1 /*
2 * QEMU Plugin API
3 *
4 * This provides the API that is available to the plugins to interact
5 * with QEMU. We have to be careful not to expose internal details of
6 * how QEMU works so we abstract out things like translation and
7 * instructions to anonymous data types:
8 *
9 * qemu_plugin_tb
10 * qemu_plugin_insn
11 * qemu_plugin_register
12 *
13 * Which can then be passed back into the API to do additional things.
14 * As such all the public functions in here are exported in
15 * qemu-plugin.h.
16 *
17 * The general life-cycle of a plugin is:
18 *
19 * - plugin is loaded, public qemu_plugin_install called
20 * - the install func registers callbacks for events
21 * - usually an atexit_cb is registered to dump info at the end
22 * - when a registered event occurs the plugin is called
23 * - some events pass additional info
24 * - during translation the plugin can decide to instrument any
25 * instruction
26 * - when QEMU exits all the registered atexit callbacks are called
27 *
28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
29 * Copyright (C) 2019, Linaro
30 *
31 * License: GNU GPL, version 2 or later.
32 * See the COPYING file in the top-level directory.
33 *
34 * SPDX-License-Identifier: GPL-2.0-or-later
35 *
36 */
37
38 #include "qemu/osdep.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/plugin.h"
41 #include "qemu/log.h"
42 #include "tcg/tcg.h"
43 #include "exec/gdbstub.h"
44 #include "exec/target_page.h"
45 #include "exec/translation-block.h"
46 #include "exec/translator.h"
47 #include "disas/disas.h"
48 #include "plugin.h"
49
50 /* Uninstall and Reset handlers */
51
qemu_plugin_uninstall(qemu_plugin_id_t id,qemu_plugin_simple_cb_t cb)52 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
53 {
54 plugin_reset_uninstall(id, cb, false);
55 }
56
qemu_plugin_reset(qemu_plugin_id_t id,qemu_plugin_simple_cb_t cb)57 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
58 {
59 plugin_reset_uninstall(id, cb, true);
60 }
61
62 /*
63 * Plugin Register Functions
64 *
65 * This allows the plugin to register callbacks for various events
66 * during the translation.
67 */
68
qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,qemu_plugin_vcpu_simple_cb_t cb)69 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
70 qemu_plugin_vcpu_simple_cb_t cb)
71 {
72 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
73 }
74
qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,qemu_plugin_vcpu_simple_cb_t cb)75 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
76 qemu_plugin_vcpu_simple_cb_t cb)
77 {
78 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
79 }
80
tb_is_mem_only(void)81 static bool tb_is_mem_only(void)
82 {
83 return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY;
84 }
85
qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb * tb,qemu_plugin_vcpu_udata_cb_t cb,enum qemu_plugin_cb_flags flags,void * udata)86 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
87 qemu_plugin_vcpu_udata_cb_t cb,
88 enum qemu_plugin_cb_flags flags,
89 void *udata)
90 {
91 if (!tb_is_mem_only()) {
92 plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata);
93 }
94 }
95
qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb * tb,qemu_plugin_vcpu_udata_cb_t cb,enum qemu_plugin_cb_flags flags,enum qemu_plugin_cond cond,qemu_plugin_u64 entry,uint64_t imm,void * udata)96 void qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb *tb,
97 qemu_plugin_vcpu_udata_cb_t cb,
98 enum qemu_plugin_cb_flags flags,
99 enum qemu_plugin_cond cond,
100 qemu_plugin_u64 entry,
101 uint64_t imm,
102 void *udata)
103 {
104 if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) {
105 return;
106 }
107 if (cond == QEMU_PLUGIN_COND_ALWAYS) {
108 qemu_plugin_register_vcpu_tb_exec_cb(tb, cb, flags, udata);
109 return;
110 }
111 plugin_register_dyn_cond_cb__udata(&tb->cbs, cb, flags,
112 cond, entry, imm, udata);
113 }
114
qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(struct qemu_plugin_tb * tb,enum qemu_plugin_op op,qemu_plugin_u64 entry,uint64_t imm)115 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
116 struct qemu_plugin_tb *tb,
117 enum qemu_plugin_op op,
118 qemu_plugin_u64 entry,
119 uint64_t imm)
120 {
121 if (!tb_is_mem_only()) {
122 plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm);
123 }
124 }
125
qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn * insn,qemu_plugin_vcpu_udata_cb_t cb,enum qemu_plugin_cb_flags flags,void * udata)126 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
127 qemu_plugin_vcpu_udata_cb_t cb,
128 enum qemu_plugin_cb_flags flags,
129 void *udata)
130 {
131 if (!tb_is_mem_only()) {
132 plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata);
133 }
134 }
135
qemu_plugin_register_vcpu_insn_exec_cond_cb(struct qemu_plugin_insn * insn,qemu_plugin_vcpu_udata_cb_t cb,enum qemu_plugin_cb_flags flags,enum qemu_plugin_cond cond,qemu_plugin_u64 entry,uint64_t imm,void * udata)136 void qemu_plugin_register_vcpu_insn_exec_cond_cb(
137 struct qemu_plugin_insn *insn,
138 qemu_plugin_vcpu_udata_cb_t cb,
139 enum qemu_plugin_cb_flags flags,
140 enum qemu_plugin_cond cond,
141 qemu_plugin_u64 entry,
142 uint64_t imm,
143 void *udata)
144 {
145 if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) {
146 return;
147 }
148 if (cond == QEMU_PLUGIN_COND_ALWAYS) {
149 qemu_plugin_register_vcpu_insn_exec_cb(insn, cb, flags, udata);
150 return;
151 }
152 plugin_register_dyn_cond_cb__udata(&insn->insn_cbs, cb, flags,
153 cond, entry, imm, udata);
154 }
155
qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(struct qemu_plugin_insn * insn,enum qemu_plugin_op op,qemu_plugin_u64 entry,uint64_t imm)156 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
157 struct qemu_plugin_insn *insn,
158 enum qemu_plugin_op op,
159 qemu_plugin_u64 entry,
160 uint64_t imm)
161 {
162 if (!tb_is_mem_only()) {
163 plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm);
164 }
165 }
166
167
168 /*
169 * We always plant memory instrumentation because they don't finalise until
170 * after the operation has complete.
171 */
qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn * insn,qemu_plugin_vcpu_mem_cb_t cb,enum qemu_plugin_cb_flags flags,enum qemu_plugin_mem_rw rw,void * udata)172 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
173 qemu_plugin_vcpu_mem_cb_t cb,
174 enum qemu_plugin_cb_flags flags,
175 enum qemu_plugin_mem_rw rw,
176 void *udata)
177 {
178 plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata);
179 }
180
qemu_plugin_register_vcpu_mem_inline_per_vcpu(struct qemu_plugin_insn * insn,enum qemu_plugin_mem_rw rw,enum qemu_plugin_op op,qemu_plugin_u64 entry,uint64_t imm)181 void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
182 struct qemu_plugin_insn *insn,
183 enum qemu_plugin_mem_rw rw,
184 enum qemu_plugin_op op,
185 qemu_plugin_u64 entry,
186 uint64_t imm)
187 {
188 plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm);
189 }
190
qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,qemu_plugin_vcpu_tb_trans_cb_t cb)191 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
192 qemu_plugin_vcpu_tb_trans_cb_t cb)
193 {
194 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
195 }
196
qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,qemu_plugin_vcpu_syscall_cb_t cb)197 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
198 qemu_plugin_vcpu_syscall_cb_t cb)
199 {
200 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
201 }
202
203 void
qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,qemu_plugin_vcpu_syscall_ret_cb_t cb)204 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
205 qemu_plugin_vcpu_syscall_ret_cb_t cb)
206 {
207 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
208 }
209
210 /*
211 * Plugin Queries
212 *
213 * These are queries that the plugin can make to gauge information
214 * from our opaque data types. We do not want to leak internal details
215 * here just information useful to the plugin.
216 */
217
218 /*
219 * Translation block information:
220 *
221 * A plugin can query the virtual address of the start of the block
222 * and the number of instructions in it. It can also get access to
223 * each translated instruction.
224 */
225
qemu_plugin_tb_n_insns(const struct qemu_plugin_tb * tb)226 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
227 {
228 return tb->n;
229 }
230
qemu_plugin_tb_vaddr(const struct qemu_plugin_tb * tb)231 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
232 {
233 const DisasContextBase *db = tcg_ctx->plugin_db;
234 return db->pc_first;
235 }
236
237 struct qemu_plugin_insn *
qemu_plugin_tb_get_insn(const struct qemu_plugin_tb * tb,size_t idx)238 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
239 {
240 struct qemu_plugin_insn *insn;
241 if (unlikely(idx >= tb->n)) {
242 return NULL;
243 }
244 insn = g_ptr_array_index(tb->insns, idx);
245 return insn;
246 }
247
248 /*
249 * Instruction information
250 *
251 * These queries allow the plugin to retrieve information about each
252 * instruction being translated.
253 */
254
qemu_plugin_insn_data(const struct qemu_plugin_insn * insn,void * dest,size_t len)255 size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn,
256 void *dest, size_t len)
257 {
258 const DisasContextBase *db = tcg_ctx->plugin_db;
259
260 len = MIN(len, insn->len);
261 return translator_st(db, dest, insn->vaddr, len) ? len : 0;
262 }
263
qemu_plugin_insn_size(const struct qemu_plugin_insn * insn)264 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
265 {
266 return insn->len;
267 }
268
qemu_plugin_insn_vaddr(const struct qemu_plugin_insn * insn)269 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
270 {
271 return insn->vaddr;
272 }
273
qemu_plugin_insn_haddr(const struct qemu_plugin_insn * insn)274 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
275 {
276 const DisasContextBase *db = tcg_ctx->plugin_db;
277 vaddr page0_last = db->pc_first | ~qemu_target_page_mask();
278
279 if (db->fake_insn) {
280 return NULL;
281 }
282
283 /*
284 * ??? The return value is not intended for use of host memory,
285 * but as a proxy for address space and physical address.
286 * Thus we are only interested in the first byte and do not
287 * care about spanning pages.
288 */
289 if (insn->vaddr <= page0_last) {
290 if (db->host_addr[0] == NULL) {
291 return NULL;
292 }
293 return db->host_addr[0] + insn->vaddr - db->pc_first;
294 } else {
295 if (db->host_addr[1] == NULL) {
296 return NULL;
297 }
298 return db->host_addr[1] + insn->vaddr - (page0_last + 1);
299 }
300 }
301
qemu_plugin_insn_disas(const struct qemu_plugin_insn * insn)302 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
303 {
304 return plugin_disas(tcg_ctx->cpu, tcg_ctx->plugin_db,
305 insn->vaddr, insn->len);
306 }
307
qemu_plugin_insn_symbol(const struct qemu_plugin_insn * insn)308 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
309 {
310 const char *sym = lookup_symbol(insn->vaddr);
311 return sym[0] != 0 ? sym : NULL;
312 }
313
314 /*
315 * The memory queries allow the plugin to query information about a
316 * memory access.
317 */
318
qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)319 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
320 {
321 MemOp op = get_memop(info);
322 return op & MO_SIZE;
323 }
324
qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)325 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
326 {
327 MemOp op = get_memop(info);
328 return op & MO_SIGN;
329 }
330
qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)331 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
332 {
333 MemOp op = get_memop(info);
334 return (op & MO_BSWAP) == MO_BE;
335 }
336
qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)337 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
338 {
339 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
340 }
341
qemu_plugin_mem_get_value(qemu_plugin_meminfo_t info)342 qemu_plugin_mem_value qemu_plugin_mem_get_value(qemu_plugin_meminfo_t info)
343 {
344 uint64_t low = current_cpu->neg.plugin_mem_value_low;
345 qemu_plugin_mem_value value;
346
347 switch (qemu_plugin_mem_size_shift(info)) {
348 case 0:
349 value.type = QEMU_PLUGIN_MEM_VALUE_U8;
350 value.data.u8 = (uint8_t)low;
351 break;
352 case 1:
353 value.type = QEMU_PLUGIN_MEM_VALUE_U16;
354 value.data.u16 = (uint16_t)low;
355 break;
356 case 2:
357 value.type = QEMU_PLUGIN_MEM_VALUE_U32;
358 value.data.u32 = (uint32_t)low;
359 break;
360 case 3:
361 value.type = QEMU_PLUGIN_MEM_VALUE_U64;
362 value.data.u64 = low;
363 break;
364 case 4:
365 value.type = QEMU_PLUGIN_MEM_VALUE_U128;
366 value.data.u128.low = low;
367 value.data.u128.high = current_cpu->neg.plugin_mem_value_high;
368 break;
369 default:
370 g_assert_not_reached();
371 }
372 return value;
373 }
374
qemu_plugin_num_vcpus(void)375 int qemu_plugin_num_vcpus(void)
376 {
377 return plugin_num_vcpus();
378 }
379
380 /*
381 * Plugin output
382 */
qemu_plugin_outs(const char * string)383 void qemu_plugin_outs(const char *string)
384 {
385 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
386 }
387
qemu_plugin_bool_parse(const char * name,const char * value,bool * ret)388 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
389 {
390 return name && value && qapi_bool_parse(name, value, ret, NULL);
391 }
392
393 /*
394 * Create register handles.
395 *
396 * We need to create a handle for each register so the plugin
397 * infrastructure can call gdbstub to read a register. They are
398 * currently just a pointer encapsulation of the gdb_reg but in
399 * future may hold internal plugin state so its important plugin
400 * authors are not tempted to treat them as numbers.
401 *
402 * We also construct a result array with those handles and some
403 * ancillary data the plugin might find useful.
404 */
405
create_register_handles(GArray * gdbstub_regs)406 static GArray *create_register_handles(GArray *gdbstub_regs)
407 {
408 GArray *find_data = g_array_new(true, true,
409 sizeof(qemu_plugin_reg_descriptor));
410
411 for (int i = 0; i < gdbstub_regs->len; i++) {
412 GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i);
413 qemu_plugin_reg_descriptor desc;
414
415 /* skip "un-named" regs */
416 if (!grd->name) {
417 continue;
418 }
419
420 /* Create a record for the plugin */
421 desc.handle = GINT_TO_POINTER(grd->gdb_reg + 1);
422 desc.name = g_intern_string(grd->name);
423 desc.feature = g_intern_string(grd->feature_name);
424 g_array_append_val(find_data, desc);
425 }
426
427 return find_data;
428 }
429
qemu_plugin_get_registers(void)430 GArray *qemu_plugin_get_registers(void)
431 {
432 g_assert(current_cpu);
433
434 g_autoptr(GArray) regs = gdb_get_register_list(current_cpu);
435 return create_register_handles(regs);
436 }
437
qemu_plugin_read_memory_vaddr(uint64_t addr,GByteArray * data,size_t len)438 bool qemu_plugin_read_memory_vaddr(uint64_t addr, GByteArray *data, size_t len)
439 {
440 g_assert(current_cpu);
441
442 if (len == 0) {
443 return false;
444 }
445
446 g_byte_array_set_size(data, len);
447
448 int result = cpu_memory_rw_debug(current_cpu, addr, data->data,
449 data->len, false);
450
451 if (result < 0) {
452 return false;
453 }
454
455 return true;
456 }
457
qemu_plugin_read_register(struct qemu_plugin_register * reg,GByteArray * buf)458 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf)
459 {
460 g_assert(current_cpu);
461
462 return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg) - 1);
463 }
464
qemu_plugin_scoreboard_new(size_t element_size)465 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size)
466 {
467 return plugin_scoreboard_new(element_size);
468 }
469
qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard * score)470 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score)
471 {
472 plugin_scoreboard_free(score);
473 }
474
qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard * score,unsigned int vcpu_index)475 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score,
476 unsigned int vcpu_index)
477 {
478 g_assert(vcpu_index < qemu_plugin_num_vcpus());
479 /* we can't use g_array_index since entry size is not statically known */
480 char *base_ptr = score->data->data;
481 return base_ptr + vcpu_index * g_array_get_element_size(score->data);
482 }
483
plugin_u64_address(qemu_plugin_u64 entry,unsigned int vcpu_index)484 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry,
485 unsigned int vcpu_index)
486 {
487 char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index);
488 return (uint64_t *)(ptr + entry.offset);
489 }
490
qemu_plugin_u64_add(qemu_plugin_u64 entry,unsigned int vcpu_index,uint64_t added)491 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index,
492 uint64_t added)
493 {
494 *plugin_u64_address(entry, vcpu_index) += added;
495 }
496
qemu_plugin_u64_get(qemu_plugin_u64 entry,unsigned int vcpu_index)497 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry,
498 unsigned int vcpu_index)
499 {
500 return *plugin_u64_address(entry, vcpu_index);
501 }
502
qemu_plugin_u64_set(qemu_plugin_u64 entry,unsigned int vcpu_index,uint64_t val)503 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index,
504 uint64_t val)
505 {
506 *plugin_u64_address(entry, vcpu_index) = val;
507 }
508
qemu_plugin_u64_sum(qemu_plugin_u64 entry)509 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry)
510 {
511 uint64_t total = 0;
512 for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) {
513 total += qemu_plugin_u64_get(entry, i);
514 }
515 return total;
516 }
517
518