xref: /openbmc/linux/kernel/signal.c (revision 4877d9b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/signal.h>
53 
54 #include <asm/param.h>
55 #include <linux/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/siginfo.h>
58 #include <asm/cacheflush.h>
59 #include <asm/syscall.h>	/* for syscall_get_* */
60 
61 /*
62  * SLAB caches for signal bits.
63  */
64 
65 static struct kmem_cache *sigqueue_cachep;
66 
67 int print_fatal_signals __read_mostly;
68 
sig_handler(struct task_struct * t,int sig)69 static void __user *sig_handler(struct task_struct *t, int sig)
70 {
71 	return t->sighand->action[sig - 1].sa.sa_handler;
72 }
73 
sig_handler_ignored(void __user * handler,int sig)74 static inline bool sig_handler_ignored(void __user *handler, int sig)
75 {
76 	/* Is it explicitly or implicitly ignored? */
77 	return handler == SIG_IGN ||
78 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
79 }
80 
sig_task_ignored(struct task_struct * t,int sig,bool force)81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	void __user *handler;
84 
85 	handler = sig_handler(t, sig);
86 
87 	/* SIGKILL and SIGSTOP may not be sent to the global init */
88 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 		return true;
90 
91 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 		return true;
94 
95 	/* Only allow kernel generated signals to this kthread */
96 	if (unlikely((t->flags & PF_KTHREAD) &&
97 		     (handler == SIG_KTHREAD_KERNEL) && !force))
98 		return true;
99 
100 	return sig_handler_ignored(handler, sig);
101 }
102 
sig_ignored(struct task_struct * t,int sig,bool force)103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 {
105 	/*
106 	 * Blocked signals are never ignored, since the
107 	 * signal handler may change by the time it is
108 	 * unblocked.
109 	 */
110 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 		return false;
112 
113 	/*
114 	 * Tracers may want to know about even ignored signal unless it
115 	 * is SIGKILL which can't be reported anyway but can be ignored
116 	 * by SIGNAL_UNKILLABLE task.
117 	 */
118 	if (t->ptrace && sig != SIGKILL)
119 		return false;
120 
121 	return sig_task_ignored(t, sig, force);
122 }
123 
124 /*
125  * Re-calculate pending state from the set of locally pending
126  * signals, globally pending signals, and blocked signals.
127  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
129 {
130 	unsigned long ready;
131 	long i;
132 
133 	switch (_NSIG_WORDS) {
134 	default:
135 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 			ready |= signal->sig[i] &~ blocked->sig[i];
137 		break;
138 
139 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
140 		ready |= signal->sig[2] &~ blocked->sig[2];
141 		ready |= signal->sig[1] &~ blocked->sig[1];
142 		ready |= signal->sig[0] &~ blocked->sig[0];
143 		break;
144 
145 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
146 		ready |= signal->sig[0] &~ blocked->sig[0];
147 		break;
148 
149 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
150 	}
151 	return ready !=	0;
152 }
153 
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
155 
recalc_sigpending_tsk(struct task_struct * t)156 static bool recalc_sigpending_tsk(struct task_struct *t)
157 {
158 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 	    PENDING(&t->pending, &t->blocked) ||
160 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
161 	    cgroup_task_frozen(t)) {
162 		set_tsk_thread_flag(t, TIF_SIGPENDING);
163 		return true;
164 	}
165 
166 	/*
167 	 * We must never clear the flag in another thread, or in current
168 	 * when it's possible the current syscall is returning -ERESTART*.
169 	 * So we don't clear it here, and only callers who know they should do.
170 	 */
171 	return false;
172 }
173 
174 /*
175  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
176  * This is superfluous when called on current, the wakeup is a harmless no-op.
177  */
recalc_sigpending_and_wake(struct task_struct * t)178 void recalc_sigpending_and_wake(struct task_struct *t)
179 {
180 	if (recalc_sigpending_tsk(t))
181 		signal_wake_up(t, 0);
182 }
183 
recalc_sigpending(void)184 void recalc_sigpending(void)
185 {
186 	if (!recalc_sigpending_tsk(current) && !freezing(current))
187 		clear_thread_flag(TIF_SIGPENDING);
188 
189 }
190 EXPORT_SYMBOL(recalc_sigpending);
191 
calculate_sigpending(void)192 void calculate_sigpending(void)
193 {
194 	/* Have any signals or users of TIF_SIGPENDING been delayed
195 	 * until after fork?
196 	 */
197 	spin_lock_irq(&current->sighand->siglock);
198 	set_tsk_thread_flag(current, TIF_SIGPENDING);
199 	recalc_sigpending();
200 	spin_unlock_irq(&current->sighand->siglock);
201 }
202 
203 /* Given the mask, find the first available signal that should be serviced. */
204 
205 #define SYNCHRONOUS_MASK \
206 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
207 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
208 
next_signal(struct sigpending * pending,sigset_t * mask)209 int next_signal(struct sigpending *pending, sigset_t *mask)
210 {
211 	unsigned long i, *s, *m, x;
212 	int sig = 0;
213 
214 	s = pending->signal.sig;
215 	m = mask->sig;
216 
217 	/*
218 	 * Handle the first word specially: it contains the
219 	 * synchronous signals that need to be dequeued first.
220 	 */
221 	x = *s &~ *m;
222 	if (x) {
223 		if (x & SYNCHRONOUS_MASK)
224 			x &= SYNCHRONOUS_MASK;
225 		sig = ffz(~x) + 1;
226 		return sig;
227 	}
228 
229 	switch (_NSIG_WORDS) {
230 	default:
231 		for (i = 1; i < _NSIG_WORDS; ++i) {
232 			x = *++s &~ *++m;
233 			if (!x)
234 				continue;
235 			sig = ffz(~x) + i*_NSIG_BPW + 1;
236 			break;
237 		}
238 		break;
239 
240 	case 2:
241 		x = s[1] &~ m[1];
242 		if (!x)
243 			break;
244 		sig = ffz(~x) + _NSIG_BPW + 1;
245 		break;
246 
247 	case 1:
248 		/* Nothing to do */
249 		break;
250 	}
251 
252 	return sig;
253 }
254 
print_dropped_signal(int sig)255 static inline void print_dropped_signal(int sig)
256 {
257 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
258 
259 	if (!print_fatal_signals)
260 		return;
261 
262 	if (!__ratelimit(&ratelimit_state))
263 		return;
264 
265 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
266 				current->comm, current->pid, sig);
267 }
268 
269 /**
270  * task_set_jobctl_pending - set jobctl pending bits
271  * @task: target task
272  * @mask: pending bits to set
273  *
274  * Clear @mask from @task->jobctl.  @mask must be subset of
275  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
276  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
277  * cleared.  If @task is already being killed or exiting, this function
278  * becomes noop.
279  *
280  * CONTEXT:
281  * Must be called with @task->sighand->siglock held.
282  *
283  * RETURNS:
284  * %true if @mask is set, %false if made noop because @task was dying.
285  */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
287 {
288 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
289 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
290 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
291 
292 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 		return false;
294 
295 	if (mask & JOBCTL_STOP_SIGMASK)
296 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
297 
298 	task->jobctl |= mask;
299 	return true;
300 }
301 
302 /**
303  * task_clear_jobctl_trapping - clear jobctl trapping bit
304  * @task: target task
305  *
306  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307  * Clear it and wake up the ptracer.  Note that we don't need any further
308  * locking.  @task->siglock guarantees that @task->parent points to the
309  * ptracer.
310  *
311  * CONTEXT:
312  * Must be called with @task->sighand->siglock held.
313  */
task_clear_jobctl_trapping(struct task_struct * task)314 void task_clear_jobctl_trapping(struct task_struct *task)
315 {
316 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 		task->jobctl &= ~JOBCTL_TRAPPING;
318 		smp_mb();	/* advised by wake_up_bit() */
319 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
320 	}
321 }
322 
323 /**
324  * task_clear_jobctl_pending - clear jobctl pending bits
325  * @task: target task
326  * @mask: pending bits to clear
327  *
328  * Clear @mask from @task->jobctl.  @mask must be subset of
329  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
330  * STOP bits are cleared together.
331  *
332  * If clearing of @mask leaves no stop or trap pending, this function calls
333  * task_clear_jobctl_trapping().
334  *
335  * CONTEXT:
336  * Must be called with @task->sighand->siglock held.
337  */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
339 {
340 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
341 
342 	if (mask & JOBCTL_STOP_PENDING)
343 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
344 
345 	task->jobctl &= ~mask;
346 
347 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 		task_clear_jobctl_trapping(task);
349 }
350 
351 /**
352  * task_participate_group_stop - participate in a group stop
353  * @task: task participating in a group stop
354  *
355  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356  * Group stop states are cleared and the group stop count is consumed if
357  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
358  * stop, the appropriate `SIGNAL_*` flags are set.
359  *
360  * CONTEXT:
361  * Must be called with @task->sighand->siglock held.
362  *
363  * RETURNS:
364  * %true if group stop completion should be notified to the parent, %false
365  * otherwise.
366  */
task_participate_group_stop(struct task_struct * task)367 static bool task_participate_group_stop(struct task_struct *task)
368 {
369 	struct signal_struct *sig = task->signal;
370 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
371 
372 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
373 
374 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
375 
376 	if (!consume)
377 		return false;
378 
379 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 		sig->group_stop_count--;
381 
382 	/*
383 	 * Tell the caller to notify completion iff we are entering into a
384 	 * fresh group stop.  Read comment in do_signal_stop() for details.
385 	 */
386 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
388 		return true;
389 	}
390 	return false;
391 }
392 
task_join_group_stop(struct task_struct * task)393 void task_join_group_stop(struct task_struct *task)
394 {
395 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 	struct signal_struct *sig = current->signal;
397 
398 	if (sig->group_stop_count) {
399 		sig->group_stop_count++;
400 		mask |= JOBCTL_STOP_CONSUME;
401 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 		return;
403 
404 	/* Have the new thread join an on-going signal group stop */
405 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
406 }
407 
408 /*
409  * allocate a new signal queue record
410  * - this may be called without locks if and only if t == current, otherwise an
411  *   appropriate lock must be held to stop the target task from exiting
412  */
413 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t gfp_flags,int override_rlimit,const unsigned int sigqueue_flags)414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
415 		 int override_rlimit, const unsigned int sigqueue_flags)
416 {
417 	struct sigqueue *q = NULL;
418 	struct ucounts *ucounts = NULL;
419 	long sigpending;
420 
421 	/*
422 	 * Protect access to @t credentials. This can go away when all
423 	 * callers hold rcu read lock.
424 	 *
425 	 * NOTE! A pending signal will hold on to the user refcount,
426 	 * and we get/put the refcount only when the sigpending count
427 	 * changes from/to zero.
428 	 */
429 	rcu_read_lock();
430 	ucounts = task_ucounts(t);
431 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
432 					    override_rlimit);
433 	rcu_read_unlock();
434 	if (!sigpending)
435 		return NULL;
436 
437 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
438 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
439 	} else {
440 		print_dropped_signal(sig);
441 	}
442 
443 	if (unlikely(q == NULL)) {
444 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
445 	} else {
446 		INIT_LIST_HEAD(&q->list);
447 		q->flags = sigqueue_flags;
448 		q->ucounts = ucounts;
449 	}
450 	return q;
451 }
452 
__sigqueue_free(struct sigqueue * q)453 static void __sigqueue_free(struct sigqueue *q)
454 {
455 	if (q->flags & SIGQUEUE_PREALLOC)
456 		return;
457 	if (q->ucounts) {
458 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
459 		q->ucounts = NULL;
460 	}
461 	kmem_cache_free(sigqueue_cachep, q);
462 }
463 
flush_sigqueue(struct sigpending * queue)464 void flush_sigqueue(struct sigpending *queue)
465 {
466 	struct sigqueue *q;
467 
468 	sigemptyset(&queue->signal);
469 	while (!list_empty(&queue->list)) {
470 		q = list_entry(queue->list.next, struct sigqueue , list);
471 		list_del_init(&q->list);
472 		__sigqueue_free(q);
473 	}
474 }
475 
476 /*
477  * Flush all pending signals for this kthread.
478  */
flush_signals(struct task_struct * t)479 void flush_signals(struct task_struct *t)
480 {
481 	unsigned long flags;
482 
483 	spin_lock_irqsave(&t->sighand->siglock, flags);
484 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
485 	flush_sigqueue(&t->pending);
486 	flush_sigqueue(&t->signal->shared_pending);
487 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
488 }
489 EXPORT_SYMBOL(flush_signals);
490 
491 #ifdef CONFIG_POSIX_TIMERS
__flush_itimer_signals(struct sigpending * pending)492 static void __flush_itimer_signals(struct sigpending *pending)
493 {
494 	sigset_t signal, retain;
495 	struct sigqueue *q, *n;
496 
497 	signal = pending->signal;
498 	sigemptyset(&retain);
499 
500 	list_for_each_entry_safe(q, n, &pending->list, list) {
501 		int sig = q->info.si_signo;
502 
503 		if (likely(q->info.si_code != SI_TIMER)) {
504 			sigaddset(&retain, sig);
505 		} else {
506 			sigdelset(&signal, sig);
507 			list_del_init(&q->list);
508 			__sigqueue_free(q);
509 		}
510 	}
511 
512 	sigorsets(&pending->signal, &signal, &retain);
513 }
514 
flush_itimer_signals(void)515 void flush_itimer_signals(void)
516 {
517 	struct task_struct *tsk = current;
518 	unsigned long flags;
519 
520 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
521 	__flush_itimer_signals(&tsk->pending);
522 	__flush_itimer_signals(&tsk->signal->shared_pending);
523 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
524 }
525 #endif
526 
ignore_signals(struct task_struct * t)527 void ignore_signals(struct task_struct *t)
528 {
529 	int i;
530 
531 	for (i = 0; i < _NSIG; ++i)
532 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
533 
534 	flush_signals(t);
535 }
536 
537 /*
538  * Flush all handlers for a task.
539  */
540 
541 void
flush_signal_handlers(struct task_struct * t,int force_default)542 flush_signal_handlers(struct task_struct *t, int force_default)
543 {
544 	int i;
545 	struct k_sigaction *ka = &t->sighand->action[0];
546 	for (i = _NSIG ; i != 0 ; i--) {
547 		if (force_default || ka->sa.sa_handler != SIG_IGN)
548 			ka->sa.sa_handler = SIG_DFL;
549 		ka->sa.sa_flags = 0;
550 #ifdef __ARCH_HAS_SA_RESTORER
551 		ka->sa.sa_restorer = NULL;
552 #endif
553 		sigemptyset(&ka->sa.sa_mask);
554 		ka++;
555 	}
556 }
557 
unhandled_signal(struct task_struct * tsk,int sig)558 bool unhandled_signal(struct task_struct *tsk, int sig)
559 {
560 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
561 	if (is_global_init(tsk))
562 		return true;
563 
564 	if (handler != SIG_IGN && handler != SIG_DFL)
565 		return false;
566 
567 	/* If dying, we handle all new signals by ignoring them */
568 	if (fatal_signal_pending(tsk))
569 		return false;
570 
571 	/* if ptraced, let the tracer determine */
572 	return !tsk->ptrace;
573 }
574 
collect_signal(int sig,struct sigpending * list,kernel_siginfo_t * info,bool * resched_timer)575 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
576 			   bool *resched_timer)
577 {
578 	struct sigqueue *q, *first = NULL;
579 
580 	/*
581 	 * Collect the siginfo appropriate to this signal.  Check if
582 	 * there is another siginfo for the same signal.
583 	*/
584 	list_for_each_entry(q, &list->list, list) {
585 		if (q->info.si_signo == sig) {
586 			if (first)
587 				goto still_pending;
588 			first = q;
589 		}
590 	}
591 
592 	sigdelset(&list->signal, sig);
593 
594 	if (first) {
595 still_pending:
596 		list_del_init(&first->list);
597 		copy_siginfo(info, &first->info);
598 
599 		*resched_timer =
600 			(first->flags & SIGQUEUE_PREALLOC) &&
601 			(info->si_code == SI_TIMER) &&
602 			(info->si_sys_private);
603 
604 		__sigqueue_free(first);
605 	} else {
606 		/*
607 		 * Ok, it wasn't in the queue.  This must be
608 		 * a fast-pathed signal or we must have been
609 		 * out of queue space.  So zero out the info.
610 		 */
611 		clear_siginfo(info);
612 		info->si_signo = sig;
613 		info->si_errno = 0;
614 		info->si_code = SI_USER;
615 		info->si_pid = 0;
616 		info->si_uid = 0;
617 	}
618 }
619 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,kernel_siginfo_t * info,bool * resched_timer)620 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
621 			kernel_siginfo_t *info, bool *resched_timer)
622 {
623 	int sig = next_signal(pending, mask);
624 
625 	if (sig)
626 		collect_signal(sig, pending, info, resched_timer);
627 	return sig;
628 }
629 
630 /*
631  * Dequeue a signal and return the element to the caller, which is
632  * expected to free it.
633  *
634  * All callers have to hold the siglock.
635  */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,kernel_siginfo_t * info,enum pid_type * type)636 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
637 		   kernel_siginfo_t *info, enum pid_type *type)
638 {
639 	bool resched_timer = false;
640 	int signr;
641 
642 	/* We only dequeue private signals from ourselves, we don't let
643 	 * signalfd steal them
644 	 */
645 	*type = PIDTYPE_PID;
646 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
647 	if (!signr) {
648 		*type = PIDTYPE_TGID;
649 		signr = __dequeue_signal(&tsk->signal->shared_pending,
650 					 mask, info, &resched_timer);
651 #ifdef CONFIG_POSIX_TIMERS
652 		/*
653 		 * itimer signal ?
654 		 *
655 		 * itimers are process shared and we restart periodic
656 		 * itimers in the signal delivery path to prevent DoS
657 		 * attacks in the high resolution timer case. This is
658 		 * compliant with the old way of self-restarting
659 		 * itimers, as the SIGALRM is a legacy signal and only
660 		 * queued once. Changing the restart behaviour to
661 		 * restart the timer in the signal dequeue path is
662 		 * reducing the timer noise on heavy loaded !highres
663 		 * systems too.
664 		 */
665 		if (unlikely(signr == SIGALRM)) {
666 			struct hrtimer *tmr = &tsk->signal->real_timer;
667 
668 			if (!hrtimer_is_queued(tmr) &&
669 			    tsk->signal->it_real_incr != 0) {
670 				hrtimer_forward(tmr, tmr->base->get_time(),
671 						tsk->signal->it_real_incr);
672 				hrtimer_restart(tmr);
673 			}
674 		}
675 #endif
676 	}
677 
678 	recalc_sigpending();
679 	if (!signr)
680 		return 0;
681 
682 	if (unlikely(sig_kernel_stop(signr))) {
683 		/*
684 		 * Set a marker that we have dequeued a stop signal.  Our
685 		 * caller might release the siglock and then the pending
686 		 * stop signal it is about to process is no longer in the
687 		 * pending bitmasks, but must still be cleared by a SIGCONT
688 		 * (and overruled by a SIGKILL).  So those cases clear this
689 		 * shared flag after we've set it.  Note that this flag may
690 		 * remain set after the signal we return is ignored or
691 		 * handled.  That doesn't matter because its only purpose
692 		 * is to alert stop-signal processing code when another
693 		 * processor has come along and cleared the flag.
694 		 */
695 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
696 	}
697 #ifdef CONFIG_POSIX_TIMERS
698 	if (resched_timer) {
699 		/*
700 		 * Release the siglock to ensure proper locking order
701 		 * of timer locks outside of siglocks.  Note, we leave
702 		 * irqs disabled here, since the posix-timers code is
703 		 * about to disable them again anyway.
704 		 */
705 		spin_unlock(&tsk->sighand->siglock);
706 		posixtimer_rearm(info);
707 		spin_lock(&tsk->sighand->siglock);
708 
709 		/* Don't expose the si_sys_private value to userspace */
710 		info->si_sys_private = 0;
711 	}
712 #endif
713 	return signr;
714 }
715 EXPORT_SYMBOL_GPL(dequeue_signal);
716 
dequeue_synchronous_signal(kernel_siginfo_t * info)717 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
718 {
719 	struct task_struct *tsk = current;
720 	struct sigpending *pending = &tsk->pending;
721 	struct sigqueue *q, *sync = NULL;
722 
723 	/*
724 	 * Might a synchronous signal be in the queue?
725 	 */
726 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
727 		return 0;
728 
729 	/*
730 	 * Return the first synchronous signal in the queue.
731 	 */
732 	list_for_each_entry(q, &pending->list, list) {
733 		/* Synchronous signals have a positive si_code */
734 		if ((q->info.si_code > SI_USER) &&
735 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
736 			sync = q;
737 			goto next;
738 		}
739 	}
740 	return 0;
741 next:
742 	/*
743 	 * Check if there is another siginfo for the same signal.
744 	 */
745 	list_for_each_entry_continue(q, &pending->list, list) {
746 		if (q->info.si_signo == sync->info.si_signo)
747 			goto still_pending;
748 	}
749 
750 	sigdelset(&pending->signal, sync->info.si_signo);
751 	recalc_sigpending();
752 still_pending:
753 	list_del_init(&sync->list);
754 	copy_siginfo(info, &sync->info);
755 	__sigqueue_free(sync);
756 	return info->si_signo;
757 }
758 
759 /*
760  * Tell a process that it has a new active signal..
761  *
762  * NOTE! we rely on the previous spin_lock to
763  * lock interrupts for us! We can only be called with
764  * "siglock" held, and the local interrupt must
765  * have been disabled when that got acquired!
766  *
767  * No need to set need_resched since signal event passing
768  * goes through ->blocked
769  */
signal_wake_up_state(struct task_struct * t,unsigned int state)770 void signal_wake_up_state(struct task_struct *t, unsigned int state)
771 {
772 	lockdep_assert_held(&t->sighand->siglock);
773 
774 	set_tsk_thread_flag(t, TIF_SIGPENDING);
775 
776 	/*
777 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
778 	 * case. We don't check t->state here because there is a race with it
779 	 * executing another processor and just now entering stopped state.
780 	 * By using wake_up_state, we ensure the process will wake up and
781 	 * handle its death signal.
782 	 */
783 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
784 		kick_process(t);
785 }
786 
787 /*
788  * Remove signals in mask from the pending set and queue.
789  * Returns 1 if any signals were found.
790  *
791  * All callers must be holding the siglock.
792  */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)793 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
794 {
795 	struct sigqueue *q, *n;
796 	sigset_t m;
797 
798 	sigandsets(&m, mask, &s->signal);
799 	if (sigisemptyset(&m))
800 		return;
801 
802 	sigandnsets(&s->signal, &s->signal, mask);
803 	list_for_each_entry_safe(q, n, &s->list, list) {
804 		if (sigismember(mask, q->info.si_signo)) {
805 			list_del_init(&q->list);
806 			__sigqueue_free(q);
807 		}
808 	}
809 }
810 
is_si_special(const struct kernel_siginfo * info)811 static inline int is_si_special(const struct kernel_siginfo *info)
812 {
813 	return info <= SEND_SIG_PRIV;
814 }
815 
si_fromuser(const struct kernel_siginfo * info)816 static inline bool si_fromuser(const struct kernel_siginfo *info)
817 {
818 	return info == SEND_SIG_NOINFO ||
819 		(!is_si_special(info) && SI_FROMUSER(info));
820 }
821 
822 /*
823  * called with RCU read lock from check_kill_permission()
824  */
kill_ok_by_cred(struct task_struct * t)825 static bool kill_ok_by_cred(struct task_struct *t)
826 {
827 	const struct cred *cred = current_cred();
828 	const struct cred *tcred = __task_cred(t);
829 
830 	return uid_eq(cred->euid, tcred->suid) ||
831 	       uid_eq(cred->euid, tcred->uid) ||
832 	       uid_eq(cred->uid, tcred->suid) ||
833 	       uid_eq(cred->uid, tcred->uid) ||
834 	       ns_capable(tcred->user_ns, CAP_KILL);
835 }
836 
837 /*
838  * Bad permissions for sending the signal
839  * - the caller must hold the RCU read lock
840  */
check_kill_permission(int sig,struct kernel_siginfo * info,struct task_struct * t)841 static int check_kill_permission(int sig, struct kernel_siginfo *info,
842 				 struct task_struct *t)
843 {
844 	struct pid *sid;
845 	int error;
846 
847 	if (!valid_signal(sig))
848 		return -EINVAL;
849 
850 	if (!si_fromuser(info))
851 		return 0;
852 
853 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
854 	if (error)
855 		return error;
856 
857 	if (!same_thread_group(current, t) &&
858 	    !kill_ok_by_cred(t)) {
859 		switch (sig) {
860 		case SIGCONT:
861 			sid = task_session(t);
862 			/*
863 			 * We don't return the error if sid == NULL. The
864 			 * task was unhashed, the caller must notice this.
865 			 */
866 			if (!sid || sid == task_session(current))
867 				break;
868 			fallthrough;
869 		default:
870 			return -EPERM;
871 		}
872 	}
873 
874 	return security_task_kill(t, info, sig, NULL);
875 }
876 
877 /**
878  * ptrace_trap_notify - schedule trap to notify ptracer
879  * @t: tracee wanting to notify tracer
880  *
881  * This function schedules sticky ptrace trap which is cleared on the next
882  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
883  * ptracer.
884  *
885  * If @t is running, STOP trap will be taken.  If trapped for STOP and
886  * ptracer is listening for events, tracee is woken up so that it can
887  * re-trap for the new event.  If trapped otherwise, STOP trap will be
888  * eventually taken without returning to userland after the existing traps
889  * are finished by PTRACE_CONT.
890  *
891  * CONTEXT:
892  * Must be called with @task->sighand->siglock held.
893  */
ptrace_trap_notify(struct task_struct * t)894 static void ptrace_trap_notify(struct task_struct *t)
895 {
896 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
897 	lockdep_assert_held(&t->sighand->siglock);
898 
899 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
900 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
901 }
902 
903 /*
904  * Handle magic process-wide effects of stop/continue signals. Unlike
905  * the signal actions, these happen immediately at signal-generation
906  * time regardless of blocking, ignoring, or handling.  This does the
907  * actual continuing for SIGCONT, but not the actual stopping for stop
908  * signals. The process stop is done as a signal action for SIG_DFL.
909  *
910  * Returns true if the signal should be actually delivered, otherwise
911  * it should be dropped.
912  */
prepare_signal(int sig,struct task_struct * p,bool force)913 static bool prepare_signal(int sig, struct task_struct *p, bool force)
914 {
915 	struct signal_struct *signal = p->signal;
916 	struct task_struct *t;
917 	sigset_t flush;
918 
919 	if (signal->flags & SIGNAL_GROUP_EXIT) {
920 		if (signal->core_state)
921 			return sig == SIGKILL;
922 		/*
923 		 * The process is in the middle of dying, drop the signal.
924 		 */
925 		return false;
926 	} else if (sig_kernel_stop(sig)) {
927 		/*
928 		 * This is a stop signal.  Remove SIGCONT from all queues.
929 		 */
930 		siginitset(&flush, sigmask(SIGCONT));
931 		flush_sigqueue_mask(&flush, &signal->shared_pending);
932 		for_each_thread(p, t)
933 			flush_sigqueue_mask(&flush, &t->pending);
934 	} else if (sig == SIGCONT) {
935 		unsigned int why;
936 		/*
937 		 * Remove all stop signals from all queues, wake all threads.
938 		 */
939 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
940 		flush_sigqueue_mask(&flush, &signal->shared_pending);
941 		for_each_thread(p, t) {
942 			flush_sigqueue_mask(&flush, &t->pending);
943 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
944 			if (likely(!(t->ptrace & PT_SEIZED))) {
945 				t->jobctl &= ~JOBCTL_STOPPED;
946 				wake_up_state(t, __TASK_STOPPED);
947 			} else
948 				ptrace_trap_notify(t);
949 		}
950 
951 		/*
952 		 * Notify the parent with CLD_CONTINUED if we were stopped.
953 		 *
954 		 * If we were in the middle of a group stop, we pretend it
955 		 * was already finished, and then continued. Since SIGCHLD
956 		 * doesn't queue we report only CLD_STOPPED, as if the next
957 		 * CLD_CONTINUED was dropped.
958 		 */
959 		why = 0;
960 		if (signal->flags & SIGNAL_STOP_STOPPED)
961 			why |= SIGNAL_CLD_CONTINUED;
962 		else if (signal->group_stop_count)
963 			why |= SIGNAL_CLD_STOPPED;
964 
965 		if (why) {
966 			/*
967 			 * The first thread which returns from do_signal_stop()
968 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
969 			 * notify its parent. See get_signal().
970 			 */
971 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
972 			signal->group_stop_count = 0;
973 			signal->group_exit_code = 0;
974 		}
975 	}
976 
977 	return !sig_ignored(p, sig, force);
978 }
979 
980 /*
981  * Test if P wants to take SIG.  After we've checked all threads with this,
982  * it's equivalent to finding no threads not blocking SIG.  Any threads not
983  * blocking SIG were ruled out because they are not running and already
984  * have pending signals.  Such threads will dequeue from the shared queue
985  * as soon as they're available, so putting the signal on the shared queue
986  * will be equivalent to sending it to one such thread.
987  */
wants_signal(int sig,struct task_struct * p)988 static inline bool wants_signal(int sig, struct task_struct *p)
989 {
990 	if (sigismember(&p->blocked, sig))
991 		return false;
992 
993 	if (p->flags & PF_EXITING)
994 		return false;
995 
996 	if (sig == SIGKILL)
997 		return true;
998 
999 	if (task_is_stopped_or_traced(p))
1000 		return false;
1001 
1002 	return task_curr(p) || !task_sigpending(p);
1003 }
1004 
complete_signal(int sig,struct task_struct * p,enum pid_type type)1005 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1006 {
1007 	struct signal_struct *signal = p->signal;
1008 	struct task_struct *t;
1009 
1010 	/*
1011 	 * Now find a thread we can wake up to take the signal off the queue.
1012 	 *
1013 	 * Try the suggested task first (may or may not be the main thread).
1014 	 */
1015 	if (wants_signal(sig, p))
1016 		t = p;
1017 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1018 		/*
1019 		 * There is just one thread and it does not need to be woken.
1020 		 * It will dequeue unblocked signals before it runs again.
1021 		 */
1022 		return;
1023 	else {
1024 		/*
1025 		 * Otherwise try to find a suitable thread.
1026 		 */
1027 		t = signal->curr_target;
1028 		while (!wants_signal(sig, t)) {
1029 			t = next_thread(t);
1030 			if (t == signal->curr_target)
1031 				/*
1032 				 * No thread needs to be woken.
1033 				 * Any eligible threads will see
1034 				 * the signal in the queue soon.
1035 				 */
1036 				return;
1037 		}
1038 		signal->curr_target = t;
1039 	}
1040 
1041 	/*
1042 	 * Found a killable thread.  If the signal will be fatal,
1043 	 * then start taking the whole group down immediately.
1044 	 */
1045 	if (sig_fatal(p, sig) &&
1046 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1047 	    !sigismember(&t->real_blocked, sig) &&
1048 	    (sig == SIGKILL || !p->ptrace)) {
1049 		/*
1050 		 * This signal will be fatal to the whole group.
1051 		 */
1052 		if (!sig_kernel_coredump(sig)) {
1053 			/*
1054 			 * Start a group exit and wake everybody up.
1055 			 * This way we don't have other threads
1056 			 * running and doing things after a slower
1057 			 * thread has the fatal signal pending.
1058 			 */
1059 			signal->flags = SIGNAL_GROUP_EXIT;
1060 			signal->group_exit_code = sig;
1061 			signal->group_stop_count = 0;
1062 			t = p;
1063 			do {
1064 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1065 				sigaddset(&t->pending.signal, SIGKILL);
1066 				signal_wake_up(t, 1);
1067 			} while_each_thread(p, t);
1068 			return;
1069 		}
1070 	}
1071 
1072 	/*
1073 	 * The signal is already in the shared-pending queue.
1074 	 * Tell the chosen thread to wake up and dequeue it.
1075 	 */
1076 	signal_wake_up(t, sig == SIGKILL);
1077 	return;
1078 }
1079 
legacy_queue(struct sigpending * signals,int sig)1080 static inline bool legacy_queue(struct sigpending *signals, int sig)
1081 {
1082 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1083 }
1084 
__send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type,bool force)1085 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1086 				struct task_struct *t, enum pid_type type, bool force)
1087 {
1088 	struct sigpending *pending;
1089 	struct sigqueue *q;
1090 	int override_rlimit;
1091 	int ret = 0, result;
1092 
1093 	lockdep_assert_held(&t->sighand->siglock);
1094 
1095 	result = TRACE_SIGNAL_IGNORED;
1096 	if (!prepare_signal(sig, t, force))
1097 		goto ret;
1098 
1099 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1100 	/*
1101 	 * Short-circuit ignored signals and support queuing
1102 	 * exactly one non-rt signal, so that we can get more
1103 	 * detailed information about the cause of the signal.
1104 	 */
1105 	result = TRACE_SIGNAL_ALREADY_PENDING;
1106 	if (legacy_queue(pending, sig))
1107 		goto ret;
1108 
1109 	result = TRACE_SIGNAL_DELIVERED;
1110 	/*
1111 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1112 	 */
1113 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1114 		goto out_set;
1115 
1116 	/*
1117 	 * Real-time signals must be queued if sent by sigqueue, or
1118 	 * some other real-time mechanism.  It is implementation
1119 	 * defined whether kill() does so.  We attempt to do so, on
1120 	 * the principle of least surprise, but since kill is not
1121 	 * allowed to fail with EAGAIN when low on memory we just
1122 	 * make sure at least one signal gets delivered and don't
1123 	 * pass on the info struct.
1124 	 */
1125 	if (sig < SIGRTMIN)
1126 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1127 	else
1128 		override_rlimit = 0;
1129 
1130 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1131 
1132 	if (q) {
1133 		list_add_tail(&q->list, &pending->list);
1134 		switch ((unsigned long) info) {
1135 		case (unsigned long) SEND_SIG_NOINFO:
1136 			clear_siginfo(&q->info);
1137 			q->info.si_signo = sig;
1138 			q->info.si_errno = 0;
1139 			q->info.si_code = SI_USER;
1140 			q->info.si_pid = task_tgid_nr_ns(current,
1141 							task_active_pid_ns(t));
1142 			rcu_read_lock();
1143 			q->info.si_uid =
1144 				from_kuid_munged(task_cred_xxx(t, user_ns),
1145 						 current_uid());
1146 			rcu_read_unlock();
1147 			break;
1148 		case (unsigned long) SEND_SIG_PRIV:
1149 			clear_siginfo(&q->info);
1150 			q->info.si_signo = sig;
1151 			q->info.si_errno = 0;
1152 			q->info.si_code = SI_KERNEL;
1153 			q->info.si_pid = 0;
1154 			q->info.si_uid = 0;
1155 			break;
1156 		default:
1157 			copy_siginfo(&q->info, info);
1158 			break;
1159 		}
1160 	} else if (!is_si_special(info) &&
1161 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1162 		/*
1163 		 * Queue overflow, abort.  We may abort if the
1164 		 * signal was rt and sent by user using something
1165 		 * other than kill().
1166 		 */
1167 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1168 		ret = -EAGAIN;
1169 		goto ret;
1170 	} else {
1171 		/*
1172 		 * This is a silent loss of information.  We still
1173 		 * send the signal, but the *info bits are lost.
1174 		 */
1175 		result = TRACE_SIGNAL_LOSE_INFO;
1176 	}
1177 
1178 out_set:
1179 	signalfd_notify(t, sig);
1180 	sigaddset(&pending->signal, sig);
1181 
1182 	/* Let multiprocess signals appear after on-going forks */
1183 	if (type > PIDTYPE_TGID) {
1184 		struct multiprocess_signals *delayed;
1185 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1186 			sigset_t *signal = &delayed->signal;
1187 			/* Can't queue both a stop and a continue signal */
1188 			if (sig == SIGCONT)
1189 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1190 			else if (sig_kernel_stop(sig))
1191 				sigdelset(signal, SIGCONT);
1192 			sigaddset(signal, sig);
1193 		}
1194 	}
1195 
1196 	complete_signal(sig, t, type);
1197 ret:
1198 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1199 	return ret;
1200 }
1201 
has_si_pid_and_uid(struct kernel_siginfo * info)1202 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1203 {
1204 	bool ret = false;
1205 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1206 	case SIL_KILL:
1207 	case SIL_CHLD:
1208 	case SIL_RT:
1209 		ret = true;
1210 		break;
1211 	case SIL_TIMER:
1212 	case SIL_POLL:
1213 	case SIL_FAULT:
1214 	case SIL_FAULT_TRAPNO:
1215 	case SIL_FAULT_MCEERR:
1216 	case SIL_FAULT_BNDERR:
1217 	case SIL_FAULT_PKUERR:
1218 	case SIL_FAULT_PERF_EVENT:
1219 	case SIL_SYS:
1220 		ret = false;
1221 		break;
1222 	}
1223 	return ret;
1224 }
1225 
send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type)1226 int send_signal_locked(int sig, struct kernel_siginfo *info,
1227 		       struct task_struct *t, enum pid_type type)
1228 {
1229 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1230 	bool force = false;
1231 
1232 	if (info == SEND_SIG_NOINFO) {
1233 		/* Force if sent from an ancestor pid namespace */
1234 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1235 	} else if (info == SEND_SIG_PRIV) {
1236 		/* Don't ignore kernel generated signals */
1237 		force = true;
1238 	} else if (has_si_pid_and_uid(info)) {
1239 		/* SIGKILL and SIGSTOP is special or has ids */
1240 		struct user_namespace *t_user_ns;
1241 
1242 		rcu_read_lock();
1243 		t_user_ns = task_cred_xxx(t, user_ns);
1244 		if (current_user_ns() != t_user_ns) {
1245 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1246 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1247 		}
1248 		rcu_read_unlock();
1249 
1250 		/* A kernel generated signal? */
1251 		force = (info->si_code == SI_KERNEL);
1252 
1253 		/* From an ancestor pid namespace? */
1254 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1255 			info->si_pid = 0;
1256 			force = true;
1257 		}
1258 	}
1259 	return __send_signal_locked(sig, info, t, type, force);
1260 }
1261 
print_fatal_signal(int signr)1262 static void print_fatal_signal(int signr)
1263 {
1264 	struct pt_regs *regs = task_pt_regs(current);
1265 	struct file *exe_file;
1266 
1267 	exe_file = get_task_exe_file(current);
1268 	if (exe_file) {
1269 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1270 			exe_file, current->comm, signr);
1271 		fput(exe_file);
1272 	} else {
1273 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1274 			current->comm, signr);
1275 	}
1276 
1277 #if defined(__i386__) && !defined(__arch_um__)
1278 	pr_info("code at %08lx: ", regs->ip);
1279 	{
1280 		int i;
1281 		for (i = 0; i < 16; i++) {
1282 			unsigned char insn;
1283 
1284 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1285 				break;
1286 			pr_cont("%02x ", insn);
1287 		}
1288 	}
1289 	pr_cont("\n");
1290 #endif
1291 	preempt_disable();
1292 	show_regs(regs);
1293 	preempt_enable();
1294 }
1295 
setup_print_fatal_signals(char * str)1296 static int __init setup_print_fatal_signals(char *str)
1297 {
1298 	get_option (&str, &print_fatal_signals);
1299 
1300 	return 1;
1301 }
1302 
1303 __setup("print-fatal-signals=", setup_print_fatal_signals);
1304 
do_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1305 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1306 			enum pid_type type)
1307 {
1308 	unsigned long flags;
1309 	int ret = -ESRCH;
1310 
1311 	if (lock_task_sighand(p, &flags)) {
1312 		ret = send_signal_locked(sig, info, p, type);
1313 		unlock_task_sighand(p, &flags);
1314 	}
1315 
1316 	return ret;
1317 }
1318 
1319 enum sig_handler {
1320 	HANDLER_CURRENT, /* If reachable use the current handler */
1321 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1322 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1323 };
1324 
1325 /*
1326  * Force a signal that the process can't ignore: if necessary
1327  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1328  *
1329  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1330  * since we do not want to have a signal handler that was blocked
1331  * be invoked when user space had explicitly blocked it.
1332  *
1333  * We don't want to have recursive SIGSEGV's etc, for example,
1334  * that is why we also clear SIGNAL_UNKILLABLE.
1335  */
1336 static int
force_sig_info_to_task(struct kernel_siginfo * info,struct task_struct * t,enum sig_handler handler)1337 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1338 	enum sig_handler handler)
1339 {
1340 	unsigned long int flags;
1341 	int ret, blocked, ignored;
1342 	struct k_sigaction *action;
1343 	int sig = info->si_signo;
1344 
1345 	spin_lock_irqsave(&t->sighand->siglock, flags);
1346 	action = &t->sighand->action[sig-1];
1347 	ignored = action->sa.sa_handler == SIG_IGN;
1348 	blocked = sigismember(&t->blocked, sig);
1349 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1350 		action->sa.sa_handler = SIG_DFL;
1351 		if (handler == HANDLER_EXIT)
1352 			action->sa.sa_flags |= SA_IMMUTABLE;
1353 		if (blocked) {
1354 			sigdelset(&t->blocked, sig);
1355 			recalc_sigpending_and_wake(t);
1356 		}
1357 	}
1358 	/*
1359 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1360 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1361 	 */
1362 	if (action->sa.sa_handler == SIG_DFL &&
1363 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1364 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1365 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1366 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1367 
1368 	return ret;
1369 }
1370 
force_sig_info(struct kernel_siginfo * info)1371 int force_sig_info(struct kernel_siginfo *info)
1372 {
1373 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1374 }
1375 
1376 /*
1377  * Nuke all other threads in the group.
1378  */
zap_other_threads(struct task_struct * p)1379 int zap_other_threads(struct task_struct *p)
1380 {
1381 	struct task_struct *t = p;
1382 	int count = 0;
1383 
1384 	p->signal->group_stop_count = 0;
1385 
1386 	while_each_thread(p, t) {
1387 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1388 		/* Don't require de_thread to wait for the vhost_worker */
1389 		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1390 			count++;
1391 
1392 		/* Don't bother with already dead threads */
1393 		if (t->exit_state)
1394 			continue;
1395 		sigaddset(&t->pending.signal, SIGKILL);
1396 		signal_wake_up(t, 1);
1397 	}
1398 
1399 	return count;
1400 }
1401 
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1402 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1403 					   unsigned long *flags)
1404 {
1405 	struct sighand_struct *sighand;
1406 
1407 	rcu_read_lock();
1408 	for (;;) {
1409 		sighand = rcu_dereference(tsk->sighand);
1410 		if (unlikely(sighand == NULL))
1411 			break;
1412 
1413 		/*
1414 		 * This sighand can be already freed and even reused, but
1415 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1416 		 * initializes ->siglock: this slab can't go away, it has
1417 		 * the same object type, ->siglock can't be reinitialized.
1418 		 *
1419 		 * We need to ensure that tsk->sighand is still the same
1420 		 * after we take the lock, we can race with de_thread() or
1421 		 * __exit_signal(). In the latter case the next iteration
1422 		 * must see ->sighand == NULL.
1423 		 */
1424 		spin_lock_irqsave(&sighand->siglock, *flags);
1425 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1426 			break;
1427 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1428 	}
1429 	rcu_read_unlock();
1430 
1431 	return sighand;
1432 }
1433 
1434 #ifdef CONFIG_LOCKDEP
lockdep_assert_task_sighand_held(struct task_struct * task)1435 void lockdep_assert_task_sighand_held(struct task_struct *task)
1436 {
1437 	struct sighand_struct *sighand;
1438 
1439 	rcu_read_lock();
1440 	sighand = rcu_dereference(task->sighand);
1441 	if (sighand)
1442 		lockdep_assert_held(&sighand->siglock);
1443 	else
1444 		WARN_ON_ONCE(1);
1445 	rcu_read_unlock();
1446 }
1447 #endif
1448 
1449 /*
1450  * send signal info to all the members of a group
1451  */
group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1452 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1453 			struct task_struct *p, enum pid_type type)
1454 {
1455 	int ret;
1456 
1457 	rcu_read_lock();
1458 	ret = check_kill_permission(sig, info, p);
1459 	rcu_read_unlock();
1460 
1461 	if (!ret && sig)
1462 		ret = do_send_sig_info(sig, info, p, type);
1463 
1464 	return ret;
1465 }
1466 
1467 /*
1468  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1469  * control characters do (^C, ^Z etc)
1470  * - the caller must hold at least a readlock on tasklist_lock
1471  */
__kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1472 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1473 {
1474 	struct task_struct *p = NULL;
1475 	int retval, success;
1476 
1477 	success = 0;
1478 	retval = -ESRCH;
1479 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1480 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1481 		success |= !err;
1482 		retval = err;
1483 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1484 	return success ? 0 : retval;
1485 }
1486 
kill_pid_info(int sig,struct kernel_siginfo * info,struct pid * pid)1487 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1488 {
1489 	int error = -ESRCH;
1490 	struct task_struct *p;
1491 
1492 	for (;;) {
1493 		rcu_read_lock();
1494 		p = pid_task(pid, PIDTYPE_PID);
1495 		if (p)
1496 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1497 		rcu_read_unlock();
1498 		if (likely(!p || error != -ESRCH))
1499 			return error;
1500 
1501 		/*
1502 		 * The task was unhashed in between, try again.  If it
1503 		 * is dead, pid_task() will return NULL, if we race with
1504 		 * de_thread() it will find the new leader.
1505 		 */
1506 	}
1507 }
1508 
kill_proc_info(int sig,struct kernel_siginfo * info,pid_t pid)1509 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1510 {
1511 	int error;
1512 	rcu_read_lock();
1513 	error = kill_pid_info(sig, info, find_vpid(pid));
1514 	rcu_read_unlock();
1515 	return error;
1516 }
1517 
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1518 static inline bool kill_as_cred_perm(const struct cred *cred,
1519 				     struct task_struct *target)
1520 {
1521 	const struct cred *pcred = __task_cred(target);
1522 
1523 	return uid_eq(cred->euid, pcred->suid) ||
1524 	       uid_eq(cred->euid, pcred->uid) ||
1525 	       uid_eq(cred->uid, pcred->suid) ||
1526 	       uid_eq(cred->uid, pcred->uid);
1527 }
1528 
1529 /*
1530  * The usb asyncio usage of siginfo is wrong.  The glibc support
1531  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1532  * AKA after the generic fields:
1533  *	kernel_pid_t	si_pid;
1534  *	kernel_uid32_t	si_uid;
1535  *	sigval_t	si_value;
1536  *
1537  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1538  * after the generic fields is:
1539  *	void __user 	*si_addr;
1540  *
1541  * This is a practical problem when there is a 64bit big endian kernel
1542  * and a 32bit userspace.  As the 32bit address will encoded in the low
1543  * 32bits of the pointer.  Those low 32bits will be stored at higher
1544  * address than appear in a 32 bit pointer.  So userspace will not
1545  * see the address it was expecting for it's completions.
1546  *
1547  * There is nothing in the encoding that can allow
1548  * copy_siginfo_to_user32 to detect this confusion of formats, so
1549  * handle this by requiring the caller of kill_pid_usb_asyncio to
1550  * notice when this situration takes place and to store the 32bit
1551  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1552  * parameter.
1553  */
kill_pid_usb_asyncio(int sig,int errno,sigval_t addr,struct pid * pid,const struct cred * cred)1554 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1555 			 struct pid *pid, const struct cred *cred)
1556 {
1557 	struct kernel_siginfo info;
1558 	struct task_struct *p;
1559 	unsigned long flags;
1560 	int ret = -EINVAL;
1561 
1562 	if (!valid_signal(sig))
1563 		return ret;
1564 
1565 	clear_siginfo(&info);
1566 	info.si_signo = sig;
1567 	info.si_errno = errno;
1568 	info.si_code = SI_ASYNCIO;
1569 	*((sigval_t *)&info.si_pid) = addr;
1570 
1571 	rcu_read_lock();
1572 	p = pid_task(pid, PIDTYPE_PID);
1573 	if (!p) {
1574 		ret = -ESRCH;
1575 		goto out_unlock;
1576 	}
1577 	if (!kill_as_cred_perm(cred, p)) {
1578 		ret = -EPERM;
1579 		goto out_unlock;
1580 	}
1581 	ret = security_task_kill(p, &info, sig, cred);
1582 	if (ret)
1583 		goto out_unlock;
1584 
1585 	if (sig) {
1586 		if (lock_task_sighand(p, &flags)) {
1587 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1588 			unlock_task_sighand(p, &flags);
1589 		} else
1590 			ret = -ESRCH;
1591 	}
1592 out_unlock:
1593 	rcu_read_unlock();
1594 	return ret;
1595 }
1596 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1597 
1598 /*
1599  * kill_something_info() interprets pid in interesting ways just like kill(2).
1600  *
1601  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1602  * is probably wrong.  Should make it like BSD or SYSV.
1603  */
1604 
kill_something_info(int sig,struct kernel_siginfo * info,pid_t pid)1605 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1606 {
1607 	int ret;
1608 
1609 	if (pid > 0)
1610 		return kill_proc_info(sig, info, pid);
1611 
1612 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1613 	if (pid == INT_MIN)
1614 		return -ESRCH;
1615 
1616 	read_lock(&tasklist_lock);
1617 	if (pid != -1) {
1618 		ret = __kill_pgrp_info(sig, info,
1619 				pid ? find_vpid(-pid) : task_pgrp(current));
1620 	} else {
1621 		int retval = 0, count = 0;
1622 		struct task_struct * p;
1623 
1624 		for_each_process(p) {
1625 			if (task_pid_vnr(p) > 1 &&
1626 					!same_thread_group(p, current)) {
1627 				int err = group_send_sig_info(sig, info, p,
1628 							      PIDTYPE_MAX);
1629 				++count;
1630 				if (err != -EPERM)
1631 					retval = err;
1632 			}
1633 		}
1634 		ret = count ? retval : -ESRCH;
1635 	}
1636 	read_unlock(&tasklist_lock);
1637 
1638 	return ret;
1639 }
1640 
1641 /*
1642  * These are for backward compatibility with the rest of the kernel source.
1643  */
1644 
send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1645 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1646 {
1647 	/*
1648 	 * Make sure legacy kernel users don't send in bad values
1649 	 * (normal paths check this in check_kill_permission).
1650 	 */
1651 	if (!valid_signal(sig))
1652 		return -EINVAL;
1653 
1654 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1655 }
1656 EXPORT_SYMBOL(send_sig_info);
1657 
1658 #define __si_special(priv) \
1659 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1660 
1661 int
send_sig(int sig,struct task_struct * p,int priv)1662 send_sig(int sig, struct task_struct *p, int priv)
1663 {
1664 	return send_sig_info(sig, __si_special(priv), p);
1665 }
1666 EXPORT_SYMBOL(send_sig);
1667 
force_sig(int sig)1668 void force_sig(int sig)
1669 {
1670 	struct kernel_siginfo info;
1671 
1672 	clear_siginfo(&info);
1673 	info.si_signo = sig;
1674 	info.si_errno = 0;
1675 	info.si_code = SI_KERNEL;
1676 	info.si_pid = 0;
1677 	info.si_uid = 0;
1678 	force_sig_info(&info);
1679 }
1680 EXPORT_SYMBOL(force_sig);
1681 
force_fatal_sig(int sig)1682 void force_fatal_sig(int sig)
1683 {
1684 	struct kernel_siginfo info;
1685 
1686 	clear_siginfo(&info);
1687 	info.si_signo = sig;
1688 	info.si_errno = 0;
1689 	info.si_code = SI_KERNEL;
1690 	info.si_pid = 0;
1691 	info.si_uid = 0;
1692 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1693 }
1694 
force_exit_sig(int sig)1695 void force_exit_sig(int sig)
1696 {
1697 	struct kernel_siginfo info;
1698 
1699 	clear_siginfo(&info);
1700 	info.si_signo = sig;
1701 	info.si_errno = 0;
1702 	info.si_code = SI_KERNEL;
1703 	info.si_pid = 0;
1704 	info.si_uid = 0;
1705 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1706 }
1707 
1708 /*
1709  * When things go south during signal handling, we
1710  * will force a SIGSEGV. And if the signal that caused
1711  * the problem was already a SIGSEGV, we'll want to
1712  * make sure we don't even try to deliver the signal..
1713  */
force_sigsegv(int sig)1714 void force_sigsegv(int sig)
1715 {
1716 	if (sig == SIGSEGV)
1717 		force_fatal_sig(SIGSEGV);
1718 	else
1719 		force_sig(SIGSEGV);
1720 }
1721 
force_sig_fault_to_task(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1722 int force_sig_fault_to_task(int sig, int code, void __user *addr
1723 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1724 	, struct task_struct *t)
1725 {
1726 	struct kernel_siginfo info;
1727 
1728 	clear_siginfo(&info);
1729 	info.si_signo = sig;
1730 	info.si_errno = 0;
1731 	info.si_code  = code;
1732 	info.si_addr  = addr;
1733 #ifdef __ia64__
1734 	info.si_imm = imm;
1735 	info.si_flags = flags;
1736 	info.si_isr = isr;
1737 #endif
1738 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1739 }
1740 
force_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr))1741 int force_sig_fault(int sig, int code, void __user *addr
1742 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1743 {
1744 	return force_sig_fault_to_task(sig, code, addr
1745 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1746 }
1747 
send_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1748 int send_sig_fault(int sig, int code, void __user *addr
1749 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1750 	, struct task_struct *t)
1751 {
1752 	struct kernel_siginfo info;
1753 
1754 	clear_siginfo(&info);
1755 	info.si_signo = sig;
1756 	info.si_errno = 0;
1757 	info.si_code  = code;
1758 	info.si_addr  = addr;
1759 #ifdef __ia64__
1760 	info.si_imm = imm;
1761 	info.si_flags = flags;
1762 	info.si_isr = isr;
1763 #endif
1764 	return send_sig_info(info.si_signo, &info, t);
1765 }
1766 
force_sig_mceerr(int code,void __user * addr,short lsb)1767 int force_sig_mceerr(int code, void __user *addr, short lsb)
1768 {
1769 	struct kernel_siginfo info;
1770 
1771 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1772 	clear_siginfo(&info);
1773 	info.si_signo = SIGBUS;
1774 	info.si_errno = 0;
1775 	info.si_code = code;
1776 	info.si_addr = addr;
1777 	info.si_addr_lsb = lsb;
1778 	return force_sig_info(&info);
1779 }
1780 
send_sig_mceerr(int code,void __user * addr,short lsb,struct task_struct * t)1781 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1782 {
1783 	struct kernel_siginfo info;
1784 
1785 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1786 	clear_siginfo(&info);
1787 	info.si_signo = SIGBUS;
1788 	info.si_errno = 0;
1789 	info.si_code = code;
1790 	info.si_addr = addr;
1791 	info.si_addr_lsb = lsb;
1792 	return send_sig_info(info.si_signo, &info, t);
1793 }
1794 EXPORT_SYMBOL(send_sig_mceerr);
1795 
force_sig_bnderr(void __user * addr,void __user * lower,void __user * upper)1796 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1797 {
1798 	struct kernel_siginfo info;
1799 
1800 	clear_siginfo(&info);
1801 	info.si_signo = SIGSEGV;
1802 	info.si_errno = 0;
1803 	info.si_code  = SEGV_BNDERR;
1804 	info.si_addr  = addr;
1805 	info.si_lower = lower;
1806 	info.si_upper = upper;
1807 	return force_sig_info(&info);
1808 }
1809 
1810 #ifdef SEGV_PKUERR
force_sig_pkuerr(void __user * addr,u32 pkey)1811 int force_sig_pkuerr(void __user *addr, u32 pkey)
1812 {
1813 	struct kernel_siginfo info;
1814 
1815 	clear_siginfo(&info);
1816 	info.si_signo = SIGSEGV;
1817 	info.si_errno = 0;
1818 	info.si_code  = SEGV_PKUERR;
1819 	info.si_addr  = addr;
1820 	info.si_pkey  = pkey;
1821 	return force_sig_info(&info);
1822 }
1823 #endif
1824 
send_sig_perf(void __user * addr,u32 type,u64 sig_data)1825 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1826 {
1827 	struct kernel_siginfo info;
1828 
1829 	clear_siginfo(&info);
1830 	info.si_signo     = SIGTRAP;
1831 	info.si_errno     = 0;
1832 	info.si_code      = TRAP_PERF;
1833 	info.si_addr      = addr;
1834 	info.si_perf_data = sig_data;
1835 	info.si_perf_type = type;
1836 
1837 	/*
1838 	 * Signals generated by perf events should not terminate the whole
1839 	 * process if SIGTRAP is blocked, however, delivering the signal
1840 	 * asynchronously is better than not delivering at all. But tell user
1841 	 * space if the signal was asynchronous, so it can clearly be
1842 	 * distinguished from normal synchronous ones.
1843 	 */
1844 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1845 				     TRAP_PERF_FLAG_ASYNC :
1846 				     0;
1847 
1848 	return send_sig_info(info.si_signo, &info, current);
1849 }
1850 
1851 /**
1852  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1853  * @syscall: syscall number to send to userland
1854  * @reason: filter-supplied reason code to send to userland (via si_errno)
1855  * @force_coredump: true to trigger a coredump
1856  *
1857  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1858  */
force_sig_seccomp(int syscall,int reason,bool force_coredump)1859 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1860 {
1861 	struct kernel_siginfo info;
1862 
1863 	clear_siginfo(&info);
1864 	info.si_signo = SIGSYS;
1865 	info.si_code = SYS_SECCOMP;
1866 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1867 	info.si_errno = reason;
1868 	info.si_arch = syscall_get_arch(current);
1869 	info.si_syscall = syscall;
1870 	return force_sig_info_to_task(&info, current,
1871 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1872 }
1873 
1874 /* For the crazy architectures that include trap information in
1875  * the errno field, instead of an actual errno value.
1876  */
force_sig_ptrace_errno_trap(int errno,void __user * addr)1877 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1878 {
1879 	struct kernel_siginfo info;
1880 
1881 	clear_siginfo(&info);
1882 	info.si_signo = SIGTRAP;
1883 	info.si_errno = errno;
1884 	info.si_code  = TRAP_HWBKPT;
1885 	info.si_addr  = addr;
1886 	return force_sig_info(&info);
1887 }
1888 
1889 /* For the rare architectures that include trap information using
1890  * si_trapno.
1891  */
force_sig_fault_trapno(int sig,int code,void __user * addr,int trapno)1892 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1893 {
1894 	struct kernel_siginfo info;
1895 
1896 	clear_siginfo(&info);
1897 	info.si_signo = sig;
1898 	info.si_errno = 0;
1899 	info.si_code  = code;
1900 	info.si_addr  = addr;
1901 	info.si_trapno = trapno;
1902 	return force_sig_info(&info);
1903 }
1904 
1905 /* For the rare architectures that include trap information using
1906  * si_trapno.
1907  */
send_sig_fault_trapno(int sig,int code,void __user * addr,int trapno,struct task_struct * t)1908 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1909 			  struct task_struct *t)
1910 {
1911 	struct kernel_siginfo info;
1912 
1913 	clear_siginfo(&info);
1914 	info.si_signo = sig;
1915 	info.si_errno = 0;
1916 	info.si_code  = code;
1917 	info.si_addr  = addr;
1918 	info.si_trapno = trapno;
1919 	return send_sig_info(info.si_signo, &info, t);
1920 }
1921 
kill_pgrp(struct pid * pid,int sig,int priv)1922 int kill_pgrp(struct pid *pid, int sig, int priv)
1923 {
1924 	int ret;
1925 
1926 	read_lock(&tasklist_lock);
1927 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1928 	read_unlock(&tasklist_lock);
1929 
1930 	return ret;
1931 }
1932 EXPORT_SYMBOL(kill_pgrp);
1933 
kill_pid(struct pid * pid,int sig,int priv)1934 int kill_pid(struct pid *pid, int sig, int priv)
1935 {
1936 	return kill_pid_info(sig, __si_special(priv), pid);
1937 }
1938 EXPORT_SYMBOL(kill_pid);
1939 
1940 /*
1941  * These functions support sending signals using preallocated sigqueue
1942  * structures.  This is needed "because realtime applications cannot
1943  * afford to lose notifications of asynchronous events, like timer
1944  * expirations or I/O completions".  In the case of POSIX Timers
1945  * we allocate the sigqueue structure from the timer_create.  If this
1946  * allocation fails we are able to report the failure to the application
1947  * with an EAGAIN error.
1948  */
sigqueue_alloc(void)1949 struct sigqueue *sigqueue_alloc(void)
1950 {
1951 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1952 }
1953 
sigqueue_free(struct sigqueue * q)1954 void sigqueue_free(struct sigqueue *q)
1955 {
1956 	unsigned long flags;
1957 	spinlock_t *lock = &current->sighand->siglock;
1958 
1959 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1960 	/*
1961 	 * We must hold ->siglock while testing q->list
1962 	 * to serialize with collect_signal() or with
1963 	 * __exit_signal()->flush_sigqueue().
1964 	 */
1965 	spin_lock_irqsave(lock, flags);
1966 	q->flags &= ~SIGQUEUE_PREALLOC;
1967 	/*
1968 	 * If it is queued it will be freed when dequeued,
1969 	 * like the "regular" sigqueue.
1970 	 */
1971 	if (!list_empty(&q->list))
1972 		q = NULL;
1973 	spin_unlock_irqrestore(lock, flags);
1974 
1975 	if (q)
1976 		__sigqueue_free(q);
1977 }
1978 
send_sigqueue(struct sigqueue * q,struct pid * pid,enum pid_type type)1979 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1980 {
1981 	int sig = q->info.si_signo;
1982 	struct sigpending *pending;
1983 	struct task_struct *t;
1984 	unsigned long flags;
1985 	int ret, result;
1986 
1987 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1988 
1989 	ret = -1;
1990 	rcu_read_lock();
1991 
1992 	/*
1993 	 * This function is used by POSIX timers to deliver a timer signal.
1994 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1995 	 * set), the signal must be delivered to the specific thread (queues
1996 	 * into t->pending).
1997 	 *
1998 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1999 	 * process. In this case, prefer to deliver to current if it is in
2000 	 * the same thread group as the target process, which avoids
2001 	 * unnecessarily waking up a potentially idle task.
2002 	 */
2003 	t = pid_task(pid, type);
2004 	if (!t)
2005 		goto ret;
2006 	if (type != PIDTYPE_PID && same_thread_group(t, current))
2007 		t = current;
2008 	if (!likely(lock_task_sighand(t, &flags)))
2009 		goto ret;
2010 
2011 	ret = 1; /* the signal is ignored */
2012 	result = TRACE_SIGNAL_IGNORED;
2013 	if (!prepare_signal(sig, t, false))
2014 		goto out;
2015 
2016 	ret = 0;
2017 	if (unlikely(!list_empty(&q->list))) {
2018 		/*
2019 		 * If an SI_TIMER entry is already queue just increment
2020 		 * the overrun count.
2021 		 */
2022 		BUG_ON(q->info.si_code != SI_TIMER);
2023 		q->info.si_overrun++;
2024 		result = TRACE_SIGNAL_ALREADY_PENDING;
2025 		goto out;
2026 	}
2027 	q->info.si_overrun = 0;
2028 
2029 	signalfd_notify(t, sig);
2030 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2031 	list_add_tail(&q->list, &pending->list);
2032 	sigaddset(&pending->signal, sig);
2033 	complete_signal(sig, t, type);
2034 	result = TRACE_SIGNAL_DELIVERED;
2035 out:
2036 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2037 	unlock_task_sighand(t, &flags);
2038 ret:
2039 	rcu_read_unlock();
2040 	return ret;
2041 }
2042 
do_notify_pidfd(struct task_struct * task)2043 static void do_notify_pidfd(struct task_struct *task)
2044 {
2045 	struct pid *pid;
2046 
2047 	WARN_ON(task->exit_state == 0);
2048 	pid = task_pid(task);
2049 	wake_up_all(&pid->wait_pidfd);
2050 }
2051 
2052 /*
2053  * Let a parent know about the death of a child.
2054  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2055  *
2056  * Returns true if our parent ignored us and so we've switched to
2057  * self-reaping.
2058  */
do_notify_parent(struct task_struct * tsk,int sig)2059 bool do_notify_parent(struct task_struct *tsk, int sig)
2060 {
2061 	struct kernel_siginfo info;
2062 	unsigned long flags;
2063 	struct sighand_struct *psig;
2064 	bool autoreap = false;
2065 	u64 utime, stime;
2066 
2067 	WARN_ON_ONCE(sig == -1);
2068 
2069 	/* do_notify_parent_cldstop should have been called instead.  */
2070 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2071 
2072 	WARN_ON_ONCE(!tsk->ptrace &&
2073 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2074 
2075 	/* Wake up all pidfd waiters */
2076 	do_notify_pidfd(tsk);
2077 
2078 	if (sig != SIGCHLD) {
2079 		/*
2080 		 * This is only possible if parent == real_parent.
2081 		 * Check if it has changed security domain.
2082 		 */
2083 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2084 			sig = SIGCHLD;
2085 	}
2086 
2087 	clear_siginfo(&info);
2088 	info.si_signo = sig;
2089 	info.si_errno = 0;
2090 	/*
2091 	 * We are under tasklist_lock here so our parent is tied to
2092 	 * us and cannot change.
2093 	 *
2094 	 * task_active_pid_ns will always return the same pid namespace
2095 	 * until a task passes through release_task.
2096 	 *
2097 	 * write_lock() currently calls preempt_disable() which is the
2098 	 * same as rcu_read_lock(), but according to Oleg, this is not
2099 	 * correct to rely on this
2100 	 */
2101 	rcu_read_lock();
2102 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2103 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2104 				       task_uid(tsk));
2105 	rcu_read_unlock();
2106 
2107 	task_cputime(tsk, &utime, &stime);
2108 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2109 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2110 
2111 	info.si_status = tsk->exit_code & 0x7f;
2112 	if (tsk->exit_code & 0x80)
2113 		info.si_code = CLD_DUMPED;
2114 	else if (tsk->exit_code & 0x7f)
2115 		info.si_code = CLD_KILLED;
2116 	else {
2117 		info.si_code = CLD_EXITED;
2118 		info.si_status = tsk->exit_code >> 8;
2119 	}
2120 
2121 	psig = tsk->parent->sighand;
2122 	spin_lock_irqsave(&psig->siglock, flags);
2123 	if (!tsk->ptrace && sig == SIGCHLD &&
2124 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2125 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2126 		/*
2127 		 * We are exiting and our parent doesn't care.  POSIX.1
2128 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2129 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2130 		 * automatically and not left for our parent's wait4 call.
2131 		 * Rather than having the parent do it as a magic kind of
2132 		 * signal handler, we just set this to tell do_exit that we
2133 		 * can be cleaned up without becoming a zombie.  Note that
2134 		 * we still call __wake_up_parent in this case, because a
2135 		 * blocked sys_wait4 might now return -ECHILD.
2136 		 *
2137 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2138 		 * is implementation-defined: we do (if you don't want
2139 		 * it, just use SIG_IGN instead).
2140 		 */
2141 		autoreap = true;
2142 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2143 			sig = 0;
2144 	}
2145 	/*
2146 	 * Send with __send_signal as si_pid and si_uid are in the
2147 	 * parent's namespaces.
2148 	 */
2149 	if (valid_signal(sig) && sig)
2150 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2151 	__wake_up_parent(tsk, tsk->parent);
2152 	spin_unlock_irqrestore(&psig->siglock, flags);
2153 
2154 	return autoreap;
2155 }
2156 
2157 /**
2158  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2159  * @tsk: task reporting the state change
2160  * @for_ptracer: the notification is for ptracer
2161  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2162  *
2163  * Notify @tsk's parent that the stopped/continued state has changed.  If
2164  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2165  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2166  *
2167  * CONTEXT:
2168  * Must be called with tasklist_lock at least read locked.
2169  */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)2170 static void do_notify_parent_cldstop(struct task_struct *tsk,
2171 				     bool for_ptracer, int why)
2172 {
2173 	struct kernel_siginfo info;
2174 	unsigned long flags;
2175 	struct task_struct *parent;
2176 	struct sighand_struct *sighand;
2177 	u64 utime, stime;
2178 
2179 	if (for_ptracer) {
2180 		parent = tsk->parent;
2181 	} else {
2182 		tsk = tsk->group_leader;
2183 		parent = tsk->real_parent;
2184 	}
2185 
2186 	clear_siginfo(&info);
2187 	info.si_signo = SIGCHLD;
2188 	info.si_errno = 0;
2189 	/*
2190 	 * see comment in do_notify_parent() about the following 4 lines
2191 	 */
2192 	rcu_read_lock();
2193 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2194 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2195 	rcu_read_unlock();
2196 
2197 	task_cputime(tsk, &utime, &stime);
2198 	info.si_utime = nsec_to_clock_t(utime);
2199 	info.si_stime = nsec_to_clock_t(stime);
2200 
2201  	info.si_code = why;
2202  	switch (why) {
2203  	case CLD_CONTINUED:
2204  		info.si_status = SIGCONT;
2205  		break;
2206  	case CLD_STOPPED:
2207  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2208  		break;
2209  	case CLD_TRAPPED:
2210  		info.si_status = tsk->exit_code & 0x7f;
2211  		break;
2212  	default:
2213  		BUG();
2214  	}
2215 
2216 	sighand = parent->sighand;
2217 	spin_lock_irqsave(&sighand->siglock, flags);
2218 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2219 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2220 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2221 	/*
2222 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2223 	 */
2224 	__wake_up_parent(tsk, parent);
2225 	spin_unlock_irqrestore(&sighand->siglock, flags);
2226 }
2227 
2228 /*
2229  * This must be called with current->sighand->siglock held.
2230  *
2231  * This should be the path for all ptrace stops.
2232  * We always set current->last_siginfo while stopped here.
2233  * That makes it a way to test a stopped process for
2234  * being ptrace-stopped vs being job-control-stopped.
2235  *
2236  * Returns the signal the ptracer requested the code resume
2237  * with.  If the code did not stop because the tracer is gone,
2238  * the stop signal remains unchanged unless clear_code.
2239  */
ptrace_stop(int exit_code,int why,unsigned long message,kernel_siginfo_t * info)2240 static int ptrace_stop(int exit_code, int why, unsigned long message,
2241 		       kernel_siginfo_t *info)
2242 	__releases(&current->sighand->siglock)
2243 	__acquires(&current->sighand->siglock)
2244 {
2245 	bool gstop_done = false;
2246 
2247 	if (arch_ptrace_stop_needed()) {
2248 		/*
2249 		 * The arch code has something special to do before a
2250 		 * ptrace stop.  This is allowed to block, e.g. for faults
2251 		 * on user stack pages.  We can't keep the siglock while
2252 		 * calling arch_ptrace_stop, so we must release it now.
2253 		 * To preserve proper semantics, we must do this before
2254 		 * any signal bookkeeping like checking group_stop_count.
2255 		 */
2256 		spin_unlock_irq(&current->sighand->siglock);
2257 		arch_ptrace_stop();
2258 		spin_lock_irq(&current->sighand->siglock);
2259 	}
2260 
2261 	/*
2262 	 * After this point ptrace_signal_wake_up or signal_wake_up
2263 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2264 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2265 	 * signals here to prevent ptrace_stop sleeping in schedule.
2266 	 */
2267 	if (!current->ptrace || __fatal_signal_pending(current))
2268 		return exit_code;
2269 
2270 	set_special_state(TASK_TRACED);
2271 	current->jobctl |= JOBCTL_TRACED;
2272 
2273 	/*
2274 	 * We're committing to trapping.  TRACED should be visible before
2275 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2276 	 * Also, transition to TRACED and updates to ->jobctl should be
2277 	 * atomic with respect to siglock and should be done after the arch
2278 	 * hook as siglock is released and regrabbed across it.
2279 	 *
2280 	 *     TRACER				    TRACEE
2281 	 *
2282 	 *     ptrace_attach()
2283 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2284 	 *     do_wait()
2285 	 *       set_current_state()                smp_wmb();
2286 	 *       ptrace_do_wait()
2287 	 *         wait_task_stopped()
2288 	 *           task_stopped_code()
2289 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2290 	 */
2291 	smp_wmb();
2292 
2293 	current->ptrace_message = message;
2294 	current->last_siginfo = info;
2295 	current->exit_code = exit_code;
2296 
2297 	/*
2298 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2299 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2300 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2301 	 * could be clear now.  We act as if SIGCONT is received after
2302 	 * TASK_TRACED is entered - ignore it.
2303 	 */
2304 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2305 		gstop_done = task_participate_group_stop(current);
2306 
2307 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2308 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2309 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2310 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2311 
2312 	/* entering a trap, clear TRAPPING */
2313 	task_clear_jobctl_trapping(current);
2314 
2315 	spin_unlock_irq(&current->sighand->siglock);
2316 	read_lock(&tasklist_lock);
2317 	/*
2318 	 * Notify parents of the stop.
2319 	 *
2320 	 * While ptraced, there are two parents - the ptracer and
2321 	 * the real_parent of the group_leader.  The ptracer should
2322 	 * know about every stop while the real parent is only
2323 	 * interested in the completion of group stop.  The states
2324 	 * for the two don't interact with each other.  Notify
2325 	 * separately unless they're gonna be duplicates.
2326 	 */
2327 	if (current->ptrace)
2328 		do_notify_parent_cldstop(current, true, why);
2329 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2330 		do_notify_parent_cldstop(current, false, why);
2331 
2332 	/*
2333 	 * Don't want to allow preemption here, because
2334 	 * sys_ptrace() needs this task to be inactive.
2335 	 *
2336 	 * XXX: implement read_unlock_no_resched().
2337 	 */
2338 	preempt_disable();
2339 	read_unlock(&tasklist_lock);
2340 	cgroup_enter_frozen();
2341 	preempt_enable_no_resched();
2342 	schedule();
2343 	cgroup_leave_frozen(true);
2344 
2345 	/*
2346 	 * We are back.  Now reacquire the siglock before touching
2347 	 * last_siginfo, so that we are sure to have synchronized with
2348 	 * any signal-sending on another CPU that wants to examine it.
2349 	 */
2350 	spin_lock_irq(&current->sighand->siglock);
2351 	exit_code = current->exit_code;
2352 	current->last_siginfo = NULL;
2353 	current->ptrace_message = 0;
2354 	current->exit_code = 0;
2355 
2356 	/* LISTENING can be set only during STOP traps, clear it */
2357 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2358 
2359 	/*
2360 	 * Queued signals ignored us while we were stopped for tracing.
2361 	 * So check for any that we should take before resuming user mode.
2362 	 * This sets TIF_SIGPENDING, but never clears it.
2363 	 */
2364 	recalc_sigpending_tsk(current);
2365 	return exit_code;
2366 }
2367 
ptrace_do_notify(int signr,int exit_code,int why,unsigned long message)2368 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2369 {
2370 	kernel_siginfo_t info;
2371 
2372 	clear_siginfo(&info);
2373 	info.si_signo = signr;
2374 	info.si_code = exit_code;
2375 	info.si_pid = task_pid_vnr(current);
2376 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2377 
2378 	/* Let the debugger run.  */
2379 	return ptrace_stop(exit_code, why, message, &info);
2380 }
2381 
ptrace_notify(int exit_code,unsigned long message)2382 int ptrace_notify(int exit_code, unsigned long message)
2383 {
2384 	int signr;
2385 
2386 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2387 	if (unlikely(task_work_pending(current)))
2388 		task_work_run();
2389 
2390 	spin_lock_irq(&current->sighand->siglock);
2391 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2392 	spin_unlock_irq(&current->sighand->siglock);
2393 	return signr;
2394 }
2395 
2396 /**
2397  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2398  * @signr: signr causing group stop if initiating
2399  *
2400  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2401  * and participate in it.  If already set, participate in the existing
2402  * group stop.  If participated in a group stop (and thus slept), %true is
2403  * returned with siglock released.
2404  *
2405  * If ptraced, this function doesn't handle stop itself.  Instead,
2406  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2407  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2408  * places afterwards.
2409  *
2410  * CONTEXT:
2411  * Must be called with @current->sighand->siglock held, which is released
2412  * on %true return.
2413  *
2414  * RETURNS:
2415  * %false if group stop is already cancelled or ptrace trap is scheduled.
2416  * %true if participated in group stop.
2417  */
do_signal_stop(int signr)2418 static bool do_signal_stop(int signr)
2419 	__releases(&current->sighand->siglock)
2420 {
2421 	struct signal_struct *sig = current->signal;
2422 
2423 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2424 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2425 		struct task_struct *t;
2426 
2427 		/* signr will be recorded in task->jobctl for retries */
2428 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2429 
2430 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2431 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2432 		    unlikely(sig->group_exec_task))
2433 			return false;
2434 		/*
2435 		 * There is no group stop already in progress.  We must
2436 		 * initiate one now.
2437 		 *
2438 		 * While ptraced, a task may be resumed while group stop is
2439 		 * still in effect and then receive a stop signal and
2440 		 * initiate another group stop.  This deviates from the
2441 		 * usual behavior as two consecutive stop signals can't
2442 		 * cause two group stops when !ptraced.  That is why we
2443 		 * also check !task_is_stopped(t) below.
2444 		 *
2445 		 * The condition can be distinguished by testing whether
2446 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2447 		 * group_exit_code in such case.
2448 		 *
2449 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2450 		 * an intervening stop signal is required to cause two
2451 		 * continued events regardless of ptrace.
2452 		 */
2453 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2454 			sig->group_exit_code = signr;
2455 
2456 		sig->group_stop_count = 0;
2457 
2458 		if (task_set_jobctl_pending(current, signr | gstop))
2459 			sig->group_stop_count++;
2460 
2461 		t = current;
2462 		while_each_thread(current, t) {
2463 			/*
2464 			 * Setting state to TASK_STOPPED for a group
2465 			 * stop is always done with the siglock held,
2466 			 * so this check has no races.
2467 			 */
2468 			if (!task_is_stopped(t) &&
2469 			    task_set_jobctl_pending(t, signr | gstop)) {
2470 				sig->group_stop_count++;
2471 				if (likely(!(t->ptrace & PT_SEIZED)))
2472 					signal_wake_up(t, 0);
2473 				else
2474 					ptrace_trap_notify(t);
2475 			}
2476 		}
2477 	}
2478 
2479 	if (likely(!current->ptrace)) {
2480 		int notify = 0;
2481 
2482 		/*
2483 		 * If there are no other threads in the group, or if there
2484 		 * is a group stop in progress and we are the last to stop,
2485 		 * report to the parent.
2486 		 */
2487 		if (task_participate_group_stop(current))
2488 			notify = CLD_STOPPED;
2489 
2490 		current->jobctl |= JOBCTL_STOPPED;
2491 		set_special_state(TASK_STOPPED);
2492 		spin_unlock_irq(&current->sighand->siglock);
2493 
2494 		/*
2495 		 * Notify the parent of the group stop completion.  Because
2496 		 * we're not holding either the siglock or tasklist_lock
2497 		 * here, ptracer may attach inbetween; however, this is for
2498 		 * group stop and should always be delivered to the real
2499 		 * parent of the group leader.  The new ptracer will get
2500 		 * its notification when this task transitions into
2501 		 * TASK_TRACED.
2502 		 */
2503 		if (notify) {
2504 			read_lock(&tasklist_lock);
2505 			do_notify_parent_cldstop(current, false, notify);
2506 			read_unlock(&tasklist_lock);
2507 		}
2508 
2509 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2510 		cgroup_enter_frozen();
2511 		schedule();
2512 		return true;
2513 	} else {
2514 		/*
2515 		 * While ptraced, group stop is handled by STOP trap.
2516 		 * Schedule it and let the caller deal with it.
2517 		 */
2518 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2519 		return false;
2520 	}
2521 }
2522 
2523 /**
2524  * do_jobctl_trap - take care of ptrace jobctl traps
2525  *
2526  * When PT_SEIZED, it's used for both group stop and explicit
2527  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2528  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2529  * the stop signal; otherwise, %SIGTRAP.
2530  *
2531  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2532  * number as exit_code and no siginfo.
2533  *
2534  * CONTEXT:
2535  * Must be called with @current->sighand->siglock held, which may be
2536  * released and re-acquired before returning with intervening sleep.
2537  */
do_jobctl_trap(void)2538 static void do_jobctl_trap(void)
2539 {
2540 	struct signal_struct *signal = current->signal;
2541 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2542 
2543 	if (current->ptrace & PT_SEIZED) {
2544 		if (!signal->group_stop_count &&
2545 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2546 			signr = SIGTRAP;
2547 		WARN_ON_ONCE(!signr);
2548 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2549 				 CLD_STOPPED, 0);
2550 	} else {
2551 		WARN_ON_ONCE(!signr);
2552 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2553 	}
2554 }
2555 
2556 /**
2557  * do_freezer_trap - handle the freezer jobctl trap
2558  *
2559  * Puts the task into frozen state, if only the task is not about to quit.
2560  * In this case it drops JOBCTL_TRAP_FREEZE.
2561  *
2562  * CONTEXT:
2563  * Must be called with @current->sighand->siglock held,
2564  * which is always released before returning.
2565  */
do_freezer_trap(void)2566 static void do_freezer_trap(void)
2567 	__releases(&current->sighand->siglock)
2568 {
2569 	/*
2570 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2571 	 * let's make another loop to give it a chance to be handled.
2572 	 * In any case, we'll return back.
2573 	 */
2574 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2575 	     JOBCTL_TRAP_FREEZE) {
2576 		spin_unlock_irq(&current->sighand->siglock);
2577 		return;
2578 	}
2579 
2580 	/*
2581 	 * Now we're sure that there is no pending fatal signal and no
2582 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2583 	 * immediately (if there is a non-fatal signal pending), and
2584 	 * put the task into sleep.
2585 	 */
2586 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2587 	clear_thread_flag(TIF_SIGPENDING);
2588 	spin_unlock_irq(&current->sighand->siglock);
2589 	cgroup_enter_frozen();
2590 	schedule();
2591 
2592 	/*
2593 	 * We could've been woken by task_work, run it to clear
2594 	 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2595 	 */
2596 	clear_notify_signal();
2597 	if (unlikely(task_work_pending(current)))
2598 		task_work_run();
2599 }
2600 
ptrace_signal(int signr,kernel_siginfo_t * info,enum pid_type type)2601 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2602 {
2603 	/*
2604 	 * We do not check sig_kernel_stop(signr) but set this marker
2605 	 * unconditionally because we do not know whether debugger will
2606 	 * change signr. This flag has no meaning unless we are going
2607 	 * to stop after return from ptrace_stop(). In this case it will
2608 	 * be checked in do_signal_stop(), we should only stop if it was
2609 	 * not cleared by SIGCONT while we were sleeping. See also the
2610 	 * comment in dequeue_signal().
2611 	 */
2612 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2613 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2614 
2615 	/* We're back.  Did the debugger cancel the sig?  */
2616 	if (signr == 0)
2617 		return signr;
2618 
2619 	/*
2620 	 * Update the siginfo structure if the signal has
2621 	 * changed.  If the debugger wanted something
2622 	 * specific in the siginfo structure then it should
2623 	 * have updated *info via PTRACE_SETSIGINFO.
2624 	 */
2625 	if (signr != info->si_signo) {
2626 		clear_siginfo(info);
2627 		info->si_signo = signr;
2628 		info->si_errno = 0;
2629 		info->si_code = SI_USER;
2630 		rcu_read_lock();
2631 		info->si_pid = task_pid_vnr(current->parent);
2632 		info->si_uid = from_kuid_munged(current_user_ns(),
2633 						task_uid(current->parent));
2634 		rcu_read_unlock();
2635 	}
2636 
2637 	/* If the (new) signal is now blocked, requeue it.  */
2638 	if (sigismember(&current->blocked, signr) ||
2639 	    fatal_signal_pending(current)) {
2640 		send_signal_locked(signr, info, current, type);
2641 		signr = 0;
2642 	}
2643 
2644 	return signr;
2645 }
2646 
hide_si_addr_tag_bits(struct ksignal * ksig)2647 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2648 {
2649 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2650 	case SIL_FAULT:
2651 	case SIL_FAULT_TRAPNO:
2652 	case SIL_FAULT_MCEERR:
2653 	case SIL_FAULT_BNDERR:
2654 	case SIL_FAULT_PKUERR:
2655 	case SIL_FAULT_PERF_EVENT:
2656 		ksig->info.si_addr = arch_untagged_si_addr(
2657 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2658 		break;
2659 	case SIL_KILL:
2660 	case SIL_TIMER:
2661 	case SIL_POLL:
2662 	case SIL_CHLD:
2663 	case SIL_RT:
2664 	case SIL_SYS:
2665 		break;
2666 	}
2667 }
2668 
get_signal(struct ksignal * ksig)2669 bool get_signal(struct ksignal *ksig)
2670 {
2671 	struct sighand_struct *sighand = current->sighand;
2672 	struct signal_struct *signal = current->signal;
2673 	int signr;
2674 
2675 	clear_notify_signal();
2676 	if (unlikely(task_work_pending(current)))
2677 		task_work_run();
2678 
2679 	if (!task_sigpending(current))
2680 		return false;
2681 
2682 	if (unlikely(uprobe_deny_signal()))
2683 		return false;
2684 
2685 	/*
2686 	 * Do this once, we can't return to user-mode if freezing() == T.
2687 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2688 	 * thus do not need another check after return.
2689 	 */
2690 	try_to_freeze();
2691 
2692 relock:
2693 	spin_lock_irq(&sighand->siglock);
2694 
2695 	/*
2696 	 * Every stopped thread goes here after wakeup. Check to see if
2697 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2698 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2699 	 */
2700 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2701 		int why;
2702 
2703 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2704 			why = CLD_CONTINUED;
2705 		else
2706 			why = CLD_STOPPED;
2707 
2708 		signal->flags &= ~SIGNAL_CLD_MASK;
2709 
2710 		spin_unlock_irq(&sighand->siglock);
2711 
2712 		/*
2713 		 * Notify the parent that we're continuing.  This event is
2714 		 * always per-process and doesn't make whole lot of sense
2715 		 * for ptracers, who shouldn't consume the state via
2716 		 * wait(2) either, but, for backward compatibility, notify
2717 		 * the ptracer of the group leader too unless it's gonna be
2718 		 * a duplicate.
2719 		 */
2720 		read_lock(&tasklist_lock);
2721 		do_notify_parent_cldstop(current, false, why);
2722 
2723 		if (ptrace_reparented(current->group_leader))
2724 			do_notify_parent_cldstop(current->group_leader,
2725 						true, why);
2726 		read_unlock(&tasklist_lock);
2727 
2728 		goto relock;
2729 	}
2730 
2731 	for (;;) {
2732 		struct k_sigaction *ka;
2733 		enum pid_type type;
2734 
2735 		/* Has this task already been marked for death? */
2736 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2737 		     signal->group_exec_task) {
2738 			clear_siginfo(&ksig->info);
2739 			ksig->info.si_signo = signr = SIGKILL;
2740 			sigdelset(&current->pending.signal, SIGKILL);
2741 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2742 				&sighand->action[SIGKILL - 1]);
2743 			recalc_sigpending();
2744 			goto fatal;
2745 		}
2746 
2747 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2748 		    do_signal_stop(0))
2749 			goto relock;
2750 
2751 		if (unlikely(current->jobctl &
2752 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2753 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2754 				do_jobctl_trap();
2755 				spin_unlock_irq(&sighand->siglock);
2756 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2757 				do_freezer_trap();
2758 
2759 			goto relock;
2760 		}
2761 
2762 		/*
2763 		 * If the task is leaving the frozen state, let's update
2764 		 * cgroup counters and reset the frozen bit.
2765 		 */
2766 		if (unlikely(cgroup_task_frozen(current))) {
2767 			spin_unlock_irq(&sighand->siglock);
2768 			cgroup_leave_frozen(false);
2769 			goto relock;
2770 		}
2771 
2772 		/*
2773 		 * Signals generated by the execution of an instruction
2774 		 * need to be delivered before any other pending signals
2775 		 * so that the instruction pointer in the signal stack
2776 		 * frame points to the faulting instruction.
2777 		 */
2778 		type = PIDTYPE_PID;
2779 		signr = dequeue_synchronous_signal(&ksig->info);
2780 		if (!signr)
2781 			signr = dequeue_signal(current, &current->blocked,
2782 					       &ksig->info, &type);
2783 
2784 		if (!signr)
2785 			break; /* will return 0 */
2786 
2787 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2788 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2789 			signr = ptrace_signal(signr, &ksig->info, type);
2790 			if (!signr)
2791 				continue;
2792 		}
2793 
2794 		ka = &sighand->action[signr-1];
2795 
2796 		/* Trace actually delivered signals. */
2797 		trace_signal_deliver(signr, &ksig->info, ka);
2798 
2799 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2800 			continue;
2801 		if (ka->sa.sa_handler != SIG_DFL) {
2802 			/* Run the handler.  */
2803 			ksig->ka = *ka;
2804 
2805 			if (ka->sa.sa_flags & SA_ONESHOT)
2806 				ka->sa.sa_handler = SIG_DFL;
2807 
2808 			break; /* will return non-zero "signr" value */
2809 		}
2810 
2811 		/*
2812 		 * Now we are doing the default action for this signal.
2813 		 */
2814 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2815 			continue;
2816 
2817 		/*
2818 		 * Global init gets no signals it doesn't want.
2819 		 * Container-init gets no signals it doesn't want from same
2820 		 * container.
2821 		 *
2822 		 * Note that if global/container-init sees a sig_kernel_only()
2823 		 * signal here, the signal must have been generated internally
2824 		 * or must have come from an ancestor namespace. In either
2825 		 * case, the signal cannot be dropped.
2826 		 */
2827 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2828 				!sig_kernel_only(signr))
2829 			continue;
2830 
2831 		if (sig_kernel_stop(signr)) {
2832 			/*
2833 			 * The default action is to stop all threads in
2834 			 * the thread group.  The job control signals
2835 			 * do nothing in an orphaned pgrp, but SIGSTOP
2836 			 * always works.  Note that siglock needs to be
2837 			 * dropped during the call to is_orphaned_pgrp()
2838 			 * because of lock ordering with tasklist_lock.
2839 			 * This allows an intervening SIGCONT to be posted.
2840 			 * We need to check for that and bail out if necessary.
2841 			 */
2842 			if (signr != SIGSTOP) {
2843 				spin_unlock_irq(&sighand->siglock);
2844 
2845 				/* signals can be posted during this window */
2846 
2847 				if (is_current_pgrp_orphaned())
2848 					goto relock;
2849 
2850 				spin_lock_irq(&sighand->siglock);
2851 			}
2852 
2853 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2854 				/* It released the siglock.  */
2855 				goto relock;
2856 			}
2857 
2858 			/*
2859 			 * We didn't actually stop, due to a race
2860 			 * with SIGCONT or something like that.
2861 			 */
2862 			continue;
2863 		}
2864 
2865 	fatal:
2866 		spin_unlock_irq(&sighand->siglock);
2867 		if (unlikely(cgroup_task_frozen(current)))
2868 			cgroup_leave_frozen(true);
2869 
2870 		/*
2871 		 * Anything else is fatal, maybe with a core dump.
2872 		 */
2873 		current->flags |= PF_SIGNALED;
2874 
2875 		if (sig_kernel_coredump(signr)) {
2876 			if (print_fatal_signals)
2877 				print_fatal_signal(ksig->info.si_signo);
2878 			proc_coredump_connector(current);
2879 			/*
2880 			 * If it was able to dump core, this kills all
2881 			 * other threads in the group and synchronizes with
2882 			 * their demise.  If we lost the race with another
2883 			 * thread getting here, it set group_exit_code
2884 			 * first and our do_group_exit call below will use
2885 			 * that value and ignore the one we pass it.
2886 			 */
2887 			do_coredump(&ksig->info);
2888 		}
2889 
2890 		/*
2891 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2892 		 * themselves. They have cleanup that must be performed, so
2893 		 * we cannot call do_exit() on their behalf.
2894 		 */
2895 		if (current->flags & PF_USER_WORKER)
2896 			goto out;
2897 
2898 		/*
2899 		 * Death signals, no core dump.
2900 		 */
2901 		do_group_exit(ksig->info.si_signo);
2902 		/* NOTREACHED */
2903 	}
2904 	spin_unlock_irq(&sighand->siglock);
2905 out:
2906 	ksig->sig = signr;
2907 
2908 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2909 		hide_si_addr_tag_bits(ksig);
2910 
2911 	return ksig->sig > 0;
2912 }
2913 
2914 /**
2915  * signal_delivered - called after signal delivery to update blocked signals
2916  * @ksig:		kernel signal struct
2917  * @stepping:		nonzero if debugger single-step or block-step in use
2918  *
2919  * This function should be called when a signal has successfully been
2920  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2921  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2922  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2923  */
signal_delivered(struct ksignal * ksig,int stepping)2924 static void signal_delivered(struct ksignal *ksig, int stepping)
2925 {
2926 	sigset_t blocked;
2927 
2928 	/* A signal was successfully delivered, and the
2929 	   saved sigmask was stored on the signal frame,
2930 	   and will be restored by sigreturn.  So we can
2931 	   simply clear the restore sigmask flag.  */
2932 	clear_restore_sigmask();
2933 
2934 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2935 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2936 		sigaddset(&blocked, ksig->sig);
2937 	set_current_blocked(&blocked);
2938 	if (current->sas_ss_flags & SS_AUTODISARM)
2939 		sas_ss_reset(current);
2940 	if (stepping)
2941 		ptrace_notify(SIGTRAP, 0);
2942 }
2943 
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2944 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2945 {
2946 	if (failed)
2947 		force_sigsegv(ksig->sig);
2948 	else
2949 		signal_delivered(ksig, stepping);
2950 }
2951 
2952 /*
2953  * It could be that complete_signal() picked us to notify about the
2954  * group-wide signal. Other threads should be notified now to take
2955  * the shared signals in @which since we will not.
2956  */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2957 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2958 {
2959 	sigset_t retarget;
2960 	struct task_struct *t;
2961 
2962 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2963 	if (sigisemptyset(&retarget))
2964 		return;
2965 
2966 	t = tsk;
2967 	while_each_thread(tsk, t) {
2968 		if (t->flags & PF_EXITING)
2969 			continue;
2970 
2971 		if (!has_pending_signals(&retarget, &t->blocked))
2972 			continue;
2973 		/* Remove the signals this thread can handle. */
2974 		sigandsets(&retarget, &retarget, &t->blocked);
2975 
2976 		if (!task_sigpending(t))
2977 			signal_wake_up(t, 0);
2978 
2979 		if (sigisemptyset(&retarget))
2980 			break;
2981 	}
2982 }
2983 
exit_signals(struct task_struct * tsk)2984 void exit_signals(struct task_struct *tsk)
2985 {
2986 	int group_stop = 0;
2987 	sigset_t unblocked;
2988 
2989 	/*
2990 	 * @tsk is about to have PF_EXITING set - lock out users which
2991 	 * expect stable threadgroup.
2992 	 */
2993 	cgroup_threadgroup_change_begin(tsk);
2994 
2995 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2996 		sched_mm_cid_exit_signals(tsk);
2997 		tsk->flags |= PF_EXITING;
2998 		cgroup_threadgroup_change_end(tsk);
2999 		return;
3000 	}
3001 
3002 	spin_lock_irq(&tsk->sighand->siglock);
3003 	/*
3004 	 * From now this task is not visible for group-wide signals,
3005 	 * see wants_signal(), do_signal_stop().
3006 	 */
3007 	sched_mm_cid_exit_signals(tsk);
3008 	tsk->flags |= PF_EXITING;
3009 
3010 	cgroup_threadgroup_change_end(tsk);
3011 
3012 	if (!task_sigpending(tsk))
3013 		goto out;
3014 
3015 	unblocked = tsk->blocked;
3016 	signotset(&unblocked);
3017 	retarget_shared_pending(tsk, &unblocked);
3018 
3019 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3020 	    task_participate_group_stop(tsk))
3021 		group_stop = CLD_STOPPED;
3022 out:
3023 	spin_unlock_irq(&tsk->sighand->siglock);
3024 
3025 	/*
3026 	 * If group stop has completed, deliver the notification.  This
3027 	 * should always go to the real parent of the group leader.
3028 	 */
3029 	if (unlikely(group_stop)) {
3030 		read_lock(&tasklist_lock);
3031 		do_notify_parent_cldstop(tsk, false, group_stop);
3032 		read_unlock(&tasklist_lock);
3033 	}
3034 }
3035 
3036 /*
3037  * System call entry points.
3038  */
3039 
3040 /**
3041  *  sys_restart_syscall - restart a system call
3042  */
SYSCALL_DEFINE0(restart_syscall)3043 SYSCALL_DEFINE0(restart_syscall)
3044 {
3045 	struct restart_block *restart = &current->restart_block;
3046 	return restart->fn(restart);
3047 }
3048 
do_no_restart_syscall(struct restart_block * param)3049 long do_no_restart_syscall(struct restart_block *param)
3050 {
3051 	return -EINTR;
3052 }
3053 
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)3054 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3055 {
3056 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3057 		sigset_t newblocked;
3058 		/* A set of now blocked but previously unblocked signals. */
3059 		sigandnsets(&newblocked, newset, &current->blocked);
3060 		retarget_shared_pending(tsk, &newblocked);
3061 	}
3062 	tsk->blocked = *newset;
3063 	recalc_sigpending();
3064 }
3065 
3066 /**
3067  * set_current_blocked - change current->blocked mask
3068  * @newset: new mask
3069  *
3070  * It is wrong to change ->blocked directly, this helper should be used
3071  * to ensure the process can't miss a shared signal we are going to block.
3072  */
set_current_blocked(sigset_t * newset)3073 void set_current_blocked(sigset_t *newset)
3074 {
3075 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3076 	__set_current_blocked(newset);
3077 }
3078 
__set_current_blocked(const sigset_t * newset)3079 void __set_current_blocked(const sigset_t *newset)
3080 {
3081 	struct task_struct *tsk = current;
3082 
3083 	/*
3084 	 * In case the signal mask hasn't changed, there is nothing we need
3085 	 * to do. The current->blocked shouldn't be modified by other task.
3086 	 */
3087 	if (sigequalsets(&tsk->blocked, newset))
3088 		return;
3089 
3090 	spin_lock_irq(&tsk->sighand->siglock);
3091 	__set_task_blocked(tsk, newset);
3092 	spin_unlock_irq(&tsk->sighand->siglock);
3093 }
3094 
3095 /*
3096  * This is also useful for kernel threads that want to temporarily
3097  * (or permanently) block certain signals.
3098  *
3099  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3100  * interface happily blocks "unblockable" signals like SIGKILL
3101  * and friends.
3102  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)3103 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3104 {
3105 	struct task_struct *tsk = current;
3106 	sigset_t newset;
3107 
3108 	/* Lockless, only current can change ->blocked, never from irq */
3109 	if (oldset)
3110 		*oldset = tsk->blocked;
3111 
3112 	switch (how) {
3113 	case SIG_BLOCK:
3114 		sigorsets(&newset, &tsk->blocked, set);
3115 		break;
3116 	case SIG_UNBLOCK:
3117 		sigandnsets(&newset, &tsk->blocked, set);
3118 		break;
3119 	case SIG_SETMASK:
3120 		newset = *set;
3121 		break;
3122 	default:
3123 		return -EINVAL;
3124 	}
3125 
3126 	__set_current_blocked(&newset);
3127 	return 0;
3128 }
3129 EXPORT_SYMBOL(sigprocmask);
3130 
3131 /*
3132  * The api helps set app-provided sigmasks.
3133  *
3134  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3135  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3136  *
3137  * Note that it does set_restore_sigmask() in advance, so it must be always
3138  * paired with restore_saved_sigmask_unless() before return from syscall.
3139  */
set_user_sigmask(const sigset_t __user * umask,size_t sigsetsize)3140 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3141 {
3142 	sigset_t kmask;
3143 
3144 	if (!umask)
3145 		return 0;
3146 	if (sigsetsize != sizeof(sigset_t))
3147 		return -EINVAL;
3148 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3149 		return -EFAULT;
3150 
3151 	set_restore_sigmask();
3152 	current->saved_sigmask = current->blocked;
3153 	set_current_blocked(&kmask);
3154 
3155 	return 0;
3156 }
3157 
3158 #ifdef CONFIG_COMPAT
set_compat_user_sigmask(const compat_sigset_t __user * umask,size_t sigsetsize)3159 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3160 			    size_t sigsetsize)
3161 {
3162 	sigset_t kmask;
3163 
3164 	if (!umask)
3165 		return 0;
3166 	if (sigsetsize != sizeof(compat_sigset_t))
3167 		return -EINVAL;
3168 	if (get_compat_sigset(&kmask, umask))
3169 		return -EFAULT;
3170 
3171 	set_restore_sigmask();
3172 	current->saved_sigmask = current->blocked;
3173 	set_current_blocked(&kmask);
3174 
3175 	return 0;
3176 }
3177 #endif
3178 
3179 /**
3180  *  sys_rt_sigprocmask - change the list of currently blocked signals
3181  *  @how: whether to add, remove, or set signals
3182  *  @nset: stores pending signals
3183  *  @oset: previous value of signal mask if non-null
3184  *  @sigsetsize: size of sigset_t type
3185  */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)3186 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3187 		sigset_t __user *, oset, size_t, sigsetsize)
3188 {
3189 	sigset_t old_set, new_set;
3190 	int error;
3191 
3192 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3193 	if (sigsetsize != sizeof(sigset_t))
3194 		return -EINVAL;
3195 
3196 	old_set = current->blocked;
3197 
3198 	if (nset) {
3199 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3200 			return -EFAULT;
3201 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3202 
3203 		error = sigprocmask(how, &new_set, NULL);
3204 		if (error)
3205 			return error;
3206 	}
3207 
3208 	if (oset) {
3209 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3210 			return -EFAULT;
3211 	}
3212 
3213 	return 0;
3214 }
3215 
3216 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)3217 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3218 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3219 {
3220 	sigset_t old_set = current->blocked;
3221 
3222 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3223 	if (sigsetsize != sizeof(sigset_t))
3224 		return -EINVAL;
3225 
3226 	if (nset) {
3227 		sigset_t new_set;
3228 		int error;
3229 		if (get_compat_sigset(&new_set, nset))
3230 			return -EFAULT;
3231 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3232 
3233 		error = sigprocmask(how, &new_set, NULL);
3234 		if (error)
3235 			return error;
3236 	}
3237 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3238 }
3239 #endif
3240 
do_sigpending(sigset_t * set)3241 static void do_sigpending(sigset_t *set)
3242 {
3243 	spin_lock_irq(&current->sighand->siglock);
3244 	sigorsets(set, &current->pending.signal,
3245 		  &current->signal->shared_pending.signal);
3246 	spin_unlock_irq(&current->sighand->siglock);
3247 
3248 	/* Outside the lock because only this thread touches it.  */
3249 	sigandsets(set, &current->blocked, set);
3250 }
3251 
3252 /**
3253  *  sys_rt_sigpending - examine a pending signal that has been raised
3254  *			while blocked
3255  *  @uset: stores pending signals
3256  *  @sigsetsize: size of sigset_t type or larger
3257  */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)3258 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3259 {
3260 	sigset_t set;
3261 
3262 	if (sigsetsize > sizeof(*uset))
3263 		return -EINVAL;
3264 
3265 	do_sigpending(&set);
3266 
3267 	if (copy_to_user(uset, &set, sigsetsize))
3268 		return -EFAULT;
3269 
3270 	return 0;
3271 }
3272 
3273 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)3274 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3275 		compat_size_t, sigsetsize)
3276 {
3277 	sigset_t set;
3278 
3279 	if (sigsetsize > sizeof(*uset))
3280 		return -EINVAL;
3281 
3282 	do_sigpending(&set);
3283 
3284 	return put_compat_sigset(uset, &set, sigsetsize);
3285 }
3286 #endif
3287 
3288 static const struct {
3289 	unsigned char limit, layout;
3290 } sig_sicodes[] = {
3291 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3292 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3293 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3294 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3295 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3296 #if defined(SIGEMT)
3297 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3298 #endif
3299 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3300 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3301 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3302 };
3303 
known_siginfo_layout(unsigned sig,int si_code)3304 static bool known_siginfo_layout(unsigned sig, int si_code)
3305 {
3306 	if (si_code == SI_KERNEL)
3307 		return true;
3308 	else if ((si_code > SI_USER)) {
3309 		if (sig_specific_sicodes(sig)) {
3310 			if (si_code <= sig_sicodes[sig].limit)
3311 				return true;
3312 		}
3313 		else if (si_code <= NSIGPOLL)
3314 			return true;
3315 	}
3316 	else if (si_code >= SI_DETHREAD)
3317 		return true;
3318 	else if (si_code == SI_ASYNCNL)
3319 		return true;
3320 	return false;
3321 }
3322 
siginfo_layout(unsigned sig,int si_code)3323 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3324 {
3325 	enum siginfo_layout layout = SIL_KILL;
3326 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3327 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3328 		    (si_code <= sig_sicodes[sig].limit)) {
3329 			layout = sig_sicodes[sig].layout;
3330 			/* Handle the exceptions */
3331 			if ((sig == SIGBUS) &&
3332 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3333 				layout = SIL_FAULT_MCEERR;
3334 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3335 				layout = SIL_FAULT_BNDERR;
3336 #ifdef SEGV_PKUERR
3337 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3338 				layout = SIL_FAULT_PKUERR;
3339 #endif
3340 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3341 				layout = SIL_FAULT_PERF_EVENT;
3342 			else if (IS_ENABLED(CONFIG_SPARC) &&
3343 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3344 				layout = SIL_FAULT_TRAPNO;
3345 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3346 				 ((sig == SIGFPE) ||
3347 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3348 				layout = SIL_FAULT_TRAPNO;
3349 		}
3350 		else if (si_code <= NSIGPOLL)
3351 			layout = SIL_POLL;
3352 	} else {
3353 		if (si_code == SI_TIMER)
3354 			layout = SIL_TIMER;
3355 		else if (si_code == SI_SIGIO)
3356 			layout = SIL_POLL;
3357 		else if (si_code < 0)
3358 			layout = SIL_RT;
3359 	}
3360 	return layout;
3361 }
3362 
si_expansion(const siginfo_t __user * info)3363 static inline char __user *si_expansion(const siginfo_t __user *info)
3364 {
3365 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3366 }
3367 
copy_siginfo_to_user(siginfo_t __user * to,const kernel_siginfo_t * from)3368 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3369 {
3370 	char __user *expansion = si_expansion(to);
3371 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3372 		return -EFAULT;
3373 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3374 		return -EFAULT;
3375 	return 0;
3376 }
3377 
post_copy_siginfo_from_user(kernel_siginfo_t * info,const siginfo_t __user * from)3378 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3379 				       const siginfo_t __user *from)
3380 {
3381 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3382 		char __user *expansion = si_expansion(from);
3383 		char buf[SI_EXPANSION_SIZE];
3384 		int i;
3385 		/*
3386 		 * An unknown si_code might need more than
3387 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3388 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3389 		 * will return this data to userspace exactly.
3390 		 */
3391 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3392 			return -EFAULT;
3393 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3394 			if (buf[i] != 0)
3395 				return -E2BIG;
3396 		}
3397 	}
3398 	return 0;
3399 }
3400 
__copy_siginfo_from_user(int signo,kernel_siginfo_t * to,const siginfo_t __user * from)3401 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3402 				    const siginfo_t __user *from)
3403 {
3404 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3405 		return -EFAULT;
3406 	to->si_signo = signo;
3407 	return post_copy_siginfo_from_user(to, from);
3408 }
3409 
copy_siginfo_from_user(kernel_siginfo_t * to,const siginfo_t __user * from)3410 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3411 {
3412 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3413 		return -EFAULT;
3414 	return post_copy_siginfo_from_user(to, from);
3415 }
3416 
3417 #ifdef CONFIG_COMPAT
3418 /**
3419  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3420  * @to: compat siginfo destination
3421  * @from: kernel siginfo source
3422  *
3423  * Note: This function does not work properly for the SIGCHLD on x32, but
3424  * fortunately it doesn't have to.  The only valid callers for this function are
3425  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3426  * The latter does not care because SIGCHLD will never cause a coredump.
3427  */
copy_siginfo_to_external32(struct compat_siginfo * to,const struct kernel_siginfo * from)3428 void copy_siginfo_to_external32(struct compat_siginfo *to,
3429 		const struct kernel_siginfo *from)
3430 {
3431 	memset(to, 0, sizeof(*to));
3432 
3433 	to->si_signo = from->si_signo;
3434 	to->si_errno = from->si_errno;
3435 	to->si_code  = from->si_code;
3436 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3437 	case SIL_KILL:
3438 		to->si_pid = from->si_pid;
3439 		to->si_uid = from->si_uid;
3440 		break;
3441 	case SIL_TIMER:
3442 		to->si_tid     = from->si_tid;
3443 		to->si_overrun = from->si_overrun;
3444 		to->si_int     = from->si_int;
3445 		break;
3446 	case SIL_POLL:
3447 		to->si_band = from->si_band;
3448 		to->si_fd   = from->si_fd;
3449 		break;
3450 	case SIL_FAULT:
3451 		to->si_addr = ptr_to_compat(from->si_addr);
3452 		break;
3453 	case SIL_FAULT_TRAPNO:
3454 		to->si_addr = ptr_to_compat(from->si_addr);
3455 		to->si_trapno = from->si_trapno;
3456 		break;
3457 	case SIL_FAULT_MCEERR:
3458 		to->si_addr = ptr_to_compat(from->si_addr);
3459 		to->si_addr_lsb = from->si_addr_lsb;
3460 		break;
3461 	case SIL_FAULT_BNDERR:
3462 		to->si_addr = ptr_to_compat(from->si_addr);
3463 		to->si_lower = ptr_to_compat(from->si_lower);
3464 		to->si_upper = ptr_to_compat(from->si_upper);
3465 		break;
3466 	case SIL_FAULT_PKUERR:
3467 		to->si_addr = ptr_to_compat(from->si_addr);
3468 		to->si_pkey = from->si_pkey;
3469 		break;
3470 	case SIL_FAULT_PERF_EVENT:
3471 		to->si_addr = ptr_to_compat(from->si_addr);
3472 		to->si_perf_data = from->si_perf_data;
3473 		to->si_perf_type = from->si_perf_type;
3474 		to->si_perf_flags = from->si_perf_flags;
3475 		break;
3476 	case SIL_CHLD:
3477 		to->si_pid = from->si_pid;
3478 		to->si_uid = from->si_uid;
3479 		to->si_status = from->si_status;
3480 		to->si_utime = from->si_utime;
3481 		to->si_stime = from->si_stime;
3482 		break;
3483 	case SIL_RT:
3484 		to->si_pid = from->si_pid;
3485 		to->si_uid = from->si_uid;
3486 		to->si_int = from->si_int;
3487 		break;
3488 	case SIL_SYS:
3489 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3490 		to->si_syscall   = from->si_syscall;
3491 		to->si_arch      = from->si_arch;
3492 		break;
3493 	}
3494 }
3495 
__copy_siginfo_to_user32(struct compat_siginfo __user * to,const struct kernel_siginfo * from)3496 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3497 			   const struct kernel_siginfo *from)
3498 {
3499 	struct compat_siginfo new;
3500 
3501 	copy_siginfo_to_external32(&new, from);
3502 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3503 		return -EFAULT;
3504 	return 0;
3505 }
3506 
post_copy_siginfo_from_user32(kernel_siginfo_t * to,const struct compat_siginfo * from)3507 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3508 					 const struct compat_siginfo *from)
3509 {
3510 	clear_siginfo(to);
3511 	to->si_signo = from->si_signo;
3512 	to->si_errno = from->si_errno;
3513 	to->si_code  = from->si_code;
3514 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3515 	case SIL_KILL:
3516 		to->si_pid = from->si_pid;
3517 		to->si_uid = from->si_uid;
3518 		break;
3519 	case SIL_TIMER:
3520 		to->si_tid     = from->si_tid;
3521 		to->si_overrun = from->si_overrun;
3522 		to->si_int     = from->si_int;
3523 		break;
3524 	case SIL_POLL:
3525 		to->si_band = from->si_band;
3526 		to->si_fd   = from->si_fd;
3527 		break;
3528 	case SIL_FAULT:
3529 		to->si_addr = compat_ptr(from->si_addr);
3530 		break;
3531 	case SIL_FAULT_TRAPNO:
3532 		to->si_addr = compat_ptr(from->si_addr);
3533 		to->si_trapno = from->si_trapno;
3534 		break;
3535 	case SIL_FAULT_MCEERR:
3536 		to->si_addr = compat_ptr(from->si_addr);
3537 		to->si_addr_lsb = from->si_addr_lsb;
3538 		break;
3539 	case SIL_FAULT_BNDERR:
3540 		to->si_addr = compat_ptr(from->si_addr);
3541 		to->si_lower = compat_ptr(from->si_lower);
3542 		to->si_upper = compat_ptr(from->si_upper);
3543 		break;
3544 	case SIL_FAULT_PKUERR:
3545 		to->si_addr = compat_ptr(from->si_addr);
3546 		to->si_pkey = from->si_pkey;
3547 		break;
3548 	case SIL_FAULT_PERF_EVENT:
3549 		to->si_addr = compat_ptr(from->si_addr);
3550 		to->si_perf_data = from->si_perf_data;
3551 		to->si_perf_type = from->si_perf_type;
3552 		to->si_perf_flags = from->si_perf_flags;
3553 		break;
3554 	case SIL_CHLD:
3555 		to->si_pid    = from->si_pid;
3556 		to->si_uid    = from->si_uid;
3557 		to->si_status = from->si_status;
3558 #ifdef CONFIG_X86_X32_ABI
3559 		if (in_x32_syscall()) {
3560 			to->si_utime = from->_sifields._sigchld_x32._utime;
3561 			to->si_stime = from->_sifields._sigchld_x32._stime;
3562 		} else
3563 #endif
3564 		{
3565 			to->si_utime = from->si_utime;
3566 			to->si_stime = from->si_stime;
3567 		}
3568 		break;
3569 	case SIL_RT:
3570 		to->si_pid = from->si_pid;
3571 		to->si_uid = from->si_uid;
3572 		to->si_int = from->si_int;
3573 		break;
3574 	case SIL_SYS:
3575 		to->si_call_addr = compat_ptr(from->si_call_addr);
3576 		to->si_syscall   = from->si_syscall;
3577 		to->si_arch      = from->si_arch;
3578 		break;
3579 	}
3580 	return 0;
3581 }
3582 
__copy_siginfo_from_user32(int signo,struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3583 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3584 				      const struct compat_siginfo __user *ufrom)
3585 {
3586 	struct compat_siginfo from;
3587 
3588 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3589 		return -EFAULT;
3590 
3591 	from.si_signo = signo;
3592 	return post_copy_siginfo_from_user32(to, &from);
3593 }
3594 
copy_siginfo_from_user32(struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3595 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3596 			     const struct compat_siginfo __user *ufrom)
3597 {
3598 	struct compat_siginfo from;
3599 
3600 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3601 		return -EFAULT;
3602 
3603 	return post_copy_siginfo_from_user32(to, &from);
3604 }
3605 #endif /* CONFIG_COMPAT */
3606 
3607 /**
3608  *  do_sigtimedwait - wait for queued signals specified in @which
3609  *  @which: queued signals to wait for
3610  *  @info: if non-null, the signal's siginfo is returned here
3611  *  @ts: upper bound on process time suspension
3612  */
do_sigtimedwait(const sigset_t * which,kernel_siginfo_t * info,const struct timespec64 * ts)3613 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3614 		    const struct timespec64 *ts)
3615 {
3616 	ktime_t *to = NULL, timeout = KTIME_MAX;
3617 	struct task_struct *tsk = current;
3618 	sigset_t mask = *which;
3619 	enum pid_type type;
3620 	int sig, ret = 0;
3621 
3622 	if (ts) {
3623 		if (!timespec64_valid(ts))
3624 			return -EINVAL;
3625 		timeout = timespec64_to_ktime(*ts);
3626 		to = &timeout;
3627 	}
3628 
3629 	/*
3630 	 * Invert the set of allowed signals to get those we want to block.
3631 	 */
3632 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3633 	signotset(&mask);
3634 
3635 	spin_lock_irq(&tsk->sighand->siglock);
3636 	sig = dequeue_signal(tsk, &mask, info, &type);
3637 	if (!sig && timeout) {
3638 		/*
3639 		 * None ready, temporarily unblock those we're interested
3640 		 * while we are sleeping in so that we'll be awakened when
3641 		 * they arrive. Unblocking is always fine, we can avoid
3642 		 * set_current_blocked().
3643 		 */
3644 		tsk->real_blocked = tsk->blocked;
3645 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3646 		recalc_sigpending();
3647 		spin_unlock_irq(&tsk->sighand->siglock);
3648 
3649 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3650 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3651 					       HRTIMER_MODE_REL);
3652 		spin_lock_irq(&tsk->sighand->siglock);
3653 		__set_task_blocked(tsk, &tsk->real_blocked);
3654 		sigemptyset(&tsk->real_blocked);
3655 		sig = dequeue_signal(tsk, &mask, info, &type);
3656 	}
3657 	spin_unlock_irq(&tsk->sighand->siglock);
3658 
3659 	if (sig)
3660 		return sig;
3661 	return ret ? -EINTR : -EAGAIN;
3662 }
3663 
3664 /**
3665  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3666  *			in @uthese
3667  *  @uthese: queued signals to wait for
3668  *  @uinfo: if non-null, the signal's siginfo is returned here
3669  *  @uts: upper bound on process time suspension
3670  *  @sigsetsize: size of sigset_t type
3671  */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct __kernel_timespec __user *,uts,size_t,sigsetsize)3672 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3673 		siginfo_t __user *, uinfo,
3674 		const struct __kernel_timespec __user *, uts,
3675 		size_t, sigsetsize)
3676 {
3677 	sigset_t these;
3678 	struct timespec64 ts;
3679 	kernel_siginfo_t info;
3680 	int ret;
3681 
3682 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3683 	if (sigsetsize != sizeof(sigset_t))
3684 		return -EINVAL;
3685 
3686 	if (copy_from_user(&these, uthese, sizeof(these)))
3687 		return -EFAULT;
3688 
3689 	if (uts) {
3690 		if (get_timespec64(&ts, uts))
3691 			return -EFAULT;
3692 	}
3693 
3694 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3695 
3696 	if (ret > 0 && uinfo) {
3697 		if (copy_siginfo_to_user(uinfo, &info))
3698 			ret = -EFAULT;
3699 	}
3700 
3701 	return ret;
3702 }
3703 
3704 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct old_timespec32 __user *,uts,size_t,sigsetsize)3705 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3706 		siginfo_t __user *, uinfo,
3707 		const struct old_timespec32 __user *, uts,
3708 		size_t, sigsetsize)
3709 {
3710 	sigset_t these;
3711 	struct timespec64 ts;
3712 	kernel_siginfo_t info;
3713 	int ret;
3714 
3715 	if (sigsetsize != sizeof(sigset_t))
3716 		return -EINVAL;
3717 
3718 	if (copy_from_user(&these, uthese, sizeof(these)))
3719 		return -EFAULT;
3720 
3721 	if (uts) {
3722 		if (get_old_timespec32(&ts, uts))
3723 			return -EFAULT;
3724 	}
3725 
3726 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3727 
3728 	if (ret > 0 && uinfo) {
3729 		if (copy_siginfo_to_user(uinfo, &info))
3730 			ret = -EFAULT;
3731 	}
3732 
3733 	return ret;
3734 }
3735 #endif
3736 
3737 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct __kernel_timespec __user *,uts,compat_size_t,sigsetsize)3738 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3739 		struct compat_siginfo __user *, uinfo,
3740 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3741 {
3742 	sigset_t s;
3743 	struct timespec64 t;
3744 	kernel_siginfo_t info;
3745 	long ret;
3746 
3747 	if (sigsetsize != sizeof(sigset_t))
3748 		return -EINVAL;
3749 
3750 	if (get_compat_sigset(&s, uthese))
3751 		return -EFAULT;
3752 
3753 	if (uts) {
3754 		if (get_timespec64(&t, uts))
3755 			return -EFAULT;
3756 	}
3757 
3758 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3759 
3760 	if (ret > 0 && uinfo) {
3761 		if (copy_siginfo_to_user32(uinfo, &info))
3762 			ret = -EFAULT;
3763 	}
3764 
3765 	return ret;
3766 }
3767 
3768 #ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct old_timespec32 __user *,uts,compat_size_t,sigsetsize)3769 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3770 		struct compat_siginfo __user *, uinfo,
3771 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3772 {
3773 	sigset_t s;
3774 	struct timespec64 t;
3775 	kernel_siginfo_t info;
3776 	long ret;
3777 
3778 	if (sigsetsize != sizeof(sigset_t))
3779 		return -EINVAL;
3780 
3781 	if (get_compat_sigset(&s, uthese))
3782 		return -EFAULT;
3783 
3784 	if (uts) {
3785 		if (get_old_timespec32(&t, uts))
3786 			return -EFAULT;
3787 	}
3788 
3789 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3790 
3791 	if (ret > 0 && uinfo) {
3792 		if (copy_siginfo_to_user32(uinfo, &info))
3793 			ret = -EFAULT;
3794 	}
3795 
3796 	return ret;
3797 }
3798 #endif
3799 #endif
3800 
prepare_kill_siginfo(int sig,struct kernel_siginfo * info)3801 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3802 {
3803 	clear_siginfo(info);
3804 	info->si_signo = sig;
3805 	info->si_errno = 0;
3806 	info->si_code = SI_USER;
3807 	info->si_pid = task_tgid_vnr(current);
3808 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3809 }
3810 
3811 /**
3812  *  sys_kill - send a signal to a process
3813  *  @pid: the PID of the process
3814  *  @sig: signal to be sent
3815  */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)3816 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3817 {
3818 	struct kernel_siginfo info;
3819 
3820 	prepare_kill_siginfo(sig, &info);
3821 
3822 	return kill_something_info(sig, &info, pid);
3823 }
3824 
3825 /*
3826  * Verify that the signaler and signalee either are in the same pid namespace
3827  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3828  * namespace.
3829  */
access_pidfd_pidns(struct pid * pid)3830 static bool access_pidfd_pidns(struct pid *pid)
3831 {
3832 	struct pid_namespace *active = task_active_pid_ns(current);
3833 	struct pid_namespace *p = ns_of_pid(pid);
3834 
3835 	for (;;) {
3836 		if (!p)
3837 			return false;
3838 		if (p == active)
3839 			break;
3840 		p = p->parent;
3841 	}
3842 
3843 	return true;
3844 }
3845 
copy_siginfo_from_user_any(kernel_siginfo_t * kinfo,siginfo_t __user * info)3846 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3847 		siginfo_t __user *info)
3848 {
3849 #ifdef CONFIG_COMPAT
3850 	/*
3851 	 * Avoid hooking up compat syscalls and instead handle necessary
3852 	 * conversions here. Note, this is a stop-gap measure and should not be
3853 	 * considered a generic solution.
3854 	 */
3855 	if (in_compat_syscall())
3856 		return copy_siginfo_from_user32(
3857 			kinfo, (struct compat_siginfo __user *)info);
3858 #endif
3859 	return copy_siginfo_from_user(kinfo, info);
3860 }
3861 
pidfd_to_pid(const struct file * file)3862 static struct pid *pidfd_to_pid(const struct file *file)
3863 {
3864 	struct pid *pid;
3865 
3866 	pid = pidfd_pid(file);
3867 	if (!IS_ERR(pid))
3868 		return pid;
3869 
3870 	return tgid_pidfd_to_pid(file);
3871 }
3872 
3873 /**
3874  * sys_pidfd_send_signal - Signal a process through a pidfd
3875  * @pidfd:  file descriptor of the process
3876  * @sig:    signal to send
3877  * @info:   signal info
3878  * @flags:  future flags
3879  *
3880  * The syscall currently only signals via PIDTYPE_PID which covers
3881  * kill(<positive-pid>, <signal>. It does not signal threads or process
3882  * groups.
3883  * In order to extend the syscall to threads and process groups the @flags
3884  * argument should be used. In essence, the @flags argument will determine
3885  * what is signaled and not the file descriptor itself. Put in other words,
3886  * grouping is a property of the flags argument not a property of the file
3887  * descriptor.
3888  *
3889  * Return: 0 on success, negative errno on failure
3890  */
SYSCALL_DEFINE4(pidfd_send_signal,int,pidfd,int,sig,siginfo_t __user *,info,unsigned int,flags)3891 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3892 		siginfo_t __user *, info, unsigned int, flags)
3893 {
3894 	int ret;
3895 	struct fd f;
3896 	struct pid *pid;
3897 	kernel_siginfo_t kinfo;
3898 
3899 	/* Enforce flags be set to 0 until we add an extension. */
3900 	if (flags)
3901 		return -EINVAL;
3902 
3903 	f = fdget(pidfd);
3904 	if (!f.file)
3905 		return -EBADF;
3906 
3907 	/* Is this a pidfd? */
3908 	pid = pidfd_to_pid(f.file);
3909 	if (IS_ERR(pid)) {
3910 		ret = PTR_ERR(pid);
3911 		goto err;
3912 	}
3913 
3914 	ret = -EINVAL;
3915 	if (!access_pidfd_pidns(pid))
3916 		goto err;
3917 
3918 	if (info) {
3919 		ret = copy_siginfo_from_user_any(&kinfo, info);
3920 		if (unlikely(ret))
3921 			goto err;
3922 
3923 		ret = -EINVAL;
3924 		if (unlikely(sig != kinfo.si_signo))
3925 			goto err;
3926 
3927 		/* Only allow sending arbitrary signals to yourself. */
3928 		ret = -EPERM;
3929 		if ((task_pid(current) != pid) &&
3930 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3931 			goto err;
3932 	} else {
3933 		prepare_kill_siginfo(sig, &kinfo);
3934 	}
3935 
3936 	ret = kill_pid_info(sig, &kinfo, pid);
3937 
3938 err:
3939 	fdput(f);
3940 	return ret;
3941 }
3942 
3943 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct kernel_siginfo * info)3944 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3945 {
3946 	struct task_struct *p;
3947 	int error = -ESRCH;
3948 
3949 	rcu_read_lock();
3950 	p = find_task_by_vpid(pid);
3951 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3952 		error = check_kill_permission(sig, info, p);
3953 		/*
3954 		 * The null signal is a permissions and process existence
3955 		 * probe.  No signal is actually delivered.
3956 		 */
3957 		if (!error && sig) {
3958 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3959 			/*
3960 			 * If lock_task_sighand() failed we pretend the task
3961 			 * dies after receiving the signal. The window is tiny,
3962 			 * and the signal is private anyway.
3963 			 */
3964 			if (unlikely(error == -ESRCH))
3965 				error = 0;
3966 		}
3967 	}
3968 	rcu_read_unlock();
3969 
3970 	return error;
3971 }
3972 
do_tkill(pid_t tgid,pid_t pid,int sig)3973 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3974 {
3975 	struct kernel_siginfo info;
3976 
3977 	clear_siginfo(&info);
3978 	info.si_signo = sig;
3979 	info.si_errno = 0;
3980 	info.si_code = SI_TKILL;
3981 	info.si_pid = task_tgid_vnr(current);
3982 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3983 
3984 	return do_send_specific(tgid, pid, sig, &info);
3985 }
3986 
3987 /**
3988  *  sys_tgkill - send signal to one specific thread
3989  *  @tgid: the thread group ID of the thread
3990  *  @pid: the PID of the thread
3991  *  @sig: signal to be sent
3992  *
3993  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3994  *  exists but it's not belonging to the target process anymore. This
3995  *  method solves the problem of threads exiting and PIDs getting reused.
3996  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)3997 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3998 {
3999 	/* This is only valid for single tasks */
4000 	if (pid <= 0 || tgid <= 0)
4001 		return -EINVAL;
4002 
4003 	return do_tkill(tgid, pid, sig);
4004 }
4005 
4006 /**
4007  *  sys_tkill - send signal to one specific task
4008  *  @pid: the PID of the task
4009  *  @sig: signal to be sent
4010  *
4011  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4012  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)4013 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4014 {
4015 	/* This is only valid for single tasks */
4016 	if (pid <= 0)
4017 		return -EINVAL;
4018 
4019 	return do_tkill(0, pid, sig);
4020 }
4021 
do_rt_sigqueueinfo(pid_t pid,int sig,kernel_siginfo_t * info)4022 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4023 {
4024 	/* Not even root can pretend to send signals from the kernel.
4025 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4026 	 */
4027 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4028 	    (task_pid_vnr(current) != pid))
4029 		return -EPERM;
4030 
4031 	/* POSIX.1b doesn't mention process groups.  */
4032 	return kill_proc_info(sig, info, pid);
4033 }
4034 
4035 /**
4036  *  sys_rt_sigqueueinfo - send signal information to a signal
4037  *  @pid: the PID of the thread
4038  *  @sig: signal to be sent
4039  *  @uinfo: signal info to be sent
4040  */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4041 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4042 		siginfo_t __user *, uinfo)
4043 {
4044 	kernel_siginfo_t info;
4045 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4046 	if (unlikely(ret))
4047 		return ret;
4048 	return do_rt_sigqueueinfo(pid, sig, &info);
4049 }
4050 
4051 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4052 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4053 			compat_pid_t, pid,
4054 			int, sig,
4055 			struct compat_siginfo __user *, uinfo)
4056 {
4057 	kernel_siginfo_t info;
4058 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4059 	if (unlikely(ret))
4060 		return ret;
4061 	return do_rt_sigqueueinfo(pid, sig, &info);
4062 }
4063 #endif
4064 
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,kernel_siginfo_t * info)4065 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4066 {
4067 	/* This is only valid for single tasks */
4068 	if (pid <= 0 || tgid <= 0)
4069 		return -EINVAL;
4070 
4071 	/* Not even root can pretend to send signals from the kernel.
4072 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4073 	 */
4074 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4075 	    (task_pid_vnr(current) != pid))
4076 		return -EPERM;
4077 
4078 	return do_send_specific(tgid, pid, sig, info);
4079 }
4080 
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4081 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4082 		siginfo_t __user *, uinfo)
4083 {
4084 	kernel_siginfo_t info;
4085 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4086 	if (unlikely(ret))
4087 		return ret;
4088 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4089 }
4090 
4091 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4092 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4093 			compat_pid_t, tgid,
4094 			compat_pid_t, pid,
4095 			int, sig,
4096 			struct compat_siginfo __user *, uinfo)
4097 {
4098 	kernel_siginfo_t info;
4099 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4100 	if (unlikely(ret))
4101 		return ret;
4102 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4103 }
4104 #endif
4105 
4106 /*
4107  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4108  */
kernel_sigaction(int sig,__sighandler_t action)4109 void kernel_sigaction(int sig, __sighandler_t action)
4110 {
4111 	spin_lock_irq(&current->sighand->siglock);
4112 	current->sighand->action[sig - 1].sa.sa_handler = action;
4113 	if (action == SIG_IGN) {
4114 		sigset_t mask;
4115 
4116 		sigemptyset(&mask);
4117 		sigaddset(&mask, sig);
4118 
4119 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4120 		flush_sigqueue_mask(&mask, &current->pending);
4121 		recalc_sigpending();
4122 	}
4123 	spin_unlock_irq(&current->sighand->siglock);
4124 }
4125 EXPORT_SYMBOL(kernel_sigaction);
4126 
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)4127 void __weak sigaction_compat_abi(struct k_sigaction *act,
4128 		struct k_sigaction *oact)
4129 {
4130 }
4131 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)4132 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4133 {
4134 	struct task_struct *p = current, *t;
4135 	struct k_sigaction *k;
4136 	sigset_t mask;
4137 
4138 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4139 		return -EINVAL;
4140 
4141 	k = &p->sighand->action[sig-1];
4142 
4143 	spin_lock_irq(&p->sighand->siglock);
4144 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4145 		spin_unlock_irq(&p->sighand->siglock);
4146 		return -EINVAL;
4147 	}
4148 	if (oact)
4149 		*oact = *k;
4150 
4151 	/*
4152 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4153 	 * e.g. by having an architecture use the bit in their uapi.
4154 	 */
4155 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4156 
4157 	/*
4158 	 * Clear unknown flag bits in order to allow userspace to detect missing
4159 	 * support for flag bits and to allow the kernel to use non-uapi bits
4160 	 * internally.
4161 	 */
4162 	if (act)
4163 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4164 	if (oact)
4165 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4166 
4167 	sigaction_compat_abi(act, oact);
4168 
4169 	if (act) {
4170 		sigdelsetmask(&act->sa.sa_mask,
4171 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4172 		*k = *act;
4173 		/*
4174 		 * POSIX 3.3.1.3:
4175 		 *  "Setting a signal action to SIG_IGN for a signal that is
4176 		 *   pending shall cause the pending signal to be discarded,
4177 		 *   whether or not it is blocked."
4178 		 *
4179 		 *  "Setting a signal action to SIG_DFL for a signal that is
4180 		 *   pending and whose default action is to ignore the signal
4181 		 *   (for example, SIGCHLD), shall cause the pending signal to
4182 		 *   be discarded, whether or not it is blocked"
4183 		 */
4184 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4185 			sigemptyset(&mask);
4186 			sigaddset(&mask, sig);
4187 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4188 			for_each_thread(p, t)
4189 				flush_sigqueue_mask(&mask, &t->pending);
4190 		}
4191 	}
4192 
4193 	spin_unlock_irq(&p->sighand->siglock);
4194 	return 0;
4195 }
4196 
4197 #ifdef CONFIG_DYNAMIC_SIGFRAME
sigaltstack_lock(void)4198 static inline void sigaltstack_lock(void)
4199 	__acquires(&current->sighand->siglock)
4200 {
4201 	spin_lock_irq(&current->sighand->siglock);
4202 }
4203 
sigaltstack_unlock(void)4204 static inline void sigaltstack_unlock(void)
4205 	__releases(&current->sighand->siglock)
4206 {
4207 	spin_unlock_irq(&current->sighand->siglock);
4208 }
4209 #else
sigaltstack_lock(void)4210 static inline void sigaltstack_lock(void) { }
sigaltstack_unlock(void)4211 static inline void sigaltstack_unlock(void) { }
4212 #endif
4213 
4214 static int
do_sigaltstack(const stack_t * ss,stack_t * oss,unsigned long sp,size_t min_ss_size)4215 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4216 		size_t min_ss_size)
4217 {
4218 	struct task_struct *t = current;
4219 	int ret = 0;
4220 
4221 	if (oss) {
4222 		memset(oss, 0, sizeof(stack_t));
4223 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4224 		oss->ss_size = t->sas_ss_size;
4225 		oss->ss_flags = sas_ss_flags(sp) |
4226 			(current->sas_ss_flags & SS_FLAG_BITS);
4227 	}
4228 
4229 	if (ss) {
4230 		void __user *ss_sp = ss->ss_sp;
4231 		size_t ss_size = ss->ss_size;
4232 		unsigned ss_flags = ss->ss_flags;
4233 		int ss_mode;
4234 
4235 		if (unlikely(on_sig_stack(sp)))
4236 			return -EPERM;
4237 
4238 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4239 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4240 				ss_mode != 0))
4241 			return -EINVAL;
4242 
4243 		/*
4244 		 * Return before taking any locks if no actual
4245 		 * sigaltstack changes were requested.
4246 		 */
4247 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4248 		    t->sas_ss_size == ss_size &&
4249 		    t->sas_ss_flags == ss_flags)
4250 			return 0;
4251 
4252 		sigaltstack_lock();
4253 		if (ss_mode == SS_DISABLE) {
4254 			ss_size = 0;
4255 			ss_sp = NULL;
4256 		} else {
4257 			if (unlikely(ss_size < min_ss_size))
4258 				ret = -ENOMEM;
4259 			if (!sigaltstack_size_valid(ss_size))
4260 				ret = -ENOMEM;
4261 		}
4262 		if (!ret) {
4263 			t->sas_ss_sp = (unsigned long) ss_sp;
4264 			t->sas_ss_size = ss_size;
4265 			t->sas_ss_flags = ss_flags;
4266 		}
4267 		sigaltstack_unlock();
4268 	}
4269 	return ret;
4270 }
4271 
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)4272 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4273 {
4274 	stack_t new, old;
4275 	int err;
4276 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4277 		return -EFAULT;
4278 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4279 			      current_user_stack_pointer(),
4280 			      MINSIGSTKSZ);
4281 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4282 		err = -EFAULT;
4283 	return err;
4284 }
4285 
restore_altstack(const stack_t __user * uss)4286 int restore_altstack(const stack_t __user *uss)
4287 {
4288 	stack_t new;
4289 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4290 		return -EFAULT;
4291 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4292 			     MINSIGSTKSZ);
4293 	/* squash all but EFAULT for now */
4294 	return 0;
4295 }
4296 
__save_altstack(stack_t __user * uss,unsigned long sp)4297 int __save_altstack(stack_t __user *uss, unsigned long sp)
4298 {
4299 	struct task_struct *t = current;
4300 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4301 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4302 		__put_user(t->sas_ss_size, &uss->ss_size);
4303 	return err;
4304 }
4305 
4306 #ifdef CONFIG_COMPAT
do_compat_sigaltstack(const compat_stack_t __user * uss_ptr,compat_stack_t __user * uoss_ptr)4307 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4308 				 compat_stack_t __user *uoss_ptr)
4309 {
4310 	stack_t uss, uoss;
4311 	int ret;
4312 
4313 	if (uss_ptr) {
4314 		compat_stack_t uss32;
4315 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4316 			return -EFAULT;
4317 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4318 		uss.ss_flags = uss32.ss_flags;
4319 		uss.ss_size = uss32.ss_size;
4320 	}
4321 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4322 			     compat_user_stack_pointer(),
4323 			     COMPAT_MINSIGSTKSZ);
4324 	if (ret >= 0 && uoss_ptr)  {
4325 		compat_stack_t old;
4326 		memset(&old, 0, sizeof(old));
4327 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4328 		old.ss_flags = uoss.ss_flags;
4329 		old.ss_size = uoss.ss_size;
4330 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4331 			ret = -EFAULT;
4332 	}
4333 	return ret;
4334 }
4335 
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)4336 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4337 			const compat_stack_t __user *, uss_ptr,
4338 			compat_stack_t __user *, uoss_ptr)
4339 {
4340 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4341 }
4342 
compat_restore_altstack(const compat_stack_t __user * uss)4343 int compat_restore_altstack(const compat_stack_t __user *uss)
4344 {
4345 	int err = do_compat_sigaltstack(uss, NULL);
4346 	/* squash all but -EFAULT for now */
4347 	return err == -EFAULT ? err : 0;
4348 }
4349 
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)4350 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4351 {
4352 	int err;
4353 	struct task_struct *t = current;
4354 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4355 			 &uss->ss_sp) |
4356 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4357 		__put_user(t->sas_ss_size, &uss->ss_size);
4358 	return err;
4359 }
4360 #endif
4361 
4362 #ifdef __ARCH_WANT_SYS_SIGPENDING
4363 
4364 /**
4365  *  sys_sigpending - examine pending signals
4366  *  @uset: where mask of pending signal is returned
4367  */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,uset)4368 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4369 {
4370 	sigset_t set;
4371 
4372 	if (sizeof(old_sigset_t) > sizeof(*uset))
4373 		return -EINVAL;
4374 
4375 	do_sigpending(&set);
4376 
4377 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4378 		return -EFAULT;
4379 
4380 	return 0;
4381 }
4382 
4383 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending,compat_old_sigset_t __user *,set32)4384 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4385 {
4386 	sigset_t set;
4387 
4388 	do_sigpending(&set);
4389 
4390 	return put_user(set.sig[0], set32);
4391 }
4392 #endif
4393 
4394 #endif
4395 
4396 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4397 /**
4398  *  sys_sigprocmask - examine and change blocked signals
4399  *  @how: whether to add, remove, or set signals
4400  *  @nset: signals to add or remove (if non-null)
4401  *  @oset: previous value of signal mask if non-null
4402  *
4403  * Some platforms have their own version with special arguments;
4404  * others support only sys_rt_sigprocmask.
4405  */
4406 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)4407 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4408 		old_sigset_t __user *, oset)
4409 {
4410 	old_sigset_t old_set, new_set;
4411 	sigset_t new_blocked;
4412 
4413 	old_set = current->blocked.sig[0];
4414 
4415 	if (nset) {
4416 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4417 			return -EFAULT;
4418 
4419 		new_blocked = current->blocked;
4420 
4421 		switch (how) {
4422 		case SIG_BLOCK:
4423 			sigaddsetmask(&new_blocked, new_set);
4424 			break;
4425 		case SIG_UNBLOCK:
4426 			sigdelsetmask(&new_blocked, new_set);
4427 			break;
4428 		case SIG_SETMASK:
4429 			new_blocked.sig[0] = new_set;
4430 			break;
4431 		default:
4432 			return -EINVAL;
4433 		}
4434 
4435 		set_current_blocked(&new_blocked);
4436 	}
4437 
4438 	if (oset) {
4439 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4440 			return -EFAULT;
4441 	}
4442 
4443 	return 0;
4444 }
4445 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4446 
4447 #ifndef CONFIG_ODD_RT_SIGACTION
4448 /**
4449  *  sys_rt_sigaction - alter an action taken by a process
4450  *  @sig: signal to be sent
4451  *  @act: new sigaction
4452  *  @oact: used to save the previous sigaction
4453  *  @sigsetsize: size of sigset_t type
4454  */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)4455 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4456 		const struct sigaction __user *, act,
4457 		struct sigaction __user *, oact,
4458 		size_t, sigsetsize)
4459 {
4460 	struct k_sigaction new_sa, old_sa;
4461 	int ret;
4462 
4463 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4464 	if (sigsetsize != sizeof(sigset_t))
4465 		return -EINVAL;
4466 
4467 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4468 		return -EFAULT;
4469 
4470 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4471 	if (ret)
4472 		return ret;
4473 
4474 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4475 		return -EFAULT;
4476 
4477 	return 0;
4478 }
4479 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)4480 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4481 		const struct compat_sigaction __user *, act,
4482 		struct compat_sigaction __user *, oact,
4483 		compat_size_t, sigsetsize)
4484 {
4485 	struct k_sigaction new_ka, old_ka;
4486 #ifdef __ARCH_HAS_SA_RESTORER
4487 	compat_uptr_t restorer;
4488 #endif
4489 	int ret;
4490 
4491 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4492 	if (sigsetsize != sizeof(compat_sigset_t))
4493 		return -EINVAL;
4494 
4495 	if (act) {
4496 		compat_uptr_t handler;
4497 		ret = get_user(handler, &act->sa_handler);
4498 		new_ka.sa.sa_handler = compat_ptr(handler);
4499 #ifdef __ARCH_HAS_SA_RESTORER
4500 		ret |= get_user(restorer, &act->sa_restorer);
4501 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4502 #endif
4503 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4504 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4505 		if (ret)
4506 			return -EFAULT;
4507 	}
4508 
4509 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4510 	if (!ret && oact) {
4511 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4512 			       &oact->sa_handler);
4513 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4514 					 sizeof(oact->sa_mask));
4515 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4516 #ifdef __ARCH_HAS_SA_RESTORER
4517 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4518 				&oact->sa_restorer);
4519 #endif
4520 	}
4521 	return ret;
4522 }
4523 #endif
4524 #endif /* !CONFIG_ODD_RT_SIGACTION */
4525 
4526 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)4527 SYSCALL_DEFINE3(sigaction, int, sig,
4528 		const struct old_sigaction __user *, act,
4529 	        struct old_sigaction __user *, oact)
4530 {
4531 	struct k_sigaction new_ka, old_ka;
4532 	int ret;
4533 
4534 	if (act) {
4535 		old_sigset_t mask;
4536 		if (!access_ok(act, sizeof(*act)) ||
4537 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4538 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4539 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4540 		    __get_user(mask, &act->sa_mask))
4541 			return -EFAULT;
4542 #ifdef __ARCH_HAS_KA_RESTORER
4543 		new_ka.ka_restorer = NULL;
4544 #endif
4545 		siginitset(&new_ka.sa.sa_mask, mask);
4546 	}
4547 
4548 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4549 
4550 	if (!ret && oact) {
4551 		if (!access_ok(oact, sizeof(*oact)) ||
4552 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4553 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4554 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4555 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4556 			return -EFAULT;
4557 	}
4558 
4559 	return ret;
4560 }
4561 #endif
4562 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)4563 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4564 		const struct compat_old_sigaction __user *, act,
4565 	        struct compat_old_sigaction __user *, oact)
4566 {
4567 	struct k_sigaction new_ka, old_ka;
4568 	int ret;
4569 	compat_old_sigset_t mask;
4570 	compat_uptr_t handler, restorer;
4571 
4572 	if (act) {
4573 		if (!access_ok(act, sizeof(*act)) ||
4574 		    __get_user(handler, &act->sa_handler) ||
4575 		    __get_user(restorer, &act->sa_restorer) ||
4576 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4577 		    __get_user(mask, &act->sa_mask))
4578 			return -EFAULT;
4579 
4580 #ifdef __ARCH_HAS_KA_RESTORER
4581 		new_ka.ka_restorer = NULL;
4582 #endif
4583 		new_ka.sa.sa_handler = compat_ptr(handler);
4584 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4585 		siginitset(&new_ka.sa.sa_mask, mask);
4586 	}
4587 
4588 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4589 
4590 	if (!ret && oact) {
4591 		if (!access_ok(oact, sizeof(*oact)) ||
4592 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4593 			       &oact->sa_handler) ||
4594 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4595 			       &oact->sa_restorer) ||
4596 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4597 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4598 			return -EFAULT;
4599 	}
4600 	return ret;
4601 }
4602 #endif
4603 
4604 #ifdef CONFIG_SGETMASK_SYSCALL
4605 
4606 /*
4607  * For backwards compatibility.  Functionality superseded by sigprocmask.
4608  */
SYSCALL_DEFINE0(sgetmask)4609 SYSCALL_DEFINE0(sgetmask)
4610 {
4611 	/* SMP safe */
4612 	return current->blocked.sig[0];
4613 }
4614 
SYSCALL_DEFINE1(ssetmask,int,newmask)4615 SYSCALL_DEFINE1(ssetmask, int, newmask)
4616 {
4617 	int old = current->blocked.sig[0];
4618 	sigset_t newset;
4619 
4620 	siginitset(&newset, newmask);
4621 	set_current_blocked(&newset);
4622 
4623 	return old;
4624 }
4625 #endif /* CONFIG_SGETMASK_SYSCALL */
4626 
4627 #ifdef __ARCH_WANT_SYS_SIGNAL
4628 /*
4629  * For backwards compatibility.  Functionality superseded by sigaction.
4630  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)4631 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4632 {
4633 	struct k_sigaction new_sa, old_sa;
4634 	int ret;
4635 
4636 	new_sa.sa.sa_handler = handler;
4637 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4638 	sigemptyset(&new_sa.sa.sa_mask);
4639 
4640 	ret = do_sigaction(sig, &new_sa, &old_sa);
4641 
4642 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4643 }
4644 #endif /* __ARCH_WANT_SYS_SIGNAL */
4645 
4646 #ifdef __ARCH_WANT_SYS_PAUSE
4647 
SYSCALL_DEFINE0(pause)4648 SYSCALL_DEFINE0(pause)
4649 {
4650 	while (!signal_pending(current)) {
4651 		__set_current_state(TASK_INTERRUPTIBLE);
4652 		schedule();
4653 	}
4654 	return -ERESTARTNOHAND;
4655 }
4656 
4657 #endif
4658 
sigsuspend(sigset_t * set)4659 static int sigsuspend(sigset_t *set)
4660 {
4661 	current->saved_sigmask = current->blocked;
4662 	set_current_blocked(set);
4663 
4664 	while (!signal_pending(current)) {
4665 		__set_current_state(TASK_INTERRUPTIBLE);
4666 		schedule();
4667 	}
4668 	set_restore_sigmask();
4669 	return -ERESTARTNOHAND;
4670 }
4671 
4672 /**
4673  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4674  *	@unewset value until a signal is received
4675  *  @unewset: new signal mask value
4676  *  @sigsetsize: size of sigset_t type
4677  */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)4678 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4679 {
4680 	sigset_t newset;
4681 
4682 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4683 	if (sigsetsize != sizeof(sigset_t))
4684 		return -EINVAL;
4685 
4686 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4687 		return -EFAULT;
4688 	return sigsuspend(&newset);
4689 }
4690 
4691 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)4692 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4693 {
4694 	sigset_t newset;
4695 
4696 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4697 	if (sigsetsize != sizeof(sigset_t))
4698 		return -EINVAL;
4699 
4700 	if (get_compat_sigset(&newset, unewset))
4701 		return -EFAULT;
4702 	return sigsuspend(&newset);
4703 }
4704 #endif
4705 
4706 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)4707 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4708 {
4709 	sigset_t blocked;
4710 	siginitset(&blocked, mask);
4711 	return sigsuspend(&blocked);
4712 }
4713 #endif
4714 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)4715 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4716 {
4717 	sigset_t blocked;
4718 	siginitset(&blocked, mask);
4719 	return sigsuspend(&blocked);
4720 }
4721 #endif
4722 
arch_vma_name(struct vm_area_struct * vma)4723 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4724 {
4725 	return NULL;
4726 }
4727 
siginfo_buildtime_checks(void)4728 static inline void siginfo_buildtime_checks(void)
4729 {
4730 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4731 
4732 	/* Verify the offsets in the two siginfos match */
4733 #define CHECK_OFFSET(field) \
4734 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4735 
4736 	/* kill */
4737 	CHECK_OFFSET(si_pid);
4738 	CHECK_OFFSET(si_uid);
4739 
4740 	/* timer */
4741 	CHECK_OFFSET(si_tid);
4742 	CHECK_OFFSET(si_overrun);
4743 	CHECK_OFFSET(si_value);
4744 
4745 	/* rt */
4746 	CHECK_OFFSET(si_pid);
4747 	CHECK_OFFSET(si_uid);
4748 	CHECK_OFFSET(si_value);
4749 
4750 	/* sigchld */
4751 	CHECK_OFFSET(si_pid);
4752 	CHECK_OFFSET(si_uid);
4753 	CHECK_OFFSET(si_status);
4754 	CHECK_OFFSET(si_utime);
4755 	CHECK_OFFSET(si_stime);
4756 
4757 	/* sigfault */
4758 	CHECK_OFFSET(si_addr);
4759 	CHECK_OFFSET(si_trapno);
4760 	CHECK_OFFSET(si_addr_lsb);
4761 	CHECK_OFFSET(si_lower);
4762 	CHECK_OFFSET(si_upper);
4763 	CHECK_OFFSET(si_pkey);
4764 	CHECK_OFFSET(si_perf_data);
4765 	CHECK_OFFSET(si_perf_type);
4766 	CHECK_OFFSET(si_perf_flags);
4767 
4768 	/* sigpoll */
4769 	CHECK_OFFSET(si_band);
4770 	CHECK_OFFSET(si_fd);
4771 
4772 	/* sigsys */
4773 	CHECK_OFFSET(si_call_addr);
4774 	CHECK_OFFSET(si_syscall);
4775 	CHECK_OFFSET(si_arch);
4776 #undef CHECK_OFFSET
4777 
4778 	/* usb asyncio */
4779 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4780 		     offsetof(struct siginfo, si_addr));
4781 	if (sizeof(int) == sizeof(void __user *)) {
4782 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4783 			     sizeof(void __user *));
4784 	} else {
4785 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4786 			      sizeof_field(struct siginfo, si_uid)) !=
4787 			     sizeof(void __user *));
4788 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4789 			     offsetof(struct siginfo, si_uid));
4790 	}
4791 #ifdef CONFIG_COMPAT
4792 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4793 		     offsetof(struct compat_siginfo, si_addr));
4794 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4795 		     sizeof(compat_uptr_t));
4796 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4797 		     sizeof_field(struct siginfo, si_pid));
4798 #endif
4799 }
4800 
4801 #if defined(CONFIG_SYSCTL)
4802 static struct ctl_table signal_debug_table[] = {
4803 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4804 	{
4805 		.procname	= "exception-trace",
4806 		.data		= &show_unhandled_signals,
4807 		.maxlen		= sizeof(int),
4808 		.mode		= 0644,
4809 		.proc_handler	= proc_dointvec
4810 	},
4811 #endif
4812 	{ }
4813 };
4814 
init_signal_sysctls(void)4815 static int __init init_signal_sysctls(void)
4816 {
4817 	register_sysctl_init("debug", signal_debug_table);
4818 	return 0;
4819 }
4820 early_initcall(init_signal_sysctls);
4821 #endif /* CONFIG_SYSCTL */
4822 
signals_init(void)4823 void __init signals_init(void)
4824 {
4825 	siginfo_buildtime_checks();
4826 
4827 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4828 }
4829 
4830 #ifdef CONFIG_KGDB_KDB
4831 #include <linux/kdb.h>
4832 /*
4833  * kdb_send_sig - Allows kdb to send signals without exposing
4834  * signal internals.  This function checks if the required locks are
4835  * available before calling the main signal code, to avoid kdb
4836  * deadlocks.
4837  */
kdb_send_sig(struct task_struct * t,int sig)4838 void kdb_send_sig(struct task_struct *t, int sig)
4839 {
4840 	static struct task_struct *kdb_prev_t;
4841 	int new_t, ret;
4842 	if (!spin_trylock(&t->sighand->siglock)) {
4843 		kdb_printf("Can't do kill command now.\n"
4844 			   "The sigmask lock is held somewhere else in "
4845 			   "kernel, try again later\n");
4846 		return;
4847 	}
4848 	new_t = kdb_prev_t != t;
4849 	kdb_prev_t = t;
4850 	if (!task_is_running(t) && new_t) {
4851 		spin_unlock(&t->sighand->siglock);
4852 		kdb_printf("Process is not RUNNING, sending a signal from "
4853 			   "kdb risks deadlock\n"
4854 			   "on the run queue locks. "
4855 			   "The signal has _not_ been sent.\n"
4856 			   "Reissue the kill command if you want to risk "
4857 			   "the deadlock.\n");
4858 		return;
4859 	}
4860 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4861 	spin_unlock(&t->sighand->siglock);
4862 	if (ret)
4863 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4864 			   sig, t->pid);
4865 	else
4866 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4867 }
4868 #endif	/* CONFIG_KGDB_KDB */
4869