1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11 #include "cpu-features.h"
12
13 /* internal defines */
14
15 /*
16 * Save pc_save across a branch, so that we may restore the value from
17 * before the branch at the point the label is emitted.
18 */
19 typedef struct DisasLabel {
20 TCGLabel *label;
21 target_ulong pc_save;
22 } DisasLabel;
23
24 typedef struct DisasContext {
25 DisasContextBase base;
26 const ARMISARegisters *isar;
27
28 /* The address of the current instruction being translated. */
29 target_ulong pc_curr;
30 /*
31 * For CF_PCREL, the full value of cpu_pc is not known
32 * (although the page offset is known). For convenience, the
33 * translation loop uses the full virtual address that triggered
34 * the translation, from base.pc_start through pc_curr.
35 * For efficiency, we do not update cpu_pc for every instruction.
36 * Instead, pc_save has the value of pc_curr at the time of the
37 * last update to cpu_pc, which allows us to compute the addend
38 * needed to bring cpu_pc current: pc_curr - pc_save.
39 * If cpu_pc now contains the destination of an indirect branch,
40 * pc_save contains -1 to indicate that relative updates are no
41 * longer possible.
42 */
43 target_ulong pc_save;
44 target_ulong page_start;
45 uint32_t insn;
46 /* Nonzero if this instruction has been conditionally skipped. */
47 int condjmp;
48 /* The label that will be jumped to when the instruction is skipped. */
49 DisasLabel condlabel;
50 /* Thumb-2 conditional execution bits. */
51 int condexec_mask;
52 int condexec_cond;
53 /* M-profile ECI/ICI exception-continuable instruction state */
54 int eci;
55 /*
56 * trans_ functions for insns which are continuable should set this true
57 * after decode (ie after any UNDEF checks)
58 */
59 bool eci_handled;
60 int sctlr_b;
61 MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63 int user;
64 #endif
65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66 uint8_t tbii; /* TBI1|TBI0 for insns */
67 uint8_t tbid; /* TBI1|TBI0 for data */
68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */
69 bool ns; /* Use non-secure CPREG bank on access */
70 int fp_excp_el; /* FP exception EL or 0 if enabled */
71 int sve_excp_el; /* SVE exception EL or 0 if enabled */
72 int sme_excp_el; /* SME exception EL or 0 if enabled */
73 int vl; /* current vector length in bytes */
74 int svl; /* current streaming vector length in bytes */
75 bool vfp_enabled; /* FP enabled via FPSCR.EN */
76 int vec_len;
77 int vec_stride;
78 bool v7m_handler_mode;
79 bool v8m_secure; /* true if v8M and we're in Secure mode */
80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83 bool v7m_lspact; /* FPCCR.LSPACT set */
84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85 * so that top level loop can generate correct syndrome information.
86 */
87 uint32_t svc_imm;
88 int current_el;
89 GHashTable *cp_regs;
90 uint64_t features; /* CPU features bits */
91 bool aarch64;
92 bool thumb;
93 bool lse2;
94 /* Because unallocated encodings generate different exception syndrome
95 * information from traps due to FP being disabled, we can't do a single
96 * "is fp access disabled" check at a high level in the decode tree.
97 * To help in catching bugs where the access check was forgotten in some
98 * code path, we set this flag when the access check is done, and assert
99 * that it is set at the point where we actually touch the FP regs.
100 */
101 bool fp_access_checked;
102 bool sve_access_checked;
103 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
104 * single-step support).
105 */
106 bool ss_active;
107 bool pstate_ss;
108 /* True if the insn just emitted was a load-exclusive instruction
109 * (necessary for syndrome information for single step exceptions),
110 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
111 */
112 bool is_ldex;
113 /* True if AccType_UNPRIV should be used for LDTR et al */
114 bool unpriv;
115 /* True if v8.3-PAuth is active. */
116 bool pauth_active;
117 /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */
118 bool ata[2];
119 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */
120 bool mte_active[2];
121 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */
122 bool bt;
123 /* True if any CP15 access is trapped by HSTR_EL2 */
124 bool hstr_active;
125 /* True if memory operations require alignment */
126 bool align_mem;
127 /* True if PSTATE.IL is set */
128 bool pstate_il;
129 /* True if PSTATE.SM is set. */
130 bool pstate_sm;
131 /* True if PSTATE.ZA is set. */
132 bool pstate_za;
133 /* True if non-streaming insns should raise an SME Streaming exception. */
134 bool sme_trap_nonstreaming;
135 /* True if the current instruction is non-streaming. */
136 bool is_nonstreaming;
137 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
138 bool mve_no_pred;
139 /* True if fine-grained traps are active */
140 bool fgt_active;
141 /* True if fine-grained trap on SVC is enabled */
142 bool fgt_svc;
143 /* True if a trap on ERET is enabled (FGT or NV) */
144 bool trap_eret;
145 /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
146 bool naa;
147 /* True if FEAT_NV HCR_EL2.NV is enabled */
148 bool nv;
149 /* True if NV enabled and HCR_EL2.NV1 is set */
150 bool nv1;
151 /* True if NV enabled and HCR_EL2.NV2 is set */
152 bool nv2;
153 /* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */
154 bool nv2_mem_e20;
155 /* True if NV2 enabled and NV2 RAM accesses are big-endian */
156 bool nv2_mem_be;
157 /*
158 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
159 * < 0, set by the current instruction.
160 */
161 int8_t btype;
162 /* A copy of cpu->dcz_blocksize. */
163 uint8_t dcz_blocksize;
164 /* A copy of cpu->gm_blocksize. */
165 uint8_t gm_blocksize;
166 /* True if the current insn_start has been updated. */
167 bool insn_start_updated;
168 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
169 int c15_cpar;
170 /* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */
171 uint32_t nv2_redirect_offset;
172 } DisasContext;
173
174 typedef struct DisasCompare {
175 TCGCond cond;
176 TCGv_i32 value;
177 } DisasCompare;
178
179 /* Share the TCG temporaries common between 32 and 64 bit modes. */
180 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
181 extern TCGv_i64 cpu_exclusive_addr;
182 extern TCGv_i64 cpu_exclusive_val;
183
184 /*
185 * Constant expanders for the decoders.
186 */
187
negate(DisasContext * s,int x)188 static inline int negate(DisasContext *s, int x)
189 {
190 return -x;
191 }
192
plus_1(DisasContext * s,int x)193 static inline int plus_1(DisasContext *s, int x)
194 {
195 return x + 1;
196 }
197
plus_2(DisasContext * s,int x)198 static inline int plus_2(DisasContext *s, int x)
199 {
200 return x + 2;
201 }
202
plus_12(DisasContext * s,int x)203 static inline int plus_12(DisasContext *s, int x)
204 {
205 return x + 12;
206 }
207
times_2(DisasContext * s,int x)208 static inline int times_2(DisasContext *s, int x)
209 {
210 return x * 2;
211 }
212
times_4(DisasContext * s,int x)213 static inline int times_4(DisasContext *s, int x)
214 {
215 return x * 4;
216 }
217
times_8(DisasContext * s,int x)218 static inline int times_8(DisasContext *s, int x)
219 {
220 return x * 8;
221 }
222
times_2_plus_1(DisasContext * s,int x)223 static inline int times_2_plus_1(DisasContext *s, int x)
224 {
225 return x * 2 + 1;
226 }
227
rsub_64(DisasContext * s,int x)228 static inline int rsub_64(DisasContext *s, int x)
229 {
230 return 64 - x;
231 }
232
rsub_32(DisasContext * s,int x)233 static inline int rsub_32(DisasContext *s, int x)
234 {
235 return 32 - x;
236 }
237
rsub_16(DisasContext * s,int x)238 static inline int rsub_16(DisasContext *s, int x)
239 {
240 return 16 - x;
241 }
242
rsub_8(DisasContext * s,int x)243 static inline int rsub_8(DisasContext *s, int x)
244 {
245 return 8 - x;
246 }
247
shl_12(DisasContext * s,int x)248 static inline int shl_12(DisasContext *s, int x)
249 {
250 return x << 12;
251 }
252
xor_2(DisasContext * s,int x)253 static inline int xor_2(DisasContext *s, int x)
254 {
255 return x ^ 2;
256 }
257
neon_3same_fp_size(DisasContext * s,int x)258 static inline int neon_3same_fp_size(DisasContext *s, int x)
259 {
260 /* Convert 0==fp32, 1==fp16 into a MO_* value */
261 return MO_32 - x;
262 }
263
arm_dc_feature(DisasContext * dc,int feature)264 static inline int arm_dc_feature(DisasContext *dc, int feature)
265 {
266 return (dc->features & (1ULL << feature)) != 0;
267 }
268
get_mem_index(DisasContext * s)269 static inline int get_mem_index(DisasContext *s)
270 {
271 return arm_to_core_mmu_idx(s->mmu_idx);
272 }
273
disas_set_insn_syndrome(DisasContext * s,uint32_t syn)274 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
275 {
276 /* We don't need to save all of the syndrome so we mask and shift
277 * out unneeded bits to help the sleb128 encoder do a better job.
278 */
279 syn &= ARM_INSN_START_WORD2_MASK;
280 syn >>= ARM_INSN_START_WORD2_SHIFT;
281
282 /* Check for multiple updates. */
283 assert(!s->insn_start_updated);
284 s->insn_start_updated = true;
285 tcg_set_insn_start_param(s->base.insn_start, 2, syn);
286 }
287
curr_insn_len(DisasContext * s)288 static inline int curr_insn_len(DisasContext *s)
289 {
290 return s->base.pc_next - s->pc_curr;
291 }
292
293 /* is_jmp field values */
294 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
295 /* CPU state was modified dynamically; exit to main loop for interrupts. */
296 #define DISAS_UPDATE_EXIT DISAS_TARGET_1
297 /* These instructions trap after executing, so the A32/T32 decoder must
298 * defer them until after the conditional execution state has been updated.
299 * WFI also needs special handling when single-stepping.
300 */
301 #define DISAS_WFI DISAS_TARGET_2
302 #define DISAS_SWI DISAS_TARGET_3
303 /* WFE */
304 #define DISAS_WFE DISAS_TARGET_4
305 #define DISAS_HVC DISAS_TARGET_5
306 #define DISAS_SMC DISAS_TARGET_6
307 #define DISAS_YIELD DISAS_TARGET_7
308 /* M profile branch which might be an exception return (and so needs
309 * custom end-of-TB code)
310 */
311 #define DISAS_BX_EXCRET DISAS_TARGET_8
312 /*
313 * For instructions which want an immediate exit to the main loop, as opposed
314 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this
315 * doesn't write the PC on exiting the translation loop so you need to ensure
316 * something (gen_a64_update_pc or runtime helper) has done so before we reach
317 * return from cpu_tb_exec.
318 */
319 #define DISAS_EXIT DISAS_TARGET_9
320 /* CPU state was modified dynamically; no need to exit, but do not chain. */
321 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10
322
323 #ifdef TARGET_AARCH64
324 void a64_translate_init(void);
325 void gen_a64_update_pc(DisasContext *s, target_long diff);
326 extern const TranslatorOps aarch64_translator_ops;
327 #else
a64_translate_init(void)328 static inline void a64_translate_init(void)
329 {
330 }
331
gen_a64_update_pc(DisasContext * s,target_long diff)332 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
333 {
334 }
335 #endif
336
337 void arm_test_cc(DisasCompare *cmp, int cc);
338 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
339 void arm_gen_test_cc(int cc, TCGLabel *label);
340 MemOp pow2_align(unsigned i);
341 void unallocated_encoding(DisasContext *s);
342 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
343 uint32_t syn, uint32_t target_el);
344 void gen_exception_insn(DisasContext *s, target_long pc_diff,
345 int excp, uint32_t syn);
346
347 /* Return state of Alternate Half-precision flag, caller frees result */
get_ahp_flag(void)348 static inline TCGv_i32 get_ahp_flag(void)
349 {
350 TCGv_i32 ret = tcg_temp_new_i32();
351
352 tcg_gen_ld_i32(ret, tcg_env, offsetoflow32(CPUARMState, vfp.fpcr));
353 tcg_gen_extract_i32(ret, ret, 26, 1);
354
355 return ret;
356 }
357
358 /* Set bits within PSTATE. */
set_pstate_bits(uint32_t bits)359 static inline void set_pstate_bits(uint32_t bits)
360 {
361 TCGv_i32 p = tcg_temp_new_i32();
362
363 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
364
365 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
366 tcg_gen_ori_i32(p, p, bits);
367 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
368 }
369
370 /* Clear bits within PSTATE. */
clear_pstate_bits(uint32_t bits)371 static inline void clear_pstate_bits(uint32_t bits)
372 {
373 TCGv_i32 p = tcg_temp_new_i32();
374
375 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
376
377 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
378 tcg_gen_andi_i32(p, p, ~bits);
379 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
380 }
381
382 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
gen_ss_advance(DisasContext * s)383 static inline void gen_ss_advance(DisasContext *s)
384 {
385 if (s->ss_active) {
386 s->pstate_ss = 0;
387 clear_pstate_bits(PSTATE_SS);
388 }
389 }
390
391 /* Generate an architectural singlestep exception */
gen_swstep_exception(DisasContext * s,int isv,int ex)392 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
393 {
394 /* Fill in the same_el field of the syndrome in the helper. */
395 uint32_t syn = syn_swstep(false, isv, ex);
396 gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn));
397 }
398
399 /*
400 * Given a VFP floating point constant encoded into an 8 bit immediate in an
401 * instruction, expand it to the actual constant value of the specified
402 * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
403 */
404 uint64_t vfp_expand_imm(int size, uint8_t imm8);
405
gen_vfp_absh(TCGv_i32 d,TCGv_i32 s)406 static inline void gen_vfp_absh(TCGv_i32 d, TCGv_i32 s)
407 {
408 tcg_gen_andi_i32(d, s, INT16_MAX);
409 }
410
gen_vfp_abss(TCGv_i32 d,TCGv_i32 s)411 static inline void gen_vfp_abss(TCGv_i32 d, TCGv_i32 s)
412 {
413 tcg_gen_andi_i32(d, s, INT32_MAX);
414 }
415
gen_vfp_absd(TCGv_i64 d,TCGv_i64 s)416 static inline void gen_vfp_absd(TCGv_i64 d, TCGv_i64 s)
417 {
418 tcg_gen_andi_i64(d, s, INT64_MAX);
419 }
420
gen_vfp_negh(TCGv_i32 d,TCGv_i32 s)421 static inline void gen_vfp_negh(TCGv_i32 d, TCGv_i32 s)
422 {
423 tcg_gen_xori_i32(d, s, 1u << 15);
424 }
425
gen_vfp_negs(TCGv_i32 d,TCGv_i32 s)426 static inline void gen_vfp_negs(TCGv_i32 d, TCGv_i32 s)
427 {
428 tcg_gen_xori_i32(d, s, 1u << 31);
429 }
430
gen_vfp_negd(TCGv_i64 d,TCGv_i64 s)431 static inline void gen_vfp_negd(TCGv_i64 d, TCGv_i64 s)
432 {
433 tcg_gen_xori_i64(d, s, 1ull << 63);
434 }
435
436 /* Vector operations shared between ARM and AArch64. */
437 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
438 uint32_t opr_sz, uint32_t max_sz);
439 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
440 uint32_t opr_sz, uint32_t max_sz);
441 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
442 uint32_t opr_sz, uint32_t max_sz);
443 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
444 uint32_t opr_sz, uint32_t max_sz);
445 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
446 uint32_t opr_sz, uint32_t max_sz);
447
448 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
449 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
450 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
451 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
452
453 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
454 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
455 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
456 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
457 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
458 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
459 void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
460 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
461 void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
462 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
463 void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
464 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
465 void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
466 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
467 void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
468 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
469 void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
470 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
471
472 void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
473 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
474 void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
475 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
476 void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
477 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
478 void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
479 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
480 void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
481 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
482 void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
483 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
484
485 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
486 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
487 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
488 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
489 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
490
491 void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
492 TCGv_i64 a, TCGv_i64 b, MemOp esz);
493 void gen_uqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
494 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
495 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
496
497 void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
498 TCGv_i64 a, TCGv_i64 b, MemOp esz);
499 void gen_sqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
500 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
501 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
502
503 void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
504 TCGv_i64 a, TCGv_i64 b, MemOp esz);
505 void gen_uqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
506 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
507 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
508
509 void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
510 TCGv_i64 a, TCGv_i64 b, MemOp esz);
511 void gen_sqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
512 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
513 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
514
515 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
516 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
517 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
518 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
519
520 void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
521 void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
522 void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
523 void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
524
525 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
526 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
527 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
528 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
529 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
530 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
531 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
532 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
533
534 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
535 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
536 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
537 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
538
539 void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
540 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
541 void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
542 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
543 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
544 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
545 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
546 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
547
548 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
549 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
550 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
551 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
552
553 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
554 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
555 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
556 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
557
558 void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
559 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
560 void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
561 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
562 void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
563 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
564 void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
565 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
566 void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
567 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
568
569 /*
570 * Forward to the isar_feature_* tests given a DisasContext pointer.
571 */
572 #define dc_isar_feature(name, ctx) \
573 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
574
575 /* Note that the gvec expanders operate on offsets + sizes. */
576 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
577 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
578 uint32_t, uint32_t);
579 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
580 uint32_t, uint32_t, uint32_t);
581 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
582 uint32_t, uint32_t, uint32_t);
583
584 /* Function prototype for gen_ functions for calling Neon helpers */
585 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
586 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
587 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
588 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
589 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
590 TCGv_i32, TCGv_i32);
591 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
592 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
593 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
594 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
595 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
596 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
597 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
598 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
599 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
600 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
601 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
602 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
603 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
604 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
605 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
606 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
607 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
608 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
609
610 /**
611 * arm_tbflags_from_tb:
612 * @tb: the TranslationBlock
613 *
614 * Extract the flag values from @tb.
615 */
arm_tbflags_from_tb(const TranslationBlock * tb)616 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
617 {
618 return (CPUARMTBFlags){ tb->flags, tb->cs_base };
619 }
620
621 /*
622 * Enum for argument to fpstatus_ptr().
623 */
624 typedef enum ARMFPStatusFlavour {
625 FPST_FPCR,
626 FPST_FPCR_F16,
627 FPST_STD,
628 FPST_STD_F16,
629 } ARMFPStatusFlavour;
630
631 /**
632 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
633 *
634 * We have multiple softfloat float_status fields in the Arm CPU state struct
635 * (see the comment in cpu.h for details). Return a TCGv_ptr which has
636 * been set up to point to the requested field in the CPU state struct.
637 * The options are:
638 *
639 * FPST_FPCR
640 * for non-FP16 operations controlled by the FPCR
641 * FPST_FPCR_F16
642 * for operations controlled by the FPCR where FPCR.FZ16 is to be used
643 * FPST_STD
644 * for A32/T32 Neon operations using the "standard FPSCR value"
645 * FPST_STD_F16
646 * as FPST_STD, but where FPCR.FZ16 is to be used
647 */
fpstatus_ptr(ARMFPStatusFlavour flavour)648 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
649 {
650 TCGv_ptr statusptr = tcg_temp_new_ptr();
651 int offset;
652
653 switch (flavour) {
654 case FPST_FPCR:
655 offset = offsetof(CPUARMState, vfp.fp_status);
656 break;
657 case FPST_FPCR_F16:
658 offset = offsetof(CPUARMState, vfp.fp_status_f16);
659 break;
660 case FPST_STD:
661 offset = offsetof(CPUARMState, vfp.standard_fp_status);
662 break;
663 case FPST_STD_F16:
664 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
665 break;
666 default:
667 g_assert_not_reached();
668 }
669 tcg_gen_addi_ptr(statusptr, tcg_env, offset);
670 return statusptr;
671 }
672
673 /**
674 * finalize_memop_atom:
675 * @s: DisasContext
676 * @opc: size+sign+align of the memory operation
677 * @atom: atomicity of the memory operation
678 *
679 * Build the complete MemOp for a memory operation, including alignment,
680 * endianness, and atomicity.
681 *
682 * If (op & MO_AMASK) then the operation already contains the required
683 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally
684 * unaligned operation, e.g. for AccType_NORMAL.
685 *
686 * In the latter case, there are configuration bits that require alignment,
687 * and this is applied here. Note that there is no way to indicate that
688 * no alignment should ever be enforced; this must be handled manually.
689 */
finalize_memop_atom(DisasContext * s,MemOp opc,MemOp atom)690 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
691 {
692 if (s->align_mem && !(opc & MO_AMASK)) {
693 opc |= MO_ALIGN;
694 }
695 return opc | atom | s->be_data;
696 }
697
698 /**
699 * finalize_memop:
700 * @s: DisasContext
701 * @opc: size+sign+align of the memory operation
702 *
703 * Like finalize_memop_atom, but with default atomicity.
704 */
finalize_memop(DisasContext * s,MemOp opc)705 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
706 {
707 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
708 return finalize_memop_atom(s, opc, atom);
709 }
710
711 /**
712 * finalize_memop_pair:
713 * @s: DisasContext
714 * @opc: size+sign+align of the memory operation
715 *
716 * Like finalize_memop_atom, but with atomicity for a pair.
717 * C.f. Pseudocode for Mem[], operand ispair.
718 */
finalize_memop_pair(DisasContext * s,MemOp opc)719 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
720 {
721 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
722 return finalize_memop_atom(s, opc, atom);
723 }
724
725 /**
726 * finalize_memop_asimd:
727 * @s: DisasContext
728 * @opc: size+sign+align of the memory operation
729 *
730 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
731 */
finalize_memop_asimd(DisasContext * s,MemOp opc)732 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
733 {
734 /*
735 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
736 * if IsAligned(8), the first case provides separate atomicity for
737 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases
738 * do not apply, and we're left with the final case of no atomicity.
739 * Thus MO_ATOM_IFALIGN_PAIR.
740 *
741 * For other sizes, normal LSE2 rules apply.
742 */
743 if ((opc & MO_SIZE) == MO_128) {
744 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
745 }
746 return finalize_memop(s, opc);
747 }
748
749 /**
750 * asimd_imm_const: Expand an encoded SIMD constant value
751 *
752 * Expand a SIMD constant value. This is essentially the pseudocode
753 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
754 * VMVN and VBIC (when cmode < 14 && op == 1).
755 *
756 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
757 * callers must catch this; we return the 64-bit constant value defined
758 * for AArch64.
759 *
760 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
761 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
762 * we produce an immediate constant value of 0 in these cases.
763 */
764 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
765
766 /*
767 * gen_disas_label:
768 * Create a label and cache a copy of pc_save.
769 */
gen_disas_label(DisasContext * s)770 static inline DisasLabel gen_disas_label(DisasContext *s)
771 {
772 return (DisasLabel){
773 .label = gen_new_label(),
774 .pc_save = s->pc_save,
775 };
776 }
777
778 /*
779 * set_disas_label:
780 * Emit a label and restore the cached copy of pc_save.
781 */
set_disas_label(DisasContext * s,DisasLabel l)782 static inline void set_disas_label(DisasContext *s, DisasLabel l)
783 {
784 gen_set_label(l.label);
785 s->pc_save = l.pc_save;
786 }
787
gen_lookup_cp_reg(uint32_t key)788 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
789 {
790 TCGv_ptr ret = tcg_temp_new_ptr();
791 gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key));
792 return ret;
793 }
794
795 /*
796 * Set and reset rounding mode around another operation.
797 */
gen_set_rmode(ARMFPRounding rmode,TCGv_ptr fpst)798 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
799 {
800 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
801 TCGv_i32 old = tcg_temp_new_i32();
802
803 gen_helper_set_rmode(old, new, fpst);
804 return old;
805 }
806
gen_restore_rmode(TCGv_i32 old,TCGv_ptr fpst)807 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
808 {
809 gen_helper_set_rmode(old, old, fpst);
810 }
811
812 /*
813 * Helpers for implementing sets of trans_* functions.
814 * Defer the implementation of NAME to FUNC, with optional extra arguments.
815 */
816 #define TRANS(NAME, FUNC, ...) \
817 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
818 { return FUNC(s, __VA_ARGS__); }
819 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
820 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
821 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
822
823 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \
824 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
825 { \
826 s->is_nonstreaming = true; \
827 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \
828 }
829
830 #endif /* TARGET_ARM_TRANSLATE_H */
831