xref: /openbmc/linux/include/linux/mm_types.h (revision d32fd6bb9f2bc8178cdd65ebec1ad670a8bfa241)
1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_MM_TYPES_H
3  #define _LINUX_MM_TYPES_H
4  
5  #include <linux/mm_types_task.h>
6  
7  #include <linux/auxvec.h>
8  #include <linux/kref.h>
9  #include <linux/list.h>
10  #include <linux/spinlock.h>
11  #include <linux/rbtree.h>
12  #include <linux/maple_tree.h>
13  #include <linux/rwsem.h>
14  #include <linux/completion.h>
15  #include <linux/cpumask.h>
16  #include <linux/uprobes.h>
17  #include <linux/rcupdate.h>
18  #include <linux/page-flags-layout.h>
19  #include <linux/workqueue.h>
20  #include <linux/seqlock.h>
21  #include <linux/percpu_counter.h>
22  
23  #include <asm/mmu.h>
24  
25  #ifndef AT_VECTOR_SIZE_ARCH
26  #define AT_VECTOR_SIZE_ARCH 0
27  #endif
28  #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
29  
30  #define INIT_PASID	0
31  
32  struct address_space;
33  struct mem_cgroup;
34  
35  /*
36   * Each physical page in the system has a struct page associated with
37   * it to keep track of whatever it is we are using the page for at the
38   * moment. Note that we have no way to track which tasks are using
39   * a page, though if it is a pagecache page, rmap structures can tell us
40   * who is mapping it.
41   *
42   * If you allocate the page using alloc_pages(), you can use some of the
43   * space in struct page for your own purposes.  The five words in the main
44   * union are available, except for bit 0 of the first word which must be
45   * kept clear.  Many users use this word to store a pointer to an object
46   * which is guaranteed to be aligned.  If you use the same storage as
47   * page->mapping, you must restore it to NULL before freeing the page.
48   *
49   * If your page will not be mapped to userspace, you can also use the four
50   * bytes in the mapcount union, but you must call page_mapcount_reset()
51   * before freeing it.
52   *
53   * If you want to use the refcount field, it must be used in such a way
54   * that other CPUs temporarily incrementing and then decrementing the
55   * refcount does not cause problems.  On receiving the page from
56   * alloc_pages(), the refcount will be positive.
57   *
58   * If you allocate pages of order > 0, you can use some of the fields
59   * in each subpage, but you may need to restore some of their values
60   * afterwards.
61   *
62   * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
63   * That requires that freelist & counters in struct slab be adjacent and
64   * double-word aligned. Because struct slab currently just reinterprets the
65   * bits of struct page, we align all struct pages to double-word boundaries,
66   * and ensure that 'freelist' is aligned within struct slab.
67   */
68  #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
69  #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
70  #else
71  #define _struct_page_alignment	__aligned(sizeof(unsigned long))
72  #endif
73  
74  struct page {
75  	unsigned long flags;		/* Atomic flags, some possibly
76  					 * updated asynchronously */
77  	/*
78  	 * Five words (20/40 bytes) are available in this union.
79  	 * WARNING: bit 0 of the first word is used for PageTail(). That
80  	 * means the other users of this union MUST NOT use the bit to
81  	 * avoid collision and false-positive PageTail().
82  	 */
83  	union {
84  		struct {	/* Page cache and anonymous pages */
85  			/**
86  			 * @lru: Pageout list, eg. active_list protected by
87  			 * lruvec->lru_lock.  Sometimes used as a generic list
88  			 * by the page owner.
89  			 */
90  			union {
91  				struct list_head lru;
92  
93  				/* Or, for the Unevictable "LRU list" slot */
94  				struct {
95  					/* Always even, to negate PageTail */
96  					void *__filler;
97  					/* Count page's or folio's mlocks */
98  					unsigned int mlock_count;
99  				};
100  
101  				/* Or, free page */
102  				struct list_head buddy_list;
103  				struct list_head pcp_list;
104  			};
105  			/* See page-flags.h for PAGE_MAPPING_FLAGS */
106  			struct address_space *mapping;
107  			union {
108  				pgoff_t index;		/* Our offset within mapping. */
109  				unsigned long share;	/* share count for fsdax */
110  			};
111  			/**
112  			 * @private: Mapping-private opaque data.
113  			 * Usually used for buffer_heads if PagePrivate.
114  			 * Used for swp_entry_t if PageSwapCache.
115  			 * Indicates order in the buddy system if PageBuddy.
116  			 */
117  			unsigned long private;
118  		};
119  		struct {	/* page_pool used by netstack */
120  			/**
121  			 * @pp_magic: magic value to avoid recycling non
122  			 * page_pool allocated pages.
123  			 */
124  			unsigned long pp_magic;
125  			struct page_pool *pp;
126  			unsigned long _pp_mapping_pad;
127  			unsigned long dma_addr;
128  			union {
129  				/**
130  				 * dma_addr_upper: might require a 64-bit
131  				 * value on 32-bit architectures.
132  				 */
133  				unsigned long dma_addr_upper;
134  				/**
135  				 * For frag page support, not supported in
136  				 * 32-bit architectures with 64-bit DMA.
137  				 */
138  				atomic_long_t pp_frag_count;
139  			};
140  		};
141  		struct {	/* Tail pages of compound page */
142  			unsigned long compound_head;	/* Bit zero is set */
143  		};
144  		struct {	/* ZONE_DEVICE pages */
145  			/** @pgmap: Points to the hosting device page map. */
146  			struct dev_pagemap *pgmap;
147  			void *zone_device_data;
148  			/*
149  			 * ZONE_DEVICE private pages are counted as being
150  			 * mapped so the next 3 words hold the mapping, index,
151  			 * and private fields from the source anonymous or
152  			 * page cache page while the page is migrated to device
153  			 * private memory.
154  			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
155  			 * use the mapping, index, and private fields when
156  			 * pmem backed DAX files are mapped.
157  			 */
158  		};
159  
160  		/** @rcu_head: You can use this to free a page by RCU. */
161  		struct rcu_head rcu_head;
162  	};
163  
164  	union {		/* This union is 4 bytes in size. */
165  		/*
166  		 * If the page can be mapped to userspace, encodes the number
167  		 * of times this page is referenced by a page table.
168  		 */
169  		atomic_t _mapcount;
170  
171  		/*
172  		 * If the page is neither PageSlab nor mappable to userspace,
173  		 * the value stored here may help determine what this page
174  		 * is used for.  See page-flags.h for a list of page types
175  		 * which are currently stored here.
176  		 */
177  		unsigned int page_type;
178  	};
179  
180  	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
181  	atomic_t _refcount;
182  
183  #ifdef CONFIG_MEMCG
184  	unsigned long memcg_data;
185  #endif
186  
187  	/*
188  	 * On machines where all RAM is mapped into kernel address space,
189  	 * we can simply calculate the virtual address. On machines with
190  	 * highmem some memory is mapped into kernel virtual memory
191  	 * dynamically, so we need a place to store that address.
192  	 * Note that this field could be 16 bits on x86 ... ;)
193  	 *
194  	 * Architectures with slow multiplication can define
195  	 * WANT_PAGE_VIRTUAL in asm/page.h
196  	 */
197  #if defined(WANT_PAGE_VIRTUAL)
198  	void *virtual;			/* Kernel virtual address (NULL if
199  					   not kmapped, ie. highmem) */
200  #endif /* WANT_PAGE_VIRTUAL */
201  
202  #ifdef CONFIG_KMSAN
203  	/*
204  	 * KMSAN metadata for this page:
205  	 *  - shadow page: every bit indicates whether the corresponding
206  	 *    bit of the original page is initialized (0) or not (1);
207  	 *  - origin page: every 4 bytes contain an id of the stack trace
208  	 *    where the uninitialized value was created.
209  	 */
210  	struct page *kmsan_shadow;
211  	struct page *kmsan_origin;
212  #endif
213  
214  #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
215  	int _last_cpupid;
216  #endif
217  } _struct_page_alignment;
218  
219  /*
220   * struct encoded_page - a nonexistent type marking this pointer
221   *
222   * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
223   * with the low bits of the pointer indicating extra context-dependent
224   * information. Not super-common, but happens in mmu_gather and mlock
225   * handling, and this acts as a type system check on that use.
226   *
227   * We only really have two guaranteed bits in general, although you could
228   * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
229   * for more.
230   *
231   * Use the supplied helper functions to endcode/decode the pointer and bits.
232   */
233  struct encoded_page;
234  #define ENCODE_PAGE_BITS 3ul
encode_page(struct page * page,unsigned long flags)235  static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
236  {
237  	BUILD_BUG_ON(flags > ENCODE_PAGE_BITS);
238  	return (struct encoded_page *)(flags | (unsigned long)page);
239  }
240  
encoded_page_flags(struct encoded_page * page)241  static inline unsigned long encoded_page_flags(struct encoded_page *page)
242  {
243  	return ENCODE_PAGE_BITS & (unsigned long)page;
244  }
245  
encoded_page_ptr(struct encoded_page * page)246  static inline struct page *encoded_page_ptr(struct encoded_page *page)
247  {
248  	return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page);
249  }
250  
251  /*
252   * A swap entry has to fit into a "unsigned long", as the entry is hidden
253   * in the "index" field of the swapper address space.
254   */
255  typedef struct {
256  	unsigned long val;
257  } swp_entry_t;
258  
259  /**
260   * struct folio - Represents a contiguous set of bytes.
261   * @flags: Identical to the page flags.
262   * @lru: Least Recently Used list; tracks how recently this folio was used.
263   * @mlock_count: Number of times this folio has been pinned by mlock().
264   * @mapping: The file this page belongs to, or refers to the anon_vma for
265   *    anonymous memory.
266   * @index: Offset within the file, in units of pages.  For anonymous memory,
267   *    this is the index from the beginning of the mmap.
268   * @private: Filesystem per-folio data (see folio_attach_private()).
269   * @swap: Used for swp_entry_t if folio_test_swapcache().
270   * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
271   *    find out how many times this folio is mapped by userspace.
272   * @_refcount: Do not access this member directly.  Use folio_ref_count()
273   *    to find how many references there are to this folio.
274   * @memcg_data: Memory Control Group data.
275   * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
276   * @_nr_pages_mapped: Do not use directly, call folio_mapcount().
277   * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
278   * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
279   * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
280   * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
281   * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
282   * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
283   * @_deferred_list: Folios to be split under memory pressure.
284   *
285   * A folio is a physically, virtually and logically contiguous set
286   * of bytes.  It is a power-of-two in size, and it is aligned to that
287   * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
288   * in the page cache, it is at a file offset which is a multiple of that
289   * power-of-two.  It may be mapped into userspace at an address which is
290   * at an arbitrary page offset, but its kernel virtual address is aligned
291   * to its size.
292   */
293  struct folio {
294  	/* private: don't document the anon union */
295  	union {
296  		struct {
297  	/* public: */
298  			unsigned long flags;
299  			union {
300  				struct list_head lru;
301  	/* private: avoid cluttering the output */
302  				struct {
303  					void *__filler;
304  	/* public: */
305  					unsigned int mlock_count;
306  	/* private: */
307  				};
308  	/* public: */
309  			};
310  			struct address_space *mapping;
311  			pgoff_t index;
312  			union {
313  				void *private;
314  				swp_entry_t swap;
315  			};
316  			atomic_t _mapcount;
317  			atomic_t _refcount;
318  #ifdef CONFIG_MEMCG
319  			unsigned long memcg_data;
320  #endif
321  	/* private: the union with struct page is transitional */
322  		};
323  		struct page page;
324  	};
325  	union {
326  		struct {
327  			unsigned long _flags_1;
328  			unsigned long _head_1;
329  			unsigned long _folio_avail;
330  	/* public: */
331  			atomic_t _entire_mapcount;
332  			atomic_t _nr_pages_mapped;
333  			atomic_t _pincount;
334  #ifdef CONFIG_64BIT
335  			unsigned int _folio_nr_pages;
336  #endif
337  	/* private: the union with struct page is transitional */
338  		};
339  		struct page __page_1;
340  	};
341  	union {
342  		struct {
343  			unsigned long _flags_2;
344  			unsigned long _head_2;
345  	/* public: */
346  			void *_hugetlb_subpool;
347  			void *_hugetlb_cgroup;
348  			void *_hugetlb_cgroup_rsvd;
349  			void *_hugetlb_hwpoison;
350  	/* private: the union with struct page is transitional */
351  		};
352  		struct {
353  			unsigned long _flags_2a;
354  			unsigned long _head_2a;
355  	/* public: */
356  			struct list_head _deferred_list;
357  	/* private: the union with struct page is transitional */
358  		};
359  		struct page __page_2;
360  	};
361  };
362  
363  #define FOLIO_MATCH(pg, fl)						\
364  	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
365  FOLIO_MATCH(flags, flags);
366  FOLIO_MATCH(lru, lru);
367  FOLIO_MATCH(mapping, mapping);
368  FOLIO_MATCH(compound_head, lru);
369  FOLIO_MATCH(index, index);
370  FOLIO_MATCH(private, private);
371  FOLIO_MATCH(_mapcount, _mapcount);
372  FOLIO_MATCH(_refcount, _refcount);
373  #ifdef CONFIG_MEMCG
374  FOLIO_MATCH(memcg_data, memcg_data);
375  #endif
376  #undef FOLIO_MATCH
377  #define FOLIO_MATCH(pg, fl)						\
378  	static_assert(offsetof(struct folio, fl) ==			\
379  			offsetof(struct page, pg) + sizeof(struct page))
380  FOLIO_MATCH(flags, _flags_1);
381  FOLIO_MATCH(compound_head, _head_1);
382  #undef FOLIO_MATCH
383  #define FOLIO_MATCH(pg, fl)						\
384  	static_assert(offsetof(struct folio, fl) ==			\
385  			offsetof(struct page, pg) + 2 * sizeof(struct page))
386  FOLIO_MATCH(flags, _flags_2);
387  FOLIO_MATCH(compound_head, _head_2);
388  FOLIO_MATCH(flags, _flags_2a);
389  FOLIO_MATCH(compound_head, _head_2a);
390  #undef FOLIO_MATCH
391  
392  /**
393   * struct ptdesc -    Memory descriptor for page tables.
394   * @__page_flags:     Same as page flags. Unused for page tables.
395   * @pt_rcu_head:      For freeing page table pages.
396   * @pt_list:          List of used page tables. Used for s390 and x86.
397   * @_pt_pad_1:        Padding that aliases with page's compound head.
398   * @pmd_huge_pte:     Protected by ptdesc->ptl, used for THPs.
399   * @__page_mapping:   Aliases with page->mapping. Unused for page tables.
400   * @pt_mm:            Used for x86 pgds.
401   * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
402   * @pt_share_count:   Used for HugeTLB PMD page table share count.
403   * @_pt_pad_2:        Padding to ensure proper alignment.
404   * @ptl:              Lock for the page table.
405   * @__page_type:      Same as page->page_type. Unused for page tables.
406   * @_refcount:        Same as page refcount.
407   * @pt_memcg_data:    Memcg data. Tracked for page tables here.
408   *
409   * This struct overlays struct page for now. Do not modify without a good
410   * understanding of the issues.
411   */
412  struct ptdesc {
413  	unsigned long __page_flags;
414  
415  	union {
416  		struct rcu_head pt_rcu_head;
417  		struct list_head pt_list;
418  		struct {
419  			unsigned long _pt_pad_1;
420  			pgtable_t pmd_huge_pte;
421  		};
422  	};
423  	unsigned long __page_mapping;
424  
425  	union {
426  		struct mm_struct *pt_mm;
427  		atomic_t pt_frag_refcount;
428  #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
429  		atomic_t pt_share_count;
430  #endif
431  	};
432  
433  	union {
434  		unsigned long _pt_pad_2;
435  #if ALLOC_SPLIT_PTLOCKS
436  		spinlock_t *ptl;
437  #else
438  		spinlock_t ptl;
439  #endif
440  	};
441  	unsigned int __page_type;
442  	atomic_t _refcount;
443  #ifdef CONFIG_MEMCG
444  	unsigned long pt_memcg_data;
445  #endif
446  };
447  
448  #define TABLE_MATCH(pg, pt)						\
449  	static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
450  TABLE_MATCH(flags, __page_flags);
451  TABLE_MATCH(compound_head, pt_list);
452  TABLE_MATCH(compound_head, _pt_pad_1);
453  TABLE_MATCH(mapping, __page_mapping);
454  TABLE_MATCH(rcu_head, pt_rcu_head);
455  TABLE_MATCH(page_type, __page_type);
456  TABLE_MATCH(_refcount, _refcount);
457  #ifdef CONFIG_MEMCG
458  TABLE_MATCH(memcg_data, pt_memcg_data);
459  #endif
460  #undef TABLE_MATCH
461  static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
462  
463  #define ptdesc_page(pt)			(_Generic((pt),			\
464  	const struct ptdesc *:		(const struct page *)(pt),	\
465  	struct ptdesc *:		(struct page *)(pt)))
466  
467  #define ptdesc_folio(pt)		(_Generic((pt),			\
468  	const struct ptdesc *:		(const struct folio *)(pt),	\
469  	struct ptdesc *:		(struct folio *)(pt)))
470  
471  #define page_ptdesc(p)			(_Generic((p),			\
472  	const struct page *:		(const struct ptdesc *)(p),	\
473  	struct page *:			(struct ptdesc *)(p)))
474  
475  #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)476  static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
477  {
478  	atomic_set(&ptdesc->pt_share_count, 0);
479  }
480  
ptdesc_pmd_pts_inc(struct ptdesc * ptdesc)481  static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc)
482  {
483  	atomic_inc(&ptdesc->pt_share_count);
484  }
485  
ptdesc_pmd_pts_dec(struct ptdesc * ptdesc)486  static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc)
487  {
488  	atomic_dec(&ptdesc->pt_share_count);
489  }
490  
ptdesc_pmd_pts_count(struct ptdesc * ptdesc)491  static inline int ptdesc_pmd_pts_count(struct ptdesc *ptdesc)
492  {
493  	return atomic_read(&ptdesc->pt_share_count);
494  }
495  #else
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)496  static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
497  {
498  }
499  #endif
500  
501  /*
502   * Used for sizing the vmemmap region on some architectures
503   */
504  #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
505  
506  #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
507  #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
508  
509  /*
510   * page_private can be used on tail pages.  However, PagePrivate is only
511   * checked by the VM on the head page.  So page_private on the tail pages
512   * should be used for data that's ancillary to the head page (eg attaching
513   * buffer heads to tail pages after attaching buffer heads to the head page)
514   */
515  #define page_private(page)		((page)->private)
516  
set_page_private(struct page * page,unsigned long private)517  static inline void set_page_private(struct page *page, unsigned long private)
518  {
519  	page->private = private;
520  }
521  
folio_get_private(struct folio * folio)522  static inline void *folio_get_private(struct folio *folio)
523  {
524  	return folio->private;
525  }
526  
527  struct page_frag_cache {
528  	void * va;
529  #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
530  	__u16 offset;
531  	__u16 size;
532  #else
533  	__u32 offset;
534  #endif
535  	/* we maintain a pagecount bias, so that we dont dirty cache line
536  	 * containing page->_refcount every time we allocate a fragment.
537  	 */
538  	unsigned int		pagecnt_bias;
539  	bool pfmemalloc;
540  };
541  
542  typedef unsigned long vm_flags_t;
543  
544  /*
545   * A region containing a mapping of a non-memory backed file under NOMMU
546   * conditions.  These are held in a global tree and are pinned by the VMAs that
547   * map parts of them.
548   */
549  struct vm_region {
550  	struct rb_node	vm_rb;		/* link in global region tree */
551  	vm_flags_t	vm_flags;	/* VMA vm_flags */
552  	unsigned long	vm_start;	/* start address of region */
553  	unsigned long	vm_end;		/* region initialised to here */
554  	unsigned long	vm_top;		/* region allocated to here */
555  	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
556  	struct file	*vm_file;	/* the backing file or NULL */
557  
558  	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
559  	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
560  						* this region */
561  };
562  
563  #ifdef CONFIG_USERFAULTFD
564  #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
565  struct vm_userfaultfd_ctx {
566  	struct userfaultfd_ctx *ctx;
567  };
568  #else /* CONFIG_USERFAULTFD */
569  #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
570  struct vm_userfaultfd_ctx {};
571  #endif /* CONFIG_USERFAULTFD */
572  
573  struct anon_vma_name {
574  	struct kref kref;
575  	/* The name needs to be at the end because it is dynamically sized. */
576  	char name[];
577  };
578  
579  struct vma_lock {
580  	struct rw_semaphore lock;
581  };
582  
583  struct vma_numab_state {
584  	/*
585  	 * Initialised as time in 'jiffies' after which VMA
586  	 * should be scanned.  Delays first scan of new VMA by at
587  	 * least sysctl_numa_balancing_scan_delay:
588  	 */
589  	unsigned long next_scan;
590  
591  	/*
592  	 * Time in jiffies when pids_active[] is reset to
593  	 * detect phase change behaviour:
594  	 */
595  	unsigned long pids_active_reset;
596  
597  	/*
598  	 * Approximate tracking of PIDs that trapped a NUMA hinting
599  	 * fault. May produce false positives due to hash collisions.
600  	 *
601  	 *   [0] Previous PID tracking
602  	 *   [1] Current PID tracking
603  	 *
604  	 * Window moves after next_pid_reset has expired approximately
605  	 * every VMA_PID_RESET_PERIOD jiffies:
606  	 */
607  	unsigned long pids_active[2];
608  
609  	/* MM scan sequence ID when scan first started after VMA creation */
610  	int start_scan_seq;
611  
612  	/*
613  	 * MM scan sequence ID when the VMA was last completely scanned.
614  	 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
615  	 */
616  	int prev_scan_seq;
617  };
618  
619  /*
620   * This struct describes a virtual memory area. There is one of these
621   * per VM-area/task. A VM area is any part of the process virtual memory
622   * space that has a special rule for the page-fault handlers (ie a shared
623   * library, the executable area etc).
624   */
625  struct vm_area_struct {
626  	/* The first cache line has the info for VMA tree walking. */
627  
628  	union {
629  		struct {
630  			/* VMA covers [vm_start; vm_end) addresses within mm */
631  			unsigned long vm_start;
632  			unsigned long vm_end;
633  		};
634  #ifdef CONFIG_PER_VMA_LOCK
635  		struct rcu_head vm_rcu;	/* Used for deferred freeing. */
636  #endif
637  	};
638  
639  	struct mm_struct *vm_mm;	/* The address space we belong to. */
640  	pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
641  
642  	/*
643  	 * Flags, see mm.h.
644  	 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
645  	 */
646  	union {
647  		const vm_flags_t vm_flags;
648  		vm_flags_t __private __vm_flags;
649  	};
650  
651  #ifdef CONFIG_PER_VMA_LOCK
652  	/*
653  	 * Can only be written (using WRITE_ONCE()) while holding both:
654  	 *  - mmap_lock (in write mode)
655  	 *  - vm_lock->lock (in write mode)
656  	 * Can be read reliably while holding one of:
657  	 *  - mmap_lock (in read or write mode)
658  	 *  - vm_lock->lock (in read or write mode)
659  	 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
660  	 * while holding nothing (except RCU to keep the VMA struct allocated).
661  	 *
662  	 * This sequence counter is explicitly allowed to overflow; sequence
663  	 * counter reuse can only lead to occasional unnecessary use of the
664  	 * slowpath.
665  	 */
666  	int vm_lock_seq;
667  	struct vma_lock *vm_lock;
668  
669  	/* Flag to indicate areas detached from the mm->mm_mt tree */
670  	bool detached;
671  #endif
672  
673  	/*
674  	 * For areas with an address space and backing store,
675  	 * linkage into the address_space->i_mmap interval tree.
676  	 *
677  	 */
678  	struct {
679  		struct rb_node rb;
680  		unsigned long rb_subtree_last;
681  	} shared;
682  
683  	/*
684  	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
685  	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
686  	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
687  	 * or brk vma (with NULL file) can only be in an anon_vma list.
688  	 */
689  	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
690  					  * page_table_lock */
691  	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
692  
693  	/* Function pointers to deal with this struct. */
694  	const struct vm_operations_struct *vm_ops;
695  
696  	/* Information about our backing store: */
697  	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
698  					   units */
699  	struct file * vm_file;		/* File we map to (can be NULL). */
700  	void * vm_private_data;		/* was vm_pte (shared mem) */
701  
702  #ifdef CONFIG_ANON_VMA_NAME
703  	/*
704  	 * For private and shared anonymous mappings, a pointer to a null
705  	 * terminated string containing the name given to the vma, or NULL if
706  	 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
707  	 */
708  	struct anon_vma_name *anon_name;
709  #endif
710  #ifdef CONFIG_SWAP
711  	atomic_long_t swap_readahead_info;
712  #endif
713  #ifndef CONFIG_MMU
714  	struct vm_region *vm_region;	/* NOMMU mapping region */
715  #endif
716  #ifdef CONFIG_NUMA
717  	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
718  #endif
719  #ifdef CONFIG_NUMA_BALANCING
720  	struct vma_numab_state *numab_state;	/* NUMA Balancing state */
721  #endif
722  	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
723  } __randomize_layout;
724  
725  #ifdef CONFIG_SCHED_MM_CID
726  struct mm_cid {
727  	u64 time;
728  	int cid;
729  };
730  #endif
731  
732  struct kioctx_table;
733  struct mm_struct {
734  	struct {
735  		/*
736  		 * Fields which are often written to are placed in a separate
737  		 * cache line.
738  		 */
739  		struct {
740  			/**
741  			 * @mm_count: The number of references to &struct
742  			 * mm_struct (@mm_users count as 1).
743  			 *
744  			 * Use mmgrab()/mmdrop() to modify. When this drops to
745  			 * 0, the &struct mm_struct is freed.
746  			 */
747  			atomic_t mm_count;
748  		} ____cacheline_aligned_in_smp;
749  
750  		struct maple_tree mm_mt;
751  #ifdef CONFIG_MMU
752  		unsigned long (*get_unmapped_area) (struct file *filp,
753  				unsigned long addr, unsigned long len,
754  				unsigned long pgoff, unsigned long flags);
755  #endif
756  		unsigned long mmap_base;	/* base of mmap area */
757  		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
758  #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
759  		/* Base addresses for compatible mmap() */
760  		unsigned long mmap_compat_base;
761  		unsigned long mmap_compat_legacy_base;
762  #endif
763  		unsigned long task_size;	/* size of task vm space */
764  		pgd_t * pgd;
765  
766  #ifdef CONFIG_MEMBARRIER
767  		/**
768  		 * @membarrier_state: Flags controlling membarrier behavior.
769  		 *
770  		 * This field is close to @pgd to hopefully fit in the same
771  		 * cache-line, which needs to be touched by switch_mm().
772  		 */
773  		atomic_t membarrier_state;
774  #endif
775  
776  		/**
777  		 * @mm_users: The number of users including userspace.
778  		 *
779  		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
780  		 * drops to 0 (i.e. when the task exits and there are no other
781  		 * temporary reference holders), we also release a reference on
782  		 * @mm_count (which may then free the &struct mm_struct if
783  		 * @mm_count also drops to 0).
784  		 */
785  		atomic_t mm_users;
786  
787  #ifdef CONFIG_SCHED_MM_CID
788  		/**
789  		 * @pcpu_cid: Per-cpu current cid.
790  		 *
791  		 * Keep track of the currently allocated mm_cid for each cpu.
792  		 * The per-cpu mm_cid values are serialized by their respective
793  		 * runqueue locks.
794  		 */
795  		struct mm_cid __percpu *pcpu_cid;
796  		/*
797  		 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
798  		 *
799  		 * When the next mm_cid scan is due (in jiffies).
800  		 */
801  		unsigned long mm_cid_next_scan;
802  #endif
803  #ifdef CONFIG_MMU
804  		atomic_long_t pgtables_bytes;	/* size of all page tables */
805  #endif
806  		int map_count;			/* number of VMAs */
807  
808  		spinlock_t page_table_lock; /* Protects page tables and some
809  					     * counters
810  					     */
811  		/*
812  		 * With some kernel config, the current mmap_lock's offset
813  		 * inside 'mm_struct' is at 0x120, which is very optimal, as
814  		 * its two hot fields 'count' and 'owner' sit in 2 different
815  		 * cachelines,  and when mmap_lock is highly contended, both
816  		 * of the 2 fields will be accessed frequently, current layout
817  		 * will help to reduce cache bouncing.
818  		 *
819  		 * So please be careful with adding new fields before
820  		 * mmap_lock, which can easily push the 2 fields into one
821  		 * cacheline.
822  		 */
823  		struct rw_semaphore mmap_lock;
824  
825  		struct list_head mmlist; /* List of maybe swapped mm's.	These
826  					  * are globally strung together off
827  					  * init_mm.mmlist, and are protected
828  					  * by mmlist_lock
829  					  */
830  #ifdef CONFIG_PER_VMA_LOCK
831  		/*
832  		 * This field has lock-like semantics, meaning it is sometimes
833  		 * accessed with ACQUIRE/RELEASE semantics.
834  		 * Roughly speaking, incrementing the sequence number is
835  		 * equivalent to releasing locks on VMAs; reading the sequence
836  		 * number can be part of taking a read lock on a VMA.
837  		 *
838  		 * Can be modified under write mmap_lock using RELEASE
839  		 * semantics.
840  		 * Can be read with no other protection when holding write
841  		 * mmap_lock.
842  		 * Can be read with ACQUIRE semantics if not holding write
843  		 * mmap_lock.
844  		 */
845  		int mm_lock_seq;
846  #endif
847  
848  
849  		unsigned long hiwater_rss; /* High-watermark of RSS usage */
850  		unsigned long hiwater_vm;  /* High-water virtual memory usage */
851  
852  		unsigned long total_vm;	   /* Total pages mapped */
853  		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
854  		atomic64_t    pinned_vm;   /* Refcount permanently increased */
855  		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
856  		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
857  		unsigned long stack_vm;	   /* VM_STACK */
858  		unsigned long def_flags;
859  
860  		/**
861  		 * @write_protect_seq: Locked when any thread is write
862  		 * protecting pages mapped by this mm to enforce a later COW,
863  		 * for instance during page table copying for fork().
864  		 */
865  		seqcount_t write_protect_seq;
866  
867  		spinlock_t arg_lock; /* protect the below fields */
868  
869  		unsigned long start_code, end_code, start_data, end_data;
870  		unsigned long start_brk, brk, start_stack;
871  		unsigned long arg_start, arg_end, env_start, env_end;
872  
873  		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
874  
875  		struct percpu_counter rss_stat[NR_MM_COUNTERS];
876  
877  		struct linux_binfmt *binfmt;
878  
879  		/* Architecture-specific MM context */
880  		mm_context_t context;
881  
882  		unsigned long flags; /* Must use atomic bitops to access */
883  
884  #ifdef CONFIG_AIO
885  		spinlock_t			ioctx_lock;
886  		struct kioctx_table __rcu	*ioctx_table;
887  #endif
888  #ifdef CONFIG_MEMCG
889  		/*
890  		 * "owner" points to a task that is regarded as the canonical
891  		 * user/owner of this mm. All of the following must be true in
892  		 * order for it to be changed:
893  		 *
894  		 * current == mm->owner
895  		 * current->mm != mm
896  		 * new_owner->mm == mm
897  		 * new_owner->alloc_lock is held
898  		 */
899  		struct task_struct __rcu *owner;
900  #endif
901  		struct user_namespace *user_ns;
902  
903  		/* store ref to file /proc/<pid>/exe symlink points to */
904  		struct file __rcu *exe_file;
905  #ifdef CONFIG_MMU_NOTIFIER
906  		struct mmu_notifier_subscriptions *notifier_subscriptions;
907  #endif
908  #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
909  		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
910  #endif
911  #ifdef CONFIG_NUMA_BALANCING
912  		/*
913  		 * numa_next_scan is the next time that PTEs will be remapped
914  		 * PROT_NONE to trigger NUMA hinting faults; such faults gather
915  		 * statistics and migrate pages to new nodes if necessary.
916  		 */
917  		unsigned long numa_next_scan;
918  
919  		/* Restart point for scanning and remapping PTEs. */
920  		unsigned long numa_scan_offset;
921  
922  		/* numa_scan_seq prevents two threads remapping PTEs. */
923  		int numa_scan_seq;
924  #endif
925  		/*
926  		 * An operation with batched TLB flushing is going on. Anything
927  		 * that can move process memory needs to flush the TLB when
928  		 * moving a PROT_NONE mapped page.
929  		 */
930  		atomic_t tlb_flush_pending;
931  #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
932  		/* See flush_tlb_batched_pending() */
933  		atomic_t tlb_flush_batched;
934  #endif
935  		struct uprobes_state uprobes_state;
936  #ifdef CONFIG_PREEMPT_RT
937  		struct rcu_head delayed_drop;
938  #endif
939  #ifdef CONFIG_HUGETLB_PAGE
940  		atomic_long_t hugetlb_usage;
941  #endif
942  		struct work_struct async_put_work;
943  
944  #ifdef CONFIG_IOMMU_SVA
945  		u32 pasid;
946  #endif
947  #ifdef CONFIG_KSM
948  		/*
949  		 * Represent how many pages of this process are involved in KSM
950  		 * merging (not including ksm_zero_pages).
951  		 */
952  		unsigned long ksm_merging_pages;
953  		/*
954  		 * Represent how many pages are checked for ksm merging
955  		 * including merged and not merged.
956  		 */
957  		unsigned long ksm_rmap_items;
958  		/*
959  		 * Represent how many empty pages are merged with kernel zero
960  		 * pages when enabling KSM use_zero_pages.
961  		 */
962  		atomic_long_t ksm_zero_pages;
963  #endif /* CONFIG_KSM */
964  #ifdef CONFIG_LRU_GEN
965  		struct {
966  			/* this mm_struct is on lru_gen_mm_list */
967  			struct list_head list;
968  			/*
969  			 * Set when switching to this mm_struct, as a hint of
970  			 * whether it has been used since the last time per-node
971  			 * page table walkers cleared the corresponding bits.
972  			 */
973  			unsigned long bitmap;
974  #ifdef CONFIG_MEMCG
975  			/* points to the memcg of "owner" above */
976  			struct mem_cgroup *memcg;
977  #endif
978  		} lru_gen;
979  #endif /* CONFIG_LRU_GEN */
980  	} __randomize_layout;
981  
982  	/*
983  	 * The mm_cpumask needs to be at the end of mm_struct, because it
984  	 * is dynamically sized based on nr_cpu_ids.
985  	 */
986  	unsigned long cpu_bitmap[];
987  };
988  
989  #define MM_MT_FLAGS	(MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
990  			 MT_FLAGS_USE_RCU)
991  extern struct mm_struct init_mm;
992  
993  /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)994  static inline void mm_init_cpumask(struct mm_struct *mm)
995  {
996  	unsigned long cpu_bitmap = (unsigned long)mm;
997  
998  	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
999  	cpumask_clear((struct cpumask *)cpu_bitmap);
1000  }
1001  
1002  /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)1003  static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1004  {
1005  	return (struct cpumask *)&mm->cpu_bitmap;
1006  }
1007  
1008  #ifdef CONFIG_LRU_GEN
1009  
1010  struct lru_gen_mm_list {
1011  	/* mm_struct list for page table walkers */
1012  	struct list_head fifo;
1013  	/* protects the list above */
1014  	spinlock_t lock;
1015  };
1016  
1017  void lru_gen_add_mm(struct mm_struct *mm);
1018  void lru_gen_del_mm(struct mm_struct *mm);
1019  #ifdef CONFIG_MEMCG
1020  void lru_gen_migrate_mm(struct mm_struct *mm);
1021  #endif
1022  
lru_gen_init_mm(struct mm_struct * mm)1023  static inline void lru_gen_init_mm(struct mm_struct *mm)
1024  {
1025  	INIT_LIST_HEAD(&mm->lru_gen.list);
1026  	mm->lru_gen.bitmap = 0;
1027  #ifdef CONFIG_MEMCG
1028  	mm->lru_gen.memcg = NULL;
1029  #endif
1030  }
1031  
lru_gen_use_mm(struct mm_struct * mm)1032  static inline void lru_gen_use_mm(struct mm_struct *mm)
1033  {
1034  	/*
1035  	 * When the bitmap is set, page reclaim knows this mm_struct has been
1036  	 * used since the last time it cleared the bitmap. So it might be worth
1037  	 * walking the page tables of this mm_struct to clear the accessed bit.
1038  	 */
1039  	WRITE_ONCE(mm->lru_gen.bitmap, -1);
1040  }
1041  
1042  #else /* !CONFIG_LRU_GEN */
1043  
lru_gen_add_mm(struct mm_struct * mm)1044  static inline void lru_gen_add_mm(struct mm_struct *mm)
1045  {
1046  }
1047  
lru_gen_del_mm(struct mm_struct * mm)1048  static inline void lru_gen_del_mm(struct mm_struct *mm)
1049  {
1050  }
1051  
1052  #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)1053  static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1054  {
1055  }
1056  #endif
1057  
lru_gen_init_mm(struct mm_struct * mm)1058  static inline void lru_gen_init_mm(struct mm_struct *mm)
1059  {
1060  }
1061  
lru_gen_use_mm(struct mm_struct * mm)1062  static inline void lru_gen_use_mm(struct mm_struct *mm)
1063  {
1064  }
1065  
1066  #endif /* CONFIG_LRU_GEN */
1067  
1068  struct vma_iterator {
1069  	struct ma_state mas;
1070  };
1071  
1072  #define VMA_ITERATOR(name, __mm, __addr)				\
1073  	struct vma_iterator name = {					\
1074  		.mas = {						\
1075  			.tree = &(__mm)->mm_mt,				\
1076  			.index = __addr,				\
1077  			.node = MAS_START,				\
1078  		},							\
1079  	}
1080  
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1081  static inline void vma_iter_init(struct vma_iterator *vmi,
1082  		struct mm_struct *mm, unsigned long addr)
1083  {
1084  	mas_init(&vmi->mas, &mm->mm_mt, addr);
1085  }
1086  
1087  #ifdef CONFIG_SCHED_MM_CID
1088  
1089  enum mm_cid_state {
1090  	MM_CID_UNSET = -1U,		/* Unset state has lazy_put flag set. */
1091  	MM_CID_LAZY_PUT = (1U << 31),
1092  };
1093  
mm_cid_is_unset(int cid)1094  static inline bool mm_cid_is_unset(int cid)
1095  {
1096  	return cid == MM_CID_UNSET;
1097  }
1098  
mm_cid_is_lazy_put(int cid)1099  static inline bool mm_cid_is_lazy_put(int cid)
1100  {
1101  	return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1102  }
1103  
mm_cid_is_valid(int cid)1104  static inline bool mm_cid_is_valid(int cid)
1105  {
1106  	return !(cid & MM_CID_LAZY_PUT);
1107  }
1108  
mm_cid_set_lazy_put(int cid)1109  static inline int mm_cid_set_lazy_put(int cid)
1110  {
1111  	return cid | MM_CID_LAZY_PUT;
1112  }
1113  
mm_cid_clear_lazy_put(int cid)1114  static inline int mm_cid_clear_lazy_put(int cid)
1115  {
1116  	return cid & ~MM_CID_LAZY_PUT;
1117  }
1118  
1119  /* Accessor for struct mm_struct's cidmask. */
mm_cidmask(struct mm_struct * mm)1120  static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1121  {
1122  	unsigned long cid_bitmap = (unsigned long)mm;
1123  
1124  	cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1125  	/* Skip cpu_bitmap */
1126  	cid_bitmap += cpumask_size();
1127  	return (struct cpumask *)cid_bitmap;
1128  }
1129  
mm_init_cid(struct mm_struct * mm)1130  static inline void mm_init_cid(struct mm_struct *mm)
1131  {
1132  	int i;
1133  
1134  	for_each_possible_cpu(i) {
1135  		struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1136  
1137  		pcpu_cid->cid = MM_CID_UNSET;
1138  		pcpu_cid->time = 0;
1139  	}
1140  	cpumask_clear(mm_cidmask(mm));
1141  }
1142  
mm_alloc_cid(struct mm_struct * mm)1143  static inline int mm_alloc_cid(struct mm_struct *mm)
1144  {
1145  	mm->pcpu_cid = alloc_percpu(struct mm_cid);
1146  	if (!mm->pcpu_cid)
1147  		return -ENOMEM;
1148  	mm_init_cid(mm);
1149  	return 0;
1150  }
1151  
mm_destroy_cid(struct mm_struct * mm)1152  static inline void mm_destroy_cid(struct mm_struct *mm)
1153  {
1154  	free_percpu(mm->pcpu_cid);
1155  	mm->pcpu_cid = NULL;
1156  }
1157  
mm_cid_size(void)1158  static inline unsigned int mm_cid_size(void)
1159  {
1160  	return cpumask_size();
1161  }
1162  #else /* CONFIG_SCHED_MM_CID */
mm_init_cid(struct mm_struct * mm)1163  static inline void mm_init_cid(struct mm_struct *mm) { }
mm_alloc_cid(struct mm_struct * mm)1164  static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; }
mm_destroy_cid(struct mm_struct * mm)1165  static inline void mm_destroy_cid(struct mm_struct *mm) { }
mm_cid_size(void)1166  static inline unsigned int mm_cid_size(void)
1167  {
1168  	return 0;
1169  }
1170  #endif /* CONFIG_SCHED_MM_CID */
1171  
1172  struct mmu_gather;
1173  extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1174  extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1175  extern void tlb_finish_mmu(struct mmu_gather *tlb);
1176  
1177  struct vm_fault;
1178  
1179  /**
1180   * typedef vm_fault_t - Return type for page fault handlers.
1181   *
1182   * Page fault handlers return a bitmask of %VM_FAULT values.
1183   */
1184  typedef __bitwise unsigned int vm_fault_t;
1185  
1186  /**
1187   * enum vm_fault_reason - Page fault handlers return a bitmask of
1188   * these values to tell the core VM what happened when handling the
1189   * fault. Used to decide whether a process gets delivered SIGBUS or
1190   * just gets major/minor fault counters bumped up.
1191   *
1192   * @VM_FAULT_OOM:		Out Of Memory
1193   * @VM_FAULT_SIGBUS:		Bad access
1194   * @VM_FAULT_MAJOR:		Page read from storage
1195   * @VM_FAULT_HWPOISON:		Hit poisoned small page
1196   * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
1197   *				in upper bits
1198   * @VM_FAULT_SIGSEGV:		segmentation fault
1199   * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
1200   * @VM_FAULT_LOCKED:		->fault locked the returned page
1201   * @VM_FAULT_RETRY:		->fault blocked, must retry
1202   * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
1203   * @VM_FAULT_DONE_COW:		->fault has fully handled COW
1204   * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
1205   *				fsync() to complete (for synchronous page faults
1206   *				in DAX)
1207   * @VM_FAULT_COMPLETED:		->fault completed, meanwhile mmap lock released
1208   * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
1209   *
1210   */
1211  enum vm_fault_reason {
1212  	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
1213  	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
1214  	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
1215  	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
1216  	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1217  	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
1218  	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
1219  	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
1220  	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
1221  	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
1222  	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
1223  	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
1224  	VM_FAULT_COMPLETED      = (__force vm_fault_t)0x004000,
1225  	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
1226  };
1227  
1228  /* Encode hstate index for a hwpoisoned large page */
1229  #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1230  #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1231  
1232  #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
1233  			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
1234  			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1235  
1236  #define VM_FAULT_RESULT_TRACE \
1237  	{ VM_FAULT_OOM,                 "OOM" },	\
1238  	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
1239  	{ VM_FAULT_MAJOR,               "MAJOR" },	\
1240  	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
1241  	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
1242  	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
1243  	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
1244  	{ VM_FAULT_LOCKED,              "LOCKED" },	\
1245  	{ VM_FAULT_RETRY,               "RETRY" },	\
1246  	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
1247  	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
1248  	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" },	\
1249  	{ VM_FAULT_COMPLETED,           "COMPLETED" }
1250  
1251  struct vm_special_mapping {
1252  	const char *name;	/* The name, e.g. "[vdso]". */
1253  
1254  	/*
1255  	 * If .fault is not provided, this points to a
1256  	 * NULL-terminated array of pages that back the special mapping.
1257  	 *
1258  	 * This must not be NULL unless .fault is provided.
1259  	 */
1260  	struct page **pages;
1261  
1262  	/*
1263  	 * If non-NULL, then this is called to resolve page faults
1264  	 * on the special mapping.  If used, .pages is not checked.
1265  	 */
1266  	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1267  				struct vm_area_struct *vma,
1268  				struct vm_fault *vmf);
1269  
1270  	int (*mremap)(const struct vm_special_mapping *sm,
1271  		     struct vm_area_struct *new_vma);
1272  };
1273  
1274  enum tlb_flush_reason {
1275  	TLB_FLUSH_ON_TASK_SWITCH,
1276  	TLB_REMOTE_SHOOTDOWN,
1277  	TLB_LOCAL_SHOOTDOWN,
1278  	TLB_LOCAL_MM_SHOOTDOWN,
1279  	TLB_REMOTE_SEND_IPI,
1280  	NR_TLB_FLUSH_REASONS,
1281  };
1282  
1283  /**
1284   * enum fault_flag - Fault flag definitions.
1285   * @FAULT_FLAG_WRITE: Fault was a write fault.
1286   * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1287   * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1288   * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1289   * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1290   * @FAULT_FLAG_TRIED: The fault has been tried once.
1291   * @FAULT_FLAG_USER: The fault originated in userspace.
1292   * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1293   * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1294   * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1295   * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1296   *                      COW mapping, making sure that an exclusive anon page is
1297   *                      mapped after the fault.
1298   * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1299   *                        We should only access orig_pte if this flag set.
1300   * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1301   *
1302   * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1303   * whether we would allow page faults to retry by specifying these two
1304   * fault flags correctly.  Currently there can be three legal combinations:
1305   *
1306   * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
1307   *                              this is the first try
1308   *
1309   * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
1310   *                              we've already tried at least once
1311   *
1312   * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1313   *
1314   * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1315   * be used.  Note that page faults can be allowed to retry for multiple times,
1316   * in which case we'll have an initial fault with flags (a) then later on
1317   * continuous faults with flags (b).  We should always try to detect pending
1318   * signals before a retry to make sure the continuous page faults can still be
1319   * interrupted if necessary.
1320   *
1321   * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1322   * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1323   * applied to mappings that are not COW mappings.
1324   */
1325  enum fault_flag {
1326  	FAULT_FLAG_WRITE =		1 << 0,
1327  	FAULT_FLAG_MKWRITE =		1 << 1,
1328  	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
1329  	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
1330  	FAULT_FLAG_KILLABLE =		1 << 4,
1331  	FAULT_FLAG_TRIED = 		1 << 5,
1332  	FAULT_FLAG_USER =		1 << 6,
1333  	FAULT_FLAG_REMOTE =		1 << 7,
1334  	FAULT_FLAG_INSTRUCTION =	1 << 8,
1335  	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
1336  	FAULT_FLAG_UNSHARE =		1 << 10,
1337  	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
1338  	FAULT_FLAG_VMA_LOCK =		1 << 12,
1339  };
1340  
1341  typedef unsigned int __bitwise zap_flags_t;
1342  
1343  /*
1344   * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1345   * other. Here is what they mean, and how to use them:
1346   *
1347   *
1348   * FIXME: For pages which are part of a filesystem, mappings are subject to the
1349   * lifetime enforced by the filesystem and we need guarantees that longterm
1350   * users like RDMA and V4L2 only establish mappings which coordinate usage with
1351   * the filesystem.  Ideas for this coordination include revoking the longterm
1352   * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
1353   * added after the problem with filesystems was found FS DAX VMAs are
1354   * specifically failed.  Filesystem pages are still subject to bugs and use of
1355   * FOLL_LONGTERM should be avoided on those pages.
1356   *
1357   * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1358   * that region.  And so, CMA attempts to migrate the page before pinning, when
1359   * FOLL_LONGTERM is specified.
1360   *
1361   * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1362   * but an additional pin counting system) will be invoked. This is intended for
1363   * anything that gets a page reference and then touches page data (for example,
1364   * Direct IO). This lets the filesystem know that some non-file-system entity is
1365   * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1366   * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1367   * a call to unpin_user_page().
1368   *
1369   * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1370   * and separate refcounting mechanisms, however, and that means that each has
1371   * its own acquire and release mechanisms:
1372   *
1373   *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1374   *
1375   *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1376   *
1377   * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1378   * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1379   * calls applied to them, and that's perfectly OK. This is a constraint on the
1380   * callers, not on the pages.)
1381   *
1382   * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1383   * directly by the caller. That's in order to help avoid mismatches when
1384   * releasing pages: get_user_pages*() pages must be released via put_page(),
1385   * while pin_user_pages*() pages must be released via unpin_user_page().
1386   *
1387   * Please see Documentation/core-api/pin_user_pages.rst for more information.
1388   */
1389  
1390  enum {
1391  	/* check pte is writable */
1392  	FOLL_WRITE = 1 << 0,
1393  	/* do get_page on page */
1394  	FOLL_GET = 1 << 1,
1395  	/* give error on hole if it would be zero */
1396  	FOLL_DUMP = 1 << 2,
1397  	/* get_user_pages read/write w/o permission */
1398  	FOLL_FORCE = 1 << 3,
1399  	/*
1400  	 * if a disk transfer is needed, start the IO and return without waiting
1401  	 * upon it
1402  	 */
1403  	FOLL_NOWAIT = 1 << 4,
1404  	/* do not fault in pages */
1405  	FOLL_NOFAULT = 1 << 5,
1406  	/* check page is hwpoisoned */
1407  	FOLL_HWPOISON = 1 << 6,
1408  	/* don't do file mappings */
1409  	FOLL_ANON = 1 << 7,
1410  	/*
1411  	 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1412  	 * time period _often_ under userspace control.  This is in contrast to
1413  	 * iov_iter_get_pages(), whose usages are transient.
1414  	 */
1415  	FOLL_LONGTERM = 1 << 8,
1416  	/* split huge pmd before returning */
1417  	FOLL_SPLIT_PMD = 1 << 9,
1418  	/* allow returning PCI P2PDMA pages */
1419  	FOLL_PCI_P2PDMA = 1 << 10,
1420  	/* allow interrupts from generic signals */
1421  	FOLL_INTERRUPTIBLE = 1 << 11,
1422  	/*
1423  	 * Always honor (trigger) NUMA hinting faults.
1424  	 *
1425  	 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1426  	 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1427  	 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1428  	 * hinting faults.
1429  	 */
1430  	FOLL_HONOR_NUMA_FAULT = 1 << 12,
1431  
1432  	/* See also internal only FOLL flags in mm/internal.h */
1433  };
1434  
1435  #endif /* _LINUX_MM_TYPES_H */
1436