 error_report_err(local_err);
3571 }
3572 }
3573
3574 /*
3575 * colo cache: this is for secondary VM, we cache the whole
3576 * memory of the secondary VM, it is need to hold the global lock
3577 * to call this helper.
3578 */
colo_init_ram_cache(void)3579 int colo_init_ram_cache(void)
3580 {
3581 RAMBlock *block;
3582
3583 WITH_RCU_READ_LOCK_GUARD() {
3584 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3585 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3586 NULL, false, false);
3587 if (!block->colo_cache) {
3588 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3589 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3590 block->used_length);
3591 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3592 if (block->colo_cache) {
3593 qemu_anon_ram_free(block->colo_cache, block->used_length);
3594 block->colo_cache = NULL;
3595 }
3596 }
3597 return -errno;
3598 }
3599 if (!machine_dump_guest_core(current_machine)) {
3600 qemu_madvise(block->colo_cache, block->used_length,
3601 QEMU_MADV_DONTDUMP);
3602 }
3603 }
3604 }
3605
3606 /*
3607 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3608 * with to decide which page in cache should be flushed into SVM's RAM. Here
3609 * we use the same name 'ram_bitmap' as for migration.
3610 */
3611 if (ram_bytes_total()) {
3612 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3613 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3614 block->bmap = bitmap_new(pages);
3615 }
3616 }
3617
3618 colo_init_ram_state();
3619 return 0;
3620 }
3621
3622 /* TODO: duplicated with ram_init_bitmaps */
colo_incoming_start_dirty_log(void)3623 void colo_incoming_start_dirty_log(void)
3624 {
3625 RAMBlock *block = NULL;
3626 Error *local_err = NULL;
3627
3628 /* For memory_global_dirty_log_start below. */
3629 bql_lock();
3630 qemu_mutex_lock_ramlist();
3631
3632 memory_global_dirty_log_sync(false);
3633 WITH_RCU_READ_LOCK_GUARD() {
3634 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3635 ramblock_sync_dirty_bitmap(ram_state, block);
3636 /* Discard this dirty bitmap record */
3637 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3638 }
3639 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
3640 &local_err)) {
3641 error_report_err(local_err);
3642 }
3643 }
3644 ram_state->migration_dirty_pages = 0;
3645 qemu_mutex_unlock_ramlist();
3646 bql_unlock();
3647 }
3648
3649 /* It is need to hold the global lock to call this helper */
colo_release_ram_cache(void)3650 void colo_release_ram_cache(void)
3651 {
3652 RAMBlock *block;
3653
3654 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3655 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3656 g_free(block->bmap);
3657 block->bmap = NULL;
3658 }
3659
3660 WITH_RCU_READ_LOCK_GUARD() {
3661 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3662 if (block->colo_cache) {
3663 qemu_anon_ram_free(block->colo_cache, block->used_length);
3664 block->colo_cache = NULL;
3665 }
3666 }
3667 }
3668 ram_state_cleanup(&ram_state);
3669 }
3670
3671 /**
3672 * ram_load_setup: Setup RAM for migration incoming side
3673 *
3674 * Returns zero to indicate success and negative for error
3675 *
3676 * @f: QEMUFile where to receive the data
3677 * @opaque: RAMState pointer
3678 * @errp: pointer to Error*, to store an error if it happens.
3679 */
ram_load_setup(QEMUFile * f,void * opaque,Error ** errp)3680 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
3681 {
3682 xbzrle_load_setup();
3683 ramblock_recv_map_init();
3684
3685 return 0;
3686 }
3687
ram_load_cleanup(void * opaque)3688 static int ram_load_cleanup(void *opaque)
3689 {
3690 RAMBlock *rb;
3691
3692 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3693 if (memory_region_is_nonvolatile(rb->mr)) {
3694 qemu_ram_block_writeback(rb);
3695 }
3696 }
3697
3698 xbzrle_load_cleanup();
3699
3700 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3701 g_free(rb->receivedmap);
3702 rb->receivedmap = NULL;
3703 }
3704
3705 return 0;
3706 }
3707
3708 /**
3709 * ram_postcopy_incoming_init: allocate postcopy data structures
3710 *
3711 * Returns 0 for success and negative if there was one error
3712 *
3713 * @mis: current migration incoming state
3714 *
3715 * Allocate data structures etc needed by incoming migration with
3716 * postcopy-ram. postcopy-ram's similarly names
3717 * postcopy_ram_incoming_init does the work.
3718 */
ram_postcopy_incoming_init(MigrationIncomingState * mis)3719 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3720 {
3721 return postcopy_ram_incoming_init(mis);
3722 }
3723
3724 /**
3725 * ram_load_postcopy: load a page in postcopy case
3726 *
3727 * Returns 0 for success or -errno in case of error
3728 *
3729 * Called in postcopy mode by ram_load().
3730 * rcu_read_lock is taken prior to this being called.
3731 *
3732 * @f: QEMUFile where to send the data
3733 * @channel: the channel to use for loading
3734 */
ram_load_postcopy(QEMUFile * f,int channel)3735 int ram_load_postcopy(QEMUFile *f, int channel)
3736 {
3737 int flags = 0, ret = 0;
3738 bool place_needed = false;
3739 bool matches_target_page_size = false;
3740 MigrationIncomingState *mis = migration_incoming_get_current();
3741 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3742
3743 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3744 ram_addr_t addr;
3745 void *page_buffer = NULL;
3746 void *place_source = NULL;
3747 RAMBlock *block = NULL;
3748 uint8_t ch;
3749
3750 addr = qemu_get_be64(f);
3751
3752 /*
3753 * If qemu file error, we should stop here, and then "addr"
3754 * may be invalid
3755 */
3756 ret = qemu_file_get_error(f);
3757 if (ret) {
3758 break;
3759 }
3760
3761 flags = addr & ~TARGET_PAGE_MASK;
3762 addr &= TARGET_PAGE_MASK;
3763
3764 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3765 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3766 block = ram_block_from_stream(mis, f, flags, channel);
3767 if (!block) {
3768 ret = -EINVAL;
3769 break;
3770 }
3771
3772 /*
3773 * Relying on used_length is racy and can result in false positives.
3774 * We might place pages beyond used_length in case RAM was shrunk
3775 * while in postcopy, which is fine - trying to place via
3776 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3777 */
3778 if (!block->host || addr >= block->postcopy_length) {
3779 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3780 ret = -EINVAL;
3781 break;
3782 }
3783 tmp_page->target_pages++;
3784 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3785 /*
3786 * Postcopy requires that we place whole host pages atomically;
3787 * these may be huge pages for RAMBlocks that are backed by
3788 * hugetlbfs.
3789 * To make it atomic, the data is read into a temporary page
3790 * that's moved into place later.
3791 * The migration protocol uses, possibly smaller, target-pages
3792 * however the source ensures it always sends all the components
3793 * of a host page in one chunk.
3794 */
3795 page_buffer = tmp_page->tmp_huge_page +
3796 host_page_offset_from_ram_block_offset(block, addr);
3797 /* If all TP are zero then we can optimise the place */
3798 if (tmp_page->target_pages == 1) {
3799 tmp_page->host_addr =
3800 host_page_from_ram_block_offset(block, addr);
3801 } else if (tmp_page->host_addr !=
3802 host_page_from_ram_block_offset(block, addr)) {
3803 /* not the 1st TP within the HP */
3804 error_report("Non-same host page detected on channel %d: "
3805 "Target host page %p, received host page %p "
3806 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3807 channel, tmp_page->host_addr,
3808 host_page_from_ram_block_offset(block, addr),
3809 block->idstr, addr, tmp_page->target_pages);
3810 ret = -EINVAL;
3811 break;
3812 }
3813
3814 /*
3815 * If it's the last part of a host page then we place the host
3816 * page
3817 */
3818 if (tmp_page->target_pages ==
3819 (block->page_size / TARGET_PAGE_SIZE)) {
3820 place_needed = true;
3821 }
3822 place_source = tmp_page->tmp_huge_page;
3823 }
3824
3825 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3826 case RAM_SAVE_FLAG_ZERO:
3827 ch = qemu_get_byte(f);
3828 if (ch != 0) {
3829 error_report("Found a zero page with value %d", ch);
3830 ret = -EINVAL;
3831 break;
3832 }
3833 /*
3834 * Can skip to set page_buffer when
3835 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3836 */
3837 if (!matches_target_page_size) {
3838 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3839 }
3840 break;
3841
3842 case RAM_SAVE_FLAG_PAGE:
3843 tmp_page->all_zero = false;
3844 if (!matches_target_page_size) {
3845 /* For huge pages, we always use temporary buffer */
3846 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3847 } else {
3848 /*
3849 * For small pages that matches target page size, we
3850 * avoid the qemu_file copy. Instead we directly use
3851 * the buffer of QEMUFile to place the page. Note: we
3852 * cannot do any QEMUFile operation before using that
3853 * buffer to make sure the buffer is valid when
3854 * placing the page.
3855 */
3856 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3857 TARGET_PAGE_SIZE);
3858 }
3859 break;
3860 case RAM_SAVE_FLAG_EOS:
3861 break;
3862 default:
3863 error_report("Unknown combination of migration flags: 0x%x"
3864 " (postcopy mode)", flags);
3865 ret = -EINVAL;
3866 break;
3867 }
3868
3869 /* Detect for any possible file errors */
3870 if (!ret && qemu_file_get_error(f)) {
3871 ret = qemu_file_get_error(f);
3872 }
3873
3874 if (!ret && place_needed) {
3875 if (tmp_page->all_zero) {
3876 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3877 } else {
3878 ret = postcopy_place_page(mis, tmp_page->host_addr,
3879 place_source, block);
3880 }
3881 place_needed = false;
3882 postcopy_temp_page_reset(tmp_page);
3883 }
3884 }
3885
3886 return ret;
3887 }
3888
postcopy_is_running(void)3889 static bool postcopy_is_running(void)
3890 {
3891 PostcopyState ps = postcopy_state_get();
3892 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3893 }
3894
3895 /*
3896 * Flush content of RAM cache into SVM's memory.
3897 * Only flush the pages that be dirtied by PVM or SVM or both.
3898 */
colo_flush_ram_cache(void)3899 void colo_flush_ram_cache(void)
3900 {
3901 RAMBlock *block = NULL;
3902 void *dst_host;
3903 void *src_host;
3904 unsigned long offset = 0;
3905
3906 memory_global_dirty_log_sync(false);
3907 qemu_mutex_lock(&ram_state->bitmap_mutex);
3908 WITH_RCU_READ_LOCK_GUARD() {
3909 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3910 ramblock_sync_dirty_bitmap(ram_state, block);
3911 }
3912 }
3913
3914 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3915 WITH_RCU_READ_LOCK_GUARD() {
3916 block = QLIST_FIRST_RCU(&ram_list.blocks);
3917
3918 while (block) {
3919 unsigned long num = 0;
3920
3921 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3922 if (!offset_in_ramblock(block,
3923 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3924 offset = 0;
3925 num = 0;
3926 block = QLIST_NEXT_RCU(block, next);
3927 } else {
3928 unsigned long i = 0;
3929
3930 for (i = 0; i < num; i++) {
3931 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3932 }
3933 dst_host = block->host
3934 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3935 src_host = block->colo_cache
3936 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3937 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3938 offset += num;
3939 }
3940 }
3941 }
3942 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3943 trace_colo_flush_ram_cache_end();
3944 }
3945
ram_load_multifd_pages(void * host_addr,size_t size,uint64_t offset)3946 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3947 uint64_t offset)
3948 {
3949 MultiFDRecvData *data = multifd_get_recv_data();
3950
3951 data->opaque = host_addr;
3952 data->file_offset = offset;
3953 data->size = size;
3954
3955 if (!multifd_recv()) {
3956 return 0;
3957 }
3958
3959 return size;
3960 }
3961
read_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,long num_pages,unsigned long * bitmap,Error ** errp)3962 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3963 long num_pages, unsigned long *bitmap,
3964 Error **errp)
3965 {
3966 ERRP_GUARD();
3967 unsigned long set_bit_idx, clear_bit_idx;
3968 ram_addr_t offset;
3969 void *host;
3970 size_t read, unread, size;
3971
3972 for (set_bit_idx = find_first_bit(bitmap, num_pages);
3973 set_bit_idx < num_pages;
3974 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
3975
3976 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
3977
3978 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
3979 offset = set_bit_idx << TARGET_PAGE_BITS;
3980
3981 while (unread > 0) {
3982 host = host_from_ram_block_offset(block, offset);
3983 if (!host) {
3984 error_setg(errp, "page outside of ramblock %s range",
3985 block->idstr);
3986 return false;
3987 }
3988
3989 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
3990
3991 if (migrate_multifd()) {
3992 read = ram_load_multifd_pages(host, size,
3993 block->pages_offset + offset);
3994 } else {
3995 read = qemu_get_buffer_at(f, host, size,
3996 block->pages_offset + offset);
3997 }
3998
3999 if (!read) {
4000 goto err;
4001 }
4002 offset += read;
4003 unread -= read;
4004 }
4005 }
4006
4007 return true;
4008
4009 err:
4010 qemu_file_get_error_obj(f, errp);
4011 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
4012 "from file offset %" PRIx64 ": ", block->idstr, offset,
4013 block->pages_offset + offset);
4014 return false;
4015 }
4016
parse_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,ram_addr_t length,Error ** errp)4017 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4018 ram_addr_t length, Error **errp)
4019 {
4020 g_autofree unsigned long *bitmap = NULL;
4021 MappedRamHeader header;
4022 size_t bitmap_size;
4023 long num_pages;
4024
4025 if (!mapped_ram_read_header(f, &header, errp)) {
4026 return;
4027 }
4028
4029 block->pages_offset = header.pages_offset;
4030
4031 /*
4032 * Check the alignment of the file region that contains pages. We
4033 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4034 * value to change in the future. Do only a sanity check with page
4035 * size alignment.
4036 */
4037 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4038 error_setg(errp,
4039 "Error reading ramblock %s pages, region has bad alignment",
4040 block->idstr);
4041 return;
4042 }
4043
4044 num_pages = length / header.page_size;
4045 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4046
4047 bitmap = g_malloc0(bitmap_size);
4048 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4049 header.bitmap_offset) != bitmap_size) {
4050 error_setg(errp, "Error reading dirty bitmap");
4051 return;
4052 }
4053
4054 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4055 return;
4056 }
4057
4058 /* Skip pages array */
4059 qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4060 }
4061
parse_ramblock(QEMUFile * f,RAMBlock * block,ram_addr_t length)4062 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4063 {
4064 int ret = 0;
4065 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4066 bool postcopy_advised = migration_incoming_postcopy_advised();
4067 int max_hg_page_size;
4068 Error *local_err = NULL;
4069
4070 assert(block);
4071
4072 if (migrate_mapped_ram()) {
4073 parse_ramblock_mapped_ram(f, block, length, &local_err);
4074 if (local_err) {
4075 error_report_err(local_err);
4076 return -EINVAL;
4077 }
4078 return 0;
4079 }
4080
4081 if (!qemu_ram_is_migratable(block)) {
4082 error_report("block %s should not be migrated !", block->idstr);
4083 return -EINVAL;
4084 }
4085
4086 if (length != block->used_length) {
4087 ret = qemu_ram_resize(block, length, &local_err);
4088 if (local_err) {
4089 error_report_err(local_err);
4090 return ret;
4091 }
4092 }
4093
4094 /*
4095 * ??? Mirrors the previous value of qemu_host_page_size,
4096 * but is this really what was intended for the migration?
4097 */
4098 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4099
4100 /* For postcopy we need to check hugepage sizes match */
4101 if (postcopy_advised && migrate_postcopy_ram() &&
4102 block->page_size != max_hg_page_size) {
4103 uint64_t remote_page_size = qemu_get_be64(f);
4104 if (remote_page_size != block->page_size) {
4105 error_report("Mismatched RAM page size %s "
4106 "(local) %zd != %" PRId64, block->idstr,
4107 block->page_size, remote_page_size);
4108 return -EINVAL;
4109 }
4110 }
4111 if (migrate_ignore_shared()) {
4112 hwaddr addr = qemu_get_be64(f);
4113 if (migrate_ram_is_ignored(block) &&
4114 block->mr->addr != addr) {
4115 error_report("Mismatched GPAs for block %s "
4116 "%" PRId64 "!= %" PRId64, block->idstr,
4117 (uint64_t)addr, (uint64_t)block->mr->addr);
4118 return -EINVAL;
4119 }
4120 }
4121 ret = rdma_block_notification_handle(f, block->idstr);
4122 if (ret < 0) {
4123 qemu_file_set_error(f, ret);
4124 }
4125
4126 return ret;
4127 }
4128
parse_ramblocks(QEMUFile * f,ram_addr_t total_ram_bytes)4129 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4130 {
4131 int ret = 0;
4132
4133 /* Synchronize RAM block list */
4134 while (!ret && total_ram_bytes) {
4135 RAMBlock *block;
4136 char id[256];
4137 ram_addr_t length;
4138 int len = qemu_get_byte(f);
4139
4140 qemu_get_buffer(f, (uint8_t *)id, len);
4141 id[len] = 0;
4142 length = qemu_get_be64(f);
4143
4144 block = qemu_ram_block_by_name(id);
4145 if (block) {
4146 ret = parse_ramblock(f, block, length);
4147 } else {
4148 error_report("Unknown ramblock \"%s\", cannot accept "
4149 "migration", id);
4150 ret = -EINVAL;
4151 }
4152 total_ram_bytes -= length;
4153 }
4154
4155 return ret;
4156 }
4157
4158 /**
4159 * ram_load_precopy: load pages in precopy case
4160 *
4161 * Returns 0 for success or -errno in case of error
4162 *
4163 * Called in precopy mode by ram_load().
4164 * rcu_read_lock is taken prior to this being called.
4165 *
4166 * @f: QEMUFile where to send the data
4167 */
ram_load_precopy(QEMUFile * f)4168 static int ram_load_precopy(QEMUFile *f)
4169 {
4170 MigrationIncomingState *mis = migration_incoming_get_current();
4171 int flags = 0, ret = 0, invalid_flags = 0, i = 0;
4172
4173 if (migrate_mapped_ram()) {
4174 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4175 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4176 RAM_SAVE_FLAG_ZERO);
4177 }
4178
4179 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4180 ram_addr_t addr;
4181 void *host = NULL, *host_bak = NULL;
4182 uint8_t ch;
4183
4184 /*
4185 * Yield periodically to let main loop run, but an iteration of
4186 * the main loop is expensive, so do it each some iterations
4187 */
4188 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4189 aio_co_schedule(qemu_get_current_aio_context(),
4190 qemu_coroutine_self());
4191 qemu_coroutine_yield();
4192 }
4193 i++;
4194
4195 addr = qemu_get_be64(f);
4196 ret = qemu_file_get_error(f);
4197 if (ret) {
4198 error_report("Getting RAM address failed");
4199 break;
4200 }
4201
4202 flags = addr & ~TARGET_PAGE_MASK;
4203 addr &= TARGET_PAGE_MASK;
4204
4205 if (flags & invalid_flags) {
4206 error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4207
4208 ret = -EINVAL;
4209 break;
4210 }
4211
4212 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4213 RAM_SAVE_FLAG_XBZRLE)) {
4214 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4215 RAM_CHANNEL_PRECOPY);
4216
4217 host = host_from_ram_block_offset(block, addr);
4218 /*
4219 * After going into COLO stage, we should not load the page
4220 * into SVM's memory directly, we put them into colo_cache firstly.
4221 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4222 * Previously, we copied all these memory in preparing stage of COLO
4223 * while we need to stop VM, which is a time-consuming process.
4224 * Here we optimize it by a trick, back-up every page while in
4225 * migration process while COLO is enabled, though it affects the
4226 * speed of the migration, but it obviously reduce the downtime of
4227 * back-up all SVM'S memory in COLO preparing stage.
4228 */
4229 if (migration_incoming_colo_enabled()) {
4230 if (migration_incoming_in_colo_state()) {
4231 /* In COLO stage, put all pages into cache temporarily */
4232 host = colo_cache_from_block_offset(block, addr, true);
4233 } else {
4234 /*
4235 * In migration stage but before COLO stage,
4236 * Put all pages into both cache and SVM's memory.
4237 */
4238 host_bak = colo_cache_from_block_offset(block, addr, false);
4239 }
4240 }
4241 if (!host) {
4242 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4243 ret = -EINVAL;
4244 break;
4245 }
4246 if (!migration_incoming_in_colo_state()) {
4247 ramblock_recv_bitmap_set(block, host);
4248 }
4249
4250 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4251 }
4252
4253 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4254 case RAM_SAVE_FLAG_MEM_SIZE:
4255 ret = parse_ramblocks(f, addr);
4256 /*
4257 * For mapped-ram migration (to a file) using multifd, we sync
4258 * once and for all here to make sure all tasks we queued to
4259 * multifd threads are completed, so that all the ramblocks
4260 * (including all the guest memory pages within) are fully
4261 * loaded after this sync returns.
4262 */
4263 if (migrate_mapped_ram()) {
4264 multifd_recv_sync_main();
4265 }
4266 break;
4267
4268 case RAM_SAVE_FLAG_ZERO:
4269 ch = qemu_get_byte(f);
4270 if (ch != 0) {
4271 error_report("Found a zero page with value %d", ch);
4272 ret = -EINVAL;
4273 break;
4274 }
4275 ram_handle_zero(host, TARGET_PAGE_SIZE);
4276 break;
4277
4278 case RAM_SAVE_FLAG_PAGE:
4279 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4280 break;
4281
4282 case RAM_SAVE_FLAG_XBZRLE:
4283 if (load_xbzrle(f, addr, host) < 0) {
4284 error_report("Failed to decompress XBZRLE page at "
4285 RAM_ADDR_FMT, addr);
4286 ret = -EINVAL;
4287 break;
4288 }
4289 break;
4290 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4291 multifd_recv_sync_main();
4292 break;
4293 case RAM_SAVE_FLAG_EOS:
4294 /* normal exit */
4295 if (migrate_multifd() &&
4296 migrate_multifd_flush_after_each_section() &&
4297 /*
4298 * Mapped-ram migration flushes once and for all after
4299 * parsing ramblocks. Always ignore EOS for it.
4300 */
4301 !migrate_mapped_ram()) {
4302 multifd_recv_sync_main();
4303 }
4304 break;
4305 case RAM_SAVE_FLAG_HOOK:
4306 ret = rdma_registration_handle(f);
4307 if (ret < 0) {
4308 qemu_file_set_error(f, ret);
4309 }
4310 break;
4311 default:
4312 error_report("Unknown combination of migration flags: 0x%x", flags);
4313 ret = -EINVAL;
4314 }
4315 if (!ret) {
4316 ret = qemu_file_get_error(f);
4317 }
4318 if (!ret && host_bak) {
4319 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4320 }
4321 }
4322
4323 return ret;
4324 }
4325
ram_load(QEMUFile * f,void * opaque,int version_id)4326 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4327 {
4328 int ret = 0;
4329 static uint64_t seq_iter;
4330 /*
4331 * If system is running in postcopy mode, page inserts to host memory must
4332 * be atomic
4333 */
4334 bool postcopy_running = postcopy_is_running();
4335
4336 seq_iter++;
4337
4338 if (version_id != 4) {
4339 return -EINVAL;
4340 }
4341
4342 /*
4343 * This RCU critical section can be very long running.
4344 * When RCU reclaims in the code start to become numerous,
4345 * it will be necessary to reduce the granularity of this
4346 * critical section.
4347 */
4348 trace_ram_load_start();
4349 WITH_RCU_READ_LOCK_GUARD() {
4350 if (postcopy_running) {
4351 /*
4352 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4353 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4354 * service fast page faults.
4355 */
4356 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4357 } else {
4358 ret = ram_load_precopy(f);
4359 }
4360 }
4361 trace_ram_load_complete(ret, seq_iter);
4362
4363 return ret;
4364 }
4365
ram_has_postcopy(void * opaque)4366 static bool ram_has_postcopy(void *opaque)
4367 {
4368 RAMBlock *rb;
4369 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4370 if (ramblock_is_pmem(rb)) {
4371 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4372 "is not supported now!", rb->idstr, rb->host);
4373 return false;
4374 }
4375 }
4376
4377 return migrate_postcopy_ram();
4378 }
4379
4380 /* Sync all the dirty bitmap with destination VM. */
ram_dirty_bitmap_sync_all(MigrationState * s,RAMState * rs)4381 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4382 {
4383 RAMBlock *block;
4384 QEMUFile *file = s->to_dst_file;
4385
4386 trace_ram_dirty_bitmap_sync_start();
4387
4388 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4389 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4390 qemu_savevm_send_recv_bitmap(file, block->idstr);
4391 trace_ram_dirty_bitmap_request(block->idstr);
4392 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4393 }
4394
4395 trace_ram_dirty_bitmap_sync_wait();
4396
4397 /* Wait until all the ramblocks' dirty bitmap synced */
4398 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4399 if (migration_rp_wait(s)) {
4400 return -1;
4401 }
4402 }
4403
4404 trace_ram_dirty_bitmap_sync_complete();
4405
4406 return 0;
4407 }
4408
4409 /*
4410 * Read the received bitmap, revert it as the initial dirty bitmap.
4411 * This is only used when the postcopy migration is paused but wants
4412 * to resume from a middle point.
4413 *
4414 * Returns true if succeeded, false for errors.
4415 */
ram_dirty_bitmap_reload(MigrationState * s,RAMBlock * block,Error ** errp)4416 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4417 {
4418 /* from_dst_file is always valid because we're within rp_thread */
4419 QEMUFile *file = s->rp_state.from_dst_file;
4420 g_autofree unsigned long *le_bitmap = NULL;
4421 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4422 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4423 uint64_t size, end_mark;
4424 RAMState *rs = ram_state;
4425
4426 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4427
4428 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4429 error_setg(errp, "Reload bitmap in incorrect state %s",
4430 MigrationStatus_str(s->state));
4431 return false;
4432 }
4433
4434 /*
4435 * Note: see comments in ramblock_recv_bitmap_send() on why we
4436 * need the endianness conversion, and the paddings.
4437 */
4438 local_size = ROUND_UP(local_size, 8);
4439
4440 /* Add paddings */
4441 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4442
4443 size = qemu_get_be64(file);
4444
4445 /* The size of the bitmap should match with our ramblock */
4446 if (size != local_size) {
4447 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4448 " != 0x%"PRIx64")", block->idstr, size, local_size);
4449 return false;
4450 }
4451
4452 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4453 end_mark = qemu_get_be64(file);
4454
4455 if (qemu_file_get_error(file) || size != local_size) {
4456 error_setg(errp, "read bitmap failed for ramblock '%s': "
4457 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4458 block->idstr, local_size, size);
4459 return false;
4460 }
4461
4462 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4463 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4464 block->idstr, end_mark);
4465 return false;
4466 }
4467
4468 /*
4469 * Endianness conversion. We are during postcopy (though paused).
4470 * The dirty bitmap won't change. We can directly modify it.
4471 */
4472 bitmap_from_le(block->bmap, le_bitmap, nbits);
4473
4474 /*
4475 * What we received is "received bitmap". Revert it as the initial
4476 * dirty bitmap for this ramblock.
4477 */
4478 bitmap_complement(block->bmap, block->bmap, nbits);
4479
4480 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4481 ramblock_dirty_bitmap_clear_discarded_pages(block);
4482
4483 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4484 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4485
4486 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4487
4488 /*
4489 * We succeeded to sync bitmap for current ramblock. Always kick the
4490 * migration thread to check whether all requested bitmaps are
4491 * reloaded. NOTE: it's racy to only kick when requested==0, because
4492 * we don't know whether the migration thread may still be increasing
4493 * it.
4494 */
4495 migration_rp_kick(s);
4496
4497 return true;
4498 }
4499
ram_resume_prepare(MigrationState * s,void * opaque)4500 static int ram_resume_prepare(MigrationState *s, void *opaque)
4501 {
4502 RAMState *rs = *(RAMState **)opaque;
4503 int ret;
4504
4505 ret = ram_dirty_bitmap_sync_all(s, rs);
4506 if (ret) {
4507 return ret;
4508 }
4509
4510 ram_state_resume_prepare(rs, s->to_dst_file);
4511
4512 return 0;
4513 }
4514
ram_save_postcopy_prepare(QEMUFile * f,void * opaque,Error ** errp)4515 static bool ram_save_postcopy_prepare(QEMUFile *f, void *opaque, Error **errp)
4516 {
4517 int ret;
4518
4519 if (migrate_multifd()) {
4520 /*
4521 * When multifd is enabled, source QEMU needs to make sure all the
4522 * pages queued before postcopy starts have been flushed.
4523 *
4524 * The load of these pages must happen before switching to postcopy.
4525 * It's because loading of guest pages (so far) in multifd recv
4526 * threads is still non-atomic, so the load cannot happen with vCPUs
4527 * running on the destination side.
4528 *
4529 * This flush and sync will guarantee that those pages are loaded
4530 * _before_ postcopy starts on the destination. The rationale is,
4531 * this happens before VM stops (and before source QEMU sends all
4532 * the rest of the postcopy messages). So when the destination QEMU
4533 * receives the postcopy messages, it must have received the sync
4534 * message on the main channel (either RAM_SAVE_FLAG_MULTIFD_FLUSH,
4535 * or RAM_SAVE_FLAG_EOS), and such message would guarantee that
4536 * all previous guest pages queued in the multifd channels are
4537 * completely loaded.
4538 */
4539 ret = multifd_ram_flush_and_sync(f);
4540 if (ret < 0) {
4541 error_setg(errp, "%s: multifd flush and sync failed", __func__);
4542 return false;
4543 }
4544 }
4545
4546 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
4547
4548 return true;
4549 }
4550
postcopy_preempt_shutdown_file(MigrationState * s)4551 void postcopy_preempt_shutdown_file(MigrationState *s)
4552 {
4553 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4554 qemu_fflush(s->postcopy_qemufile_src);
4555 }
4556
4557 static SaveVMHandlers savevm_ram_handlers = {
4558 .save_setup = ram_save_setup,
4559 .save_live_iterate = ram_save_iterate,
4560 .save_complete = ram_save_complete,
4561 .has_postcopy = ram_has_postcopy,
4562 .state_pending_exact = ram_state_pending_exact,
4563 .state_pending_estimate = ram_state_pending_estimate,
4564 .load_state = ram_load,
4565 .save_cleanup = ram_save_cleanup,
4566 .load_setup = ram_load_setup,
4567 .load_cleanup = ram_load_cleanup,
4568 .resume_prepare = ram_resume_prepare,
4569 .save_postcopy_prepare = ram_save_postcopy_prepare,
4570 };
4571
ram_mig_ram_block_resized(RAMBlockNotifier * n,void * host,size_t old_size,size_t new_size)4572 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4573 size_t old_size, size_t new_size)
4574 {
4575 PostcopyState ps = postcopy_state_get();
4576 ram_addr_t offset;
4577 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4578 Error *err = NULL;
4579
4580 if (!rb) {
4581 error_report("RAM block not found");
4582 return;
4583 }
4584
4585 if (migrate_ram_is_ignored(rb)) {
4586 return;
4587 }
4588
4589 if (migration_is_running()) {
4590 /*
4591 * Precopy code on the source cannot deal with the size of RAM blocks
4592 * changing at random points in time - especially after sending the
4593 * RAM block sizes in the migration stream, they must no longer change.
4594 * Abort and indicate a proper reason.
4595 */
4596 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4597 migrate_set_error(migrate_get_current(), err);
4598 error_free(err);
4599
4600 migration_cancel();
4601 }
4602
4603 switch (ps) {
4604 case POSTCOPY_INCOMING_ADVISE:
4605 /*
4606 * Update what ram_postcopy_incoming_init()->init_range() does at the
4607 * time postcopy was advised. Syncing RAM blocks with the source will
4608 * result in RAM resizes.
4609 */
4610 if (old_size < new_size) {
4611 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4612 error_report("RAM block '%s' discard of resized RAM failed",
4613 rb->idstr);
4614 }
4615 }
4616 rb->postcopy_length = new_size;
4617 break;
4618 case POSTCOPY_INCOMING_NONE:
4619 case POSTCOPY_INCOMING_RUNNING:
4620 case POSTCOPY_INCOMING_END:
4621 /*
4622 * Once our guest is running, postcopy does no longer care about
4623 * resizes. When growing, the new memory was not available on the
4624 * source, no handler needed.
4625 */
4626 break;
4627 default:
4628 error_report("RAM block '%s' resized during postcopy state: %d",
4629 rb->idstr, ps);
4630 exit(-1);
4631 }
4632 }
4633
4634 static RAMBlockNotifier ram_mig_ram_notifier = {
4635 .ram_block_resized = ram_mig_ram_block_resized,
4636 };
4637
ram_mig_init(void)4638 void ram_mig_init(void)
4639 {
4640 qemu_mutex_init(&XBZRLE.lock);
4641 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4642 ram_block_notifier_add(&ram_mig_ram_notifier);
4643 }
4644