1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109
110 /*
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
112 * wr-protected).
113 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 return false;
118
119 return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121
122 /*
123 * A number of key systems in x86 including ioremap() rely on the assumption
124 * that high_memory defines the upper bound on direct map memory, then end
125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127 * and ZONE_HIGHMEM.
128 */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131
132 /*
133 * Randomize the address space (stacks, mmaps, brk, etc.).
134 *
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
137 */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140 1;
141 #else
142 2;
143 #endif
144
145 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148 /*
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
152 */
153 return false;
154 }
155 #endif
156
disable_randmaps(char * s)157 static int __init disable_randmaps(char *s)
158 {
159 randomize_va_space = 0;
160 return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166
167 unsigned long highest_memmap_pfn __read_mostly;
168
169 /*
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 */
init_zero_pfn(void)172 static int __init init_zero_pfn(void)
173 {
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 return 0;
176 }
177 early_initcall(init_zero_pfn);
178
mm_trace_rss_stat(struct mm_struct * mm,int member)179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181 trace_rss_stat(mm, member);
182 }
183
184 /*
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
187 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 unsigned long addr)
190 {
191 pgtable_t token = pmd_pgtable(*pmd);
192 pmd_clear(pmd);
193 pte_free_tlb(tlb, token, addr);
194 mm_dec_nr_ptes(tlb->mm);
195 }
196
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
200 {
201 pmd_t *pmd;
202 unsigned long next;
203 unsigned long start;
204
205 start = addr;
206 pmd = pmd_offset(pud, addr);
207 do {
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
210 continue;
211 free_pte_range(tlb, pmd, addr);
212 } while (pmd++, addr = next, addr != end);
213
214 start &= PUD_MASK;
215 if (start < floor)
216 return;
217 if (ceiling) {
218 ceiling &= PUD_MASK;
219 if (!ceiling)
220 return;
221 }
222 if (end - 1 > ceiling - 1)
223 return;
224
225 pmd = pmd_offset(pud, start);
226 pud_clear(pud);
227 pmd_free_tlb(tlb, pmd, start);
228 mm_dec_nr_pmds(tlb->mm);
229 }
230
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
234 {
235 pud_t *pud;
236 unsigned long next;
237 unsigned long start;
238
239 start = addr;
240 pud = pud_offset(p4d, addr);
241 do {
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
244 continue;
245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 } while (pud++, addr = next, addr != end);
247
248 start &= P4D_MASK;
249 if (start < floor)
250 return;
251 if (ceiling) {
252 ceiling &= P4D_MASK;
253 if (!ceiling)
254 return;
255 }
256 if (end - 1 > ceiling - 1)
257 return;
258
259 pud = pud_offset(p4d, start);
260 p4d_clear(p4d);
261 pud_free_tlb(tlb, pud, start);
262 mm_dec_nr_puds(tlb->mm);
263 }
264
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268 {
269 p4d_t *p4d;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 p4d = p4d_offset(pgd, addr);
275 do {
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
278 continue;
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
281
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
289 }
290 if (end - 1 > ceiling - 1)
291 return;
292
293 p4d = p4d_offset(pgd, start);
294 pgd_clear(pgd);
295 p4d_free_tlb(tlb, p4d, start);
296 }
297
298 /*
299 * This function frees user-level page tables of a process.
300 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)301 void free_pgd_range(struct mmu_gather *tlb,
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
304 {
305 pgd_t *pgd;
306 unsigned long next;
307
308 /*
309 * The next few lines have given us lots of grief...
310 *
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
314 *
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
322 *
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
327 *
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
332 */
333
334 addr &= PMD_MASK;
335 if (addr < floor) {
336 addr += PMD_SIZE;
337 if (!addr)
338 return;
339 }
340 if (ceiling) {
341 ceiling &= PMD_MASK;
342 if (!ceiling)
343 return;
344 }
345 if (end - 1 > ceiling - 1)
346 end -= PMD_SIZE;
347 if (addr > end - 1)
348 return;
349 /*
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
352 */
353 tlb_change_page_size(tlb, PAGE_SIZE);
354 pgd = pgd_offset(tlb->mm, addr);
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 } while (pgd++, addr = next, addr != end);
361 }
362
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364 struct vm_area_struct *vma, unsigned long floor,
365 unsigned long ceiling, bool mm_wr_locked)
366 {
367 do {
368 unsigned long addr = vma->vm_start;
369 struct vm_area_struct *next;
370
371 /*
372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373 * be 0. This will underflow and is okay.
374 */
375 next = mas_find(mas, ceiling - 1);
376
377 /*
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
380 */
381 if (mm_wr_locked)
382 vma_start_write(vma);
383 unlink_anon_vmas(vma);
384 unlink_file_vma(vma);
385
386 if (is_vm_hugetlb_page(vma)) {
387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
388 floor, next ? next->vm_start : ceiling);
389 } else {
390 /*
391 * Optimization: gather nearby vmas into one call down
392 */
393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
394 && !is_vm_hugetlb_page(next)) {
395 vma = next;
396 next = mas_find(mas, ceiling - 1);
397 if (mm_wr_locked)
398 vma_start_write(vma);
399 unlink_anon_vmas(vma);
400 unlink_file_vma(vma);
401 }
402 free_pgd_range(tlb, addr, vma->vm_end,
403 floor, next ? next->vm_start : ceiling);
404 }
405 vma = next;
406 } while (vma);
407 }
408
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
410 {
411 spinlock_t *ptl = pmd_lock(mm, pmd);
412
413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
414 mm_inc_nr_ptes(mm);
415 /*
416 * Ensure all pte setup (eg. pte page lock and page clearing) are
417 * visible before the pte is made visible to other CPUs by being
418 * put into page tables.
419 *
420 * The other side of the story is the pointer chasing in the page
421 * table walking code (when walking the page table without locking;
422 * ie. most of the time). Fortunately, these data accesses consist
423 * of a chain of data-dependent loads, meaning most CPUs (alpha
424 * being the notable exception) will already guarantee loads are
425 * seen in-order. See the alpha page table accessors for the
426 * smp_rmb() barriers in page table walking code.
427 */
428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
429 pmd_populate(mm, pmd, *pte);
430 *pte = NULL;
431 }
432 spin_unlock(ptl);
433 }
434
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
436 {
437 pgtable_t new = pte_alloc_one(mm);
438 if (!new)
439 return -ENOMEM;
440
441 pmd_install(mm, pmd, &new);
442 if (new)
443 pte_free(mm, new);
444 return 0;
445 }
446
__pte_alloc_kernel(pmd_t * pmd)447 int __pte_alloc_kernel(pmd_t *pmd)
448 {
449 pte_t *new = pte_alloc_one_kernel(&init_mm);
450 if (!new)
451 return -ENOMEM;
452
453 spin_lock(&init_mm.page_table_lock);
454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
455 smp_wmb(); /* See comment in pmd_install() */
456 pmd_populate_kernel(&init_mm, pmd, new);
457 new = NULL;
458 }
459 spin_unlock(&init_mm.page_table_lock);
460 if (new)
461 pte_free_kernel(&init_mm, new);
462 return 0;
463 }
464
init_rss_vec(int * rss)465 static inline void init_rss_vec(int *rss)
466 {
467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468 }
469
add_mm_rss_vec(struct mm_struct * mm,int * rss)470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
471 {
472 int i;
473
474 if (current->mm == mm)
475 sync_mm_rss(mm);
476 for (i = 0; i < NR_MM_COUNTERS; i++)
477 if (rss[i])
478 add_mm_counter(mm, i, rss[i]);
479 }
480
481 /*
482 * This function is called to print an error when a bad pte
483 * is found. For example, we might have a PFN-mapped pte in
484 * a region that doesn't allow it.
485 *
486 * The calling function must still handle the error.
487 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489 pte_t pte, struct page *page)
490 {
491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
492 p4d_t *p4d = p4d_offset(pgd, addr);
493 pud_t *pud = pud_offset(p4d, addr);
494 pmd_t *pmd = pmd_offset(pud, addr);
495 struct address_space *mapping;
496 pgoff_t index;
497 static unsigned long resume;
498 static unsigned long nr_shown;
499 static unsigned long nr_unshown;
500
501 /*
502 * Allow a burst of 60 reports, then keep quiet for that minute;
503 * or allow a steady drip of one report per second.
504 */
505 if (nr_shown == 60) {
506 if (time_before(jiffies, resume)) {
507 nr_unshown++;
508 return;
509 }
510 if (nr_unshown) {
511 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 nr_unshown);
513 nr_unshown = 0;
514 }
515 nr_shown = 0;
516 }
517 if (nr_shown++ == 0)
518 resume = jiffies + 60 * HZ;
519
520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521 index = linear_page_index(vma, addr);
522
523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
524 current->comm,
525 (long long)pte_val(pte), (long long)pmd_val(*pmd));
526 if (page)
527 dump_page(page, "bad pte");
528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
531 vma->vm_file,
532 vma->vm_ops ? vma->vm_ops->fault : NULL,
533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
534 mapping ? mapping->a_ops->read_folio : NULL);
535 dump_stack();
536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
537 }
538
539 /*
540 * vm_normal_page -- This function gets the "struct page" associated with a pte.
541 *
542 * "Special" mappings do not wish to be associated with a "struct page" (either
543 * it doesn't exist, or it exists but they don't want to touch it). In this
544 * case, NULL is returned here. "Normal" mappings do have a struct page.
545 *
546 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547 * pte bit, in which case this function is trivial. Secondly, an architecture
548 * may not have a spare pte bit, which requires a more complicated scheme,
549 * described below.
550 *
551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552 * special mapping (even if there are underlying and valid "struct pages").
553 * COWed pages of a VM_PFNMAP are always normal.
554 *
555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558 * mapping will always honor the rule
559 *
560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561 *
562 * And for normal mappings this is false.
563 *
564 * This restricts such mappings to be a linear translation from virtual address
565 * to pfn. To get around this restriction, we allow arbitrary mappings so long
566 * as the vma is not a COW mapping; in that case, we know that all ptes are
567 * special (because none can have been COWed).
568 *
569 *
570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
571 *
572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573 * page" backing, however the difference is that _all_ pages with a struct
574 * page (that is, those where pfn_valid is true) are refcounted and considered
575 * normal pages by the VM. The disadvantage is that pages are refcounted
576 * (which can be slower and simply not an option for some PFNMAP users). The
577 * advantage is that we don't have to follow the strict linearity rule of
578 * PFNMAP mappings in order to support COWable mappings.
579 *
580 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582 pte_t pte)
583 {
584 unsigned long pfn = pte_pfn(pte);
585
586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
587 if (likely(!pte_special(pte)))
588 goto check_pfn;
589 if (vma->vm_ops && vma->vm_ops->find_special_page)
590 return vma->vm_ops->find_special_page(vma, addr);
591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592 return NULL;
593 if (is_zero_pfn(pfn))
594 return NULL;
595 if (pte_devmap(pte))
596 /*
597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598 * and will have refcounts incremented on their struct pages
599 * when they are inserted into PTEs, thus they are safe to
600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601 * do not have refcounts. Example of legacy ZONE_DEVICE is
602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603 */
604 return NULL;
605
606 print_bad_pte(vma, addr, pte, NULL);
607 return NULL;
608 }
609
610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
611
612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 if (vma->vm_flags & VM_MIXEDMAP) {
614 if (!pfn_valid(pfn))
615 return NULL;
616 goto out;
617 } else {
618 unsigned long off;
619 off = (addr - vma->vm_start) >> PAGE_SHIFT;
620 if (pfn == vma->vm_pgoff + off)
621 return NULL;
622 if (!is_cow_mapping(vma->vm_flags))
623 return NULL;
624 }
625 }
626
627 if (is_zero_pfn(pfn))
628 return NULL;
629
630 check_pfn:
631 if (unlikely(pfn > highest_memmap_pfn)) {
632 print_bad_pte(vma, addr, pte, NULL);
633 return NULL;
634 }
635
636 /*
637 * NOTE! We still have PageReserved() pages in the page tables.
638 * eg. VDSO mappings can cause them to exist.
639 */
640 out:
641 return pfn_to_page(pfn);
642 }
643
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte)
646 {
647 struct page *page = vm_normal_page(vma, addr, pte);
648
649 if (page)
650 return page_folio(page);
651 return NULL;
652 }
653
654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656 pmd_t pmd)
657 {
658 unsigned long pfn = pmd_pfn(pmd);
659
660 /*
661 * There is no pmd_special() but there may be special pmds, e.g.
662 * in a direct-access (dax) mapping, so let's just replicate the
663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
664 */
665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666 if (vma->vm_flags & VM_MIXEDMAP) {
667 if (!pfn_valid(pfn))
668 return NULL;
669 goto out;
670 } else {
671 unsigned long off;
672 off = (addr - vma->vm_start) >> PAGE_SHIFT;
673 if (pfn == vma->vm_pgoff + off)
674 return NULL;
675 if (!is_cow_mapping(vma->vm_flags))
676 return NULL;
677 }
678 }
679
680 if (pmd_devmap(pmd))
681 return NULL;
682 if (is_huge_zero_pmd(pmd))
683 return NULL;
684 if (unlikely(pfn > highest_memmap_pfn))
685 return NULL;
686
687 /*
688 * NOTE! We still have PageReserved() pages in the page tables.
689 * eg. VDSO mappings can cause them to exist.
690 */
691 out:
692 return pfn_to_page(pfn);
693 }
694 #endif
695
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)696 static void restore_exclusive_pte(struct vm_area_struct *vma,
697 struct page *page, unsigned long address,
698 pte_t *ptep)
699 {
700 pte_t orig_pte;
701 pte_t pte;
702 swp_entry_t entry;
703
704 orig_pte = ptep_get(ptep);
705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706 if (pte_swp_soft_dirty(orig_pte))
707 pte = pte_mksoft_dirty(pte);
708
709 entry = pte_to_swp_entry(orig_pte);
710 if (pte_swp_uffd_wp(orig_pte))
711 pte = pte_mkuffd_wp(pte);
712 else if (is_writable_device_exclusive_entry(entry))
713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
717 /*
718 * No need to take a page reference as one was already
719 * created when the swap entry was made.
720 */
721 if (PageAnon(page))
722 page_add_anon_rmap(page, vma, address, RMAP_NONE);
723 else
724 /*
725 * Currently device exclusive access only supports anonymous
726 * memory so the entry shouldn't point to a filebacked page.
727 */
728 WARN_ON_ONCE(1);
729
730 set_pte_at(vma->vm_mm, address, ptep, pte);
731
732 /*
733 * No need to invalidate - it was non-present before. However
734 * secondary CPUs may have mappings that need invalidating.
735 */
736 update_mmu_cache(vma, address, ptep);
737 }
738
739 /*
740 * Tries to restore an exclusive pte if the page lock can be acquired without
741 * sleeping.
742 */
743 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745 unsigned long addr)
746 {
747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
748 struct page *page = pfn_swap_entry_to_page(entry);
749
750 if (trylock_page(page)) {
751 restore_exclusive_pte(vma, page, addr, src_pte);
752 unlock_page(page);
753 return 0;
754 }
755
756 return -EBUSY;
757 }
758
759 /*
760 * copy one vm_area from one task to the other. Assumes the page tables
761 * already present in the new task to be cleared in the whole range
762 * covered by this vma.
763 */
764
765 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769 {
770 unsigned long vm_flags = dst_vma->vm_flags;
771 pte_t orig_pte = ptep_get(src_pte);
772 pte_t pte = orig_pte;
773 struct page *page;
774 swp_entry_t entry = pte_to_swp_entry(orig_pte);
775
776 if (likely(!non_swap_entry(entry))) {
777 if (swap_duplicate(entry) < 0)
778 return -EIO;
779
780 /* make sure dst_mm is on swapoff's mmlist. */
781 if (unlikely(list_empty(&dst_mm->mmlist))) {
782 spin_lock(&mmlist_lock);
783 if (list_empty(&dst_mm->mmlist))
784 list_add(&dst_mm->mmlist,
785 &src_mm->mmlist);
786 spin_unlock(&mmlist_lock);
787 }
788 /* Mark the swap entry as shared. */
789 if (pte_swp_exclusive(orig_pte)) {
790 pte = pte_swp_clear_exclusive(orig_pte);
791 set_pte_at(src_mm, addr, src_pte, pte);
792 }
793 rss[MM_SWAPENTS]++;
794 } else if (is_migration_entry(entry)) {
795 page = pfn_swap_entry_to_page(entry);
796
797 rss[mm_counter(page)]++;
798
799 if (!is_readable_migration_entry(entry) &&
800 is_cow_mapping(vm_flags)) {
801 /*
802 * COW mappings require pages in both parent and child
803 * to be set to read. A previously exclusive entry is
804 * now shared.
805 */
806 entry = make_readable_migration_entry(
807 swp_offset(entry));
808 pte = swp_entry_to_pte(entry);
809 if (pte_swp_soft_dirty(orig_pte))
810 pte = pte_swp_mksoft_dirty(pte);
811 if (pte_swp_uffd_wp(orig_pte))
812 pte = pte_swp_mkuffd_wp(pte);
813 set_pte_at(src_mm, addr, src_pte, pte);
814 }
815 } else if (is_device_private_entry(entry)) {
816 page = pfn_swap_entry_to_page(entry);
817
818 /*
819 * Update rss count even for unaddressable pages, as
820 * they should treated just like normal pages in this
821 * respect.
822 *
823 * We will likely want to have some new rss counters
824 * for unaddressable pages, at some point. But for now
825 * keep things as they are.
826 */
827 get_page(page);
828 rss[mm_counter(page)]++;
829 /* Cannot fail as these pages cannot get pinned. */
830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
831
832 /*
833 * We do not preserve soft-dirty information, because so
834 * far, checkpoint/restore is the only feature that
835 * requires that. And checkpoint/restore does not work
836 * when a device driver is involved (you cannot easily
837 * save and restore device driver state).
838 */
839 if (is_writable_device_private_entry(entry) &&
840 is_cow_mapping(vm_flags)) {
841 entry = make_readable_device_private_entry(
842 swp_offset(entry));
843 pte = swp_entry_to_pte(entry);
844 if (pte_swp_uffd_wp(orig_pte))
845 pte = pte_swp_mkuffd_wp(pte);
846 set_pte_at(src_mm, addr, src_pte, pte);
847 }
848 } else if (is_device_exclusive_entry(entry)) {
849 /*
850 * Make device exclusive entries present by restoring the
851 * original entry then copying as for a present pte. Device
852 * exclusive entries currently only support private writable
853 * (ie. COW) mappings.
854 */
855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857 return -EBUSY;
858 return -ENOENT;
859 } else if (is_pte_marker_entry(entry)) {
860 pte_marker marker = copy_pte_marker(entry, dst_vma);
861
862 if (marker)
863 set_pte_at(dst_mm, addr, dst_pte,
864 make_pte_marker(marker));
865 return 0;
866 }
867 if (!userfaultfd_wp(dst_vma))
868 pte = pte_swp_clear_uffd_wp(pte);
869 set_pte_at(dst_mm, addr, dst_pte, pte);
870 return 0;
871 }
872
873 /*
874 * Copy a present and normal page.
875 *
876 * NOTE! The usual case is that this isn't required;
877 * instead, the caller can just increase the page refcount
878 * and re-use the pte the traditional way.
879 *
880 * And if we need a pre-allocated page but don't yet have
881 * one, return a negative error to let the preallocation
882 * code know so that it can do so outside the page table
883 * lock.
884 */
885 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 struct folio **prealloc, struct page *page)
889 {
890 struct folio *new_folio;
891 pte_t pte;
892
893 new_folio = *prealloc;
894 if (!new_folio)
895 return -EAGAIN;
896
897 /*
898 * We have a prealloc page, all good! Take it
899 * over and copy the page & arm it.
900 */
901 *prealloc = NULL;
902 copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 __folio_mark_uptodate(new_folio);
904 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 folio_add_lru_vma(new_folio, dst_vma);
906 rss[MM_ANONPAGES]++;
907
908 /* All done, just insert the new page copy in the child */
909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 /* Uffd-wp needs to be delivered to dest pte as well */
913 pte = pte_mkuffd_wp(pte);
914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915 return 0;
916 }
917
918 /*
919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
920 * is required to copy this pte.
921 */
922 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc)923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 struct folio **prealloc)
926 {
927 struct mm_struct *src_mm = src_vma->vm_mm;
928 unsigned long vm_flags = src_vma->vm_flags;
929 pte_t pte = ptep_get(src_pte);
930 struct page *page;
931 struct folio *folio;
932
933 page = vm_normal_page(src_vma, addr, pte);
934 if (page)
935 folio = page_folio(page);
936 if (page && folio_test_anon(folio)) {
937 /*
938 * If this page may have been pinned by the parent process,
939 * copy the page immediately for the child so that we'll always
940 * guarantee the pinned page won't be randomly replaced in the
941 * future.
942 */
943 folio_get(folio);
944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 /* Page may be pinned, we have to copy. */
946 folio_put(folio);
947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 addr, rss, prealloc, page);
949 }
950 rss[MM_ANONPAGES]++;
951 } else if (page) {
952 folio_get(folio);
953 page_dup_file_rmap(page, false);
954 rss[mm_counter_file(page)]++;
955 }
956
957 /*
958 * If it's a COW mapping, write protect it both
959 * in the parent and the child
960 */
961 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 ptep_set_wrprotect(src_mm, addr, src_pte);
963 pte = pte_wrprotect(pte);
964 }
965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966
967 /*
968 * If it's a shared mapping, mark it clean in
969 * the child
970 */
971 if (vm_flags & VM_SHARED)
972 pte = pte_mkclean(pte);
973 pte = pte_mkold(pte);
974
975 if (!userfaultfd_wp(dst_vma))
976 pte = pte_clear_uffd_wp(pte);
977
978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979 return 0;
980 }
981
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 struct vm_area_struct *vma, unsigned long addr)
984 {
985 struct folio *new_folio;
986
987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 if (!new_folio)
989 return NULL;
990
991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 folio_put(new_folio);
993 return NULL;
994 }
995 folio_throttle_swaprate(new_folio, GFP_KERNEL);
996
997 return new_folio;
998 }
999
1000 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 unsigned long end)
1004 {
1005 struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 struct mm_struct *src_mm = src_vma->vm_mm;
1007 pte_t *orig_src_pte, *orig_dst_pte;
1008 pte_t *src_pte, *dst_pte;
1009 pte_t ptent;
1010 spinlock_t *src_ptl, *dst_ptl;
1011 int progress, ret = 0;
1012 int rss[NR_MM_COUNTERS];
1013 swp_entry_t entry = (swp_entry_t){0};
1014 struct folio *prealloc = NULL;
1015
1016 again:
1017 progress = 0;
1018 init_rss_vec(rss);
1019
1020 /*
1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 * error handling here, assume that exclusive mmap_lock on dst and src
1023 * protects anon from unexpected THP transitions; with shmem and file
1024 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1026 * can remove such assumptions later, but this is good enough for now.
1027 */
1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029 if (!dst_pte) {
1030 ret = -ENOMEM;
1031 goto out;
1032 }
1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 if (!src_pte) {
1035 pte_unmap_unlock(dst_pte, dst_ptl);
1036 /* ret == 0 */
1037 goto out;
1038 }
1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 orig_src_pte = src_pte;
1041 orig_dst_pte = dst_pte;
1042 arch_enter_lazy_mmu_mode();
1043
1044 do {
1045 /*
1046 * We are holding two locks at this point - either of them
1047 * could generate latencies in another task on another CPU.
1048 */
1049 if (progress >= 32) {
1050 progress = 0;
1051 if (need_resched() ||
1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053 break;
1054 }
1055 ptent = ptep_get(src_pte);
1056 if (pte_none(ptent)) {
1057 progress++;
1058 continue;
1059 }
1060 if (unlikely(!pte_present(ptent))) {
1061 ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 dst_pte, src_pte,
1063 dst_vma, src_vma,
1064 addr, rss);
1065 if (ret == -EIO) {
1066 entry = pte_to_swp_entry(ptep_get(src_pte));
1067 break;
1068 } else if (ret == -EBUSY) {
1069 break;
1070 } else if (!ret) {
1071 progress += 8;
1072 continue;
1073 }
1074
1075 /*
1076 * Device exclusive entry restored, continue by copying
1077 * the now present pte.
1078 */
1079 WARN_ON_ONCE(ret != -ENOENT);
1080 }
1081 /* copy_present_pte() will clear `*prealloc' if consumed */
1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 addr, rss, &prealloc);
1084 /*
1085 * If we need a pre-allocated page for this pte, drop the
1086 * locks, allocate, and try again.
1087 */
1088 if (unlikely(ret == -EAGAIN))
1089 break;
1090 if (unlikely(prealloc)) {
1091 /*
1092 * pre-alloc page cannot be reused by next time so as
1093 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 * will allocate page according to address). This
1095 * could only happen if one pinned pte changed.
1096 */
1097 folio_put(prealloc);
1098 prealloc = NULL;
1099 }
1100 progress += 8;
1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102
1103 arch_leave_lazy_mmu_mode();
1104 pte_unmap_unlock(orig_src_pte, src_ptl);
1105 add_mm_rss_vec(dst_mm, rss);
1106 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107 cond_resched();
1108
1109 if (ret == -EIO) {
1110 VM_WARN_ON_ONCE(!entry.val);
1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 ret = -ENOMEM;
1113 goto out;
1114 }
1115 entry.val = 0;
1116 } else if (ret == -EBUSY) {
1117 goto out;
1118 } else if (ret == -EAGAIN) {
1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120 if (!prealloc)
1121 return -ENOMEM;
1122 } else if (ret) {
1123 VM_WARN_ON_ONCE(1);
1124 }
1125
1126 /* We've captured and resolved the error. Reset, try again. */
1127 ret = 0;
1128
1129 if (addr != end)
1130 goto again;
1131 out:
1132 if (unlikely(prealloc))
1133 folio_put(prealloc);
1134 return ret;
1135 }
1136
1137 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 unsigned long end)
1141 {
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1144 pmd_t *src_pmd, *dst_pmd;
1145 unsigned long next;
1146
1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 if (!dst_pmd)
1149 return -ENOMEM;
1150 src_pmd = pmd_offset(src_pud, addr);
1151 do {
1152 next = pmd_addr_end(addr, end);
1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 || pmd_devmap(*src_pmd)) {
1155 int err;
1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 addr, dst_vma, src_vma);
1159 if (err == -ENOMEM)
1160 return -ENOMEM;
1161 if (!err)
1162 continue;
1163 /* fall through */
1164 }
1165 if (pmd_none_or_clear_bad(src_pmd))
1166 continue;
1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 addr, next))
1169 return -ENOMEM;
1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 return 0;
1172 }
1173
1174 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 unsigned long end)
1178 {
1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 struct mm_struct *src_mm = src_vma->vm_mm;
1181 pud_t *src_pud, *dst_pud;
1182 unsigned long next;
1183
1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185 if (!dst_pud)
1186 return -ENOMEM;
1187 src_pud = pud_offset(src_p4d, addr);
1188 do {
1189 next = pud_addr_end(addr, end);
1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 int err;
1192
1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 err = copy_huge_pud(dst_mm, src_mm,
1195 dst_pud, src_pud, addr, src_vma);
1196 if (err == -ENOMEM)
1197 return -ENOMEM;
1198 if (!err)
1199 continue;
1200 /* fall through */
1201 }
1202 if (pud_none_or_clear_bad(src_pud))
1203 continue;
1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 addr, next))
1206 return -ENOMEM;
1207 } while (dst_pud++, src_pud++, addr = next, addr != end);
1208 return 0;
1209 }
1210
1211 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 unsigned long end)
1215 {
1216 struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 p4d_t *src_p4d, *dst_p4d;
1218 unsigned long next;
1219
1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 if (!dst_p4d)
1222 return -ENOMEM;
1223 src_p4d = p4d_offset(src_pgd, addr);
1224 do {
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(src_p4d))
1227 continue;
1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 addr, next))
1230 return -ENOMEM;
1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 return 0;
1233 }
1234
1235 /*
1236 * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 * false when we can speed up fork() by allowing lazy page faults later until
1238 * when the child accesses the memory range.
1239 */
1240 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243 /*
1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 * contains uffd-wp protection information, that's something we can't
1247 * retrieve from page cache, and skip copying will lose those info.
1248 */
1249 if (userfaultfd_wp(dst_vma))
1250 return true;
1251
1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253 return true;
1254
1255 if (src_vma->anon_vma)
1256 return true;
1257
1258 /*
1259 * Don't copy ptes where a page fault will fill them correctly. Fork
1260 * becomes much lighter when there are big shared or private readonly
1261 * mappings. The tradeoff is that copy_page_range is more efficient
1262 * than faulting.
1263 */
1264 return false;
1265 }
1266
1267 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270 pgd_t *src_pgd, *dst_pgd;
1271 unsigned long next;
1272 unsigned long addr = src_vma->vm_start;
1273 unsigned long end = src_vma->vm_end;
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
1276 struct mmu_notifier_range range;
1277 bool is_cow;
1278 int ret;
1279
1280 if (!vma_needs_copy(dst_vma, src_vma))
1281 return 0;
1282
1283 if (is_vm_hugetlb_page(src_vma))
1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285
1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287 /*
1288 * We do not free on error cases below as remove_vma
1289 * gets called on error from higher level routine
1290 */
1291 ret = track_pfn_copy(src_vma);
1292 if (ret)
1293 return ret;
1294 }
1295
1296 /*
1297 * We need to invalidate the secondary MMU mappings only when
1298 * there could be a permission downgrade on the ptes of the
1299 * parent mm. And a permission downgrade will only happen if
1300 * is_cow_mapping() returns true.
1301 */
1302 is_cow = is_cow_mapping(src_vma->vm_flags);
1303
1304 if (is_cow) {
1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306 0, src_mm, addr, end);
1307 mmu_notifier_invalidate_range_start(&range);
1308 /*
1309 * Disabling preemption is not needed for the write side, as
1310 * the read side doesn't spin, but goes to the mmap_lock.
1311 *
1312 * Use the raw variant of the seqcount_t write API to avoid
1313 * lockdep complaining about preemptibility.
1314 */
1315 vma_assert_write_locked(src_vma);
1316 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317 }
1318
1319 ret = 0;
1320 dst_pgd = pgd_offset(dst_mm, addr);
1321 src_pgd = pgd_offset(src_mm, addr);
1322 do {
1323 next = pgd_addr_end(addr, end);
1324 if (pgd_none_or_clear_bad(src_pgd))
1325 continue;
1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327 addr, next))) {
1328 untrack_pfn_clear(dst_vma);
1329 ret = -ENOMEM;
1330 break;
1331 }
1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333
1334 if (is_cow) {
1335 raw_write_seqcount_end(&src_mm->write_protect_seq);
1336 mmu_notifier_invalidate_range_end(&range);
1337 }
1338 return ret;
1339 }
1340
1341 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1342 static inline bool should_zap_cows(struct zap_details *details)
1343 {
1344 /* By default, zap all pages */
1345 if (!details)
1346 return true;
1347
1348 /* Or, we zap COWed pages only if the caller wants to */
1349 return details->even_cows;
1350 }
1351
1352 /* Decides whether we should zap this page with the page pointer specified */
should_zap_page(struct zap_details * details,struct page * page)1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 {
1355 /* If we can make a decision without *page.. */
1356 if (should_zap_cows(details))
1357 return true;
1358
1359 /* E.g. the caller passes NULL for the case of a zero page */
1360 if (!page)
1361 return true;
1362
1363 /* Otherwise we should only zap non-anon pages */
1364 return !PageAnon(page);
1365 }
1366
zap_drop_file_uffd_wp(struct zap_details * details)1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368 {
1369 if (!details)
1370 return false;
1371
1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373 }
1374
1375 /*
1376 * This function makes sure that we'll replace the none pte with an uffd-wp
1377 * swap special pte marker when necessary. Must be with the pgtable lock held.
1378 */
1379 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,struct zap_details * details,pte_t pteval)1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 unsigned long addr, pte_t *pte,
1382 struct zap_details *details, pte_t pteval)
1383 {
1384 /* Zap on anonymous always means dropping everything */
1385 if (vma_is_anonymous(vma))
1386 return;
1387
1388 if (zap_drop_file_uffd_wp(details))
1389 return;
1390
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 }
1393
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395 struct vm_area_struct *vma, pmd_t *pmd,
1396 unsigned long addr, unsigned long end,
1397 struct zap_details *details)
1398 {
1399 struct mm_struct *mm = tlb->mm;
1400 int force_flush = 0;
1401 int rss[NR_MM_COUNTERS];
1402 spinlock_t *ptl;
1403 pte_t *start_pte;
1404 pte_t *pte;
1405 swp_entry_t entry;
1406
1407 tlb_change_page_size(tlb, PAGE_SIZE);
1408 init_rss_vec(rss);
1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410 if (!pte)
1411 return addr;
1412
1413 flush_tlb_batched_pending(mm);
1414 arch_enter_lazy_mmu_mode();
1415 do {
1416 pte_t ptent = ptep_get(pte);
1417 struct page *page;
1418
1419 if (pte_none(ptent))
1420 continue;
1421
1422 if (need_resched())
1423 break;
1424
1425 if (pte_present(ptent)) {
1426 unsigned int delay_rmap;
1427
1428 page = vm_normal_page(vma, addr, ptent);
1429 if (unlikely(!should_zap_page(details, page)))
1430 continue;
1431 ptent = ptep_get_and_clear_full(mm, addr, pte,
1432 tlb->fullmm);
1433 arch_check_zapped_pte(vma, ptent);
1434 tlb_remove_tlb_entry(tlb, pte, addr);
1435 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1436 ptent);
1437 if (unlikely(!page)) {
1438 ksm_might_unmap_zero_page(mm, ptent);
1439 continue;
1440 }
1441
1442 delay_rmap = 0;
1443 if (!PageAnon(page)) {
1444 if (pte_dirty(ptent)) {
1445 set_page_dirty(page);
1446 if (tlb_delay_rmap(tlb)) {
1447 delay_rmap = 1;
1448 force_flush = 1;
1449 }
1450 }
1451 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1452 mark_page_accessed(page);
1453 }
1454 rss[mm_counter(page)]--;
1455 if (!delay_rmap) {
1456 page_remove_rmap(page, vma, false);
1457 if (unlikely(page_mapcount(page) < 0))
1458 print_bad_pte(vma, addr, ptent, page);
1459 }
1460 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1461 force_flush = 1;
1462 addr += PAGE_SIZE;
1463 break;
1464 }
1465 continue;
1466 }
1467
1468 entry = pte_to_swp_entry(ptent);
1469 if (is_device_private_entry(entry) ||
1470 is_device_exclusive_entry(entry)) {
1471 page = pfn_swap_entry_to_page(entry);
1472 if (unlikely(!should_zap_page(details, page)))
1473 continue;
1474 /*
1475 * Both device private/exclusive mappings should only
1476 * work with anonymous page so far, so we don't need to
1477 * consider uffd-wp bit when zap. For more information,
1478 * see zap_install_uffd_wp_if_needed().
1479 */
1480 WARN_ON_ONCE(!vma_is_anonymous(vma));
1481 rss[mm_counter(page)]--;
1482 if (is_device_private_entry(entry))
1483 page_remove_rmap(page, vma, false);
1484 put_page(page);
1485 } else if (!non_swap_entry(entry)) {
1486 /* Genuine swap entry, hence a private anon page */
1487 if (!should_zap_cows(details))
1488 continue;
1489 rss[MM_SWAPENTS]--;
1490 if (unlikely(!free_swap_and_cache(entry)))
1491 print_bad_pte(vma, addr, ptent, NULL);
1492 } else if (is_migration_entry(entry)) {
1493 page = pfn_swap_entry_to_page(entry);
1494 if (!should_zap_page(details, page))
1495 continue;
1496 rss[mm_counter(page)]--;
1497 } else if (pte_marker_entry_uffd_wp(entry)) {
1498 /*
1499 * For anon: always drop the marker; for file: only
1500 * drop the marker if explicitly requested.
1501 */
1502 if (!vma_is_anonymous(vma) &&
1503 !zap_drop_file_uffd_wp(details))
1504 continue;
1505 } else if (is_hwpoison_entry(entry) ||
1506 is_poisoned_swp_entry(entry)) {
1507 if (!should_zap_cows(details))
1508 continue;
1509 } else {
1510 /* We should have covered all the swap entry types */
1511 WARN_ON_ONCE(1);
1512 }
1513 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1514 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1515 } while (pte++, addr += PAGE_SIZE, addr != end);
1516
1517 add_mm_rss_vec(mm, rss);
1518 arch_leave_lazy_mmu_mode();
1519
1520 /* Do the actual TLB flush before dropping ptl */
1521 if (force_flush) {
1522 tlb_flush_mmu_tlbonly(tlb);
1523 tlb_flush_rmaps(tlb, vma);
1524 }
1525 pte_unmap_unlock(start_pte, ptl);
1526
1527 /*
1528 * If we forced a TLB flush (either due to running out of
1529 * batch buffers or because we needed to flush dirty TLB
1530 * entries before releasing the ptl), free the batched
1531 * memory too. Come back again if we didn't do everything.
1532 */
1533 if (force_flush)
1534 tlb_flush_mmu(tlb);
1535
1536 return addr;
1537 }
1538
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1539 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1540 struct vm_area_struct *vma, pud_t *pud,
1541 unsigned long addr, unsigned long end,
1542 struct zap_details *details)
1543 {
1544 pmd_t *pmd;
1545 unsigned long next;
1546
1547 pmd = pmd_offset(pud, addr);
1548 do {
1549 next = pmd_addr_end(addr, end);
1550 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1551 if (next - addr != HPAGE_PMD_SIZE)
1552 __split_huge_pmd(vma, pmd, addr, false, NULL);
1553 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1554 addr = next;
1555 continue;
1556 }
1557 /* fall through */
1558 } else if (details && details->single_folio &&
1559 folio_test_pmd_mappable(details->single_folio) &&
1560 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1561 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1562 /*
1563 * Take and drop THP pmd lock so that we cannot return
1564 * prematurely, while zap_huge_pmd() has cleared *pmd,
1565 * but not yet decremented compound_mapcount().
1566 */
1567 spin_unlock(ptl);
1568 }
1569 if (pmd_none(*pmd)) {
1570 addr = next;
1571 continue;
1572 }
1573 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1574 if (addr != next)
1575 pmd--;
1576 } while (pmd++, cond_resched(), addr != end);
1577
1578 return addr;
1579 }
1580
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1581 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1582 struct vm_area_struct *vma, p4d_t *p4d,
1583 unsigned long addr, unsigned long end,
1584 struct zap_details *details)
1585 {
1586 pud_t *pud;
1587 unsigned long next;
1588
1589 pud = pud_offset(p4d, addr);
1590 do {
1591 next = pud_addr_end(addr, end);
1592 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1593 if (next - addr != HPAGE_PUD_SIZE) {
1594 mmap_assert_locked(tlb->mm);
1595 split_huge_pud(vma, pud, addr);
1596 } else if (zap_huge_pud(tlb, vma, pud, addr))
1597 goto next;
1598 /* fall through */
1599 }
1600 if (pud_none_or_clear_bad(pud))
1601 continue;
1602 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1603 next:
1604 cond_resched();
1605 } while (pud++, addr = next, addr != end);
1606
1607 return addr;
1608 }
1609
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1610 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1611 struct vm_area_struct *vma, pgd_t *pgd,
1612 unsigned long addr, unsigned long end,
1613 struct zap_details *details)
1614 {
1615 p4d_t *p4d;
1616 unsigned long next;
1617
1618 p4d = p4d_offset(pgd, addr);
1619 do {
1620 next = p4d_addr_end(addr, end);
1621 if (p4d_none_or_clear_bad(p4d))
1622 continue;
1623 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1624 } while (p4d++, addr = next, addr != end);
1625
1626 return addr;
1627 }
1628
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1629 void unmap_page_range(struct mmu_gather *tlb,
1630 struct vm_area_struct *vma,
1631 unsigned long addr, unsigned long end,
1632 struct zap_details *details)
1633 {
1634 pgd_t *pgd;
1635 unsigned long next;
1636
1637 BUG_ON(addr >= end);
1638 tlb_start_vma(tlb, vma);
1639 pgd = pgd_offset(vma->vm_mm, addr);
1640 do {
1641 next = pgd_addr_end(addr, end);
1642 if (pgd_none_or_clear_bad(pgd))
1643 continue;
1644 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1645 } while (pgd++, addr = next, addr != end);
1646 tlb_end_vma(tlb, vma);
1647 }
1648
1649
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1650 static void unmap_single_vma(struct mmu_gather *tlb,
1651 struct vm_area_struct *vma, unsigned long start_addr,
1652 unsigned long end_addr,
1653 struct zap_details *details, bool mm_wr_locked)
1654 {
1655 unsigned long start = max(vma->vm_start, start_addr);
1656 unsigned long end;
1657
1658 if (start >= vma->vm_end)
1659 return;
1660 end = min(vma->vm_end, end_addr);
1661 if (end <= vma->vm_start)
1662 return;
1663
1664 if (vma->vm_file)
1665 uprobe_munmap(vma, start, end);
1666
1667 if (unlikely(vma->vm_flags & VM_PFNMAP))
1668 untrack_pfn(vma, 0, 0, mm_wr_locked);
1669
1670 if (start != end) {
1671 if (unlikely(is_vm_hugetlb_page(vma))) {
1672 /*
1673 * It is undesirable to test vma->vm_file as it
1674 * should be non-null for valid hugetlb area.
1675 * However, vm_file will be NULL in the error
1676 * cleanup path of mmap_region. When
1677 * hugetlbfs ->mmap method fails,
1678 * mmap_region() nullifies vma->vm_file
1679 * before calling this function to clean up.
1680 * Since no pte has actually been setup, it is
1681 * safe to do nothing in this case.
1682 */
1683 if (vma->vm_file) {
1684 zap_flags_t zap_flags = details ?
1685 details->zap_flags : 0;
1686 __unmap_hugepage_range(tlb, vma, start, end,
1687 NULL, zap_flags);
1688 }
1689 } else
1690 unmap_page_range(tlb, vma, start, end, details);
1691 }
1692 }
1693
1694 /**
1695 * unmap_vmas - unmap a range of memory covered by a list of vma's
1696 * @tlb: address of the caller's struct mmu_gather
1697 * @mas: the maple state
1698 * @vma: the starting vma
1699 * @start_addr: virtual address at which to start unmapping
1700 * @end_addr: virtual address at which to end unmapping
1701 * @tree_end: The maximum index to check
1702 * @mm_wr_locked: lock flag
1703 *
1704 * Unmap all pages in the vma list.
1705 *
1706 * Only addresses between `start' and `end' will be unmapped.
1707 *
1708 * The VMA list must be sorted in ascending virtual address order.
1709 *
1710 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1711 * range after unmap_vmas() returns. So the only responsibility here is to
1712 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1713 * drops the lock and schedules.
1714 */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1715 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1716 struct vm_area_struct *vma, unsigned long start_addr,
1717 unsigned long end_addr, unsigned long tree_end,
1718 bool mm_wr_locked)
1719 {
1720 struct mmu_notifier_range range;
1721 struct zap_details details = {
1722 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1723 /* Careful - we need to zap private pages too! */
1724 .even_cows = true,
1725 };
1726
1727 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1728 start_addr, end_addr);
1729 mmu_notifier_invalidate_range_start(&range);
1730 do {
1731 unsigned long start = start_addr;
1732 unsigned long end = end_addr;
1733 hugetlb_zap_begin(vma, &start, &end);
1734 unmap_single_vma(tlb, vma, start, end, &details,
1735 mm_wr_locked);
1736 hugetlb_zap_end(vma, &details);
1737 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1738 mmu_notifier_invalidate_range_end(&range);
1739 }
1740
1741 /**
1742 * zap_page_range_single - remove user pages in a given range
1743 * @vma: vm_area_struct holding the applicable pages
1744 * @address: starting address of pages to zap
1745 * @size: number of bytes to zap
1746 * @details: details of shared cache invalidation
1747 *
1748 * The range must fit into one VMA.
1749 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1750 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1751 unsigned long size, struct zap_details *details)
1752 {
1753 const unsigned long end = address + size;
1754 struct mmu_notifier_range range;
1755 struct mmu_gather tlb;
1756
1757 lru_add_drain();
1758 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1759 address, end);
1760 hugetlb_zap_begin(vma, &range.start, &range.end);
1761 tlb_gather_mmu(&tlb, vma->vm_mm);
1762 update_hiwater_rss(vma->vm_mm);
1763 mmu_notifier_invalidate_range_start(&range);
1764 /*
1765 * unmap 'address-end' not 'range.start-range.end' as range
1766 * could have been expanded for hugetlb pmd sharing.
1767 */
1768 unmap_single_vma(&tlb, vma, address, end, details, false);
1769 mmu_notifier_invalidate_range_end(&range);
1770 tlb_finish_mmu(&tlb);
1771 hugetlb_zap_end(vma, details);
1772 }
1773
1774 /**
1775 * zap_vma_ptes - remove ptes mapping the vma
1776 * @vma: vm_area_struct holding ptes to be zapped
1777 * @address: starting address of pages to zap
1778 * @size: number of bytes to zap
1779 *
1780 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1781 *
1782 * The entire address range must be fully contained within the vma.
1783 *
1784 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1785 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1786 unsigned long size)
1787 {
1788 if (!range_in_vma(vma, address, address + size) ||
1789 !(vma->vm_flags & VM_PFNMAP))
1790 return;
1791
1792 zap_page_range_single(vma, address, size, NULL);
1793 }
1794 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1795
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1796 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1797 {
1798 pgd_t *pgd;
1799 p4d_t *p4d;
1800 pud_t *pud;
1801 pmd_t *pmd;
1802
1803 pgd = pgd_offset(mm, addr);
1804 p4d = p4d_alloc(mm, pgd, addr);
1805 if (!p4d)
1806 return NULL;
1807 pud = pud_alloc(mm, p4d, addr);
1808 if (!pud)
1809 return NULL;
1810 pmd = pmd_alloc(mm, pud, addr);
1811 if (!pmd)
1812 return NULL;
1813
1814 VM_BUG_ON(pmd_trans_huge(*pmd));
1815 return pmd;
1816 }
1817
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1818 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1819 spinlock_t **ptl)
1820 {
1821 pmd_t *pmd = walk_to_pmd(mm, addr);
1822
1823 if (!pmd)
1824 return NULL;
1825 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1826 }
1827
validate_page_before_insert(struct page * page)1828 static int validate_page_before_insert(struct page *page)
1829 {
1830 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1831 return -EINVAL;
1832 flush_dcache_page(page);
1833 return 0;
1834 }
1835
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1836 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1837 unsigned long addr, struct page *page, pgprot_t prot)
1838 {
1839 if (!pte_none(ptep_get(pte)))
1840 return -EBUSY;
1841 /* Ok, finally just insert the thing.. */
1842 get_page(page);
1843 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1844 page_add_file_rmap(page, vma, false);
1845 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1846 return 0;
1847 }
1848
1849 /*
1850 * This is the old fallback for page remapping.
1851 *
1852 * For historical reasons, it only allows reserved pages. Only
1853 * old drivers should use this, and they needed to mark their
1854 * pages reserved for the old functions anyway.
1855 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1856 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1857 struct page *page, pgprot_t prot)
1858 {
1859 int retval;
1860 pte_t *pte;
1861 spinlock_t *ptl;
1862
1863 retval = validate_page_before_insert(page);
1864 if (retval)
1865 goto out;
1866 retval = -ENOMEM;
1867 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1868 if (!pte)
1869 goto out;
1870 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1871 pte_unmap_unlock(pte, ptl);
1872 out:
1873 return retval;
1874 }
1875
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1876 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1877 unsigned long addr, struct page *page, pgprot_t prot)
1878 {
1879 int err;
1880
1881 if (!page_count(page))
1882 return -EINVAL;
1883 err = validate_page_before_insert(page);
1884 if (err)
1885 return err;
1886 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1887 }
1888
1889 /* insert_pages() amortizes the cost of spinlock operations
1890 * when inserting pages in a loop.
1891 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1892 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1893 struct page **pages, unsigned long *num, pgprot_t prot)
1894 {
1895 pmd_t *pmd = NULL;
1896 pte_t *start_pte, *pte;
1897 spinlock_t *pte_lock;
1898 struct mm_struct *const mm = vma->vm_mm;
1899 unsigned long curr_page_idx = 0;
1900 unsigned long remaining_pages_total = *num;
1901 unsigned long pages_to_write_in_pmd;
1902 int ret;
1903 more:
1904 ret = -EFAULT;
1905 pmd = walk_to_pmd(mm, addr);
1906 if (!pmd)
1907 goto out;
1908
1909 pages_to_write_in_pmd = min_t(unsigned long,
1910 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1911
1912 /* Allocate the PTE if necessary; takes PMD lock once only. */
1913 ret = -ENOMEM;
1914 if (pte_alloc(mm, pmd))
1915 goto out;
1916
1917 while (pages_to_write_in_pmd) {
1918 int pte_idx = 0;
1919 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1920
1921 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1922 if (!start_pte) {
1923 ret = -EFAULT;
1924 goto out;
1925 }
1926 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1927 int err = insert_page_in_batch_locked(vma, pte,
1928 addr, pages[curr_page_idx], prot);
1929 if (unlikely(err)) {
1930 pte_unmap_unlock(start_pte, pte_lock);
1931 ret = err;
1932 remaining_pages_total -= pte_idx;
1933 goto out;
1934 }
1935 addr += PAGE_SIZE;
1936 ++curr_page_idx;
1937 }
1938 pte_unmap_unlock(start_pte, pte_lock);
1939 pages_to_write_in_pmd -= batch_size;
1940 remaining_pages_total -= batch_size;
1941 }
1942 if (remaining_pages_total)
1943 goto more;
1944 ret = 0;
1945 out:
1946 *num = remaining_pages_total;
1947 return ret;
1948 }
1949
1950 /**
1951 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1952 * @vma: user vma to map to
1953 * @addr: target start user address of these pages
1954 * @pages: source kernel pages
1955 * @num: in: number of pages to map. out: number of pages that were *not*
1956 * mapped. (0 means all pages were successfully mapped).
1957 *
1958 * Preferred over vm_insert_page() when inserting multiple pages.
1959 *
1960 * In case of error, we may have mapped a subset of the provided
1961 * pages. It is the caller's responsibility to account for this case.
1962 *
1963 * The same restrictions apply as in vm_insert_page().
1964 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1965 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1966 struct page **pages, unsigned long *num)
1967 {
1968 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1969
1970 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1971 return -EFAULT;
1972 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1973 BUG_ON(mmap_read_trylock(vma->vm_mm));
1974 BUG_ON(vma->vm_flags & VM_PFNMAP);
1975 vm_flags_set(vma, VM_MIXEDMAP);
1976 }
1977 /* Defer page refcount checking till we're about to map that page. */
1978 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1979 }
1980 EXPORT_SYMBOL(vm_insert_pages);
1981
1982 /**
1983 * vm_insert_page - insert single page into user vma
1984 * @vma: user vma to map to
1985 * @addr: target user address of this page
1986 * @page: source kernel page
1987 *
1988 * This allows drivers to insert individual pages they've allocated
1989 * into a user vma.
1990 *
1991 * The page has to be a nice clean _individual_ kernel allocation.
1992 * If you allocate a compound page, you need to have marked it as
1993 * such (__GFP_COMP), or manually just split the page up yourself
1994 * (see split_page()).
1995 *
1996 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1997 * took an arbitrary page protection parameter. This doesn't allow
1998 * that. Your vma protection will have to be set up correctly, which
1999 * means that if you want a shared writable mapping, you'd better
2000 * ask for a shared writable mapping!
2001 *
2002 * The page does not need to be reserved.
2003 *
2004 * Usually this function is called from f_op->mmap() handler
2005 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2006 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2007 * function from other places, for example from page-fault handler.
2008 *
2009 * Return: %0 on success, negative error code otherwise.
2010 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2011 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2012 struct page *page)
2013 {
2014 if (addr < vma->vm_start || addr >= vma->vm_end)
2015 return -EFAULT;
2016 if (!page_count(page))
2017 return -EINVAL;
2018 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2019 BUG_ON(mmap_read_trylock(vma->vm_mm));
2020 BUG_ON(vma->vm_flags & VM_PFNMAP);
2021 vm_flags_set(vma, VM_MIXEDMAP);
2022 }
2023 return insert_page(vma, addr, page, vma->vm_page_prot);
2024 }
2025 EXPORT_SYMBOL(vm_insert_page);
2026
2027 /*
2028 * __vm_map_pages - maps range of kernel pages into user vma
2029 * @vma: user vma to map to
2030 * @pages: pointer to array of source kernel pages
2031 * @num: number of pages in page array
2032 * @offset: user's requested vm_pgoff
2033 *
2034 * This allows drivers to map range of kernel pages into a user vma.
2035 *
2036 * Return: 0 on success and error code otherwise.
2037 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2038 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2039 unsigned long num, unsigned long offset)
2040 {
2041 unsigned long count = vma_pages(vma);
2042 unsigned long uaddr = vma->vm_start;
2043 int ret, i;
2044
2045 /* Fail if the user requested offset is beyond the end of the object */
2046 if (offset >= num)
2047 return -ENXIO;
2048
2049 /* Fail if the user requested size exceeds available object size */
2050 if (count > num - offset)
2051 return -ENXIO;
2052
2053 for (i = 0; i < count; i++) {
2054 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2055 if (ret < 0)
2056 return ret;
2057 uaddr += PAGE_SIZE;
2058 }
2059
2060 return 0;
2061 }
2062
2063 /**
2064 * vm_map_pages - maps range of kernel pages starts with non zero offset
2065 * @vma: user vma to map to
2066 * @pages: pointer to array of source kernel pages
2067 * @num: number of pages in page array
2068 *
2069 * Maps an object consisting of @num pages, catering for the user's
2070 * requested vm_pgoff
2071 *
2072 * If we fail to insert any page into the vma, the function will return
2073 * immediately leaving any previously inserted pages present. Callers
2074 * from the mmap handler may immediately return the error as their caller
2075 * will destroy the vma, removing any successfully inserted pages. Other
2076 * callers should make their own arrangements for calling unmap_region().
2077 *
2078 * Context: Process context. Called by mmap handlers.
2079 * Return: 0 on success and error code otherwise.
2080 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2081 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2082 unsigned long num)
2083 {
2084 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2085 }
2086 EXPORT_SYMBOL(vm_map_pages);
2087
2088 /**
2089 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2090 * @vma: user vma to map to
2091 * @pages: pointer to array of source kernel pages
2092 * @num: number of pages in page array
2093 *
2094 * Similar to vm_map_pages(), except that it explicitly sets the offset
2095 * to 0. This function is intended for the drivers that did not consider
2096 * vm_pgoff.
2097 *
2098 * Context: Process context. Called by mmap handlers.
2099 * Return: 0 on success and error code otherwise.
2100 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2101 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2102 unsigned long num)
2103 {
2104 return __vm_map_pages(vma, pages, num, 0);
2105 }
2106 EXPORT_SYMBOL(vm_map_pages_zero);
2107
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2108 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2109 pfn_t pfn, pgprot_t prot, bool mkwrite)
2110 {
2111 struct mm_struct *mm = vma->vm_mm;
2112 pte_t *pte, entry;
2113 spinlock_t *ptl;
2114
2115 pte = get_locked_pte(mm, addr, &ptl);
2116 if (!pte)
2117 return VM_FAULT_OOM;
2118 entry = ptep_get(pte);
2119 if (!pte_none(entry)) {
2120 if (mkwrite) {
2121 /*
2122 * For read faults on private mappings the PFN passed
2123 * in may not match the PFN we have mapped if the
2124 * mapped PFN is a writeable COW page. In the mkwrite
2125 * case we are creating a writable PTE for a shared
2126 * mapping and we expect the PFNs to match. If they
2127 * don't match, we are likely racing with block
2128 * allocation and mapping invalidation so just skip the
2129 * update.
2130 */
2131 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2132 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2133 goto out_unlock;
2134 }
2135 entry = pte_mkyoung(entry);
2136 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2137 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2138 update_mmu_cache(vma, addr, pte);
2139 }
2140 goto out_unlock;
2141 }
2142
2143 /* Ok, finally just insert the thing.. */
2144 if (pfn_t_devmap(pfn))
2145 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2146 else
2147 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2148
2149 if (mkwrite) {
2150 entry = pte_mkyoung(entry);
2151 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2152 }
2153
2154 set_pte_at(mm, addr, pte, entry);
2155 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2156
2157 out_unlock:
2158 pte_unmap_unlock(pte, ptl);
2159 return VM_FAULT_NOPAGE;
2160 }
2161
2162 /**
2163 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2164 * @vma: user vma to map to
2165 * @addr: target user address of this page
2166 * @pfn: source kernel pfn
2167 * @pgprot: pgprot flags for the inserted page
2168 *
2169 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2170 * to override pgprot on a per-page basis.
2171 *
2172 * This only makes sense for IO mappings, and it makes no sense for
2173 * COW mappings. In general, using multiple vmas is preferable;
2174 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2175 * impractical.
2176 *
2177 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2178 * caching- and encryption bits different than those of @vma->vm_page_prot,
2179 * because the caching- or encryption mode may not be known at mmap() time.
2180 *
2181 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2182 * to set caching and encryption bits for those vmas (except for COW pages).
2183 * This is ensured by core vm only modifying these page table entries using
2184 * functions that don't touch caching- or encryption bits, using pte_modify()
2185 * if needed. (See for example mprotect()).
2186 *
2187 * Also when new page-table entries are created, this is only done using the
2188 * fault() callback, and never using the value of vma->vm_page_prot,
2189 * except for page-table entries that point to anonymous pages as the result
2190 * of COW.
2191 *
2192 * Context: Process context. May allocate using %GFP_KERNEL.
2193 * Return: vm_fault_t value.
2194 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2195 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2196 unsigned long pfn, pgprot_t pgprot)
2197 {
2198 /*
2199 * Technically, architectures with pte_special can avoid all these
2200 * restrictions (same for remap_pfn_range). However we would like
2201 * consistency in testing and feature parity among all, so we should
2202 * try to keep these invariants in place for everybody.
2203 */
2204 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2205 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2206 (VM_PFNMAP|VM_MIXEDMAP));
2207 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2208 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2209
2210 if (addr < vma->vm_start || addr >= vma->vm_end)
2211 return VM_FAULT_SIGBUS;
2212
2213 if (!pfn_modify_allowed(pfn, pgprot))
2214 return VM_FAULT_SIGBUS;
2215
2216 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2217
2218 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2219 false);
2220 }
2221 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2222
2223 /**
2224 * vmf_insert_pfn - insert single pfn into user vma
2225 * @vma: user vma to map to
2226 * @addr: target user address of this page
2227 * @pfn: source kernel pfn
2228 *
2229 * Similar to vm_insert_page, this allows drivers to insert individual pages
2230 * they've allocated into a user vma. Same comments apply.
2231 *
2232 * This function should only be called from a vm_ops->fault handler, and
2233 * in that case the handler should return the result of this function.
2234 *
2235 * vma cannot be a COW mapping.
2236 *
2237 * As this is called only for pages that do not currently exist, we
2238 * do not need to flush old virtual caches or the TLB.
2239 *
2240 * Context: Process context. May allocate using %GFP_KERNEL.
2241 * Return: vm_fault_t value.
2242 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2243 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2244 unsigned long pfn)
2245 {
2246 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2247 }
2248 EXPORT_SYMBOL(vmf_insert_pfn);
2249
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2250 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2251 {
2252 /* these checks mirror the abort conditions in vm_normal_page */
2253 if (vma->vm_flags & VM_MIXEDMAP)
2254 return true;
2255 if (pfn_t_devmap(pfn))
2256 return true;
2257 if (pfn_t_special(pfn))
2258 return true;
2259 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2260 return true;
2261 return false;
2262 }
2263
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2264 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2265 unsigned long addr, pfn_t pfn, bool mkwrite)
2266 {
2267 pgprot_t pgprot = vma->vm_page_prot;
2268 int err;
2269
2270 BUG_ON(!vm_mixed_ok(vma, pfn));
2271
2272 if (addr < vma->vm_start || addr >= vma->vm_end)
2273 return VM_FAULT_SIGBUS;
2274
2275 track_pfn_insert(vma, &pgprot, pfn);
2276
2277 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2278 return VM_FAULT_SIGBUS;
2279
2280 /*
2281 * If we don't have pte special, then we have to use the pfn_valid()
2282 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2283 * refcount the page if pfn_valid is true (hence insert_page rather
2284 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2285 * without pte special, it would there be refcounted as a normal page.
2286 */
2287 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2288 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2289 struct page *page;
2290
2291 /*
2292 * At this point we are committed to insert_page()
2293 * regardless of whether the caller specified flags that
2294 * result in pfn_t_has_page() == false.
2295 */
2296 page = pfn_to_page(pfn_t_to_pfn(pfn));
2297 err = insert_page(vma, addr, page, pgprot);
2298 } else {
2299 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2300 }
2301
2302 if (err == -ENOMEM)
2303 return VM_FAULT_OOM;
2304 if (err < 0 && err != -EBUSY)
2305 return VM_FAULT_SIGBUS;
2306
2307 return VM_FAULT_NOPAGE;
2308 }
2309
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2310 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2311 pfn_t pfn)
2312 {
2313 return __vm_insert_mixed(vma, addr, pfn, false);
2314 }
2315 EXPORT_SYMBOL(vmf_insert_mixed);
2316
2317 /*
2318 * If the insertion of PTE failed because someone else already added a
2319 * different entry in the mean time, we treat that as success as we assume
2320 * the same entry was actually inserted.
2321 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2322 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2323 unsigned long addr, pfn_t pfn)
2324 {
2325 return __vm_insert_mixed(vma, addr, pfn, true);
2326 }
2327 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2328
2329 /*
2330 * maps a range of physical memory into the requested pages. the old
2331 * mappings are removed. any references to nonexistent pages results
2332 * in null mappings (currently treated as "copy-on-access")
2333 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2334 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2335 unsigned long addr, unsigned long end,
2336 unsigned long pfn, pgprot_t prot)
2337 {
2338 pte_t *pte, *mapped_pte;
2339 spinlock_t *ptl;
2340 int err = 0;
2341
2342 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2343 if (!pte)
2344 return -ENOMEM;
2345 arch_enter_lazy_mmu_mode();
2346 do {
2347 BUG_ON(!pte_none(ptep_get(pte)));
2348 if (!pfn_modify_allowed(pfn, prot)) {
2349 err = -EACCES;
2350 break;
2351 }
2352 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2353 pfn++;
2354 } while (pte++, addr += PAGE_SIZE, addr != end);
2355 arch_leave_lazy_mmu_mode();
2356 pte_unmap_unlock(mapped_pte, ptl);
2357 return err;
2358 }
2359
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2360 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2361 unsigned long addr, unsigned long end,
2362 unsigned long pfn, pgprot_t prot)
2363 {
2364 pmd_t *pmd;
2365 unsigned long next;
2366 int err;
2367
2368 pfn -= addr >> PAGE_SHIFT;
2369 pmd = pmd_alloc(mm, pud, addr);
2370 if (!pmd)
2371 return -ENOMEM;
2372 VM_BUG_ON(pmd_trans_huge(*pmd));
2373 do {
2374 next = pmd_addr_end(addr, end);
2375 err = remap_pte_range(mm, pmd, addr, next,
2376 pfn + (addr >> PAGE_SHIFT), prot);
2377 if (err)
2378 return err;
2379 } while (pmd++, addr = next, addr != end);
2380 return 0;
2381 }
2382
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2383 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2384 unsigned long addr, unsigned long end,
2385 unsigned long pfn, pgprot_t prot)
2386 {
2387 pud_t *pud;
2388 unsigned long next;
2389 int err;
2390
2391 pfn -= addr >> PAGE_SHIFT;
2392 pud = pud_alloc(mm, p4d, addr);
2393 if (!pud)
2394 return -ENOMEM;
2395 do {
2396 next = pud_addr_end(addr, end);
2397 err = remap_pmd_range(mm, pud, addr, next,
2398 pfn + (addr >> PAGE_SHIFT), prot);
2399 if (err)
2400 return err;
2401 } while (pud++, addr = next, addr != end);
2402 return 0;
2403 }
2404
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2405 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2406 unsigned long addr, unsigned long end,
2407 unsigned long pfn, pgprot_t prot)
2408 {
2409 p4d_t *p4d;
2410 unsigned long next;
2411 int err;
2412
2413 pfn -= addr >> PAGE_SHIFT;
2414 p4d = p4d_alloc(mm, pgd, addr);
2415 if (!p4d)
2416 return -ENOMEM;
2417 do {
2418 next = p4d_addr_end(addr, end);
2419 err = remap_pud_range(mm, p4d, addr, next,
2420 pfn + (addr >> PAGE_SHIFT), prot);
2421 if (err)
2422 return err;
2423 } while (p4d++, addr = next, addr != end);
2424 return 0;
2425 }
2426
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2427 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2428 unsigned long pfn, unsigned long size, pgprot_t prot)
2429 {
2430 pgd_t *pgd;
2431 unsigned long next;
2432 unsigned long end = addr + PAGE_ALIGN(size);
2433 struct mm_struct *mm = vma->vm_mm;
2434 int err;
2435
2436 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2437 return -EINVAL;
2438
2439 /*
2440 * Physically remapped pages are special. Tell the
2441 * rest of the world about it:
2442 * VM_IO tells people not to look at these pages
2443 * (accesses can have side effects).
2444 * VM_PFNMAP tells the core MM that the base pages are just
2445 * raw PFN mappings, and do not have a "struct page" associated
2446 * with them.
2447 * VM_DONTEXPAND
2448 * Disable vma merging and expanding with mremap().
2449 * VM_DONTDUMP
2450 * Omit vma from core dump, even when VM_IO turned off.
2451 *
2452 * There's a horrible special case to handle copy-on-write
2453 * behaviour that some programs depend on. We mark the "original"
2454 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2455 * See vm_normal_page() for details.
2456 */
2457 if (is_cow_mapping(vma->vm_flags)) {
2458 if (addr != vma->vm_start || end != vma->vm_end)
2459 return -EINVAL;
2460 vma->vm_pgoff = pfn;
2461 }
2462
2463 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2464
2465 BUG_ON(addr >= end);
2466 pfn -= addr >> PAGE_SHIFT;
2467 pgd = pgd_offset(mm, addr);
2468 flush_cache_range(vma, addr, end);
2469 do {
2470 next = pgd_addr_end(addr, end);
2471 err = remap_p4d_range(mm, pgd, addr, next,
2472 pfn + (addr >> PAGE_SHIFT), prot);
2473 if (err)
2474 return err;
2475 } while (pgd++, addr = next, addr != end);
2476
2477 return 0;
2478 }
2479
2480 /*
2481 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2482 * must have pre-validated the caching bits of the pgprot_t.
2483 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2484 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2485 unsigned long pfn, unsigned long size, pgprot_t prot)
2486 {
2487 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2488
2489 if (!error)
2490 return 0;
2491
2492 /*
2493 * A partial pfn range mapping is dangerous: it does not
2494 * maintain page reference counts, and callers may free
2495 * pages due to the error. So zap it early.
2496 */
2497 zap_page_range_single(vma, addr, size, NULL);
2498 return error;
2499 }
2500
2501 /**
2502 * remap_pfn_range - remap kernel memory to userspace
2503 * @vma: user vma to map to
2504 * @addr: target page aligned user address to start at
2505 * @pfn: page frame number of kernel physical memory address
2506 * @size: size of mapping area
2507 * @prot: page protection flags for this mapping
2508 *
2509 * Note: this is only safe if the mm semaphore is held when called.
2510 *
2511 * Return: %0 on success, negative error code otherwise.
2512 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2513 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2514 unsigned long pfn, unsigned long size, pgprot_t prot)
2515 {
2516 int err;
2517
2518 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2519 if (err)
2520 return -EINVAL;
2521
2522 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2523 if (err)
2524 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2525 return err;
2526 }
2527 EXPORT_SYMBOL(remap_pfn_range);
2528
2529 /**
2530 * vm_iomap_memory - remap memory to userspace
2531 * @vma: user vma to map to
2532 * @start: start of the physical memory to be mapped
2533 * @len: size of area
2534 *
2535 * This is a simplified io_remap_pfn_range() for common driver use. The
2536 * driver just needs to give us the physical memory range to be mapped,
2537 * we'll figure out the rest from the vma information.
2538 *
2539 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2540 * whatever write-combining details or similar.
2541 *
2542 * Return: %0 on success, negative error code otherwise.
2543 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2544 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2545 {
2546 unsigned long vm_len, pfn, pages;
2547
2548 /* Check that the physical memory area passed in looks valid */
2549 if (start + len < start)
2550 return -EINVAL;
2551 /*
2552 * You *really* shouldn't map things that aren't page-aligned,
2553 * but we've historically allowed it because IO memory might
2554 * just have smaller alignment.
2555 */
2556 len += start & ~PAGE_MASK;
2557 pfn = start >> PAGE_SHIFT;
2558 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2559 if (pfn + pages < pfn)
2560 return -EINVAL;
2561
2562 /* We start the mapping 'vm_pgoff' pages into the area */
2563 if (vma->vm_pgoff > pages)
2564 return -EINVAL;
2565 pfn += vma->vm_pgoff;
2566 pages -= vma->vm_pgoff;
2567
2568 /* Can we fit all of the mapping? */
2569 vm_len = vma->vm_end - vma->vm_start;
2570 if (vm_len >> PAGE_SHIFT > pages)
2571 return -EINVAL;
2572
2573 /* Ok, let it rip */
2574 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2575 }
2576 EXPORT_SYMBOL(vm_iomap_memory);
2577
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2578 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2579 unsigned long addr, unsigned long end,
2580 pte_fn_t fn, void *data, bool create,
2581 pgtbl_mod_mask *mask)
2582 {
2583 pte_t *pte, *mapped_pte;
2584 int err = 0;
2585 spinlock_t *ptl;
2586
2587 if (create) {
2588 mapped_pte = pte = (mm == &init_mm) ?
2589 pte_alloc_kernel_track(pmd, addr, mask) :
2590 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2591 if (!pte)
2592 return -ENOMEM;
2593 } else {
2594 mapped_pte = pte = (mm == &init_mm) ?
2595 pte_offset_kernel(pmd, addr) :
2596 pte_offset_map_lock(mm, pmd, addr, &ptl);
2597 if (!pte)
2598 return -EINVAL;
2599 }
2600
2601 arch_enter_lazy_mmu_mode();
2602
2603 if (fn) {
2604 do {
2605 if (create || !pte_none(ptep_get(pte))) {
2606 err = fn(pte++, addr, data);
2607 if (err)
2608 break;
2609 }
2610 } while (addr += PAGE_SIZE, addr != end);
2611 }
2612 *mask |= PGTBL_PTE_MODIFIED;
2613
2614 arch_leave_lazy_mmu_mode();
2615
2616 if (mm != &init_mm)
2617 pte_unmap_unlock(mapped_pte, ptl);
2618 return err;
2619 }
2620
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2621 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2622 unsigned long addr, unsigned long end,
2623 pte_fn_t fn, void *data, bool create,
2624 pgtbl_mod_mask *mask)
2625 {
2626 pmd_t *pmd;
2627 unsigned long next;
2628 int err = 0;
2629
2630 BUG_ON(pud_huge(*pud));
2631
2632 if (create) {
2633 pmd = pmd_alloc_track(mm, pud, addr, mask);
2634 if (!pmd)
2635 return -ENOMEM;
2636 } else {
2637 pmd = pmd_offset(pud, addr);
2638 }
2639 do {
2640 next = pmd_addr_end(addr, end);
2641 if (pmd_none(*pmd) && !create)
2642 continue;
2643 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2644 return -EINVAL;
2645 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2646 if (!create)
2647 continue;
2648 pmd_clear_bad(pmd);
2649 }
2650 err = apply_to_pte_range(mm, pmd, addr, next,
2651 fn, data, create, mask);
2652 if (err)
2653 break;
2654 } while (pmd++, addr = next, addr != end);
2655
2656 return err;
2657 }
2658
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2659 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2660 unsigned long addr, unsigned long end,
2661 pte_fn_t fn, void *data, bool create,
2662 pgtbl_mod_mask *mask)
2663 {
2664 pud_t *pud;
2665 unsigned long next;
2666 int err = 0;
2667
2668 if (create) {
2669 pud = pud_alloc_track(mm, p4d, addr, mask);
2670 if (!pud)
2671 return -ENOMEM;
2672 } else {
2673 pud = pud_offset(p4d, addr);
2674 }
2675 do {
2676 next = pud_addr_end(addr, end);
2677 if (pud_none(*pud) && !create)
2678 continue;
2679 if (WARN_ON_ONCE(pud_leaf(*pud)))
2680 return -EINVAL;
2681 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2682 if (!create)
2683 continue;
2684 pud_clear_bad(pud);
2685 }
2686 err = apply_to_pmd_range(mm, pud, addr, next,
2687 fn, data, create, mask);
2688 if (err)
2689 break;
2690 } while (pud++, addr = next, addr != end);
2691
2692 return err;
2693 }
2694
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2695 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2696 unsigned long addr, unsigned long end,
2697 pte_fn_t fn, void *data, bool create,
2698 pgtbl_mod_mask *mask)
2699 {
2700 p4d_t *p4d;
2701 unsigned long next;
2702 int err = 0;
2703
2704 if (create) {
2705 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2706 if (!p4d)
2707 return -ENOMEM;
2708 } else {
2709 p4d = p4d_offset(pgd, addr);
2710 }
2711 do {
2712 next = p4d_addr_end(addr, end);
2713 if (p4d_none(*p4d) && !create)
2714 continue;
2715 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2716 return -EINVAL;
2717 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2718 if (!create)
2719 continue;
2720 p4d_clear_bad(p4d);
2721 }
2722 err = apply_to_pud_range(mm, p4d, addr, next,
2723 fn, data, create, mask);
2724 if (err)
2725 break;
2726 } while (p4d++, addr = next, addr != end);
2727
2728 return err;
2729 }
2730
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2731 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2732 unsigned long size, pte_fn_t fn,
2733 void *data, bool create)
2734 {
2735 pgd_t *pgd;
2736 unsigned long start = addr, next;
2737 unsigned long end = addr + size;
2738 pgtbl_mod_mask mask = 0;
2739 int err = 0;
2740
2741 if (WARN_ON(addr >= end))
2742 return -EINVAL;
2743
2744 pgd = pgd_offset(mm, addr);
2745 do {
2746 next = pgd_addr_end(addr, end);
2747 if (pgd_none(*pgd) && !create)
2748 continue;
2749 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2750 return -EINVAL;
2751 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2752 if (!create)
2753 continue;
2754 pgd_clear_bad(pgd);
2755 }
2756 err = apply_to_p4d_range(mm, pgd, addr, next,
2757 fn, data, create, &mask);
2758 if (err)
2759 break;
2760 } while (pgd++, addr = next, addr != end);
2761
2762 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2763 arch_sync_kernel_mappings(start, start + size);
2764
2765 return err;
2766 }
2767
2768 /*
2769 * Scan a region of virtual memory, filling in page tables as necessary
2770 * and calling a provided function on each leaf page table.
2771 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2772 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2773 unsigned long size, pte_fn_t fn, void *data)
2774 {
2775 return __apply_to_page_range(mm, addr, size, fn, data, true);
2776 }
2777 EXPORT_SYMBOL_GPL(apply_to_page_range);
2778
2779 /*
2780 * Scan a region of virtual memory, calling a provided function on
2781 * each leaf page table where it exists.
2782 *
2783 * Unlike apply_to_page_range, this does _not_ fill in page tables
2784 * where they are absent.
2785 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2786 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2787 unsigned long size, pte_fn_t fn, void *data)
2788 {
2789 return __apply_to_page_range(mm, addr, size, fn, data, false);
2790 }
2791 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2792
2793 /*
2794 * handle_pte_fault chooses page fault handler according to an entry which was
2795 * read non-atomically. Before making any commitment, on those architectures
2796 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2797 * parts, do_swap_page must check under lock before unmapping the pte and
2798 * proceeding (but do_wp_page is only called after already making such a check;
2799 * and do_anonymous_page can safely check later on).
2800 */
pte_unmap_same(struct vm_fault * vmf)2801 static inline int pte_unmap_same(struct vm_fault *vmf)
2802 {
2803 int same = 1;
2804 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2805 if (sizeof(pte_t) > sizeof(unsigned long)) {
2806 spin_lock(vmf->ptl);
2807 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2808 spin_unlock(vmf->ptl);
2809 }
2810 #endif
2811 pte_unmap(vmf->pte);
2812 vmf->pte = NULL;
2813 return same;
2814 }
2815
2816 /*
2817 * Return:
2818 * 0: copied succeeded
2819 * -EHWPOISON: copy failed due to hwpoison in source page
2820 * -EAGAIN: copied failed (some other reason)
2821 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)2822 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2823 struct vm_fault *vmf)
2824 {
2825 int ret;
2826 void *kaddr;
2827 void __user *uaddr;
2828 struct vm_area_struct *vma = vmf->vma;
2829 struct mm_struct *mm = vma->vm_mm;
2830 unsigned long addr = vmf->address;
2831
2832 if (likely(src)) {
2833 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2834 memory_failure_queue(page_to_pfn(src), 0);
2835 return -EHWPOISON;
2836 }
2837 return 0;
2838 }
2839
2840 /*
2841 * If the source page was a PFN mapping, we don't have
2842 * a "struct page" for it. We do a best-effort copy by
2843 * just copying from the original user address. If that
2844 * fails, we just zero-fill it. Live with it.
2845 */
2846 kaddr = kmap_atomic(dst);
2847 uaddr = (void __user *)(addr & PAGE_MASK);
2848
2849 /*
2850 * On architectures with software "accessed" bits, we would
2851 * take a double page fault, so mark it accessed here.
2852 */
2853 vmf->pte = NULL;
2854 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2855 pte_t entry;
2856
2857 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2858 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2859 /*
2860 * Other thread has already handled the fault
2861 * and update local tlb only
2862 */
2863 if (vmf->pte)
2864 update_mmu_tlb(vma, addr, vmf->pte);
2865 ret = -EAGAIN;
2866 goto pte_unlock;
2867 }
2868
2869 entry = pte_mkyoung(vmf->orig_pte);
2870 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2871 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2872 }
2873
2874 /*
2875 * This really shouldn't fail, because the page is there
2876 * in the page tables. But it might just be unreadable,
2877 * in which case we just give up and fill the result with
2878 * zeroes.
2879 */
2880 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2881 if (vmf->pte)
2882 goto warn;
2883
2884 /* Re-validate under PTL if the page is still mapped */
2885 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2886 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2887 /* The PTE changed under us, update local tlb */
2888 if (vmf->pte)
2889 update_mmu_tlb(vma, addr, vmf->pte);
2890 ret = -EAGAIN;
2891 goto pte_unlock;
2892 }
2893
2894 /*
2895 * The same page can be mapped back since last copy attempt.
2896 * Try to copy again under PTL.
2897 */
2898 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2899 /*
2900 * Give a warn in case there can be some obscure
2901 * use-case
2902 */
2903 warn:
2904 WARN_ON_ONCE(1);
2905 clear_page(kaddr);
2906 }
2907 }
2908
2909 ret = 0;
2910
2911 pte_unlock:
2912 if (vmf->pte)
2913 pte_unmap_unlock(vmf->pte, vmf->ptl);
2914 kunmap_atomic(kaddr);
2915 flush_dcache_page(dst);
2916
2917 return ret;
2918 }
2919
__get_fault_gfp_mask(struct vm_area_struct * vma)2920 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2921 {
2922 struct file *vm_file = vma->vm_file;
2923
2924 if (vm_file)
2925 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2926
2927 /*
2928 * Special mappings (e.g. VDSO) do not have any file so fake
2929 * a default GFP_KERNEL for them.
2930 */
2931 return GFP_KERNEL;
2932 }
2933
2934 /*
2935 * Notify the address space that the page is about to become writable so that
2936 * it can prohibit this or wait for the page to get into an appropriate state.
2937 *
2938 * We do this without the lock held, so that it can sleep if it needs to.
2939 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)2940 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2941 {
2942 vm_fault_t ret;
2943 unsigned int old_flags = vmf->flags;
2944
2945 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2946
2947 if (vmf->vma->vm_file &&
2948 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2949 return VM_FAULT_SIGBUS;
2950
2951 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2952 /* Restore original flags so that caller is not surprised */
2953 vmf->flags = old_flags;
2954 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2955 return ret;
2956 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2957 folio_lock(folio);
2958 if (!folio->mapping) {
2959 folio_unlock(folio);
2960 return 0; /* retry */
2961 }
2962 ret |= VM_FAULT_LOCKED;
2963 } else
2964 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2965 return ret;
2966 }
2967
2968 /*
2969 * Handle dirtying of a page in shared file mapping on a write fault.
2970 *
2971 * The function expects the page to be locked and unlocks it.
2972 */
fault_dirty_shared_page(struct vm_fault * vmf)2973 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2974 {
2975 struct vm_area_struct *vma = vmf->vma;
2976 struct address_space *mapping;
2977 struct folio *folio = page_folio(vmf->page);
2978 bool dirtied;
2979 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2980
2981 dirtied = folio_mark_dirty(folio);
2982 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2983 /*
2984 * Take a local copy of the address_space - folio.mapping may be zeroed
2985 * by truncate after folio_unlock(). The address_space itself remains
2986 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
2987 * release semantics to prevent the compiler from undoing this copying.
2988 */
2989 mapping = folio_raw_mapping(folio);
2990 folio_unlock(folio);
2991
2992 if (!page_mkwrite)
2993 file_update_time(vma->vm_file);
2994
2995 /*
2996 * Throttle page dirtying rate down to writeback speed.
2997 *
2998 * mapping may be NULL here because some device drivers do not
2999 * set page.mapping but still dirty their pages
3000 *
3001 * Drop the mmap_lock before waiting on IO, if we can. The file
3002 * is pinning the mapping, as per above.
3003 */
3004 if ((dirtied || page_mkwrite) && mapping) {
3005 struct file *fpin;
3006
3007 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3008 balance_dirty_pages_ratelimited(mapping);
3009 if (fpin) {
3010 fput(fpin);
3011 return VM_FAULT_COMPLETED;
3012 }
3013 }
3014
3015 return 0;
3016 }
3017
3018 /*
3019 * Handle write page faults for pages that can be reused in the current vma
3020 *
3021 * This can happen either due to the mapping being with the VM_SHARED flag,
3022 * or due to us being the last reference standing to the page. In either
3023 * case, all we need to do here is to mark the page as writable and update
3024 * any related book-keeping.
3025 */
wp_page_reuse(struct vm_fault * vmf)3026 static inline void wp_page_reuse(struct vm_fault *vmf)
3027 __releases(vmf->ptl)
3028 {
3029 struct vm_area_struct *vma = vmf->vma;
3030 struct page *page = vmf->page;
3031 pte_t entry;
3032
3033 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3034 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3035
3036 /*
3037 * Clear the pages cpupid information as the existing
3038 * information potentially belongs to a now completely
3039 * unrelated process.
3040 */
3041 if (page)
3042 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3043
3044 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3045 entry = pte_mkyoung(vmf->orig_pte);
3046 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3047 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3048 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3049 pte_unmap_unlock(vmf->pte, vmf->ptl);
3050 count_vm_event(PGREUSE);
3051 }
3052
3053 /*
3054 * Handle the case of a page which we actually need to copy to a new page,
3055 * either due to COW or unsharing.
3056 *
3057 * Called with mmap_lock locked and the old page referenced, but
3058 * without the ptl held.
3059 *
3060 * High level logic flow:
3061 *
3062 * - Allocate a page, copy the content of the old page to the new one.
3063 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3064 * - Take the PTL. If the pte changed, bail out and release the allocated page
3065 * - If the pte is still the way we remember it, update the page table and all
3066 * relevant references. This includes dropping the reference the page-table
3067 * held to the old page, as well as updating the rmap.
3068 * - In any case, unlock the PTL and drop the reference we took to the old page.
3069 */
wp_page_copy(struct vm_fault * vmf)3070 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3071 {
3072 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3073 struct vm_area_struct *vma = vmf->vma;
3074 struct mm_struct *mm = vma->vm_mm;
3075 struct folio *old_folio = NULL;
3076 struct folio *new_folio = NULL;
3077 pte_t entry;
3078 int page_copied = 0;
3079 struct mmu_notifier_range range;
3080 int ret;
3081
3082 delayacct_wpcopy_start();
3083
3084 if (vmf->page)
3085 old_folio = page_folio(vmf->page);
3086 if (unlikely(anon_vma_prepare(vma)))
3087 goto oom;
3088
3089 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3090 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3091 if (!new_folio)
3092 goto oom;
3093 } else {
3094 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3095 vmf->address, false);
3096 if (!new_folio)
3097 goto oom;
3098
3099 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3100 if (ret) {
3101 /*
3102 * COW failed, if the fault was solved by other,
3103 * it's fine. If not, userspace would re-fault on
3104 * the same address and we will handle the fault
3105 * from the second attempt.
3106 * The -EHWPOISON case will not be retried.
3107 */
3108 folio_put(new_folio);
3109 if (old_folio)
3110 folio_put(old_folio);
3111
3112 delayacct_wpcopy_end();
3113 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3114 }
3115 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3116 }
3117
3118 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3119 goto oom_free_new;
3120 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3121
3122 __folio_mark_uptodate(new_folio);
3123
3124 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3125 vmf->address & PAGE_MASK,
3126 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3127 mmu_notifier_invalidate_range_start(&range);
3128
3129 /*
3130 * Re-check the pte - we dropped the lock
3131 */
3132 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3133 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3134 if (old_folio) {
3135 if (!folio_test_anon(old_folio)) {
3136 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3137 inc_mm_counter(mm, MM_ANONPAGES);
3138 }
3139 } else {
3140 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3141 inc_mm_counter(mm, MM_ANONPAGES);
3142 }
3143 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3144 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3145 entry = pte_sw_mkyoung(entry);
3146 if (unlikely(unshare)) {
3147 if (pte_soft_dirty(vmf->orig_pte))
3148 entry = pte_mksoft_dirty(entry);
3149 if (pte_uffd_wp(vmf->orig_pte))
3150 entry = pte_mkuffd_wp(entry);
3151 } else {
3152 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3153 }
3154
3155 /*
3156 * Clear the pte entry and flush it first, before updating the
3157 * pte with the new entry, to keep TLBs on different CPUs in
3158 * sync. This code used to set the new PTE then flush TLBs, but
3159 * that left a window where the new PTE could be loaded into
3160 * some TLBs while the old PTE remains in others.
3161 */
3162 ptep_clear_flush(vma, vmf->address, vmf->pte);
3163 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3164 folio_add_lru_vma(new_folio, vma);
3165 /*
3166 * We call the notify macro here because, when using secondary
3167 * mmu page tables (such as kvm shadow page tables), we want the
3168 * new page to be mapped directly into the secondary page table.
3169 */
3170 BUG_ON(unshare && pte_write(entry));
3171 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3172 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3173 if (old_folio) {
3174 /*
3175 * Only after switching the pte to the new page may
3176 * we remove the mapcount here. Otherwise another
3177 * process may come and find the rmap count decremented
3178 * before the pte is switched to the new page, and
3179 * "reuse" the old page writing into it while our pte
3180 * here still points into it and can be read by other
3181 * threads.
3182 *
3183 * The critical issue is to order this
3184 * page_remove_rmap with the ptp_clear_flush above.
3185 * Those stores are ordered by (if nothing else,)
3186 * the barrier present in the atomic_add_negative
3187 * in page_remove_rmap.
3188 *
3189 * Then the TLB flush in ptep_clear_flush ensures that
3190 * no process can access the old page before the
3191 * decremented mapcount is visible. And the old page
3192 * cannot be reused until after the decremented
3193 * mapcount is visible. So transitively, TLBs to
3194 * old page will be flushed before it can be reused.
3195 */
3196 page_remove_rmap(vmf->page, vma, false);
3197 }
3198
3199 /* Free the old page.. */
3200 new_folio = old_folio;
3201 page_copied = 1;
3202 pte_unmap_unlock(vmf->pte, vmf->ptl);
3203 } else if (vmf->pte) {
3204 update_mmu_tlb(vma, vmf->address, vmf->pte);
3205 pte_unmap_unlock(vmf->pte, vmf->ptl);
3206 }
3207
3208 mmu_notifier_invalidate_range_end(&range);
3209
3210 if (new_folio)
3211 folio_put(new_folio);
3212 if (old_folio) {
3213 if (page_copied)
3214 free_swap_cache(&old_folio->page);
3215 folio_put(old_folio);
3216 }
3217
3218 delayacct_wpcopy_end();
3219 return 0;
3220 oom_free_new:
3221 folio_put(new_folio);
3222 oom:
3223 if (old_folio)
3224 folio_put(old_folio);
3225
3226 delayacct_wpcopy_end();
3227 return VM_FAULT_OOM;
3228 }
3229
3230 /**
3231 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3232 * writeable once the page is prepared
3233 *
3234 * @vmf: structure describing the fault
3235 *
3236 * This function handles all that is needed to finish a write page fault in a
3237 * shared mapping due to PTE being read-only once the mapped page is prepared.
3238 * It handles locking of PTE and modifying it.
3239 *
3240 * The function expects the page to be locked or other protection against
3241 * concurrent faults / writeback (such as DAX radix tree locks).
3242 *
3243 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3244 * we acquired PTE lock.
3245 */
finish_mkwrite_fault(struct vm_fault * vmf)3246 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3247 {
3248 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3249 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3250 &vmf->ptl);
3251 if (!vmf->pte)
3252 return VM_FAULT_NOPAGE;
3253 /*
3254 * We might have raced with another page fault while we released the
3255 * pte_offset_map_lock.
3256 */
3257 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3258 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3259 pte_unmap_unlock(vmf->pte, vmf->ptl);
3260 return VM_FAULT_NOPAGE;
3261 }
3262 wp_page_reuse(vmf);
3263 return 0;
3264 }
3265
3266 /*
3267 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3268 * mapping
3269 */
wp_pfn_shared(struct vm_fault * vmf)3270 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3271 {
3272 struct vm_area_struct *vma = vmf->vma;
3273
3274 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3275 vm_fault_t ret;
3276
3277 pte_unmap_unlock(vmf->pte, vmf->ptl);
3278 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3279 vma_end_read(vmf->vma);
3280 return VM_FAULT_RETRY;
3281 }
3282
3283 vmf->flags |= FAULT_FLAG_MKWRITE;
3284 ret = vma->vm_ops->pfn_mkwrite(vmf);
3285 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3286 return ret;
3287 return finish_mkwrite_fault(vmf);
3288 }
3289 wp_page_reuse(vmf);
3290 return 0;
3291 }
3292
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3293 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3294 __releases(vmf->ptl)
3295 {
3296 struct vm_area_struct *vma = vmf->vma;
3297 vm_fault_t ret = 0;
3298
3299 folio_get(folio);
3300
3301 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3302 vm_fault_t tmp;
3303
3304 pte_unmap_unlock(vmf->pte, vmf->ptl);
3305 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3306 folio_put(folio);
3307 vma_end_read(vmf->vma);
3308 return VM_FAULT_RETRY;
3309 }
3310
3311 tmp = do_page_mkwrite(vmf, folio);
3312 if (unlikely(!tmp || (tmp &
3313 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3314 folio_put(folio);
3315 return tmp;
3316 }
3317 tmp = finish_mkwrite_fault(vmf);
3318 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3319 folio_unlock(folio);
3320 folio_put(folio);
3321 return tmp;
3322 }
3323 } else {
3324 wp_page_reuse(vmf);
3325 folio_lock(folio);
3326 }
3327 ret |= fault_dirty_shared_page(vmf);
3328 folio_put(folio);
3329
3330 return ret;
3331 }
3332
3333 /*
3334 * This routine handles present pages, when
3335 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3336 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3337 * (FAULT_FLAG_UNSHARE)
3338 *
3339 * It is done by copying the page to a new address and decrementing the
3340 * shared-page counter for the old page.
3341 *
3342 * Note that this routine assumes that the protection checks have been
3343 * done by the caller (the low-level page fault routine in most cases).
3344 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3345 * done any necessary COW.
3346 *
3347 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3348 * though the page will change only once the write actually happens. This
3349 * avoids a few races, and potentially makes it more efficient.
3350 *
3351 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3352 * but allow concurrent faults), with pte both mapped and locked.
3353 * We return with mmap_lock still held, but pte unmapped and unlocked.
3354 */
do_wp_page(struct vm_fault * vmf)3355 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3356 __releases(vmf->ptl)
3357 {
3358 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3359 struct vm_area_struct *vma = vmf->vma;
3360 struct folio *folio = NULL;
3361
3362 if (likely(!unshare)) {
3363 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3364 pte_unmap_unlock(vmf->pte, vmf->ptl);
3365 return handle_userfault(vmf, VM_UFFD_WP);
3366 }
3367
3368 /*
3369 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3370 * is flushed in this case before copying.
3371 */
3372 if (unlikely(userfaultfd_wp(vmf->vma) &&
3373 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3374 flush_tlb_page(vmf->vma, vmf->address);
3375 }
3376
3377 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3378
3379 if (vmf->page)
3380 folio = page_folio(vmf->page);
3381
3382 /*
3383 * Shared mapping: we are guaranteed to have VM_WRITE and
3384 * FAULT_FLAG_WRITE set at this point.
3385 */
3386 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3387 /*
3388 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3389 * VM_PFNMAP VMA.
3390 *
3391 * We should not cow pages in a shared writeable mapping.
3392 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3393 */
3394 if (!vmf->page)
3395 return wp_pfn_shared(vmf);
3396 return wp_page_shared(vmf, folio);
3397 }
3398
3399 /*
3400 * Private mapping: create an exclusive anonymous page copy if reuse
3401 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3402 */
3403 if (folio && folio_test_anon(folio)) {
3404 /*
3405 * If the page is exclusive to this process we must reuse the
3406 * page without further checks.
3407 */
3408 if (PageAnonExclusive(vmf->page))
3409 goto reuse;
3410
3411 /*
3412 * We have to verify under folio lock: these early checks are
3413 * just an optimization to avoid locking the folio and freeing
3414 * the swapcache if there is little hope that we can reuse.
3415 *
3416 * KSM doesn't necessarily raise the folio refcount.
3417 */
3418 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3419 goto copy;
3420 if (!folio_test_lru(folio))
3421 /*
3422 * We cannot easily detect+handle references from
3423 * remote LRU caches or references to LRU folios.
3424 */
3425 lru_add_drain();
3426 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3427 goto copy;
3428 if (!folio_trylock(folio))
3429 goto copy;
3430 if (folio_test_swapcache(folio))
3431 folio_free_swap(folio);
3432 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3433 folio_unlock(folio);
3434 goto copy;
3435 }
3436 /*
3437 * Ok, we've got the only folio reference from our mapping
3438 * and the folio is locked, it's dark out, and we're wearing
3439 * sunglasses. Hit it.
3440 */
3441 page_move_anon_rmap(vmf->page, vma);
3442 folio_unlock(folio);
3443 reuse:
3444 if (unlikely(unshare)) {
3445 pte_unmap_unlock(vmf->pte, vmf->ptl);
3446 return 0;
3447 }
3448 wp_page_reuse(vmf);
3449 return 0;
3450 }
3451 copy:
3452 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3453 pte_unmap_unlock(vmf->pte, vmf->ptl);
3454 vma_end_read(vmf->vma);
3455 return VM_FAULT_RETRY;
3456 }
3457
3458 /*
3459 * Ok, we need to copy. Oh, well..
3460 */
3461 if (folio)
3462 folio_get(folio);
3463
3464 pte_unmap_unlock(vmf->pte, vmf->ptl);
3465 #ifdef CONFIG_KSM
3466 if (folio && folio_test_ksm(folio))
3467 count_vm_event(COW_KSM);
3468 #endif
3469 return wp_page_copy(vmf);
3470 }
3471
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3472 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3473 unsigned long start_addr, unsigned long end_addr,
3474 struct zap_details *details)
3475 {
3476 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3477 }
3478
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3479 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3480 pgoff_t first_index,
3481 pgoff_t last_index,
3482 struct zap_details *details)
3483 {
3484 struct vm_area_struct *vma;
3485 pgoff_t vba, vea, zba, zea;
3486
3487 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3488 vba = vma->vm_pgoff;
3489 vea = vba + vma_pages(vma) - 1;
3490 zba = max(first_index, vba);
3491 zea = min(last_index, vea);
3492
3493 unmap_mapping_range_vma(vma,
3494 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3495 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3496 details);
3497 }
3498 }
3499
3500 /**
3501 * unmap_mapping_folio() - Unmap single folio from processes.
3502 * @folio: The locked folio to be unmapped.
3503 *
3504 * Unmap this folio from any userspace process which still has it mmaped.
3505 * Typically, for efficiency, the range of nearby pages has already been
3506 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3507 * truncation or invalidation holds the lock on a folio, it may find that
3508 * the page has been remapped again: and then uses unmap_mapping_folio()
3509 * to unmap it finally.
3510 */
unmap_mapping_folio(struct folio * folio)3511 void unmap_mapping_folio(struct folio *folio)
3512 {
3513 struct address_space *mapping = folio->mapping;
3514 struct zap_details details = { };
3515 pgoff_t first_index;
3516 pgoff_t last_index;
3517
3518 VM_BUG_ON(!folio_test_locked(folio));
3519
3520 first_index = folio->index;
3521 last_index = folio_next_index(folio) - 1;
3522
3523 details.even_cows = false;
3524 details.single_folio = folio;
3525 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3526
3527 i_mmap_lock_read(mapping);
3528 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3529 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3530 last_index, &details);
3531 i_mmap_unlock_read(mapping);
3532 }
3533
3534 /**
3535 * unmap_mapping_pages() - Unmap pages from processes.
3536 * @mapping: The address space containing pages to be unmapped.
3537 * @start: Index of first page to be unmapped.
3538 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3539 * @even_cows: Whether to unmap even private COWed pages.
3540 *
3541 * Unmap the pages in this address space from any userspace process which
3542 * has them mmaped. Generally, you want to remove COWed pages as well when
3543 * a file is being truncated, but not when invalidating pages from the page
3544 * cache.
3545 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3546 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3547 pgoff_t nr, bool even_cows)
3548 {
3549 struct zap_details details = { };
3550 pgoff_t first_index = start;
3551 pgoff_t last_index = start + nr - 1;
3552
3553 details.even_cows = even_cows;
3554 if (last_index < first_index)
3555 last_index = ULONG_MAX;
3556
3557 i_mmap_lock_read(mapping);
3558 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3559 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3560 last_index, &details);
3561 i_mmap_unlock_read(mapping);
3562 }
3563 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3564
3565 /**
3566 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3567 * address_space corresponding to the specified byte range in the underlying
3568 * file.
3569 *
3570 * @mapping: the address space containing mmaps to be unmapped.
3571 * @holebegin: byte in first page to unmap, relative to the start of
3572 * the underlying file. This will be rounded down to a PAGE_SIZE
3573 * boundary. Note that this is different from truncate_pagecache(), which
3574 * must keep the partial page. In contrast, we must get rid of
3575 * partial pages.
3576 * @holelen: size of prospective hole in bytes. This will be rounded
3577 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3578 * end of the file.
3579 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3580 * but 0 when invalidating pagecache, don't throw away private data.
3581 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3582 void unmap_mapping_range(struct address_space *mapping,
3583 loff_t const holebegin, loff_t const holelen, int even_cows)
3584 {
3585 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3586 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3587
3588 /* Check for overflow. */
3589 if (sizeof(holelen) > sizeof(hlen)) {
3590 long long holeend =
3591 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3592 if (holeend & ~(long long)ULONG_MAX)
3593 hlen = ULONG_MAX - hba + 1;
3594 }
3595
3596 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3597 }
3598 EXPORT_SYMBOL(unmap_mapping_range);
3599
3600 /*
3601 * Restore a potential device exclusive pte to a working pte entry
3602 */
remove_device_exclusive_entry(struct vm_fault * vmf)3603 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3604 {
3605 struct folio *folio = page_folio(vmf->page);
3606 struct vm_area_struct *vma = vmf->vma;
3607 struct mmu_notifier_range range;
3608 vm_fault_t ret;
3609
3610 /*
3611 * We need a reference to lock the folio because we don't hold
3612 * the PTL so a racing thread can remove the device-exclusive
3613 * entry and unmap it. If the folio is free the entry must
3614 * have been removed already. If it happens to have already
3615 * been re-allocated after being freed all we do is lock and
3616 * unlock it.
3617 */
3618 if (!folio_try_get(folio))
3619 return 0;
3620
3621 ret = folio_lock_or_retry(folio, vmf);
3622 if (ret) {
3623 folio_put(folio);
3624 return ret;
3625 }
3626 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3627 vma->vm_mm, vmf->address & PAGE_MASK,
3628 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3629 mmu_notifier_invalidate_range_start(&range);
3630
3631 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3632 &vmf->ptl);
3633 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3634 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3635
3636 if (vmf->pte)
3637 pte_unmap_unlock(vmf->pte, vmf->ptl);
3638 folio_unlock(folio);
3639 folio_put(folio);
3640
3641 mmu_notifier_invalidate_range_end(&range);
3642 return 0;
3643 }
3644
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)3645 static inline bool should_try_to_free_swap(struct folio *folio,
3646 struct vm_area_struct *vma,
3647 unsigned int fault_flags)
3648 {
3649 if (!folio_test_swapcache(folio))
3650 return false;
3651 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3652 folio_test_mlocked(folio))
3653 return true;
3654 /*
3655 * If we want to map a page that's in the swapcache writable, we
3656 * have to detect via the refcount if we're really the exclusive
3657 * user. Try freeing the swapcache to get rid of the swapcache
3658 * reference only in case it's likely that we'll be the exlusive user.
3659 */
3660 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3661 folio_ref_count(folio) == 2;
3662 }
3663
pte_marker_clear(struct vm_fault * vmf)3664 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3665 {
3666 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3667 vmf->address, &vmf->ptl);
3668 if (!vmf->pte)
3669 return 0;
3670 /*
3671 * Be careful so that we will only recover a special uffd-wp pte into a
3672 * none pte. Otherwise it means the pte could have changed, so retry.
3673 *
3674 * This should also cover the case where e.g. the pte changed
3675 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3676 * So is_pte_marker() check is not enough to safely drop the pte.
3677 */
3678 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3679 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3680 pte_unmap_unlock(vmf->pte, vmf->ptl);
3681 return 0;
3682 }
3683
do_pte_missing(struct vm_fault * vmf)3684 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3685 {
3686 if (vma_is_anonymous(vmf->vma))
3687 return do_anonymous_page(vmf);
3688 else
3689 return do_fault(vmf);
3690 }
3691
3692 /*
3693 * This is actually a page-missing access, but with uffd-wp special pte
3694 * installed. It means this pte was wr-protected before being unmapped.
3695 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)3696 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3697 {
3698 /*
3699 * Just in case there're leftover special ptes even after the region
3700 * got unregistered - we can simply clear them.
3701 */
3702 if (unlikely(!userfaultfd_wp(vmf->vma)))
3703 return pte_marker_clear(vmf);
3704
3705 return do_pte_missing(vmf);
3706 }
3707
handle_pte_marker(struct vm_fault * vmf)3708 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3709 {
3710 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3711 unsigned long marker = pte_marker_get(entry);
3712
3713 /*
3714 * PTE markers should never be empty. If anything weird happened,
3715 * the best thing to do is to kill the process along with its mm.
3716 */
3717 if (WARN_ON_ONCE(!marker))
3718 return VM_FAULT_SIGBUS;
3719
3720 /* Higher priority than uffd-wp when data corrupted */
3721 if (marker & PTE_MARKER_POISONED)
3722 return VM_FAULT_HWPOISON;
3723
3724 if (pte_marker_entry_uffd_wp(entry))
3725 return pte_marker_handle_uffd_wp(vmf);
3726
3727 /* This is an unknown pte marker */
3728 return VM_FAULT_SIGBUS;
3729 }
3730
3731 /*
3732 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3733 * but allow concurrent faults), and pte mapped but not yet locked.
3734 * We return with pte unmapped and unlocked.
3735 *
3736 * We return with the mmap_lock locked or unlocked in the same cases
3737 * as does filemap_fault().
3738 */
do_swap_page(struct vm_fault * vmf)3739 vm_fault_t do_swap_page(struct vm_fault *vmf)
3740 {
3741 struct vm_area_struct *vma = vmf->vma;
3742 struct folio *swapcache, *folio = NULL;
3743 struct page *page;
3744 struct swap_info_struct *si = NULL;
3745 rmap_t rmap_flags = RMAP_NONE;
3746 bool need_clear_cache = false;
3747 bool exclusive = false;
3748 swp_entry_t entry;
3749 pte_t pte;
3750 vm_fault_t ret = 0;
3751 void *shadow = NULL;
3752
3753 if (!pte_unmap_same(vmf))
3754 goto out;
3755
3756 entry = pte_to_swp_entry(vmf->orig_pte);
3757 if (unlikely(non_swap_entry(entry))) {
3758 if (is_migration_entry(entry)) {
3759 migration_entry_wait(vma->vm_mm, vmf->pmd,
3760 vmf->address);
3761 } else if (is_device_exclusive_entry(entry)) {
3762 vmf->page = pfn_swap_entry_to_page(entry);
3763 ret = remove_device_exclusive_entry(vmf);
3764 } else if (is_device_private_entry(entry)) {
3765 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3766 /*
3767 * migrate_to_ram is not yet ready to operate
3768 * under VMA lock.
3769 */
3770 vma_end_read(vma);
3771 ret = VM_FAULT_RETRY;
3772 goto out;
3773 }
3774
3775 vmf->page = pfn_swap_entry_to_page(entry);
3776 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3777 vmf->address, &vmf->ptl);
3778 if (unlikely(!vmf->pte ||
3779 !pte_same(ptep_get(vmf->pte),
3780 vmf->orig_pte)))
3781 goto unlock;
3782
3783 /*
3784 * Get a page reference while we know the page can't be
3785 * freed.
3786 */
3787 get_page(vmf->page);
3788 pte_unmap_unlock(vmf->pte, vmf->ptl);
3789 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3790 put_page(vmf->page);
3791 } else if (is_hwpoison_entry(entry)) {
3792 ret = VM_FAULT_HWPOISON;
3793 } else if (is_pte_marker_entry(entry)) {
3794 ret = handle_pte_marker(vmf);
3795 } else {
3796 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3797 ret = VM_FAULT_SIGBUS;
3798 }
3799 goto out;
3800 }
3801
3802 /* Prevent swapoff from happening to us. */
3803 si = get_swap_device(entry);
3804 if (unlikely(!si))
3805 goto out;
3806
3807 folio = swap_cache_get_folio(entry, vma, vmf->address);
3808 if (folio)
3809 page = folio_file_page(folio, swp_offset(entry));
3810 swapcache = folio;
3811
3812 if (!folio) {
3813 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3814 __swap_count(entry) == 1) {
3815 /*
3816 * Prevent parallel swapin from proceeding with
3817 * the cache flag. Otherwise, another thread may
3818 * finish swapin first, free the entry, and swapout
3819 * reusing the same entry. It's undetectable as
3820 * pte_same() returns true due to entry reuse.
3821 */
3822 if (swapcache_prepare(entry)) {
3823 /* Relax a bit to prevent rapid repeated page faults */
3824 schedule_timeout_uninterruptible(1);
3825 goto out;
3826 }
3827 need_clear_cache = true;
3828
3829 /* skip swapcache */
3830 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3831 vma, vmf->address, false);
3832 page = &folio->page;
3833 if (folio) {
3834 __folio_set_locked(folio);
3835 __folio_set_swapbacked(folio);
3836
3837 if (mem_cgroup_swapin_charge_folio(folio,
3838 vma->vm_mm, GFP_KERNEL,
3839 entry)) {
3840 ret = VM_FAULT_OOM;
3841 goto out_page;
3842 }
3843 mem_cgroup_swapin_uncharge_swap(entry);
3844
3845 shadow = get_shadow_from_swap_cache(entry);
3846 if (shadow)
3847 workingset_refault(folio, shadow);
3848
3849 folio_add_lru(folio);
3850
3851 /* To provide entry to swap_readpage() */
3852 folio->swap = entry;
3853 swap_readpage(page, true, NULL);
3854 folio->private = NULL;
3855 }
3856 } else {
3857 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3858 vmf);
3859 if (page)
3860 folio = page_folio(page);
3861 swapcache = folio;
3862 }
3863
3864 if (!folio) {
3865 /*
3866 * Back out if somebody else faulted in this pte
3867 * while we released the pte lock.
3868 */
3869 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3870 vmf->address, &vmf->ptl);
3871 if (likely(vmf->pte &&
3872 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3873 ret = VM_FAULT_OOM;
3874 goto unlock;
3875 }
3876
3877 /* Had to read the page from swap area: Major fault */
3878 ret = VM_FAULT_MAJOR;
3879 count_vm_event(PGMAJFAULT);
3880 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3881 } else if (PageHWPoison(page)) {
3882 /*
3883 * hwpoisoned dirty swapcache pages are kept for killing
3884 * owner processes (which may be unknown at hwpoison time)
3885 */
3886 ret = VM_FAULT_HWPOISON;
3887 goto out_release;
3888 }
3889
3890 ret |= folio_lock_or_retry(folio, vmf);
3891 if (ret & VM_FAULT_RETRY)
3892 goto out_release;
3893
3894 if (swapcache) {
3895 /*
3896 * Make sure folio_free_swap() or swapoff did not release the
3897 * swapcache from under us. The page pin, and pte_same test
3898 * below, are not enough to exclude that. Even if it is still
3899 * swapcache, we need to check that the page's swap has not
3900 * changed.
3901 */
3902 if (unlikely(!folio_test_swapcache(folio) ||
3903 page_swap_entry(page).val != entry.val))
3904 goto out_page;
3905
3906 /*
3907 * KSM sometimes has to copy on read faults, for example, if
3908 * page->index of !PageKSM() pages would be nonlinear inside the
3909 * anon VMA -- PageKSM() is lost on actual swapout.
3910 */
3911 page = ksm_might_need_to_copy(page, vma, vmf->address);
3912 if (unlikely(!page)) {
3913 ret = VM_FAULT_OOM;
3914 goto out_page;
3915 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3916 ret = VM_FAULT_HWPOISON;
3917 goto out_page;
3918 }
3919 folio = page_folio(page);
3920
3921 /*
3922 * If we want to map a page that's in the swapcache writable, we
3923 * have to detect via the refcount if we're really the exclusive
3924 * owner. Try removing the extra reference from the local LRU
3925 * caches if required.
3926 */
3927 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3928 !folio_test_ksm(folio) && !folio_test_lru(folio))
3929 lru_add_drain();
3930 }
3931
3932 folio_throttle_swaprate(folio, GFP_KERNEL);
3933
3934 /*
3935 * Back out if somebody else already faulted in this pte.
3936 */
3937 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3938 &vmf->ptl);
3939 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3940 goto out_nomap;
3941
3942 if (unlikely(!folio_test_uptodate(folio))) {
3943 ret = VM_FAULT_SIGBUS;
3944 goto out_nomap;
3945 }
3946
3947 /*
3948 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3949 * must never point at an anonymous page in the swapcache that is
3950 * PG_anon_exclusive. Sanity check that this holds and especially, that
3951 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3952 * check after taking the PT lock and making sure that nobody
3953 * concurrently faulted in this page and set PG_anon_exclusive.
3954 */
3955 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3956 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3957
3958 /*
3959 * Check under PT lock (to protect against concurrent fork() sharing
3960 * the swap entry concurrently) for certainly exclusive pages.
3961 */
3962 if (!folio_test_ksm(folio)) {
3963 exclusive = pte_swp_exclusive(vmf->orig_pte);
3964 if (folio != swapcache) {
3965 /*
3966 * We have a fresh page that is not exposed to the
3967 * swapcache -> certainly exclusive.
3968 */
3969 exclusive = true;
3970 } else if (exclusive && folio_test_writeback(folio) &&
3971 data_race(si->flags & SWP_STABLE_WRITES)) {
3972 /*
3973 * This is tricky: not all swap backends support
3974 * concurrent page modifications while under writeback.
3975 *
3976 * So if we stumble over such a page in the swapcache
3977 * we must not set the page exclusive, otherwise we can
3978 * map it writable without further checks and modify it
3979 * while still under writeback.
3980 *
3981 * For these problematic swap backends, simply drop the
3982 * exclusive marker: this is perfectly fine as we start
3983 * writeback only if we fully unmapped the page and
3984 * there are no unexpected references on the page after
3985 * unmapping succeeded. After fully unmapped, no
3986 * further GUP references (FOLL_GET and FOLL_PIN) can
3987 * appear, so dropping the exclusive marker and mapping
3988 * it only R/O is fine.
3989 */
3990 exclusive = false;
3991 }
3992 }
3993
3994 /*
3995 * Some architectures may have to restore extra metadata to the page
3996 * when reading from swap. This metadata may be indexed by swap entry
3997 * so this must be called before swap_free().
3998 */
3999 arch_swap_restore(entry, folio);
4000
4001 /*
4002 * Remove the swap entry and conditionally try to free up the swapcache.
4003 * We're already holding a reference on the page but haven't mapped it
4004 * yet.
4005 */
4006 swap_free(entry);
4007 if (should_try_to_free_swap(folio, vma, vmf->flags))
4008 folio_free_swap(folio);
4009
4010 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4011 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4012 pte = mk_pte(page, vma->vm_page_prot);
4013
4014 /*
4015 * Same logic as in do_wp_page(); however, optimize for pages that are
4016 * certainly not shared either because we just allocated them without
4017 * exposing them to the swapcache or because the swap entry indicates
4018 * exclusivity.
4019 */
4020 if (!folio_test_ksm(folio) &&
4021 (exclusive || folio_ref_count(folio) == 1)) {
4022 if (vmf->flags & FAULT_FLAG_WRITE) {
4023 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4024 vmf->flags &= ~FAULT_FLAG_WRITE;
4025 }
4026 rmap_flags |= RMAP_EXCLUSIVE;
4027 }
4028 flush_icache_page(vma, page);
4029 if (pte_swp_soft_dirty(vmf->orig_pte))
4030 pte = pte_mksoft_dirty(pte);
4031 if (pte_swp_uffd_wp(vmf->orig_pte))
4032 pte = pte_mkuffd_wp(pte);
4033 vmf->orig_pte = pte;
4034
4035 /* ksm created a completely new copy */
4036 if (unlikely(folio != swapcache && swapcache)) {
4037 page_add_new_anon_rmap(page, vma, vmf->address);
4038 folio_add_lru_vma(folio, vma);
4039 } else {
4040 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4041 }
4042
4043 VM_BUG_ON(!folio_test_anon(folio) ||
4044 (pte_write(pte) && !PageAnonExclusive(page)));
4045 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4046 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4047
4048 folio_unlock(folio);
4049 if (folio != swapcache && swapcache) {
4050 /*
4051 * Hold the lock to avoid the swap entry to be reused
4052 * until we take the PT lock for the pte_same() check
4053 * (to avoid false positives from pte_same). For
4054 * further safety release the lock after the swap_free
4055 * so that the swap count won't change under a
4056 * parallel locked swapcache.
4057 */
4058 folio_unlock(swapcache);
4059 folio_put(swapcache);
4060 }
4061
4062 if (vmf->flags & FAULT_FLAG_WRITE) {
4063 ret |= do_wp_page(vmf);
4064 if (ret & VM_FAULT_ERROR)
4065 ret &= VM_FAULT_ERROR;
4066 goto out;
4067 }
4068
4069 /* No need to invalidate - it was non-present before */
4070 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4071 unlock:
4072 if (vmf->pte)
4073 pte_unmap_unlock(vmf->pte, vmf->ptl);
4074 out:
4075 /* Clear the swap cache pin for direct swapin after PTL unlock */
4076 if (need_clear_cache)
4077 swapcache_clear(si, entry);
4078 if (si)
4079 put_swap_device(si);
4080 return ret;
4081 out_nomap:
4082 if (vmf->pte)
4083 pte_unmap_unlock(vmf->pte, vmf->ptl);
4084 out_page:
4085 folio_unlock(folio);
4086 out_release:
4087 folio_put(folio);
4088 if (folio != swapcache && swapcache) {
4089 folio_unlock(swapcache);
4090 folio_put(swapcache);
4091 }
4092 if (need_clear_cache)
4093 swapcache_clear(si, entry);
4094 if (si)
4095 put_swap_device(si);
4096 return ret;
4097 }
4098
4099 /*
4100 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4101 * but allow concurrent faults), and pte mapped but not yet locked.
4102 * We return with mmap_lock still held, but pte unmapped and unlocked.
4103 */
do_anonymous_page(struct vm_fault * vmf)4104 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4105 {
4106 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4107 struct vm_area_struct *vma = vmf->vma;
4108 struct folio *folio;
4109 vm_fault_t ret = 0;
4110 pte_t entry;
4111
4112 /* File mapping without ->vm_ops ? */
4113 if (vma->vm_flags & VM_SHARED)
4114 return VM_FAULT_SIGBUS;
4115
4116 /*
4117 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4118 * be distinguished from a transient failure of pte_offset_map().
4119 */
4120 if (pte_alloc(vma->vm_mm, vmf->pmd))
4121 return VM_FAULT_OOM;
4122
4123 /* Use the zero-page for reads */
4124 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4125 !mm_forbids_zeropage(vma->vm_mm)) {
4126 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4127 vma->vm_page_prot));
4128 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4129 vmf->address, &vmf->ptl);
4130 if (!vmf->pte)
4131 goto unlock;
4132 if (vmf_pte_changed(vmf)) {
4133 update_mmu_tlb(vma, vmf->address, vmf->pte);
4134 goto unlock;
4135 }
4136 ret = check_stable_address_space(vma->vm_mm);
4137 if (ret)
4138 goto unlock;
4139 /* Deliver the page fault to userland, check inside PT lock */
4140 if (userfaultfd_missing(vma)) {
4141 pte_unmap_unlock(vmf->pte, vmf->ptl);
4142 return handle_userfault(vmf, VM_UFFD_MISSING);
4143 }
4144 goto setpte;
4145 }
4146
4147 /* Allocate our own private page. */
4148 if (unlikely(anon_vma_prepare(vma)))
4149 goto oom;
4150 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4151 if (!folio)
4152 goto oom;
4153
4154 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4155 goto oom_free_page;
4156 folio_throttle_swaprate(folio, GFP_KERNEL);
4157
4158 /*
4159 * The memory barrier inside __folio_mark_uptodate makes sure that
4160 * preceding stores to the page contents become visible before
4161 * the set_pte_at() write.
4162 */
4163 __folio_mark_uptodate(folio);
4164
4165 entry = mk_pte(&folio->page, vma->vm_page_prot);
4166 entry = pte_sw_mkyoung(entry);
4167 if (vma->vm_flags & VM_WRITE)
4168 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4169
4170 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4171 &vmf->ptl);
4172 if (!vmf->pte)
4173 goto release;
4174 if (vmf_pte_changed(vmf)) {
4175 update_mmu_tlb(vma, vmf->address, vmf->pte);
4176 goto release;
4177 }
4178
4179 ret = check_stable_address_space(vma->vm_mm);
4180 if (ret)
4181 goto release;
4182
4183 /* Deliver the page fault to userland, check inside PT lock */
4184 if (userfaultfd_missing(vma)) {
4185 pte_unmap_unlock(vmf->pte, vmf->ptl);
4186 folio_put(folio);
4187 return handle_userfault(vmf, VM_UFFD_MISSING);
4188 }
4189
4190 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4191 folio_add_new_anon_rmap(folio, vma, vmf->address);
4192 folio_add_lru_vma(folio, vma);
4193 setpte:
4194 if (uffd_wp)
4195 entry = pte_mkuffd_wp(entry);
4196 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4197
4198 /* No need to invalidate - it was non-present before */
4199 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4200 unlock:
4201 if (vmf->pte)
4202 pte_unmap_unlock(vmf->pte, vmf->ptl);
4203 return ret;
4204 release:
4205 folio_put(folio);
4206 goto unlock;
4207 oom_free_page:
4208 folio_put(folio);
4209 oom:
4210 return VM_FAULT_OOM;
4211 }
4212
4213 /*
4214 * The mmap_lock must have been held on entry, and may have been
4215 * released depending on flags and vma->vm_ops->fault() return value.
4216 * See filemap_fault() and __lock_page_retry().
4217 */
__do_fault(struct vm_fault * vmf)4218 static vm_fault_t __do_fault(struct vm_fault *vmf)
4219 {
4220 struct vm_area_struct *vma = vmf->vma;
4221 vm_fault_t ret;
4222
4223 /*
4224 * Preallocate pte before we take page_lock because this might lead to
4225 * deadlocks for memcg reclaim which waits for pages under writeback:
4226 * lock_page(A)
4227 * SetPageWriteback(A)
4228 * unlock_page(A)
4229 * lock_page(B)
4230 * lock_page(B)
4231 * pte_alloc_one
4232 * shrink_page_list
4233 * wait_on_page_writeback(A)
4234 * SetPageWriteback(B)
4235 * unlock_page(B)
4236 * # flush A, B to clear the writeback
4237 */
4238 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4239 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4240 if (!vmf->prealloc_pte)
4241 return VM_FAULT_OOM;
4242 }
4243
4244 ret = vma->vm_ops->fault(vmf);
4245 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4246 VM_FAULT_DONE_COW)))
4247 return ret;
4248
4249 if (unlikely(PageHWPoison(vmf->page))) {
4250 struct page *page = vmf->page;
4251 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4252 if (ret & VM_FAULT_LOCKED) {
4253 if (page_mapped(page))
4254 unmap_mapping_pages(page_mapping(page),
4255 page->index, 1, false);
4256 /* Retry if a clean page was removed from the cache. */
4257 if (invalidate_inode_page(page))
4258 poisonret = VM_FAULT_NOPAGE;
4259 unlock_page(page);
4260 }
4261 put_page(page);
4262 vmf->page = NULL;
4263 return poisonret;
4264 }
4265
4266 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4267 lock_page(vmf->page);
4268 else
4269 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4270
4271 return ret;
4272 }
4273
4274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4275 static void deposit_prealloc_pte(struct vm_fault *vmf)
4276 {
4277 struct vm_area_struct *vma = vmf->vma;
4278
4279 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4280 /*
4281 * We are going to consume the prealloc table,
4282 * count that as nr_ptes.
4283 */
4284 mm_inc_nr_ptes(vma->vm_mm);
4285 vmf->prealloc_pte = NULL;
4286 }
4287
do_set_pmd(struct vm_fault * vmf,struct page * page)4288 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4289 {
4290 struct vm_area_struct *vma = vmf->vma;
4291 bool write = vmf->flags & FAULT_FLAG_WRITE;
4292 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4293 pmd_t entry;
4294 vm_fault_t ret = VM_FAULT_FALLBACK;
4295
4296 /*
4297 * It is too late to allocate a small folio, we already have a large
4298 * folio in the pagecache: especially s390 KVM cannot tolerate any
4299 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4300 * PMD mappings if THPs are disabled.
4301 */
4302 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4303 return ret;
4304
4305 if (!transhuge_vma_suitable(vma, haddr))
4306 return ret;
4307
4308 page = compound_head(page);
4309 if (compound_order(page) != HPAGE_PMD_ORDER)
4310 return ret;
4311
4312 /*
4313 * Just backoff if any subpage of a THP is corrupted otherwise
4314 * the corrupted page may mapped by PMD silently to escape the
4315 * check. This kind of THP just can be PTE mapped. Access to
4316 * the corrupted subpage should trigger SIGBUS as expected.
4317 */
4318 if (unlikely(PageHasHWPoisoned(page)))
4319 return ret;
4320
4321 /*
4322 * Archs like ppc64 need additional space to store information
4323 * related to pte entry. Use the preallocated table for that.
4324 */
4325 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4326 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4327 if (!vmf->prealloc_pte)
4328 return VM_FAULT_OOM;
4329 }
4330
4331 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4332 if (unlikely(!pmd_none(*vmf->pmd)))
4333 goto out;
4334
4335 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4336
4337 entry = mk_huge_pmd(page, vma->vm_page_prot);
4338 if (write)
4339 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4340
4341 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4342 page_add_file_rmap(page, vma, true);
4343
4344 /*
4345 * deposit and withdraw with pmd lock held
4346 */
4347 if (arch_needs_pgtable_deposit())
4348 deposit_prealloc_pte(vmf);
4349
4350 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4351
4352 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4353
4354 /* fault is handled */
4355 ret = 0;
4356 count_vm_event(THP_FILE_MAPPED);
4357 out:
4358 spin_unlock(vmf->ptl);
4359 return ret;
4360 }
4361 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4362 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4363 {
4364 return VM_FAULT_FALLBACK;
4365 }
4366 #endif
4367
4368 /**
4369 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4370 * @vmf: Fault decription.
4371 * @folio: The folio that contains @page.
4372 * @page: The first page to create a PTE for.
4373 * @nr: The number of PTEs to create.
4374 * @addr: The first address to create a PTE for.
4375 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)4376 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4377 struct page *page, unsigned int nr, unsigned long addr)
4378 {
4379 struct vm_area_struct *vma = vmf->vma;
4380 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4381 bool write = vmf->flags & FAULT_FLAG_WRITE;
4382 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
4383 pte_t entry;
4384
4385 flush_icache_pages(vma, page, nr);
4386 entry = mk_pte(page, vma->vm_page_prot);
4387
4388 if (prefault && arch_wants_old_prefaulted_pte())
4389 entry = pte_mkold(entry);
4390 else
4391 entry = pte_sw_mkyoung(entry);
4392
4393 if (write)
4394 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4395 if (unlikely(uffd_wp))
4396 entry = pte_mkuffd_wp(entry);
4397 /* copy-on-write page */
4398 if (write && !(vma->vm_flags & VM_SHARED)) {
4399 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4400 VM_BUG_ON_FOLIO(nr != 1, folio);
4401 folio_add_new_anon_rmap(folio, vma, addr);
4402 folio_add_lru_vma(folio, vma);
4403 } else {
4404 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4405 folio_add_file_rmap_range(folio, page, nr, vma, false);
4406 }
4407 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4408
4409 /* no need to invalidate: a not-present page won't be cached */
4410 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4411 }
4412
vmf_pte_changed(struct vm_fault * vmf)4413 static bool vmf_pte_changed(struct vm_fault *vmf)
4414 {
4415 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4416 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4417
4418 return !pte_none(ptep_get(vmf->pte));
4419 }
4420
4421 /**
4422 * finish_fault - finish page fault once we have prepared the page to fault
4423 *
4424 * @vmf: structure describing the fault
4425 *
4426 * This function handles all that is needed to finish a page fault once the
4427 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4428 * given page, adds reverse page mapping, handles memcg charges and LRU
4429 * addition.
4430 *
4431 * The function expects the page to be locked and on success it consumes a
4432 * reference of a page being mapped (for the PTE which maps it).
4433 *
4434 * Return: %0 on success, %VM_FAULT_ code in case of error.
4435 */
finish_fault(struct vm_fault * vmf)4436 vm_fault_t finish_fault(struct vm_fault *vmf)
4437 {
4438 struct vm_area_struct *vma = vmf->vma;
4439 struct page *page;
4440 vm_fault_t ret;
4441
4442 /* Did we COW the page? */
4443 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4444 page = vmf->cow_page;
4445 else
4446 page = vmf->page;
4447
4448 /*
4449 * check even for read faults because we might have lost our CoWed
4450 * page
4451 */
4452 if (!(vma->vm_flags & VM_SHARED)) {
4453 ret = check_stable_address_space(vma->vm_mm);
4454 if (ret)
4455 return ret;
4456 }
4457
4458 if (pmd_none(*vmf->pmd)) {
4459 if (PageTransCompound(page)) {
4460 ret = do_set_pmd(vmf, page);
4461 if (ret != VM_FAULT_FALLBACK)
4462 return ret;
4463 }
4464
4465 if (vmf->prealloc_pte)
4466 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4467 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4468 return VM_FAULT_OOM;
4469 }
4470
4471 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4472 vmf->address, &vmf->ptl);
4473 if (!vmf->pte)
4474 return VM_FAULT_NOPAGE;
4475
4476 /* Re-check under ptl */
4477 if (likely(!vmf_pte_changed(vmf))) {
4478 struct folio *folio = page_folio(page);
4479
4480 set_pte_range(vmf, folio, page, 1, vmf->address);
4481 ret = 0;
4482 } else {
4483 update_mmu_tlb(vma, vmf->address, vmf->pte);
4484 ret = VM_FAULT_NOPAGE;
4485 }
4486
4487 pte_unmap_unlock(vmf->pte, vmf->ptl);
4488 return ret;
4489 }
4490
4491 static unsigned long fault_around_pages __read_mostly =
4492 65536 >> PAGE_SHIFT;
4493
4494 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4495 static int fault_around_bytes_get(void *data, u64 *val)
4496 {
4497 *val = fault_around_pages << PAGE_SHIFT;
4498 return 0;
4499 }
4500
4501 /*
4502 * fault_around_bytes must be rounded down to the nearest page order as it's
4503 * what do_fault_around() expects to see.
4504 */
fault_around_bytes_set(void * data,u64 val)4505 static int fault_around_bytes_set(void *data, u64 val)
4506 {
4507 if (val / PAGE_SIZE > PTRS_PER_PTE)
4508 return -EINVAL;
4509
4510 /*
4511 * The minimum value is 1 page, however this results in no fault-around
4512 * at all. See should_fault_around().
4513 */
4514 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4515
4516 return 0;
4517 }
4518 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4519 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4520
fault_around_debugfs(void)4521 static int __init fault_around_debugfs(void)
4522 {
4523 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4524 &fault_around_bytes_fops);
4525 return 0;
4526 }
4527 late_initcall(fault_around_debugfs);
4528 #endif
4529
4530 /*
4531 * do_fault_around() tries to map few pages around the fault address. The hope
4532 * is that the pages will be needed soon and this will lower the number of
4533 * faults to handle.
4534 *
4535 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4536 * not ready to be mapped: not up-to-date, locked, etc.
4537 *
4538 * This function doesn't cross VMA or page table boundaries, in order to call
4539 * map_pages() and acquire a PTE lock only once.
4540 *
4541 * fault_around_pages defines how many pages we'll try to map.
4542 * do_fault_around() expects it to be set to a power of two less than or equal
4543 * to PTRS_PER_PTE.
4544 *
4545 * The virtual address of the area that we map is naturally aligned to
4546 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4547 * (and therefore to page order). This way it's easier to guarantee
4548 * that we don't cross page table boundaries.
4549 */
do_fault_around(struct vm_fault * vmf)4550 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4551 {
4552 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4553 pgoff_t pte_off = pte_index(vmf->address);
4554 /* The page offset of vmf->address within the VMA. */
4555 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4556 pgoff_t from_pte, to_pte;
4557 vm_fault_t ret;
4558
4559 /* The PTE offset of the start address, clamped to the VMA. */
4560 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4561 pte_off - min(pte_off, vma_off));
4562
4563 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4564 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4565 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4566
4567 if (pmd_none(*vmf->pmd)) {
4568 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4569 if (!vmf->prealloc_pte)
4570 return VM_FAULT_OOM;
4571 }
4572
4573 rcu_read_lock();
4574 ret = vmf->vma->vm_ops->map_pages(vmf,
4575 vmf->pgoff + from_pte - pte_off,
4576 vmf->pgoff + to_pte - pte_off);
4577 rcu_read_unlock();
4578
4579 return ret;
4580 }
4581
4582 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)4583 static inline bool should_fault_around(struct vm_fault *vmf)
4584 {
4585 /* No ->map_pages? No way to fault around... */
4586 if (!vmf->vma->vm_ops->map_pages)
4587 return false;
4588
4589 if (uffd_disable_fault_around(vmf->vma))
4590 return false;
4591
4592 /* A single page implies no faulting 'around' at all. */
4593 return fault_around_pages > 1;
4594 }
4595
do_read_fault(struct vm_fault * vmf)4596 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4597 {
4598 vm_fault_t ret = 0;
4599 struct folio *folio;
4600
4601 /*
4602 * Let's call ->map_pages() first and use ->fault() as fallback
4603 * if page by the offset is not ready to be mapped (cold cache or
4604 * something).
4605 */
4606 if (should_fault_around(vmf)) {
4607 ret = do_fault_around(vmf);
4608 if (ret)
4609 return ret;
4610 }
4611
4612 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4613 vma_end_read(vmf->vma);
4614 return VM_FAULT_RETRY;
4615 }
4616
4617 ret = __do_fault(vmf);
4618 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4619 return ret;
4620
4621 ret |= finish_fault(vmf);
4622 folio = page_folio(vmf->page);
4623 folio_unlock(folio);
4624 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4625 folio_put(folio);
4626 return ret;
4627 }
4628
do_cow_fault(struct vm_fault * vmf)4629 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4630 {
4631 struct vm_area_struct *vma = vmf->vma;
4632 vm_fault_t ret;
4633
4634 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4635 vma_end_read(vma);
4636 return VM_FAULT_RETRY;
4637 }
4638
4639 if (unlikely(anon_vma_prepare(vma)))
4640 return VM_FAULT_OOM;
4641
4642 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4643 if (!vmf->cow_page)
4644 return VM_FAULT_OOM;
4645
4646 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4647 GFP_KERNEL)) {
4648 put_page(vmf->cow_page);
4649 return VM_FAULT_OOM;
4650 }
4651 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4652
4653 ret = __do_fault(vmf);
4654 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4655 goto uncharge_out;
4656 if (ret & VM_FAULT_DONE_COW)
4657 return ret;
4658
4659 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4660 __SetPageUptodate(vmf->cow_page);
4661
4662 ret |= finish_fault(vmf);
4663 unlock_page(vmf->page);
4664 put_page(vmf->page);
4665 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4666 goto uncharge_out;
4667 return ret;
4668 uncharge_out:
4669 put_page(vmf->cow_page);
4670 return ret;
4671 }
4672
do_shared_fault(struct vm_fault * vmf)4673 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4674 {
4675 struct vm_area_struct *vma = vmf->vma;
4676 vm_fault_t ret, tmp;
4677 struct folio *folio;
4678
4679 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4680 vma_end_read(vma);
4681 return VM_FAULT_RETRY;
4682 }
4683
4684 ret = __do_fault(vmf);
4685 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4686 return ret;
4687
4688 folio = page_folio(vmf->page);
4689
4690 /*
4691 * Check if the backing address space wants to know that the page is
4692 * about to become writable
4693 */
4694 if (vma->vm_ops->page_mkwrite) {
4695 folio_unlock(folio);
4696 tmp = do_page_mkwrite(vmf, folio);
4697 if (unlikely(!tmp ||
4698 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4699 folio_put(folio);
4700 return tmp;
4701 }
4702 }
4703
4704 ret |= finish_fault(vmf);
4705 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4706 VM_FAULT_RETRY))) {
4707 folio_unlock(folio);
4708 folio_put(folio);
4709 return ret;
4710 }
4711
4712 ret |= fault_dirty_shared_page(vmf);
4713 return ret;
4714 }
4715
4716 /*
4717 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4718 * but allow concurrent faults).
4719 * The mmap_lock may have been released depending on flags and our
4720 * return value. See filemap_fault() and __folio_lock_or_retry().
4721 * If mmap_lock is released, vma may become invalid (for example
4722 * by other thread calling munmap()).
4723 */
do_fault(struct vm_fault * vmf)4724 static vm_fault_t do_fault(struct vm_fault *vmf)
4725 {
4726 struct vm_area_struct *vma = vmf->vma;
4727 struct mm_struct *vm_mm = vma->vm_mm;
4728 vm_fault_t ret;
4729
4730 /*
4731 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4732 */
4733 if (!vma->vm_ops->fault) {
4734 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4735 vmf->address, &vmf->ptl);
4736 if (unlikely(!vmf->pte))
4737 ret = VM_FAULT_SIGBUS;
4738 else {
4739 /*
4740 * Make sure this is not a temporary clearing of pte
4741 * by holding ptl and checking again. A R/M/W update
4742 * of pte involves: take ptl, clearing the pte so that
4743 * we don't have concurrent modification by hardware
4744 * followed by an update.
4745 */
4746 if (unlikely(pte_none(ptep_get(vmf->pte))))
4747 ret = VM_FAULT_SIGBUS;
4748 else
4749 ret = VM_FAULT_NOPAGE;
4750
4751 pte_unmap_unlock(vmf->pte, vmf->ptl);
4752 }
4753 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4754 ret = do_read_fault(vmf);
4755 else if (!(vma->vm_flags & VM_SHARED))
4756 ret = do_cow_fault(vmf);
4757 else
4758 ret = do_shared_fault(vmf);
4759
4760 /* preallocated pagetable is unused: free it */
4761 if (vmf->prealloc_pte) {
4762 pte_free(vm_mm, vmf->prealloc_pte);
4763 vmf->prealloc_pte = NULL;
4764 }
4765 return ret;
4766 }
4767
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4768 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4769 unsigned long addr, int page_nid, int *flags)
4770 {
4771 get_page(page);
4772
4773 /* Record the current PID acceesing VMA */
4774 vma_set_access_pid_bit(vma);
4775
4776 count_vm_numa_event(NUMA_HINT_FAULTS);
4777 if (page_nid == numa_node_id()) {
4778 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4779 *flags |= TNF_FAULT_LOCAL;
4780 }
4781
4782 return mpol_misplaced(page, vma, addr);
4783 }
4784
do_numa_page(struct vm_fault * vmf)4785 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4786 {
4787 struct vm_area_struct *vma = vmf->vma;
4788 struct page *page = NULL;
4789 int page_nid = NUMA_NO_NODE;
4790 bool writable = false;
4791 int last_cpupid;
4792 int target_nid;
4793 pte_t pte, old_pte;
4794 int flags = 0;
4795
4796 /*
4797 * The "pte" at this point cannot be used safely without
4798 * validation through pte_unmap_same(). It's of NUMA type but
4799 * the pfn may be screwed if the read is non atomic.
4800 */
4801 spin_lock(vmf->ptl);
4802 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4803 pte_unmap_unlock(vmf->pte, vmf->ptl);
4804 return 0;
4805 }
4806
4807 /* Get the normal PTE */
4808 old_pte = ptep_get(vmf->pte);
4809 pte = pte_modify(old_pte, vma->vm_page_prot);
4810
4811 /*
4812 * Detect now whether the PTE could be writable; this information
4813 * is only valid while holding the PT lock.
4814 */
4815 writable = pte_write(pte);
4816 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4817 can_change_pte_writable(vma, vmf->address, pte))
4818 writable = true;
4819
4820 page = vm_normal_page(vma, vmf->address, pte);
4821 if (!page || is_zone_device_page(page))
4822 goto out_map;
4823
4824 /* TODO: handle PTE-mapped THP */
4825 if (PageCompound(page))
4826 goto out_map;
4827
4828 /*
4829 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4830 * much anyway since they can be in shared cache state. This misses
4831 * the case where a mapping is writable but the process never writes
4832 * to it but pte_write gets cleared during protection updates and
4833 * pte_dirty has unpredictable behaviour between PTE scan updates,
4834 * background writeback, dirty balancing and application behaviour.
4835 */
4836 if (!writable)
4837 flags |= TNF_NO_GROUP;
4838
4839 /*
4840 * Flag if the page is shared between multiple address spaces. This
4841 * is later used when determining whether to group tasks together
4842 */
4843 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4844 flags |= TNF_SHARED;
4845
4846 page_nid = page_to_nid(page);
4847 /*
4848 * For memory tiering mode, cpupid of slow memory page is used
4849 * to record page access time. So use default value.
4850 */
4851 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4852 !node_is_toptier(page_nid))
4853 last_cpupid = (-1 & LAST_CPUPID_MASK);
4854 else
4855 last_cpupid = page_cpupid_last(page);
4856 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4857 &flags);
4858 if (target_nid == NUMA_NO_NODE) {
4859 put_page(page);
4860 goto out_map;
4861 }
4862 pte_unmap_unlock(vmf->pte, vmf->ptl);
4863 writable = false;
4864
4865 /* Migrate to the requested node */
4866 if (migrate_misplaced_page(page, vma, target_nid)) {
4867 page_nid = target_nid;
4868 flags |= TNF_MIGRATED;
4869 task_numa_fault(last_cpupid, page_nid, 1, flags);
4870 return 0;
4871 }
4872
4873 flags |= TNF_MIGRATE_FAIL;
4874 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4875 vmf->address, &vmf->ptl);
4876 if (unlikely(!vmf->pte))
4877 return 0;
4878 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4879 pte_unmap_unlock(vmf->pte, vmf->ptl);
4880 return 0;
4881 }
4882 out_map:
4883 /*
4884 * Make it present again, depending on how arch implements
4885 * non-accessible ptes, some can allow access by kernel mode.
4886 */
4887 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4888 pte = pte_modify(old_pte, vma->vm_page_prot);
4889 pte = pte_mkyoung(pte);
4890 if (writable)
4891 pte = pte_mkwrite(pte, vma);
4892 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4893 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4894 pte_unmap_unlock(vmf->pte, vmf->ptl);
4895
4896 if (page_nid != NUMA_NO_NODE)
4897 task_numa_fault(last_cpupid, page_nid, 1, flags);
4898 return 0;
4899 }
4900
create_huge_pmd(struct vm_fault * vmf)4901 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4902 {
4903 struct vm_area_struct *vma = vmf->vma;
4904 if (vma_is_anonymous(vma))
4905 return do_huge_pmd_anonymous_page(vmf);
4906 if (vma->vm_ops->huge_fault)
4907 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4908 return VM_FAULT_FALLBACK;
4909 }
4910
4911 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)4912 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4913 {
4914 struct vm_area_struct *vma = vmf->vma;
4915 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4916 vm_fault_t ret;
4917
4918 if (vma_is_anonymous(vma)) {
4919 if (likely(!unshare) &&
4920 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4921 return handle_userfault(vmf, VM_UFFD_WP);
4922 return do_huge_pmd_wp_page(vmf);
4923 }
4924
4925 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4926 if (vma->vm_ops->huge_fault) {
4927 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4928 if (!(ret & VM_FAULT_FALLBACK))
4929 return ret;
4930 }
4931 }
4932
4933 /* COW or write-notify handled on pte level: split pmd. */
4934 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4935
4936 return VM_FAULT_FALLBACK;
4937 }
4938
create_huge_pud(struct vm_fault * vmf)4939 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4940 {
4941 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4942 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4943 struct vm_area_struct *vma = vmf->vma;
4944 /* No support for anonymous transparent PUD pages yet */
4945 if (vma_is_anonymous(vma))
4946 return VM_FAULT_FALLBACK;
4947 if (vma->vm_ops->huge_fault)
4948 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4949 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4950 return VM_FAULT_FALLBACK;
4951 }
4952
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4953 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4954 {
4955 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4956 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4957 struct vm_area_struct *vma = vmf->vma;
4958 vm_fault_t ret;
4959
4960 /* No support for anonymous transparent PUD pages yet */
4961 if (vma_is_anonymous(vma))
4962 goto split;
4963 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4964 if (vma->vm_ops->huge_fault) {
4965 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4966 if (!(ret & VM_FAULT_FALLBACK))
4967 return ret;
4968 }
4969 }
4970 split:
4971 /* COW or write-notify not handled on PUD level: split pud.*/
4972 __split_huge_pud(vma, vmf->pud, vmf->address);
4973 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4974 return VM_FAULT_FALLBACK;
4975 }
4976
4977 /*
4978 * These routines also need to handle stuff like marking pages dirty
4979 * and/or accessed for architectures that don't do it in hardware (most
4980 * RISC architectures). The early dirtying is also good on the i386.
4981 *
4982 * There is also a hook called "update_mmu_cache()" that architectures
4983 * with external mmu caches can use to update those (ie the Sparc or
4984 * PowerPC hashed page tables that act as extended TLBs).
4985 *
4986 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4987 * concurrent faults).
4988 *
4989 * The mmap_lock may have been released depending on flags and our return value.
4990 * See filemap_fault() and __folio_lock_or_retry().
4991 */
handle_pte_fault(struct vm_fault * vmf)4992 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4993 {
4994 pte_t entry;
4995
4996 if (unlikely(pmd_none(*vmf->pmd))) {
4997 /*
4998 * Leave __pte_alloc() until later: because vm_ops->fault may
4999 * want to allocate huge page, and if we expose page table
5000 * for an instant, it will be difficult to retract from
5001 * concurrent faults and from rmap lookups.
5002 */
5003 vmf->pte = NULL;
5004 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5005 } else {
5006 /*
5007 * A regular pmd is established and it can't morph into a huge
5008 * pmd by anon khugepaged, since that takes mmap_lock in write
5009 * mode; but shmem or file collapse to THP could still morph
5010 * it into a huge pmd: just retry later if so.
5011 */
5012 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5013 vmf->address, &vmf->ptl);
5014 if (unlikely(!vmf->pte))
5015 return 0;
5016 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5017 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5018
5019 if (pte_none(vmf->orig_pte)) {
5020 pte_unmap(vmf->pte);
5021 vmf->pte = NULL;
5022 }
5023 }
5024
5025 if (!vmf->pte)
5026 return do_pte_missing(vmf);
5027
5028 if (!pte_present(vmf->orig_pte))
5029 return do_swap_page(vmf);
5030
5031 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5032 return do_numa_page(vmf);
5033
5034 spin_lock(vmf->ptl);
5035 entry = vmf->orig_pte;
5036 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5037 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5038 goto unlock;
5039 }
5040 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5041 if (!pte_write(entry))
5042 return do_wp_page(vmf);
5043 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5044 entry = pte_mkdirty(entry);
5045 }
5046 entry = pte_mkyoung(entry);
5047 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5048 vmf->flags & FAULT_FLAG_WRITE)) {
5049 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5050 vmf->pte, 1);
5051 } else {
5052 /* Skip spurious TLB flush for retried page fault */
5053 if (vmf->flags & FAULT_FLAG_TRIED)
5054 goto unlock;
5055 /*
5056 * This is needed only for protection faults but the arch code
5057 * is not yet telling us if this is a protection fault or not.
5058 * This still avoids useless tlb flushes for .text page faults
5059 * with threads.
5060 */
5061 if (vmf->flags & FAULT_FLAG_WRITE)
5062 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5063 vmf->pte);
5064 }
5065 unlock:
5066 pte_unmap_unlock(vmf->pte, vmf->ptl);
5067 return 0;
5068 }
5069
5070 /*
5071 * On entry, we hold either the VMA lock or the mmap_lock
5072 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5073 * the result, the mmap_lock is not held on exit. See filemap_fault()
5074 * and __folio_lock_or_retry().
5075 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5076 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5077 unsigned long address, unsigned int flags)
5078 {
5079 struct vm_fault vmf = {
5080 .vma = vma,
5081 .address = address & PAGE_MASK,
5082 .real_address = address,
5083 .flags = flags,
5084 .pgoff = linear_page_index(vma, address),
5085 .gfp_mask = __get_fault_gfp_mask(vma),
5086 };
5087 struct mm_struct *mm = vma->vm_mm;
5088 unsigned long vm_flags = vma->vm_flags;
5089 pgd_t *pgd;
5090 p4d_t *p4d;
5091 vm_fault_t ret;
5092
5093 pgd = pgd_offset(mm, address);
5094 p4d = p4d_alloc(mm, pgd, address);
5095 if (!p4d)
5096 return VM_FAULT_OOM;
5097
5098 vmf.pud = pud_alloc(mm, p4d, address);
5099 if (!vmf.pud)
5100 return VM_FAULT_OOM;
5101 retry_pud:
5102 if (pud_none(*vmf.pud) &&
5103 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5104 ret = create_huge_pud(&vmf);
5105 if (!(ret & VM_FAULT_FALLBACK))
5106 return ret;
5107 } else {
5108 pud_t orig_pud = *vmf.pud;
5109
5110 barrier();
5111 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5112
5113 /*
5114 * TODO once we support anonymous PUDs: NUMA case and
5115 * FAULT_FLAG_UNSHARE handling.
5116 */
5117 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5118 ret = wp_huge_pud(&vmf, orig_pud);
5119 if (!(ret & VM_FAULT_FALLBACK))
5120 return ret;
5121 } else {
5122 huge_pud_set_accessed(&vmf, orig_pud);
5123 return 0;
5124 }
5125 }
5126 }
5127
5128 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5129 if (!vmf.pmd)
5130 return VM_FAULT_OOM;
5131
5132 /* Huge pud page fault raced with pmd_alloc? */
5133 if (pud_trans_unstable(vmf.pud))
5134 goto retry_pud;
5135
5136 if (pmd_none(*vmf.pmd) &&
5137 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5138 ret = create_huge_pmd(&vmf);
5139 if (!(ret & VM_FAULT_FALLBACK))
5140 return ret;
5141 } else {
5142 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5143
5144 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5145 VM_BUG_ON(thp_migration_supported() &&
5146 !is_pmd_migration_entry(vmf.orig_pmd));
5147 if (is_pmd_migration_entry(vmf.orig_pmd))
5148 pmd_migration_entry_wait(mm, vmf.pmd);
5149 return 0;
5150 }
5151 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5152 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5153 return do_huge_pmd_numa_page(&vmf);
5154
5155 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5156 !pmd_write(vmf.orig_pmd)) {
5157 ret = wp_huge_pmd(&vmf);
5158 if (!(ret & VM_FAULT_FALLBACK))
5159 return ret;
5160 } else {
5161 huge_pmd_set_accessed(&vmf);
5162 return 0;
5163 }
5164 }
5165 }
5166
5167 return handle_pte_fault(&vmf);
5168 }
5169
5170 /**
5171 * mm_account_fault - Do page fault accounting
5172 * @mm: mm from which memcg should be extracted. It can be NULL.
5173 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5174 * of perf event counters, but we'll still do the per-task accounting to
5175 * the task who triggered this page fault.
5176 * @address: the faulted address.
5177 * @flags: the fault flags.
5178 * @ret: the fault retcode.
5179 *
5180 * This will take care of most of the page fault accounting. Meanwhile, it
5181 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5182 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5183 * still be in per-arch page fault handlers at the entry of page fault.
5184 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)5185 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5186 unsigned long address, unsigned int flags,
5187 vm_fault_t ret)
5188 {
5189 bool major;
5190
5191 /* Incomplete faults will be accounted upon completion. */
5192 if (ret & VM_FAULT_RETRY)
5193 return;
5194
5195 /*
5196 * To preserve the behavior of older kernels, PGFAULT counters record
5197 * both successful and failed faults, as opposed to perf counters,
5198 * which ignore failed cases.
5199 */
5200 count_vm_event(PGFAULT);
5201 count_memcg_event_mm(mm, PGFAULT);
5202
5203 /*
5204 * Do not account for unsuccessful faults (e.g. when the address wasn't
5205 * valid). That includes arch_vma_access_permitted() failing before
5206 * reaching here. So this is not a "this many hardware page faults"
5207 * counter. We should use the hw profiling for that.
5208 */
5209 if (ret & VM_FAULT_ERROR)
5210 return;
5211
5212 /*
5213 * We define the fault as a major fault when the final successful fault
5214 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5215 * handle it immediately previously).
5216 */
5217 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5218
5219 if (major)
5220 current->maj_flt++;
5221 else
5222 current->min_flt++;
5223
5224 /*
5225 * If the fault is done for GUP, regs will be NULL. We only do the
5226 * accounting for the per thread fault counters who triggered the
5227 * fault, and we skip the perf event updates.
5228 */
5229 if (!regs)
5230 return;
5231
5232 if (major)
5233 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5234 else
5235 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5236 }
5237
5238 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)5239 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5240 {
5241 /* the LRU algorithm only applies to accesses with recency */
5242 current->in_lru_fault = vma_has_recency(vma);
5243 }
5244
lru_gen_exit_fault(void)5245 static void lru_gen_exit_fault(void)
5246 {
5247 current->in_lru_fault = false;
5248 }
5249 #else
lru_gen_enter_fault(struct vm_area_struct * vma)5250 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5251 {
5252 }
5253
lru_gen_exit_fault(void)5254 static void lru_gen_exit_fault(void)
5255 {
5256 }
5257 #endif /* CONFIG_LRU_GEN */
5258
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)5259 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5260 unsigned int *flags)
5261 {
5262 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5263 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5264 return VM_FAULT_SIGSEGV;
5265 /*
5266 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5267 * just treat it like an ordinary read-fault otherwise.
5268 */
5269 if (!is_cow_mapping(vma->vm_flags))
5270 *flags &= ~FAULT_FLAG_UNSHARE;
5271 } else if (*flags & FAULT_FLAG_WRITE) {
5272 /* Write faults on read-only mappings are impossible ... */
5273 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5274 return VM_FAULT_SIGSEGV;
5275 /* ... and FOLL_FORCE only applies to COW mappings. */
5276 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5277 !is_cow_mapping(vma->vm_flags)))
5278 return VM_FAULT_SIGSEGV;
5279 }
5280 #ifdef CONFIG_PER_VMA_LOCK
5281 /*
5282 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5283 * the assumption that lock is dropped on VM_FAULT_RETRY.
5284 */
5285 if (WARN_ON_ONCE((*flags &
5286 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5287 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5288 return VM_FAULT_SIGSEGV;
5289 #endif
5290
5291 return 0;
5292 }
5293
5294 /*
5295 * By the time we get here, we already hold the mm semaphore
5296 *
5297 * The mmap_lock may have been released depending on flags and our
5298 * return value. See filemap_fault() and __folio_lock_or_retry().
5299 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)5300 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5301 unsigned int flags, struct pt_regs *regs)
5302 {
5303 /* If the fault handler drops the mmap_lock, vma may be freed */
5304 struct mm_struct *mm = vma->vm_mm;
5305 vm_fault_t ret;
5306
5307 __set_current_state(TASK_RUNNING);
5308
5309 ret = sanitize_fault_flags(vma, &flags);
5310 if (ret)
5311 goto out;
5312
5313 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5314 flags & FAULT_FLAG_INSTRUCTION,
5315 flags & FAULT_FLAG_REMOTE)) {
5316 ret = VM_FAULT_SIGSEGV;
5317 goto out;
5318 }
5319
5320 /*
5321 * Enable the memcg OOM handling for faults triggered in user
5322 * space. Kernel faults are handled more gracefully.
5323 */
5324 if (flags & FAULT_FLAG_USER)
5325 mem_cgroup_enter_user_fault();
5326
5327 lru_gen_enter_fault(vma);
5328
5329 if (unlikely(is_vm_hugetlb_page(vma)))
5330 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5331 else
5332 ret = __handle_mm_fault(vma, address, flags);
5333
5334 lru_gen_exit_fault();
5335
5336 if (flags & FAULT_FLAG_USER) {
5337 mem_cgroup_exit_user_fault();
5338 /*
5339 * The task may have entered a memcg OOM situation but
5340 * if the allocation error was handled gracefully (no
5341 * VM_FAULT_OOM), there is no need to kill anything.
5342 * Just clean up the OOM state peacefully.
5343 */
5344 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5345 mem_cgroup_oom_synchronize(false);
5346 }
5347 out:
5348 mm_account_fault(mm, regs, address, flags, ret);
5349
5350 return ret;
5351 }
5352 EXPORT_SYMBOL_GPL(handle_mm_fault);
5353
5354 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5355 #include <linux/extable.h>
5356
get_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5357 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5358 {
5359 if (likely(mmap_read_trylock(mm)))
5360 return true;
5361
5362 if (regs && !user_mode(regs)) {
5363 unsigned long ip = exception_ip(regs);
5364 if (!search_exception_tables(ip))
5365 return false;
5366 }
5367
5368 return !mmap_read_lock_killable(mm);
5369 }
5370
mmap_upgrade_trylock(struct mm_struct * mm)5371 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5372 {
5373 /*
5374 * We don't have this operation yet.
5375 *
5376 * It should be easy enough to do: it's basically a
5377 * atomic_long_try_cmpxchg_acquire()
5378 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5379 * it also needs the proper lockdep magic etc.
5380 */
5381 return false;
5382 }
5383
upgrade_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5384 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5385 {
5386 mmap_read_unlock(mm);
5387 if (regs && !user_mode(regs)) {
5388 unsigned long ip = exception_ip(regs);
5389 if (!search_exception_tables(ip))
5390 return false;
5391 }
5392 return !mmap_write_lock_killable(mm);
5393 }
5394
5395 /*
5396 * Helper for page fault handling.
5397 *
5398 * This is kind of equivalend to "mmap_read_lock()" followed
5399 * by "find_extend_vma()", except it's a lot more careful about
5400 * the locking (and will drop the lock on failure).
5401 *
5402 * For example, if we have a kernel bug that causes a page
5403 * fault, we don't want to just use mmap_read_lock() to get
5404 * the mm lock, because that would deadlock if the bug were
5405 * to happen while we're holding the mm lock for writing.
5406 *
5407 * So this checks the exception tables on kernel faults in
5408 * order to only do this all for instructions that are actually
5409 * expected to fault.
5410 *
5411 * We can also actually take the mm lock for writing if we
5412 * need to extend the vma, which helps the VM layer a lot.
5413 */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)5414 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5415 unsigned long addr, struct pt_regs *regs)
5416 {
5417 struct vm_area_struct *vma;
5418
5419 if (!get_mmap_lock_carefully(mm, regs))
5420 return NULL;
5421
5422 vma = find_vma(mm, addr);
5423 if (likely(vma && (vma->vm_start <= addr)))
5424 return vma;
5425
5426 /*
5427 * Well, dang. We might still be successful, but only
5428 * if we can extend a vma to do so.
5429 */
5430 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5431 mmap_read_unlock(mm);
5432 return NULL;
5433 }
5434
5435 /*
5436 * We can try to upgrade the mmap lock atomically,
5437 * in which case we can continue to use the vma
5438 * we already looked up.
5439 *
5440 * Otherwise we'll have to drop the mmap lock and
5441 * re-take it, and also look up the vma again,
5442 * re-checking it.
5443 */
5444 if (!mmap_upgrade_trylock(mm)) {
5445 if (!upgrade_mmap_lock_carefully(mm, regs))
5446 return NULL;
5447
5448 vma = find_vma(mm, addr);
5449 if (!vma)
5450 goto fail;
5451 if (vma->vm_start <= addr)
5452 goto success;
5453 if (!(vma->vm_flags & VM_GROWSDOWN))
5454 goto fail;
5455 }
5456
5457 if (expand_stack_locked(vma, addr))
5458 goto fail;
5459
5460 success:
5461 mmap_write_downgrade(mm);
5462 return vma;
5463
5464 fail:
5465 mmap_write_unlock(mm);
5466 return NULL;
5467 }
5468 #endif
5469
5470 #ifdef CONFIG_PER_VMA_LOCK
5471 /*
5472 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5473 * stable and not isolated. If the VMA is not found or is being modified the
5474 * function returns NULL.
5475 */
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)5476 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5477 unsigned long address)
5478 {
5479 MA_STATE(mas, &mm->mm_mt, address, address);
5480 struct vm_area_struct *vma;
5481
5482 rcu_read_lock();
5483 retry:
5484 vma = mas_walk(&mas);
5485 if (!vma)
5486 goto inval;
5487
5488 if (!vma_start_read(vma))
5489 goto inval;
5490
5491 /*
5492 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5493 * This check must happen after vma_start_read(); otherwise, a
5494 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5495 * from its anon_vma.
5496 */
5497 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5498 goto inval_end_read;
5499
5500 /* Check since vm_start/vm_end might change before we lock the VMA */
5501 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5502 goto inval_end_read;
5503
5504 /* Check if the VMA got isolated after we found it */
5505 if (vma->detached) {
5506 vma_end_read(vma);
5507 count_vm_vma_lock_event(VMA_LOCK_MISS);
5508 /* The area was replaced with another one */
5509 goto retry;
5510 }
5511
5512 rcu_read_unlock();
5513 return vma;
5514
5515 inval_end_read:
5516 vma_end_read(vma);
5517 inval:
5518 rcu_read_unlock();
5519 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5520 return NULL;
5521 }
5522 #endif /* CONFIG_PER_VMA_LOCK */
5523
5524 #ifndef __PAGETABLE_P4D_FOLDED
5525 /*
5526 * Allocate p4d page table.
5527 * We've already handled the fast-path in-line.
5528 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)5529 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5530 {
5531 p4d_t *new = p4d_alloc_one(mm, address);
5532 if (!new)
5533 return -ENOMEM;
5534
5535 spin_lock(&mm->page_table_lock);
5536 if (pgd_present(*pgd)) { /* Another has populated it */
5537 p4d_free(mm, new);
5538 } else {
5539 smp_wmb(); /* See comment in pmd_install() */
5540 pgd_populate(mm, pgd, new);
5541 }
5542 spin_unlock(&mm->page_table_lock);
5543 return 0;
5544 }
5545 #endif /* __PAGETABLE_P4D_FOLDED */
5546
5547 #ifndef __PAGETABLE_PUD_FOLDED
5548 /*
5549 * Allocate page upper directory.
5550 * We've already handled the fast-path in-line.
5551 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)5552 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5553 {
5554 pud_t *new = pud_alloc_one(mm, address);
5555 if (!new)
5556 return -ENOMEM;
5557
5558 spin_lock(&mm->page_table_lock);
5559 if (!p4d_present(*p4d)) {
5560 mm_inc_nr_puds(mm);
5561 smp_wmb(); /* See comment in pmd_install() */
5562 p4d_populate(mm, p4d, new);
5563 } else /* Another has populated it */
5564 pud_free(mm, new);
5565 spin_unlock(&mm->page_table_lock);
5566 return 0;
5567 }
5568 #endif /* __PAGETABLE_PUD_FOLDED */
5569
5570 #ifndef __PAGETABLE_PMD_FOLDED
5571 /*
5572 * Allocate page middle directory.
5573 * We've already handled the fast-path in-line.
5574 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)5575 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5576 {
5577 spinlock_t *ptl;
5578 pmd_t *new = pmd_alloc_one(mm, address);
5579 if (!new)
5580 return -ENOMEM;
5581
5582 ptl = pud_lock(mm, pud);
5583 if (!pud_present(*pud)) {
5584 mm_inc_nr_pmds(mm);
5585 smp_wmb(); /* See comment in pmd_install() */
5586 pud_populate(mm, pud, new);
5587 } else { /* Another has populated it */
5588 pmd_free(mm, new);
5589 }
5590 spin_unlock(ptl);
5591 return 0;
5592 }
5593 #endif /* __PAGETABLE_PMD_FOLDED */
5594
5595 /**
5596 * follow_pte - look up PTE at a user virtual address
5597 * @mm: the mm_struct of the target address space
5598 * @address: user virtual address
5599 * @ptepp: location to store found PTE
5600 * @ptlp: location to store the lock for the PTE
5601 *
5602 * On a successful return, the pointer to the PTE is stored in @ptepp;
5603 * the corresponding lock is taken and its location is stored in @ptlp.
5604 * The contents of the PTE are only stable until @ptlp is released;
5605 * any further use, if any, must be protected against invalidation
5606 * with MMU notifiers.
5607 *
5608 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5609 * should be taken for read.
5610 *
5611 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5612 * it is not a good general-purpose API.
5613 *
5614 * Return: zero on success, -ve otherwise.
5615 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5616 int follow_pte(struct mm_struct *mm, unsigned long address,
5617 pte_t **ptepp, spinlock_t **ptlp)
5618 {
5619 pgd_t *pgd;
5620 p4d_t *p4d;
5621 pud_t *pud;
5622 pmd_t *pmd;
5623 pte_t *ptep;
5624
5625 pgd = pgd_offset(mm, address);
5626 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5627 goto out;
5628
5629 p4d = p4d_offset(pgd, address);
5630 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5631 goto out;
5632
5633 pud = pud_offset(p4d, address);
5634 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5635 goto out;
5636
5637 pmd = pmd_offset(pud, address);
5638 VM_BUG_ON(pmd_trans_huge(*pmd));
5639
5640 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5641 if (!ptep)
5642 goto out;
5643 if (!pte_present(ptep_get(ptep)))
5644 goto unlock;
5645 *ptepp = ptep;
5646 return 0;
5647 unlock:
5648 pte_unmap_unlock(ptep, *ptlp);
5649 out:
5650 return -EINVAL;
5651 }
5652 EXPORT_SYMBOL_GPL(follow_pte);
5653
5654 /**
5655 * follow_pfn - look up PFN at a user virtual address
5656 * @vma: memory mapping
5657 * @address: user virtual address
5658 * @pfn: location to store found PFN
5659 *
5660 * Only IO mappings and raw PFN mappings are allowed.
5661 *
5662 * This function does not allow the caller to read the permissions
5663 * of the PTE. Do not use it.
5664 *
5665 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5666 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5667 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5668 unsigned long *pfn)
5669 {
5670 int ret = -EINVAL;
5671 spinlock_t *ptl;
5672 pte_t *ptep;
5673
5674 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5675 return ret;
5676
5677 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5678 if (ret)
5679 return ret;
5680 *pfn = pte_pfn(ptep_get(ptep));
5681 pte_unmap_unlock(ptep, ptl);
5682 return 0;
5683 }
5684 EXPORT_SYMBOL(follow_pfn);
5685
5686 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5687 int follow_phys(struct vm_area_struct *vma,
5688 unsigned long address, unsigned int flags,
5689 unsigned long *prot, resource_size_t *phys)
5690 {
5691 int ret = -EINVAL;
5692 pte_t *ptep, pte;
5693 spinlock_t *ptl;
5694
5695 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5696 goto out;
5697
5698 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5699 goto out;
5700 pte = ptep_get(ptep);
5701
5702 /* Never return PFNs of anon folios in COW mappings. */
5703 if (vm_normal_folio(vma, address, pte))
5704 goto unlock;
5705
5706 if ((flags & FOLL_WRITE) && !pte_write(pte))
5707 goto unlock;
5708
5709 *prot = pgprot_val(pte_pgprot(pte));
5710 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5711
5712 ret = 0;
5713 unlock:
5714 pte_unmap_unlock(ptep, ptl);
5715 out:
5716 return ret;
5717 }
5718
5719 /**
5720 * generic_access_phys - generic implementation for iomem mmap access
5721 * @vma: the vma to access
5722 * @addr: userspace address, not relative offset within @vma
5723 * @buf: buffer to read/write
5724 * @len: length of transfer
5725 * @write: set to FOLL_WRITE when writing, otherwise reading
5726 *
5727 * This is a generic implementation for &vm_operations_struct.access for an
5728 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5729 * not page based.
5730 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5731 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5732 void *buf, int len, int write)
5733 {
5734 resource_size_t phys_addr;
5735 unsigned long prot = 0;
5736 void __iomem *maddr;
5737 pte_t *ptep, pte;
5738 spinlock_t *ptl;
5739 int offset = offset_in_page(addr);
5740 int ret = -EINVAL;
5741
5742 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5743 return -EINVAL;
5744
5745 retry:
5746 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5747 return -EINVAL;
5748 pte = ptep_get(ptep);
5749 pte_unmap_unlock(ptep, ptl);
5750
5751 prot = pgprot_val(pte_pgprot(pte));
5752 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5753
5754 if ((write & FOLL_WRITE) && !pte_write(pte))
5755 return -EINVAL;
5756
5757 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5758 if (!maddr)
5759 return -ENOMEM;
5760
5761 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5762 goto out_unmap;
5763
5764 if (!pte_same(pte, ptep_get(ptep))) {
5765 pte_unmap_unlock(ptep, ptl);
5766 iounmap(maddr);
5767
5768 goto retry;
5769 }
5770
5771 if (write)
5772 memcpy_toio(maddr + offset, buf, len);
5773 else
5774 memcpy_fromio(buf, maddr + offset, len);
5775 ret = len;
5776 pte_unmap_unlock(ptep, ptl);
5777 out_unmap:
5778 iounmap(maddr);
5779
5780 return ret;
5781 }
5782 EXPORT_SYMBOL_GPL(generic_access_phys);
5783 #endif
5784
5785 /*
5786 * Access another process' address space as given in mm.
5787 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5788 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5789 int len, unsigned int gup_flags)
5790 {
5791 void *old_buf = buf;
5792 int write = gup_flags & FOLL_WRITE;
5793
5794 if (mmap_read_lock_killable(mm))
5795 return 0;
5796
5797 /* Untag the address before looking up the VMA */
5798 addr = untagged_addr_remote(mm, addr);
5799
5800 /* Avoid triggering the temporary warning in __get_user_pages */
5801 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5802 return 0;
5803
5804 /* ignore errors, just check how much was successfully transferred */
5805 while (len) {
5806 int bytes, offset;
5807 void *maddr;
5808 struct vm_area_struct *vma = NULL;
5809 struct page *page = get_user_page_vma_remote(mm, addr,
5810 gup_flags, &vma);
5811
5812 if (IS_ERR_OR_NULL(page)) {
5813 /* We might need to expand the stack to access it */
5814 vma = vma_lookup(mm, addr);
5815 if (!vma) {
5816 vma = expand_stack(mm, addr);
5817
5818 /* mmap_lock was dropped on failure */
5819 if (!vma)
5820 return buf - old_buf;
5821
5822 /* Try again if stack expansion worked */
5823 continue;
5824 }
5825
5826
5827 /*
5828 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5829 * we can access using slightly different code.
5830 */
5831 bytes = 0;
5832 #ifdef CONFIG_HAVE_IOREMAP_PROT
5833 if (vma->vm_ops && vma->vm_ops->access)
5834 bytes = vma->vm_ops->access(vma, addr, buf,
5835 len, write);
5836 #endif
5837 if (bytes <= 0)
5838 break;
5839 } else {
5840 bytes = len;
5841 offset = addr & (PAGE_SIZE-1);
5842 if (bytes > PAGE_SIZE-offset)
5843 bytes = PAGE_SIZE-offset;
5844
5845 maddr = kmap(page);
5846 if (write) {
5847 copy_to_user_page(vma, page, addr,
5848 maddr + offset, buf, bytes);
5849 set_page_dirty_lock(page);
5850 } else {
5851 copy_from_user_page(vma, page, addr,
5852 buf, maddr + offset, bytes);
5853 }
5854 kunmap(page);
5855 put_page(page);
5856 }
5857 len -= bytes;
5858 buf += bytes;
5859 addr += bytes;
5860 }
5861 mmap_read_unlock(mm);
5862
5863 return buf - old_buf;
5864 }
5865
5866 /**
5867 * access_remote_vm - access another process' address space
5868 * @mm: the mm_struct of the target address space
5869 * @addr: start address to access
5870 * @buf: source or destination buffer
5871 * @len: number of bytes to transfer
5872 * @gup_flags: flags modifying lookup behaviour
5873 *
5874 * The caller must hold a reference on @mm.
5875 *
5876 * Return: number of bytes copied from source to destination.
5877 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5878 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5879 void *buf, int len, unsigned int gup_flags)
5880 {
5881 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5882 }
5883
5884 /*
5885 * Access another process' address space.
5886 * Source/target buffer must be kernel space,
5887 * Do not walk the page table directly, use get_user_pages
5888 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5889 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5890 void *buf, int len, unsigned int gup_flags)
5891 {
5892 struct mm_struct *mm;
5893 int ret;
5894
5895 mm = get_task_mm(tsk);
5896 if (!mm)
5897 return 0;
5898
5899 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5900
5901 mmput(mm);
5902
5903 return ret;
5904 }
5905 EXPORT_SYMBOL_GPL(access_process_vm);
5906
5907 /*
5908 * Print the name of a VMA.
5909 */
print_vma_addr(char * prefix,unsigned long ip)5910 void print_vma_addr(char *prefix, unsigned long ip)
5911 {
5912 struct mm_struct *mm = current->mm;
5913 struct vm_area_struct *vma;
5914
5915 /*
5916 * we might be running from an atomic context so we cannot sleep
5917 */
5918 if (!mmap_read_trylock(mm))
5919 return;
5920
5921 vma = find_vma(mm, ip);
5922 if (vma && vma->vm_file) {
5923 struct file *f = vma->vm_file;
5924 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5925 if (buf) {
5926 char *p;
5927
5928 p = file_path(f, buf, PAGE_SIZE);
5929 if (IS_ERR(p))
5930 p = "?";
5931 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5932 vma->vm_start,
5933 vma->vm_end - vma->vm_start);
5934 free_page((unsigned long)buf);
5935 }
5936 }
5937 mmap_read_unlock(mm);
5938 }
5939
5940 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5941 void __might_fault(const char *file, int line)
5942 {
5943 if (pagefault_disabled())
5944 return;
5945 __might_sleep(file, line);
5946 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5947 if (current->mm)
5948 might_lock_read(¤t->mm->mmap_lock);
5949 #endif
5950 }
5951 EXPORT_SYMBOL(__might_fault);
5952 #endif
5953
5954 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5955 /*
5956 * Process all subpages of the specified huge page with the specified
5957 * operation. The target subpage will be processed last to keep its
5958 * cache lines hot.
5959 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5960 static inline int process_huge_page(
5961 unsigned long addr_hint, unsigned int pages_per_huge_page,
5962 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5963 void *arg)
5964 {
5965 int i, n, base, l, ret;
5966 unsigned long addr = addr_hint &
5967 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5968
5969 /* Process target subpage last to keep its cache lines hot */
5970 might_sleep();
5971 n = (addr_hint - addr) / PAGE_SIZE;
5972 if (2 * n <= pages_per_huge_page) {
5973 /* If target subpage in first half of huge page */
5974 base = 0;
5975 l = n;
5976 /* Process subpages at the end of huge page */
5977 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5978 cond_resched();
5979 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5980 if (ret)
5981 return ret;
5982 }
5983 } else {
5984 /* If target subpage in second half of huge page */
5985 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5986 l = pages_per_huge_page - n;
5987 /* Process subpages at the begin of huge page */
5988 for (i = 0; i < base; i++) {
5989 cond_resched();
5990 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5991 if (ret)
5992 return ret;
5993 }
5994 }
5995 /*
5996 * Process remaining subpages in left-right-left-right pattern
5997 * towards the target subpage
5998 */
5999 for (i = 0; i < l; i++) {
6000 int left_idx = base + i;
6001 int right_idx = base + 2 * l - 1 - i;
6002
6003 cond_resched();
6004 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6005 if (ret)
6006 return ret;
6007 cond_resched();
6008 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6009 if (ret)
6010 return ret;
6011 }
6012 return 0;
6013 }
6014
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)6015 static void clear_gigantic_page(struct page *page,
6016 unsigned long addr,
6017 unsigned int pages_per_huge_page)
6018 {
6019 int i;
6020 struct page *p;
6021
6022 might_sleep();
6023 for (i = 0; i < pages_per_huge_page; i++) {
6024 p = nth_page(page, i);
6025 cond_resched();
6026 clear_user_highpage(p, addr + i * PAGE_SIZE);
6027 }
6028 }
6029
clear_subpage(unsigned long addr,int idx,void * arg)6030 static int clear_subpage(unsigned long addr, int idx, void *arg)
6031 {
6032 struct page *page = arg;
6033
6034 clear_user_highpage(page + idx, addr);
6035 return 0;
6036 }
6037
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)6038 void clear_huge_page(struct page *page,
6039 unsigned long addr_hint, unsigned int pages_per_huge_page)
6040 {
6041 unsigned long addr = addr_hint &
6042 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6043
6044 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6045 clear_gigantic_page(page, addr, pages_per_huge_page);
6046 return;
6047 }
6048
6049 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6050 }
6051
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)6052 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6053 unsigned long addr,
6054 struct vm_area_struct *vma,
6055 unsigned int pages_per_huge_page)
6056 {
6057 int i;
6058 struct page *dst_page;
6059 struct page *src_page;
6060
6061 for (i = 0; i < pages_per_huge_page; i++) {
6062 dst_page = folio_page(dst, i);
6063 src_page = folio_page(src, i);
6064
6065 cond_resched();
6066 if (copy_mc_user_highpage(dst_page, src_page,
6067 addr + i*PAGE_SIZE, vma)) {
6068 memory_failure_queue(page_to_pfn(src_page), 0);
6069 return -EHWPOISON;
6070 }
6071 }
6072 return 0;
6073 }
6074
6075 struct copy_subpage_arg {
6076 struct page *dst;
6077 struct page *src;
6078 struct vm_area_struct *vma;
6079 };
6080
copy_subpage(unsigned long addr,int idx,void * arg)6081 static int copy_subpage(unsigned long addr, int idx, void *arg)
6082 {
6083 struct copy_subpage_arg *copy_arg = arg;
6084
6085 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6086 addr, copy_arg->vma)) {
6087 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6088 return -EHWPOISON;
6089 }
6090 return 0;
6091 }
6092
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)6093 int copy_user_large_folio(struct folio *dst, struct folio *src,
6094 unsigned long addr_hint, struct vm_area_struct *vma)
6095 {
6096 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6097 unsigned long addr = addr_hint &
6098 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6099 struct copy_subpage_arg arg = {
6100 .dst = &dst->page,
6101 .src = &src->page,
6102 .vma = vma,
6103 };
6104
6105 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6106 return copy_user_gigantic_page(dst, src, addr, vma,
6107 pages_per_huge_page);
6108
6109 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6110 }
6111
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)6112 long copy_folio_from_user(struct folio *dst_folio,
6113 const void __user *usr_src,
6114 bool allow_pagefault)
6115 {
6116 void *kaddr;
6117 unsigned long i, rc = 0;
6118 unsigned int nr_pages = folio_nr_pages(dst_folio);
6119 unsigned long ret_val = nr_pages * PAGE_SIZE;
6120 struct page *subpage;
6121
6122 for (i = 0; i < nr_pages; i++) {
6123 subpage = folio_page(dst_folio, i);
6124 kaddr = kmap_local_page(subpage);
6125 if (!allow_pagefault)
6126 pagefault_disable();
6127 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6128 if (!allow_pagefault)
6129 pagefault_enable();
6130 kunmap_local(kaddr);
6131
6132 ret_val -= (PAGE_SIZE - rc);
6133 if (rc)
6134 break;
6135
6136 flush_dcache_page(subpage);
6137
6138 cond_resched();
6139 }
6140 return ret_val;
6141 }
6142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6143
6144 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6145
6146 static struct kmem_cache *page_ptl_cachep;
6147
ptlock_cache_init(void)6148 void __init ptlock_cache_init(void)
6149 {
6150 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6151 SLAB_PANIC, NULL);
6152 }
6153
ptlock_alloc(struct ptdesc * ptdesc)6154 bool ptlock_alloc(struct ptdesc *ptdesc)
6155 {
6156 spinlock_t *ptl;
6157
6158 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6159 if (!ptl)
6160 return false;
6161 ptdesc->ptl = ptl;
6162 return true;
6163 }
6164
ptlock_free(struct ptdesc * ptdesc)6165 void ptlock_free(struct ptdesc *ptdesc)
6166 {
6167 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6168 }
6169 #endif
6170