xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision ef38a689)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48 
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 static int map_set_def_max_entries(struct bpf_map *map);
74 
75 static const char * const attach_type_name[] = {
76 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
77 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
78 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
79 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
80 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
81 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
82 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
83 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
84 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
85 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
86 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
87 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
88 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
89 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
90 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
91 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
92 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
93 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
94 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
95 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
96 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
97 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
98 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
99 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
100 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
101 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
102 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
103 	[BPF_LIRC_MODE2]		= "lirc_mode2",
104 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
105 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
106 	[BPF_TRACE_FENTRY]		= "trace_fentry",
107 	[BPF_TRACE_FEXIT]		= "trace_fexit",
108 	[BPF_MODIFY_RETURN]		= "modify_return",
109 	[BPF_LSM_MAC]			= "lsm_mac",
110 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
111 	[BPF_SK_LOOKUP]			= "sk_lookup",
112 	[BPF_TRACE_ITER]		= "trace_iter",
113 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
114 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
115 	[BPF_XDP]			= "xdp",
116 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
117 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
118 	[BPF_PERF_EVENT]		= "perf_event",
119 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
120 	[BPF_STRUCT_OPS]		= "struct_ops",
121 	[BPF_NETFILTER]			= "netfilter",
122 	[BPF_TCX_INGRESS]		= "tcx_ingress",
123 	[BPF_TCX_EGRESS]		= "tcx_egress",
124 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
125 };
126 
127 static const char * const link_type_name[] = {
128 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
129 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
130 	[BPF_LINK_TYPE_TRACING]			= "tracing",
131 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
132 	[BPF_LINK_TYPE_ITER]			= "iter",
133 	[BPF_LINK_TYPE_NETNS]			= "netns",
134 	[BPF_LINK_TYPE_XDP]			= "xdp",
135 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
136 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
137 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
138 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
139 	[BPF_LINK_TYPE_TCX]			= "tcx",
140 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
141 };
142 
143 static const char * const map_type_name[] = {
144 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
145 	[BPF_MAP_TYPE_HASH]			= "hash",
146 	[BPF_MAP_TYPE_ARRAY]			= "array",
147 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
148 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
149 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
150 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
151 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
152 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
153 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
154 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
155 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
156 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
157 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
158 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
159 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
160 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
161 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
162 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
163 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
164 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
165 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
166 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
167 	[BPF_MAP_TYPE_QUEUE]			= "queue",
168 	[BPF_MAP_TYPE_STACK]			= "stack",
169 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
170 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
171 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
172 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
173 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
174 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
175 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
176 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
177 };
178 
179 static const char * const prog_type_name[] = {
180 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
181 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
182 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
183 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
184 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
185 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
186 	[BPF_PROG_TYPE_XDP]			= "xdp",
187 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
188 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
189 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
190 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
191 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
192 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
193 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
194 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
195 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
196 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
197 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
198 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
199 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
200 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
201 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
202 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
203 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
204 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
205 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
206 	[BPF_PROG_TYPE_TRACING]			= "tracing",
207 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
208 	[BPF_PROG_TYPE_EXT]			= "ext",
209 	[BPF_PROG_TYPE_LSM]			= "lsm",
210 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
211 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
212 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
213 };
214 
__base_pr(enum libbpf_print_level level,const char * format,va_list args)215 static int __base_pr(enum libbpf_print_level level, const char *format,
216 		     va_list args)
217 {
218 	if (level == LIBBPF_DEBUG)
219 		return 0;
220 
221 	return vfprintf(stderr, format, args);
222 }
223 
224 static libbpf_print_fn_t __libbpf_pr = __base_pr;
225 
libbpf_set_print(libbpf_print_fn_t fn)226 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
227 {
228 	libbpf_print_fn_t old_print_fn;
229 
230 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
231 
232 	return old_print_fn;
233 }
234 
235 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)236 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
237 {
238 	va_list args;
239 	int old_errno;
240 	libbpf_print_fn_t print_fn;
241 
242 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
243 	if (!print_fn)
244 		return;
245 
246 	old_errno = errno;
247 
248 	va_start(args, format);
249 	__libbpf_pr(level, format, args);
250 	va_end(args);
251 
252 	errno = old_errno;
253 }
254 
pr_perm_msg(int err)255 static void pr_perm_msg(int err)
256 {
257 	struct rlimit limit;
258 	char buf[100];
259 
260 	if (err != -EPERM || geteuid() != 0)
261 		return;
262 
263 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
264 	if (err)
265 		return;
266 
267 	if (limit.rlim_cur == RLIM_INFINITY)
268 		return;
269 
270 	if (limit.rlim_cur < 1024)
271 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
272 	else if (limit.rlim_cur < 1024*1024)
273 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
274 	else
275 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
276 
277 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
278 		buf);
279 }
280 
281 #define STRERR_BUFSIZE  128
282 
283 /* Copied from tools/perf/util/util.h */
284 #ifndef zfree
285 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
286 #endif
287 
288 #ifndef zclose
289 # define zclose(fd) ({			\
290 	int ___err = 0;			\
291 	if ((fd) >= 0)			\
292 		___err = close((fd));	\
293 	fd = -1;			\
294 	___err; })
295 #endif
296 
ptr_to_u64(const void * ptr)297 static inline __u64 ptr_to_u64(const void *ptr)
298 {
299 	return (__u64) (unsigned long) ptr;
300 }
301 
libbpf_set_strict_mode(enum libbpf_strict_mode mode)302 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
303 {
304 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
305 	return 0;
306 }
307 
libbpf_major_version(void)308 __u32 libbpf_major_version(void)
309 {
310 	return LIBBPF_MAJOR_VERSION;
311 }
312 
libbpf_minor_version(void)313 __u32 libbpf_minor_version(void)
314 {
315 	return LIBBPF_MINOR_VERSION;
316 }
317 
libbpf_version_string(void)318 const char *libbpf_version_string(void)
319 {
320 #define __S(X) #X
321 #define _S(X) __S(X)
322 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
323 #undef _S
324 #undef __S
325 }
326 
327 enum reloc_type {
328 	RELO_LD64,
329 	RELO_CALL,
330 	RELO_DATA,
331 	RELO_EXTERN_LD64,
332 	RELO_EXTERN_CALL,
333 	RELO_SUBPROG_ADDR,
334 	RELO_CORE,
335 };
336 
337 struct reloc_desc {
338 	enum reloc_type type;
339 	int insn_idx;
340 	union {
341 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
342 		struct {
343 			int map_idx;
344 			int sym_off;
345 			int ext_idx;
346 		};
347 	};
348 };
349 
350 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
351 enum sec_def_flags {
352 	SEC_NONE = 0,
353 	/* expected_attach_type is optional, if kernel doesn't support that */
354 	SEC_EXP_ATTACH_OPT = 1,
355 	/* legacy, only used by libbpf_get_type_names() and
356 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
357 	 * This used to be associated with cgroup (and few other) BPF programs
358 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
359 	 * meaningless nowadays, though.
360 	 */
361 	SEC_ATTACHABLE = 2,
362 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
363 	/* attachment target is specified through BTF ID in either kernel or
364 	 * other BPF program's BTF object
365 	 */
366 	SEC_ATTACH_BTF = 4,
367 	/* BPF program type allows sleeping/blocking in kernel */
368 	SEC_SLEEPABLE = 8,
369 	/* BPF program support non-linear XDP buffer */
370 	SEC_XDP_FRAGS = 16,
371 	/* Setup proper attach type for usdt probes. */
372 	SEC_USDT = 32,
373 };
374 
375 struct bpf_sec_def {
376 	char *sec;
377 	enum bpf_prog_type prog_type;
378 	enum bpf_attach_type expected_attach_type;
379 	long cookie;
380 	int handler_id;
381 
382 	libbpf_prog_setup_fn_t prog_setup_fn;
383 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
384 	libbpf_prog_attach_fn_t prog_attach_fn;
385 };
386 
387 /*
388  * bpf_prog should be a better name but it has been used in
389  * linux/filter.h.
390  */
391 struct bpf_program {
392 	char *name;
393 	char *sec_name;
394 	size_t sec_idx;
395 	const struct bpf_sec_def *sec_def;
396 	/* this program's instruction offset (in number of instructions)
397 	 * within its containing ELF section
398 	 */
399 	size_t sec_insn_off;
400 	/* number of original instructions in ELF section belonging to this
401 	 * program, not taking into account subprogram instructions possible
402 	 * appended later during relocation
403 	 */
404 	size_t sec_insn_cnt;
405 	/* Offset (in number of instructions) of the start of instruction
406 	 * belonging to this BPF program  within its containing main BPF
407 	 * program. For the entry-point (main) BPF program, this is always
408 	 * zero. For a sub-program, this gets reset before each of main BPF
409 	 * programs are processed and relocated and is used to determined
410 	 * whether sub-program was already appended to the main program, and
411 	 * if yes, at which instruction offset.
412 	 */
413 	size_t sub_insn_off;
414 
415 	/* instructions that belong to BPF program; insns[0] is located at
416 	 * sec_insn_off instruction within its ELF section in ELF file, so
417 	 * when mapping ELF file instruction index to the local instruction,
418 	 * one needs to subtract sec_insn_off; and vice versa.
419 	 */
420 	struct bpf_insn *insns;
421 	/* actual number of instruction in this BPF program's image; for
422 	 * entry-point BPF programs this includes the size of main program
423 	 * itself plus all the used sub-programs, appended at the end
424 	 */
425 	size_t insns_cnt;
426 
427 	struct reloc_desc *reloc_desc;
428 	int nr_reloc;
429 
430 	/* BPF verifier log settings */
431 	char *log_buf;
432 	size_t log_size;
433 	__u32 log_level;
434 
435 	struct bpf_object *obj;
436 
437 	int fd;
438 	bool autoload;
439 	bool autoattach;
440 	bool mark_btf_static;
441 	enum bpf_prog_type type;
442 	enum bpf_attach_type expected_attach_type;
443 
444 	int prog_ifindex;
445 	__u32 attach_btf_obj_fd;
446 	__u32 attach_btf_id;
447 	__u32 attach_prog_fd;
448 
449 	void *func_info;
450 	__u32 func_info_rec_size;
451 	__u32 func_info_cnt;
452 
453 	void *line_info;
454 	__u32 line_info_rec_size;
455 	__u32 line_info_cnt;
456 	__u32 prog_flags;
457 };
458 
459 struct bpf_struct_ops {
460 	const char *tname;
461 	const struct btf_type *type;
462 	struct bpf_program **progs;
463 	__u32 *kern_func_off;
464 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
465 	void *data;
466 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
467 	 *      btf_vmlinux's format.
468 	 * struct bpf_struct_ops_tcp_congestion_ops {
469 	 *	[... some other kernel fields ...]
470 	 *	struct tcp_congestion_ops data;
471 	 * }
472 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
473 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
474 	 * from "data".
475 	 */
476 	void *kern_vdata;
477 	__u32 type_id;
478 };
479 
480 #define DATA_SEC ".data"
481 #define BSS_SEC ".bss"
482 #define RODATA_SEC ".rodata"
483 #define KCONFIG_SEC ".kconfig"
484 #define KSYMS_SEC ".ksyms"
485 #define STRUCT_OPS_SEC ".struct_ops"
486 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
487 
488 enum libbpf_map_type {
489 	LIBBPF_MAP_UNSPEC,
490 	LIBBPF_MAP_DATA,
491 	LIBBPF_MAP_BSS,
492 	LIBBPF_MAP_RODATA,
493 	LIBBPF_MAP_KCONFIG,
494 };
495 
496 struct bpf_map_def {
497 	unsigned int type;
498 	unsigned int key_size;
499 	unsigned int value_size;
500 	unsigned int max_entries;
501 	unsigned int map_flags;
502 };
503 
504 struct bpf_map {
505 	struct bpf_object *obj;
506 	char *name;
507 	/* real_name is defined for special internal maps (.rodata*,
508 	 * .data*, .bss, .kconfig) and preserves their original ELF section
509 	 * name. This is important to be able to find corresponding BTF
510 	 * DATASEC information.
511 	 */
512 	char *real_name;
513 	int fd;
514 	int sec_idx;
515 	size_t sec_offset;
516 	int map_ifindex;
517 	int inner_map_fd;
518 	struct bpf_map_def def;
519 	__u32 numa_node;
520 	__u32 btf_var_idx;
521 	__u32 btf_key_type_id;
522 	__u32 btf_value_type_id;
523 	__u32 btf_vmlinux_value_type_id;
524 	enum libbpf_map_type libbpf_type;
525 	void *mmaped;
526 	struct bpf_struct_ops *st_ops;
527 	struct bpf_map *inner_map;
528 	void **init_slots;
529 	int init_slots_sz;
530 	char *pin_path;
531 	bool pinned;
532 	bool reused;
533 	bool autocreate;
534 	__u64 map_extra;
535 };
536 
537 enum extern_type {
538 	EXT_UNKNOWN,
539 	EXT_KCFG,
540 	EXT_KSYM,
541 };
542 
543 enum kcfg_type {
544 	KCFG_UNKNOWN,
545 	KCFG_CHAR,
546 	KCFG_BOOL,
547 	KCFG_INT,
548 	KCFG_TRISTATE,
549 	KCFG_CHAR_ARR,
550 };
551 
552 struct extern_desc {
553 	enum extern_type type;
554 	int sym_idx;
555 	int btf_id;
556 	int sec_btf_id;
557 	const char *name;
558 	char *essent_name;
559 	bool is_set;
560 	bool is_weak;
561 	union {
562 		struct {
563 			enum kcfg_type type;
564 			int sz;
565 			int align;
566 			int data_off;
567 			bool is_signed;
568 		} kcfg;
569 		struct {
570 			unsigned long long addr;
571 
572 			/* target btf_id of the corresponding kernel var. */
573 			int kernel_btf_obj_fd;
574 			int kernel_btf_id;
575 
576 			/* local btf_id of the ksym extern's type. */
577 			__u32 type_id;
578 			/* BTF fd index to be patched in for insn->off, this is
579 			 * 0 for vmlinux BTF, index in obj->fd_array for module
580 			 * BTF
581 			 */
582 			__s16 btf_fd_idx;
583 		} ksym;
584 	};
585 };
586 
587 struct module_btf {
588 	struct btf *btf;
589 	char *name;
590 	__u32 id;
591 	int fd;
592 	int fd_array_idx;
593 };
594 
595 enum sec_type {
596 	SEC_UNUSED = 0,
597 	SEC_RELO,
598 	SEC_BSS,
599 	SEC_DATA,
600 	SEC_RODATA,
601 };
602 
603 struct elf_sec_desc {
604 	enum sec_type sec_type;
605 	Elf64_Shdr *shdr;
606 	Elf_Data *data;
607 };
608 
609 struct elf_state {
610 	int fd;
611 	const void *obj_buf;
612 	size_t obj_buf_sz;
613 	Elf *elf;
614 	Elf64_Ehdr *ehdr;
615 	Elf_Data *symbols;
616 	Elf_Data *st_ops_data;
617 	Elf_Data *st_ops_link_data;
618 	size_t shstrndx; /* section index for section name strings */
619 	size_t strtabidx;
620 	struct elf_sec_desc *secs;
621 	size_t sec_cnt;
622 	int btf_maps_shndx;
623 	__u32 btf_maps_sec_btf_id;
624 	int text_shndx;
625 	int symbols_shndx;
626 	int st_ops_shndx;
627 	int st_ops_link_shndx;
628 };
629 
630 struct usdt_manager;
631 
632 struct bpf_object {
633 	char name[BPF_OBJ_NAME_LEN];
634 	char license[64];
635 	__u32 kern_version;
636 
637 	struct bpf_program *programs;
638 	size_t nr_programs;
639 	struct bpf_map *maps;
640 	size_t nr_maps;
641 	size_t maps_cap;
642 
643 	char *kconfig;
644 	struct extern_desc *externs;
645 	int nr_extern;
646 	int kconfig_map_idx;
647 
648 	bool loaded;
649 	bool has_subcalls;
650 	bool has_rodata;
651 
652 	struct bpf_gen *gen_loader;
653 
654 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
655 	struct elf_state efile;
656 
657 	struct btf *btf;
658 	struct btf_ext *btf_ext;
659 
660 	/* Parse and load BTF vmlinux if any of the programs in the object need
661 	 * it at load time.
662 	 */
663 	struct btf *btf_vmlinux;
664 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
665 	 * override for vmlinux BTF.
666 	 */
667 	char *btf_custom_path;
668 	/* vmlinux BTF override for CO-RE relocations */
669 	struct btf *btf_vmlinux_override;
670 	/* Lazily initialized kernel module BTFs */
671 	struct module_btf *btf_modules;
672 	bool btf_modules_loaded;
673 	size_t btf_module_cnt;
674 	size_t btf_module_cap;
675 
676 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
677 	char *log_buf;
678 	size_t log_size;
679 	__u32 log_level;
680 
681 	int *fd_array;
682 	size_t fd_array_cap;
683 	size_t fd_array_cnt;
684 
685 	struct usdt_manager *usdt_man;
686 
687 	char path[];
688 };
689 
690 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
691 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
692 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
693 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
694 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
695 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
696 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
697 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
698 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
699 
bpf_program__unload(struct bpf_program * prog)700 void bpf_program__unload(struct bpf_program *prog)
701 {
702 	if (!prog)
703 		return;
704 
705 	zclose(prog->fd);
706 
707 	zfree(&prog->func_info);
708 	zfree(&prog->line_info);
709 }
710 
bpf_program__exit(struct bpf_program * prog)711 static void bpf_program__exit(struct bpf_program *prog)
712 {
713 	if (!prog)
714 		return;
715 
716 	bpf_program__unload(prog);
717 	zfree(&prog->name);
718 	zfree(&prog->sec_name);
719 	zfree(&prog->insns);
720 	zfree(&prog->reloc_desc);
721 
722 	prog->nr_reloc = 0;
723 	prog->insns_cnt = 0;
724 	prog->sec_idx = -1;
725 }
726 
insn_is_subprog_call(const struct bpf_insn * insn)727 static bool insn_is_subprog_call(const struct bpf_insn *insn)
728 {
729 	return BPF_CLASS(insn->code) == BPF_JMP &&
730 	       BPF_OP(insn->code) == BPF_CALL &&
731 	       BPF_SRC(insn->code) == BPF_K &&
732 	       insn->src_reg == BPF_PSEUDO_CALL &&
733 	       insn->dst_reg == 0 &&
734 	       insn->off == 0;
735 }
736 
is_call_insn(const struct bpf_insn * insn)737 static bool is_call_insn(const struct bpf_insn *insn)
738 {
739 	return insn->code == (BPF_JMP | BPF_CALL);
740 }
741 
insn_is_pseudo_func(struct bpf_insn * insn)742 static bool insn_is_pseudo_func(struct bpf_insn *insn)
743 {
744 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
745 }
746 
747 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)748 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
749 		      const char *name, size_t sec_idx, const char *sec_name,
750 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
751 {
752 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
753 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
754 			sec_name, name, sec_off, insn_data_sz);
755 		return -EINVAL;
756 	}
757 
758 	memset(prog, 0, sizeof(*prog));
759 	prog->obj = obj;
760 
761 	prog->sec_idx = sec_idx;
762 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
763 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
764 	/* insns_cnt can later be increased by appending used subprograms */
765 	prog->insns_cnt = prog->sec_insn_cnt;
766 
767 	prog->type = BPF_PROG_TYPE_UNSPEC;
768 	prog->fd = -1;
769 
770 	/* libbpf's convention for SEC("?abc...") is that it's just like
771 	 * SEC("abc...") but the corresponding bpf_program starts out with
772 	 * autoload set to false.
773 	 */
774 	if (sec_name[0] == '?') {
775 		prog->autoload = false;
776 		/* from now on forget there was ? in section name */
777 		sec_name++;
778 	} else {
779 		prog->autoload = true;
780 	}
781 
782 	prog->autoattach = true;
783 
784 	/* inherit object's log_level */
785 	prog->log_level = obj->log_level;
786 
787 	prog->sec_name = strdup(sec_name);
788 	if (!prog->sec_name)
789 		goto errout;
790 
791 	prog->name = strdup(name);
792 	if (!prog->name)
793 		goto errout;
794 
795 	prog->insns = malloc(insn_data_sz);
796 	if (!prog->insns)
797 		goto errout;
798 	memcpy(prog->insns, insn_data, insn_data_sz);
799 
800 	return 0;
801 errout:
802 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
803 	bpf_program__exit(prog);
804 	return -ENOMEM;
805 }
806 
807 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)808 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
809 			 const char *sec_name, int sec_idx)
810 {
811 	Elf_Data *symbols = obj->efile.symbols;
812 	struct bpf_program *prog, *progs;
813 	void *data = sec_data->d_buf;
814 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
815 	int nr_progs, err, i;
816 	const char *name;
817 	Elf64_Sym *sym;
818 
819 	progs = obj->programs;
820 	nr_progs = obj->nr_programs;
821 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
822 
823 	for (i = 0; i < nr_syms; i++) {
824 		sym = elf_sym_by_idx(obj, i);
825 
826 		if (sym->st_shndx != sec_idx)
827 			continue;
828 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
829 			continue;
830 
831 		prog_sz = sym->st_size;
832 		sec_off = sym->st_value;
833 
834 		name = elf_sym_str(obj, sym->st_name);
835 		if (!name) {
836 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
837 				sec_name, sec_off);
838 			return -LIBBPF_ERRNO__FORMAT;
839 		}
840 
841 		if (sec_off + prog_sz > sec_sz) {
842 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
843 				sec_name, sec_off);
844 			return -LIBBPF_ERRNO__FORMAT;
845 		}
846 
847 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
848 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
849 			return -ENOTSUP;
850 		}
851 
852 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
853 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
854 
855 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
856 		if (!progs) {
857 			/*
858 			 * In this case the original obj->programs
859 			 * is still valid, so don't need special treat for
860 			 * bpf_close_object().
861 			 */
862 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
863 				sec_name, name);
864 			return -ENOMEM;
865 		}
866 		obj->programs = progs;
867 
868 		prog = &progs[nr_progs];
869 
870 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
871 					    sec_off, data + sec_off, prog_sz);
872 		if (err)
873 			return err;
874 
875 		/* if function is a global/weak symbol, but has restricted
876 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
877 		 * as static to enable more permissive BPF verification mode
878 		 * with more outside context available to BPF verifier
879 		 */
880 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
881 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
882 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
883 			prog->mark_btf_static = true;
884 
885 		nr_progs++;
886 		obj->nr_programs = nr_progs;
887 	}
888 
889 	return 0;
890 }
891 
892 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)893 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
894 {
895 	struct btf_member *m;
896 	int i;
897 
898 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
899 		if (btf_member_bit_offset(t, i) == bit_offset)
900 			return m;
901 	}
902 
903 	return NULL;
904 }
905 
906 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)907 find_member_by_name(const struct btf *btf, const struct btf_type *t,
908 		    const char *name)
909 {
910 	struct btf_member *m;
911 	int i;
912 
913 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
914 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
915 			return m;
916 	}
917 
918 	return NULL;
919 }
920 
921 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
922 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
923 				   const char *name, __u32 kind);
924 
925 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)926 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
927 			   const struct btf_type **type, __u32 *type_id,
928 			   const struct btf_type **vtype, __u32 *vtype_id,
929 			   const struct btf_member **data_member)
930 {
931 	const struct btf_type *kern_type, *kern_vtype;
932 	const struct btf_member *kern_data_member;
933 	__s32 kern_vtype_id, kern_type_id;
934 	__u32 i;
935 
936 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
937 	if (kern_type_id < 0) {
938 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
939 			tname);
940 		return kern_type_id;
941 	}
942 	kern_type = btf__type_by_id(btf, kern_type_id);
943 
944 	/* Find the corresponding "map_value" type that will be used
945 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
946 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
947 	 * btf_vmlinux.
948 	 */
949 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
950 						tname, BTF_KIND_STRUCT);
951 	if (kern_vtype_id < 0) {
952 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
953 			STRUCT_OPS_VALUE_PREFIX, tname);
954 		return kern_vtype_id;
955 	}
956 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
957 
958 	/* Find "struct tcp_congestion_ops" from
959 	 * struct bpf_struct_ops_tcp_congestion_ops {
960 	 *	[ ... ]
961 	 *	struct tcp_congestion_ops data;
962 	 * }
963 	 */
964 	kern_data_member = btf_members(kern_vtype);
965 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
966 		if (kern_data_member->type == kern_type_id)
967 			break;
968 	}
969 	if (i == btf_vlen(kern_vtype)) {
970 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
971 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
972 		return -EINVAL;
973 	}
974 
975 	*type = kern_type;
976 	*type_id = kern_type_id;
977 	*vtype = kern_vtype;
978 	*vtype_id = kern_vtype_id;
979 	*data_member = kern_data_member;
980 
981 	return 0;
982 }
983 
bpf_map__is_struct_ops(const struct bpf_map * map)984 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
985 {
986 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
987 }
988 
989 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)990 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
991 					 const struct btf *btf,
992 					 const struct btf *kern_btf)
993 {
994 	const struct btf_member *member, *kern_member, *kern_data_member;
995 	const struct btf_type *type, *kern_type, *kern_vtype;
996 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
997 	struct bpf_struct_ops *st_ops;
998 	void *data, *kern_data;
999 	const char *tname;
1000 	int err;
1001 
1002 	st_ops = map->st_ops;
1003 	type = st_ops->type;
1004 	tname = st_ops->tname;
1005 	err = find_struct_ops_kern_types(kern_btf, tname,
1006 					 &kern_type, &kern_type_id,
1007 					 &kern_vtype, &kern_vtype_id,
1008 					 &kern_data_member);
1009 	if (err)
1010 		return err;
1011 
1012 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1013 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1014 
1015 	map->def.value_size = kern_vtype->size;
1016 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1017 
1018 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1019 	if (!st_ops->kern_vdata)
1020 		return -ENOMEM;
1021 
1022 	data = st_ops->data;
1023 	kern_data_off = kern_data_member->offset / 8;
1024 	kern_data = st_ops->kern_vdata + kern_data_off;
1025 
1026 	member = btf_members(type);
1027 	for (i = 0; i < btf_vlen(type); i++, member++) {
1028 		const struct btf_type *mtype, *kern_mtype;
1029 		__u32 mtype_id, kern_mtype_id;
1030 		void *mdata, *kern_mdata;
1031 		__s64 msize, kern_msize;
1032 		__u32 moff, kern_moff;
1033 		__u32 kern_member_idx;
1034 		const char *mname;
1035 
1036 		mname = btf__name_by_offset(btf, member->name_off);
1037 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1038 		if (!kern_member) {
1039 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1040 				map->name, mname);
1041 			return -ENOTSUP;
1042 		}
1043 
1044 		kern_member_idx = kern_member - btf_members(kern_type);
1045 		if (btf_member_bitfield_size(type, i) ||
1046 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1047 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1048 				map->name, mname);
1049 			return -ENOTSUP;
1050 		}
1051 
1052 		moff = member->offset / 8;
1053 		kern_moff = kern_member->offset / 8;
1054 
1055 		mdata = data + moff;
1056 		kern_mdata = kern_data + kern_moff;
1057 
1058 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1059 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1060 						    &kern_mtype_id);
1061 		if (BTF_INFO_KIND(mtype->info) !=
1062 		    BTF_INFO_KIND(kern_mtype->info)) {
1063 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1064 				map->name, mname, BTF_INFO_KIND(mtype->info),
1065 				BTF_INFO_KIND(kern_mtype->info));
1066 			return -ENOTSUP;
1067 		}
1068 
1069 		if (btf_is_ptr(mtype)) {
1070 			struct bpf_program *prog;
1071 
1072 			prog = st_ops->progs[i];
1073 			if (!prog)
1074 				continue;
1075 
1076 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1077 							    kern_mtype->type,
1078 							    &kern_mtype_id);
1079 
1080 			/* mtype->type must be a func_proto which was
1081 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1082 			 * so only check kern_mtype for func_proto here.
1083 			 */
1084 			if (!btf_is_func_proto(kern_mtype)) {
1085 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1086 					map->name, mname);
1087 				return -ENOTSUP;
1088 			}
1089 
1090 			prog->attach_btf_id = kern_type_id;
1091 			prog->expected_attach_type = kern_member_idx;
1092 
1093 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1094 
1095 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1096 				 map->name, mname, prog->name, moff,
1097 				 kern_moff);
1098 
1099 			continue;
1100 		}
1101 
1102 		msize = btf__resolve_size(btf, mtype_id);
1103 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1104 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1105 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1106 				map->name, mname, (ssize_t)msize,
1107 				(ssize_t)kern_msize);
1108 			return -ENOTSUP;
1109 		}
1110 
1111 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1112 			 map->name, mname, (unsigned int)msize,
1113 			 moff, kern_moff);
1114 		memcpy(kern_mdata, mdata, msize);
1115 	}
1116 
1117 	return 0;
1118 }
1119 
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1120 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1121 {
1122 	struct bpf_map *map;
1123 	size_t i;
1124 	int err;
1125 
1126 	for (i = 0; i < obj->nr_maps; i++) {
1127 		map = &obj->maps[i];
1128 
1129 		if (!bpf_map__is_struct_ops(map))
1130 			continue;
1131 
1132 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1133 						    obj->btf_vmlinux);
1134 		if (err)
1135 			return err;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data,__u32 map_flags)1141 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1142 				int shndx, Elf_Data *data, __u32 map_flags)
1143 {
1144 	const struct btf_type *type, *datasec;
1145 	const struct btf_var_secinfo *vsi;
1146 	struct bpf_struct_ops *st_ops;
1147 	const char *tname, *var_name;
1148 	__s32 type_id, datasec_id;
1149 	const struct btf *btf;
1150 	struct bpf_map *map;
1151 	__u32 i;
1152 
1153 	if (shndx == -1)
1154 		return 0;
1155 
1156 	btf = obj->btf;
1157 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1158 					    BTF_KIND_DATASEC);
1159 	if (datasec_id < 0) {
1160 		pr_warn("struct_ops init: DATASEC %s not found\n",
1161 			sec_name);
1162 		return -EINVAL;
1163 	}
1164 
1165 	datasec = btf__type_by_id(btf, datasec_id);
1166 	vsi = btf_var_secinfos(datasec);
1167 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1168 		type = btf__type_by_id(obj->btf, vsi->type);
1169 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1170 
1171 		type_id = btf__resolve_type(obj->btf, vsi->type);
1172 		if (type_id < 0) {
1173 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1174 				vsi->type, sec_name);
1175 			return -EINVAL;
1176 		}
1177 
1178 		type = btf__type_by_id(obj->btf, type_id);
1179 		tname = btf__name_by_offset(obj->btf, type->name_off);
1180 		if (!tname[0]) {
1181 			pr_warn("struct_ops init: anonymous type is not supported\n");
1182 			return -ENOTSUP;
1183 		}
1184 		if (!btf_is_struct(type)) {
1185 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1186 			return -EINVAL;
1187 		}
1188 
1189 		map = bpf_object__add_map(obj);
1190 		if (IS_ERR(map))
1191 			return PTR_ERR(map);
1192 
1193 		map->sec_idx = shndx;
1194 		map->sec_offset = vsi->offset;
1195 		map->name = strdup(var_name);
1196 		if (!map->name)
1197 			return -ENOMEM;
1198 
1199 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1200 		map->def.key_size = sizeof(int);
1201 		map->def.value_size = type->size;
1202 		map->def.max_entries = 1;
1203 		map->def.map_flags = map_flags;
1204 
1205 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1206 		if (!map->st_ops)
1207 			return -ENOMEM;
1208 		st_ops = map->st_ops;
1209 		st_ops->data = malloc(type->size);
1210 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1211 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1212 					       sizeof(*st_ops->kern_func_off));
1213 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1214 			return -ENOMEM;
1215 
1216 		if (vsi->offset + type->size > data->d_size) {
1217 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1218 				var_name, sec_name);
1219 			return -EINVAL;
1220 		}
1221 
1222 		memcpy(st_ops->data,
1223 		       data->d_buf + vsi->offset,
1224 		       type->size);
1225 		st_ops->tname = tname;
1226 		st_ops->type = type;
1227 		st_ops->type_id = type_id;
1228 
1229 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1230 			 tname, type_id, var_name, vsi->offset);
1231 	}
1232 
1233 	return 0;
1234 }
1235 
bpf_object_init_struct_ops(struct bpf_object * obj)1236 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1237 {
1238 	int err;
1239 
1240 	err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1241 				   obj->efile.st_ops_data, 0);
1242 	err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1243 					  obj->efile.st_ops_link_shndx,
1244 					  obj->efile.st_ops_link_data,
1245 					  BPF_F_LINK);
1246 	return err;
1247 }
1248 
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1249 static struct bpf_object *bpf_object__new(const char *path,
1250 					  const void *obj_buf,
1251 					  size_t obj_buf_sz,
1252 					  const char *obj_name)
1253 {
1254 	struct bpf_object *obj;
1255 	char *end;
1256 
1257 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1258 	if (!obj) {
1259 		pr_warn("alloc memory failed for %s\n", path);
1260 		return ERR_PTR(-ENOMEM);
1261 	}
1262 
1263 	strcpy(obj->path, path);
1264 	if (obj_name) {
1265 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1266 	} else {
1267 		/* Using basename() GNU version which doesn't modify arg. */
1268 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1269 		end = strchr(obj->name, '.');
1270 		if (end)
1271 			*end = 0;
1272 	}
1273 
1274 	obj->efile.fd = -1;
1275 	/*
1276 	 * Caller of this function should also call
1277 	 * bpf_object__elf_finish() after data collection to return
1278 	 * obj_buf to user. If not, we should duplicate the buffer to
1279 	 * avoid user freeing them before elf finish.
1280 	 */
1281 	obj->efile.obj_buf = obj_buf;
1282 	obj->efile.obj_buf_sz = obj_buf_sz;
1283 	obj->efile.btf_maps_shndx = -1;
1284 	obj->efile.st_ops_shndx = -1;
1285 	obj->efile.st_ops_link_shndx = -1;
1286 	obj->kconfig_map_idx = -1;
1287 
1288 	obj->kern_version = get_kernel_version();
1289 	obj->loaded = false;
1290 
1291 	return obj;
1292 }
1293 
bpf_object__elf_finish(struct bpf_object * obj)1294 static void bpf_object__elf_finish(struct bpf_object *obj)
1295 {
1296 	if (!obj->efile.elf)
1297 		return;
1298 
1299 	elf_end(obj->efile.elf);
1300 	obj->efile.elf = NULL;
1301 	obj->efile.symbols = NULL;
1302 	obj->efile.st_ops_data = NULL;
1303 	obj->efile.st_ops_link_data = NULL;
1304 
1305 	zfree(&obj->efile.secs);
1306 	obj->efile.sec_cnt = 0;
1307 	zclose(obj->efile.fd);
1308 	obj->efile.obj_buf = NULL;
1309 	obj->efile.obj_buf_sz = 0;
1310 }
1311 
bpf_object__elf_init(struct bpf_object * obj)1312 static int bpf_object__elf_init(struct bpf_object *obj)
1313 {
1314 	Elf64_Ehdr *ehdr;
1315 	int err = 0;
1316 	Elf *elf;
1317 
1318 	if (obj->efile.elf) {
1319 		pr_warn("elf: init internal error\n");
1320 		return -LIBBPF_ERRNO__LIBELF;
1321 	}
1322 
1323 	if (obj->efile.obj_buf_sz > 0) {
1324 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1325 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1326 	} else {
1327 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1328 		if (obj->efile.fd < 0) {
1329 			char errmsg[STRERR_BUFSIZE], *cp;
1330 
1331 			err = -errno;
1332 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1333 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1334 			return err;
1335 		}
1336 
1337 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1338 	}
1339 
1340 	if (!elf) {
1341 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1342 		err = -LIBBPF_ERRNO__LIBELF;
1343 		goto errout;
1344 	}
1345 
1346 	obj->efile.elf = elf;
1347 
1348 	if (elf_kind(elf) != ELF_K_ELF) {
1349 		err = -LIBBPF_ERRNO__FORMAT;
1350 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1351 		goto errout;
1352 	}
1353 
1354 	if (gelf_getclass(elf) != ELFCLASS64) {
1355 		err = -LIBBPF_ERRNO__FORMAT;
1356 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1357 		goto errout;
1358 	}
1359 
1360 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1361 	if (!obj->efile.ehdr) {
1362 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1363 		err = -LIBBPF_ERRNO__FORMAT;
1364 		goto errout;
1365 	}
1366 
1367 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1368 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1369 			obj->path, elf_errmsg(-1));
1370 		err = -LIBBPF_ERRNO__FORMAT;
1371 		goto errout;
1372 	}
1373 
1374 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1375 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1376 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1377 			obj->path, elf_errmsg(-1));
1378 		err = -LIBBPF_ERRNO__FORMAT;
1379 		goto errout;
1380 	}
1381 
1382 	/* Old LLVM set e_machine to EM_NONE */
1383 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1384 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1385 		err = -LIBBPF_ERRNO__FORMAT;
1386 		goto errout;
1387 	}
1388 
1389 	return 0;
1390 errout:
1391 	bpf_object__elf_finish(obj);
1392 	return err;
1393 }
1394 
bpf_object__check_endianness(struct bpf_object * obj)1395 static int bpf_object__check_endianness(struct bpf_object *obj)
1396 {
1397 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1398 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1399 		return 0;
1400 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1401 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1402 		return 0;
1403 #else
1404 # error "Unrecognized __BYTE_ORDER__"
1405 #endif
1406 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1407 	return -LIBBPF_ERRNO__ENDIAN;
1408 }
1409 
1410 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1411 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1412 {
1413 	if (!data) {
1414 		pr_warn("invalid license section in %s\n", obj->path);
1415 		return -LIBBPF_ERRNO__FORMAT;
1416 	}
1417 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1418 	 * go over allowed ELF data section buffer
1419 	 */
1420 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1421 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1422 	return 0;
1423 }
1424 
1425 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1426 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1427 {
1428 	__u32 kver;
1429 
1430 	if (!data || size != sizeof(kver)) {
1431 		pr_warn("invalid kver section in %s\n", obj->path);
1432 		return -LIBBPF_ERRNO__FORMAT;
1433 	}
1434 	memcpy(&kver, data, sizeof(kver));
1435 	obj->kern_version = kver;
1436 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1437 	return 0;
1438 }
1439 
bpf_map_type__is_map_in_map(enum bpf_map_type type)1440 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1441 {
1442 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1443 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1444 		return true;
1445 	return false;
1446 }
1447 
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1448 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1449 {
1450 	Elf_Data *data;
1451 	Elf_Scn *scn;
1452 
1453 	if (!name)
1454 		return -EINVAL;
1455 
1456 	scn = elf_sec_by_name(obj, name);
1457 	data = elf_sec_data(obj, scn);
1458 	if (data) {
1459 		*size = data->d_size;
1460 		return 0; /* found it */
1461 	}
1462 
1463 	return -ENOENT;
1464 }
1465 
find_elf_var_sym(const struct bpf_object * obj,const char * name)1466 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1467 {
1468 	Elf_Data *symbols = obj->efile.symbols;
1469 	const char *sname;
1470 	size_t si;
1471 
1472 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1473 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1474 
1475 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1476 			continue;
1477 
1478 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1479 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1480 			continue;
1481 
1482 		sname = elf_sym_str(obj, sym->st_name);
1483 		if (!sname) {
1484 			pr_warn("failed to get sym name string for var %s\n", name);
1485 			return ERR_PTR(-EIO);
1486 		}
1487 		if (strcmp(name, sname) == 0)
1488 			return sym;
1489 	}
1490 
1491 	return ERR_PTR(-ENOENT);
1492 }
1493 
bpf_object__add_map(struct bpf_object * obj)1494 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1495 {
1496 	struct bpf_map *map;
1497 	int err;
1498 
1499 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1500 				sizeof(*obj->maps), obj->nr_maps + 1);
1501 	if (err)
1502 		return ERR_PTR(err);
1503 
1504 	map = &obj->maps[obj->nr_maps++];
1505 	map->obj = obj;
1506 	map->fd = -1;
1507 	map->inner_map_fd = -1;
1508 	map->autocreate = true;
1509 
1510 	return map;
1511 }
1512 
bpf_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1513 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1514 {
1515 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1516 	size_t map_sz;
1517 
1518 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1519 	map_sz = roundup(map_sz, page_sz);
1520 	return map_sz;
1521 }
1522 
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1523 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1524 {
1525 	void *mmaped;
1526 
1527 	if (!map->mmaped)
1528 		return -EINVAL;
1529 
1530 	if (old_sz == new_sz)
1531 		return 0;
1532 
1533 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1534 	if (mmaped == MAP_FAILED)
1535 		return -errno;
1536 
1537 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1538 	munmap(map->mmaped, old_sz);
1539 	map->mmaped = mmaped;
1540 	return 0;
1541 }
1542 
internal_map_name(struct bpf_object * obj,const char * real_name)1543 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1544 {
1545 	char map_name[BPF_OBJ_NAME_LEN], *p;
1546 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1547 
1548 	/* This is one of the more confusing parts of libbpf for various
1549 	 * reasons, some of which are historical. The original idea for naming
1550 	 * internal names was to include as much of BPF object name prefix as
1551 	 * possible, so that it can be distinguished from similar internal
1552 	 * maps of a different BPF object.
1553 	 * As an example, let's say we have bpf_object named 'my_object_name'
1554 	 * and internal map corresponding to '.rodata' ELF section. The final
1555 	 * map name advertised to user and to the kernel will be
1556 	 * 'my_objec.rodata', taking first 8 characters of object name and
1557 	 * entire 7 characters of '.rodata'.
1558 	 * Somewhat confusingly, if internal map ELF section name is shorter
1559 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1560 	 * for the suffix, even though we only have 4 actual characters, and
1561 	 * resulting map will be called 'my_objec.bss', not even using all 15
1562 	 * characters allowed by the kernel. Oh well, at least the truncated
1563 	 * object name is somewhat consistent in this case. But if the map
1564 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1565 	 * (8 chars) and thus will be left with only first 7 characters of the
1566 	 * object name ('my_obje'). Happy guessing, user, that the final map
1567 	 * name will be "my_obje.kconfig".
1568 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1569 	 * and .data.* data sections, it's possible that ELF section name is
1570 	 * longer than allowed 15 chars, so we now need to be careful to take
1571 	 * only up to 15 first characters of ELF name, taking no BPF object
1572 	 * name characters at all. So '.rodata.abracadabra' will result in
1573 	 * '.rodata.abracad' kernel and user-visible name.
1574 	 * We need to keep this convoluted logic intact for .data, .bss and
1575 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1576 	 * maps we use their ELF names as is, not prepending bpf_object name
1577 	 * in front. We still need to truncate them to 15 characters for the
1578 	 * kernel. Full name can be recovered for such maps by using DATASEC
1579 	 * BTF type associated with such map's value type, though.
1580 	 */
1581 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1582 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1583 
1584 	/* if there are two or more dots in map name, it's a custom dot map */
1585 	if (strchr(real_name + 1, '.') != NULL)
1586 		pfx_len = 0;
1587 	else
1588 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1589 
1590 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1591 		 sfx_len, real_name);
1592 
1593 	/* sanitise map name to characters allowed by kernel */
1594 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1595 		if (!isalnum(*p) && *p != '_' && *p != '.')
1596 			*p = '_';
1597 
1598 	return strdup(map_name);
1599 }
1600 
1601 static int
1602 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1603 
1604 /* Internal BPF map is mmap()'able only if at least one of corresponding
1605  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1606  * variable and it's not marked as __hidden (which turns it into, effectively,
1607  * a STATIC variable).
1608  */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1609 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1610 {
1611 	const struct btf_type *t, *vt;
1612 	struct btf_var_secinfo *vsi;
1613 	int i, n;
1614 
1615 	if (!map->btf_value_type_id)
1616 		return false;
1617 
1618 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1619 	if (!btf_is_datasec(t))
1620 		return false;
1621 
1622 	vsi = btf_var_secinfos(t);
1623 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1624 		vt = btf__type_by_id(obj->btf, vsi->type);
1625 		if (!btf_is_var(vt))
1626 			continue;
1627 
1628 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1629 			return true;
1630 	}
1631 
1632 	return false;
1633 }
1634 
1635 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1636 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1637 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1638 {
1639 	struct bpf_map_def *def;
1640 	struct bpf_map *map;
1641 	size_t mmap_sz;
1642 	int err;
1643 
1644 	map = bpf_object__add_map(obj);
1645 	if (IS_ERR(map))
1646 		return PTR_ERR(map);
1647 
1648 	map->libbpf_type = type;
1649 	map->sec_idx = sec_idx;
1650 	map->sec_offset = 0;
1651 	map->real_name = strdup(real_name);
1652 	map->name = internal_map_name(obj, real_name);
1653 	if (!map->real_name || !map->name) {
1654 		zfree(&map->real_name);
1655 		zfree(&map->name);
1656 		return -ENOMEM;
1657 	}
1658 
1659 	def = &map->def;
1660 	def->type = BPF_MAP_TYPE_ARRAY;
1661 	def->key_size = sizeof(int);
1662 	def->value_size = data_sz;
1663 	def->max_entries = 1;
1664 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1665 			 ? BPF_F_RDONLY_PROG : 0;
1666 
1667 	/* failures are fine because of maps like .rodata.str1.1 */
1668 	(void) map_fill_btf_type_info(obj, map);
1669 
1670 	if (map_is_mmapable(obj, map))
1671 		def->map_flags |= BPF_F_MMAPABLE;
1672 
1673 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1674 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1675 
1676 	mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1677 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1678 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1679 	if (map->mmaped == MAP_FAILED) {
1680 		err = -errno;
1681 		map->mmaped = NULL;
1682 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1683 			map->name, err);
1684 		zfree(&map->real_name);
1685 		zfree(&map->name);
1686 		return err;
1687 	}
1688 
1689 	if (data)
1690 		memcpy(map->mmaped, data, data_sz);
1691 
1692 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1693 	return 0;
1694 }
1695 
bpf_object__init_global_data_maps(struct bpf_object * obj)1696 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1697 {
1698 	struct elf_sec_desc *sec_desc;
1699 	const char *sec_name;
1700 	int err = 0, sec_idx;
1701 
1702 	/*
1703 	 * Populate obj->maps with libbpf internal maps.
1704 	 */
1705 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1706 		sec_desc = &obj->efile.secs[sec_idx];
1707 
1708 		/* Skip recognized sections with size 0. */
1709 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1710 			continue;
1711 
1712 		switch (sec_desc->sec_type) {
1713 		case SEC_DATA:
1714 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1715 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1716 							    sec_name, sec_idx,
1717 							    sec_desc->data->d_buf,
1718 							    sec_desc->data->d_size);
1719 			break;
1720 		case SEC_RODATA:
1721 			obj->has_rodata = true;
1722 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1723 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1724 							    sec_name, sec_idx,
1725 							    sec_desc->data->d_buf,
1726 							    sec_desc->data->d_size);
1727 			break;
1728 		case SEC_BSS:
1729 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1730 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1731 							    sec_name, sec_idx,
1732 							    NULL,
1733 							    sec_desc->data->d_size);
1734 			break;
1735 		default:
1736 			/* skip */
1737 			break;
1738 		}
1739 		if (err)
1740 			return err;
1741 	}
1742 	return 0;
1743 }
1744 
1745 
find_extern_by_name(const struct bpf_object * obj,const void * name)1746 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1747 					       const void *name)
1748 {
1749 	int i;
1750 
1751 	for (i = 0; i < obj->nr_extern; i++) {
1752 		if (strcmp(obj->externs[i].name, name) == 0)
1753 			return &obj->externs[i];
1754 	}
1755 	return NULL;
1756 }
1757 
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1758 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1759 			      char value)
1760 {
1761 	switch (ext->kcfg.type) {
1762 	case KCFG_BOOL:
1763 		if (value == 'm') {
1764 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1765 				ext->name, value);
1766 			return -EINVAL;
1767 		}
1768 		*(bool *)ext_val = value == 'y' ? true : false;
1769 		break;
1770 	case KCFG_TRISTATE:
1771 		if (value == 'y')
1772 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1773 		else if (value == 'm')
1774 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1775 		else /* value == 'n' */
1776 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1777 		break;
1778 	case KCFG_CHAR:
1779 		*(char *)ext_val = value;
1780 		break;
1781 	case KCFG_UNKNOWN:
1782 	case KCFG_INT:
1783 	case KCFG_CHAR_ARR:
1784 	default:
1785 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1786 			ext->name, value);
1787 		return -EINVAL;
1788 	}
1789 	ext->is_set = true;
1790 	return 0;
1791 }
1792 
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1793 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1794 			      const char *value)
1795 {
1796 	size_t len;
1797 
1798 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1799 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1800 			ext->name, value);
1801 		return -EINVAL;
1802 	}
1803 
1804 	len = strlen(value);
1805 	if (value[len - 1] != '"') {
1806 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1807 			ext->name, value);
1808 		return -EINVAL;
1809 	}
1810 
1811 	/* strip quotes */
1812 	len -= 2;
1813 	if (len >= ext->kcfg.sz) {
1814 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1815 			ext->name, value, len, ext->kcfg.sz - 1);
1816 		len = ext->kcfg.sz - 1;
1817 	}
1818 	memcpy(ext_val, value + 1, len);
1819 	ext_val[len] = '\0';
1820 	ext->is_set = true;
1821 	return 0;
1822 }
1823 
parse_u64(const char * value,__u64 * res)1824 static int parse_u64(const char *value, __u64 *res)
1825 {
1826 	char *value_end;
1827 	int err;
1828 
1829 	errno = 0;
1830 	*res = strtoull(value, &value_end, 0);
1831 	if (errno) {
1832 		err = -errno;
1833 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1834 		return err;
1835 	}
1836 	if (*value_end) {
1837 		pr_warn("failed to parse '%s' as integer completely\n", value);
1838 		return -EINVAL;
1839 	}
1840 	return 0;
1841 }
1842 
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1843 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1844 {
1845 	int bit_sz = ext->kcfg.sz * 8;
1846 
1847 	if (ext->kcfg.sz == 8)
1848 		return true;
1849 
1850 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1851 	 * bytes size without any loss of information. If the target integer
1852 	 * is signed, we rely on the following limits of integer type of
1853 	 * Y bits and subsequent transformation:
1854 	 *
1855 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1856 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1857 	 *            0 <= X + 2^(Y-1) <  2^Y
1858 	 *
1859 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1860 	 *  zero.
1861 	 */
1862 	if (ext->kcfg.is_signed)
1863 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1864 	else
1865 		return (v >> bit_sz) == 0;
1866 }
1867 
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1868 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1869 			      __u64 value)
1870 {
1871 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1872 	    ext->kcfg.type != KCFG_BOOL) {
1873 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1874 			ext->name, (unsigned long long)value);
1875 		return -EINVAL;
1876 	}
1877 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1878 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1879 			ext->name, (unsigned long long)value);
1880 		return -EINVAL;
1881 
1882 	}
1883 	if (!is_kcfg_value_in_range(ext, value)) {
1884 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1885 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1886 		return -ERANGE;
1887 	}
1888 	switch (ext->kcfg.sz) {
1889 	case 1:
1890 		*(__u8 *)ext_val = value;
1891 		break;
1892 	case 2:
1893 		*(__u16 *)ext_val = value;
1894 		break;
1895 	case 4:
1896 		*(__u32 *)ext_val = value;
1897 		break;
1898 	case 8:
1899 		*(__u64 *)ext_val = value;
1900 		break;
1901 	default:
1902 		return -EINVAL;
1903 	}
1904 	ext->is_set = true;
1905 	return 0;
1906 }
1907 
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1908 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1909 					    char *buf, void *data)
1910 {
1911 	struct extern_desc *ext;
1912 	char *sep, *value;
1913 	int len, err = 0;
1914 	void *ext_val;
1915 	__u64 num;
1916 
1917 	if (!str_has_pfx(buf, "CONFIG_"))
1918 		return 0;
1919 
1920 	sep = strchr(buf, '=');
1921 	if (!sep) {
1922 		pr_warn("failed to parse '%s': no separator\n", buf);
1923 		return -EINVAL;
1924 	}
1925 
1926 	/* Trim ending '\n' */
1927 	len = strlen(buf);
1928 	if (buf[len - 1] == '\n')
1929 		buf[len - 1] = '\0';
1930 	/* Split on '=' and ensure that a value is present. */
1931 	*sep = '\0';
1932 	if (!sep[1]) {
1933 		*sep = '=';
1934 		pr_warn("failed to parse '%s': no value\n", buf);
1935 		return -EINVAL;
1936 	}
1937 
1938 	ext = find_extern_by_name(obj, buf);
1939 	if (!ext || ext->is_set)
1940 		return 0;
1941 
1942 	ext_val = data + ext->kcfg.data_off;
1943 	value = sep + 1;
1944 
1945 	switch (*value) {
1946 	case 'y': case 'n': case 'm':
1947 		err = set_kcfg_value_tri(ext, ext_val, *value);
1948 		break;
1949 	case '"':
1950 		err = set_kcfg_value_str(ext, ext_val, value);
1951 		break;
1952 	default:
1953 		/* assume integer */
1954 		err = parse_u64(value, &num);
1955 		if (err) {
1956 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1957 			return err;
1958 		}
1959 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1960 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1961 			return -EINVAL;
1962 		}
1963 		err = set_kcfg_value_num(ext, ext_val, num);
1964 		break;
1965 	}
1966 	if (err)
1967 		return err;
1968 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1969 	return 0;
1970 }
1971 
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1972 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1973 {
1974 	char buf[PATH_MAX];
1975 	struct utsname uts;
1976 	int len, err = 0;
1977 	gzFile file;
1978 
1979 	uname(&uts);
1980 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1981 	if (len < 0)
1982 		return -EINVAL;
1983 	else if (len >= PATH_MAX)
1984 		return -ENAMETOOLONG;
1985 
1986 	/* gzopen also accepts uncompressed files. */
1987 	file = gzopen(buf, "re");
1988 	if (!file)
1989 		file = gzopen("/proc/config.gz", "re");
1990 
1991 	if (!file) {
1992 		pr_warn("failed to open system Kconfig\n");
1993 		return -ENOENT;
1994 	}
1995 
1996 	while (gzgets(file, buf, sizeof(buf))) {
1997 		err = bpf_object__process_kconfig_line(obj, buf, data);
1998 		if (err) {
1999 			pr_warn("error parsing system Kconfig line '%s': %d\n",
2000 				buf, err);
2001 			goto out;
2002 		}
2003 	}
2004 
2005 out:
2006 	gzclose(file);
2007 	return err;
2008 }
2009 
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2010 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2011 					const char *config, void *data)
2012 {
2013 	char buf[PATH_MAX];
2014 	int err = 0;
2015 	FILE *file;
2016 
2017 	file = fmemopen((void *)config, strlen(config), "r");
2018 	if (!file) {
2019 		err = -errno;
2020 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2021 		return err;
2022 	}
2023 
2024 	while (fgets(buf, sizeof(buf), file)) {
2025 		err = bpf_object__process_kconfig_line(obj, buf, data);
2026 		if (err) {
2027 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2028 				buf, err);
2029 			break;
2030 		}
2031 	}
2032 
2033 	fclose(file);
2034 	return err;
2035 }
2036 
bpf_object__init_kconfig_map(struct bpf_object * obj)2037 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2038 {
2039 	struct extern_desc *last_ext = NULL, *ext;
2040 	size_t map_sz;
2041 	int i, err;
2042 
2043 	for (i = 0; i < obj->nr_extern; i++) {
2044 		ext = &obj->externs[i];
2045 		if (ext->type == EXT_KCFG)
2046 			last_ext = ext;
2047 	}
2048 
2049 	if (!last_ext)
2050 		return 0;
2051 
2052 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2053 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2054 					    ".kconfig", obj->efile.symbols_shndx,
2055 					    NULL, map_sz);
2056 	if (err)
2057 		return err;
2058 
2059 	obj->kconfig_map_idx = obj->nr_maps - 1;
2060 
2061 	return 0;
2062 }
2063 
2064 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2065 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2066 {
2067 	const struct btf_type *t = btf__type_by_id(btf, id);
2068 
2069 	if (res_id)
2070 		*res_id = id;
2071 
2072 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2073 		if (res_id)
2074 			*res_id = t->type;
2075 		t = btf__type_by_id(btf, t->type);
2076 	}
2077 
2078 	return t;
2079 }
2080 
2081 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2082 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2083 {
2084 	const struct btf_type *t;
2085 
2086 	t = skip_mods_and_typedefs(btf, id, NULL);
2087 	if (!btf_is_ptr(t))
2088 		return NULL;
2089 
2090 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2091 
2092 	return btf_is_func_proto(t) ? t : NULL;
2093 }
2094 
__btf_kind_str(__u16 kind)2095 static const char *__btf_kind_str(__u16 kind)
2096 {
2097 	switch (kind) {
2098 	case BTF_KIND_UNKN: return "void";
2099 	case BTF_KIND_INT: return "int";
2100 	case BTF_KIND_PTR: return "ptr";
2101 	case BTF_KIND_ARRAY: return "array";
2102 	case BTF_KIND_STRUCT: return "struct";
2103 	case BTF_KIND_UNION: return "union";
2104 	case BTF_KIND_ENUM: return "enum";
2105 	case BTF_KIND_FWD: return "fwd";
2106 	case BTF_KIND_TYPEDEF: return "typedef";
2107 	case BTF_KIND_VOLATILE: return "volatile";
2108 	case BTF_KIND_CONST: return "const";
2109 	case BTF_KIND_RESTRICT: return "restrict";
2110 	case BTF_KIND_FUNC: return "func";
2111 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2112 	case BTF_KIND_VAR: return "var";
2113 	case BTF_KIND_DATASEC: return "datasec";
2114 	case BTF_KIND_FLOAT: return "float";
2115 	case BTF_KIND_DECL_TAG: return "decl_tag";
2116 	case BTF_KIND_TYPE_TAG: return "type_tag";
2117 	case BTF_KIND_ENUM64: return "enum64";
2118 	default: return "unknown";
2119 	}
2120 }
2121 
btf_kind_str(const struct btf_type * t)2122 const char *btf_kind_str(const struct btf_type *t)
2123 {
2124 	return __btf_kind_str(btf_kind(t));
2125 }
2126 
2127 /*
2128  * Fetch integer attribute of BTF map definition. Such attributes are
2129  * represented using a pointer to an array, in which dimensionality of array
2130  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2131  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2132  * type definition, while using only sizeof(void *) space in ELF data section.
2133  */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2134 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2135 			      const struct btf_member *m, __u32 *res)
2136 {
2137 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2138 	const char *name = btf__name_by_offset(btf, m->name_off);
2139 	const struct btf_array *arr_info;
2140 	const struct btf_type *arr_t;
2141 
2142 	if (!btf_is_ptr(t)) {
2143 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2144 			map_name, name, btf_kind_str(t));
2145 		return false;
2146 	}
2147 
2148 	arr_t = btf__type_by_id(btf, t->type);
2149 	if (!arr_t) {
2150 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2151 			map_name, name, t->type);
2152 		return false;
2153 	}
2154 	if (!btf_is_array(arr_t)) {
2155 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2156 			map_name, name, btf_kind_str(arr_t));
2157 		return false;
2158 	}
2159 	arr_info = btf_array(arr_t);
2160 	*res = arr_info->nelems;
2161 	return true;
2162 }
2163 
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2164 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2165 {
2166 	int len;
2167 
2168 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2169 	if (len < 0)
2170 		return -EINVAL;
2171 	if (len >= buf_sz)
2172 		return -ENAMETOOLONG;
2173 
2174 	return 0;
2175 }
2176 
build_map_pin_path(struct bpf_map * map,const char * path)2177 static int build_map_pin_path(struct bpf_map *map, const char *path)
2178 {
2179 	char buf[PATH_MAX];
2180 	int err;
2181 
2182 	if (!path)
2183 		path = "/sys/fs/bpf";
2184 
2185 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2186 	if (err)
2187 		return err;
2188 
2189 	return bpf_map__set_pin_path(map, buf);
2190 }
2191 
2192 /* should match definition in bpf_helpers.h */
2193 enum libbpf_pin_type {
2194 	LIBBPF_PIN_NONE,
2195 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2196 	LIBBPF_PIN_BY_NAME,
2197 };
2198 
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2199 int parse_btf_map_def(const char *map_name, struct btf *btf,
2200 		      const struct btf_type *def_t, bool strict,
2201 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2202 {
2203 	const struct btf_type *t;
2204 	const struct btf_member *m;
2205 	bool is_inner = inner_def == NULL;
2206 	int vlen, i;
2207 
2208 	vlen = btf_vlen(def_t);
2209 	m = btf_members(def_t);
2210 	for (i = 0; i < vlen; i++, m++) {
2211 		const char *name = btf__name_by_offset(btf, m->name_off);
2212 
2213 		if (!name) {
2214 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2215 			return -EINVAL;
2216 		}
2217 		if (strcmp(name, "type") == 0) {
2218 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2219 				return -EINVAL;
2220 			map_def->parts |= MAP_DEF_MAP_TYPE;
2221 		} else if (strcmp(name, "max_entries") == 0) {
2222 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2223 				return -EINVAL;
2224 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2225 		} else if (strcmp(name, "map_flags") == 0) {
2226 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2227 				return -EINVAL;
2228 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2229 		} else if (strcmp(name, "numa_node") == 0) {
2230 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2231 				return -EINVAL;
2232 			map_def->parts |= MAP_DEF_NUMA_NODE;
2233 		} else if (strcmp(name, "key_size") == 0) {
2234 			__u32 sz;
2235 
2236 			if (!get_map_field_int(map_name, btf, m, &sz))
2237 				return -EINVAL;
2238 			if (map_def->key_size && map_def->key_size != sz) {
2239 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2240 					map_name, map_def->key_size, sz);
2241 				return -EINVAL;
2242 			}
2243 			map_def->key_size = sz;
2244 			map_def->parts |= MAP_DEF_KEY_SIZE;
2245 		} else if (strcmp(name, "key") == 0) {
2246 			__s64 sz;
2247 
2248 			t = btf__type_by_id(btf, m->type);
2249 			if (!t) {
2250 				pr_warn("map '%s': key type [%d] not found.\n",
2251 					map_name, m->type);
2252 				return -EINVAL;
2253 			}
2254 			if (!btf_is_ptr(t)) {
2255 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2256 					map_name, btf_kind_str(t));
2257 				return -EINVAL;
2258 			}
2259 			sz = btf__resolve_size(btf, t->type);
2260 			if (sz < 0) {
2261 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2262 					map_name, t->type, (ssize_t)sz);
2263 				return sz;
2264 			}
2265 			if (map_def->key_size && map_def->key_size != sz) {
2266 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2267 					map_name, map_def->key_size, (ssize_t)sz);
2268 				return -EINVAL;
2269 			}
2270 			map_def->key_size = sz;
2271 			map_def->key_type_id = t->type;
2272 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2273 		} else if (strcmp(name, "value_size") == 0) {
2274 			__u32 sz;
2275 
2276 			if (!get_map_field_int(map_name, btf, m, &sz))
2277 				return -EINVAL;
2278 			if (map_def->value_size && map_def->value_size != sz) {
2279 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2280 					map_name, map_def->value_size, sz);
2281 				return -EINVAL;
2282 			}
2283 			map_def->value_size = sz;
2284 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2285 		} else if (strcmp(name, "value") == 0) {
2286 			__s64 sz;
2287 
2288 			t = btf__type_by_id(btf, m->type);
2289 			if (!t) {
2290 				pr_warn("map '%s': value type [%d] not found.\n",
2291 					map_name, m->type);
2292 				return -EINVAL;
2293 			}
2294 			if (!btf_is_ptr(t)) {
2295 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2296 					map_name, btf_kind_str(t));
2297 				return -EINVAL;
2298 			}
2299 			sz = btf__resolve_size(btf, t->type);
2300 			if (sz < 0) {
2301 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2302 					map_name, t->type, (ssize_t)sz);
2303 				return sz;
2304 			}
2305 			if (map_def->value_size && map_def->value_size != sz) {
2306 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2307 					map_name, map_def->value_size, (ssize_t)sz);
2308 				return -EINVAL;
2309 			}
2310 			map_def->value_size = sz;
2311 			map_def->value_type_id = t->type;
2312 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2313 		}
2314 		else if (strcmp(name, "values") == 0) {
2315 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2316 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2317 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2318 			char inner_map_name[128];
2319 			int err;
2320 
2321 			if (is_inner) {
2322 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2323 					map_name);
2324 				return -ENOTSUP;
2325 			}
2326 			if (i != vlen - 1) {
2327 				pr_warn("map '%s': '%s' member should be last.\n",
2328 					map_name, name);
2329 				return -EINVAL;
2330 			}
2331 			if (!is_map_in_map && !is_prog_array) {
2332 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2333 					map_name);
2334 				return -ENOTSUP;
2335 			}
2336 			if (map_def->value_size && map_def->value_size != 4) {
2337 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2338 					map_name, map_def->value_size);
2339 				return -EINVAL;
2340 			}
2341 			map_def->value_size = 4;
2342 			t = btf__type_by_id(btf, m->type);
2343 			if (!t) {
2344 				pr_warn("map '%s': %s type [%d] not found.\n",
2345 					map_name, desc, m->type);
2346 				return -EINVAL;
2347 			}
2348 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2349 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2350 					map_name, desc);
2351 				return -EINVAL;
2352 			}
2353 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2354 			if (!btf_is_ptr(t)) {
2355 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2356 					map_name, desc, btf_kind_str(t));
2357 				return -EINVAL;
2358 			}
2359 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2360 			if (is_prog_array) {
2361 				if (!btf_is_func_proto(t)) {
2362 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2363 						map_name, btf_kind_str(t));
2364 					return -EINVAL;
2365 				}
2366 				continue;
2367 			}
2368 			if (!btf_is_struct(t)) {
2369 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2370 					map_name, btf_kind_str(t));
2371 				return -EINVAL;
2372 			}
2373 
2374 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2375 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2376 			if (err)
2377 				return err;
2378 
2379 			map_def->parts |= MAP_DEF_INNER_MAP;
2380 		} else if (strcmp(name, "pinning") == 0) {
2381 			__u32 val;
2382 
2383 			if (is_inner) {
2384 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2385 				return -EINVAL;
2386 			}
2387 			if (!get_map_field_int(map_name, btf, m, &val))
2388 				return -EINVAL;
2389 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2390 				pr_warn("map '%s': invalid pinning value %u.\n",
2391 					map_name, val);
2392 				return -EINVAL;
2393 			}
2394 			map_def->pinning = val;
2395 			map_def->parts |= MAP_DEF_PINNING;
2396 		} else if (strcmp(name, "map_extra") == 0) {
2397 			__u32 map_extra;
2398 
2399 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2400 				return -EINVAL;
2401 			map_def->map_extra = map_extra;
2402 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2403 		} else {
2404 			if (strict) {
2405 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2406 				return -ENOTSUP;
2407 			}
2408 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2409 		}
2410 	}
2411 
2412 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2413 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2414 		return -EINVAL;
2415 	}
2416 
2417 	return 0;
2418 }
2419 
adjust_ringbuf_sz(size_t sz)2420 static size_t adjust_ringbuf_sz(size_t sz)
2421 {
2422 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2423 	__u32 mul;
2424 
2425 	/* if user forgot to set any size, make sure they see error */
2426 	if (sz == 0)
2427 		return 0;
2428 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2429 	 * a power-of-2 multiple of kernel's page size. If user diligently
2430 	 * satisified these conditions, pass the size through.
2431 	 */
2432 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2433 		return sz;
2434 
2435 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2436 	 * user-set size to satisfy both user size request and kernel
2437 	 * requirements and substitute correct max_entries for map creation.
2438 	 */
2439 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2440 		if (mul * page_sz > sz)
2441 			return mul * page_sz;
2442 	}
2443 
2444 	/* if it's impossible to satisfy the conditions (i.e., user size is
2445 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2446 	 * page_size) then just return original size and let kernel reject it
2447 	 */
2448 	return sz;
2449 }
2450 
map_is_ringbuf(const struct bpf_map * map)2451 static bool map_is_ringbuf(const struct bpf_map *map)
2452 {
2453 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2454 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2455 }
2456 
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2457 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2458 {
2459 	map->def.type = def->map_type;
2460 	map->def.key_size = def->key_size;
2461 	map->def.value_size = def->value_size;
2462 	map->def.max_entries = def->max_entries;
2463 	map->def.map_flags = def->map_flags;
2464 	map->map_extra = def->map_extra;
2465 
2466 	map->numa_node = def->numa_node;
2467 	map->btf_key_type_id = def->key_type_id;
2468 	map->btf_value_type_id = def->value_type_id;
2469 
2470 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2471 	if (map_is_ringbuf(map))
2472 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2473 
2474 	if (def->parts & MAP_DEF_MAP_TYPE)
2475 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2476 
2477 	if (def->parts & MAP_DEF_KEY_TYPE)
2478 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2479 			 map->name, def->key_type_id, def->key_size);
2480 	else if (def->parts & MAP_DEF_KEY_SIZE)
2481 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2482 
2483 	if (def->parts & MAP_DEF_VALUE_TYPE)
2484 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2485 			 map->name, def->value_type_id, def->value_size);
2486 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2487 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2488 
2489 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2490 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2491 	if (def->parts & MAP_DEF_MAP_FLAGS)
2492 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2493 	if (def->parts & MAP_DEF_MAP_EXTRA)
2494 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2495 			 (unsigned long long)def->map_extra);
2496 	if (def->parts & MAP_DEF_PINNING)
2497 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2498 	if (def->parts & MAP_DEF_NUMA_NODE)
2499 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2500 
2501 	if (def->parts & MAP_DEF_INNER_MAP)
2502 		pr_debug("map '%s': found inner map definition.\n", map->name);
2503 }
2504 
btf_var_linkage_str(__u32 linkage)2505 static const char *btf_var_linkage_str(__u32 linkage)
2506 {
2507 	switch (linkage) {
2508 	case BTF_VAR_STATIC: return "static";
2509 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2510 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2511 	default: return "unknown";
2512 	}
2513 }
2514 
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2515 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2516 					 const struct btf_type *sec,
2517 					 int var_idx, int sec_idx,
2518 					 const Elf_Data *data, bool strict,
2519 					 const char *pin_root_path)
2520 {
2521 	struct btf_map_def map_def = {}, inner_def = {};
2522 	const struct btf_type *var, *def;
2523 	const struct btf_var_secinfo *vi;
2524 	const struct btf_var *var_extra;
2525 	const char *map_name;
2526 	struct bpf_map *map;
2527 	int err;
2528 
2529 	vi = btf_var_secinfos(sec) + var_idx;
2530 	var = btf__type_by_id(obj->btf, vi->type);
2531 	var_extra = btf_var(var);
2532 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2533 
2534 	if (map_name == NULL || map_name[0] == '\0') {
2535 		pr_warn("map #%d: empty name.\n", var_idx);
2536 		return -EINVAL;
2537 	}
2538 	if ((__u64)vi->offset + vi->size > data->d_size) {
2539 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2540 		return -EINVAL;
2541 	}
2542 	if (!btf_is_var(var)) {
2543 		pr_warn("map '%s': unexpected var kind %s.\n",
2544 			map_name, btf_kind_str(var));
2545 		return -EINVAL;
2546 	}
2547 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2548 		pr_warn("map '%s': unsupported map linkage %s.\n",
2549 			map_name, btf_var_linkage_str(var_extra->linkage));
2550 		return -EOPNOTSUPP;
2551 	}
2552 
2553 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2554 	if (!btf_is_struct(def)) {
2555 		pr_warn("map '%s': unexpected def kind %s.\n",
2556 			map_name, btf_kind_str(var));
2557 		return -EINVAL;
2558 	}
2559 	if (def->size > vi->size) {
2560 		pr_warn("map '%s': invalid def size.\n", map_name);
2561 		return -EINVAL;
2562 	}
2563 
2564 	map = bpf_object__add_map(obj);
2565 	if (IS_ERR(map))
2566 		return PTR_ERR(map);
2567 	map->name = strdup(map_name);
2568 	if (!map->name) {
2569 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2570 		return -ENOMEM;
2571 	}
2572 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2573 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2574 	map->sec_idx = sec_idx;
2575 	map->sec_offset = vi->offset;
2576 	map->btf_var_idx = var_idx;
2577 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2578 		 map_name, map->sec_idx, map->sec_offset);
2579 
2580 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2581 	if (err)
2582 		return err;
2583 
2584 	fill_map_from_def(map, &map_def);
2585 
2586 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2587 		err = build_map_pin_path(map, pin_root_path);
2588 		if (err) {
2589 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2590 			return err;
2591 		}
2592 	}
2593 
2594 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2595 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2596 		if (!map->inner_map)
2597 			return -ENOMEM;
2598 		map->inner_map->fd = -1;
2599 		map->inner_map->sec_idx = sec_idx;
2600 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2601 		if (!map->inner_map->name)
2602 			return -ENOMEM;
2603 		sprintf(map->inner_map->name, "%s.inner", map_name);
2604 
2605 		fill_map_from_def(map->inner_map, &inner_def);
2606 	}
2607 
2608 	err = map_fill_btf_type_info(obj, map);
2609 	if (err)
2610 		return err;
2611 
2612 	return 0;
2613 }
2614 
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2615 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2616 					  const char *pin_root_path)
2617 {
2618 	const struct btf_type *sec = NULL;
2619 	int nr_types, i, vlen, err;
2620 	const struct btf_type *t;
2621 	const char *name;
2622 	Elf_Data *data;
2623 	Elf_Scn *scn;
2624 
2625 	if (obj->efile.btf_maps_shndx < 0)
2626 		return 0;
2627 
2628 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2629 	data = elf_sec_data(obj, scn);
2630 	if (!scn || !data) {
2631 		pr_warn("elf: failed to get %s map definitions for %s\n",
2632 			MAPS_ELF_SEC, obj->path);
2633 		return -EINVAL;
2634 	}
2635 
2636 	nr_types = btf__type_cnt(obj->btf);
2637 	for (i = 1; i < nr_types; i++) {
2638 		t = btf__type_by_id(obj->btf, i);
2639 		if (!btf_is_datasec(t))
2640 			continue;
2641 		name = btf__name_by_offset(obj->btf, t->name_off);
2642 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2643 			sec = t;
2644 			obj->efile.btf_maps_sec_btf_id = i;
2645 			break;
2646 		}
2647 	}
2648 
2649 	if (!sec) {
2650 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2651 		return -ENOENT;
2652 	}
2653 
2654 	vlen = btf_vlen(sec);
2655 	for (i = 0; i < vlen; i++) {
2656 		err = bpf_object__init_user_btf_map(obj, sec, i,
2657 						    obj->efile.btf_maps_shndx,
2658 						    data, strict,
2659 						    pin_root_path);
2660 		if (err)
2661 			return err;
2662 	}
2663 
2664 	return 0;
2665 }
2666 
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2667 static int bpf_object__init_maps(struct bpf_object *obj,
2668 				 const struct bpf_object_open_opts *opts)
2669 {
2670 	const char *pin_root_path;
2671 	bool strict;
2672 	int err = 0;
2673 
2674 	strict = !OPTS_GET(opts, relaxed_maps, false);
2675 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2676 
2677 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2678 	err = err ?: bpf_object__init_global_data_maps(obj);
2679 	err = err ?: bpf_object__init_kconfig_map(obj);
2680 	err = err ?: bpf_object_init_struct_ops(obj);
2681 
2682 	return err;
2683 }
2684 
section_have_execinstr(struct bpf_object * obj,int idx)2685 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2686 {
2687 	Elf64_Shdr *sh;
2688 
2689 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2690 	if (!sh)
2691 		return false;
2692 
2693 	return sh->sh_flags & SHF_EXECINSTR;
2694 }
2695 
btf_needs_sanitization(struct bpf_object * obj)2696 static bool btf_needs_sanitization(struct bpf_object *obj)
2697 {
2698 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2699 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2700 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2701 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2702 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2703 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2704 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2705 
2706 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2707 	       !has_decl_tag || !has_type_tag || !has_enum64;
2708 }
2709 
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2710 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2711 {
2712 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2713 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2714 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2715 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2716 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2717 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2718 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2719 	int enum64_placeholder_id = 0;
2720 	struct btf_type *t;
2721 	int i, j, vlen;
2722 
2723 	for (i = 1; i < btf__type_cnt(btf); i++) {
2724 		t = (struct btf_type *)btf__type_by_id(btf, i);
2725 
2726 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2727 			/* replace VAR/DECL_TAG with INT */
2728 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2729 			/*
2730 			 * using size = 1 is the safest choice, 4 will be too
2731 			 * big and cause kernel BTF validation failure if
2732 			 * original variable took less than 4 bytes
2733 			 */
2734 			t->size = 1;
2735 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2736 		} else if (!has_datasec && btf_is_datasec(t)) {
2737 			/* replace DATASEC with STRUCT */
2738 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2739 			struct btf_member *m = btf_members(t);
2740 			struct btf_type *vt;
2741 			char *name;
2742 
2743 			name = (char *)btf__name_by_offset(btf, t->name_off);
2744 			while (*name) {
2745 				if (*name == '.')
2746 					*name = '_';
2747 				name++;
2748 			}
2749 
2750 			vlen = btf_vlen(t);
2751 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2752 			for (j = 0; j < vlen; j++, v++, m++) {
2753 				/* order of field assignments is important */
2754 				m->offset = v->offset * 8;
2755 				m->type = v->type;
2756 				/* preserve variable name as member name */
2757 				vt = (void *)btf__type_by_id(btf, v->type);
2758 				m->name_off = vt->name_off;
2759 			}
2760 		} else if (!has_func && btf_is_func_proto(t)) {
2761 			/* replace FUNC_PROTO with ENUM */
2762 			vlen = btf_vlen(t);
2763 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2764 			t->size = sizeof(__u32); /* kernel enforced */
2765 		} else if (!has_func && btf_is_func(t)) {
2766 			/* replace FUNC with TYPEDEF */
2767 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2768 		} else if (!has_func_global && btf_is_func(t)) {
2769 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2770 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2771 		} else if (!has_float && btf_is_float(t)) {
2772 			/* replace FLOAT with an equally-sized empty STRUCT;
2773 			 * since C compilers do not accept e.g. "float" as a
2774 			 * valid struct name, make it anonymous
2775 			 */
2776 			t->name_off = 0;
2777 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2778 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2779 			/* replace TYPE_TAG with a CONST */
2780 			t->name_off = 0;
2781 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2782 		} else if (!has_enum64 && btf_is_enum(t)) {
2783 			/* clear the kflag */
2784 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2785 		} else if (!has_enum64 && btf_is_enum64(t)) {
2786 			/* replace ENUM64 with a union */
2787 			struct btf_member *m;
2788 
2789 			if (enum64_placeholder_id == 0) {
2790 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2791 				if (enum64_placeholder_id < 0)
2792 					return enum64_placeholder_id;
2793 
2794 				t = (struct btf_type *)btf__type_by_id(btf, i);
2795 			}
2796 
2797 			m = btf_members(t);
2798 			vlen = btf_vlen(t);
2799 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2800 			for (j = 0; j < vlen; j++, m++) {
2801 				m->type = enum64_placeholder_id;
2802 				m->offset = 0;
2803 			}
2804 		}
2805 	}
2806 
2807 	return 0;
2808 }
2809 
libbpf_needs_btf(const struct bpf_object * obj)2810 static bool libbpf_needs_btf(const struct bpf_object *obj)
2811 {
2812 	return obj->efile.btf_maps_shndx >= 0 ||
2813 	       obj->efile.st_ops_shndx >= 0 ||
2814 	       obj->efile.st_ops_link_shndx >= 0 ||
2815 	       obj->nr_extern > 0;
2816 }
2817 
kernel_needs_btf(const struct bpf_object * obj)2818 static bool kernel_needs_btf(const struct bpf_object *obj)
2819 {
2820 	return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2821 }
2822 
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2823 static int bpf_object__init_btf(struct bpf_object *obj,
2824 				Elf_Data *btf_data,
2825 				Elf_Data *btf_ext_data)
2826 {
2827 	int err = -ENOENT;
2828 
2829 	if (btf_data) {
2830 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2831 		err = libbpf_get_error(obj->btf);
2832 		if (err) {
2833 			obj->btf = NULL;
2834 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2835 			goto out;
2836 		}
2837 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2838 		btf__set_pointer_size(obj->btf, 8);
2839 	}
2840 	if (btf_ext_data) {
2841 		struct btf_ext_info *ext_segs[3];
2842 		int seg_num, sec_num;
2843 
2844 		if (!obj->btf) {
2845 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2846 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2847 			goto out;
2848 		}
2849 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2850 		err = libbpf_get_error(obj->btf_ext);
2851 		if (err) {
2852 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2853 				BTF_EXT_ELF_SEC, err);
2854 			obj->btf_ext = NULL;
2855 			goto out;
2856 		}
2857 
2858 		/* setup .BTF.ext to ELF section mapping */
2859 		ext_segs[0] = &obj->btf_ext->func_info;
2860 		ext_segs[1] = &obj->btf_ext->line_info;
2861 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2862 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2863 			struct btf_ext_info *seg = ext_segs[seg_num];
2864 			const struct btf_ext_info_sec *sec;
2865 			const char *sec_name;
2866 			Elf_Scn *scn;
2867 
2868 			if (seg->sec_cnt == 0)
2869 				continue;
2870 
2871 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2872 			if (!seg->sec_idxs) {
2873 				err = -ENOMEM;
2874 				goto out;
2875 			}
2876 
2877 			sec_num = 0;
2878 			for_each_btf_ext_sec(seg, sec) {
2879 				/* preventively increment index to avoid doing
2880 				 * this before every continue below
2881 				 */
2882 				sec_num++;
2883 
2884 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2885 				if (str_is_empty(sec_name))
2886 					continue;
2887 				scn = elf_sec_by_name(obj, sec_name);
2888 				if (!scn)
2889 					continue;
2890 
2891 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2892 			}
2893 		}
2894 	}
2895 out:
2896 	if (err && libbpf_needs_btf(obj)) {
2897 		pr_warn("BTF is required, but is missing or corrupted.\n");
2898 		return err;
2899 	}
2900 	return 0;
2901 }
2902 
compare_vsi_off(const void * _a,const void * _b)2903 static int compare_vsi_off(const void *_a, const void *_b)
2904 {
2905 	const struct btf_var_secinfo *a = _a;
2906 	const struct btf_var_secinfo *b = _b;
2907 
2908 	return a->offset - b->offset;
2909 }
2910 
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)2911 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2912 			     struct btf_type *t)
2913 {
2914 	__u32 size = 0, i, vars = btf_vlen(t);
2915 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
2916 	struct btf_var_secinfo *vsi;
2917 	bool fixup_offsets = false;
2918 	int err;
2919 
2920 	if (!sec_name) {
2921 		pr_debug("No name found in string section for DATASEC kind.\n");
2922 		return -ENOENT;
2923 	}
2924 
2925 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2926 	 * variable offsets set at the previous step. Further, not every
2927 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2928 	 * all fixups altogether for such sections and go straight to sorting
2929 	 * VARs within their DATASEC.
2930 	 */
2931 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2932 		goto sort_vars;
2933 
2934 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2935 	 * fix this up. But BPF static linker already fixes this up and fills
2936 	 * all the sizes and offsets during static linking. So this step has
2937 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
2938 	 * non-extern DATASEC, so the variable fixup loop below handles both
2939 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
2940 	 * symbol matching just once.
2941 	 */
2942 	if (t->size == 0) {
2943 		err = find_elf_sec_sz(obj, sec_name, &size);
2944 		if (err || !size) {
2945 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2946 				 sec_name, size, err);
2947 			return -ENOENT;
2948 		}
2949 
2950 		t->size = size;
2951 		fixup_offsets = true;
2952 	}
2953 
2954 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2955 		const struct btf_type *t_var;
2956 		struct btf_var *var;
2957 		const char *var_name;
2958 		Elf64_Sym *sym;
2959 
2960 		t_var = btf__type_by_id(btf, vsi->type);
2961 		if (!t_var || !btf_is_var(t_var)) {
2962 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2963 			return -EINVAL;
2964 		}
2965 
2966 		var = btf_var(t_var);
2967 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2968 			continue;
2969 
2970 		var_name = btf__name_by_offset(btf, t_var->name_off);
2971 		if (!var_name) {
2972 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2973 				 sec_name, i);
2974 			return -ENOENT;
2975 		}
2976 
2977 		sym = find_elf_var_sym(obj, var_name);
2978 		if (IS_ERR(sym)) {
2979 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2980 				 sec_name, var_name);
2981 			return -ENOENT;
2982 		}
2983 
2984 		if (fixup_offsets)
2985 			vsi->offset = sym->st_value;
2986 
2987 		/* if variable is a global/weak symbol, but has restricted
2988 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2989 		 * as static. This follows similar logic for functions (BPF
2990 		 * subprogs) and influences libbpf's further decisions about
2991 		 * whether to make global data BPF array maps as
2992 		 * BPF_F_MMAPABLE.
2993 		 */
2994 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2995 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2996 			var->linkage = BTF_VAR_STATIC;
2997 	}
2998 
2999 sort_vars:
3000 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3001 	return 0;
3002 }
3003 
bpf_object_fixup_btf(struct bpf_object * obj)3004 static int bpf_object_fixup_btf(struct bpf_object *obj)
3005 {
3006 	int i, n, err = 0;
3007 
3008 	if (!obj->btf)
3009 		return 0;
3010 
3011 	n = btf__type_cnt(obj->btf);
3012 	for (i = 1; i < n; i++) {
3013 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3014 
3015 		/* Loader needs to fix up some of the things compiler
3016 		 * couldn't get its hands on while emitting BTF. This
3017 		 * is section size and global variable offset. We use
3018 		 * the info from the ELF itself for this purpose.
3019 		 */
3020 		if (btf_is_datasec(t)) {
3021 			err = btf_fixup_datasec(obj, obj->btf, t);
3022 			if (err)
3023 				return err;
3024 		}
3025 	}
3026 
3027 	return 0;
3028 }
3029 
prog_needs_vmlinux_btf(struct bpf_program * prog)3030 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3031 {
3032 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3033 	    prog->type == BPF_PROG_TYPE_LSM)
3034 		return true;
3035 
3036 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3037 	 * also need vmlinux BTF
3038 	 */
3039 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3040 		return true;
3041 
3042 	return false;
3043 }
3044 
obj_needs_vmlinux_btf(const struct bpf_object * obj)3045 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3046 {
3047 	struct bpf_program *prog;
3048 	int i;
3049 
3050 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3051 	 * is not specified
3052 	 */
3053 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3054 		return true;
3055 
3056 	/* Support for typed ksyms needs kernel BTF */
3057 	for (i = 0; i < obj->nr_extern; i++) {
3058 		const struct extern_desc *ext;
3059 
3060 		ext = &obj->externs[i];
3061 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3062 			return true;
3063 	}
3064 
3065 	bpf_object__for_each_program(prog, obj) {
3066 		if (!prog->autoload)
3067 			continue;
3068 		if (prog_needs_vmlinux_btf(prog))
3069 			return true;
3070 	}
3071 
3072 	return false;
3073 }
3074 
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3075 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3076 {
3077 	int err;
3078 
3079 	/* btf_vmlinux could be loaded earlier */
3080 	if (obj->btf_vmlinux || obj->gen_loader)
3081 		return 0;
3082 
3083 	if (!force && !obj_needs_vmlinux_btf(obj))
3084 		return 0;
3085 
3086 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3087 	err = libbpf_get_error(obj->btf_vmlinux);
3088 	if (err) {
3089 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3090 		obj->btf_vmlinux = NULL;
3091 		return err;
3092 	}
3093 	return 0;
3094 }
3095 
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3096 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3097 {
3098 	struct btf *kern_btf = obj->btf;
3099 	bool btf_mandatory, sanitize;
3100 	int i, err = 0;
3101 
3102 	if (!obj->btf)
3103 		return 0;
3104 
3105 	if (!kernel_supports(obj, FEAT_BTF)) {
3106 		if (kernel_needs_btf(obj)) {
3107 			err = -EOPNOTSUPP;
3108 			goto report;
3109 		}
3110 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3111 		return 0;
3112 	}
3113 
3114 	/* Even though some subprogs are global/weak, user might prefer more
3115 	 * permissive BPF verification process that BPF verifier performs for
3116 	 * static functions, taking into account more context from the caller
3117 	 * functions. In such case, they need to mark such subprogs with
3118 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3119 	 * corresponding FUNC BTF type to be marked as static and trigger more
3120 	 * involved BPF verification process.
3121 	 */
3122 	for (i = 0; i < obj->nr_programs; i++) {
3123 		struct bpf_program *prog = &obj->programs[i];
3124 		struct btf_type *t;
3125 		const char *name;
3126 		int j, n;
3127 
3128 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3129 			continue;
3130 
3131 		n = btf__type_cnt(obj->btf);
3132 		for (j = 1; j < n; j++) {
3133 			t = btf_type_by_id(obj->btf, j);
3134 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3135 				continue;
3136 
3137 			name = btf__str_by_offset(obj->btf, t->name_off);
3138 			if (strcmp(name, prog->name) != 0)
3139 				continue;
3140 
3141 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3142 			break;
3143 		}
3144 	}
3145 
3146 	sanitize = btf_needs_sanitization(obj);
3147 	if (sanitize) {
3148 		const void *raw_data;
3149 		__u32 sz;
3150 
3151 		/* clone BTF to sanitize a copy and leave the original intact */
3152 		raw_data = btf__raw_data(obj->btf, &sz);
3153 		kern_btf = btf__new(raw_data, sz);
3154 		err = libbpf_get_error(kern_btf);
3155 		if (err)
3156 			return err;
3157 
3158 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3159 		btf__set_pointer_size(obj->btf, 8);
3160 		err = bpf_object__sanitize_btf(obj, kern_btf);
3161 		if (err)
3162 			return err;
3163 	}
3164 
3165 	if (obj->gen_loader) {
3166 		__u32 raw_size = 0;
3167 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3168 
3169 		if (!raw_data)
3170 			return -ENOMEM;
3171 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3172 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3173 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3174 		 */
3175 		btf__set_fd(kern_btf, 0);
3176 	} else {
3177 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3178 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3179 					   obj->log_level ? 1 : 0);
3180 	}
3181 	if (sanitize) {
3182 		if (!err) {
3183 			/* move fd to libbpf's BTF */
3184 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3185 			btf__set_fd(kern_btf, -1);
3186 		}
3187 		btf__free(kern_btf);
3188 	}
3189 report:
3190 	if (err) {
3191 		btf_mandatory = kernel_needs_btf(obj);
3192 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3193 			btf_mandatory ? "BTF is mandatory, can't proceed."
3194 				      : "BTF is optional, ignoring.");
3195 		if (!btf_mandatory)
3196 			err = 0;
3197 	}
3198 	return err;
3199 }
3200 
elf_sym_str(const struct bpf_object * obj,size_t off)3201 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3202 {
3203 	const char *name;
3204 
3205 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3206 	if (!name) {
3207 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3208 			off, obj->path, elf_errmsg(-1));
3209 		return NULL;
3210 	}
3211 
3212 	return name;
3213 }
3214 
elf_sec_str(const struct bpf_object * obj,size_t off)3215 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3216 {
3217 	const char *name;
3218 
3219 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3220 	if (!name) {
3221 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3222 			off, obj->path, elf_errmsg(-1));
3223 		return NULL;
3224 	}
3225 
3226 	return name;
3227 }
3228 
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3229 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3230 {
3231 	Elf_Scn *scn;
3232 
3233 	scn = elf_getscn(obj->efile.elf, idx);
3234 	if (!scn) {
3235 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3236 			idx, obj->path, elf_errmsg(-1));
3237 		return NULL;
3238 	}
3239 	return scn;
3240 }
3241 
elf_sec_by_name(const struct bpf_object * obj,const char * name)3242 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3243 {
3244 	Elf_Scn *scn = NULL;
3245 	Elf *elf = obj->efile.elf;
3246 	const char *sec_name;
3247 
3248 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3249 		sec_name = elf_sec_name(obj, scn);
3250 		if (!sec_name)
3251 			return NULL;
3252 
3253 		if (strcmp(sec_name, name) != 0)
3254 			continue;
3255 
3256 		return scn;
3257 	}
3258 	return NULL;
3259 }
3260 
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3261 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3262 {
3263 	Elf64_Shdr *shdr;
3264 
3265 	if (!scn)
3266 		return NULL;
3267 
3268 	shdr = elf64_getshdr(scn);
3269 	if (!shdr) {
3270 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3271 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3272 		return NULL;
3273 	}
3274 
3275 	return shdr;
3276 }
3277 
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3278 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3279 {
3280 	const char *name;
3281 	Elf64_Shdr *sh;
3282 
3283 	if (!scn)
3284 		return NULL;
3285 
3286 	sh = elf_sec_hdr(obj, scn);
3287 	if (!sh)
3288 		return NULL;
3289 
3290 	name = elf_sec_str(obj, sh->sh_name);
3291 	if (!name) {
3292 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3293 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3294 		return NULL;
3295 	}
3296 
3297 	return name;
3298 }
3299 
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3300 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3301 {
3302 	Elf_Data *data;
3303 
3304 	if (!scn)
3305 		return NULL;
3306 
3307 	data = elf_getdata(scn, 0);
3308 	if (!data) {
3309 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3310 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3311 			obj->path, elf_errmsg(-1));
3312 		return NULL;
3313 	}
3314 
3315 	return data;
3316 }
3317 
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3318 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3319 {
3320 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3321 		return NULL;
3322 
3323 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3324 }
3325 
elf_rel_by_idx(Elf_Data * data,size_t idx)3326 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3327 {
3328 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3329 		return NULL;
3330 
3331 	return (Elf64_Rel *)data->d_buf + idx;
3332 }
3333 
is_sec_name_dwarf(const char * name)3334 static bool is_sec_name_dwarf(const char *name)
3335 {
3336 	/* approximation, but the actual list is too long */
3337 	return str_has_pfx(name, ".debug_");
3338 }
3339 
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3340 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3341 {
3342 	/* no special handling of .strtab */
3343 	if (hdr->sh_type == SHT_STRTAB)
3344 		return true;
3345 
3346 	/* ignore .llvm_addrsig section as well */
3347 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3348 		return true;
3349 
3350 	/* no subprograms will lead to an empty .text section, ignore it */
3351 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3352 	    strcmp(name, ".text") == 0)
3353 		return true;
3354 
3355 	/* DWARF sections */
3356 	if (is_sec_name_dwarf(name))
3357 		return true;
3358 
3359 	if (str_has_pfx(name, ".rel")) {
3360 		name += sizeof(".rel") - 1;
3361 		/* DWARF section relocations */
3362 		if (is_sec_name_dwarf(name))
3363 			return true;
3364 
3365 		/* .BTF and .BTF.ext don't need relocations */
3366 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3367 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3368 			return true;
3369 	}
3370 
3371 	return false;
3372 }
3373 
cmp_progs(const void * _a,const void * _b)3374 static int cmp_progs(const void *_a, const void *_b)
3375 {
3376 	const struct bpf_program *a = _a;
3377 	const struct bpf_program *b = _b;
3378 
3379 	if (a->sec_idx != b->sec_idx)
3380 		return a->sec_idx < b->sec_idx ? -1 : 1;
3381 
3382 	/* sec_insn_off can't be the same within the section */
3383 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3384 }
3385 
bpf_object__elf_collect(struct bpf_object * obj)3386 static int bpf_object__elf_collect(struct bpf_object *obj)
3387 {
3388 	struct elf_sec_desc *sec_desc;
3389 	Elf *elf = obj->efile.elf;
3390 	Elf_Data *btf_ext_data = NULL;
3391 	Elf_Data *btf_data = NULL;
3392 	int idx = 0, err = 0;
3393 	const char *name;
3394 	Elf_Data *data;
3395 	Elf_Scn *scn;
3396 	Elf64_Shdr *sh;
3397 
3398 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3399 	 * section. Since section count retrieved by elf_getshdrnum() does
3400 	 * include sec #0, it is already the necessary size of an array to keep
3401 	 * all the sections.
3402 	 */
3403 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3404 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3405 			obj->path, elf_errmsg(-1));
3406 		return -LIBBPF_ERRNO__FORMAT;
3407 	}
3408 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3409 	if (!obj->efile.secs)
3410 		return -ENOMEM;
3411 
3412 	/* a bunch of ELF parsing functionality depends on processing symbols,
3413 	 * so do the first pass and find the symbol table
3414 	 */
3415 	scn = NULL;
3416 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3417 		sh = elf_sec_hdr(obj, scn);
3418 		if (!sh)
3419 			return -LIBBPF_ERRNO__FORMAT;
3420 
3421 		if (sh->sh_type == SHT_SYMTAB) {
3422 			if (obj->efile.symbols) {
3423 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3424 				return -LIBBPF_ERRNO__FORMAT;
3425 			}
3426 
3427 			data = elf_sec_data(obj, scn);
3428 			if (!data)
3429 				return -LIBBPF_ERRNO__FORMAT;
3430 
3431 			idx = elf_ndxscn(scn);
3432 
3433 			obj->efile.symbols = data;
3434 			obj->efile.symbols_shndx = idx;
3435 			obj->efile.strtabidx = sh->sh_link;
3436 		}
3437 	}
3438 
3439 	if (!obj->efile.symbols) {
3440 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3441 			obj->path);
3442 		return -ENOENT;
3443 	}
3444 
3445 	scn = NULL;
3446 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3447 		idx = elf_ndxscn(scn);
3448 		sec_desc = &obj->efile.secs[idx];
3449 
3450 		sh = elf_sec_hdr(obj, scn);
3451 		if (!sh)
3452 			return -LIBBPF_ERRNO__FORMAT;
3453 
3454 		name = elf_sec_str(obj, sh->sh_name);
3455 		if (!name)
3456 			return -LIBBPF_ERRNO__FORMAT;
3457 
3458 		if (ignore_elf_section(sh, name))
3459 			continue;
3460 
3461 		data = elf_sec_data(obj, scn);
3462 		if (!data)
3463 			return -LIBBPF_ERRNO__FORMAT;
3464 
3465 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3466 			 idx, name, (unsigned long)data->d_size,
3467 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3468 			 (int)sh->sh_type);
3469 
3470 		if (strcmp(name, "license") == 0) {
3471 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3472 			if (err)
3473 				return err;
3474 		} else if (strcmp(name, "version") == 0) {
3475 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3476 			if (err)
3477 				return err;
3478 		} else if (strcmp(name, "maps") == 0) {
3479 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3480 			return -ENOTSUP;
3481 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3482 			obj->efile.btf_maps_shndx = idx;
3483 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3484 			if (sh->sh_type != SHT_PROGBITS)
3485 				return -LIBBPF_ERRNO__FORMAT;
3486 			btf_data = data;
3487 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3488 			if (sh->sh_type != SHT_PROGBITS)
3489 				return -LIBBPF_ERRNO__FORMAT;
3490 			btf_ext_data = data;
3491 		} else if (sh->sh_type == SHT_SYMTAB) {
3492 			/* already processed during the first pass above */
3493 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3494 			if (sh->sh_flags & SHF_EXECINSTR) {
3495 				if (strcmp(name, ".text") == 0)
3496 					obj->efile.text_shndx = idx;
3497 				err = bpf_object__add_programs(obj, data, name, idx);
3498 				if (err)
3499 					return err;
3500 			} else if (strcmp(name, DATA_SEC) == 0 ||
3501 				   str_has_pfx(name, DATA_SEC ".")) {
3502 				sec_desc->sec_type = SEC_DATA;
3503 				sec_desc->shdr = sh;
3504 				sec_desc->data = data;
3505 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3506 				   str_has_pfx(name, RODATA_SEC ".")) {
3507 				sec_desc->sec_type = SEC_RODATA;
3508 				sec_desc->shdr = sh;
3509 				sec_desc->data = data;
3510 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3511 				obj->efile.st_ops_data = data;
3512 				obj->efile.st_ops_shndx = idx;
3513 			} else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3514 				obj->efile.st_ops_link_data = data;
3515 				obj->efile.st_ops_link_shndx = idx;
3516 			} else {
3517 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3518 					idx, name);
3519 			}
3520 		} else if (sh->sh_type == SHT_REL) {
3521 			int targ_sec_idx = sh->sh_info; /* points to other section */
3522 
3523 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3524 			    targ_sec_idx >= obj->efile.sec_cnt)
3525 				return -LIBBPF_ERRNO__FORMAT;
3526 
3527 			/* Only do relo for section with exec instructions */
3528 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3529 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3530 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3531 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3532 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3533 					idx, name, targ_sec_idx,
3534 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3535 				continue;
3536 			}
3537 
3538 			sec_desc->sec_type = SEC_RELO;
3539 			sec_desc->shdr = sh;
3540 			sec_desc->data = data;
3541 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3542 							 str_has_pfx(name, BSS_SEC "."))) {
3543 			sec_desc->sec_type = SEC_BSS;
3544 			sec_desc->shdr = sh;
3545 			sec_desc->data = data;
3546 		} else {
3547 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3548 				(size_t)sh->sh_size);
3549 		}
3550 	}
3551 
3552 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3553 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3554 		return -LIBBPF_ERRNO__FORMAT;
3555 	}
3556 
3557 	/* sort BPF programs by section name and in-section instruction offset
3558 	 * for faster search
3559 	 */
3560 	if (obj->nr_programs)
3561 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3562 
3563 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3564 }
3565 
sym_is_extern(const Elf64_Sym * sym)3566 static bool sym_is_extern(const Elf64_Sym *sym)
3567 {
3568 	int bind = ELF64_ST_BIND(sym->st_info);
3569 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3570 	return sym->st_shndx == SHN_UNDEF &&
3571 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3572 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3573 }
3574 
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3575 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3576 {
3577 	int bind = ELF64_ST_BIND(sym->st_info);
3578 	int type = ELF64_ST_TYPE(sym->st_info);
3579 
3580 	/* in .text section */
3581 	if (sym->st_shndx != text_shndx)
3582 		return false;
3583 
3584 	/* local function */
3585 	if (bind == STB_LOCAL && type == STT_SECTION)
3586 		return true;
3587 
3588 	/* global function */
3589 	return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
3590 }
3591 
find_extern_btf_id(const struct btf * btf,const char * ext_name)3592 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3593 {
3594 	const struct btf_type *t;
3595 	const char *tname;
3596 	int i, n;
3597 
3598 	if (!btf)
3599 		return -ESRCH;
3600 
3601 	n = btf__type_cnt(btf);
3602 	for (i = 1; i < n; i++) {
3603 		t = btf__type_by_id(btf, i);
3604 
3605 		if (!btf_is_var(t) && !btf_is_func(t))
3606 			continue;
3607 
3608 		tname = btf__name_by_offset(btf, t->name_off);
3609 		if (strcmp(tname, ext_name))
3610 			continue;
3611 
3612 		if (btf_is_var(t) &&
3613 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3614 			return -EINVAL;
3615 
3616 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3617 			return -EINVAL;
3618 
3619 		return i;
3620 	}
3621 
3622 	return -ENOENT;
3623 }
3624 
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)3625 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3626 	const struct btf_var_secinfo *vs;
3627 	const struct btf_type *t;
3628 	int i, j, n;
3629 
3630 	if (!btf)
3631 		return -ESRCH;
3632 
3633 	n = btf__type_cnt(btf);
3634 	for (i = 1; i < n; i++) {
3635 		t = btf__type_by_id(btf, i);
3636 
3637 		if (!btf_is_datasec(t))
3638 			continue;
3639 
3640 		vs = btf_var_secinfos(t);
3641 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3642 			if (vs->type == ext_btf_id)
3643 				return i;
3644 		}
3645 	}
3646 
3647 	return -ENOENT;
3648 }
3649 
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3650 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3651 				     bool *is_signed)
3652 {
3653 	const struct btf_type *t;
3654 	const char *name;
3655 
3656 	t = skip_mods_and_typedefs(btf, id, NULL);
3657 	name = btf__name_by_offset(btf, t->name_off);
3658 
3659 	if (is_signed)
3660 		*is_signed = false;
3661 	switch (btf_kind(t)) {
3662 	case BTF_KIND_INT: {
3663 		int enc = btf_int_encoding(t);
3664 
3665 		if (enc & BTF_INT_BOOL)
3666 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3667 		if (is_signed)
3668 			*is_signed = enc & BTF_INT_SIGNED;
3669 		if (t->size == 1)
3670 			return KCFG_CHAR;
3671 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3672 			return KCFG_UNKNOWN;
3673 		return KCFG_INT;
3674 	}
3675 	case BTF_KIND_ENUM:
3676 		if (t->size != 4)
3677 			return KCFG_UNKNOWN;
3678 		if (strcmp(name, "libbpf_tristate"))
3679 			return KCFG_UNKNOWN;
3680 		return KCFG_TRISTATE;
3681 	case BTF_KIND_ENUM64:
3682 		if (strcmp(name, "libbpf_tristate"))
3683 			return KCFG_UNKNOWN;
3684 		return KCFG_TRISTATE;
3685 	case BTF_KIND_ARRAY:
3686 		if (btf_array(t)->nelems == 0)
3687 			return KCFG_UNKNOWN;
3688 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3689 			return KCFG_UNKNOWN;
3690 		return KCFG_CHAR_ARR;
3691 	default:
3692 		return KCFG_UNKNOWN;
3693 	}
3694 }
3695 
cmp_externs(const void * _a,const void * _b)3696 static int cmp_externs(const void *_a, const void *_b)
3697 {
3698 	const struct extern_desc *a = _a;
3699 	const struct extern_desc *b = _b;
3700 
3701 	if (a->type != b->type)
3702 		return a->type < b->type ? -1 : 1;
3703 
3704 	if (a->type == EXT_KCFG) {
3705 		/* descending order by alignment requirements */
3706 		if (a->kcfg.align != b->kcfg.align)
3707 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3708 		/* ascending order by size, within same alignment class */
3709 		if (a->kcfg.sz != b->kcfg.sz)
3710 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3711 	}
3712 
3713 	/* resolve ties by name */
3714 	return strcmp(a->name, b->name);
3715 }
3716 
find_int_btf_id(const struct btf * btf)3717 static int find_int_btf_id(const struct btf *btf)
3718 {
3719 	const struct btf_type *t;
3720 	int i, n;
3721 
3722 	n = btf__type_cnt(btf);
3723 	for (i = 1; i < n; i++) {
3724 		t = btf__type_by_id(btf, i);
3725 
3726 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3727 			return i;
3728 	}
3729 
3730 	return 0;
3731 }
3732 
add_dummy_ksym_var(struct btf * btf)3733 static int add_dummy_ksym_var(struct btf *btf)
3734 {
3735 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3736 	const struct btf_var_secinfo *vs;
3737 	const struct btf_type *sec;
3738 
3739 	if (!btf)
3740 		return 0;
3741 
3742 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3743 					    BTF_KIND_DATASEC);
3744 	if (sec_btf_id < 0)
3745 		return 0;
3746 
3747 	sec = btf__type_by_id(btf, sec_btf_id);
3748 	vs = btf_var_secinfos(sec);
3749 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3750 		const struct btf_type *vt;
3751 
3752 		vt = btf__type_by_id(btf, vs->type);
3753 		if (btf_is_func(vt))
3754 			break;
3755 	}
3756 
3757 	/* No func in ksyms sec.  No need to add dummy var. */
3758 	if (i == btf_vlen(sec))
3759 		return 0;
3760 
3761 	int_btf_id = find_int_btf_id(btf);
3762 	dummy_var_btf_id = btf__add_var(btf,
3763 					"dummy_ksym",
3764 					BTF_VAR_GLOBAL_ALLOCATED,
3765 					int_btf_id);
3766 	if (dummy_var_btf_id < 0)
3767 		pr_warn("cannot create a dummy_ksym var\n");
3768 
3769 	return dummy_var_btf_id;
3770 }
3771 
bpf_object__collect_externs(struct bpf_object * obj)3772 static int bpf_object__collect_externs(struct bpf_object *obj)
3773 {
3774 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3775 	const struct btf_type *t;
3776 	struct extern_desc *ext;
3777 	int i, n, off, dummy_var_btf_id;
3778 	const char *ext_name, *sec_name;
3779 	size_t ext_essent_len;
3780 	Elf_Scn *scn;
3781 	Elf64_Shdr *sh;
3782 
3783 	if (!obj->efile.symbols)
3784 		return 0;
3785 
3786 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3787 	sh = elf_sec_hdr(obj, scn);
3788 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3789 		return -LIBBPF_ERRNO__FORMAT;
3790 
3791 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3792 	if (dummy_var_btf_id < 0)
3793 		return dummy_var_btf_id;
3794 
3795 	n = sh->sh_size / sh->sh_entsize;
3796 	pr_debug("looking for externs among %d symbols...\n", n);
3797 
3798 	for (i = 0; i < n; i++) {
3799 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3800 
3801 		if (!sym)
3802 			return -LIBBPF_ERRNO__FORMAT;
3803 		if (!sym_is_extern(sym))
3804 			continue;
3805 		ext_name = elf_sym_str(obj, sym->st_name);
3806 		if (!ext_name || !ext_name[0])
3807 			continue;
3808 
3809 		ext = obj->externs;
3810 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3811 		if (!ext)
3812 			return -ENOMEM;
3813 		obj->externs = ext;
3814 		ext = &ext[obj->nr_extern];
3815 		memset(ext, 0, sizeof(*ext));
3816 		obj->nr_extern++;
3817 
3818 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3819 		if (ext->btf_id <= 0) {
3820 			pr_warn("failed to find BTF for extern '%s': %d\n",
3821 				ext_name, ext->btf_id);
3822 			return ext->btf_id;
3823 		}
3824 		t = btf__type_by_id(obj->btf, ext->btf_id);
3825 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3826 		ext->sym_idx = i;
3827 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3828 
3829 		ext_essent_len = bpf_core_essential_name_len(ext->name);
3830 		ext->essent_name = NULL;
3831 		if (ext_essent_len != strlen(ext->name)) {
3832 			ext->essent_name = strndup(ext->name, ext_essent_len);
3833 			if (!ext->essent_name)
3834 				return -ENOMEM;
3835 		}
3836 
3837 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3838 		if (ext->sec_btf_id <= 0) {
3839 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3840 				ext_name, ext->btf_id, ext->sec_btf_id);
3841 			return ext->sec_btf_id;
3842 		}
3843 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3844 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3845 
3846 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3847 			if (btf_is_func(t)) {
3848 				pr_warn("extern function %s is unsupported under %s section\n",
3849 					ext->name, KCONFIG_SEC);
3850 				return -ENOTSUP;
3851 			}
3852 			kcfg_sec = sec;
3853 			ext->type = EXT_KCFG;
3854 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3855 			if (ext->kcfg.sz <= 0) {
3856 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3857 					ext_name, ext->kcfg.sz);
3858 				return ext->kcfg.sz;
3859 			}
3860 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3861 			if (ext->kcfg.align <= 0) {
3862 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3863 					ext_name, ext->kcfg.align);
3864 				return -EINVAL;
3865 			}
3866 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3867 							&ext->kcfg.is_signed);
3868 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3869 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3870 				return -ENOTSUP;
3871 			}
3872 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3873 			ksym_sec = sec;
3874 			ext->type = EXT_KSYM;
3875 			skip_mods_and_typedefs(obj->btf, t->type,
3876 					       &ext->ksym.type_id);
3877 		} else {
3878 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3879 			return -ENOTSUP;
3880 		}
3881 	}
3882 	pr_debug("collected %d externs total\n", obj->nr_extern);
3883 
3884 	if (!obj->nr_extern)
3885 		return 0;
3886 
3887 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3888 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3889 
3890 	/* for .ksyms section, we need to turn all externs into allocated
3891 	 * variables in BTF to pass kernel verification; we do this by
3892 	 * pretending that each extern is a 8-byte variable
3893 	 */
3894 	if (ksym_sec) {
3895 		/* find existing 4-byte integer type in BTF to use for fake
3896 		 * extern variables in DATASEC
3897 		 */
3898 		int int_btf_id = find_int_btf_id(obj->btf);
3899 		/* For extern function, a dummy_var added earlier
3900 		 * will be used to replace the vs->type and
3901 		 * its name string will be used to refill
3902 		 * the missing param's name.
3903 		 */
3904 		const struct btf_type *dummy_var;
3905 
3906 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3907 		for (i = 0; i < obj->nr_extern; i++) {
3908 			ext = &obj->externs[i];
3909 			if (ext->type != EXT_KSYM)
3910 				continue;
3911 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3912 				 i, ext->sym_idx, ext->name);
3913 		}
3914 
3915 		sec = ksym_sec;
3916 		n = btf_vlen(sec);
3917 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3918 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3919 			struct btf_type *vt;
3920 
3921 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3922 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3923 			ext = find_extern_by_name(obj, ext_name);
3924 			if (!ext) {
3925 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3926 					btf_kind_str(vt), ext_name);
3927 				return -ESRCH;
3928 			}
3929 			if (btf_is_func(vt)) {
3930 				const struct btf_type *func_proto;
3931 				struct btf_param *param;
3932 				int j;
3933 
3934 				func_proto = btf__type_by_id(obj->btf,
3935 							     vt->type);
3936 				param = btf_params(func_proto);
3937 				/* Reuse the dummy_var string if the
3938 				 * func proto does not have param name.
3939 				 */
3940 				for (j = 0; j < btf_vlen(func_proto); j++)
3941 					if (param[j].type && !param[j].name_off)
3942 						param[j].name_off =
3943 							dummy_var->name_off;
3944 				vs->type = dummy_var_btf_id;
3945 				vt->info &= ~0xffff;
3946 				vt->info |= BTF_FUNC_GLOBAL;
3947 			} else {
3948 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3949 				vt->type = int_btf_id;
3950 			}
3951 			vs->offset = off;
3952 			vs->size = sizeof(int);
3953 		}
3954 		sec->size = off;
3955 	}
3956 
3957 	if (kcfg_sec) {
3958 		sec = kcfg_sec;
3959 		/* for kcfg externs calculate their offsets within a .kconfig map */
3960 		off = 0;
3961 		for (i = 0; i < obj->nr_extern; i++) {
3962 			ext = &obj->externs[i];
3963 			if (ext->type != EXT_KCFG)
3964 				continue;
3965 
3966 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3967 			off = ext->kcfg.data_off + ext->kcfg.sz;
3968 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3969 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3970 		}
3971 		sec->size = off;
3972 		n = btf_vlen(sec);
3973 		for (i = 0; i < n; i++) {
3974 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3975 
3976 			t = btf__type_by_id(obj->btf, vs->type);
3977 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3978 			ext = find_extern_by_name(obj, ext_name);
3979 			if (!ext) {
3980 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3981 					ext_name);
3982 				return -ESRCH;
3983 			}
3984 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3985 			vs->offset = ext->kcfg.data_off;
3986 		}
3987 	}
3988 	return 0;
3989 }
3990 
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3991 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3992 {
3993 	return prog->sec_idx == obj->efile.text_shndx;
3994 }
3995 
3996 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3997 bpf_object__find_program_by_name(const struct bpf_object *obj,
3998 				 const char *name)
3999 {
4000 	struct bpf_program *prog;
4001 
4002 	bpf_object__for_each_program(prog, obj) {
4003 		if (prog_is_subprog(obj, prog))
4004 			continue;
4005 		if (!strcmp(prog->name, name))
4006 			return prog;
4007 	}
4008 	return errno = ENOENT, NULL;
4009 }
4010 
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4011 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4012 				      int shndx)
4013 {
4014 	switch (obj->efile.secs[shndx].sec_type) {
4015 	case SEC_BSS:
4016 	case SEC_DATA:
4017 	case SEC_RODATA:
4018 		return true;
4019 	default:
4020 		return false;
4021 	}
4022 }
4023 
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4024 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4025 				      int shndx)
4026 {
4027 	return shndx == obj->efile.btf_maps_shndx;
4028 }
4029 
4030 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4031 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4032 {
4033 	if (shndx == obj->efile.symbols_shndx)
4034 		return LIBBPF_MAP_KCONFIG;
4035 
4036 	switch (obj->efile.secs[shndx].sec_type) {
4037 	case SEC_BSS:
4038 		return LIBBPF_MAP_BSS;
4039 	case SEC_DATA:
4040 		return LIBBPF_MAP_DATA;
4041 	case SEC_RODATA:
4042 		return LIBBPF_MAP_RODATA;
4043 	default:
4044 		return LIBBPF_MAP_UNSPEC;
4045 	}
4046 }
4047 
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4048 static int bpf_program__record_reloc(struct bpf_program *prog,
4049 				     struct reloc_desc *reloc_desc,
4050 				     __u32 insn_idx, const char *sym_name,
4051 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4052 {
4053 	struct bpf_insn *insn = &prog->insns[insn_idx];
4054 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4055 	struct bpf_object *obj = prog->obj;
4056 	__u32 shdr_idx = sym->st_shndx;
4057 	enum libbpf_map_type type;
4058 	const char *sym_sec_name;
4059 	struct bpf_map *map;
4060 
4061 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4062 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4063 			prog->name, sym_name, insn_idx, insn->code);
4064 		return -LIBBPF_ERRNO__RELOC;
4065 	}
4066 
4067 	if (sym_is_extern(sym)) {
4068 		int sym_idx = ELF64_R_SYM(rel->r_info);
4069 		int i, n = obj->nr_extern;
4070 		struct extern_desc *ext;
4071 
4072 		for (i = 0; i < n; i++) {
4073 			ext = &obj->externs[i];
4074 			if (ext->sym_idx == sym_idx)
4075 				break;
4076 		}
4077 		if (i >= n) {
4078 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4079 				prog->name, sym_name, sym_idx);
4080 			return -LIBBPF_ERRNO__RELOC;
4081 		}
4082 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4083 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4084 		if (insn->code == (BPF_JMP | BPF_CALL))
4085 			reloc_desc->type = RELO_EXTERN_CALL;
4086 		else
4087 			reloc_desc->type = RELO_EXTERN_LD64;
4088 		reloc_desc->insn_idx = insn_idx;
4089 		reloc_desc->ext_idx = i;
4090 		return 0;
4091 	}
4092 
4093 	/* sub-program call relocation */
4094 	if (is_call_insn(insn)) {
4095 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4096 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4097 			return -LIBBPF_ERRNO__RELOC;
4098 		}
4099 		/* text_shndx can be 0, if no default "main" program exists */
4100 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4101 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4102 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4103 				prog->name, sym_name, sym_sec_name);
4104 			return -LIBBPF_ERRNO__RELOC;
4105 		}
4106 		if (sym->st_value % BPF_INSN_SZ) {
4107 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4108 				prog->name, sym_name, (size_t)sym->st_value);
4109 			return -LIBBPF_ERRNO__RELOC;
4110 		}
4111 		reloc_desc->type = RELO_CALL;
4112 		reloc_desc->insn_idx = insn_idx;
4113 		reloc_desc->sym_off = sym->st_value;
4114 		return 0;
4115 	}
4116 
4117 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4118 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4119 			prog->name, sym_name, shdr_idx);
4120 		return -LIBBPF_ERRNO__RELOC;
4121 	}
4122 
4123 	/* loading subprog addresses */
4124 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4125 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4126 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4127 		 */
4128 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4129 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4130 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4131 			return -LIBBPF_ERRNO__RELOC;
4132 		}
4133 
4134 		reloc_desc->type = RELO_SUBPROG_ADDR;
4135 		reloc_desc->insn_idx = insn_idx;
4136 		reloc_desc->sym_off = sym->st_value;
4137 		return 0;
4138 	}
4139 
4140 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4141 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4142 
4143 	/* generic map reference relocation */
4144 	if (type == LIBBPF_MAP_UNSPEC) {
4145 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4146 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4147 				prog->name, sym_name, sym_sec_name);
4148 			return -LIBBPF_ERRNO__RELOC;
4149 		}
4150 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4151 			map = &obj->maps[map_idx];
4152 			if (map->libbpf_type != type ||
4153 			    map->sec_idx != sym->st_shndx ||
4154 			    map->sec_offset != sym->st_value)
4155 				continue;
4156 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4157 				 prog->name, map_idx, map->name, map->sec_idx,
4158 				 map->sec_offset, insn_idx);
4159 			break;
4160 		}
4161 		if (map_idx >= nr_maps) {
4162 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4163 				prog->name, sym_sec_name, (size_t)sym->st_value);
4164 			return -LIBBPF_ERRNO__RELOC;
4165 		}
4166 		reloc_desc->type = RELO_LD64;
4167 		reloc_desc->insn_idx = insn_idx;
4168 		reloc_desc->map_idx = map_idx;
4169 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4170 		return 0;
4171 	}
4172 
4173 	/* global data map relocation */
4174 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4175 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4176 			prog->name, sym_sec_name);
4177 		return -LIBBPF_ERRNO__RELOC;
4178 	}
4179 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4180 		map = &obj->maps[map_idx];
4181 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4182 			continue;
4183 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4184 			 prog->name, map_idx, map->name, map->sec_idx,
4185 			 map->sec_offset, insn_idx);
4186 		break;
4187 	}
4188 	if (map_idx >= nr_maps) {
4189 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4190 			prog->name, sym_sec_name);
4191 		return -LIBBPF_ERRNO__RELOC;
4192 	}
4193 
4194 	reloc_desc->type = RELO_DATA;
4195 	reloc_desc->insn_idx = insn_idx;
4196 	reloc_desc->map_idx = map_idx;
4197 	reloc_desc->sym_off = sym->st_value;
4198 	return 0;
4199 }
4200 
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4201 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4202 {
4203 	return insn_idx >= prog->sec_insn_off &&
4204 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4205 }
4206 
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4207 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4208 						 size_t sec_idx, size_t insn_idx)
4209 {
4210 	int l = 0, r = obj->nr_programs - 1, m;
4211 	struct bpf_program *prog;
4212 
4213 	if (!obj->nr_programs)
4214 		return NULL;
4215 
4216 	while (l < r) {
4217 		m = l + (r - l + 1) / 2;
4218 		prog = &obj->programs[m];
4219 
4220 		if (prog->sec_idx < sec_idx ||
4221 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4222 			l = m;
4223 		else
4224 			r = m - 1;
4225 	}
4226 	/* matching program could be at index l, but it still might be the
4227 	 * wrong one, so we need to double check conditions for the last time
4228 	 */
4229 	prog = &obj->programs[l];
4230 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4231 		return prog;
4232 	return NULL;
4233 }
4234 
4235 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4236 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4237 {
4238 	const char *relo_sec_name, *sec_name;
4239 	size_t sec_idx = shdr->sh_info, sym_idx;
4240 	struct bpf_program *prog;
4241 	struct reloc_desc *relos;
4242 	int err, i, nrels;
4243 	const char *sym_name;
4244 	__u32 insn_idx;
4245 	Elf_Scn *scn;
4246 	Elf_Data *scn_data;
4247 	Elf64_Sym *sym;
4248 	Elf64_Rel *rel;
4249 
4250 	if (sec_idx >= obj->efile.sec_cnt)
4251 		return -EINVAL;
4252 
4253 	scn = elf_sec_by_idx(obj, sec_idx);
4254 	scn_data = elf_sec_data(obj, scn);
4255 	if (!scn_data)
4256 		return -LIBBPF_ERRNO__FORMAT;
4257 
4258 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4259 	sec_name = elf_sec_name(obj, scn);
4260 	if (!relo_sec_name || !sec_name)
4261 		return -EINVAL;
4262 
4263 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4264 		 relo_sec_name, sec_idx, sec_name);
4265 	nrels = shdr->sh_size / shdr->sh_entsize;
4266 
4267 	for (i = 0; i < nrels; i++) {
4268 		rel = elf_rel_by_idx(data, i);
4269 		if (!rel) {
4270 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4271 			return -LIBBPF_ERRNO__FORMAT;
4272 		}
4273 
4274 		sym_idx = ELF64_R_SYM(rel->r_info);
4275 		sym = elf_sym_by_idx(obj, sym_idx);
4276 		if (!sym) {
4277 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4278 				relo_sec_name, sym_idx, i);
4279 			return -LIBBPF_ERRNO__FORMAT;
4280 		}
4281 
4282 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4283 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4284 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4285 			return -LIBBPF_ERRNO__FORMAT;
4286 		}
4287 
4288 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4289 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4290 				relo_sec_name, (size_t)rel->r_offset, i);
4291 			return -LIBBPF_ERRNO__FORMAT;
4292 		}
4293 
4294 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4295 		/* relocations against static functions are recorded as
4296 		 * relocations against the section that contains a function;
4297 		 * in such case, symbol will be STT_SECTION and sym.st_name
4298 		 * will point to empty string (0), so fetch section name
4299 		 * instead
4300 		 */
4301 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4302 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4303 		else
4304 			sym_name = elf_sym_str(obj, sym->st_name);
4305 		sym_name = sym_name ?: "<?";
4306 
4307 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4308 			 relo_sec_name, i, insn_idx, sym_name);
4309 
4310 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4311 		if (!prog) {
4312 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4313 				relo_sec_name, i, sec_name, insn_idx);
4314 			continue;
4315 		}
4316 
4317 		relos = libbpf_reallocarray(prog->reloc_desc,
4318 					    prog->nr_reloc + 1, sizeof(*relos));
4319 		if (!relos)
4320 			return -ENOMEM;
4321 		prog->reloc_desc = relos;
4322 
4323 		/* adjust insn_idx to local BPF program frame of reference */
4324 		insn_idx -= prog->sec_insn_off;
4325 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4326 						insn_idx, sym_name, sym, rel);
4327 		if (err)
4328 			return err;
4329 
4330 		prog->nr_reloc++;
4331 	}
4332 	return 0;
4333 }
4334 
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4335 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4336 {
4337 	int id;
4338 
4339 	if (!obj->btf)
4340 		return -ENOENT;
4341 
4342 	/* if it's BTF-defined map, we don't need to search for type IDs.
4343 	 * For struct_ops map, it does not need btf_key_type_id and
4344 	 * btf_value_type_id.
4345 	 */
4346 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4347 		return 0;
4348 
4349 	/*
4350 	 * LLVM annotates global data differently in BTF, that is,
4351 	 * only as '.data', '.bss' or '.rodata'.
4352 	 */
4353 	if (!bpf_map__is_internal(map))
4354 		return -ENOENT;
4355 
4356 	id = btf__find_by_name(obj->btf, map->real_name);
4357 	if (id < 0)
4358 		return id;
4359 
4360 	map->btf_key_type_id = 0;
4361 	map->btf_value_type_id = id;
4362 	return 0;
4363 }
4364 
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4365 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4366 {
4367 	char file[PATH_MAX], buff[4096];
4368 	FILE *fp;
4369 	__u32 val;
4370 	int err;
4371 
4372 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4373 	memset(info, 0, sizeof(*info));
4374 
4375 	fp = fopen(file, "re");
4376 	if (!fp) {
4377 		err = -errno;
4378 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4379 			err);
4380 		return err;
4381 	}
4382 
4383 	while (fgets(buff, sizeof(buff), fp)) {
4384 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4385 			info->type = val;
4386 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4387 			info->key_size = val;
4388 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4389 			info->value_size = val;
4390 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4391 			info->max_entries = val;
4392 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4393 			info->map_flags = val;
4394 	}
4395 
4396 	fclose(fp);
4397 
4398 	return 0;
4399 }
4400 
bpf_map__autocreate(const struct bpf_map * map)4401 bool bpf_map__autocreate(const struct bpf_map *map)
4402 {
4403 	return map->autocreate;
4404 }
4405 
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4406 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4407 {
4408 	if (map->obj->loaded)
4409 		return libbpf_err(-EBUSY);
4410 
4411 	map->autocreate = autocreate;
4412 	return 0;
4413 }
4414 
bpf_map__reuse_fd(struct bpf_map * map,int fd)4415 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4416 {
4417 	struct bpf_map_info info;
4418 	__u32 len = sizeof(info), name_len;
4419 	int new_fd, err;
4420 	char *new_name;
4421 
4422 	memset(&info, 0, len);
4423 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4424 	if (err && errno == EINVAL)
4425 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4426 	if (err)
4427 		return libbpf_err(err);
4428 
4429 	name_len = strlen(info.name);
4430 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4431 		new_name = strdup(map->name);
4432 	else
4433 		new_name = strdup(info.name);
4434 
4435 	if (!new_name)
4436 		return libbpf_err(-errno);
4437 
4438 	/*
4439 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4440 	 * This is similar to what we do in ensure_good_fd(), but without
4441 	 * closing original FD.
4442 	 */
4443 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4444 	if (new_fd < 0) {
4445 		err = -errno;
4446 		goto err_free_new_name;
4447 	}
4448 
4449 	err = zclose(map->fd);
4450 	if (err) {
4451 		err = -errno;
4452 		goto err_close_new_fd;
4453 	}
4454 	free(map->name);
4455 
4456 	map->fd = new_fd;
4457 	map->name = new_name;
4458 	map->def.type = info.type;
4459 	map->def.key_size = info.key_size;
4460 	map->def.value_size = info.value_size;
4461 	map->def.max_entries = info.max_entries;
4462 	map->def.map_flags = info.map_flags;
4463 	map->btf_key_type_id = info.btf_key_type_id;
4464 	map->btf_value_type_id = info.btf_value_type_id;
4465 	map->reused = true;
4466 	map->map_extra = info.map_extra;
4467 
4468 	return 0;
4469 
4470 err_close_new_fd:
4471 	close(new_fd);
4472 err_free_new_name:
4473 	free(new_name);
4474 	return libbpf_err(err);
4475 }
4476 
bpf_map__max_entries(const struct bpf_map * map)4477 __u32 bpf_map__max_entries(const struct bpf_map *map)
4478 {
4479 	return map->def.max_entries;
4480 }
4481 
bpf_map__inner_map(struct bpf_map * map)4482 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4483 {
4484 	if (!bpf_map_type__is_map_in_map(map->def.type))
4485 		return errno = EINVAL, NULL;
4486 
4487 	return map->inner_map;
4488 }
4489 
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4490 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4491 {
4492 	if (map->obj->loaded)
4493 		return libbpf_err(-EBUSY);
4494 
4495 	map->def.max_entries = max_entries;
4496 
4497 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4498 	if (map_is_ringbuf(map))
4499 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4500 
4501 	return 0;
4502 }
4503 
4504 static int
bpf_object__probe_loading(struct bpf_object * obj)4505 bpf_object__probe_loading(struct bpf_object *obj)
4506 {
4507 	char *cp, errmsg[STRERR_BUFSIZE];
4508 	struct bpf_insn insns[] = {
4509 		BPF_MOV64_IMM(BPF_REG_0, 0),
4510 		BPF_EXIT_INSN(),
4511 	};
4512 	int ret, insn_cnt = ARRAY_SIZE(insns);
4513 
4514 	if (obj->gen_loader)
4515 		return 0;
4516 
4517 	ret = bump_rlimit_memlock();
4518 	if (ret)
4519 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4520 
4521 	/* make sure basic loading works */
4522 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4523 	if (ret < 0)
4524 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4525 	if (ret < 0) {
4526 		ret = errno;
4527 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4528 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4529 			"program. Make sure your kernel supports BPF "
4530 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4531 			"set to big enough value.\n", __func__, cp, ret);
4532 		return -ret;
4533 	}
4534 	close(ret);
4535 
4536 	return 0;
4537 }
4538 
probe_fd(int fd)4539 static int probe_fd(int fd)
4540 {
4541 	if (fd >= 0)
4542 		close(fd);
4543 	return fd >= 0;
4544 }
4545 
probe_kern_prog_name(void)4546 static int probe_kern_prog_name(void)
4547 {
4548 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4549 	struct bpf_insn insns[] = {
4550 		BPF_MOV64_IMM(BPF_REG_0, 0),
4551 		BPF_EXIT_INSN(),
4552 	};
4553 	union bpf_attr attr;
4554 	int ret;
4555 
4556 	memset(&attr, 0, attr_sz);
4557 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4558 	attr.license = ptr_to_u64("GPL");
4559 	attr.insns = ptr_to_u64(insns);
4560 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4561 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4562 
4563 	/* make sure loading with name works */
4564 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4565 	return probe_fd(ret);
4566 }
4567 
probe_kern_global_data(void)4568 static int probe_kern_global_data(void)
4569 {
4570 	char *cp, errmsg[STRERR_BUFSIZE];
4571 	struct bpf_insn insns[] = {
4572 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4573 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4574 		BPF_MOV64_IMM(BPF_REG_0, 0),
4575 		BPF_EXIT_INSN(),
4576 	};
4577 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4578 
4579 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4580 	if (map < 0) {
4581 		ret = -errno;
4582 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4583 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4584 			__func__, cp, -ret);
4585 		return ret;
4586 	}
4587 
4588 	insns[0].imm = map;
4589 
4590 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4591 	close(map);
4592 	return probe_fd(ret);
4593 }
4594 
probe_kern_btf(void)4595 static int probe_kern_btf(void)
4596 {
4597 	static const char strs[] = "\0int";
4598 	__u32 types[] = {
4599 		/* int */
4600 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4601 	};
4602 
4603 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4604 					     strs, sizeof(strs)));
4605 }
4606 
probe_kern_btf_func(void)4607 static int probe_kern_btf_func(void)
4608 {
4609 	static const char strs[] = "\0int\0x\0a";
4610 	/* void x(int a) {} */
4611 	__u32 types[] = {
4612 		/* int */
4613 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4614 		/* FUNC_PROTO */                                /* [2] */
4615 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4616 		BTF_PARAM_ENC(7, 1),
4617 		/* FUNC x */                                    /* [3] */
4618 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4619 	};
4620 
4621 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4622 					     strs, sizeof(strs)));
4623 }
4624 
probe_kern_btf_func_global(void)4625 static int probe_kern_btf_func_global(void)
4626 {
4627 	static const char strs[] = "\0int\0x\0a";
4628 	/* static void x(int a) {} */
4629 	__u32 types[] = {
4630 		/* int */
4631 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4632 		/* FUNC_PROTO */                                /* [2] */
4633 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4634 		BTF_PARAM_ENC(7, 1),
4635 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4636 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4637 	};
4638 
4639 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4640 					     strs, sizeof(strs)));
4641 }
4642 
probe_kern_btf_datasec(void)4643 static int probe_kern_btf_datasec(void)
4644 {
4645 	static const char strs[] = "\0x\0.data";
4646 	/* static int a; */
4647 	__u32 types[] = {
4648 		/* int */
4649 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4650 		/* VAR x */                                     /* [2] */
4651 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4652 		BTF_VAR_STATIC,
4653 		/* DATASEC val */                               /* [3] */
4654 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4655 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4656 	};
4657 
4658 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4659 					     strs, sizeof(strs)));
4660 }
4661 
probe_kern_btf_float(void)4662 static int probe_kern_btf_float(void)
4663 {
4664 	static const char strs[] = "\0float";
4665 	__u32 types[] = {
4666 		/* float */
4667 		BTF_TYPE_FLOAT_ENC(1, 4),
4668 	};
4669 
4670 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4671 					     strs, sizeof(strs)));
4672 }
4673 
probe_kern_btf_decl_tag(void)4674 static int probe_kern_btf_decl_tag(void)
4675 {
4676 	static const char strs[] = "\0tag";
4677 	__u32 types[] = {
4678 		/* int */
4679 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4680 		/* VAR x */                                     /* [2] */
4681 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4682 		BTF_VAR_STATIC,
4683 		/* attr */
4684 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4685 	};
4686 
4687 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4688 					     strs, sizeof(strs)));
4689 }
4690 
probe_kern_btf_type_tag(void)4691 static int probe_kern_btf_type_tag(void)
4692 {
4693 	static const char strs[] = "\0tag";
4694 	__u32 types[] = {
4695 		/* int */
4696 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4697 		/* attr */
4698 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4699 		/* ptr */
4700 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4701 	};
4702 
4703 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4704 					     strs, sizeof(strs)));
4705 }
4706 
probe_kern_array_mmap(void)4707 static int probe_kern_array_mmap(void)
4708 {
4709 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4710 	int fd;
4711 
4712 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4713 	return probe_fd(fd);
4714 }
4715 
probe_kern_exp_attach_type(void)4716 static int probe_kern_exp_attach_type(void)
4717 {
4718 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4719 	struct bpf_insn insns[] = {
4720 		BPF_MOV64_IMM(BPF_REG_0, 0),
4721 		BPF_EXIT_INSN(),
4722 	};
4723 	int fd, insn_cnt = ARRAY_SIZE(insns);
4724 
4725 	/* use any valid combination of program type and (optional)
4726 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4727 	 * to see if kernel supports expected_attach_type field for
4728 	 * BPF_PROG_LOAD command
4729 	 */
4730 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4731 	return probe_fd(fd);
4732 }
4733 
probe_kern_probe_read_kernel(void)4734 static int probe_kern_probe_read_kernel(void)
4735 {
4736 	struct bpf_insn insns[] = {
4737 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4738 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4739 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4740 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4741 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4742 		BPF_EXIT_INSN(),
4743 	};
4744 	int fd, insn_cnt = ARRAY_SIZE(insns);
4745 
4746 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4747 	return probe_fd(fd);
4748 }
4749 
probe_prog_bind_map(void)4750 static int probe_prog_bind_map(void)
4751 {
4752 	char *cp, errmsg[STRERR_BUFSIZE];
4753 	struct bpf_insn insns[] = {
4754 		BPF_MOV64_IMM(BPF_REG_0, 0),
4755 		BPF_EXIT_INSN(),
4756 	};
4757 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4758 
4759 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4760 	if (map < 0) {
4761 		ret = -errno;
4762 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4763 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4764 			__func__, cp, -ret);
4765 		return ret;
4766 	}
4767 
4768 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4769 	if (prog < 0) {
4770 		close(map);
4771 		return 0;
4772 	}
4773 
4774 	ret = bpf_prog_bind_map(prog, map, NULL);
4775 
4776 	close(map);
4777 	close(prog);
4778 
4779 	return ret >= 0;
4780 }
4781 
probe_module_btf(void)4782 static int probe_module_btf(void)
4783 {
4784 	static const char strs[] = "\0int";
4785 	__u32 types[] = {
4786 		/* int */
4787 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4788 	};
4789 	struct bpf_btf_info info;
4790 	__u32 len = sizeof(info);
4791 	char name[16];
4792 	int fd, err;
4793 
4794 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4795 	if (fd < 0)
4796 		return 0; /* BTF not supported at all */
4797 
4798 	memset(&info, 0, sizeof(info));
4799 	info.name = ptr_to_u64(name);
4800 	info.name_len = sizeof(name);
4801 
4802 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4803 	 * kernel's module BTF support coincides with support for
4804 	 * name/name_len fields in struct bpf_btf_info.
4805 	 */
4806 	err = bpf_btf_get_info_by_fd(fd, &info, &len);
4807 	close(fd);
4808 	return !err;
4809 }
4810 
probe_perf_link(void)4811 static int probe_perf_link(void)
4812 {
4813 	struct bpf_insn insns[] = {
4814 		BPF_MOV64_IMM(BPF_REG_0, 0),
4815 		BPF_EXIT_INSN(),
4816 	};
4817 	int prog_fd, link_fd, err;
4818 
4819 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4820 				insns, ARRAY_SIZE(insns), NULL);
4821 	if (prog_fd < 0)
4822 		return -errno;
4823 
4824 	/* use invalid perf_event FD to get EBADF, if link is supported;
4825 	 * otherwise EINVAL should be returned
4826 	 */
4827 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4828 	err = -errno; /* close() can clobber errno */
4829 
4830 	if (link_fd >= 0)
4831 		close(link_fd);
4832 	close(prog_fd);
4833 
4834 	return link_fd < 0 && err == -EBADF;
4835 }
4836 
probe_uprobe_multi_link(void)4837 static int probe_uprobe_multi_link(void)
4838 {
4839 	LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4840 		.expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4841 	);
4842 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4843 	struct bpf_insn insns[] = {
4844 		BPF_MOV64_IMM(BPF_REG_0, 0),
4845 		BPF_EXIT_INSN(),
4846 	};
4847 	int prog_fd, link_fd, err;
4848 	unsigned long offset = 0;
4849 
4850 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4851 				insns, ARRAY_SIZE(insns), &load_opts);
4852 	if (prog_fd < 0)
4853 		return -errno;
4854 
4855 	/* Creating uprobe in '/' binary should fail with -EBADF. */
4856 	link_opts.uprobe_multi.path = "/";
4857 	link_opts.uprobe_multi.offsets = &offset;
4858 	link_opts.uprobe_multi.cnt = 1;
4859 
4860 	link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4861 	err = -errno; /* close() can clobber errno */
4862 
4863 	if (link_fd >= 0)
4864 		close(link_fd);
4865 	close(prog_fd);
4866 
4867 	return link_fd < 0 && err == -EBADF;
4868 }
4869 
probe_kern_bpf_cookie(void)4870 static int probe_kern_bpf_cookie(void)
4871 {
4872 	struct bpf_insn insns[] = {
4873 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4874 		BPF_EXIT_INSN(),
4875 	};
4876 	int ret, insn_cnt = ARRAY_SIZE(insns);
4877 
4878 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4879 	return probe_fd(ret);
4880 }
4881 
probe_kern_btf_enum64(void)4882 static int probe_kern_btf_enum64(void)
4883 {
4884 	static const char strs[] = "\0enum64";
4885 	__u32 types[] = {
4886 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4887 	};
4888 
4889 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4890 					     strs, sizeof(strs)));
4891 }
4892 
4893 static int probe_kern_syscall_wrapper(void);
4894 
4895 enum kern_feature_result {
4896 	FEAT_UNKNOWN = 0,
4897 	FEAT_SUPPORTED = 1,
4898 	FEAT_MISSING = 2,
4899 };
4900 
4901 typedef int (*feature_probe_fn)(void);
4902 
4903 static struct kern_feature_desc {
4904 	const char *desc;
4905 	feature_probe_fn probe;
4906 	enum kern_feature_result res;
4907 } feature_probes[__FEAT_CNT] = {
4908 	[FEAT_PROG_NAME] = {
4909 		"BPF program name", probe_kern_prog_name,
4910 	},
4911 	[FEAT_GLOBAL_DATA] = {
4912 		"global variables", probe_kern_global_data,
4913 	},
4914 	[FEAT_BTF] = {
4915 		"minimal BTF", probe_kern_btf,
4916 	},
4917 	[FEAT_BTF_FUNC] = {
4918 		"BTF functions", probe_kern_btf_func,
4919 	},
4920 	[FEAT_BTF_GLOBAL_FUNC] = {
4921 		"BTF global function", probe_kern_btf_func_global,
4922 	},
4923 	[FEAT_BTF_DATASEC] = {
4924 		"BTF data section and variable", probe_kern_btf_datasec,
4925 	},
4926 	[FEAT_ARRAY_MMAP] = {
4927 		"ARRAY map mmap()", probe_kern_array_mmap,
4928 	},
4929 	[FEAT_EXP_ATTACH_TYPE] = {
4930 		"BPF_PROG_LOAD expected_attach_type attribute",
4931 		probe_kern_exp_attach_type,
4932 	},
4933 	[FEAT_PROBE_READ_KERN] = {
4934 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4935 	},
4936 	[FEAT_PROG_BIND_MAP] = {
4937 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4938 	},
4939 	[FEAT_MODULE_BTF] = {
4940 		"module BTF support", probe_module_btf,
4941 	},
4942 	[FEAT_BTF_FLOAT] = {
4943 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4944 	},
4945 	[FEAT_PERF_LINK] = {
4946 		"BPF perf link support", probe_perf_link,
4947 	},
4948 	[FEAT_BTF_DECL_TAG] = {
4949 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4950 	},
4951 	[FEAT_BTF_TYPE_TAG] = {
4952 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4953 	},
4954 	[FEAT_MEMCG_ACCOUNT] = {
4955 		"memcg-based memory accounting", probe_memcg_account,
4956 	},
4957 	[FEAT_BPF_COOKIE] = {
4958 		"BPF cookie support", probe_kern_bpf_cookie,
4959 	},
4960 	[FEAT_BTF_ENUM64] = {
4961 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4962 	},
4963 	[FEAT_SYSCALL_WRAPPER] = {
4964 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4965 	},
4966 	[FEAT_UPROBE_MULTI_LINK] = {
4967 		"BPF multi-uprobe link support", probe_uprobe_multi_link,
4968 	},
4969 };
4970 
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)4971 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4972 {
4973 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4974 	int ret;
4975 
4976 	if (obj && obj->gen_loader)
4977 		/* To generate loader program assume the latest kernel
4978 		 * to avoid doing extra prog_load, map_create syscalls.
4979 		 */
4980 		return true;
4981 
4982 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4983 		ret = feat->probe();
4984 		if (ret > 0) {
4985 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4986 		} else if (ret == 0) {
4987 			WRITE_ONCE(feat->res, FEAT_MISSING);
4988 		} else {
4989 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4990 			WRITE_ONCE(feat->res, FEAT_MISSING);
4991 		}
4992 	}
4993 
4994 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4995 }
4996 
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4997 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4998 {
4999 	struct bpf_map_info map_info;
5000 	char msg[STRERR_BUFSIZE];
5001 	__u32 map_info_len = sizeof(map_info);
5002 	int err;
5003 
5004 	memset(&map_info, 0, map_info_len);
5005 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5006 	if (err && errno == EINVAL)
5007 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5008 	if (err) {
5009 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5010 			libbpf_strerror_r(errno, msg, sizeof(msg)));
5011 		return false;
5012 	}
5013 
5014 	return (map_info.type == map->def.type &&
5015 		map_info.key_size == map->def.key_size &&
5016 		map_info.value_size == map->def.value_size &&
5017 		map_info.max_entries == map->def.max_entries &&
5018 		map_info.map_flags == map->def.map_flags &&
5019 		map_info.map_extra == map->map_extra);
5020 }
5021 
5022 static int
bpf_object__reuse_map(struct bpf_map * map)5023 bpf_object__reuse_map(struct bpf_map *map)
5024 {
5025 	char *cp, errmsg[STRERR_BUFSIZE];
5026 	int err, pin_fd;
5027 
5028 	pin_fd = bpf_obj_get(map->pin_path);
5029 	if (pin_fd < 0) {
5030 		err = -errno;
5031 		if (err == -ENOENT) {
5032 			pr_debug("found no pinned map to reuse at '%s'\n",
5033 				 map->pin_path);
5034 			return 0;
5035 		}
5036 
5037 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5038 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5039 			map->pin_path, cp);
5040 		return err;
5041 	}
5042 
5043 	if (!map_is_reuse_compat(map, pin_fd)) {
5044 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5045 			map->pin_path);
5046 		close(pin_fd);
5047 		return -EINVAL;
5048 	}
5049 
5050 	err = bpf_map__reuse_fd(map, pin_fd);
5051 	close(pin_fd);
5052 	if (err)
5053 		return err;
5054 
5055 	map->pinned = true;
5056 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5057 
5058 	return 0;
5059 }
5060 
5061 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5062 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5063 {
5064 	enum libbpf_map_type map_type = map->libbpf_type;
5065 	char *cp, errmsg[STRERR_BUFSIZE];
5066 	int err, zero = 0;
5067 
5068 	if (obj->gen_loader) {
5069 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5070 					 map->mmaped, map->def.value_size);
5071 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5072 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5073 		return 0;
5074 	}
5075 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5076 	if (err) {
5077 		err = -errno;
5078 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5079 		pr_warn("Error setting initial map(%s) contents: %s\n",
5080 			map->name, cp);
5081 		return err;
5082 	}
5083 
5084 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5085 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5086 		err = bpf_map_freeze(map->fd);
5087 		if (err) {
5088 			err = -errno;
5089 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5090 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5091 				map->name, cp);
5092 			return err;
5093 		}
5094 	}
5095 	return 0;
5096 }
5097 
5098 static void bpf_map__destroy(struct bpf_map *map);
5099 
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5100 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5101 {
5102 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5103 	struct bpf_map_def *def = &map->def;
5104 	const char *map_name = NULL;
5105 	int err = 0;
5106 
5107 	if (kernel_supports(obj, FEAT_PROG_NAME))
5108 		map_name = map->name;
5109 	create_attr.map_ifindex = map->map_ifindex;
5110 	create_attr.map_flags = def->map_flags;
5111 	create_attr.numa_node = map->numa_node;
5112 	create_attr.map_extra = map->map_extra;
5113 
5114 	if (bpf_map__is_struct_ops(map))
5115 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5116 
5117 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5118 		create_attr.btf_fd = btf__fd(obj->btf);
5119 		create_attr.btf_key_type_id = map->btf_key_type_id;
5120 		create_attr.btf_value_type_id = map->btf_value_type_id;
5121 	}
5122 
5123 	if (bpf_map_type__is_map_in_map(def->type)) {
5124 		if (map->inner_map) {
5125 			err = map_set_def_max_entries(map->inner_map);
5126 			if (err)
5127 				return err;
5128 			err = bpf_object__create_map(obj, map->inner_map, true);
5129 			if (err) {
5130 				pr_warn("map '%s': failed to create inner map: %d\n",
5131 					map->name, err);
5132 				return err;
5133 			}
5134 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5135 		}
5136 		if (map->inner_map_fd >= 0)
5137 			create_attr.inner_map_fd = map->inner_map_fd;
5138 	}
5139 
5140 	switch (def->type) {
5141 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5142 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5143 	case BPF_MAP_TYPE_STACK_TRACE:
5144 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5145 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5146 	case BPF_MAP_TYPE_DEVMAP:
5147 	case BPF_MAP_TYPE_DEVMAP_HASH:
5148 	case BPF_MAP_TYPE_CPUMAP:
5149 	case BPF_MAP_TYPE_XSKMAP:
5150 	case BPF_MAP_TYPE_SOCKMAP:
5151 	case BPF_MAP_TYPE_SOCKHASH:
5152 	case BPF_MAP_TYPE_QUEUE:
5153 	case BPF_MAP_TYPE_STACK:
5154 		create_attr.btf_fd = 0;
5155 		create_attr.btf_key_type_id = 0;
5156 		create_attr.btf_value_type_id = 0;
5157 		map->btf_key_type_id = 0;
5158 		map->btf_value_type_id = 0;
5159 	default:
5160 		break;
5161 	}
5162 
5163 	if (obj->gen_loader) {
5164 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5165 				    def->key_size, def->value_size, def->max_entries,
5166 				    &create_attr, is_inner ? -1 : map - obj->maps);
5167 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5168 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5169 		 */
5170 		map->fd = 0;
5171 	} else {
5172 		map->fd = bpf_map_create(def->type, map_name,
5173 					 def->key_size, def->value_size,
5174 					 def->max_entries, &create_attr);
5175 	}
5176 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5177 			    create_attr.btf_value_type_id)) {
5178 		char *cp, errmsg[STRERR_BUFSIZE];
5179 
5180 		err = -errno;
5181 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5182 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5183 			map->name, cp, err);
5184 		create_attr.btf_fd = 0;
5185 		create_attr.btf_key_type_id = 0;
5186 		create_attr.btf_value_type_id = 0;
5187 		map->btf_key_type_id = 0;
5188 		map->btf_value_type_id = 0;
5189 		map->fd = bpf_map_create(def->type, map_name,
5190 					 def->key_size, def->value_size,
5191 					 def->max_entries, &create_attr);
5192 	}
5193 
5194 	err = map->fd < 0 ? -errno : 0;
5195 
5196 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5197 		if (obj->gen_loader)
5198 			map->inner_map->fd = -1;
5199 		bpf_map__destroy(map->inner_map);
5200 		zfree(&map->inner_map);
5201 	}
5202 
5203 	return err;
5204 }
5205 
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5206 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5207 {
5208 	const struct bpf_map *targ_map;
5209 	unsigned int i;
5210 	int fd, err = 0;
5211 
5212 	for (i = 0; i < map->init_slots_sz; i++) {
5213 		if (!map->init_slots[i])
5214 			continue;
5215 
5216 		targ_map = map->init_slots[i];
5217 		fd = bpf_map__fd(targ_map);
5218 
5219 		if (obj->gen_loader) {
5220 			bpf_gen__populate_outer_map(obj->gen_loader,
5221 						    map - obj->maps, i,
5222 						    targ_map - obj->maps);
5223 		} else {
5224 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5225 		}
5226 		if (err) {
5227 			err = -errno;
5228 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5229 				map->name, i, targ_map->name, fd, err);
5230 			return err;
5231 		}
5232 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5233 			 map->name, i, targ_map->name, fd);
5234 	}
5235 
5236 	zfree(&map->init_slots);
5237 	map->init_slots_sz = 0;
5238 
5239 	return 0;
5240 }
5241 
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5242 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5243 {
5244 	const struct bpf_program *targ_prog;
5245 	unsigned int i;
5246 	int fd, err;
5247 
5248 	if (obj->gen_loader)
5249 		return -ENOTSUP;
5250 
5251 	for (i = 0; i < map->init_slots_sz; i++) {
5252 		if (!map->init_slots[i])
5253 			continue;
5254 
5255 		targ_prog = map->init_slots[i];
5256 		fd = bpf_program__fd(targ_prog);
5257 
5258 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5259 		if (err) {
5260 			err = -errno;
5261 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5262 				map->name, i, targ_prog->name, fd, err);
5263 			return err;
5264 		}
5265 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5266 			 map->name, i, targ_prog->name, fd);
5267 	}
5268 
5269 	zfree(&map->init_slots);
5270 	map->init_slots_sz = 0;
5271 
5272 	return 0;
5273 }
5274 
bpf_object_init_prog_arrays(struct bpf_object * obj)5275 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5276 {
5277 	struct bpf_map *map;
5278 	int i, err;
5279 
5280 	for (i = 0; i < obj->nr_maps; i++) {
5281 		map = &obj->maps[i];
5282 
5283 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5284 			continue;
5285 
5286 		err = init_prog_array_slots(obj, map);
5287 		if (err < 0) {
5288 			zclose(map->fd);
5289 			return err;
5290 		}
5291 	}
5292 	return 0;
5293 }
5294 
map_set_def_max_entries(struct bpf_map * map)5295 static int map_set_def_max_entries(struct bpf_map *map)
5296 {
5297 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5298 		int nr_cpus;
5299 
5300 		nr_cpus = libbpf_num_possible_cpus();
5301 		if (nr_cpus < 0) {
5302 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5303 				map->name, nr_cpus);
5304 			return nr_cpus;
5305 		}
5306 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5307 		map->def.max_entries = nr_cpus;
5308 	}
5309 
5310 	return 0;
5311 }
5312 
5313 static int
bpf_object__create_maps(struct bpf_object * obj)5314 bpf_object__create_maps(struct bpf_object *obj)
5315 {
5316 	struct bpf_map *map;
5317 	char *cp, errmsg[STRERR_BUFSIZE];
5318 	unsigned int i, j;
5319 	int err;
5320 	bool retried;
5321 
5322 	for (i = 0; i < obj->nr_maps; i++) {
5323 		map = &obj->maps[i];
5324 
5325 		/* To support old kernels, we skip creating global data maps
5326 		 * (.rodata, .data, .kconfig, etc); later on, during program
5327 		 * loading, if we detect that at least one of the to-be-loaded
5328 		 * programs is referencing any global data map, we'll error
5329 		 * out with program name and relocation index logged.
5330 		 * This approach allows to accommodate Clang emitting
5331 		 * unnecessary .rodata.str1.1 sections for string literals,
5332 		 * but also it allows to have CO-RE applications that use
5333 		 * global variables in some of BPF programs, but not others.
5334 		 * If those global variable-using programs are not loaded at
5335 		 * runtime due to bpf_program__set_autoload(prog, false),
5336 		 * bpf_object loading will succeed just fine even on old
5337 		 * kernels.
5338 		 */
5339 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5340 			map->autocreate = false;
5341 
5342 		if (!map->autocreate) {
5343 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5344 			continue;
5345 		}
5346 
5347 		err = map_set_def_max_entries(map);
5348 		if (err)
5349 			goto err_out;
5350 
5351 		retried = false;
5352 retry:
5353 		if (map->pin_path) {
5354 			err = bpf_object__reuse_map(map);
5355 			if (err) {
5356 				pr_warn("map '%s': error reusing pinned map\n",
5357 					map->name);
5358 				goto err_out;
5359 			}
5360 			if (retried && map->fd < 0) {
5361 				pr_warn("map '%s': cannot find pinned map\n",
5362 					map->name);
5363 				err = -ENOENT;
5364 				goto err_out;
5365 			}
5366 		}
5367 
5368 		if (map->fd >= 0) {
5369 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5370 				 map->name, map->fd);
5371 		} else {
5372 			err = bpf_object__create_map(obj, map, false);
5373 			if (err)
5374 				goto err_out;
5375 
5376 			pr_debug("map '%s': created successfully, fd=%d\n",
5377 				 map->name, map->fd);
5378 
5379 			if (bpf_map__is_internal(map)) {
5380 				err = bpf_object__populate_internal_map(obj, map);
5381 				if (err < 0) {
5382 					zclose(map->fd);
5383 					goto err_out;
5384 				}
5385 			}
5386 
5387 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5388 				err = init_map_in_map_slots(obj, map);
5389 				if (err < 0) {
5390 					zclose(map->fd);
5391 					goto err_out;
5392 				}
5393 			}
5394 		}
5395 
5396 		if (map->pin_path && !map->pinned) {
5397 			err = bpf_map__pin(map, NULL);
5398 			if (err) {
5399 				zclose(map->fd);
5400 				if (!retried && err == -EEXIST) {
5401 					retried = true;
5402 					goto retry;
5403 				}
5404 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5405 					map->name, map->pin_path, err);
5406 				goto err_out;
5407 			}
5408 		}
5409 	}
5410 
5411 	return 0;
5412 
5413 err_out:
5414 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5415 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5416 	pr_perm_msg(err);
5417 	for (j = 0; j < i; j++)
5418 		zclose(obj->maps[j].fd);
5419 	return err;
5420 }
5421 
bpf_core_is_flavor_sep(const char * s)5422 static bool bpf_core_is_flavor_sep(const char *s)
5423 {
5424 	/* check X___Y name pattern, where X and Y are not underscores */
5425 	return s[0] != '_' &&				      /* X */
5426 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5427 	       s[4] != '_';				      /* Y */
5428 }
5429 
5430 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5431  * before last triple underscore. Struct name part after last triple
5432  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5433  */
bpf_core_essential_name_len(const char * name)5434 size_t bpf_core_essential_name_len(const char *name)
5435 {
5436 	size_t n = strlen(name);
5437 	int i;
5438 
5439 	for (i = n - 5; i >= 0; i--) {
5440 		if (bpf_core_is_flavor_sep(name + i))
5441 			return i + 1;
5442 	}
5443 	return n;
5444 }
5445 
bpf_core_free_cands(struct bpf_core_cand_list * cands)5446 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5447 {
5448 	if (!cands)
5449 		return;
5450 
5451 	free(cands->cands);
5452 	free(cands);
5453 }
5454 
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5455 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5456 		       size_t local_essent_len,
5457 		       const struct btf *targ_btf,
5458 		       const char *targ_btf_name,
5459 		       int targ_start_id,
5460 		       struct bpf_core_cand_list *cands)
5461 {
5462 	struct bpf_core_cand *new_cands, *cand;
5463 	const struct btf_type *t, *local_t;
5464 	const char *targ_name, *local_name;
5465 	size_t targ_essent_len;
5466 	int n, i;
5467 
5468 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5469 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5470 
5471 	n = btf__type_cnt(targ_btf);
5472 	for (i = targ_start_id; i < n; i++) {
5473 		t = btf__type_by_id(targ_btf, i);
5474 		if (!btf_kind_core_compat(t, local_t))
5475 			continue;
5476 
5477 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5478 		if (str_is_empty(targ_name))
5479 			continue;
5480 
5481 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5482 		if (targ_essent_len != local_essent_len)
5483 			continue;
5484 
5485 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5486 			continue;
5487 
5488 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5489 			 local_cand->id, btf_kind_str(local_t),
5490 			 local_name, i, btf_kind_str(t), targ_name,
5491 			 targ_btf_name);
5492 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5493 					      sizeof(*cands->cands));
5494 		if (!new_cands)
5495 			return -ENOMEM;
5496 
5497 		cand = &new_cands[cands->len];
5498 		cand->btf = targ_btf;
5499 		cand->id = i;
5500 
5501 		cands->cands = new_cands;
5502 		cands->len++;
5503 	}
5504 	return 0;
5505 }
5506 
load_module_btfs(struct bpf_object * obj)5507 static int load_module_btfs(struct bpf_object *obj)
5508 {
5509 	struct bpf_btf_info info;
5510 	struct module_btf *mod_btf;
5511 	struct btf *btf;
5512 	char name[64];
5513 	__u32 id = 0, len;
5514 	int err, fd;
5515 
5516 	if (obj->btf_modules_loaded)
5517 		return 0;
5518 
5519 	if (obj->gen_loader)
5520 		return 0;
5521 
5522 	/* don't do this again, even if we find no module BTFs */
5523 	obj->btf_modules_loaded = true;
5524 
5525 	/* kernel too old to support module BTFs */
5526 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5527 		return 0;
5528 
5529 	while (true) {
5530 		err = bpf_btf_get_next_id(id, &id);
5531 		if (err && errno == ENOENT)
5532 			return 0;
5533 		if (err && errno == EPERM) {
5534 			pr_debug("skipping module BTFs loading, missing privileges\n");
5535 			return 0;
5536 		}
5537 		if (err) {
5538 			err = -errno;
5539 			pr_warn("failed to iterate BTF objects: %d\n", err);
5540 			return err;
5541 		}
5542 
5543 		fd = bpf_btf_get_fd_by_id(id);
5544 		if (fd < 0) {
5545 			if (errno == ENOENT)
5546 				continue; /* expected race: BTF was unloaded */
5547 			err = -errno;
5548 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5549 			return err;
5550 		}
5551 
5552 		len = sizeof(info);
5553 		memset(&info, 0, sizeof(info));
5554 		info.name = ptr_to_u64(name);
5555 		info.name_len = sizeof(name);
5556 
5557 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5558 		if (err) {
5559 			err = -errno;
5560 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5561 			goto err_out;
5562 		}
5563 
5564 		/* ignore non-module BTFs */
5565 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5566 			close(fd);
5567 			continue;
5568 		}
5569 
5570 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5571 		err = libbpf_get_error(btf);
5572 		if (err) {
5573 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5574 				name, id, err);
5575 			goto err_out;
5576 		}
5577 
5578 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5579 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5580 		if (err)
5581 			goto err_out;
5582 
5583 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5584 
5585 		mod_btf->btf = btf;
5586 		mod_btf->id = id;
5587 		mod_btf->fd = fd;
5588 		mod_btf->name = strdup(name);
5589 		if (!mod_btf->name) {
5590 			err = -ENOMEM;
5591 			goto err_out;
5592 		}
5593 		continue;
5594 
5595 err_out:
5596 		close(fd);
5597 		return err;
5598 	}
5599 
5600 	return 0;
5601 }
5602 
5603 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5604 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5605 {
5606 	struct bpf_core_cand local_cand = {};
5607 	struct bpf_core_cand_list *cands;
5608 	const struct btf *main_btf;
5609 	const struct btf_type *local_t;
5610 	const char *local_name;
5611 	size_t local_essent_len;
5612 	int err, i;
5613 
5614 	local_cand.btf = local_btf;
5615 	local_cand.id = local_type_id;
5616 	local_t = btf__type_by_id(local_btf, local_type_id);
5617 	if (!local_t)
5618 		return ERR_PTR(-EINVAL);
5619 
5620 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5621 	if (str_is_empty(local_name))
5622 		return ERR_PTR(-EINVAL);
5623 	local_essent_len = bpf_core_essential_name_len(local_name);
5624 
5625 	cands = calloc(1, sizeof(*cands));
5626 	if (!cands)
5627 		return ERR_PTR(-ENOMEM);
5628 
5629 	/* Attempt to find target candidates in vmlinux BTF first */
5630 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5631 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5632 	if (err)
5633 		goto err_out;
5634 
5635 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5636 	if (cands->len)
5637 		return cands;
5638 
5639 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5640 	if (obj->btf_vmlinux_override)
5641 		return cands;
5642 
5643 	/* now look through module BTFs, trying to still find candidates */
5644 	err = load_module_btfs(obj);
5645 	if (err)
5646 		goto err_out;
5647 
5648 	for (i = 0; i < obj->btf_module_cnt; i++) {
5649 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5650 					 obj->btf_modules[i].btf,
5651 					 obj->btf_modules[i].name,
5652 					 btf__type_cnt(obj->btf_vmlinux),
5653 					 cands);
5654 		if (err)
5655 			goto err_out;
5656 	}
5657 
5658 	return cands;
5659 err_out:
5660 	bpf_core_free_cands(cands);
5661 	return ERR_PTR(err);
5662 }
5663 
5664 /* Check local and target types for compatibility. This check is used for
5665  * type-based CO-RE relocations and follow slightly different rules than
5666  * field-based relocations. This function assumes that root types were already
5667  * checked for name match. Beyond that initial root-level name check, names
5668  * are completely ignored. Compatibility rules are as follows:
5669  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5670  *     kind should match for local and target types (i.e., STRUCT is not
5671  *     compatible with UNION);
5672  *   - for ENUMs, the size is ignored;
5673  *   - for INT, size and signedness are ignored;
5674  *   - for ARRAY, dimensionality is ignored, element types are checked for
5675  *     compatibility recursively;
5676  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5677  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5678  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5679  *     number of input args and compatible return and argument types.
5680  * These rules are not set in stone and probably will be adjusted as we get
5681  * more experience with using BPF CO-RE relocations.
5682  */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5683 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5684 			      const struct btf *targ_btf, __u32 targ_id)
5685 {
5686 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5687 }
5688 
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5689 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5690 			 const struct btf *targ_btf, __u32 targ_id)
5691 {
5692 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5693 }
5694 
bpf_core_hash_fn(const long key,void * ctx)5695 static size_t bpf_core_hash_fn(const long key, void *ctx)
5696 {
5697 	return key;
5698 }
5699 
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5700 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5701 {
5702 	return k1 == k2;
5703 }
5704 
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5705 static int record_relo_core(struct bpf_program *prog,
5706 			    const struct bpf_core_relo *core_relo, int insn_idx)
5707 {
5708 	struct reloc_desc *relos, *relo;
5709 
5710 	relos = libbpf_reallocarray(prog->reloc_desc,
5711 				    prog->nr_reloc + 1, sizeof(*relos));
5712 	if (!relos)
5713 		return -ENOMEM;
5714 	relo = &relos[prog->nr_reloc];
5715 	relo->type = RELO_CORE;
5716 	relo->insn_idx = insn_idx;
5717 	relo->core_relo = core_relo;
5718 	prog->reloc_desc = relos;
5719 	prog->nr_reloc++;
5720 	return 0;
5721 }
5722 
find_relo_core(struct bpf_program * prog,int insn_idx)5723 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5724 {
5725 	struct reloc_desc *relo;
5726 	int i;
5727 
5728 	for (i = 0; i < prog->nr_reloc; i++) {
5729 		relo = &prog->reloc_desc[i];
5730 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5731 			continue;
5732 
5733 		return relo->core_relo;
5734 	}
5735 
5736 	return NULL;
5737 }
5738 
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5739 static int bpf_core_resolve_relo(struct bpf_program *prog,
5740 				 const struct bpf_core_relo *relo,
5741 				 int relo_idx,
5742 				 const struct btf *local_btf,
5743 				 struct hashmap *cand_cache,
5744 				 struct bpf_core_relo_res *targ_res)
5745 {
5746 	struct bpf_core_spec specs_scratch[3] = {};
5747 	struct bpf_core_cand_list *cands = NULL;
5748 	const char *prog_name = prog->name;
5749 	const struct btf_type *local_type;
5750 	const char *local_name;
5751 	__u32 local_id = relo->type_id;
5752 	int err;
5753 
5754 	local_type = btf__type_by_id(local_btf, local_id);
5755 	if (!local_type)
5756 		return -EINVAL;
5757 
5758 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5759 	if (!local_name)
5760 		return -EINVAL;
5761 
5762 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5763 	    !hashmap__find(cand_cache, local_id, &cands)) {
5764 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5765 		if (IS_ERR(cands)) {
5766 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5767 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5768 				local_name, PTR_ERR(cands));
5769 			return PTR_ERR(cands);
5770 		}
5771 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5772 		if (err) {
5773 			bpf_core_free_cands(cands);
5774 			return err;
5775 		}
5776 	}
5777 
5778 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5779 				       targ_res);
5780 }
5781 
5782 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5783 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5784 {
5785 	const struct btf_ext_info_sec *sec;
5786 	struct bpf_core_relo_res targ_res;
5787 	const struct bpf_core_relo *rec;
5788 	const struct btf_ext_info *seg;
5789 	struct hashmap_entry *entry;
5790 	struct hashmap *cand_cache = NULL;
5791 	struct bpf_program *prog;
5792 	struct bpf_insn *insn;
5793 	const char *sec_name;
5794 	int i, err = 0, insn_idx, sec_idx, sec_num;
5795 
5796 	if (obj->btf_ext->core_relo_info.len == 0)
5797 		return 0;
5798 
5799 	if (targ_btf_path) {
5800 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5801 		err = libbpf_get_error(obj->btf_vmlinux_override);
5802 		if (err) {
5803 			pr_warn("failed to parse target BTF: %d\n", err);
5804 			return err;
5805 		}
5806 	}
5807 
5808 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5809 	if (IS_ERR(cand_cache)) {
5810 		err = PTR_ERR(cand_cache);
5811 		goto out;
5812 	}
5813 
5814 	seg = &obj->btf_ext->core_relo_info;
5815 	sec_num = 0;
5816 	for_each_btf_ext_sec(seg, sec) {
5817 		sec_idx = seg->sec_idxs[sec_num];
5818 		sec_num++;
5819 
5820 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5821 		if (str_is_empty(sec_name)) {
5822 			err = -EINVAL;
5823 			goto out;
5824 		}
5825 
5826 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5827 
5828 		for_each_btf_ext_rec(seg, sec, i, rec) {
5829 			if (rec->insn_off % BPF_INSN_SZ)
5830 				return -EINVAL;
5831 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5832 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5833 			if (!prog) {
5834 				/* When __weak subprog is "overridden" by another instance
5835 				 * of the subprog from a different object file, linker still
5836 				 * appends all the .BTF.ext info that used to belong to that
5837 				 * eliminated subprogram.
5838 				 * This is similar to what x86-64 linker does for relocations.
5839 				 * So just ignore such relocations just like we ignore
5840 				 * subprog instructions when discovering subprograms.
5841 				 */
5842 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5843 					 sec_name, i, insn_idx);
5844 				continue;
5845 			}
5846 			/* no need to apply CO-RE relocation if the program is
5847 			 * not going to be loaded
5848 			 */
5849 			if (!prog->autoload)
5850 				continue;
5851 
5852 			/* adjust insn_idx from section frame of reference to the local
5853 			 * program's frame of reference; (sub-)program code is not yet
5854 			 * relocated, so it's enough to just subtract in-section offset
5855 			 */
5856 			insn_idx = insn_idx - prog->sec_insn_off;
5857 			if (insn_idx >= prog->insns_cnt)
5858 				return -EINVAL;
5859 			insn = &prog->insns[insn_idx];
5860 
5861 			err = record_relo_core(prog, rec, insn_idx);
5862 			if (err) {
5863 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5864 					prog->name, i, err);
5865 				goto out;
5866 			}
5867 
5868 			if (prog->obj->gen_loader)
5869 				continue;
5870 
5871 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5872 			if (err) {
5873 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5874 					prog->name, i, err);
5875 				goto out;
5876 			}
5877 
5878 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5879 			if (err) {
5880 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5881 					prog->name, i, insn_idx, err);
5882 				goto out;
5883 			}
5884 		}
5885 	}
5886 
5887 out:
5888 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5889 	btf__free(obj->btf_vmlinux_override);
5890 	obj->btf_vmlinux_override = NULL;
5891 
5892 	if (!IS_ERR_OR_NULL(cand_cache)) {
5893 		hashmap__for_each_entry(cand_cache, entry, i) {
5894 			bpf_core_free_cands(entry->pvalue);
5895 		}
5896 		hashmap__free(cand_cache);
5897 	}
5898 	return err;
5899 }
5900 
5901 /* base map load ldimm64 special constant, used also for log fixup logic */
5902 #define POISON_LDIMM64_MAP_BASE 2001000000
5903 #define POISON_LDIMM64_MAP_PFX "200100"
5904 
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)5905 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5906 			       int insn_idx, struct bpf_insn *insn,
5907 			       int map_idx, const struct bpf_map *map)
5908 {
5909 	int i;
5910 
5911 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5912 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5913 
5914 	/* we turn single ldimm64 into two identical invalid calls */
5915 	for (i = 0; i < 2; i++) {
5916 		insn->code = BPF_JMP | BPF_CALL;
5917 		insn->dst_reg = 0;
5918 		insn->src_reg = 0;
5919 		insn->off = 0;
5920 		/* if this instruction is reachable (not a dead code),
5921 		 * verifier will complain with something like:
5922 		 * invalid func unknown#2001000123
5923 		 * where lower 123 is map index into obj->maps[] array
5924 		 */
5925 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5926 
5927 		insn++;
5928 	}
5929 }
5930 
5931 /* unresolved kfunc call special constant, used also for log fixup logic */
5932 #define POISON_CALL_KFUNC_BASE 2002000000
5933 #define POISON_CALL_KFUNC_PFX "2002"
5934 
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)5935 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5936 			      int insn_idx, struct bpf_insn *insn,
5937 			      int ext_idx, const struct extern_desc *ext)
5938 {
5939 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5940 		 prog->name, relo_idx, insn_idx, ext->name);
5941 
5942 	/* we turn kfunc call into invalid helper call with identifiable constant */
5943 	insn->code = BPF_JMP | BPF_CALL;
5944 	insn->dst_reg = 0;
5945 	insn->src_reg = 0;
5946 	insn->off = 0;
5947 	/* if this instruction is reachable (not a dead code),
5948 	 * verifier will complain with something like:
5949 	 * invalid func unknown#2001000123
5950 	 * where lower 123 is extern index into obj->externs[] array
5951 	 */
5952 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5953 }
5954 
5955 /* Relocate data references within program code:
5956  *  - map references;
5957  *  - global variable references;
5958  *  - extern references.
5959  */
5960 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5961 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5962 {
5963 	int i;
5964 
5965 	for (i = 0; i < prog->nr_reloc; i++) {
5966 		struct reloc_desc *relo = &prog->reloc_desc[i];
5967 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5968 		const struct bpf_map *map;
5969 		struct extern_desc *ext;
5970 
5971 		switch (relo->type) {
5972 		case RELO_LD64:
5973 			map = &obj->maps[relo->map_idx];
5974 			if (obj->gen_loader) {
5975 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5976 				insn[0].imm = relo->map_idx;
5977 			} else if (map->autocreate) {
5978 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5979 				insn[0].imm = map->fd;
5980 			} else {
5981 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5982 						   relo->map_idx, map);
5983 			}
5984 			break;
5985 		case RELO_DATA:
5986 			map = &obj->maps[relo->map_idx];
5987 			insn[1].imm = insn[0].imm + relo->sym_off;
5988 			if (obj->gen_loader) {
5989 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5990 				insn[0].imm = relo->map_idx;
5991 			} else if (map->autocreate) {
5992 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5993 				insn[0].imm = map->fd;
5994 			} else {
5995 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5996 						   relo->map_idx, map);
5997 			}
5998 			break;
5999 		case RELO_EXTERN_LD64:
6000 			ext = &obj->externs[relo->ext_idx];
6001 			if (ext->type == EXT_KCFG) {
6002 				if (obj->gen_loader) {
6003 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6004 					insn[0].imm = obj->kconfig_map_idx;
6005 				} else {
6006 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6007 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6008 				}
6009 				insn[1].imm = ext->kcfg.data_off;
6010 			} else /* EXT_KSYM */ {
6011 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6012 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6013 					insn[0].imm = ext->ksym.kernel_btf_id;
6014 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6015 				} else { /* typeless ksyms or unresolved typed ksyms */
6016 					insn[0].imm = (__u32)ext->ksym.addr;
6017 					insn[1].imm = ext->ksym.addr >> 32;
6018 				}
6019 			}
6020 			break;
6021 		case RELO_EXTERN_CALL:
6022 			ext = &obj->externs[relo->ext_idx];
6023 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6024 			if (ext->is_set) {
6025 				insn[0].imm = ext->ksym.kernel_btf_id;
6026 				insn[0].off = ext->ksym.btf_fd_idx;
6027 			} else { /* unresolved weak kfunc call */
6028 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6029 						  relo->ext_idx, ext);
6030 			}
6031 			break;
6032 		case RELO_SUBPROG_ADDR:
6033 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6034 				pr_warn("prog '%s': relo #%d: bad insn\n",
6035 					prog->name, i);
6036 				return -EINVAL;
6037 			}
6038 			/* handled already */
6039 			break;
6040 		case RELO_CALL:
6041 			/* handled already */
6042 			break;
6043 		case RELO_CORE:
6044 			/* will be handled by bpf_program_record_relos() */
6045 			break;
6046 		default:
6047 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6048 				prog->name, i, relo->type);
6049 			return -EINVAL;
6050 		}
6051 	}
6052 
6053 	return 0;
6054 }
6055 
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6056 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6057 				    const struct bpf_program *prog,
6058 				    const struct btf_ext_info *ext_info,
6059 				    void **prog_info, __u32 *prog_rec_cnt,
6060 				    __u32 *prog_rec_sz)
6061 {
6062 	void *copy_start = NULL, *copy_end = NULL;
6063 	void *rec, *rec_end, *new_prog_info;
6064 	const struct btf_ext_info_sec *sec;
6065 	size_t old_sz, new_sz;
6066 	int i, sec_num, sec_idx, off_adj;
6067 
6068 	sec_num = 0;
6069 	for_each_btf_ext_sec(ext_info, sec) {
6070 		sec_idx = ext_info->sec_idxs[sec_num];
6071 		sec_num++;
6072 		if (prog->sec_idx != sec_idx)
6073 			continue;
6074 
6075 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6076 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6077 
6078 			if (insn_off < prog->sec_insn_off)
6079 				continue;
6080 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6081 				break;
6082 
6083 			if (!copy_start)
6084 				copy_start = rec;
6085 			copy_end = rec + ext_info->rec_size;
6086 		}
6087 
6088 		if (!copy_start)
6089 			return -ENOENT;
6090 
6091 		/* append func/line info of a given (sub-)program to the main
6092 		 * program func/line info
6093 		 */
6094 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6095 		new_sz = old_sz + (copy_end - copy_start);
6096 		new_prog_info = realloc(*prog_info, new_sz);
6097 		if (!new_prog_info)
6098 			return -ENOMEM;
6099 		*prog_info = new_prog_info;
6100 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6101 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6102 
6103 		/* Kernel instruction offsets are in units of 8-byte
6104 		 * instructions, while .BTF.ext instruction offsets generated
6105 		 * by Clang are in units of bytes. So convert Clang offsets
6106 		 * into kernel offsets and adjust offset according to program
6107 		 * relocated position.
6108 		 */
6109 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6110 		rec = new_prog_info + old_sz;
6111 		rec_end = new_prog_info + new_sz;
6112 		for (; rec < rec_end; rec += ext_info->rec_size) {
6113 			__u32 *insn_off = rec;
6114 
6115 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6116 		}
6117 		*prog_rec_sz = ext_info->rec_size;
6118 		return 0;
6119 	}
6120 
6121 	return -ENOENT;
6122 }
6123 
6124 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6125 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6126 			      struct bpf_program *main_prog,
6127 			      const struct bpf_program *prog)
6128 {
6129 	int err;
6130 
6131 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6132 	 * supprot func/line info
6133 	 */
6134 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6135 		return 0;
6136 
6137 	/* only attempt func info relocation if main program's func_info
6138 	 * relocation was successful
6139 	 */
6140 	if (main_prog != prog && !main_prog->func_info)
6141 		goto line_info;
6142 
6143 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6144 				       &main_prog->func_info,
6145 				       &main_prog->func_info_cnt,
6146 				       &main_prog->func_info_rec_size);
6147 	if (err) {
6148 		if (err != -ENOENT) {
6149 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6150 				prog->name, err);
6151 			return err;
6152 		}
6153 		if (main_prog->func_info) {
6154 			/*
6155 			 * Some info has already been found but has problem
6156 			 * in the last btf_ext reloc. Must have to error out.
6157 			 */
6158 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6159 			return err;
6160 		}
6161 		/* Have problem loading the very first info. Ignore the rest. */
6162 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6163 			prog->name);
6164 	}
6165 
6166 line_info:
6167 	/* don't relocate line info if main program's relocation failed */
6168 	if (main_prog != prog && !main_prog->line_info)
6169 		return 0;
6170 
6171 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6172 				       &main_prog->line_info,
6173 				       &main_prog->line_info_cnt,
6174 				       &main_prog->line_info_rec_size);
6175 	if (err) {
6176 		if (err != -ENOENT) {
6177 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6178 				prog->name, err);
6179 			return err;
6180 		}
6181 		if (main_prog->line_info) {
6182 			/*
6183 			 * Some info has already been found but has problem
6184 			 * in the last btf_ext reloc. Must have to error out.
6185 			 */
6186 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6187 			return err;
6188 		}
6189 		/* Have problem loading the very first info. Ignore the rest. */
6190 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6191 			prog->name);
6192 	}
6193 	return 0;
6194 }
6195 
cmp_relo_by_insn_idx(const void * key,const void * elem)6196 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6197 {
6198 	size_t insn_idx = *(const size_t *)key;
6199 	const struct reloc_desc *relo = elem;
6200 
6201 	if (insn_idx == relo->insn_idx)
6202 		return 0;
6203 	return insn_idx < relo->insn_idx ? -1 : 1;
6204 }
6205 
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6206 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6207 {
6208 	if (!prog->nr_reloc)
6209 		return NULL;
6210 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6211 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6212 }
6213 
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6214 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6215 {
6216 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6217 	struct reloc_desc *relos;
6218 	int i;
6219 
6220 	if (main_prog == subprog)
6221 		return 0;
6222 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6223 	/* if new count is zero, reallocarray can return a valid NULL result;
6224 	 * in this case the previous pointer will be freed, so we *have to*
6225 	 * reassign old pointer to the new value (even if it's NULL)
6226 	 */
6227 	if (!relos && new_cnt)
6228 		return -ENOMEM;
6229 	if (subprog->nr_reloc)
6230 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6231 		       sizeof(*relos) * subprog->nr_reloc);
6232 
6233 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6234 		relos[i].insn_idx += subprog->sub_insn_off;
6235 	/* After insn_idx adjustment the 'relos' array is still sorted
6236 	 * by insn_idx and doesn't break bsearch.
6237 	 */
6238 	main_prog->reloc_desc = relos;
6239 	main_prog->nr_reloc = new_cnt;
6240 	return 0;
6241 }
6242 
6243 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6244 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6245 		       struct bpf_program *prog)
6246 {
6247 	size_t sub_insn_idx, insn_idx, new_cnt;
6248 	struct bpf_program *subprog;
6249 	struct bpf_insn *insns, *insn;
6250 	struct reloc_desc *relo;
6251 	int err;
6252 
6253 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6254 	if (err)
6255 		return err;
6256 
6257 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6258 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6259 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6260 			continue;
6261 
6262 		relo = find_prog_insn_relo(prog, insn_idx);
6263 		if (relo && relo->type == RELO_EXTERN_CALL)
6264 			/* kfunc relocations will be handled later
6265 			 * in bpf_object__relocate_data()
6266 			 */
6267 			continue;
6268 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6269 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6270 				prog->name, insn_idx, relo->type);
6271 			return -LIBBPF_ERRNO__RELOC;
6272 		}
6273 		if (relo) {
6274 			/* sub-program instruction index is a combination of
6275 			 * an offset of a symbol pointed to by relocation and
6276 			 * call instruction's imm field; for global functions,
6277 			 * call always has imm = -1, but for static functions
6278 			 * relocation is against STT_SECTION and insn->imm
6279 			 * points to a start of a static function
6280 			 *
6281 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6282 			 * the byte offset in the corresponding section.
6283 			 */
6284 			if (relo->type == RELO_CALL)
6285 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6286 			else
6287 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6288 		} else if (insn_is_pseudo_func(insn)) {
6289 			/*
6290 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6291 			 * functions are in the same section, so it shouldn't reach here.
6292 			 */
6293 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6294 				prog->name, insn_idx);
6295 			return -LIBBPF_ERRNO__RELOC;
6296 		} else {
6297 			/* if subprogram call is to a static function within
6298 			 * the same ELF section, there won't be any relocation
6299 			 * emitted, but it also means there is no additional
6300 			 * offset necessary, insns->imm is relative to
6301 			 * instruction's original position within the section
6302 			 */
6303 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6304 		}
6305 
6306 		/* we enforce that sub-programs should be in .text section */
6307 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6308 		if (!subprog) {
6309 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6310 				prog->name);
6311 			return -LIBBPF_ERRNO__RELOC;
6312 		}
6313 
6314 		/* if it's the first call instruction calling into this
6315 		 * subprogram (meaning this subprog hasn't been processed
6316 		 * yet) within the context of current main program:
6317 		 *   - append it at the end of main program's instructions blog;
6318 		 *   - process is recursively, while current program is put on hold;
6319 		 *   - if that subprogram calls some other not yet processes
6320 		 *   subprogram, same thing will happen recursively until
6321 		 *   there are no more unprocesses subprograms left to append
6322 		 *   and relocate.
6323 		 */
6324 		if (subprog->sub_insn_off == 0) {
6325 			subprog->sub_insn_off = main_prog->insns_cnt;
6326 
6327 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6328 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6329 			if (!insns) {
6330 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6331 				return -ENOMEM;
6332 			}
6333 			main_prog->insns = insns;
6334 			main_prog->insns_cnt = new_cnt;
6335 
6336 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6337 			       subprog->insns_cnt * sizeof(*insns));
6338 
6339 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6340 				 main_prog->name, subprog->insns_cnt, subprog->name);
6341 
6342 			/* The subprog insns are now appended. Append its relos too. */
6343 			err = append_subprog_relos(main_prog, subprog);
6344 			if (err)
6345 				return err;
6346 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6347 			if (err)
6348 				return err;
6349 		}
6350 
6351 		/* main_prog->insns memory could have been re-allocated, so
6352 		 * calculate pointer again
6353 		 */
6354 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6355 		/* calculate correct instruction position within current main
6356 		 * prog; each main prog can have a different set of
6357 		 * subprograms appended (potentially in different order as
6358 		 * well), so position of any subprog can be different for
6359 		 * different main programs
6360 		 */
6361 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6362 
6363 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6364 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6365 	}
6366 
6367 	return 0;
6368 }
6369 
6370 /*
6371  * Relocate sub-program calls.
6372  *
6373  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6374  * main prog) is processed separately. For each subprog (non-entry functions,
6375  * that can be called from either entry progs or other subprogs) gets their
6376  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6377  * hasn't been yet appended and relocated within current main prog. Once its
6378  * relocated, sub_insn_off will point at the position within current main prog
6379  * where given subprog was appended. This will further be used to relocate all
6380  * the call instructions jumping into this subprog.
6381  *
6382  * We start with main program and process all call instructions. If the call
6383  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6384  * is zero), subprog instructions are appended at the end of main program's
6385  * instruction array. Then main program is "put on hold" while we recursively
6386  * process newly appended subprogram. If that subprogram calls into another
6387  * subprogram that hasn't been appended, new subprogram is appended again to
6388  * the *main* prog's instructions (subprog's instructions are always left
6389  * untouched, as they need to be in unmodified state for subsequent main progs
6390  * and subprog instructions are always sent only as part of a main prog) and
6391  * the process continues recursively. Once all the subprogs called from a main
6392  * prog or any of its subprogs are appended (and relocated), all their
6393  * positions within finalized instructions array are known, so it's easy to
6394  * rewrite call instructions with correct relative offsets, corresponding to
6395  * desired target subprog.
6396  *
6397  * Its important to realize that some subprogs might not be called from some
6398  * main prog and any of its called/used subprogs. Those will keep their
6399  * subprog->sub_insn_off as zero at all times and won't be appended to current
6400  * main prog and won't be relocated within the context of current main prog.
6401  * They might still be used from other main progs later.
6402  *
6403  * Visually this process can be shown as below. Suppose we have two main
6404  * programs mainA and mainB and BPF object contains three subprogs: subA,
6405  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6406  * subC both call subB:
6407  *
6408  *        +--------+ +-------+
6409  *        |        v v       |
6410  *     +--+---+ +--+-+-+ +---+--+
6411  *     | subA | | subB | | subC |
6412  *     +--+---+ +------+ +---+--+
6413  *        ^                  ^
6414  *        |                  |
6415  *    +---+-------+   +------+----+
6416  *    |   mainA   |   |   mainB   |
6417  *    +-----------+   +-----------+
6418  *
6419  * We'll start relocating mainA, will find subA, append it and start
6420  * processing sub A recursively:
6421  *
6422  *    +-----------+------+
6423  *    |   mainA   | subA |
6424  *    +-----------+------+
6425  *
6426  * At this point we notice that subB is used from subA, so we append it and
6427  * relocate (there are no further subcalls from subB):
6428  *
6429  *    +-----------+------+------+
6430  *    |   mainA   | subA | subB |
6431  *    +-----------+------+------+
6432  *
6433  * At this point, we relocate subA calls, then go one level up and finish with
6434  * relocatin mainA calls. mainA is done.
6435  *
6436  * For mainB process is similar but results in different order. We start with
6437  * mainB and skip subA and subB, as mainB never calls them (at least
6438  * directly), but we see subC is needed, so we append and start processing it:
6439  *
6440  *    +-----------+------+
6441  *    |   mainB   | subC |
6442  *    +-----------+------+
6443  * Now we see subC needs subB, so we go back to it, append and relocate it:
6444  *
6445  *    +-----------+------+------+
6446  *    |   mainB   | subC | subB |
6447  *    +-----------+------+------+
6448  *
6449  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6450  */
6451 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6452 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6453 {
6454 	struct bpf_program *subprog;
6455 	int i, err;
6456 
6457 	/* mark all subprogs as not relocated (yet) within the context of
6458 	 * current main program
6459 	 */
6460 	for (i = 0; i < obj->nr_programs; i++) {
6461 		subprog = &obj->programs[i];
6462 		if (!prog_is_subprog(obj, subprog))
6463 			continue;
6464 
6465 		subprog->sub_insn_off = 0;
6466 	}
6467 
6468 	err = bpf_object__reloc_code(obj, prog, prog);
6469 	if (err)
6470 		return err;
6471 
6472 	return 0;
6473 }
6474 
6475 static void
bpf_object__free_relocs(struct bpf_object * obj)6476 bpf_object__free_relocs(struct bpf_object *obj)
6477 {
6478 	struct bpf_program *prog;
6479 	int i;
6480 
6481 	/* free up relocation descriptors */
6482 	for (i = 0; i < obj->nr_programs; i++) {
6483 		prog = &obj->programs[i];
6484 		zfree(&prog->reloc_desc);
6485 		prog->nr_reloc = 0;
6486 	}
6487 }
6488 
cmp_relocs(const void * _a,const void * _b)6489 static int cmp_relocs(const void *_a, const void *_b)
6490 {
6491 	const struct reloc_desc *a = _a;
6492 	const struct reloc_desc *b = _b;
6493 
6494 	if (a->insn_idx != b->insn_idx)
6495 		return a->insn_idx < b->insn_idx ? -1 : 1;
6496 
6497 	/* no two relocations should have the same insn_idx, but ... */
6498 	if (a->type != b->type)
6499 		return a->type < b->type ? -1 : 1;
6500 
6501 	return 0;
6502 }
6503 
bpf_object__sort_relos(struct bpf_object * obj)6504 static void bpf_object__sort_relos(struct bpf_object *obj)
6505 {
6506 	int i;
6507 
6508 	for (i = 0; i < obj->nr_programs; i++) {
6509 		struct bpf_program *p = &obj->programs[i];
6510 
6511 		if (!p->nr_reloc)
6512 			continue;
6513 
6514 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6515 	}
6516 }
6517 
6518 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6519 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6520 {
6521 	struct bpf_program *prog;
6522 	size_t i, j;
6523 	int err;
6524 
6525 	if (obj->btf_ext) {
6526 		err = bpf_object__relocate_core(obj, targ_btf_path);
6527 		if (err) {
6528 			pr_warn("failed to perform CO-RE relocations: %d\n",
6529 				err);
6530 			return err;
6531 		}
6532 		bpf_object__sort_relos(obj);
6533 	}
6534 
6535 	/* Before relocating calls pre-process relocations and mark
6536 	 * few ld_imm64 instructions that points to subprogs.
6537 	 * Otherwise bpf_object__reloc_code() later would have to consider
6538 	 * all ld_imm64 insns as relocation candidates. That would
6539 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6540 	 * would increase and most of them will fail to find a relo.
6541 	 */
6542 	for (i = 0; i < obj->nr_programs; i++) {
6543 		prog = &obj->programs[i];
6544 		for (j = 0; j < prog->nr_reloc; j++) {
6545 			struct reloc_desc *relo = &prog->reloc_desc[j];
6546 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6547 
6548 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6549 			if (relo->type == RELO_SUBPROG_ADDR)
6550 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6551 		}
6552 	}
6553 
6554 	/* relocate subprogram calls and append used subprograms to main
6555 	 * programs; each copy of subprogram code needs to be relocated
6556 	 * differently for each main program, because its code location might
6557 	 * have changed.
6558 	 * Append subprog relos to main programs to allow data relos to be
6559 	 * processed after text is completely relocated.
6560 	 */
6561 	for (i = 0; i < obj->nr_programs; i++) {
6562 		prog = &obj->programs[i];
6563 		/* sub-program's sub-calls are relocated within the context of
6564 		 * its main program only
6565 		 */
6566 		if (prog_is_subprog(obj, prog))
6567 			continue;
6568 		if (!prog->autoload)
6569 			continue;
6570 
6571 		err = bpf_object__relocate_calls(obj, prog);
6572 		if (err) {
6573 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6574 				prog->name, err);
6575 			return err;
6576 		}
6577 	}
6578 	/* Process data relos for main programs */
6579 	for (i = 0; i < obj->nr_programs; i++) {
6580 		prog = &obj->programs[i];
6581 		if (prog_is_subprog(obj, prog))
6582 			continue;
6583 		if (!prog->autoload)
6584 			continue;
6585 		err = bpf_object__relocate_data(obj, prog);
6586 		if (err) {
6587 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6588 				prog->name, err);
6589 			return err;
6590 		}
6591 	}
6592 
6593 	return 0;
6594 }
6595 
6596 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6597 					    Elf64_Shdr *shdr, Elf_Data *data);
6598 
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)6599 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6600 					 Elf64_Shdr *shdr, Elf_Data *data)
6601 {
6602 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6603 	int i, j, nrels, new_sz;
6604 	const struct btf_var_secinfo *vi = NULL;
6605 	const struct btf_type *sec, *var, *def;
6606 	struct bpf_map *map = NULL, *targ_map = NULL;
6607 	struct bpf_program *targ_prog = NULL;
6608 	bool is_prog_array, is_map_in_map;
6609 	const struct btf_member *member;
6610 	const char *name, *mname, *type;
6611 	unsigned int moff;
6612 	Elf64_Sym *sym;
6613 	Elf64_Rel *rel;
6614 	void *tmp;
6615 
6616 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6617 		return -EINVAL;
6618 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6619 	if (!sec)
6620 		return -EINVAL;
6621 
6622 	nrels = shdr->sh_size / shdr->sh_entsize;
6623 	for (i = 0; i < nrels; i++) {
6624 		rel = elf_rel_by_idx(data, i);
6625 		if (!rel) {
6626 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6627 			return -LIBBPF_ERRNO__FORMAT;
6628 		}
6629 
6630 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6631 		if (!sym) {
6632 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6633 				i, (size_t)ELF64_R_SYM(rel->r_info));
6634 			return -LIBBPF_ERRNO__FORMAT;
6635 		}
6636 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6637 
6638 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6639 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6640 			 (size_t)rel->r_offset, sym->st_name, name);
6641 
6642 		for (j = 0; j < obj->nr_maps; j++) {
6643 			map = &obj->maps[j];
6644 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6645 				continue;
6646 
6647 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6648 			if (vi->offset <= rel->r_offset &&
6649 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6650 				break;
6651 		}
6652 		if (j == obj->nr_maps) {
6653 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6654 				i, name, (size_t)rel->r_offset);
6655 			return -EINVAL;
6656 		}
6657 
6658 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6659 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6660 		type = is_map_in_map ? "map" : "prog";
6661 		if (is_map_in_map) {
6662 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6663 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6664 					i, name);
6665 				return -LIBBPF_ERRNO__RELOC;
6666 			}
6667 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6668 			    map->def.key_size != sizeof(int)) {
6669 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6670 					i, map->name, sizeof(int));
6671 				return -EINVAL;
6672 			}
6673 			targ_map = bpf_object__find_map_by_name(obj, name);
6674 			if (!targ_map) {
6675 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6676 					i, name);
6677 				return -ESRCH;
6678 			}
6679 		} else if (is_prog_array) {
6680 			targ_prog = bpf_object__find_program_by_name(obj, name);
6681 			if (!targ_prog) {
6682 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6683 					i, name);
6684 				return -ESRCH;
6685 			}
6686 			if (targ_prog->sec_idx != sym->st_shndx ||
6687 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6688 			    prog_is_subprog(obj, targ_prog)) {
6689 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6690 					i, name);
6691 				return -LIBBPF_ERRNO__RELOC;
6692 			}
6693 		} else {
6694 			return -EINVAL;
6695 		}
6696 
6697 		var = btf__type_by_id(obj->btf, vi->type);
6698 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6699 		if (btf_vlen(def) == 0)
6700 			return -EINVAL;
6701 		member = btf_members(def) + btf_vlen(def) - 1;
6702 		mname = btf__name_by_offset(obj->btf, member->name_off);
6703 		if (strcmp(mname, "values"))
6704 			return -EINVAL;
6705 
6706 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6707 		if (rel->r_offset - vi->offset < moff)
6708 			return -EINVAL;
6709 
6710 		moff = rel->r_offset - vi->offset - moff;
6711 		/* here we use BPF pointer size, which is always 64 bit, as we
6712 		 * are parsing ELF that was built for BPF target
6713 		 */
6714 		if (moff % bpf_ptr_sz)
6715 			return -EINVAL;
6716 		moff /= bpf_ptr_sz;
6717 		if (moff >= map->init_slots_sz) {
6718 			new_sz = moff + 1;
6719 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6720 			if (!tmp)
6721 				return -ENOMEM;
6722 			map->init_slots = tmp;
6723 			memset(map->init_slots + map->init_slots_sz, 0,
6724 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6725 			map->init_slots_sz = new_sz;
6726 		}
6727 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6728 
6729 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6730 			 i, map->name, moff, type, name);
6731 	}
6732 
6733 	return 0;
6734 }
6735 
bpf_object__collect_relos(struct bpf_object * obj)6736 static int bpf_object__collect_relos(struct bpf_object *obj)
6737 {
6738 	int i, err;
6739 
6740 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6741 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6742 		Elf64_Shdr *shdr;
6743 		Elf_Data *data;
6744 		int idx;
6745 
6746 		if (sec_desc->sec_type != SEC_RELO)
6747 			continue;
6748 
6749 		shdr = sec_desc->shdr;
6750 		data = sec_desc->data;
6751 		idx = shdr->sh_info;
6752 
6753 		if (shdr->sh_type != SHT_REL) {
6754 			pr_warn("internal error at %d\n", __LINE__);
6755 			return -LIBBPF_ERRNO__INTERNAL;
6756 		}
6757 
6758 		if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6759 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6760 		else if (idx == obj->efile.btf_maps_shndx)
6761 			err = bpf_object__collect_map_relos(obj, shdr, data);
6762 		else
6763 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6764 		if (err)
6765 			return err;
6766 	}
6767 
6768 	bpf_object__sort_relos(obj);
6769 	return 0;
6770 }
6771 
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6772 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6773 {
6774 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6775 	    BPF_OP(insn->code) == BPF_CALL &&
6776 	    BPF_SRC(insn->code) == BPF_K &&
6777 	    insn->src_reg == 0 &&
6778 	    insn->dst_reg == 0) {
6779 		    *func_id = insn->imm;
6780 		    return true;
6781 	}
6782 	return false;
6783 }
6784 
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6785 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6786 {
6787 	struct bpf_insn *insn = prog->insns;
6788 	enum bpf_func_id func_id;
6789 	int i;
6790 
6791 	if (obj->gen_loader)
6792 		return 0;
6793 
6794 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6795 		if (!insn_is_helper_call(insn, &func_id))
6796 			continue;
6797 
6798 		/* on kernels that don't yet support
6799 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6800 		 * to bpf_probe_read() which works well for old kernels
6801 		 */
6802 		switch (func_id) {
6803 		case BPF_FUNC_probe_read_kernel:
6804 		case BPF_FUNC_probe_read_user:
6805 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6806 				insn->imm = BPF_FUNC_probe_read;
6807 			break;
6808 		case BPF_FUNC_probe_read_kernel_str:
6809 		case BPF_FUNC_probe_read_user_str:
6810 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6811 				insn->imm = BPF_FUNC_probe_read_str;
6812 			break;
6813 		default:
6814 			break;
6815 		}
6816 	}
6817 	return 0;
6818 }
6819 
6820 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6821 				     int *btf_obj_fd, int *btf_type_id);
6822 
6823 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)6824 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6825 				    struct bpf_prog_load_opts *opts, long cookie)
6826 {
6827 	enum sec_def_flags def = cookie;
6828 
6829 	/* old kernels might not support specifying expected_attach_type */
6830 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6831 		opts->expected_attach_type = 0;
6832 
6833 	if (def & SEC_SLEEPABLE)
6834 		opts->prog_flags |= BPF_F_SLEEPABLE;
6835 
6836 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6837 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6838 
6839 	/* special check for usdt to use uprobe_multi link */
6840 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
6841 		/* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
6842 		 * in prog, and expected_attach_type we set in kernel is from opts, so we
6843 		 * update both.
6844 		 */
6845 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6846 		opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6847 	}
6848 
6849 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6850 		int btf_obj_fd = 0, btf_type_id = 0, err;
6851 		const char *attach_name;
6852 
6853 		attach_name = strchr(prog->sec_name, '/');
6854 		if (!attach_name) {
6855 			/* if BPF program is annotated with just SEC("fentry")
6856 			 * (or similar) without declaratively specifying
6857 			 * target, then it is expected that target will be
6858 			 * specified with bpf_program__set_attach_target() at
6859 			 * runtime before BPF object load step. If not, then
6860 			 * there is nothing to load into the kernel as BPF
6861 			 * verifier won't be able to validate BPF program
6862 			 * correctness anyways.
6863 			 */
6864 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6865 				prog->name);
6866 			return -EINVAL;
6867 		}
6868 		attach_name++; /* skip over / */
6869 
6870 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6871 		if (err)
6872 			return err;
6873 
6874 		/* cache resolved BTF FD and BTF type ID in the prog */
6875 		prog->attach_btf_obj_fd = btf_obj_fd;
6876 		prog->attach_btf_id = btf_type_id;
6877 
6878 		/* but by now libbpf common logic is not utilizing
6879 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6880 		 * this callback is called after opts were populated by
6881 		 * libbpf, so this callback has to update opts explicitly here
6882 		 */
6883 		opts->attach_btf_obj_fd = btf_obj_fd;
6884 		opts->attach_btf_id = btf_type_id;
6885 	}
6886 	return 0;
6887 }
6888 
6889 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6890 
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)6891 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6892 				struct bpf_insn *insns, int insns_cnt,
6893 				const char *license, __u32 kern_version, int *prog_fd)
6894 {
6895 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6896 	const char *prog_name = NULL;
6897 	char *cp, errmsg[STRERR_BUFSIZE];
6898 	size_t log_buf_size = 0;
6899 	char *log_buf = NULL, *tmp;
6900 	int btf_fd, ret, err;
6901 	bool own_log_buf = true;
6902 	__u32 log_level = prog->log_level;
6903 
6904 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6905 		/*
6906 		 * The program type must be set.  Most likely we couldn't find a proper
6907 		 * section definition at load time, and thus we didn't infer the type.
6908 		 */
6909 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6910 			prog->name, prog->sec_name);
6911 		return -EINVAL;
6912 	}
6913 
6914 	if (!insns || !insns_cnt)
6915 		return -EINVAL;
6916 
6917 	if (kernel_supports(obj, FEAT_PROG_NAME))
6918 		prog_name = prog->name;
6919 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6920 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6921 	load_attr.attach_btf_id = prog->attach_btf_id;
6922 	load_attr.kern_version = kern_version;
6923 	load_attr.prog_ifindex = prog->prog_ifindex;
6924 	load_attr.expected_attach_type = prog->expected_attach_type;
6925 
6926 	/* specify func_info/line_info only if kernel supports them */
6927 	btf_fd = bpf_object__btf_fd(obj);
6928 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6929 		load_attr.prog_btf_fd = btf_fd;
6930 		load_attr.func_info = prog->func_info;
6931 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6932 		load_attr.func_info_cnt = prog->func_info_cnt;
6933 		load_attr.line_info = prog->line_info;
6934 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6935 		load_attr.line_info_cnt = prog->line_info_cnt;
6936 	}
6937 	load_attr.log_level = log_level;
6938 	load_attr.prog_flags = prog->prog_flags;
6939 	load_attr.fd_array = obj->fd_array;
6940 
6941 	/* adjust load_attr if sec_def provides custom preload callback */
6942 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6943 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6944 		if (err < 0) {
6945 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6946 				prog->name, err);
6947 			return err;
6948 		}
6949 		insns = prog->insns;
6950 		insns_cnt = prog->insns_cnt;
6951 	}
6952 
6953 	if (obj->gen_loader) {
6954 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6955 				   license, insns, insns_cnt, &load_attr,
6956 				   prog - obj->programs);
6957 		*prog_fd = -1;
6958 		return 0;
6959 	}
6960 
6961 retry_load:
6962 	/* if log_level is zero, we don't request logs initially even if
6963 	 * custom log_buf is specified; if the program load fails, then we'll
6964 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6965 	 * our own and retry the load to get details on what failed
6966 	 */
6967 	if (log_level) {
6968 		if (prog->log_buf) {
6969 			log_buf = prog->log_buf;
6970 			log_buf_size = prog->log_size;
6971 			own_log_buf = false;
6972 		} else if (obj->log_buf) {
6973 			log_buf = obj->log_buf;
6974 			log_buf_size = obj->log_size;
6975 			own_log_buf = false;
6976 		} else {
6977 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6978 			tmp = realloc(log_buf, log_buf_size);
6979 			if (!tmp) {
6980 				ret = -ENOMEM;
6981 				goto out;
6982 			}
6983 			log_buf = tmp;
6984 			log_buf[0] = '\0';
6985 			own_log_buf = true;
6986 		}
6987 	}
6988 
6989 	load_attr.log_buf = log_buf;
6990 	load_attr.log_size = log_buf_size;
6991 	load_attr.log_level = log_level;
6992 
6993 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6994 	if (ret >= 0) {
6995 		if (log_level && own_log_buf) {
6996 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6997 				 prog->name, log_buf);
6998 		}
6999 
7000 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7001 			struct bpf_map *map;
7002 			int i;
7003 
7004 			for (i = 0; i < obj->nr_maps; i++) {
7005 				map = &prog->obj->maps[i];
7006 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7007 					continue;
7008 
7009 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7010 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7011 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7012 						prog->name, map->real_name, cp);
7013 					/* Don't fail hard if can't bind rodata. */
7014 				}
7015 			}
7016 		}
7017 
7018 		*prog_fd = ret;
7019 		ret = 0;
7020 		goto out;
7021 	}
7022 
7023 	if (log_level == 0) {
7024 		log_level = 1;
7025 		goto retry_load;
7026 	}
7027 	/* On ENOSPC, increase log buffer size and retry, unless custom
7028 	 * log_buf is specified.
7029 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7030 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7031 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7032 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7033 	 */
7034 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7035 		goto retry_load;
7036 
7037 	ret = -errno;
7038 
7039 	/* post-process verifier log to improve error descriptions */
7040 	fixup_verifier_log(prog, log_buf, log_buf_size);
7041 
7042 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7043 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7044 	pr_perm_msg(ret);
7045 
7046 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7047 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7048 			prog->name, log_buf);
7049 	}
7050 
7051 out:
7052 	if (own_log_buf)
7053 		free(log_buf);
7054 	return ret;
7055 }
7056 
find_prev_line(char * buf,char * cur)7057 static char *find_prev_line(char *buf, char *cur)
7058 {
7059 	char *p;
7060 
7061 	if (cur == buf) /* end of a log buf */
7062 		return NULL;
7063 
7064 	p = cur - 1;
7065 	while (p - 1 >= buf && *(p - 1) != '\n')
7066 		p--;
7067 
7068 	return p;
7069 }
7070 
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7071 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7072 		      char *orig, size_t orig_sz, const char *patch)
7073 {
7074 	/* size of the remaining log content to the right from the to-be-replaced part */
7075 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7076 	size_t patch_sz = strlen(patch);
7077 
7078 	if (patch_sz != orig_sz) {
7079 		/* If patch line(s) are longer than original piece of verifier log,
7080 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7081 		 * starting from after to-be-replaced part of the log.
7082 		 *
7083 		 * If patch line(s) are shorter than original piece of verifier log,
7084 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7085 		 * starting from after to-be-replaced part of the log
7086 		 *
7087 		 * We need to be careful about not overflowing available
7088 		 * buf_sz capacity. If that's the case, we'll truncate the end
7089 		 * of the original log, as necessary.
7090 		 */
7091 		if (patch_sz > orig_sz) {
7092 			if (orig + patch_sz >= buf + buf_sz) {
7093 				/* patch is big enough to cover remaining space completely */
7094 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7095 				rem_sz = 0;
7096 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7097 				/* patch causes part of remaining log to be truncated */
7098 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7099 			}
7100 		}
7101 		/* shift remaining log to the right by calculated amount */
7102 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7103 	}
7104 
7105 	memcpy(orig, patch, patch_sz);
7106 }
7107 
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7108 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7109 				       char *buf, size_t buf_sz, size_t log_sz,
7110 				       char *line1, char *line2, char *line3)
7111 {
7112 	/* Expected log for failed and not properly guarded CO-RE relocation:
7113 	 * line1 -> 123: (85) call unknown#195896080
7114 	 * line2 -> invalid func unknown#195896080
7115 	 * line3 -> <anything else or end of buffer>
7116 	 *
7117 	 * "123" is the index of the instruction that was poisoned. We extract
7118 	 * instruction index to find corresponding CO-RE relocation and
7119 	 * replace this part of the log with more relevant information about
7120 	 * failed CO-RE relocation.
7121 	 */
7122 	const struct bpf_core_relo *relo;
7123 	struct bpf_core_spec spec;
7124 	char patch[512], spec_buf[256];
7125 	int insn_idx, err, spec_len;
7126 
7127 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7128 		return;
7129 
7130 	relo = find_relo_core(prog, insn_idx);
7131 	if (!relo)
7132 		return;
7133 
7134 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7135 	if (err)
7136 		return;
7137 
7138 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7139 	snprintf(patch, sizeof(patch),
7140 		 "%d: <invalid CO-RE relocation>\n"
7141 		 "failed to resolve CO-RE relocation %s%s\n",
7142 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7143 
7144 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7145 }
7146 
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7147 static void fixup_log_missing_map_load(struct bpf_program *prog,
7148 				       char *buf, size_t buf_sz, size_t log_sz,
7149 				       char *line1, char *line2, char *line3)
7150 {
7151 	/* Expected log for failed and not properly guarded map reference:
7152 	 * line1 -> 123: (85) call unknown#2001000345
7153 	 * line2 -> invalid func unknown#2001000345
7154 	 * line3 -> <anything else or end of buffer>
7155 	 *
7156 	 * "123" is the index of the instruction that was poisoned.
7157 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7158 	 */
7159 	struct bpf_object *obj = prog->obj;
7160 	const struct bpf_map *map;
7161 	int insn_idx, map_idx;
7162 	char patch[128];
7163 
7164 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7165 		return;
7166 
7167 	map_idx -= POISON_LDIMM64_MAP_BASE;
7168 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7169 		return;
7170 	map = &obj->maps[map_idx];
7171 
7172 	snprintf(patch, sizeof(patch),
7173 		 "%d: <invalid BPF map reference>\n"
7174 		 "BPF map '%s' is referenced but wasn't created\n",
7175 		 insn_idx, map->name);
7176 
7177 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7178 }
7179 
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7180 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7181 					 char *buf, size_t buf_sz, size_t log_sz,
7182 					 char *line1, char *line2, char *line3)
7183 {
7184 	/* Expected log for failed and not properly guarded kfunc call:
7185 	 * line1 -> 123: (85) call unknown#2002000345
7186 	 * line2 -> invalid func unknown#2002000345
7187 	 * line3 -> <anything else or end of buffer>
7188 	 *
7189 	 * "123" is the index of the instruction that was poisoned.
7190 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7191 	 */
7192 	struct bpf_object *obj = prog->obj;
7193 	const struct extern_desc *ext;
7194 	int insn_idx, ext_idx;
7195 	char patch[128];
7196 
7197 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7198 		return;
7199 
7200 	ext_idx -= POISON_CALL_KFUNC_BASE;
7201 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7202 		return;
7203 	ext = &obj->externs[ext_idx];
7204 
7205 	snprintf(patch, sizeof(patch),
7206 		 "%d: <invalid kfunc call>\n"
7207 		 "kfunc '%s' is referenced but wasn't resolved\n",
7208 		 insn_idx, ext->name);
7209 
7210 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7211 }
7212 
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7213 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7214 {
7215 	/* look for familiar error patterns in last N lines of the log */
7216 	const size_t max_last_line_cnt = 10;
7217 	char *prev_line, *cur_line, *next_line;
7218 	size_t log_sz;
7219 	int i;
7220 
7221 	if (!buf)
7222 		return;
7223 
7224 	log_sz = strlen(buf) + 1;
7225 	next_line = buf + log_sz - 1;
7226 
7227 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7228 		cur_line = find_prev_line(buf, next_line);
7229 		if (!cur_line)
7230 			return;
7231 
7232 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7233 			prev_line = find_prev_line(buf, cur_line);
7234 			if (!prev_line)
7235 				continue;
7236 
7237 			/* failed CO-RE relocation case */
7238 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7239 						   prev_line, cur_line, next_line);
7240 			return;
7241 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7242 			prev_line = find_prev_line(buf, cur_line);
7243 			if (!prev_line)
7244 				continue;
7245 
7246 			/* reference to uncreated BPF map */
7247 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7248 						   prev_line, cur_line, next_line);
7249 			return;
7250 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7251 			prev_line = find_prev_line(buf, cur_line);
7252 			if (!prev_line)
7253 				continue;
7254 
7255 			/* reference to unresolved kfunc */
7256 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7257 						     prev_line, cur_line, next_line);
7258 			return;
7259 		}
7260 	}
7261 }
7262 
bpf_program_record_relos(struct bpf_program * prog)7263 static int bpf_program_record_relos(struct bpf_program *prog)
7264 {
7265 	struct bpf_object *obj = prog->obj;
7266 	int i;
7267 
7268 	for (i = 0; i < prog->nr_reloc; i++) {
7269 		struct reloc_desc *relo = &prog->reloc_desc[i];
7270 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7271 		int kind;
7272 
7273 		switch (relo->type) {
7274 		case RELO_EXTERN_LD64:
7275 			if (ext->type != EXT_KSYM)
7276 				continue;
7277 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7278 				BTF_KIND_VAR : BTF_KIND_FUNC;
7279 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7280 					       ext->is_weak, !ext->ksym.type_id,
7281 					       true, kind, relo->insn_idx);
7282 			break;
7283 		case RELO_EXTERN_CALL:
7284 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7285 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7286 					       relo->insn_idx);
7287 			break;
7288 		case RELO_CORE: {
7289 			struct bpf_core_relo cr = {
7290 				.insn_off = relo->insn_idx * 8,
7291 				.type_id = relo->core_relo->type_id,
7292 				.access_str_off = relo->core_relo->access_str_off,
7293 				.kind = relo->core_relo->kind,
7294 			};
7295 
7296 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7297 			break;
7298 		}
7299 		default:
7300 			continue;
7301 		}
7302 	}
7303 	return 0;
7304 }
7305 
7306 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7307 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7308 {
7309 	struct bpf_program *prog;
7310 	size_t i;
7311 	int err;
7312 
7313 	for (i = 0; i < obj->nr_programs; i++) {
7314 		prog = &obj->programs[i];
7315 		err = bpf_object__sanitize_prog(obj, prog);
7316 		if (err)
7317 			return err;
7318 	}
7319 
7320 	for (i = 0; i < obj->nr_programs; i++) {
7321 		prog = &obj->programs[i];
7322 		if (prog_is_subprog(obj, prog))
7323 			continue;
7324 		if (!prog->autoload) {
7325 			pr_debug("prog '%s': skipped loading\n", prog->name);
7326 			continue;
7327 		}
7328 		prog->log_level |= log_level;
7329 
7330 		if (obj->gen_loader)
7331 			bpf_program_record_relos(prog);
7332 
7333 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7334 					   obj->license, obj->kern_version, &prog->fd);
7335 		if (err) {
7336 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7337 			return err;
7338 		}
7339 	}
7340 
7341 	bpf_object__free_relocs(obj);
7342 	return 0;
7343 }
7344 
7345 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7346 
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7347 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7348 {
7349 	struct bpf_program *prog;
7350 	int err;
7351 
7352 	bpf_object__for_each_program(prog, obj) {
7353 		prog->sec_def = find_sec_def(prog->sec_name);
7354 		if (!prog->sec_def) {
7355 			/* couldn't guess, but user might manually specify */
7356 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7357 				prog->name, prog->sec_name);
7358 			continue;
7359 		}
7360 
7361 		prog->type = prog->sec_def->prog_type;
7362 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7363 
7364 		/* sec_def can have custom callback which should be called
7365 		 * after bpf_program is initialized to adjust its properties
7366 		 */
7367 		if (prog->sec_def->prog_setup_fn) {
7368 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7369 			if (err < 0) {
7370 				pr_warn("prog '%s': failed to initialize: %d\n",
7371 					prog->name, err);
7372 				return err;
7373 			}
7374 		}
7375 	}
7376 
7377 	return 0;
7378 }
7379 
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7380 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7381 					  const struct bpf_object_open_opts *opts)
7382 {
7383 	const char *obj_name, *kconfig, *btf_tmp_path;
7384 	struct bpf_object *obj;
7385 	char tmp_name[64];
7386 	int err;
7387 	char *log_buf;
7388 	size_t log_size;
7389 	__u32 log_level;
7390 
7391 	if (elf_version(EV_CURRENT) == EV_NONE) {
7392 		pr_warn("failed to init libelf for %s\n",
7393 			path ? : "(mem buf)");
7394 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7395 	}
7396 
7397 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7398 		return ERR_PTR(-EINVAL);
7399 
7400 	obj_name = OPTS_GET(opts, object_name, NULL);
7401 	if (obj_buf) {
7402 		if (!obj_name) {
7403 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7404 				 (unsigned long)obj_buf,
7405 				 (unsigned long)obj_buf_sz);
7406 			obj_name = tmp_name;
7407 		}
7408 		path = obj_name;
7409 		pr_debug("loading object '%s' from buffer\n", obj_name);
7410 	}
7411 
7412 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7413 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7414 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7415 	if (log_size > UINT_MAX)
7416 		return ERR_PTR(-EINVAL);
7417 	if (log_size && !log_buf)
7418 		return ERR_PTR(-EINVAL);
7419 
7420 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7421 	if (IS_ERR(obj))
7422 		return obj;
7423 
7424 	obj->log_buf = log_buf;
7425 	obj->log_size = log_size;
7426 	obj->log_level = log_level;
7427 
7428 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7429 	if (btf_tmp_path) {
7430 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7431 			err = -ENAMETOOLONG;
7432 			goto out;
7433 		}
7434 		obj->btf_custom_path = strdup(btf_tmp_path);
7435 		if (!obj->btf_custom_path) {
7436 			err = -ENOMEM;
7437 			goto out;
7438 		}
7439 	}
7440 
7441 	kconfig = OPTS_GET(opts, kconfig, NULL);
7442 	if (kconfig) {
7443 		obj->kconfig = strdup(kconfig);
7444 		if (!obj->kconfig) {
7445 			err = -ENOMEM;
7446 			goto out;
7447 		}
7448 	}
7449 
7450 	err = bpf_object__elf_init(obj);
7451 	err = err ? : bpf_object__check_endianness(obj);
7452 	err = err ? : bpf_object__elf_collect(obj);
7453 	err = err ? : bpf_object__collect_externs(obj);
7454 	err = err ? : bpf_object_fixup_btf(obj);
7455 	err = err ? : bpf_object__init_maps(obj, opts);
7456 	err = err ? : bpf_object_init_progs(obj, opts);
7457 	err = err ? : bpf_object__collect_relos(obj);
7458 	if (err)
7459 		goto out;
7460 
7461 	bpf_object__elf_finish(obj);
7462 
7463 	return obj;
7464 out:
7465 	bpf_object__close(obj);
7466 	return ERR_PTR(err);
7467 }
7468 
7469 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7470 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7471 {
7472 	if (!path)
7473 		return libbpf_err_ptr(-EINVAL);
7474 
7475 	pr_debug("loading %s\n", path);
7476 
7477 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7478 }
7479 
bpf_object__open(const char * path)7480 struct bpf_object *bpf_object__open(const char *path)
7481 {
7482 	return bpf_object__open_file(path, NULL);
7483 }
7484 
7485 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7486 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7487 		     const struct bpf_object_open_opts *opts)
7488 {
7489 	if (!obj_buf || obj_buf_sz == 0)
7490 		return libbpf_err_ptr(-EINVAL);
7491 
7492 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7493 }
7494 
bpf_object_unload(struct bpf_object * obj)7495 static int bpf_object_unload(struct bpf_object *obj)
7496 {
7497 	size_t i;
7498 
7499 	if (!obj)
7500 		return libbpf_err(-EINVAL);
7501 
7502 	for (i = 0; i < obj->nr_maps; i++) {
7503 		zclose(obj->maps[i].fd);
7504 		if (obj->maps[i].st_ops)
7505 			zfree(&obj->maps[i].st_ops->kern_vdata);
7506 	}
7507 
7508 	for (i = 0; i < obj->nr_programs; i++)
7509 		bpf_program__unload(&obj->programs[i]);
7510 
7511 	return 0;
7512 }
7513 
bpf_object__sanitize_maps(struct bpf_object * obj)7514 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7515 {
7516 	struct bpf_map *m;
7517 
7518 	bpf_object__for_each_map(m, obj) {
7519 		if (!bpf_map__is_internal(m))
7520 			continue;
7521 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7522 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7523 	}
7524 
7525 	return 0;
7526 }
7527 
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)7528 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7529 {
7530 	char sym_type, sym_name[500];
7531 	unsigned long long sym_addr;
7532 	int ret, err = 0;
7533 	FILE *f;
7534 
7535 	f = fopen("/proc/kallsyms", "re");
7536 	if (!f) {
7537 		err = -errno;
7538 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7539 		return err;
7540 	}
7541 
7542 	while (true) {
7543 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7544 			     &sym_addr, &sym_type, sym_name);
7545 		if (ret == EOF && feof(f))
7546 			break;
7547 		if (ret != 3) {
7548 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7549 			err = -EINVAL;
7550 			break;
7551 		}
7552 
7553 		err = cb(sym_addr, sym_type, sym_name, ctx);
7554 		if (err)
7555 			break;
7556 	}
7557 
7558 	fclose(f);
7559 	return err;
7560 }
7561 
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)7562 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7563 		       const char *sym_name, void *ctx)
7564 {
7565 	struct bpf_object *obj = ctx;
7566 	const struct btf_type *t;
7567 	struct extern_desc *ext;
7568 
7569 	ext = find_extern_by_name(obj, sym_name);
7570 	if (!ext || ext->type != EXT_KSYM)
7571 		return 0;
7572 
7573 	t = btf__type_by_id(obj->btf, ext->btf_id);
7574 	if (!btf_is_var(t))
7575 		return 0;
7576 
7577 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7578 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7579 			sym_name, ext->ksym.addr, sym_addr);
7580 		return -EINVAL;
7581 	}
7582 	if (!ext->is_set) {
7583 		ext->is_set = true;
7584 		ext->ksym.addr = sym_addr;
7585 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7586 	}
7587 	return 0;
7588 }
7589 
bpf_object__read_kallsyms_file(struct bpf_object * obj)7590 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7591 {
7592 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7593 }
7594 
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)7595 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7596 			    __u16 kind, struct btf **res_btf,
7597 			    struct module_btf **res_mod_btf)
7598 {
7599 	struct module_btf *mod_btf;
7600 	struct btf *btf;
7601 	int i, id, err;
7602 
7603 	btf = obj->btf_vmlinux;
7604 	mod_btf = NULL;
7605 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7606 
7607 	if (id == -ENOENT) {
7608 		err = load_module_btfs(obj);
7609 		if (err)
7610 			return err;
7611 
7612 		for (i = 0; i < obj->btf_module_cnt; i++) {
7613 			/* we assume module_btf's BTF FD is always >0 */
7614 			mod_btf = &obj->btf_modules[i];
7615 			btf = mod_btf->btf;
7616 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7617 			if (id != -ENOENT)
7618 				break;
7619 		}
7620 	}
7621 	if (id <= 0)
7622 		return -ESRCH;
7623 
7624 	*res_btf = btf;
7625 	*res_mod_btf = mod_btf;
7626 	return id;
7627 }
7628 
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)7629 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7630 					       struct extern_desc *ext)
7631 {
7632 	const struct btf_type *targ_var, *targ_type;
7633 	__u32 targ_type_id, local_type_id;
7634 	struct module_btf *mod_btf = NULL;
7635 	const char *targ_var_name;
7636 	struct btf *btf = NULL;
7637 	int id, err;
7638 
7639 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7640 	if (id < 0) {
7641 		if (id == -ESRCH && ext->is_weak)
7642 			return 0;
7643 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7644 			ext->name);
7645 		return id;
7646 	}
7647 
7648 	/* find local type_id */
7649 	local_type_id = ext->ksym.type_id;
7650 
7651 	/* find target type_id */
7652 	targ_var = btf__type_by_id(btf, id);
7653 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7654 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7655 
7656 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7657 					btf, targ_type_id);
7658 	if (err <= 0) {
7659 		const struct btf_type *local_type;
7660 		const char *targ_name, *local_name;
7661 
7662 		local_type = btf__type_by_id(obj->btf, local_type_id);
7663 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7664 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7665 
7666 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7667 			ext->name, local_type_id,
7668 			btf_kind_str(local_type), local_name, targ_type_id,
7669 			btf_kind_str(targ_type), targ_name);
7670 		return -EINVAL;
7671 	}
7672 
7673 	ext->is_set = true;
7674 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7675 	ext->ksym.kernel_btf_id = id;
7676 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7677 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7678 
7679 	return 0;
7680 }
7681 
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)7682 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7683 						struct extern_desc *ext)
7684 {
7685 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7686 	struct module_btf *mod_btf = NULL;
7687 	const struct btf_type *kern_func;
7688 	struct btf *kern_btf = NULL;
7689 	int ret;
7690 
7691 	local_func_proto_id = ext->ksym.type_id;
7692 
7693 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
7694 				    &mod_btf);
7695 	if (kfunc_id < 0) {
7696 		if (kfunc_id == -ESRCH && ext->is_weak)
7697 			return 0;
7698 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7699 			ext->name);
7700 		return kfunc_id;
7701 	}
7702 
7703 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7704 	kfunc_proto_id = kern_func->type;
7705 
7706 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7707 					kern_btf, kfunc_proto_id);
7708 	if (ret <= 0) {
7709 		if (ext->is_weak)
7710 			return 0;
7711 
7712 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7713 			ext->name, local_func_proto_id,
7714 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7715 		return -EINVAL;
7716 	}
7717 
7718 	/* set index for module BTF fd in fd_array, if unset */
7719 	if (mod_btf && !mod_btf->fd_array_idx) {
7720 		/* insn->off is s16 */
7721 		if (obj->fd_array_cnt == INT16_MAX) {
7722 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7723 				ext->name, mod_btf->fd_array_idx);
7724 			return -E2BIG;
7725 		}
7726 		/* Cannot use index 0 for module BTF fd */
7727 		if (!obj->fd_array_cnt)
7728 			obj->fd_array_cnt = 1;
7729 
7730 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7731 					obj->fd_array_cnt + 1);
7732 		if (ret)
7733 			return ret;
7734 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7735 		/* we assume module BTF FD is always >0 */
7736 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7737 	}
7738 
7739 	ext->is_set = true;
7740 	ext->ksym.kernel_btf_id = kfunc_id;
7741 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7742 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7743 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7744 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7745 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7746 	 */
7747 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7748 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7749 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7750 
7751 	return 0;
7752 }
7753 
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7754 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7755 {
7756 	const struct btf_type *t;
7757 	struct extern_desc *ext;
7758 	int i, err;
7759 
7760 	for (i = 0; i < obj->nr_extern; i++) {
7761 		ext = &obj->externs[i];
7762 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7763 			continue;
7764 
7765 		if (obj->gen_loader) {
7766 			ext->is_set = true;
7767 			ext->ksym.kernel_btf_obj_fd = 0;
7768 			ext->ksym.kernel_btf_id = 0;
7769 			continue;
7770 		}
7771 		t = btf__type_by_id(obj->btf, ext->btf_id);
7772 		if (btf_is_var(t))
7773 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7774 		else
7775 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7776 		if (err)
7777 			return err;
7778 	}
7779 	return 0;
7780 }
7781 
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7782 static int bpf_object__resolve_externs(struct bpf_object *obj,
7783 				       const char *extra_kconfig)
7784 {
7785 	bool need_config = false, need_kallsyms = false;
7786 	bool need_vmlinux_btf = false;
7787 	struct extern_desc *ext;
7788 	void *kcfg_data = NULL;
7789 	int err, i;
7790 
7791 	if (obj->nr_extern == 0)
7792 		return 0;
7793 
7794 	if (obj->kconfig_map_idx >= 0)
7795 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7796 
7797 	for (i = 0; i < obj->nr_extern; i++) {
7798 		ext = &obj->externs[i];
7799 
7800 		if (ext->type == EXT_KSYM) {
7801 			if (ext->ksym.type_id)
7802 				need_vmlinux_btf = true;
7803 			else
7804 				need_kallsyms = true;
7805 			continue;
7806 		} else if (ext->type == EXT_KCFG) {
7807 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7808 			__u64 value = 0;
7809 
7810 			/* Kconfig externs need actual /proc/config.gz */
7811 			if (str_has_pfx(ext->name, "CONFIG_")) {
7812 				need_config = true;
7813 				continue;
7814 			}
7815 
7816 			/* Virtual kcfg externs are customly handled by libbpf */
7817 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7818 				value = get_kernel_version();
7819 				if (!value) {
7820 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7821 					return -EINVAL;
7822 				}
7823 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7824 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7825 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7826 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7827 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7828 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7829 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7830 				 * customly by libbpf (their values don't come from Kconfig).
7831 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7832 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7833 				 * externs.
7834 				 */
7835 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7836 				return -EINVAL;
7837 			}
7838 
7839 			err = set_kcfg_value_num(ext, ext_ptr, value);
7840 			if (err)
7841 				return err;
7842 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7843 				 ext->name, (long long)value);
7844 		} else {
7845 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7846 			return -EINVAL;
7847 		}
7848 	}
7849 	if (need_config && extra_kconfig) {
7850 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7851 		if (err)
7852 			return -EINVAL;
7853 		need_config = false;
7854 		for (i = 0; i < obj->nr_extern; i++) {
7855 			ext = &obj->externs[i];
7856 			if (ext->type == EXT_KCFG && !ext->is_set) {
7857 				need_config = true;
7858 				break;
7859 			}
7860 		}
7861 	}
7862 	if (need_config) {
7863 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7864 		if (err)
7865 			return -EINVAL;
7866 	}
7867 	if (need_kallsyms) {
7868 		err = bpf_object__read_kallsyms_file(obj);
7869 		if (err)
7870 			return -EINVAL;
7871 	}
7872 	if (need_vmlinux_btf) {
7873 		err = bpf_object__resolve_ksyms_btf_id(obj);
7874 		if (err)
7875 			return -EINVAL;
7876 	}
7877 	for (i = 0; i < obj->nr_extern; i++) {
7878 		ext = &obj->externs[i];
7879 
7880 		if (!ext->is_set && !ext->is_weak) {
7881 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7882 			return -ESRCH;
7883 		} else if (!ext->is_set) {
7884 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7885 				 ext->name);
7886 		}
7887 	}
7888 
7889 	return 0;
7890 }
7891 
bpf_map_prepare_vdata(const struct bpf_map * map)7892 static void bpf_map_prepare_vdata(const struct bpf_map *map)
7893 {
7894 	struct bpf_struct_ops *st_ops;
7895 	__u32 i;
7896 
7897 	st_ops = map->st_ops;
7898 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
7899 		struct bpf_program *prog = st_ops->progs[i];
7900 		void *kern_data;
7901 		int prog_fd;
7902 
7903 		if (!prog)
7904 			continue;
7905 
7906 		prog_fd = bpf_program__fd(prog);
7907 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
7908 		*(unsigned long *)kern_data = prog_fd;
7909 	}
7910 }
7911 
bpf_object_prepare_struct_ops(struct bpf_object * obj)7912 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
7913 {
7914 	int i;
7915 
7916 	for (i = 0; i < obj->nr_maps; i++)
7917 		if (bpf_map__is_struct_ops(&obj->maps[i]))
7918 			bpf_map_prepare_vdata(&obj->maps[i]);
7919 
7920 	return 0;
7921 }
7922 
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)7923 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7924 {
7925 	int err, i;
7926 
7927 	if (!obj)
7928 		return libbpf_err(-EINVAL);
7929 
7930 	if (obj->loaded) {
7931 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7932 		return libbpf_err(-EINVAL);
7933 	}
7934 
7935 	if (obj->gen_loader)
7936 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7937 
7938 	err = bpf_object__probe_loading(obj);
7939 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7940 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7941 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7942 	err = err ? : bpf_object__sanitize_maps(obj);
7943 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7944 	err = err ? : bpf_object__create_maps(obj);
7945 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7946 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7947 	err = err ? : bpf_object_init_prog_arrays(obj);
7948 	err = err ? : bpf_object_prepare_struct_ops(obj);
7949 
7950 	if (obj->gen_loader) {
7951 		/* reset FDs */
7952 		if (obj->btf)
7953 			btf__set_fd(obj->btf, -1);
7954 		for (i = 0; i < obj->nr_maps; i++)
7955 			obj->maps[i].fd = -1;
7956 		if (!err)
7957 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7958 	}
7959 
7960 	/* clean up fd_array */
7961 	zfree(&obj->fd_array);
7962 
7963 	/* clean up module BTFs */
7964 	for (i = 0; i < obj->btf_module_cnt; i++) {
7965 		close(obj->btf_modules[i].fd);
7966 		btf__free(obj->btf_modules[i].btf);
7967 		free(obj->btf_modules[i].name);
7968 	}
7969 	free(obj->btf_modules);
7970 
7971 	/* clean up vmlinux BTF */
7972 	btf__free(obj->btf_vmlinux);
7973 	obj->btf_vmlinux = NULL;
7974 
7975 	obj->loaded = true; /* doesn't matter if successfully or not */
7976 
7977 	if (err)
7978 		goto out;
7979 
7980 	return 0;
7981 out:
7982 	/* unpin any maps that were auto-pinned during load */
7983 	for (i = 0; i < obj->nr_maps; i++)
7984 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7985 			bpf_map__unpin(&obj->maps[i], NULL);
7986 
7987 	bpf_object_unload(obj);
7988 	pr_warn("failed to load object '%s'\n", obj->path);
7989 	return libbpf_err(err);
7990 }
7991 
bpf_object__load(struct bpf_object * obj)7992 int bpf_object__load(struct bpf_object *obj)
7993 {
7994 	return bpf_object_load(obj, 0, NULL);
7995 }
7996 
make_parent_dir(const char * path)7997 static int make_parent_dir(const char *path)
7998 {
7999 	char *cp, errmsg[STRERR_BUFSIZE];
8000 	char *dname, *dir;
8001 	int err = 0;
8002 
8003 	dname = strdup(path);
8004 	if (dname == NULL)
8005 		return -ENOMEM;
8006 
8007 	dir = dirname(dname);
8008 	if (mkdir(dir, 0700) && errno != EEXIST)
8009 		err = -errno;
8010 
8011 	free(dname);
8012 	if (err) {
8013 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8014 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8015 	}
8016 	return err;
8017 }
8018 
check_path(const char * path)8019 static int check_path(const char *path)
8020 {
8021 	char *cp, errmsg[STRERR_BUFSIZE];
8022 	struct statfs st_fs;
8023 	char *dname, *dir;
8024 	int err = 0;
8025 
8026 	if (path == NULL)
8027 		return -EINVAL;
8028 
8029 	dname = strdup(path);
8030 	if (dname == NULL)
8031 		return -ENOMEM;
8032 
8033 	dir = dirname(dname);
8034 	if (statfs(dir, &st_fs)) {
8035 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8036 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8037 		err = -errno;
8038 	}
8039 	free(dname);
8040 
8041 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8042 		pr_warn("specified path %s is not on BPF FS\n", path);
8043 		err = -EINVAL;
8044 	}
8045 
8046 	return err;
8047 }
8048 
bpf_program__pin(struct bpf_program * prog,const char * path)8049 int bpf_program__pin(struct bpf_program *prog, const char *path)
8050 {
8051 	char *cp, errmsg[STRERR_BUFSIZE];
8052 	int err;
8053 
8054 	if (prog->fd < 0) {
8055 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8056 		return libbpf_err(-EINVAL);
8057 	}
8058 
8059 	err = make_parent_dir(path);
8060 	if (err)
8061 		return libbpf_err(err);
8062 
8063 	err = check_path(path);
8064 	if (err)
8065 		return libbpf_err(err);
8066 
8067 	if (bpf_obj_pin(prog->fd, path)) {
8068 		err = -errno;
8069 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8070 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8071 		return libbpf_err(err);
8072 	}
8073 
8074 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8075 	return 0;
8076 }
8077 
bpf_program__unpin(struct bpf_program * prog,const char * path)8078 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8079 {
8080 	int err;
8081 
8082 	if (prog->fd < 0) {
8083 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8084 		return libbpf_err(-EINVAL);
8085 	}
8086 
8087 	err = check_path(path);
8088 	if (err)
8089 		return libbpf_err(err);
8090 
8091 	err = unlink(path);
8092 	if (err)
8093 		return libbpf_err(-errno);
8094 
8095 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8096 	return 0;
8097 }
8098 
bpf_map__pin(struct bpf_map * map,const char * path)8099 int bpf_map__pin(struct bpf_map *map, const char *path)
8100 {
8101 	char *cp, errmsg[STRERR_BUFSIZE];
8102 	int err;
8103 
8104 	if (map == NULL) {
8105 		pr_warn("invalid map pointer\n");
8106 		return libbpf_err(-EINVAL);
8107 	}
8108 
8109 	if (map->pin_path) {
8110 		if (path && strcmp(path, map->pin_path)) {
8111 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8112 				bpf_map__name(map), map->pin_path, path);
8113 			return libbpf_err(-EINVAL);
8114 		} else if (map->pinned) {
8115 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8116 				 bpf_map__name(map), map->pin_path);
8117 			return 0;
8118 		}
8119 	} else {
8120 		if (!path) {
8121 			pr_warn("missing a path to pin map '%s' at\n",
8122 				bpf_map__name(map));
8123 			return libbpf_err(-EINVAL);
8124 		} else if (map->pinned) {
8125 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8126 			return libbpf_err(-EEXIST);
8127 		}
8128 
8129 		map->pin_path = strdup(path);
8130 		if (!map->pin_path) {
8131 			err = -errno;
8132 			goto out_err;
8133 		}
8134 	}
8135 
8136 	err = make_parent_dir(map->pin_path);
8137 	if (err)
8138 		return libbpf_err(err);
8139 
8140 	err = check_path(map->pin_path);
8141 	if (err)
8142 		return libbpf_err(err);
8143 
8144 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8145 		err = -errno;
8146 		goto out_err;
8147 	}
8148 
8149 	map->pinned = true;
8150 	pr_debug("pinned map '%s'\n", map->pin_path);
8151 
8152 	return 0;
8153 
8154 out_err:
8155 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8156 	pr_warn("failed to pin map: %s\n", cp);
8157 	return libbpf_err(err);
8158 }
8159 
bpf_map__unpin(struct bpf_map * map,const char * path)8160 int bpf_map__unpin(struct bpf_map *map, const char *path)
8161 {
8162 	int err;
8163 
8164 	if (map == NULL) {
8165 		pr_warn("invalid map pointer\n");
8166 		return libbpf_err(-EINVAL);
8167 	}
8168 
8169 	if (map->pin_path) {
8170 		if (path && strcmp(path, map->pin_path)) {
8171 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8172 				bpf_map__name(map), map->pin_path, path);
8173 			return libbpf_err(-EINVAL);
8174 		}
8175 		path = map->pin_path;
8176 	} else if (!path) {
8177 		pr_warn("no path to unpin map '%s' from\n",
8178 			bpf_map__name(map));
8179 		return libbpf_err(-EINVAL);
8180 	}
8181 
8182 	err = check_path(path);
8183 	if (err)
8184 		return libbpf_err(err);
8185 
8186 	err = unlink(path);
8187 	if (err != 0)
8188 		return libbpf_err(-errno);
8189 
8190 	map->pinned = false;
8191 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8192 
8193 	return 0;
8194 }
8195 
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8196 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8197 {
8198 	char *new = NULL;
8199 
8200 	if (path) {
8201 		new = strdup(path);
8202 		if (!new)
8203 			return libbpf_err(-errno);
8204 	}
8205 
8206 	free(map->pin_path);
8207 	map->pin_path = new;
8208 	return 0;
8209 }
8210 
8211 __alias(bpf_map__pin_path)
8212 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8213 
bpf_map__pin_path(const struct bpf_map * map)8214 const char *bpf_map__pin_path(const struct bpf_map *map)
8215 {
8216 	return map->pin_path;
8217 }
8218 
bpf_map__is_pinned(const struct bpf_map * map)8219 bool bpf_map__is_pinned(const struct bpf_map *map)
8220 {
8221 	return map->pinned;
8222 }
8223 
sanitize_pin_path(char * s)8224 static void sanitize_pin_path(char *s)
8225 {
8226 	/* bpffs disallows periods in path names */
8227 	while (*s) {
8228 		if (*s == '.')
8229 			*s = '_';
8230 		s++;
8231 	}
8232 }
8233 
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8234 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8235 {
8236 	struct bpf_map *map;
8237 	int err;
8238 
8239 	if (!obj)
8240 		return libbpf_err(-ENOENT);
8241 
8242 	if (!obj->loaded) {
8243 		pr_warn("object not yet loaded; load it first\n");
8244 		return libbpf_err(-ENOENT);
8245 	}
8246 
8247 	bpf_object__for_each_map(map, obj) {
8248 		char *pin_path = NULL;
8249 		char buf[PATH_MAX];
8250 
8251 		if (!map->autocreate)
8252 			continue;
8253 
8254 		if (path) {
8255 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8256 			if (err)
8257 				goto err_unpin_maps;
8258 			sanitize_pin_path(buf);
8259 			pin_path = buf;
8260 		} else if (!map->pin_path) {
8261 			continue;
8262 		}
8263 
8264 		err = bpf_map__pin(map, pin_path);
8265 		if (err)
8266 			goto err_unpin_maps;
8267 	}
8268 
8269 	return 0;
8270 
8271 err_unpin_maps:
8272 	while ((map = bpf_object__prev_map(obj, map))) {
8273 		if (!map->pin_path)
8274 			continue;
8275 
8276 		bpf_map__unpin(map, NULL);
8277 	}
8278 
8279 	return libbpf_err(err);
8280 }
8281 
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8282 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8283 {
8284 	struct bpf_map *map;
8285 	int err;
8286 
8287 	if (!obj)
8288 		return libbpf_err(-ENOENT);
8289 
8290 	bpf_object__for_each_map(map, obj) {
8291 		char *pin_path = NULL;
8292 		char buf[PATH_MAX];
8293 
8294 		if (path) {
8295 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8296 			if (err)
8297 				return libbpf_err(err);
8298 			sanitize_pin_path(buf);
8299 			pin_path = buf;
8300 		} else if (!map->pin_path) {
8301 			continue;
8302 		}
8303 
8304 		err = bpf_map__unpin(map, pin_path);
8305 		if (err)
8306 			return libbpf_err(err);
8307 	}
8308 
8309 	return 0;
8310 }
8311 
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8312 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8313 {
8314 	struct bpf_program *prog;
8315 	char buf[PATH_MAX];
8316 	int err;
8317 
8318 	if (!obj)
8319 		return libbpf_err(-ENOENT);
8320 
8321 	if (!obj->loaded) {
8322 		pr_warn("object not yet loaded; load it first\n");
8323 		return libbpf_err(-ENOENT);
8324 	}
8325 
8326 	bpf_object__for_each_program(prog, obj) {
8327 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8328 		if (err)
8329 			goto err_unpin_programs;
8330 
8331 		err = bpf_program__pin(prog, buf);
8332 		if (err)
8333 			goto err_unpin_programs;
8334 	}
8335 
8336 	return 0;
8337 
8338 err_unpin_programs:
8339 	while ((prog = bpf_object__prev_program(obj, prog))) {
8340 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8341 			continue;
8342 
8343 		bpf_program__unpin(prog, buf);
8344 	}
8345 
8346 	return libbpf_err(err);
8347 }
8348 
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8349 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8350 {
8351 	struct bpf_program *prog;
8352 	int err;
8353 
8354 	if (!obj)
8355 		return libbpf_err(-ENOENT);
8356 
8357 	bpf_object__for_each_program(prog, obj) {
8358 		char buf[PATH_MAX];
8359 
8360 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8361 		if (err)
8362 			return libbpf_err(err);
8363 
8364 		err = bpf_program__unpin(prog, buf);
8365 		if (err)
8366 			return libbpf_err(err);
8367 	}
8368 
8369 	return 0;
8370 }
8371 
bpf_object__pin(struct bpf_object * obj,const char * path)8372 int bpf_object__pin(struct bpf_object *obj, const char *path)
8373 {
8374 	int err;
8375 
8376 	err = bpf_object__pin_maps(obj, path);
8377 	if (err)
8378 		return libbpf_err(err);
8379 
8380 	err = bpf_object__pin_programs(obj, path);
8381 	if (err) {
8382 		bpf_object__unpin_maps(obj, path);
8383 		return libbpf_err(err);
8384 	}
8385 
8386 	return 0;
8387 }
8388 
bpf_object__unpin(struct bpf_object * obj,const char * path)8389 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8390 {
8391 	int err;
8392 
8393 	err = bpf_object__unpin_programs(obj, path);
8394 	if (err)
8395 		return libbpf_err(err);
8396 
8397 	err = bpf_object__unpin_maps(obj, path);
8398 	if (err)
8399 		return libbpf_err(err);
8400 
8401 	return 0;
8402 }
8403 
bpf_map__destroy(struct bpf_map * map)8404 static void bpf_map__destroy(struct bpf_map *map)
8405 {
8406 	if (map->inner_map) {
8407 		bpf_map__destroy(map->inner_map);
8408 		zfree(&map->inner_map);
8409 	}
8410 
8411 	zfree(&map->init_slots);
8412 	map->init_slots_sz = 0;
8413 
8414 	if (map->mmaped) {
8415 		size_t mmap_sz;
8416 
8417 		mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8418 		munmap(map->mmaped, mmap_sz);
8419 		map->mmaped = NULL;
8420 	}
8421 
8422 	if (map->st_ops) {
8423 		zfree(&map->st_ops->data);
8424 		zfree(&map->st_ops->progs);
8425 		zfree(&map->st_ops->kern_func_off);
8426 		zfree(&map->st_ops);
8427 	}
8428 
8429 	zfree(&map->name);
8430 	zfree(&map->real_name);
8431 	zfree(&map->pin_path);
8432 
8433 	if (map->fd >= 0)
8434 		zclose(map->fd);
8435 }
8436 
bpf_object__close(struct bpf_object * obj)8437 void bpf_object__close(struct bpf_object *obj)
8438 {
8439 	size_t i;
8440 
8441 	if (IS_ERR_OR_NULL(obj))
8442 		return;
8443 
8444 	usdt_manager_free(obj->usdt_man);
8445 	obj->usdt_man = NULL;
8446 
8447 	bpf_gen__free(obj->gen_loader);
8448 	bpf_object__elf_finish(obj);
8449 	bpf_object_unload(obj);
8450 	btf__free(obj->btf);
8451 	btf__free(obj->btf_vmlinux);
8452 	btf_ext__free(obj->btf_ext);
8453 
8454 	for (i = 0; i < obj->nr_maps; i++)
8455 		bpf_map__destroy(&obj->maps[i]);
8456 
8457 	zfree(&obj->btf_custom_path);
8458 	zfree(&obj->kconfig);
8459 
8460 	for (i = 0; i < obj->nr_extern; i++)
8461 		zfree(&obj->externs[i].essent_name);
8462 
8463 	zfree(&obj->externs);
8464 	obj->nr_extern = 0;
8465 
8466 	zfree(&obj->maps);
8467 	obj->nr_maps = 0;
8468 
8469 	if (obj->programs && obj->nr_programs) {
8470 		for (i = 0; i < obj->nr_programs; i++)
8471 			bpf_program__exit(&obj->programs[i]);
8472 	}
8473 	zfree(&obj->programs);
8474 
8475 	free(obj);
8476 }
8477 
bpf_object__name(const struct bpf_object * obj)8478 const char *bpf_object__name(const struct bpf_object *obj)
8479 {
8480 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8481 }
8482 
bpf_object__kversion(const struct bpf_object * obj)8483 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8484 {
8485 	return obj ? obj->kern_version : 0;
8486 }
8487 
bpf_object__btf(const struct bpf_object * obj)8488 struct btf *bpf_object__btf(const struct bpf_object *obj)
8489 {
8490 	return obj ? obj->btf : NULL;
8491 }
8492 
bpf_object__btf_fd(const struct bpf_object * obj)8493 int bpf_object__btf_fd(const struct bpf_object *obj)
8494 {
8495 	return obj->btf ? btf__fd(obj->btf) : -1;
8496 }
8497 
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)8498 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8499 {
8500 	if (obj->loaded)
8501 		return libbpf_err(-EINVAL);
8502 
8503 	obj->kern_version = kern_version;
8504 
8505 	return 0;
8506 }
8507 
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)8508 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8509 {
8510 	struct bpf_gen *gen;
8511 
8512 	if (!opts)
8513 		return -EFAULT;
8514 	if (!OPTS_VALID(opts, gen_loader_opts))
8515 		return -EINVAL;
8516 	gen = calloc(sizeof(*gen), 1);
8517 	if (!gen)
8518 		return -ENOMEM;
8519 	gen->opts = opts;
8520 	obj->gen_loader = gen;
8521 	return 0;
8522 }
8523 
8524 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8525 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8526 		    bool forward)
8527 {
8528 	size_t nr_programs = obj->nr_programs;
8529 	ssize_t idx;
8530 
8531 	if (!nr_programs)
8532 		return NULL;
8533 
8534 	if (!p)
8535 		/* Iter from the beginning */
8536 		return forward ? &obj->programs[0] :
8537 			&obj->programs[nr_programs - 1];
8538 
8539 	if (p->obj != obj) {
8540 		pr_warn("error: program handler doesn't match object\n");
8541 		return errno = EINVAL, NULL;
8542 	}
8543 
8544 	idx = (p - obj->programs) + (forward ? 1 : -1);
8545 	if (idx >= obj->nr_programs || idx < 0)
8546 		return NULL;
8547 	return &obj->programs[idx];
8548 }
8549 
8550 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)8551 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8552 {
8553 	struct bpf_program *prog = prev;
8554 
8555 	do {
8556 		prog = __bpf_program__iter(prog, obj, true);
8557 	} while (prog && prog_is_subprog(obj, prog));
8558 
8559 	return prog;
8560 }
8561 
8562 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)8563 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8564 {
8565 	struct bpf_program *prog = next;
8566 
8567 	do {
8568 		prog = __bpf_program__iter(prog, obj, false);
8569 	} while (prog && prog_is_subprog(obj, prog));
8570 
8571 	return prog;
8572 }
8573 
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8574 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8575 {
8576 	prog->prog_ifindex = ifindex;
8577 }
8578 
bpf_program__name(const struct bpf_program * prog)8579 const char *bpf_program__name(const struct bpf_program *prog)
8580 {
8581 	return prog->name;
8582 }
8583 
bpf_program__section_name(const struct bpf_program * prog)8584 const char *bpf_program__section_name(const struct bpf_program *prog)
8585 {
8586 	return prog->sec_name;
8587 }
8588 
bpf_program__autoload(const struct bpf_program * prog)8589 bool bpf_program__autoload(const struct bpf_program *prog)
8590 {
8591 	return prog->autoload;
8592 }
8593 
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8594 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8595 {
8596 	if (prog->obj->loaded)
8597 		return libbpf_err(-EINVAL);
8598 
8599 	prog->autoload = autoload;
8600 	return 0;
8601 }
8602 
bpf_program__autoattach(const struct bpf_program * prog)8603 bool bpf_program__autoattach(const struct bpf_program *prog)
8604 {
8605 	return prog->autoattach;
8606 }
8607 
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)8608 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8609 {
8610 	prog->autoattach = autoattach;
8611 }
8612 
bpf_program__insns(const struct bpf_program * prog)8613 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8614 {
8615 	return prog->insns;
8616 }
8617 
bpf_program__insn_cnt(const struct bpf_program * prog)8618 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8619 {
8620 	return prog->insns_cnt;
8621 }
8622 
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)8623 int bpf_program__set_insns(struct bpf_program *prog,
8624 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8625 {
8626 	struct bpf_insn *insns;
8627 
8628 	if (prog->obj->loaded)
8629 		return -EBUSY;
8630 
8631 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8632 	/* NULL is a valid return from reallocarray if the new count is zero */
8633 	if (!insns && new_insn_cnt) {
8634 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8635 		return -ENOMEM;
8636 	}
8637 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8638 
8639 	prog->insns = insns;
8640 	prog->insns_cnt = new_insn_cnt;
8641 	return 0;
8642 }
8643 
bpf_program__fd(const struct bpf_program * prog)8644 int bpf_program__fd(const struct bpf_program *prog)
8645 {
8646 	if (!prog)
8647 		return libbpf_err(-EINVAL);
8648 
8649 	if (prog->fd < 0)
8650 		return libbpf_err(-ENOENT);
8651 
8652 	return prog->fd;
8653 }
8654 
8655 __alias(bpf_program__type)
8656 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8657 
bpf_program__type(const struct bpf_program * prog)8658 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8659 {
8660 	return prog->type;
8661 }
8662 
8663 static size_t custom_sec_def_cnt;
8664 static struct bpf_sec_def *custom_sec_defs;
8665 static struct bpf_sec_def custom_fallback_def;
8666 static bool has_custom_fallback_def;
8667 static int last_custom_sec_def_handler_id;
8668 
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8669 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8670 {
8671 	if (prog->obj->loaded)
8672 		return libbpf_err(-EBUSY);
8673 
8674 	/* if type is not changed, do nothing */
8675 	if (prog->type == type)
8676 		return 0;
8677 
8678 	prog->type = type;
8679 
8680 	/* If a program type was changed, we need to reset associated SEC()
8681 	 * handler, as it will be invalid now. The only exception is a generic
8682 	 * fallback handler, which by definition is program type-agnostic and
8683 	 * is a catch-all custom handler, optionally set by the application,
8684 	 * so should be able to handle any type of BPF program.
8685 	 */
8686 	if (prog->sec_def != &custom_fallback_def)
8687 		prog->sec_def = NULL;
8688 	return 0;
8689 }
8690 
8691 __alias(bpf_program__expected_attach_type)
8692 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8693 
bpf_program__expected_attach_type(const struct bpf_program * prog)8694 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8695 {
8696 	return prog->expected_attach_type;
8697 }
8698 
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8699 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8700 					   enum bpf_attach_type type)
8701 {
8702 	if (prog->obj->loaded)
8703 		return libbpf_err(-EBUSY);
8704 
8705 	prog->expected_attach_type = type;
8706 	return 0;
8707 }
8708 
bpf_program__flags(const struct bpf_program * prog)8709 __u32 bpf_program__flags(const struct bpf_program *prog)
8710 {
8711 	return prog->prog_flags;
8712 }
8713 
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)8714 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8715 {
8716 	if (prog->obj->loaded)
8717 		return libbpf_err(-EBUSY);
8718 
8719 	prog->prog_flags = flags;
8720 	return 0;
8721 }
8722 
bpf_program__log_level(const struct bpf_program * prog)8723 __u32 bpf_program__log_level(const struct bpf_program *prog)
8724 {
8725 	return prog->log_level;
8726 }
8727 
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)8728 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8729 {
8730 	if (prog->obj->loaded)
8731 		return libbpf_err(-EBUSY);
8732 
8733 	prog->log_level = log_level;
8734 	return 0;
8735 }
8736 
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)8737 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8738 {
8739 	*log_size = prog->log_size;
8740 	return prog->log_buf;
8741 }
8742 
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)8743 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8744 {
8745 	if (log_size && !log_buf)
8746 		return -EINVAL;
8747 	if (prog->log_size > UINT_MAX)
8748 		return -EINVAL;
8749 	if (prog->obj->loaded)
8750 		return -EBUSY;
8751 
8752 	prog->log_buf = log_buf;
8753 	prog->log_size = log_size;
8754 	return 0;
8755 }
8756 
8757 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8758 	.sec = (char *)sec_pfx,						    \
8759 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8760 	.expected_attach_type = atype,					    \
8761 	.cookie = (long)(flags),					    \
8762 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8763 	__VA_ARGS__							    \
8764 }
8765 
8766 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8767 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8768 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8769 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8770 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8771 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8772 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8773 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8774 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8775 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8776 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8777 
8778 static const struct bpf_sec_def section_defs[] = {
8779 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8780 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8781 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8782 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8783 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8784 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8785 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8786 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8787 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8788 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8789 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8790 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8791 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8792 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8793 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8794 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8795 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8796 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
8797 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
8798 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
8799 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
8800 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
8801 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
8802 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8803 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8804 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8805 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8806 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8807 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8808 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8809 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8810 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8811 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8812 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8813 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8814 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8815 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8816 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8817 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8818 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8819 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8820 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8821 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8822 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8823 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8824 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8825 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8826 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8827 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8828 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8829 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8830 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8831 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8832 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8833 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8834 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8835 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8836 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8837 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8838 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8839 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8840 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8841 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8842 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8843 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8844 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8845 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8846 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8847 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8848 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8849 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8850 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8851 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8852 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8853 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8854 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8855 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8856 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8857 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8858 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8859 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8860 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8861 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8862 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8863 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8864 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8865 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8866 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8867 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8868 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
8869 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8870 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
8871 };
8872 
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)8873 int libbpf_register_prog_handler(const char *sec,
8874 				 enum bpf_prog_type prog_type,
8875 				 enum bpf_attach_type exp_attach_type,
8876 				 const struct libbpf_prog_handler_opts *opts)
8877 {
8878 	struct bpf_sec_def *sec_def;
8879 
8880 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8881 		return libbpf_err(-EINVAL);
8882 
8883 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8884 		return libbpf_err(-E2BIG);
8885 
8886 	if (sec) {
8887 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8888 					      sizeof(*sec_def));
8889 		if (!sec_def)
8890 			return libbpf_err(-ENOMEM);
8891 
8892 		custom_sec_defs = sec_def;
8893 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8894 	} else {
8895 		if (has_custom_fallback_def)
8896 			return libbpf_err(-EBUSY);
8897 
8898 		sec_def = &custom_fallback_def;
8899 	}
8900 
8901 	sec_def->sec = sec ? strdup(sec) : NULL;
8902 	if (sec && !sec_def->sec)
8903 		return libbpf_err(-ENOMEM);
8904 
8905 	sec_def->prog_type = prog_type;
8906 	sec_def->expected_attach_type = exp_attach_type;
8907 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8908 
8909 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8910 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8911 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8912 
8913 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8914 
8915 	if (sec)
8916 		custom_sec_def_cnt++;
8917 	else
8918 		has_custom_fallback_def = true;
8919 
8920 	return sec_def->handler_id;
8921 }
8922 
libbpf_unregister_prog_handler(int handler_id)8923 int libbpf_unregister_prog_handler(int handler_id)
8924 {
8925 	struct bpf_sec_def *sec_defs;
8926 	int i;
8927 
8928 	if (handler_id <= 0)
8929 		return libbpf_err(-EINVAL);
8930 
8931 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8932 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8933 		has_custom_fallback_def = false;
8934 		return 0;
8935 	}
8936 
8937 	for (i = 0; i < custom_sec_def_cnt; i++) {
8938 		if (custom_sec_defs[i].handler_id == handler_id)
8939 			break;
8940 	}
8941 
8942 	if (i == custom_sec_def_cnt)
8943 		return libbpf_err(-ENOENT);
8944 
8945 	free(custom_sec_defs[i].sec);
8946 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8947 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8948 	custom_sec_def_cnt--;
8949 
8950 	/* try to shrink the array, but it's ok if we couldn't */
8951 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8952 	/* if new count is zero, reallocarray can return a valid NULL result;
8953 	 * in this case the previous pointer will be freed, so we *have to*
8954 	 * reassign old pointer to the new value (even if it's NULL)
8955 	 */
8956 	if (sec_defs || custom_sec_def_cnt == 0)
8957 		custom_sec_defs = sec_defs;
8958 
8959 	return 0;
8960 }
8961 
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)8962 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8963 {
8964 	size_t len = strlen(sec_def->sec);
8965 
8966 	/* "type/" always has to have proper SEC("type/extras") form */
8967 	if (sec_def->sec[len - 1] == '/') {
8968 		if (str_has_pfx(sec_name, sec_def->sec))
8969 			return true;
8970 		return false;
8971 	}
8972 
8973 	/* "type+" means it can be either exact SEC("type") or
8974 	 * well-formed SEC("type/extras") with proper '/' separator
8975 	 */
8976 	if (sec_def->sec[len - 1] == '+') {
8977 		len--;
8978 		/* not even a prefix */
8979 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8980 			return false;
8981 		/* exact match or has '/' separator */
8982 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8983 			return true;
8984 		return false;
8985 	}
8986 
8987 	return strcmp(sec_name, sec_def->sec) == 0;
8988 }
8989 
find_sec_def(const char * sec_name)8990 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8991 {
8992 	const struct bpf_sec_def *sec_def;
8993 	int i, n;
8994 
8995 	n = custom_sec_def_cnt;
8996 	for (i = 0; i < n; i++) {
8997 		sec_def = &custom_sec_defs[i];
8998 		if (sec_def_matches(sec_def, sec_name))
8999 			return sec_def;
9000 	}
9001 
9002 	n = ARRAY_SIZE(section_defs);
9003 	for (i = 0; i < n; i++) {
9004 		sec_def = &section_defs[i];
9005 		if (sec_def_matches(sec_def, sec_name))
9006 			return sec_def;
9007 	}
9008 
9009 	if (has_custom_fallback_def)
9010 		return &custom_fallback_def;
9011 
9012 	return NULL;
9013 }
9014 
9015 #define MAX_TYPE_NAME_SIZE 32
9016 
libbpf_get_type_names(bool attach_type)9017 static char *libbpf_get_type_names(bool attach_type)
9018 {
9019 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9020 	char *buf;
9021 
9022 	buf = malloc(len);
9023 	if (!buf)
9024 		return NULL;
9025 
9026 	buf[0] = '\0';
9027 	/* Forge string buf with all available names */
9028 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9029 		const struct bpf_sec_def *sec_def = &section_defs[i];
9030 
9031 		if (attach_type) {
9032 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9033 				continue;
9034 
9035 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9036 				continue;
9037 		}
9038 
9039 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9040 			free(buf);
9041 			return NULL;
9042 		}
9043 		strcat(buf, " ");
9044 		strcat(buf, section_defs[i].sec);
9045 	}
9046 
9047 	return buf;
9048 }
9049 
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9050 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9051 			     enum bpf_attach_type *expected_attach_type)
9052 {
9053 	const struct bpf_sec_def *sec_def;
9054 	char *type_names;
9055 
9056 	if (!name)
9057 		return libbpf_err(-EINVAL);
9058 
9059 	sec_def = find_sec_def(name);
9060 	if (sec_def) {
9061 		*prog_type = sec_def->prog_type;
9062 		*expected_attach_type = sec_def->expected_attach_type;
9063 		return 0;
9064 	}
9065 
9066 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9067 	type_names = libbpf_get_type_names(false);
9068 	if (type_names != NULL) {
9069 		pr_debug("supported section(type) names are:%s\n", type_names);
9070 		free(type_names);
9071 	}
9072 
9073 	return libbpf_err(-ESRCH);
9074 }
9075 
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9076 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9077 {
9078 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9079 		return NULL;
9080 
9081 	return attach_type_name[t];
9082 }
9083 
libbpf_bpf_link_type_str(enum bpf_link_type t)9084 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9085 {
9086 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9087 		return NULL;
9088 
9089 	return link_type_name[t];
9090 }
9091 
libbpf_bpf_map_type_str(enum bpf_map_type t)9092 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9093 {
9094 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9095 		return NULL;
9096 
9097 	return map_type_name[t];
9098 }
9099 
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9100 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9101 {
9102 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9103 		return NULL;
9104 
9105 	return prog_type_name[t];
9106 }
9107 
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9108 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9109 						     int sec_idx,
9110 						     size_t offset)
9111 {
9112 	struct bpf_map *map;
9113 	size_t i;
9114 
9115 	for (i = 0; i < obj->nr_maps; i++) {
9116 		map = &obj->maps[i];
9117 		if (!bpf_map__is_struct_ops(map))
9118 			continue;
9119 		if (map->sec_idx == sec_idx &&
9120 		    map->sec_offset <= offset &&
9121 		    offset - map->sec_offset < map->def.value_size)
9122 			return map;
9123 	}
9124 
9125 	return NULL;
9126 }
9127 
9128 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9129 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9130 					    Elf64_Shdr *shdr, Elf_Data *data)
9131 {
9132 	const struct btf_member *member;
9133 	struct bpf_struct_ops *st_ops;
9134 	struct bpf_program *prog;
9135 	unsigned int shdr_idx;
9136 	const struct btf *btf;
9137 	struct bpf_map *map;
9138 	unsigned int moff, insn_idx;
9139 	const char *name;
9140 	__u32 member_idx;
9141 	Elf64_Sym *sym;
9142 	Elf64_Rel *rel;
9143 	int i, nrels;
9144 
9145 	btf = obj->btf;
9146 	nrels = shdr->sh_size / shdr->sh_entsize;
9147 	for (i = 0; i < nrels; i++) {
9148 		rel = elf_rel_by_idx(data, i);
9149 		if (!rel) {
9150 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9151 			return -LIBBPF_ERRNO__FORMAT;
9152 		}
9153 
9154 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9155 		if (!sym) {
9156 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9157 				(size_t)ELF64_R_SYM(rel->r_info));
9158 			return -LIBBPF_ERRNO__FORMAT;
9159 		}
9160 
9161 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9162 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9163 		if (!map) {
9164 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9165 				(size_t)rel->r_offset);
9166 			return -EINVAL;
9167 		}
9168 
9169 		moff = rel->r_offset - map->sec_offset;
9170 		shdr_idx = sym->st_shndx;
9171 		st_ops = map->st_ops;
9172 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9173 			 map->name,
9174 			 (long long)(rel->r_info >> 32),
9175 			 (long long)sym->st_value,
9176 			 shdr_idx, (size_t)rel->r_offset,
9177 			 map->sec_offset, sym->st_name, name);
9178 
9179 		if (shdr_idx >= SHN_LORESERVE) {
9180 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9181 				map->name, (size_t)rel->r_offset, shdr_idx);
9182 			return -LIBBPF_ERRNO__RELOC;
9183 		}
9184 		if (sym->st_value % BPF_INSN_SZ) {
9185 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9186 				map->name, (unsigned long long)sym->st_value);
9187 			return -LIBBPF_ERRNO__FORMAT;
9188 		}
9189 		insn_idx = sym->st_value / BPF_INSN_SZ;
9190 
9191 		member = find_member_by_offset(st_ops->type, moff * 8);
9192 		if (!member) {
9193 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9194 				map->name, moff);
9195 			return -EINVAL;
9196 		}
9197 		member_idx = member - btf_members(st_ops->type);
9198 		name = btf__name_by_offset(btf, member->name_off);
9199 
9200 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9201 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9202 				map->name, name);
9203 			return -EINVAL;
9204 		}
9205 
9206 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9207 		if (!prog) {
9208 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9209 				map->name, shdr_idx, name);
9210 			return -EINVAL;
9211 		}
9212 
9213 		/* prevent the use of BPF prog with invalid type */
9214 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9215 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9216 				map->name, prog->name);
9217 			return -EINVAL;
9218 		}
9219 
9220 		/* if we haven't yet processed this BPF program, record proper
9221 		 * attach_btf_id and member_idx
9222 		 */
9223 		if (!prog->attach_btf_id) {
9224 			prog->attach_btf_id = st_ops->type_id;
9225 			prog->expected_attach_type = member_idx;
9226 		}
9227 
9228 		/* struct_ops BPF prog can be re-used between multiple
9229 		 * .struct_ops & .struct_ops.link as long as it's the
9230 		 * same struct_ops struct definition and the same
9231 		 * function pointer field
9232 		 */
9233 		if (prog->attach_btf_id != st_ops->type_id ||
9234 		    prog->expected_attach_type != member_idx) {
9235 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9236 				map->name, prog->name, prog->sec_name, prog->type,
9237 				prog->attach_btf_id, prog->expected_attach_type, name);
9238 			return -EINVAL;
9239 		}
9240 
9241 		st_ops->progs[member_idx] = prog;
9242 	}
9243 
9244 	return 0;
9245 }
9246 
9247 #define BTF_TRACE_PREFIX "btf_trace_"
9248 #define BTF_LSM_PREFIX "bpf_lsm_"
9249 #define BTF_ITER_PREFIX "bpf_iter_"
9250 #define BTF_MAX_NAME_SIZE 128
9251 
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9252 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9253 				const char **prefix, int *kind)
9254 {
9255 	switch (attach_type) {
9256 	case BPF_TRACE_RAW_TP:
9257 		*prefix = BTF_TRACE_PREFIX;
9258 		*kind = BTF_KIND_TYPEDEF;
9259 		break;
9260 	case BPF_LSM_MAC:
9261 	case BPF_LSM_CGROUP:
9262 		*prefix = BTF_LSM_PREFIX;
9263 		*kind = BTF_KIND_FUNC;
9264 		break;
9265 	case BPF_TRACE_ITER:
9266 		*prefix = BTF_ITER_PREFIX;
9267 		*kind = BTF_KIND_FUNC;
9268 		break;
9269 	default:
9270 		*prefix = "";
9271 		*kind = BTF_KIND_FUNC;
9272 	}
9273 }
9274 
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9275 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9276 				   const char *name, __u32 kind)
9277 {
9278 	char btf_type_name[BTF_MAX_NAME_SIZE];
9279 	int ret;
9280 
9281 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9282 		       "%s%s", prefix, name);
9283 	/* snprintf returns the number of characters written excluding the
9284 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9285 	 * indicates truncation.
9286 	 */
9287 	if (ret < 0 || ret >= sizeof(btf_type_name))
9288 		return -ENAMETOOLONG;
9289 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9290 }
9291 
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9292 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9293 				     enum bpf_attach_type attach_type)
9294 {
9295 	const char *prefix;
9296 	int kind;
9297 
9298 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9299 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9300 }
9301 
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)9302 int libbpf_find_vmlinux_btf_id(const char *name,
9303 			       enum bpf_attach_type attach_type)
9304 {
9305 	struct btf *btf;
9306 	int err;
9307 
9308 	btf = btf__load_vmlinux_btf();
9309 	err = libbpf_get_error(btf);
9310 	if (err) {
9311 		pr_warn("vmlinux BTF is not found\n");
9312 		return libbpf_err(err);
9313 	}
9314 
9315 	err = find_attach_btf_id(btf, name, attach_type);
9316 	if (err <= 0)
9317 		pr_warn("%s is not found in vmlinux BTF\n", name);
9318 
9319 	btf__free(btf);
9320 	return libbpf_err(err);
9321 }
9322 
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9323 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9324 {
9325 	struct bpf_prog_info info;
9326 	__u32 info_len = sizeof(info);
9327 	struct btf *btf;
9328 	int err;
9329 
9330 	memset(&info, 0, info_len);
9331 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9332 	if (err) {
9333 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9334 			attach_prog_fd, err);
9335 		return err;
9336 	}
9337 
9338 	err = -EINVAL;
9339 	if (!info.btf_id) {
9340 		pr_warn("The target program doesn't have BTF\n");
9341 		goto out;
9342 	}
9343 	btf = btf__load_from_kernel_by_id(info.btf_id);
9344 	err = libbpf_get_error(btf);
9345 	if (err) {
9346 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9347 		goto out;
9348 	}
9349 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9350 	btf__free(btf);
9351 	if (err <= 0) {
9352 		pr_warn("%s is not found in prog's BTF\n", name);
9353 		goto out;
9354 	}
9355 out:
9356 	return err;
9357 }
9358 
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9359 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9360 			      enum bpf_attach_type attach_type,
9361 			      int *btf_obj_fd, int *btf_type_id)
9362 {
9363 	int ret, i;
9364 
9365 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9366 	if (ret > 0) {
9367 		*btf_obj_fd = 0; /* vmlinux BTF */
9368 		*btf_type_id = ret;
9369 		return 0;
9370 	}
9371 	if (ret != -ENOENT)
9372 		return ret;
9373 
9374 	ret = load_module_btfs(obj);
9375 	if (ret)
9376 		return ret;
9377 
9378 	for (i = 0; i < obj->btf_module_cnt; i++) {
9379 		const struct module_btf *mod = &obj->btf_modules[i];
9380 
9381 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9382 		if (ret > 0) {
9383 			*btf_obj_fd = mod->fd;
9384 			*btf_type_id = ret;
9385 			return 0;
9386 		}
9387 		if (ret == -ENOENT)
9388 			continue;
9389 
9390 		return ret;
9391 	}
9392 
9393 	return -ESRCH;
9394 }
9395 
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)9396 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9397 				     int *btf_obj_fd, int *btf_type_id)
9398 {
9399 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9400 	__u32 attach_prog_fd = prog->attach_prog_fd;
9401 	int err = 0;
9402 
9403 	/* BPF program's BTF ID */
9404 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9405 		if (!attach_prog_fd) {
9406 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9407 			return -EINVAL;
9408 		}
9409 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9410 		if (err < 0) {
9411 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9412 				 prog->name, attach_prog_fd, attach_name, err);
9413 			return err;
9414 		}
9415 		*btf_obj_fd = 0;
9416 		*btf_type_id = err;
9417 		return 0;
9418 	}
9419 
9420 	/* kernel/module BTF ID */
9421 	if (prog->obj->gen_loader) {
9422 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9423 		*btf_obj_fd = 0;
9424 		*btf_type_id = 1;
9425 	} else {
9426 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9427 	}
9428 	if (err) {
9429 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9430 			prog->name, attach_name, err);
9431 		return err;
9432 	}
9433 	return 0;
9434 }
9435 
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)9436 int libbpf_attach_type_by_name(const char *name,
9437 			       enum bpf_attach_type *attach_type)
9438 {
9439 	char *type_names;
9440 	const struct bpf_sec_def *sec_def;
9441 
9442 	if (!name)
9443 		return libbpf_err(-EINVAL);
9444 
9445 	sec_def = find_sec_def(name);
9446 	if (!sec_def) {
9447 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9448 		type_names = libbpf_get_type_names(true);
9449 		if (type_names != NULL) {
9450 			pr_debug("attachable section(type) names are:%s\n", type_names);
9451 			free(type_names);
9452 		}
9453 
9454 		return libbpf_err(-EINVAL);
9455 	}
9456 
9457 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9458 		return libbpf_err(-EINVAL);
9459 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9460 		return libbpf_err(-EINVAL);
9461 
9462 	*attach_type = sec_def->expected_attach_type;
9463 	return 0;
9464 }
9465 
bpf_map__fd(const struct bpf_map * map)9466 int bpf_map__fd(const struct bpf_map *map)
9467 {
9468 	return map ? map->fd : libbpf_err(-EINVAL);
9469 }
9470 
map_uses_real_name(const struct bpf_map * map)9471 static bool map_uses_real_name(const struct bpf_map *map)
9472 {
9473 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9474 	 * their user-visible name differs from kernel-visible name. Users see
9475 	 * such map's corresponding ELF section name as a map name.
9476 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9477 	 * maps to know which name has to be returned to the user.
9478 	 */
9479 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9480 		return true;
9481 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9482 		return true;
9483 	return false;
9484 }
9485 
bpf_map__name(const struct bpf_map * map)9486 const char *bpf_map__name(const struct bpf_map *map)
9487 {
9488 	if (!map)
9489 		return NULL;
9490 
9491 	if (map_uses_real_name(map))
9492 		return map->real_name;
9493 
9494 	return map->name;
9495 }
9496 
bpf_map__type(const struct bpf_map * map)9497 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9498 {
9499 	return map->def.type;
9500 }
9501 
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)9502 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9503 {
9504 	if (map->fd >= 0)
9505 		return libbpf_err(-EBUSY);
9506 	map->def.type = type;
9507 	return 0;
9508 }
9509 
bpf_map__map_flags(const struct bpf_map * map)9510 __u32 bpf_map__map_flags(const struct bpf_map *map)
9511 {
9512 	return map->def.map_flags;
9513 }
9514 
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)9515 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9516 {
9517 	if (map->fd >= 0)
9518 		return libbpf_err(-EBUSY);
9519 	map->def.map_flags = flags;
9520 	return 0;
9521 }
9522 
bpf_map__map_extra(const struct bpf_map * map)9523 __u64 bpf_map__map_extra(const struct bpf_map *map)
9524 {
9525 	return map->map_extra;
9526 }
9527 
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)9528 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9529 {
9530 	if (map->fd >= 0)
9531 		return libbpf_err(-EBUSY);
9532 	map->map_extra = map_extra;
9533 	return 0;
9534 }
9535 
bpf_map__numa_node(const struct bpf_map * map)9536 __u32 bpf_map__numa_node(const struct bpf_map *map)
9537 {
9538 	return map->numa_node;
9539 }
9540 
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)9541 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9542 {
9543 	if (map->fd >= 0)
9544 		return libbpf_err(-EBUSY);
9545 	map->numa_node = numa_node;
9546 	return 0;
9547 }
9548 
bpf_map__key_size(const struct bpf_map * map)9549 __u32 bpf_map__key_size(const struct bpf_map *map)
9550 {
9551 	return map->def.key_size;
9552 }
9553 
bpf_map__set_key_size(struct bpf_map * map,__u32 size)9554 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9555 {
9556 	if (map->fd >= 0)
9557 		return libbpf_err(-EBUSY);
9558 	map->def.key_size = size;
9559 	return 0;
9560 }
9561 
bpf_map__value_size(const struct bpf_map * map)9562 __u32 bpf_map__value_size(const struct bpf_map *map)
9563 {
9564 	return map->def.value_size;
9565 }
9566 
map_btf_datasec_resize(struct bpf_map * map,__u32 size)9567 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
9568 {
9569 	struct btf *btf;
9570 	struct btf_type *datasec_type, *var_type;
9571 	struct btf_var_secinfo *var;
9572 	const struct btf_type *array_type;
9573 	const struct btf_array *array;
9574 	int vlen, element_sz, new_array_id;
9575 	__u32 nr_elements;
9576 
9577 	/* check btf existence */
9578 	btf = bpf_object__btf(map->obj);
9579 	if (!btf)
9580 		return -ENOENT;
9581 
9582 	/* verify map is datasec */
9583 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
9584 	if (!btf_is_datasec(datasec_type)) {
9585 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
9586 			bpf_map__name(map));
9587 		return -EINVAL;
9588 	}
9589 
9590 	/* verify datasec has at least one var */
9591 	vlen = btf_vlen(datasec_type);
9592 	if (vlen == 0) {
9593 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
9594 			bpf_map__name(map));
9595 		return -EINVAL;
9596 	}
9597 
9598 	/* verify last var in the datasec is an array */
9599 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9600 	var_type = btf_type_by_id(btf, var->type);
9601 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
9602 	if (!btf_is_array(array_type)) {
9603 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
9604 			bpf_map__name(map));
9605 		return -EINVAL;
9606 	}
9607 
9608 	/* verify request size aligns with array */
9609 	array = btf_array(array_type);
9610 	element_sz = btf__resolve_size(btf, array->type);
9611 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
9612 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
9613 			bpf_map__name(map), element_sz, size);
9614 		return -EINVAL;
9615 	}
9616 
9617 	/* create a new array based on the existing array, but with new length */
9618 	nr_elements = (size - var->offset) / element_sz;
9619 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
9620 	if (new_array_id < 0)
9621 		return new_array_id;
9622 
9623 	/* adding a new btf type invalidates existing pointers to btf objects,
9624 	 * so refresh pointers before proceeding
9625 	 */
9626 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
9627 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9628 	var_type = btf_type_by_id(btf, var->type);
9629 
9630 	/* finally update btf info */
9631 	datasec_type->size = size;
9632 	var->size = size - var->offset;
9633 	var_type->type = new_array_id;
9634 
9635 	return 0;
9636 }
9637 
bpf_map__set_value_size(struct bpf_map * map,__u32 size)9638 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9639 {
9640 	if (map->fd >= 0)
9641 		return libbpf_err(-EBUSY);
9642 
9643 	if (map->mmaped) {
9644 		int err;
9645 		size_t mmap_old_sz, mmap_new_sz;
9646 
9647 		mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
9648 		mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
9649 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
9650 		if (err) {
9651 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
9652 				bpf_map__name(map), err);
9653 			return err;
9654 		}
9655 		err = map_btf_datasec_resize(map, size);
9656 		if (err && err != -ENOENT) {
9657 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
9658 				bpf_map__name(map), err);
9659 			map->btf_value_type_id = 0;
9660 			map->btf_key_type_id = 0;
9661 		}
9662 	}
9663 
9664 	map->def.value_size = size;
9665 	return 0;
9666 }
9667 
bpf_map__btf_key_type_id(const struct bpf_map * map)9668 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9669 {
9670 	return map ? map->btf_key_type_id : 0;
9671 }
9672 
bpf_map__btf_value_type_id(const struct bpf_map * map)9673 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9674 {
9675 	return map ? map->btf_value_type_id : 0;
9676 }
9677 
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)9678 int bpf_map__set_initial_value(struct bpf_map *map,
9679 			       const void *data, size_t size)
9680 {
9681 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9682 	    size != map->def.value_size || map->fd >= 0)
9683 		return libbpf_err(-EINVAL);
9684 
9685 	memcpy(map->mmaped, data, size);
9686 	return 0;
9687 }
9688 
bpf_map__initial_value(struct bpf_map * map,size_t * psize)9689 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9690 {
9691 	if (!map->mmaped)
9692 		return NULL;
9693 	*psize = map->def.value_size;
9694 	return map->mmaped;
9695 }
9696 
bpf_map__is_internal(const struct bpf_map * map)9697 bool bpf_map__is_internal(const struct bpf_map *map)
9698 {
9699 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9700 }
9701 
bpf_map__ifindex(const struct bpf_map * map)9702 __u32 bpf_map__ifindex(const struct bpf_map *map)
9703 {
9704 	return map->map_ifindex;
9705 }
9706 
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)9707 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9708 {
9709 	if (map->fd >= 0)
9710 		return libbpf_err(-EBUSY);
9711 	map->map_ifindex = ifindex;
9712 	return 0;
9713 }
9714 
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)9715 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9716 {
9717 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9718 		pr_warn("error: unsupported map type\n");
9719 		return libbpf_err(-EINVAL);
9720 	}
9721 	if (map->inner_map_fd != -1) {
9722 		pr_warn("error: inner_map_fd already specified\n");
9723 		return libbpf_err(-EINVAL);
9724 	}
9725 	if (map->inner_map) {
9726 		bpf_map__destroy(map->inner_map);
9727 		zfree(&map->inner_map);
9728 	}
9729 	map->inner_map_fd = fd;
9730 	return 0;
9731 }
9732 
9733 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)9734 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9735 {
9736 	ssize_t idx;
9737 	struct bpf_map *s, *e;
9738 
9739 	if (!obj || !obj->maps)
9740 		return errno = EINVAL, NULL;
9741 
9742 	s = obj->maps;
9743 	e = obj->maps + obj->nr_maps;
9744 
9745 	if ((m < s) || (m >= e)) {
9746 		pr_warn("error in %s: map handler doesn't belong to object\n",
9747 			 __func__);
9748 		return errno = EINVAL, NULL;
9749 	}
9750 
9751 	idx = (m - obj->maps) + i;
9752 	if (idx >= obj->nr_maps || idx < 0)
9753 		return NULL;
9754 	return &obj->maps[idx];
9755 }
9756 
9757 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)9758 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9759 {
9760 	if (prev == NULL && obj != NULL)
9761 		return obj->maps;
9762 
9763 	return __bpf_map__iter(prev, obj, 1);
9764 }
9765 
9766 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)9767 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9768 {
9769 	if (next == NULL && obj != NULL) {
9770 		if (!obj->nr_maps)
9771 			return NULL;
9772 		return obj->maps + obj->nr_maps - 1;
9773 	}
9774 
9775 	return __bpf_map__iter(next, obj, -1);
9776 }
9777 
9778 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9779 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9780 {
9781 	struct bpf_map *pos;
9782 
9783 	bpf_object__for_each_map(pos, obj) {
9784 		/* if it's a special internal map name (which always starts
9785 		 * with dot) then check if that special name matches the
9786 		 * real map name (ELF section name)
9787 		 */
9788 		if (name[0] == '.') {
9789 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9790 				return pos;
9791 			continue;
9792 		}
9793 		/* otherwise map name has to be an exact match */
9794 		if (map_uses_real_name(pos)) {
9795 			if (strcmp(pos->real_name, name) == 0)
9796 				return pos;
9797 			continue;
9798 		}
9799 		if (strcmp(pos->name, name) == 0)
9800 			return pos;
9801 	}
9802 	return errno = ENOENT, NULL;
9803 }
9804 
9805 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9806 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9807 {
9808 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9809 }
9810 
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)9811 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9812 			   size_t value_sz, bool check_value_sz)
9813 {
9814 	if (map->fd <= 0)
9815 		return -ENOENT;
9816 
9817 	if (map->def.key_size != key_sz) {
9818 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9819 			map->name, key_sz, map->def.key_size);
9820 		return -EINVAL;
9821 	}
9822 
9823 	if (!check_value_sz)
9824 		return 0;
9825 
9826 	switch (map->def.type) {
9827 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9828 	case BPF_MAP_TYPE_PERCPU_HASH:
9829 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9830 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9831 		int num_cpu = libbpf_num_possible_cpus();
9832 		size_t elem_sz = roundup(map->def.value_size, 8);
9833 
9834 		if (value_sz != num_cpu * elem_sz) {
9835 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9836 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9837 			return -EINVAL;
9838 		}
9839 		break;
9840 	}
9841 	default:
9842 		if (map->def.value_size != value_sz) {
9843 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9844 				map->name, value_sz, map->def.value_size);
9845 			return -EINVAL;
9846 		}
9847 		break;
9848 	}
9849 	return 0;
9850 }
9851 
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9852 int bpf_map__lookup_elem(const struct bpf_map *map,
9853 			 const void *key, size_t key_sz,
9854 			 void *value, size_t value_sz, __u64 flags)
9855 {
9856 	int err;
9857 
9858 	err = validate_map_op(map, key_sz, value_sz, true);
9859 	if (err)
9860 		return libbpf_err(err);
9861 
9862 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9863 }
9864 
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)9865 int bpf_map__update_elem(const struct bpf_map *map,
9866 			 const void *key, size_t key_sz,
9867 			 const void *value, size_t value_sz, __u64 flags)
9868 {
9869 	int err;
9870 
9871 	err = validate_map_op(map, key_sz, value_sz, true);
9872 	if (err)
9873 		return libbpf_err(err);
9874 
9875 	return bpf_map_update_elem(map->fd, key, value, flags);
9876 }
9877 
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)9878 int bpf_map__delete_elem(const struct bpf_map *map,
9879 			 const void *key, size_t key_sz, __u64 flags)
9880 {
9881 	int err;
9882 
9883 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9884 	if (err)
9885 		return libbpf_err(err);
9886 
9887 	return bpf_map_delete_elem_flags(map->fd, key, flags);
9888 }
9889 
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9890 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9891 				    const void *key, size_t key_sz,
9892 				    void *value, size_t value_sz, __u64 flags)
9893 {
9894 	int err;
9895 
9896 	err = validate_map_op(map, key_sz, value_sz, true);
9897 	if (err)
9898 		return libbpf_err(err);
9899 
9900 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9901 }
9902 
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)9903 int bpf_map__get_next_key(const struct bpf_map *map,
9904 			  const void *cur_key, void *next_key, size_t key_sz)
9905 {
9906 	int err;
9907 
9908 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9909 	if (err)
9910 		return libbpf_err(err);
9911 
9912 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
9913 }
9914 
libbpf_get_error(const void * ptr)9915 long libbpf_get_error(const void *ptr)
9916 {
9917 	if (!IS_ERR_OR_NULL(ptr))
9918 		return 0;
9919 
9920 	if (IS_ERR(ptr))
9921 		errno = -PTR_ERR(ptr);
9922 
9923 	/* If ptr == NULL, then errno should be already set by the failing
9924 	 * API, because libbpf never returns NULL on success and it now always
9925 	 * sets errno on error. So no extra errno handling for ptr == NULL
9926 	 * case.
9927 	 */
9928 	return -errno;
9929 }
9930 
9931 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)9932 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9933 {
9934 	int ret;
9935 
9936 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9937 	return libbpf_err_errno(ret);
9938 }
9939 
9940 /* Release "ownership" of underlying BPF resource (typically, BPF program
9941  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9942  * link, when destructed through bpf_link__destroy() call won't attempt to
9943  * detach/unregisted that BPF resource. This is useful in situations where,
9944  * say, attached BPF program has to outlive userspace program that attached it
9945  * in the system. Depending on type of BPF program, though, there might be
9946  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9947  * exit of userspace program doesn't trigger automatic detachment and clean up
9948  * inside the kernel.
9949  */
bpf_link__disconnect(struct bpf_link * link)9950 void bpf_link__disconnect(struct bpf_link *link)
9951 {
9952 	link->disconnected = true;
9953 }
9954 
bpf_link__destroy(struct bpf_link * link)9955 int bpf_link__destroy(struct bpf_link *link)
9956 {
9957 	int err = 0;
9958 
9959 	if (IS_ERR_OR_NULL(link))
9960 		return 0;
9961 
9962 	if (!link->disconnected && link->detach)
9963 		err = link->detach(link);
9964 	if (link->pin_path)
9965 		free(link->pin_path);
9966 	if (link->dealloc)
9967 		link->dealloc(link);
9968 	else
9969 		free(link);
9970 
9971 	return libbpf_err(err);
9972 }
9973 
bpf_link__fd(const struct bpf_link * link)9974 int bpf_link__fd(const struct bpf_link *link)
9975 {
9976 	return link->fd;
9977 }
9978 
bpf_link__pin_path(const struct bpf_link * link)9979 const char *bpf_link__pin_path(const struct bpf_link *link)
9980 {
9981 	return link->pin_path;
9982 }
9983 
bpf_link__detach_fd(struct bpf_link * link)9984 static int bpf_link__detach_fd(struct bpf_link *link)
9985 {
9986 	return libbpf_err_errno(close(link->fd));
9987 }
9988 
bpf_link__open(const char * path)9989 struct bpf_link *bpf_link__open(const char *path)
9990 {
9991 	struct bpf_link *link;
9992 	int fd;
9993 
9994 	fd = bpf_obj_get(path);
9995 	if (fd < 0) {
9996 		fd = -errno;
9997 		pr_warn("failed to open link at %s: %d\n", path, fd);
9998 		return libbpf_err_ptr(fd);
9999 	}
10000 
10001 	link = calloc(1, sizeof(*link));
10002 	if (!link) {
10003 		close(fd);
10004 		return libbpf_err_ptr(-ENOMEM);
10005 	}
10006 	link->detach = &bpf_link__detach_fd;
10007 	link->fd = fd;
10008 
10009 	link->pin_path = strdup(path);
10010 	if (!link->pin_path) {
10011 		bpf_link__destroy(link);
10012 		return libbpf_err_ptr(-ENOMEM);
10013 	}
10014 
10015 	return link;
10016 }
10017 
bpf_link__detach(struct bpf_link * link)10018 int bpf_link__detach(struct bpf_link *link)
10019 {
10020 	return bpf_link_detach(link->fd) ? -errno : 0;
10021 }
10022 
bpf_link__pin(struct bpf_link * link,const char * path)10023 int bpf_link__pin(struct bpf_link *link, const char *path)
10024 {
10025 	int err;
10026 
10027 	if (link->pin_path)
10028 		return libbpf_err(-EBUSY);
10029 	err = make_parent_dir(path);
10030 	if (err)
10031 		return libbpf_err(err);
10032 	err = check_path(path);
10033 	if (err)
10034 		return libbpf_err(err);
10035 
10036 	link->pin_path = strdup(path);
10037 	if (!link->pin_path)
10038 		return libbpf_err(-ENOMEM);
10039 
10040 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10041 		err = -errno;
10042 		zfree(&link->pin_path);
10043 		return libbpf_err(err);
10044 	}
10045 
10046 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10047 	return 0;
10048 }
10049 
bpf_link__unpin(struct bpf_link * link)10050 int bpf_link__unpin(struct bpf_link *link)
10051 {
10052 	int err;
10053 
10054 	if (!link->pin_path)
10055 		return libbpf_err(-EINVAL);
10056 
10057 	err = unlink(link->pin_path);
10058 	if (err != 0)
10059 		return -errno;
10060 
10061 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10062 	zfree(&link->pin_path);
10063 	return 0;
10064 }
10065 
10066 struct bpf_link_perf {
10067 	struct bpf_link link;
10068 	int perf_event_fd;
10069 	/* legacy kprobe support: keep track of probe identifier and type */
10070 	char *legacy_probe_name;
10071 	bool legacy_is_kprobe;
10072 	bool legacy_is_retprobe;
10073 };
10074 
10075 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10076 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10077 
bpf_link_perf_detach(struct bpf_link * link)10078 static int bpf_link_perf_detach(struct bpf_link *link)
10079 {
10080 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10081 	int err = 0;
10082 
10083 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10084 		err = -errno;
10085 
10086 	if (perf_link->perf_event_fd != link->fd)
10087 		close(perf_link->perf_event_fd);
10088 	close(link->fd);
10089 
10090 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10091 	if (perf_link->legacy_probe_name) {
10092 		if (perf_link->legacy_is_kprobe) {
10093 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10094 							 perf_link->legacy_is_retprobe);
10095 		} else {
10096 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10097 							 perf_link->legacy_is_retprobe);
10098 		}
10099 	}
10100 
10101 	return err;
10102 }
10103 
bpf_link_perf_dealloc(struct bpf_link * link)10104 static void bpf_link_perf_dealloc(struct bpf_link *link)
10105 {
10106 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10107 
10108 	free(perf_link->legacy_probe_name);
10109 	free(perf_link);
10110 }
10111 
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10112 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10113 						     const struct bpf_perf_event_opts *opts)
10114 {
10115 	char errmsg[STRERR_BUFSIZE];
10116 	struct bpf_link_perf *link;
10117 	int prog_fd, link_fd = -1, err;
10118 	bool force_ioctl_attach;
10119 
10120 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10121 		return libbpf_err_ptr(-EINVAL);
10122 
10123 	if (pfd < 0) {
10124 		pr_warn("prog '%s': invalid perf event FD %d\n",
10125 			prog->name, pfd);
10126 		return libbpf_err_ptr(-EINVAL);
10127 	}
10128 	prog_fd = bpf_program__fd(prog);
10129 	if (prog_fd < 0) {
10130 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10131 			prog->name);
10132 		return libbpf_err_ptr(-EINVAL);
10133 	}
10134 
10135 	link = calloc(1, sizeof(*link));
10136 	if (!link)
10137 		return libbpf_err_ptr(-ENOMEM);
10138 	link->link.detach = &bpf_link_perf_detach;
10139 	link->link.dealloc = &bpf_link_perf_dealloc;
10140 	link->perf_event_fd = pfd;
10141 
10142 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10143 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10144 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10145 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10146 
10147 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10148 		if (link_fd < 0) {
10149 			err = -errno;
10150 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10151 				prog->name, pfd,
10152 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10153 			goto err_out;
10154 		}
10155 		link->link.fd = link_fd;
10156 	} else {
10157 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10158 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10159 			err = -EOPNOTSUPP;
10160 			goto err_out;
10161 		}
10162 
10163 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10164 			err = -errno;
10165 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10166 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10167 			if (err == -EPROTO)
10168 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10169 					prog->name, pfd);
10170 			goto err_out;
10171 		}
10172 		link->link.fd = pfd;
10173 	}
10174 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10175 		err = -errno;
10176 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10177 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10178 		goto err_out;
10179 	}
10180 
10181 	return &link->link;
10182 err_out:
10183 	if (link_fd >= 0)
10184 		close(link_fd);
10185 	free(link);
10186 	return libbpf_err_ptr(err);
10187 }
10188 
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10189 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10190 {
10191 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10192 }
10193 
10194 /*
10195  * this function is expected to parse integer in the range of [0, 2^31-1] from
10196  * given file using scanf format string fmt. If actual parsed value is
10197  * negative, the result might be indistinguishable from error
10198  */
parse_uint_from_file(const char * file,const char * fmt)10199 static int parse_uint_from_file(const char *file, const char *fmt)
10200 {
10201 	char buf[STRERR_BUFSIZE];
10202 	int err, ret;
10203 	FILE *f;
10204 
10205 	f = fopen(file, "re");
10206 	if (!f) {
10207 		err = -errno;
10208 		pr_debug("failed to open '%s': %s\n", file,
10209 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10210 		return err;
10211 	}
10212 	err = fscanf(f, fmt, &ret);
10213 	if (err != 1) {
10214 		err = err == EOF ? -EIO : -errno;
10215 		pr_debug("failed to parse '%s': %s\n", file,
10216 			libbpf_strerror_r(err, buf, sizeof(buf)));
10217 		fclose(f);
10218 		return err;
10219 	}
10220 	fclose(f);
10221 	return ret;
10222 }
10223 
determine_kprobe_perf_type(void)10224 static int determine_kprobe_perf_type(void)
10225 {
10226 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10227 
10228 	return parse_uint_from_file(file, "%d\n");
10229 }
10230 
determine_uprobe_perf_type(void)10231 static int determine_uprobe_perf_type(void)
10232 {
10233 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10234 
10235 	return parse_uint_from_file(file, "%d\n");
10236 }
10237 
determine_kprobe_retprobe_bit(void)10238 static int determine_kprobe_retprobe_bit(void)
10239 {
10240 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10241 
10242 	return parse_uint_from_file(file, "config:%d\n");
10243 }
10244 
determine_uprobe_retprobe_bit(void)10245 static int determine_uprobe_retprobe_bit(void)
10246 {
10247 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10248 
10249 	return parse_uint_from_file(file, "config:%d\n");
10250 }
10251 
10252 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10253 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10254 
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)10255 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10256 				 uint64_t offset, int pid, size_t ref_ctr_off)
10257 {
10258 	const size_t attr_sz = sizeof(struct perf_event_attr);
10259 	struct perf_event_attr attr;
10260 	char errmsg[STRERR_BUFSIZE];
10261 	int type, pfd;
10262 
10263 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10264 		return -EINVAL;
10265 
10266 	memset(&attr, 0, attr_sz);
10267 
10268 	type = uprobe ? determine_uprobe_perf_type()
10269 		      : determine_kprobe_perf_type();
10270 	if (type < 0) {
10271 		pr_warn("failed to determine %s perf type: %s\n",
10272 			uprobe ? "uprobe" : "kprobe",
10273 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10274 		return type;
10275 	}
10276 	if (retprobe) {
10277 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10278 				 : determine_kprobe_retprobe_bit();
10279 
10280 		if (bit < 0) {
10281 			pr_warn("failed to determine %s retprobe bit: %s\n",
10282 				uprobe ? "uprobe" : "kprobe",
10283 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10284 			return bit;
10285 		}
10286 		attr.config |= 1 << bit;
10287 	}
10288 	attr.size = attr_sz;
10289 	attr.type = type;
10290 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10291 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10292 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10293 
10294 	/* pid filter is meaningful only for uprobes */
10295 	pfd = syscall(__NR_perf_event_open, &attr,
10296 		      pid < 0 ? -1 : pid /* pid */,
10297 		      pid == -1 ? 0 : -1 /* cpu */,
10298 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10299 	return pfd >= 0 ? pfd : -errno;
10300 }
10301 
append_to_file(const char * file,const char * fmt,...)10302 static int append_to_file(const char *file, const char *fmt, ...)
10303 {
10304 	int fd, n, err = 0;
10305 	va_list ap;
10306 	char buf[1024];
10307 
10308 	va_start(ap, fmt);
10309 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10310 	va_end(ap);
10311 
10312 	if (n < 0 || n >= sizeof(buf))
10313 		return -EINVAL;
10314 
10315 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10316 	if (fd < 0)
10317 		return -errno;
10318 
10319 	if (write(fd, buf, n) < 0)
10320 		err = -errno;
10321 
10322 	close(fd);
10323 	return err;
10324 }
10325 
10326 #define DEBUGFS "/sys/kernel/debug/tracing"
10327 #define TRACEFS "/sys/kernel/tracing"
10328 
use_debugfs(void)10329 static bool use_debugfs(void)
10330 {
10331 	static int has_debugfs = -1;
10332 
10333 	if (has_debugfs < 0)
10334 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10335 
10336 	return has_debugfs == 1;
10337 }
10338 
tracefs_path(void)10339 static const char *tracefs_path(void)
10340 {
10341 	return use_debugfs() ? DEBUGFS : TRACEFS;
10342 }
10343 
tracefs_kprobe_events(void)10344 static const char *tracefs_kprobe_events(void)
10345 {
10346 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10347 }
10348 
tracefs_uprobe_events(void)10349 static const char *tracefs_uprobe_events(void)
10350 {
10351 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10352 }
10353 
tracefs_available_filter_functions(void)10354 static const char *tracefs_available_filter_functions(void)
10355 {
10356 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10357 			     : TRACEFS"/available_filter_functions";
10358 }
10359 
tracefs_available_filter_functions_addrs(void)10360 static const char *tracefs_available_filter_functions_addrs(void)
10361 {
10362 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10363 			     : TRACEFS"/available_filter_functions_addrs";
10364 }
10365 
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)10366 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10367 					 const char *kfunc_name, size_t offset)
10368 {
10369 	static int index = 0;
10370 	int i;
10371 
10372 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10373 		 __sync_fetch_and_add(&index, 1));
10374 
10375 	/* sanitize binary_path in the probe name */
10376 	for (i = 0; buf[i]; i++) {
10377 		if (!isalnum(buf[i]))
10378 			buf[i] = '_';
10379 	}
10380 }
10381 
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)10382 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10383 				   const char *kfunc_name, size_t offset)
10384 {
10385 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10386 			      retprobe ? 'r' : 'p',
10387 			      retprobe ? "kretprobes" : "kprobes",
10388 			      probe_name, kfunc_name, offset);
10389 }
10390 
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)10391 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10392 {
10393 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10394 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10395 }
10396 
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)10397 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10398 {
10399 	char file[256];
10400 
10401 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10402 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10403 
10404 	return parse_uint_from_file(file, "%d\n");
10405 }
10406 
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)10407 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10408 					 const char *kfunc_name, size_t offset, int pid)
10409 {
10410 	const size_t attr_sz = sizeof(struct perf_event_attr);
10411 	struct perf_event_attr attr;
10412 	char errmsg[STRERR_BUFSIZE];
10413 	int type, pfd, err;
10414 
10415 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10416 	if (err < 0) {
10417 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10418 			kfunc_name, offset,
10419 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10420 		return err;
10421 	}
10422 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10423 	if (type < 0) {
10424 		err = type;
10425 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10426 			kfunc_name, offset,
10427 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10428 		goto err_clean_legacy;
10429 	}
10430 
10431 	memset(&attr, 0, attr_sz);
10432 	attr.size = attr_sz;
10433 	attr.config = type;
10434 	attr.type = PERF_TYPE_TRACEPOINT;
10435 
10436 	pfd = syscall(__NR_perf_event_open, &attr,
10437 		      pid < 0 ? -1 : pid, /* pid */
10438 		      pid == -1 ? 0 : -1, /* cpu */
10439 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10440 	if (pfd < 0) {
10441 		err = -errno;
10442 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10443 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10444 		goto err_clean_legacy;
10445 	}
10446 	return pfd;
10447 
10448 err_clean_legacy:
10449 	/* Clear the newly added legacy kprobe_event */
10450 	remove_kprobe_event_legacy(probe_name, retprobe);
10451 	return err;
10452 }
10453 
arch_specific_syscall_pfx(void)10454 static const char *arch_specific_syscall_pfx(void)
10455 {
10456 #if defined(__x86_64__)
10457 	return "x64";
10458 #elif defined(__i386__)
10459 	return "ia32";
10460 #elif defined(__s390x__)
10461 	return "s390x";
10462 #elif defined(__s390__)
10463 	return "s390";
10464 #elif defined(__arm__)
10465 	return "arm";
10466 #elif defined(__aarch64__)
10467 	return "arm64";
10468 #elif defined(__mips__)
10469 	return "mips";
10470 #elif defined(__riscv)
10471 	return "riscv";
10472 #elif defined(__powerpc__)
10473 	return "powerpc";
10474 #elif defined(__powerpc64__)
10475 	return "powerpc64";
10476 #else
10477 	return NULL;
10478 #endif
10479 }
10480 
probe_kern_syscall_wrapper(void)10481 static int probe_kern_syscall_wrapper(void)
10482 {
10483 	char syscall_name[64];
10484 	const char *ksys_pfx;
10485 
10486 	ksys_pfx = arch_specific_syscall_pfx();
10487 	if (!ksys_pfx)
10488 		return 0;
10489 
10490 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10491 
10492 	if (determine_kprobe_perf_type() >= 0) {
10493 		int pfd;
10494 
10495 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10496 		if (pfd >= 0)
10497 			close(pfd);
10498 
10499 		return pfd >= 0 ? 1 : 0;
10500 	} else { /* legacy mode */
10501 		char probe_name[128];
10502 
10503 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10504 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10505 			return 0;
10506 
10507 		(void)remove_kprobe_event_legacy(probe_name, false);
10508 		return 1;
10509 	}
10510 }
10511 
10512 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)10513 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10514 				const char *func_name,
10515 				const struct bpf_kprobe_opts *opts)
10516 {
10517 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10518 	enum probe_attach_mode attach_mode;
10519 	char errmsg[STRERR_BUFSIZE];
10520 	char *legacy_probe = NULL;
10521 	struct bpf_link *link;
10522 	size_t offset;
10523 	bool retprobe, legacy;
10524 	int pfd, err;
10525 
10526 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10527 		return libbpf_err_ptr(-EINVAL);
10528 
10529 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10530 	retprobe = OPTS_GET(opts, retprobe, false);
10531 	offset = OPTS_GET(opts, offset, 0);
10532 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10533 
10534 	legacy = determine_kprobe_perf_type() < 0;
10535 	switch (attach_mode) {
10536 	case PROBE_ATTACH_MODE_LEGACY:
10537 		legacy = true;
10538 		pe_opts.force_ioctl_attach = true;
10539 		break;
10540 	case PROBE_ATTACH_MODE_PERF:
10541 		if (legacy)
10542 			return libbpf_err_ptr(-ENOTSUP);
10543 		pe_opts.force_ioctl_attach = true;
10544 		break;
10545 	case PROBE_ATTACH_MODE_LINK:
10546 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10547 			return libbpf_err_ptr(-ENOTSUP);
10548 		break;
10549 	case PROBE_ATTACH_MODE_DEFAULT:
10550 		break;
10551 	default:
10552 		return libbpf_err_ptr(-EINVAL);
10553 	}
10554 
10555 	if (!legacy) {
10556 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10557 					    func_name, offset,
10558 					    -1 /* pid */, 0 /* ref_ctr_off */);
10559 	} else {
10560 		char probe_name[256];
10561 
10562 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10563 					     func_name, offset);
10564 
10565 		legacy_probe = strdup(probe_name);
10566 		if (!legacy_probe)
10567 			return libbpf_err_ptr(-ENOMEM);
10568 
10569 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10570 						    offset, -1 /* pid */);
10571 	}
10572 	if (pfd < 0) {
10573 		err = -errno;
10574 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10575 			prog->name, retprobe ? "kretprobe" : "kprobe",
10576 			func_name, offset,
10577 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10578 		goto err_out;
10579 	}
10580 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10581 	err = libbpf_get_error(link);
10582 	if (err) {
10583 		close(pfd);
10584 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10585 			prog->name, retprobe ? "kretprobe" : "kprobe",
10586 			func_name, offset,
10587 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10588 		goto err_clean_legacy;
10589 	}
10590 	if (legacy) {
10591 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10592 
10593 		perf_link->legacy_probe_name = legacy_probe;
10594 		perf_link->legacy_is_kprobe = true;
10595 		perf_link->legacy_is_retprobe = retprobe;
10596 	}
10597 
10598 	return link;
10599 
10600 err_clean_legacy:
10601 	if (legacy)
10602 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10603 err_out:
10604 	free(legacy_probe);
10605 	return libbpf_err_ptr(err);
10606 }
10607 
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)10608 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10609 					    bool retprobe,
10610 					    const char *func_name)
10611 {
10612 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10613 		.retprobe = retprobe,
10614 	);
10615 
10616 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10617 }
10618 
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)10619 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10620 					      const char *syscall_name,
10621 					      const struct bpf_ksyscall_opts *opts)
10622 {
10623 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10624 	char func_name[128];
10625 
10626 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10627 		return libbpf_err_ptr(-EINVAL);
10628 
10629 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10630 		/* arch_specific_syscall_pfx() should never return NULL here
10631 		 * because it is guarded by kernel_supports(). However, since
10632 		 * compiler does not know that we have an explicit conditional
10633 		 * as well.
10634 		 */
10635 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10636 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10637 	} else {
10638 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10639 	}
10640 
10641 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10642 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10643 
10644 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10645 }
10646 
10647 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)10648 bool glob_match(const char *str, const char *pat)
10649 {
10650 	while (*str && *pat && *pat != '*') {
10651 		if (*pat == '?') {      /* Matches any single character */
10652 			str++;
10653 			pat++;
10654 			continue;
10655 		}
10656 		if (*str != *pat)
10657 			return false;
10658 		str++;
10659 		pat++;
10660 	}
10661 	/* Check wild card */
10662 	if (*pat == '*') {
10663 		while (*pat == '*')
10664 			pat++;
10665 		if (!*pat) /* Tail wild card matches all */
10666 			return true;
10667 		while (*str)
10668 			if (glob_match(str++, pat))
10669 				return true;
10670 	}
10671 	return !*str && !*pat;
10672 }
10673 
10674 struct kprobe_multi_resolve {
10675 	const char *pattern;
10676 	unsigned long *addrs;
10677 	size_t cap;
10678 	size_t cnt;
10679 };
10680 
10681 struct avail_kallsyms_data {
10682 	char **syms;
10683 	size_t cnt;
10684 	struct kprobe_multi_resolve *res;
10685 };
10686 
avail_func_cmp(const void * a,const void * b)10687 static int avail_func_cmp(const void *a, const void *b)
10688 {
10689 	return strcmp(*(const char **)a, *(const char **)b);
10690 }
10691 
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)10692 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
10693 			     const char *sym_name, void *ctx)
10694 {
10695 	struct avail_kallsyms_data *data = ctx;
10696 	struct kprobe_multi_resolve *res = data->res;
10697 	int err;
10698 
10699 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
10700 		return 0;
10701 
10702 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
10703 	if (err)
10704 		return err;
10705 
10706 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
10707 	return 0;
10708 }
10709 
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)10710 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
10711 {
10712 	const char *available_functions_file = tracefs_available_filter_functions();
10713 	struct avail_kallsyms_data data;
10714 	char sym_name[500];
10715 	FILE *f;
10716 	int err = 0, ret, i;
10717 	char **syms = NULL;
10718 	size_t cap = 0, cnt = 0;
10719 
10720 	f = fopen(available_functions_file, "re");
10721 	if (!f) {
10722 		err = -errno;
10723 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
10724 		return err;
10725 	}
10726 
10727 	while (true) {
10728 		char *name;
10729 
10730 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
10731 		if (ret == EOF && feof(f))
10732 			break;
10733 
10734 		if (ret != 1) {
10735 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
10736 			err = -EINVAL;
10737 			goto cleanup;
10738 		}
10739 
10740 		if (!glob_match(sym_name, res->pattern))
10741 			continue;
10742 
10743 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
10744 		if (err)
10745 			goto cleanup;
10746 
10747 		name = strdup(sym_name);
10748 		if (!name) {
10749 			err = -errno;
10750 			goto cleanup;
10751 		}
10752 
10753 		syms[cnt++] = name;
10754 	}
10755 
10756 	/* no entries found, bail out */
10757 	if (cnt == 0) {
10758 		err = -ENOENT;
10759 		goto cleanup;
10760 	}
10761 
10762 	/* sort available functions */
10763 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
10764 
10765 	data.syms = syms;
10766 	data.res = res;
10767 	data.cnt = cnt;
10768 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
10769 
10770 	if (res->cnt == 0)
10771 		err = -ENOENT;
10772 
10773 cleanup:
10774 	for (i = 0; i < cnt; i++)
10775 		free((char *)syms[i]);
10776 	free(syms);
10777 
10778 	fclose(f);
10779 	return err;
10780 }
10781 
has_available_filter_functions_addrs(void)10782 static bool has_available_filter_functions_addrs(void)
10783 {
10784 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
10785 }
10786 
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)10787 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
10788 {
10789 	const char *available_path = tracefs_available_filter_functions_addrs();
10790 	char sym_name[500];
10791 	FILE *f;
10792 	int ret, err = 0;
10793 	unsigned long long sym_addr;
10794 
10795 	f = fopen(available_path, "re");
10796 	if (!f) {
10797 		err = -errno;
10798 		pr_warn("failed to open %s: %d\n", available_path, err);
10799 		return err;
10800 	}
10801 
10802 	while (true) {
10803 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
10804 		if (ret == EOF && feof(f))
10805 			break;
10806 
10807 		if (ret != 2) {
10808 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
10809 				ret);
10810 			err = -EINVAL;
10811 			goto cleanup;
10812 		}
10813 
10814 		if (!glob_match(sym_name, res->pattern))
10815 			continue;
10816 
10817 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
10818 					sizeof(*res->addrs), res->cnt + 1);
10819 		if (err)
10820 			goto cleanup;
10821 
10822 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
10823 	}
10824 
10825 	if (res->cnt == 0)
10826 		err = -ENOENT;
10827 
10828 cleanup:
10829 	fclose(f);
10830 	return err;
10831 }
10832 
10833 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)10834 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10835 				      const char *pattern,
10836 				      const struct bpf_kprobe_multi_opts *opts)
10837 {
10838 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10839 	struct kprobe_multi_resolve res = {
10840 		.pattern = pattern,
10841 	};
10842 	struct bpf_link *link = NULL;
10843 	char errmsg[STRERR_BUFSIZE];
10844 	const unsigned long *addrs;
10845 	int err, link_fd, prog_fd;
10846 	const __u64 *cookies;
10847 	const char **syms;
10848 	bool retprobe;
10849 	size_t cnt;
10850 
10851 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10852 		return libbpf_err_ptr(-EINVAL);
10853 
10854 	syms    = OPTS_GET(opts, syms, false);
10855 	addrs   = OPTS_GET(opts, addrs, false);
10856 	cnt     = OPTS_GET(opts, cnt, false);
10857 	cookies = OPTS_GET(opts, cookies, false);
10858 
10859 	if (!pattern && !addrs && !syms)
10860 		return libbpf_err_ptr(-EINVAL);
10861 	if (pattern && (addrs || syms || cookies || cnt))
10862 		return libbpf_err_ptr(-EINVAL);
10863 	if (!pattern && !cnt)
10864 		return libbpf_err_ptr(-EINVAL);
10865 	if (addrs && syms)
10866 		return libbpf_err_ptr(-EINVAL);
10867 
10868 	if (pattern) {
10869 		if (has_available_filter_functions_addrs())
10870 			err = libbpf_available_kprobes_parse(&res);
10871 		else
10872 			err = libbpf_available_kallsyms_parse(&res);
10873 		if (err)
10874 			goto error;
10875 		addrs = res.addrs;
10876 		cnt = res.cnt;
10877 	}
10878 
10879 	retprobe = OPTS_GET(opts, retprobe, false);
10880 
10881 	lopts.kprobe_multi.syms = syms;
10882 	lopts.kprobe_multi.addrs = addrs;
10883 	lopts.kprobe_multi.cookies = cookies;
10884 	lopts.kprobe_multi.cnt = cnt;
10885 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10886 
10887 	link = calloc(1, sizeof(*link));
10888 	if (!link) {
10889 		err = -ENOMEM;
10890 		goto error;
10891 	}
10892 	link->detach = &bpf_link__detach_fd;
10893 
10894 	prog_fd = bpf_program__fd(prog);
10895 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10896 	if (link_fd < 0) {
10897 		err = -errno;
10898 		pr_warn("prog '%s': failed to attach: %s\n",
10899 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10900 		goto error;
10901 	}
10902 	link->fd = link_fd;
10903 	free(res.addrs);
10904 	return link;
10905 
10906 error:
10907 	free(link);
10908 	free(res.addrs);
10909 	return libbpf_err_ptr(err);
10910 }
10911 
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10912 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10913 {
10914 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10915 	unsigned long offset = 0;
10916 	const char *func_name;
10917 	char *func;
10918 	int n;
10919 
10920 	*link = NULL;
10921 
10922 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10923 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10924 		return 0;
10925 
10926 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10927 	if (opts.retprobe)
10928 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10929 	else
10930 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10931 
10932 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10933 	if (n < 1) {
10934 		pr_warn("kprobe name is invalid: %s\n", func_name);
10935 		return -EINVAL;
10936 	}
10937 	if (opts.retprobe && offset != 0) {
10938 		free(func);
10939 		pr_warn("kretprobes do not support offset specification\n");
10940 		return -EINVAL;
10941 	}
10942 
10943 	opts.offset = offset;
10944 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10945 	free(func);
10946 	return libbpf_get_error(*link);
10947 }
10948 
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10949 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10950 {
10951 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10952 	const char *syscall_name;
10953 
10954 	*link = NULL;
10955 
10956 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10957 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10958 		return 0;
10959 
10960 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10961 	if (opts.retprobe)
10962 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10963 	else
10964 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10965 
10966 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10967 	return *link ? 0 : -errno;
10968 }
10969 
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10970 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10971 {
10972 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10973 	const char *spec;
10974 	char *pattern;
10975 	int n;
10976 
10977 	*link = NULL;
10978 
10979 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10980 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10981 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10982 		return 0;
10983 
10984 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10985 	if (opts.retprobe)
10986 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10987 	else
10988 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10989 
10990 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10991 	if (n < 1) {
10992 		pr_warn("kprobe multi pattern is invalid: %s\n", spec);
10993 		return -EINVAL;
10994 	}
10995 
10996 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10997 	free(pattern);
10998 	return libbpf_get_error(*link);
10999 }
11000 
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11001 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11002 {
11003 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11004 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11005 	int n, ret = -EINVAL;
11006 
11007 	*link = NULL;
11008 
11009 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%ms",
11010 		   &probe_type, &binary_path, &func_name);
11011 	switch (n) {
11012 	case 1:
11013 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11014 		ret = 0;
11015 		break;
11016 	case 3:
11017 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11018 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11019 		ret = libbpf_get_error(*link);
11020 		break;
11021 	default:
11022 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11023 			prog->sec_name);
11024 		break;
11025 	}
11026 	free(probe_type);
11027 	free(binary_path);
11028 	free(func_name);
11029 	return ret;
11030 }
11031 
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)11032 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11033 					 const char *binary_path, uint64_t offset)
11034 {
11035 	int i;
11036 
11037 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11038 
11039 	/* sanitize binary_path in the probe name */
11040 	for (i = 0; buf[i]; i++) {
11041 		if (!isalnum(buf[i]))
11042 			buf[i] = '_';
11043 	}
11044 }
11045 
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11046 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11047 					  const char *binary_path, size_t offset)
11048 {
11049 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11050 			      retprobe ? 'r' : 'p',
11051 			      retprobe ? "uretprobes" : "uprobes",
11052 			      probe_name, binary_path, offset);
11053 }
11054 
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11055 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11056 {
11057 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11058 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11059 }
11060 
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11061 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11062 {
11063 	char file[512];
11064 
11065 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11066 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11067 
11068 	return parse_uint_from_file(file, "%d\n");
11069 }
11070 
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11071 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11072 					 const char *binary_path, size_t offset, int pid)
11073 {
11074 	const size_t attr_sz = sizeof(struct perf_event_attr);
11075 	struct perf_event_attr attr;
11076 	int type, pfd, err;
11077 
11078 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11079 	if (err < 0) {
11080 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11081 			binary_path, (size_t)offset, err);
11082 		return err;
11083 	}
11084 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11085 	if (type < 0) {
11086 		err = type;
11087 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11088 			binary_path, offset, err);
11089 		goto err_clean_legacy;
11090 	}
11091 
11092 	memset(&attr, 0, attr_sz);
11093 	attr.size = attr_sz;
11094 	attr.config = type;
11095 	attr.type = PERF_TYPE_TRACEPOINT;
11096 
11097 	pfd = syscall(__NR_perf_event_open, &attr,
11098 		      pid < 0 ? -1 : pid, /* pid */
11099 		      pid == -1 ? 0 : -1, /* cpu */
11100 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11101 	if (pfd < 0) {
11102 		err = -errno;
11103 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11104 		goto err_clean_legacy;
11105 	}
11106 	return pfd;
11107 
11108 err_clean_legacy:
11109 	/* Clear the newly added legacy uprobe_event */
11110 	remove_uprobe_event_legacy(probe_name, retprobe);
11111 	return err;
11112 }
11113 
11114 /* Find offset of function name in archive specified by path. Currently
11115  * supported are .zip files that do not compress their contents, as used on
11116  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11117  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11118  * library functions.
11119  *
11120  * An overview of the APK format specifically provided here:
11121  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11122  */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11123 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11124 					      const char *func_name)
11125 {
11126 	struct zip_archive *archive;
11127 	struct zip_entry entry;
11128 	long ret;
11129 	Elf *elf;
11130 
11131 	archive = zip_archive_open(archive_path);
11132 	if (IS_ERR(archive)) {
11133 		ret = PTR_ERR(archive);
11134 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11135 		return ret;
11136 	}
11137 
11138 	ret = zip_archive_find_entry(archive, file_name, &entry);
11139 	if (ret) {
11140 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11141 			archive_path, ret);
11142 		goto out;
11143 	}
11144 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11145 		 (unsigned long)entry.data_offset);
11146 
11147 	if (entry.compression) {
11148 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11149 			archive_path);
11150 		ret = -LIBBPF_ERRNO__FORMAT;
11151 		goto out;
11152 	}
11153 
11154 	elf = elf_memory((void *)entry.data, entry.data_length);
11155 	if (!elf) {
11156 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11157 			elf_errmsg(-1));
11158 		ret = -LIBBPF_ERRNO__LIBELF;
11159 		goto out;
11160 	}
11161 
11162 	ret = elf_find_func_offset(elf, file_name, func_name);
11163 	if (ret > 0) {
11164 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11165 			 func_name, file_name, archive_path, entry.data_offset, ret,
11166 			 ret + entry.data_offset);
11167 		ret += entry.data_offset;
11168 	}
11169 	elf_end(elf);
11170 
11171 out:
11172 	zip_archive_close(archive);
11173 	return ret;
11174 }
11175 
arch_specific_lib_paths(void)11176 static const char *arch_specific_lib_paths(void)
11177 {
11178 	/*
11179 	 * Based on https://packages.debian.org/sid/libc6.
11180 	 *
11181 	 * Assume that the traced program is built for the same architecture
11182 	 * as libbpf, which should cover the vast majority of cases.
11183 	 */
11184 #if defined(__x86_64__)
11185 	return "/lib/x86_64-linux-gnu";
11186 #elif defined(__i386__)
11187 	return "/lib/i386-linux-gnu";
11188 #elif defined(__s390x__)
11189 	return "/lib/s390x-linux-gnu";
11190 #elif defined(__s390__)
11191 	return "/lib/s390-linux-gnu";
11192 #elif defined(__arm__) && defined(__SOFTFP__)
11193 	return "/lib/arm-linux-gnueabi";
11194 #elif defined(__arm__) && !defined(__SOFTFP__)
11195 	return "/lib/arm-linux-gnueabihf";
11196 #elif defined(__aarch64__)
11197 	return "/lib/aarch64-linux-gnu";
11198 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11199 	return "/lib/mips64el-linux-gnuabi64";
11200 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11201 	return "/lib/mipsel-linux-gnu";
11202 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11203 	return "/lib/powerpc64le-linux-gnu";
11204 #elif defined(__sparc__) && defined(__arch64__)
11205 	return "/lib/sparc64-linux-gnu";
11206 #elif defined(__riscv) && __riscv_xlen == 64
11207 	return "/lib/riscv64-linux-gnu";
11208 #else
11209 	return NULL;
11210 #endif
11211 }
11212 
11213 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)11214 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11215 {
11216 	const char *search_paths[3] = {};
11217 	int i, perm;
11218 
11219 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11220 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11221 		search_paths[1] = "/usr/lib64:/usr/lib";
11222 		search_paths[2] = arch_specific_lib_paths();
11223 		perm = R_OK;
11224 	} else {
11225 		search_paths[0] = getenv("PATH");
11226 		search_paths[1] = "/usr/bin:/usr/sbin";
11227 		perm = R_OK | X_OK;
11228 	}
11229 
11230 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11231 		const char *s;
11232 
11233 		if (!search_paths[i])
11234 			continue;
11235 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11236 			char *next_path;
11237 			int seg_len;
11238 
11239 			if (s[0] == ':')
11240 				s++;
11241 			next_path = strchr(s, ':');
11242 			seg_len = next_path ? next_path - s : strlen(s);
11243 			if (!seg_len)
11244 				continue;
11245 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11246 			/* ensure it has required permissions */
11247 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11248 				continue;
11249 			pr_debug("resolved '%s' to '%s'\n", file, result);
11250 			return 0;
11251 		}
11252 	}
11253 	return -ENOENT;
11254 }
11255 
11256 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)11257 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11258 				 pid_t pid,
11259 				 const char *path,
11260 				 const char *func_pattern,
11261 				 const struct bpf_uprobe_multi_opts *opts)
11262 {
11263 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11264 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11265 	unsigned long *resolved_offsets = NULL;
11266 	int err = 0, link_fd, prog_fd;
11267 	struct bpf_link *link = NULL;
11268 	char errmsg[STRERR_BUFSIZE];
11269 	char full_path[PATH_MAX];
11270 	const __u64 *cookies;
11271 	const char **syms;
11272 	size_t cnt;
11273 
11274 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11275 		return libbpf_err_ptr(-EINVAL);
11276 
11277 	syms = OPTS_GET(opts, syms, NULL);
11278 	offsets = OPTS_GET(opts, offsets, NULL);
11279 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11280 	cookies = OPTS_GET(opts, cookies, NULL);
11281 	cnt = OPTS_GET(opts, cnt, 0);
11282 
11283 	/*
11284 	 * User can specify 2 mutually exclusive set of inputs:
11285 	 *
11286 	 * 1) use only path/func_pattern/pid arguments
11287 	 *
11288 	 * 2) use path/pid with allowed combinations of:
11289 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11290 	 *
11291 	 *    - syms and offsets are mutually exclusive
11292 	 *    - ref_ctr_offsets and cookies are optional
11293 	 *
11294 	 * Any other usage results in error.
11295 	 */
11296 
11297 	if (!path)
11298 		return libbpf_err_ptr(-EINVAL);
11299 	if (!func_pattern && cnt == 0)
11300 		return libbpf_err_ptr(-EINVAL);
11301 
11302 	if (func_pattern) {
11303 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11304 			return libbpf_err_ptr(-EINVAL);
11305 	} else {
11306 		if (!!syms == !!offsets)
11307 			return libbpf_err_ptr(-EINVAL);
11308 	}
11309 
11310 	if (func_pattern) {
11311 		if (!strchr(path, '/')) {
11312 			err = resolve_full_path(path, full_path, sizeof(full_path));
11313 			if (err) {
11314 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11315 					prog->name, path, err);
11316 				return libbpf_err_ptr(err);
11317 			}
11318 			path = full_path;
11319 		}
11320 
11321 		err = elf_resolve_pattern_offsets(path, func_pattern,
11322 						  &resolved_offsets, &cnt);
11323 		if (err < 0)
11324 			return libbpf_err_ptr(err);
11325 		offsets = resolved_offsets;
11326 	} else if (syms) {
11327 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets);
11328 		if (err < 0)
11329 			return libbpf_err_ptr(err);
11330 		offsets = resolved_offsets;
11331 	}
11332 
11333 	lopts.uprobe_multi.path = path;
11334 	lopts.uprobe_multi.offsets = offsets;
11335 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11336 	lopts.uprobe_multi.cookies = cookies;
11337 	lopts.uprobe_multi.cnt = cnt;
11338 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11339 
11340 	if (pid == 0)
11341 		pid = getpid();
11342 	if (pid > 0)
11343 		lopts.uprobe_multi.pid = pid;
11344 
11345 	link = calloc(1, sizeof(*link));
11346 	if (!link) {
11347 		err = -ENOMEM;
11348 		goto error;
11349 	}
11350 	link->detach = &bpf_link__detach_fd;
11351 
11352 	prog_fd = bpf_program__fd(prog);
11353 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11354 	if (link_fd < 0) {
11355 		err = -errno;
11356 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11357 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11358 		goto error;
11359 	}
11360 	link->fd = link_fd;
11361 	free(resolved_offsets);
11362 	return link;
11363 
11364 error:
11365 	free(resolved_offsets);
11366 	free(link);
11367 	return libbpf_err_ptr(err);
11368 }
11369 
11370 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)11371 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11372 				const char *binary_path, size_t func_offset,
11373 				const struct bpf_uprobe_opts *opts)
11374 {
11375 	const char *archive_path = NULL, *archive_sep = NULL;
11376 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11377 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11378 	enum probe_attach_mode attach_mode;
11379 	char full_path[PATH_MAX];
11380 	struct bpf_link *link;
11381 	size_t ref_ctr_off;
11382 	int pfd, err;
11383 	bool retprobe, legacy;
11384 	const char *func_name;
11385 
11386 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11387 		return libbpf_err_ptr(-EINVAL);
11388 
11389 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11390 	retprobe = OPTS_GET(opts, retprobe, false);
11391 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11392 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11393 
11394 	if (!binary_path)
11395 		return libbpf_err_ptr(-EINVAL);
11396 
11397 	/* Check if "binary_path" refers to an archive. */
11398 	archive_sep = strstr(binary_path, "!/");
11399 	if (archive_sep) {
11400 		full_path[0] = '\0';
11401 		libbpf_strlcpy(full_path, binary_path,
11402 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11403 		archive_path = full_path;
11404 		binary_path = archive_sep + 2;
11405 	} else if (!strchr(binary_path, '/')) {
11406 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11407 		if (err) {
11408 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11409 				prog->name, binary_path, err);
11410 			return libbpf_err_ptr(err);
11411 		}
11412 		binary_path = full_path;
11413 	}
11414 	func_name = OPTS_GET(opts, func_name, NULL);
11415 	if (func_name) {
11416 		long sym_off;
11417 
11418 		if (archive_path) {
11419 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11420 								    func_name);
11421 			binary_path = archive_path;
11422 		} else {
11423 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11424 		}
11425 		if (sym_off < 0)
11426 			return libbpf_err_ptr(sym_off);
11427 		func_offset += sym_off;
11428 	}
11429 
11430 	legacy = determine_uprobe_perf_type() < 0;
11431 	switch (attach_mode) {
11432 	case PROBE_ATTACH_MODE_LEGACY:
11433 		legacy = true;
11434 		pe_opts.force_ioctl_attach = true;
11435 		break;
11436 	case PROBE_ATTACH_MODE_PERF:
11437 		if (legacy)
11438 			return libbpf_err_ptr(-ENOTSUP);
11439 		pe_opts.force_ioctl_attach = true;
11440 		break;
11441 	case PROBE_ATTACH_MODE_LINK:
11442 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11443 			return libbpf_err_ptr(-ENOTSUP);
11444 		break;
11445 	case PROBE_ATTACH_MODE_DEFAULT:
11446 		break;
11447 	default:
11448 		return libbpf_err_ptr(-EINVAL);
11449 	}
11450 
11451 	if (!legacy) {
11452 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11453 					    func_offset, pid, ref_ctr_off);
11454 	} else {
11455 		char probe_name[PATH_MAX + 64];
11456 
11457 		if (ref_ctr_off)
11458 			return libbpf_err_ptr(-EINVAL);
11459 
11460 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11461 					     binary_path, func_offset);
11462 
11463 		legacy_probe = strdup(probe_name);
11464 		if (!legacy_probe)
11465 			return libbpf_err_ptr(-ENOMEM);
11466 
11467 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11468 						    binary_path, func_offset, pid);
11469 	}
11470 	if (pfd < 0) {
11471 		err = -errno;
11472 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11473 			prog->name, retprobe ? "uretprobe" : "uprobe",
11474 			binary_path, func_offset,
11475 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11476 		goto err_out;
11477 	}
11478 
11479 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11480 	err = libbpf_get_error(link);
11481 	if (err) {
11482 		close(pfd);
11483 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11484 			prog->name, retprobe ? "uretprobe" : "uprobe",
11485 			binary_path, func_offset,
11486 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11487 		goto err_clean_legacy;
11488 	}
11489 	if (legacy) {
11490 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11491 
11492 		perf_link->legacy_probe_name = legacy_probe;
11493 		perf_link->legacy_is_kprobe = false;
11494 		perf_link->legacy_is_retprobe = retprobe;
11495 	}
11496 	return link;
11497 
11498 err_clean_legacy:
11499 	if (legacy)
11500 		remove_uprobe_event_legacy(legacy_probe, retprobe);
11501 err_out:
11502 	free(legacy_probe);
11503 	return libbpf_err_ptr(err);
11504 }
11505 
11506 /* Format of u[ret]probe section definition supporting auto-attach:
11507  * u[ret]probe/binary:function[+offset]
11508  *
11509  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11510  * full binary path via bpf_program__attach_uprobe_opts.
11511  *
11512  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11513  * specified (and auto-attach is not possible) or the above format is specified for
11514  * auto-attach.
11515  */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11516 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11517 {
11518 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11519 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11520 	int n, ret = -EINVAL;
11521 	long offset = 0;
11522 
11523 	*link = NULL;
11524 
11525 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11526 		   &probe_type, &binary_path, &func_name, &offset);
11527 	switch (n) {
11528 	case 1:
11529 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11530 		ret = 0;
11531 		break;
11532 	case 2:
11533 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11534 			prog->name, prog->sec_name);
11535 		break;
11536 	case 3:
11537 	case 4:
11538 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11539 				strcmp(probe_type, "uretprobe.s") == 0;
11540 		if (opts.retprobe && offset != 0) {
11541 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
11542 				prog->name);
11543 			break;
11544 		}
11545 		opts.func_name = func_name;
11546 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11547 		ret = libbpf_get_error(*link);
11548 		break;
11549 	default:
11550 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11551 			prog->sec_name);
11552 		break;
11553 	}
11554 	free(probe_type);
11555 	free(binary_path);
11556 	free(func_name);
11557 
11558 	return ret;
11559 }
11560 
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)11561 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11562 					    bool retprobe, pid_t pid,
11563 					    const char *binary_path,
11564 					    size_t func_offset)
11565 {
11566 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11567 
11568 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11569 }
11570 
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)11571 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11572 					  pid_t pid, const char *binary_path,
11573 					  const char *usdt_provider, const char *usdt_name,
11574 					  const struct bpf_usdt_opts *opts)
11575 {
11576 	char resolved_path[512];
11577 	struct bpf_object *obj = prog->obj;
11578 	struct bpf_link *link;
11579 	__u64 usdt_cookie;
11580 	int err;
11581 
11582 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11583 		return libbpf_err_ptr(-EINVAL);
11584 
11585 	if (bpf_program__fd(prog) < 0) {
11586 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11587 			prog->name);
11588 		return libbpf_err_ptr(-EINVAL);
11589 	}
11590 
11591 	if (!binary_path)
11592 		return libbpf_err_ptr(-EINVAL);
11593 
11594 	if (!strchr(binary_path, '/')) {
11595 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11596 		if (err) {
11597 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11598 				prog->name, binary_path, err);
11599 			return libbpf_err_ptr(err);
11600 		}
11601 		binary_path = resolved_path;
11602 	}
11603 
11604 	/* USDT manager is instantiated lazily on first USDT attach. It will
11605 	 * be destroyed together with BPF object in bpf_object__close().
11606 	 */
11607 	if (IS_ERR(obj->usdt_man))
11608 		return libbpf_ptr(obj->usdt_man);
11609 	if (!obj->usdt_man) {
11610 		obj->usdt_man = usdt_manager_new(obj);
11611 		if (IS_ERR(obj->usdt_man))
11612 			return libbpf_ptr(obj->usdt_man);
11613 	}
11614 
11615 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11616 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11617 					usdt_provider, usdt_name, usdt_cookie);
11618 	err = libbpf_get_error(link);
11619 	if (err)
11620 		return libbpf_err_ptr(err);
11621 	return link;
11622 }
11623 
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11624 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11625 {
11626 	char *path = NULL, *provider = NULL, *name = NULL;
11627 	const char *sec_name;
11628 	int n, err;
11629 
11630 	sec_name = bpf_program__section_name(prog);
11631 	if (strcmp(sec_name, "usdt") == 0) {
11632 		/* no auto-attach for just SEC("usdt") */
11633 		*link = NULL;
11634 		return 0;
11635 	}
11636 
11637 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11638 	if (n != 3) {
11639 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11640 			sec_name);
11641 		err = -EINVAL;
11642 	} else {
11643 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11644 						 provider, name, NULL);
11645 		err = libbpf_get_error(*link);
11646 	}
11647 	free(path);
11648 	free(provider);
11649 	free(name);
11650 	return err;
11651 }
11652 
determine_tracepoint_id(const char * tp_category,const char * tp_name)11653 static int determine_tracepoint_id(const char *tp_category,
11654 				   const char *tp_name)
11655 {
11656 	char file[PATH_MAX];
11657 	int ret;
11658 
11659 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11660 		       tracefs_path(), tp_category, tp_name);
11661 	if (ret < 0)
11662 		return -errno;
11663 	if (ret >= sizeof(file)) {
11664 		pr_debug("tracepoint %s/%s path is too long\n",
11665 			 tp_category, tp_name);
11666 		return -E2BIG;
11667 	}
11668 	return parse_uint_from_file(file, "%d\n");
11669 }
11670 
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)11671 static int perf_event_open_tracepoint(const char *tp_category,
11672 				      const char *tp_name)
11673 {
11674 	const size_t attr_sz = sizeof(struct perf_event_attr);
11675 	struct perf_event_attr attr;
11676 	char errmsg[STRERR_BUFSIZE];
11677 	int tp_id, pfd, err;
11678 
11679 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11680 	if (tp_id < 0) {
11681 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11682 			tp_category, tp_name,
11683 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11684 		return tp_id;
11685 	}
11686 
11687 	memset(&attr, 0, attr_sz);
11688 	attr.type = PERF_TYPE_TRACEPOINT;
11689 	attr.size = attr_sz;
11690 	attr.config = tp_id;
11691 
11692 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11693 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11694 	if (pfd < 0) {
11695 		err = -errno;
11696 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11697 			tp_category, tp_name,
11698 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11699 		return err;
11700 	}
11701 	return pfd;
11702 }
11703 
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)11704 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11705 						     const char *tp_category,
11706 						     const char *tp_name,
11707 						     const struct bpf_tracepoint_opts *opts)
11708 {
11709 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11710 	char errmsg[STRERR_BUFSIZE];
11711 	struct bpf_link *link;
11712 	int pfd, err;
11713 
11714 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11715 		return libbpf_err_ptr(-EINVAL);
11716 
11717 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11718 
11719 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11720 	if (pfd < 0) {
11721 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11722 			prog->name, tp_category, tp_name,
11723 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11724 		return libbpf_err_ptr(pfd);
11725 	}
11726 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11727 	err = libbpf_get_error(link);
11728 	if (err) {
11729 		close(pfd);
11730 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11731 			prog->name, tp_category, tp_name,
11732 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11733 		return libbpf_err_ptr(err);
11734 	}
11735 	return link;
11736 }
11737 
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)11738 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11739 						const char *tp_category,
11740 						const char *tp_name)
11741 {
11742 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11743 }
11744 
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11745 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11746 {
11747 	char *sec_name, *tp_cat, *tp_name;
11748 
11749 	*link = NULL;
11750 
11751 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11752 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11753 		return 0;
11754 
11755 	sec_name = strdup(prog->sec_name);
11756 	if (!sec_name)
11757 		return -ENOMEM;
11758 
11759 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11760 	if (str_has_pfx(prog->sec_name, "tp/"))
11761 		tp_cat = sec_name + sizeof("tp/") - 1;
11762 	else
11763 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11764 	tp_name = strchr(tp_cat, '/');
11765 	if (!tp_name) {
11766 		free(sec_name);
11767 		return -EINVAL;
11768 	}
11769 	*tp_name = '\0';
11770 	tp_name++;
11771 
11772 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11773 	free(sec_name);
11774 	return libbpf_get_error(*link);
11775 }
11776 
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)11777 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11778 						    const char *tp_name)
11779 {
11780 	char errmsg[STRERR_BUFSIZE];
11781 	struct bpf_link *link;
11782 	int prog_fd, pfd;
11783 
11784 	prog_fd = bpf_program__fd(prog);
11785 	if (prog_fd < 0) {
11786 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11787 		return libbpf_err_ptr(-EINVAL);
11788 	}
11789 
11790 	link = calloc(1, sizeof(*link));
11791 	if (!link)
11792 		return libbpf_err_ptr(-ENOMEM);
11793 	link->detach = &bpf_link__detach_fd;
11794 
11795 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11796 	if (pfd < 0) {
11797 		pfd = -errno;
11798 		free(link);
11799 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11800 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11801 		return libbpf_err_ptr(pfd);
11802 	}
11803 	link->fd = pfd;
11804 	return link;
11805 }
11806 
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11807 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11808 {
11809 	static const char *const prefixes[] = {
11810 		"raw_tp",
11811 		"raw_tracepoint",
11812 		"raw_tp.w",
11813 		"raw_tracepoint.w",
11814 	};
11815 	size_t i;
11816 	const char *tp_name = NULL;
11817 
11818 	*link = NULL;
11819 
11820 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11821 		size_t pfx_len;
11822 
11823 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11824 			continue;
11825 
11826 		pfx_len = strlen(prefixes[i]);
11827 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11828 		if (prog->sec_name[pfx_len] == '\0')
11829 			return 0;
11830 
11831 		if (prog->sec_name[pfx_len] != '/')
11832 			continue;
11833 
11834 		tp_name = prog->sec_name + pfx_len + 1;
11835 		break;
11836 	}
11837 
11838 	if (!tp_name) {
11839 		pr_warn("prog '%s': invalid section name '%s'\n",
11840 			prog->name, prog->sec_name);
11841 		return -EINVAL;
11842 	}
11843 
11844 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11845 	return libbpf_get_error(*link);
11846 }
11847 
11848 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11849 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11850 						   const struct bpf_trace_opts *opts)
11851 {
11852 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11853 	char errmsg[STRERR_BUFSIZE];
11854 	struct bpf_link *link;
11855 	int prog_fd, pfd;
11856 
11857 	if (!OPTS_VALID(opts, bpf_trace_opts))
11858 		return libbpf_err_ptr(-EINVAL);
11859 
11860 	prog_fd = bpf_program__fd(prog);
11861 	if (prog_fd < 0) {
11862 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11863 		return libbpf_err_ptr(-EINVAL);
11864 	}
11865 
11866 	link = calloc(1, sizeof(*link));
11867 	if (!link)
11868 		return libbpf_err_ptr(-ENOMEM);
11869 	link->detach = &bpf_link__detach_fd;
11870 
11871 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11872 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11873 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11874 	if (pfd < 0) {
11875 		pfd = -errno;
11876 		free(link);
11877 		pr_warn("prog '%s': failed to attach: %s\n",
11878 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11879 		return libbpf_err_ptr(pfd);
11880 	}
11881 	link->fd = pfd;
11882 	return link;
11883 }
11884 
bpf_program__attach_trace(const struct bpf_program * prog)11885 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11886 {
11887 	return bpf_program__attach_btf_id(prog, NULL);
11888 }
11889 
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11890 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11891 						const struct bpf_trace_opts *opts)
11892 {
11893 	return bpf_program__attach_btf_id(prog, opts);
11894 }
11895 
bpf_program__attach_lsm(const struct bpf_program * prog)11896 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11897 {
11898 	return bpf_program__attach_btf_id(prog, NULL);
11899 }
11900 
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11901 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11902 {
11903 	*link = bpf_program__attach_trace(prog);
11904 	return libbpf_get_error(*link);
11905 }
11906 
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11907 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11908 {
11909 	*link = bpf_program__attach_lsm(prog);
11910 	return libbpf_get_error(*link);
11911 }
11912 
11913 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)11914 bpf_program_attach_fd(const struct bpf_program *prog,
11915 		      int target_fd, const char *target_name,
11916 		      const struct bpf_link_create_opts *opts)
11917 {
11918 	enum bpf_attach_type attach_type;
11919 	char errmsg[STRERR_BUFSIZE];
11920 	struct bpf_link *link;
11921 	int prog_fd, link_fd;
11922 
11923 	prog_fd = bpf_program__fd(prog);
11924 	if (prog_fd < 0) {
11925 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11926 		return libbpf_err_ptr(-EINVAL);
11927 	}
11928 
11929 	link = calloc(1, sizeof(*link));
11930 	if (!link)
11931 		return libbpf_err_ptr(-ENOMEM);
11932 	link->detach = &bpf_link__detach_fd;
11933 
11934 	attach_type = bpf_program__expected_attach_type(prog);
11935 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
11936 	if (link_fd < 0) {
11937 		link_fd = -errno;
11938 		free(link);
11939 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11940 			prog->name, target_name,
11941 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11942 		return libbpf_err_ptr(link_fd);
11943 	}
11944 	link->fd = link_fd;
11945 	return link;
11946 }
11947 
11948 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)11949 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11950 {
11951 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
11952 }
11953 
11954 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)11955 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11956 {
11957 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
11958 }
11959 
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)11960 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11961 {
11962 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11963 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
11964 }
11965 
11966 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)11967 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
11968 			const struct bpf_tcx_opts *opts)
11969 {
11970 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11971 	__u32 relative_id;
11972 	int relative_fd;
11973 
11974 	if (!OPTS_VALID(opts, bpf_tcx_opts))
11975 		return libbpf_err_ptr(-EINVAL);
11976 
11977 	relative_id = OPTS_GET(opts, relative_id, 0);
11978 	relative_fd = OPTS_GET(opts, relative_fd, 0);
11979 
11980 	/* validate we don't have unexpected combinations of non-zero fields */
11981 	if (!ifindex) {
11982 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
11983 			prog->name);
11984 		return libbpf_err_ptr(-EINVAL);
11985 	}
11986 	if (relative_fd && relative_id) {
11987 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
11988 			prog->name);
11989 		return libbpf_err_ptr(-EINVAL);
11990 	}
11991 
11992 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
11993 	link_create_opts.tcx.relative_fd = relative_fd;
11994 	link_create_opts.tcx.relative_id = relative_id;
11995 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
11996 
11997 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11998 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
11999 }
12000 
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)12001 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12002 					      int target_fd,
12003 					      const char *attach_func_name)
12004 {
12005 	int btf_id;
12006 
12007 	if (!!target_fd != !!attach_func_name) {
12008 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12009 			prog->name);
12010 		return libbpf_err_ptr(-EINVAL);
12011 	}
12012 
12013 	if (prog->type != BPF_PROG_TYPE_EXT) {
12014 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12015 			prog->name);
12016 		return libbpf_err_ptr(-EINVAL);
12017 	}
12018 
12019 	if (target_fd) {
12020 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12021 
12022 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12023 		if (btf_id < 0)
12024 			return libbpf_err_ptr(btf_id);
12025 
12026 		target_opts.target_btf_id = btf_id;
12027 
12028 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12029 					     &target_opts);
12030 	} else {
12031 		/* no target, so use raw_tracepoint_open for compatibility
12032 		 * with old kernels
12033 		 */
12034 		return bpf_program__attach_trace(prog);
12035 	}
12036 }
12037 
12038 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12039 bpf_program__attach_iter(const struct bpf_program *prog,
12040 			 const struct bpf_iter_attach_opts *opts)
12041 {
12042 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12043 	char errmsg[STRERR_BUFSIZE];
12044 	struct bpf_link *link;
12045 	int prog_fd, link_fd;
12046 	__u32 target_fd = 0;
12047 
12048 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12049 		return libbpf_err_ptr(-EINVAL);
12050 
12051 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12052 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12053 
12054 	prog_fd = bpf_program__fd(prog);
12055 	if (prog_fd < 0) {
12056 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12057 		return libbpf_err_ptr(-EINVAL);
12058 	}
12059 
12060 	link = calloc(1, sizeof(*link));
12061 	if (!link)
12062 		return libbpf_err_ptr(-ENOMEM);
12063 	link->detach = &bpf_link__detach_fd;
12064 
12065 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12066 				  &link_create_opts);
12067 	if (link_fd < 0) {
12068 		link_fd = -errno;
12069 		free(link);
12070 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12071 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12072 		return libbpf_err_ptr(link_fd);
12073 	}
12074 	link->fd = link_fd;
12075 	return link;
12076 }
12077 
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12078 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12079 {
12080 	*link = bpf_program__attach_iter(prog, NULL);
12081 	return libbpf_get_error(*link);
12082 }
12083 
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12084 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12085 					       const struct bpf_netfilter_opts *opts)
12086 {
12087 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12088 	struct bpf_link *link;
12089 	int prog_fd, link_fd;
12090 
12091 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12092 		return libbpf_err_ptr(-EINVAL);
12093 
12094 	prog_fd = bpf_program__fd(prog);
12095 	if (prog_fd < 0) {
12096 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12097 		return libbpf_err_ptr(-EINVAL);
12098 	}
12099 
12100 	link = calloc(1, sizeof(*link));
12101 	if (!link)
12102 		return libbpf_err_ptr(-ENOMEM);
12103 
12104 	link->detach = &bpf_link__detach_fd;
12105 
12106 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12107 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12108 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12109 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12110 
12111 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12112 	if (link_fd < 0) {
12113 		char errmsg[STRERR_BUFSIZE];
12114 
12115 		link_fd = -errno;
12116 		free(link);
12117 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12118 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12119 		return libbpf_err_ptr(link_fd);
12120 	}
12121 	link->fd = link_fd;
12122 
12123 	return link;
12124 }
12125 
bpf_program__attach(const struct bpf_program * prog)12126 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12127 {
12128 	struct bpf_link *link = NULL;
12129 	int err;
12130 
12131 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12132 		return libbpf_err_ptr(-EOPNOTSUPP);
12133 
12134 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12135 	if (err)
12136 		return libbpf_err_ptr(err);
12137 
12138 	/* When calling bpf_program__attach() explicitly, auto-attach support
12139 	 * is expected to work, so NULL returned link is considered an error.
12140 	 * This is different for skeleton's attach, see comment in
12141 	 * bpf_object__attach_skeleton().
12142 	 */
12143 	if (!link)
12144 		return libbpf_err_ptr(-EOPNOTSUPP);
12145 
12146 	return link;
12147 }
12148 
12149 struct bpf_link_struct_ops {
12150 	struct bpf_link link;
12151 	int map_fd;
12152 };
12153 
bpf_link__detach_struct_ops(struct bpf_link * link)12154 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12155 {
12156 	struct bpf_link_struct_ops *st_link;
12157 	__u32 zero = 0;
12158 
12159 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12160 
12161 	if (st_link->map_fd < 0)
12162 		/* w/o a real link */
12163 		return bpf_map_delete_elem(link->fd, &zero);
12164 
12165 	return close(link->fd);
12166 }
12167 
bpf_map__attach_struct_ops(const struct bpf_map * map)12168 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12169 {
12170 	struct bpf_link_struct_ops *link;
12171 	__u32 zero = 0;
12172 	int err, fd;
12173 
12174 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12175 		return libbpf_err_ptr(-EINVAL);
12176 
12177 	link = calloc(1, sizeof(*link));
12178 	if (!link)
12179 		return libbpf_err_ptr(-EINVAL);
12180 
12181 	/* kern_vdata should be prepared during the loading phase. */
12182 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12183 	/* It can be EBUSY if the map has been used to create or
12184 	 * update a link before.  We don't allow updating the value of
12185 	 * a struct_ops once it is set.  That ensures that the value
12186 	 * never changed.  So, it is safe to skip EBUSY.
12187 	 */
12188 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12189 		free(link);
12190 		return libbpf_err_ptr(err);
12191 	}
12192 
12193 	link->link.detach = bpf_link__detach_struct_ops;
12194 
12195 	if (!(map->def.map_flags & BPF_F_LINK)) {
12196 		/* w/o a real link */
12197 		link->link.fd = map->fd;
12198 		link->map_fd = -1;
12199 		return &link->link;
12200 	}
12201 
12202 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12203 	if (fd < 0) {
12204 		free(link);
12205 		return libbpf_err_ptr(fd);
12206 	}
12207 
12208 	link->link.fd = fd;
12209 	link->map_fd = map->fd;
12210 
12211 	return &link->link;
12212 }
12213 
12214 /*
12215  * Swap the back struct_ops of a link with a new struct_ops map.
12216  */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)12217 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12218 {
12219 	struct bpf_link_struct_ops *st_ops_link;
12220 	__u32 zero = 0;
12221 	int err;
12222 
12223 	if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12224 		return -EINVAL;
12225 
12226 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12227 	/* Ensure the type of a link is correct */
12228 	if (st_ops_link->map_fd < 0)
12229 		return -EINVAL;
12230 
12231 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12232 	/* It can be EBUSY if the map has been used to create or
12233 	 * update a link before.  We don't allow updating the value of
12234 	 * a struct_ops once it is set.  That ensures that the value
12235 	 * never changed.  So, it is safe to skip EBUSY.
12236 	 */
12237 	if (err && err != -EBUSY)
12238 		return err;
12239 
12240 	err = bpf_link_update(link->fd, map->fd, NULL);
12241 	if (err < 0)
12242 		return err;
12243 
12244 	st_ops_link->map_fd = map->fd;
12245 
12246 	return 0;
12247 }
12248 
12249 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12250 							  void *private_data);
12251 
12252 static enum bpf_perf_event_ret
12253 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12254 		       void **copy_mem, size_t *copy_size,
12255 		       bpf_perf_event_print_t fn, void *private_data)
12256 {
12257 	struct perf_event_mmap_page *header = mmap_mem;
12258 	__u64 data_head = ring_buffer_read_head(header);
12259 	__u64 data_tail = header->data_tail;
12260 	void *base = ((__u8 *)header) + page_size;
12261 	int ret = LIBBPF_PERF_EVENT_CONT;
12262 	struct perf_event_header *ehdr;
12263 	size_t ehdr_size;
12264 
12265 	while (data_head != data_tail) {
12266 		ehdr = base + (data_tail & (mmap_size - 1));
12267 		ehdr_size = ehdr->size;
12268 
12269 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12270 			void *copy_start = ehdr;
12271 			size_t len_first = base + mmap_size - copy_start;
12272 			size_t len_secnd = ehdr_size - len_first;
12273 
12274 			if (*copy_size < ehdr_size) {
12275 				free(*copy_mem);
12276 				*copy_mem = malloc(ehdr_size);
12277 				if (!*copy_mem) {
12278 					*copy_size = 0;
12279 					ret = LIBBPF_PERF_EVENT_ERROR;
12280 					break;
12281 				}
12282 				*copy_size = ehdr_size;
12283 			}
12284 
12285 			memcpy(*copy_mem, copy_start, len_first);
12286 			memcpy(*copy_mem + len_first, base, len_secnd);
12287 			ehdr = *copy_mem;
12288 		}
12289 
12290 		ret = fn(ehdr, private_data);
12291 		data_tail += ehdr_size;
12292 		if (ret != LIBBPF_PERF_EVENT_CONT)
12293 			break;
12294 	}
12295 
12296 	ring_buffer_write_tail(header, data_tail);
12297 	return libbpf_err(ret);
12298 }
12299 
12300 struct perf_buffer;
12301 
12302 struct perf_buffer_params {
12303 	struct perf_event_attr *attr;
12304 	/* if event_cb is specified, it takes precendence */
12305 	perf_buffer_event_fn event_cb;
12306 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12307 	perf_buffer_sample_fn sample_cb;
12308 	perf_buffer_lost_fn lost_cb;
12309 	void *ctx;
12310 	int cpu_cnt;
12311 	int *cpus;
12312 	int *map_keys;
12313 };
12314 
12315 struct perf_cpu_buf {
12316 	struct perf_buffer *pb;
12317 	void *base; /* mmap()'ed memory */
12318 	void *buf; /* for reconstructing segmented data */
12319 	size_t buf_size;
12320 	int fd;
12321 	int cpu;
12322 	int map_key;
12323 };
12324 
12325 struct perf_buffer {
12326 	perf_buffer_event_fn event_cb;
12327 	perf_buffer_sample_fn sample_cb;
12328 	perf_buffer_lost_fn lost_cb;
12329 	void *ctx; /* passed into callbacks */
12330 
12331 	size_t page_size;
12332 	size_t mmap_size;
12333 	struct perf_cpu_buf **cpu_bufs;
12334 	struct epoll_event *events;
12335 	int cpu_cnt; /* number of allocated CPU buffers */
12336 	int epoll_fd; /* perf event FD */
12337 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12338 };
12339 
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12340 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12341 				      struct perf_cpu_buf *cpu_buf)
12342 {
12343 	if (!cpu_buf)
12344 		return;
12345 	if (cpu_buf->base &&
12346 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12347 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12348 	if (cpu_buf->fd >= 0) {
12349 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12350 		close(cpu_buf->fd);
12351 	}
12352 	free(cpu_buf->buf);
12353 	free(cpu_buf);
12354 }
12355 
perf_buffer__free(struct perf_buffer * pb)12356 void perf_buffer__free(struct perf_buffer *pb)
12357 {
12358 	int i;
12359 
12360 	if (IS_ERR_OR_NULL(pb))
12361 		return;
12362 	if (pb->cpu_bufs) {
12363 		for (i = 0; i < pb->cpu_cnt; i++) {
12364 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12365 
12366 			if (!cpu_buf)
12367 				continue;
12368 
12369 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12370 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12371 		}
12372 		free(pb->cpu_bufs);
12373 	}
12374 	if (pb->epoll_fd >= 0)
12375 		close(pb->epoll_fd);
12376 	free(pb->events);
12377 	free(pb);
12378 }
12379 
12380 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)12381 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12382 			  int cpu, int map_key)
12383 {
12384 	struct perf_cpu_buf *cpu_buf;
12385 	char msg[STRERR_BUFSIZE];
12386 	int err;
12387 
12388 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12389 	if (!cpu_buf)
12390 		return ERR_PTR(-ENOMEM);
12391 
12392 	cpu_buf->pb = pb;
12393 	cpu_buf->cpu = cpu;
12394 	cpu_buf->map_key = map_key;
12395 
12396 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12397 			      -1, PERF_FLAG_FD_CLOEXEC);
12398 	if (cpu_buf->fd < 0) {
12399 		err = -errno;
12400 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12401 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12402 		goto error;
12403 	}
12404 
12405 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12406 			     PROT_READ | PROT_WRITE, MAP_SHARED,
12407 			     cpu_buf->fd, 0);
12408 	if (cpu_buf->base == MAP_FAILED) {
12409 		cpu_buf->base = NULL;
12410 		err = -errno;
12411 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12412 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12413 		goto error;
12414 	}
12415 
12416 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12417 		err = -errno;
12418 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12419 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12420 		goto error;
12421 	}
12422 
12423 	return cpu_buf;
12424 
12425 error:
12426 	perf_buffer__free_cpu_buf(pb, cpu_buf);
12427 	return (struct perf_cpu_buf *)ERR_PTR(err);
12428 }
12429 
12430 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12431 					      struct perf_buffer_params *p);
12432 
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)12433 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12434 				     perf_buffer_sample_fn sample_cb,
12435 				     perf_buffer_lost_fn lost_cb,
12436 				     void *ctx,
12437 				     const struct perf_buffer_opts *opts)
12438 {
12439 	const size_t attr_sz = sizeof(struct perf_event_attr);
12440 	struct perf_buffer_params p = {};
12441 	struct perf_event_attr attr;
12442 	__u32 sample_period;
12443 
12444 	if (!OPTS_VALID(opts, perf_buffer_opts))
12445 		return libbpf_err_ptr(-EINVAL);
12446 
12447 	sample_period = OPTS_GET(opts, sample_period, 1);
12448 	if (!sample_period)
12449 		sample_period = 1;
12450 
12451 	memset(&attr, 0, attr_sz);
12452 	attr.size = attr_sz;
12453 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12454 	attr.type = PERF_TYPE_SOFTWARE;
12455 	attr.sample_type = PERF_SAMPLE_RAW;
12456 	attr.sample_period = sample_period;
12457 	attr.wakeup_events = sample_period;
12458 
12459 	p.attr = &attr;
12460 	p.sample_cb = sample_cb;
12461 	p.lost_cb = lost_cb;
12462 	p.ctx = ctx;
12463 
12464 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12465 }
12466 
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)12467 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12468 					 struct perf_event_attr *attr,
12469 					 perf_buffer_event_fn event_cb, void *ctx,
12470 					 const struct perf_buffer_raw_opts *opts)
12471 {
12472 	struct perf_buffer_params p = {};
12473 
12474 	if (!attr)
12475 		return libbpf_err_ptr(-EINVAL);
12476 
12477 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12478 		return libbpf_err_ptr(-EINVAL);
12479 
12480 	p.attr = attr;
12481 	p.event_cb = event_cb;
12482 	p.ctx = ctx;
12483 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12484 	p.cpus = OPTS_GET(opts, cpus, NULL);
12485 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
12486 
12487 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12488 }
12489 
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)12490 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12491 					      struct perf_buffer_params *p)
12492 {
12493 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
12494 	struct bpf_map_info map;
12495 	char msg[STRERR_BUFSIZE];
12496 	struct perf_buffer *pb;
12497 	bool *online = NULL;
12498 	__u32 map_info_len;
12499 	int err, i, j, n;
12500 
12501 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12502 		pr_warn("page count should be power of two, but is %zu\n",
12503 			page_cnt);
12504 		return ERR_PTR(-EINVAL);
12505 	}
12506 
12507 	/* best-effort sanity checks */
12508 	memset(&map, 0, sizeof(map));
12509 	map_info_len = sizeof(map);
12510 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12511 	if (err) {
12512 		err = -errno;
12513 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12514 		 * -EBADFD, -EFAULT, or -E2BIG on real error
12515 		 */
12516 		if (err != -EINVAL) {
12517 			pr_warn("failed to get map info for map FD %d: %s\n",
12518 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12519 			return ERR_PTR(err);
12520 		}
12521 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12522 			 map_fd);
12523 	} else {
12524 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12525 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12526 				map.name);
12527 			return ERR_PTR(-EINVAL);
12528 		}
12529 	}
12530 
12531 	pb = calloc(1, sizeof(*pb));
12532 	if (!pb)
12533 		return ERR_PTR(-ENOMEM);
12534 
12535 	pb->event_cb = p->event_cb;
12536 	pb->sample_cb = p->sample_cb;
12537 	pb->lost_cb = p->lost_cb;
12538 	pb->ctx = p->ctx;
12539 
12540 	pb->page_size = getpagesize();
12541 	pb->mmap_size = pb->page_size * page_cnt;
12542 	pb->map_fd = map_fd;
12543 
12544 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12545 	if (pb->epoll_fd < 0) {
12546 		err = -errno;
12547 		pr_warn("failed to create epoll instance: %s\n",
12548 			libbpf_strerror_r(err, msg, sizeof(msg)));
12549 		goto error;
12550 	}
12551 
12552 	if (p->cpu_cnt > 0) {
12553 		pb->cpu_cnt = p->cpu_cnt;
12554 	} else {
12555 		pb->cpu_cnt = libbpf_num_possible_cpus();
12556 		if (pb->cpu_cnt < 0) {
12557 			err = pb->cpu_cnt;
12558 			goto error;
12559 		}
12560 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
12561 			pb->cpu_cnt = map.max_entries;
12562 	}
12563 
12564 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12565 	if (!pb->events) {
12566 		err = -ENOMEM;
12567 		pr_warn("failed to allocate events: out of memory\n");
12568 		goto error;
12569 	}
12570 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12571 	if (!pb->cpu_bufs) {
12572 		err = -ENOMEM;
12573 		pr_warn("failed to allocate buffers: out of memory\n");
12574 		goto error;
12575 	}
12576 
12577 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12578 	if (err) {
12579 		pr_warn("failed to get online CPU mask: %d\n", err);
12580 		goto error;
12581 	}
12582 
12583 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12584 		struct perf_cpu_buf *cpu_buf;
12585 		int cpu, map_key;
12586 
12587 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12588 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12589 
12590 		/* in case user didn't explicitly requested particular CPUs to
12591 		 * be attached to, skip offline/not present CPUs
12592 		 */
12593 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12594 			continue;
12595 
12596 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12597 		if (IS_ERR(cpu_buf)) {
12598 			err = PTR_ERR(cpu_buf);
12599 			goto error;
12600 		}
12601 
12602 		pb->cpu_bufs[j] = cpu_buf;
12603 
12604 		err = bpf_map_update_elem(pb->map_fd, &map_key,
12605 					  &cpu_buf->fd, 0);
12606 		if (err) {
12607 			err = -errno;
12608 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12609 				cpu, map_key, cpu_buf->fd,
12610 				libbpf_strerror_r(err, msg, sizeof(msg)));
12611 			goto error;
12612 		}
12613 
12614 		pb->events[j].events = EPOLLIN;
12615 		pb->events[j].data.ptr = cpu_buf;
12616 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12617 			      &pb->events[j]) < 0) {
12618 			err = -errno;
12619 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12620 				cpu, cpu_buf->fd,
12621 				libbpf_strerror_r(err, msg, sizeof(msg)));
12622 			goto error;
12623 		}
12624 		j++;
12625 	}
12626 	pb->cpu_cnt = j;
12627 	free(online);
12628 
12629 	return pb;
12630 
12631 error:
12632 	free(online);
12633 	if (pb)
12634 		perf_buffer__free(pb);
12635 	return ERR_PTR(err);
12636 }
12637 
12638 struct perf_sample_raw {
12639 	struct perf_event_header header;
12640 	uint32_t size;
12641 	char data[];
12642 };
12643 
12644 struct perf_sample_lost {
12645 	struct perf_event_header header;
12646 	uint64_t id;
12647 	uint64_t lost;
12648 	uint64_t sample_id;
12649 };
12650 
12651 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)12652 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12653 {
12654 	struct perf_cpu_buf *cpu_buf = ctx;
12655 	struct perf_buffer *pb = cpu_buf->pb;
12656 	void *data = e;
12657 
12658 	/* user wants full control over parsing perf event */
12659 	if (pb->event_cb)
12660 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12661 
12662 	switch (e->type) {
12663 	case PERF_RECORD_SAMPLE: {
12664 		struct perf_sample_raw *s = data;
12665 
12666 		if (pb->sample_cb)
12667 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12668 		break;
12669 	}
12670 	case PERF_RECORD_LOST: {
12671 		struct perf_sample_lost *s = data;
12672 
12673 		if (pb->lost_cb)
12674 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12675 		break;
12676 	}
12677 	default:
12678 		pr_warn("unknown perf sample type %d\n", e->type);
12679 		return LIBBPF_PERF_EVENT_ERROR;
12680 	}
12681 	return LIBBPF_PERF_EVENT_CONT;
12682 }
12683 
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12684 static int perf_buffer__process_records(struct perf_buffer *pb,
12685 					struct perf_cpu_buf *cpu_buf)
12686 {
12687 	enum bpf_perf_event_ret ret;
12688 
12689 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12690 				     pb->page_size, &cpu_buf->buf,
12691 				     &cpu_buf->buf_size,
12692 				     perf_buffer__process_record, cpu_buf);
12693 	if (ret != LIBBPF_PERF_EVENT_CONT)
12694 		return ret;
12695 	return 0;
12696 }
12697 
perf_buffer__epoll_fd(const struct perf_buffer * pb)12698 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12699 {
12700 	return pb->epoll_fd;
12701 }
12702 
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)12703 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12704 {
12705 	int i, cnt, err;
12706 
12707 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12708 	if (cnt < 0)
12709 		return -errno;
12710 
12711 	for (i = 0; i < cnt; i++) {
12712 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12713 
12714 		err = perf_buffer__process_records(pb, cpu_buf);
12715 		if (err) {
12716 			pr_warn("error while processing records: %d\n", err);
12717 			return libbpf_err(err);
12718 		}
12719 	}
12720 	return cnt;
12721 }
12722 
12723 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12724  * manager.
12725  */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)12726 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12727 {
12728 	return pb->cpu_cnt;
12729 }
12730 
12731 /*
12732  * Return perf_event FD of a ring buffer in *buf_idx* slot of
12733  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12734  * select()/poll()/epoll() Linux syscalls.
12735  */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)12736 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12737 {
12738 	struct perf_cpu_buf *cpu_buf;
12739 
12740 	if (buf_idx >= pb->cpu_cnt)
12741 		return libbpf_err(-EINVAL);
12742 
12743 	cpu_buf = pb->cpu_bufs[buf_idx];
12744 	if (!cpu_buf)
12745 		return libbpf_err(-ENOENT);
12746 
12747 	return cpu_buf->fd;
12748 }
12749 
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)12750 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12751 {
12752 	struct perf_cpu_buf *cpu_buf;
12753 
12754 	if (buf_idx >= pb->cpu_cnt)
12755 		return libbpf_err(-EINVAL);
12756 
12757 	cpu_buf = pb->cpu_bufs[buf_idx];
12758 	if (!cpu_buf)
12759 		return libbpf_err(-ENOENT);
12760 
12761 	*buf = cpu_buf->base;
12762 	*buf_size = pb->mmap_size;
12763 	return 0;
12764 }
12765 
12766 /*
12767  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12768  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12769  * consume, do nothing and return success.
12770  * Returns:
12771  *   - 0 on success;
12772  *   - <0 on failure.
12773  */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)12774 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12775 {
12776 	struct perf_cpu_buf *cpu_buf;
12777 
12778 	if (buf_idx >= pb->cpu_cnt)
12779 		return libbpf_err(-EINVAL);
12780 
12781 	cpu_buf = pb->cpu_bufs[buf_idx];
12782 	if (!cpu_buf)
12783 		return libbpf_err(-ENOENT);
12784 
12785 	return perf_buffer__process_records(pb, cpu_buf);
12786 }
12787 
perf_buffer__consume(struct perf_buffer * pb)12788 int perf_buffer__consume(struct perf_buffer *pb)
12789 {
12790 	int i, err;
12791 
12792 	for (i = 0; i < pb->cpu_cnt; i++) {
12793 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12794 
12795 		if (!cpu_buf)
12796 			continue;
12797 
12798 		err = perf_buffer__process_records(pb, cpu_buf);
12799 		if (err) {
12800 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12801 			return libbpf_err(err);
12802 		}
12803 	}
12804 	return 0;
12805 }
12806 
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)12807 int bpf_program__set_attach_target(struct bpf_program *prog,
12808 				   int attach_prog_fd,
12809 				   const char *attach_func_name)
12810 {
12811 	int btf_obj_fd = 0, btf_id = 0, err;
12812 
12813 	if (!prog || attach_prog_fd < 0)
12814 		return libbpf_err(-EINVAL);
12815 
12816 	if (prog->obj->loaded)
12817 		return libbpf_err(-EINVAL);
12818 
12819 	if (attach_prog_fd && !attach_func_name) {
12820 		/* remember attach_prog_fd and let bpf_program__load() find
12821 		 * BTF ID during the program load
12822 		 */
12823 		prog->attach_prog_fd = attach_prog_fd;
12824 		return 0;
12825 	}
12826 
12827 	if (attach_prog_fd) {
12828 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
12829 						 attach_prog_fd);
12830 		if (btf_id < 0)
12831 			return libbpf_err(btf_id);
12832 	} else {
12833 		if (!attach_func_name)
12834 			return libbpf_err(-EINVAL);
12835 
12836 		/* load btf_vmlinux, if not yet */
12837 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
12838 		if (err)
12839 			return libbpf_err(err);
12840 		err = find_kernel_btf_id(prog->obj, attach_func_name,
12841 					 prog->expected_attach_type,
12842 					 &btf_obj_fd, &btf_id);
12843 		if (err)
12844 			return libbpf_err(err);
12845 	}
12846 
12847 	prog->attach_btf_id = btf_id;
12848 	prog->attach_btf_obj_fd = btf_obj_fd;
12849 	prog->attach_prog_fd = attach_prog_fd;
12850 	return 0;
12851 }
12852 
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)12853 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12854 {
12855 	int err = 0, n, len, start, end = -1;
12856 	bool *tmp;
12857 
12858 	*mask = NULL;
12859 	*mask_sz = 0;
12860 
12861 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12862 	while (*s) {
12863 		if (*s == ',' || *s == '\n') {
12864 			s++;
12865 			continue;
12866 		}
12867 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12868 		if (n <= 0 || n > 2) {
12869 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
12870 			err = -EINVAL;
12871 			goto cleanup;
12872 		} else if (n == 1) {
12873 			end = start;
12874 		}
12875 		if (start < 0 || start > end) {
12876 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
12877 				start, end, s);
12878 			err = -EINVAL;
12879 			goto cleanup;
12880 		}
12881 		tmp = realloc(*mask, end + 1);
12882 		if (!tmp) {
12883 			err = -ENOMEM;
12884 			goto cleanup;
12885 		}
12886 		*mask = tmp;
12887 		memset(tmp + *mask_sz, 0, start - *mask_sz);
12888 		memset(tmp + start, 1, end - start + 1);
12889 		*mask_sz = end + 1;
12890 		s += len;
12891 	}
12892 	if (!*mask_sz) {
12893 		pr_warn("Empty CPU range\n");
12894 		return -EINVAL;
12895 	}
12896 	return 0;
12897 cleanup:
12898 	free(*mask);
12899 	*mask = NULL;
12900 	return err;
12901 }
12902 
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)12903 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12904 {
12905 	int fd, err = 0, len;
12906 	char buf[128];
12907 
12908 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12909 	if (fd < 0) {
12910 		err = -errno;
12911 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12912 		return err;
12913 	}
12914 	len = read(fd, buf, sizeof(buf));
12915 	close(fd);
12916 	if (len <= 0) {
12917 		err = len ? -errno : -EINVAL;
12918 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12919 		return err;
12920 	}
12921 	if (len >= sizeof(buf)) {
12922 		pr_warn("CPU mask is too big in file %s\n", fcpu);
12923 		return -E2BIG;
12924 	}
12925 	buf[len] = '\0';
12926 
12927 	return parse_cpu_mask_str(buf, mask, mask_sz);
12928 }
12929 
libbpf_num_possible_cpus(void)12930 int libbpf_num_possible_cpus(void)
12931 {
12932 	static const char *fcpu = "/sys/devices/system/cpu/possible";
12933 	static int cpus;
12934 	int err, n, i, tmp_cpus;
12935 	bool *mask;
12936 
12937 	tmp_cpus = READ_ONCE(cpus);
12938 	if (tmp_cpus > 0)
12939 		return tmp_cpus;
12940 
12941 	err = parse_cpu_mask_file(fcpu, &mask, &n);
12942 	if (err)
12943 		return libbpf_err(err);
12944 
12945 	tmp_cpus = 0;
12946 	for (i = 0; i < n; i++) {
12947 		if (mask[i])
12948 			tmp_cpus++;
12949 	}
12950 	free(mask);
12951 
12952 	WRITE_ONCE(cpus, tmp_cpus);
12953 	return tmp_cpus;
12954 }
12955 
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt)12956 static int populate_skeleton_maps(const struct bpf_object *obj,
12957 				  struct bpf_map_skeleton *maps,
12958 				  size_t map_cnt)
12959 {
12960 	int i;
12961 
12962 	for (i = 0; i < map_cnt; i++) {
12963 		struct bpf_map **map = maps[i].map;
12964 		const char *name = maps[i].name;
12965 		void **mmaped = maps[i].mmaped;
12966 
12967 		*map = bpf_object__find_map_by_name(obj, name);
12968 		if (!*map) {
12969 			pr_warn("failed to find skeleton map '%s'\n", name);
12970 			return -ESRCH;
12971 		}
12972 
12973 		/* externs shouldn't be pre-setup from user code */
12974 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12975 			*mmaped = (*map)->mmaped;
12976 	}
12977 	return 0;
12978 }
12979 
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt)12980 static int populate_skeleton_progs(const struct bpf_object *obj,
12981 				   struct bpf_prog_skeleton *progs,
12982 				   size_t prog_cnt)
12983 {
12984 	int i;
12985 
12986 	for (i = 0; i < prog_cnt; i++) {
12987 		struct bpf_program **prog = progs[i].prog;
12988 		const char *name = progs[i].name;
12989 
12990 		*prog = bpf_object__find_program_by_name(obj, name);
12991 		if (!*prog) {
12992 			pr_warn("failed to find skeleton program '%s'\n", name);
12993 			return -ESRCH;
12994 		}
12995 	}
12996 	return 0;
12997 }
12998 
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)12999 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13000 			      const struct bpf_object_open_opts *opts)
13001 {
13002 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13003 		.object_name = s->name,
13004 	);
13005 	struct bpf_object *obj;
13006 	int err;
13007 
13008 	/* Attempt to preserve opts->object_name, unless overriden by user
13009 	 * explicitly. Overwriting object name for skeletons is discouraged,
13010 	 * as it breaks global data maps, because they contain object name
13011 	 * prefix as their own map name prefix. When skeleton is generated,
13012 	 * bpftool is making an assumption that this name will stay the same.
13013 	 */
13014 	if (opts) {
13015 		memcpy(&skel_opts, opts, sizeof(*opts));
13016 		if (!opts->object_name)
13017 			skel_opts.object_name = s->name;
13018 	}
13019 
13020 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13021 	err = libbpf_get_error(obj);
13022 	if (err) {
13023 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13024 			s->name, err);
13025 		return libbpf_err(err);
13026 	}
13027 
13028 	*s->obj = obj;
13029 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13030 	if (err) {
13031 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13032 		return libbpf_err(err);
13033 	}
13034 
13035 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13036 	if (err) {
13037 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13038 		return libbpf_err(err);
13039 	}
13040 
13041 	return 0;
13042 }
13043 
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13044 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13045 {
13046 	int err, len, var_idx, i;
13047 	const char *var_name;
13048 	const struct bpf_map *map;
13049 	struct btf *btf;
13050 	__u32 map_type_id;
13051 	const struct btf_type *map_type, *var_type;
13052 	const struct bpf_var_skeleton *var_skel;
13053 	struct btf_var_secinfo *var;
13054 
13055 	if (!s->obj)
13056 		return libbpf_err(-EINVAL);
13057 
13058 	btf = bpf_object__btf(s->obj);
13059 	if (!btf) {
13060 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13061 			bpf_object__name(s->obj));
13062 		return libbpf_err(-errno);
13063 	}
13064 
13065 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13066 	if (err) {
13067 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13068 		return libbpf_err(err);
13069 	}
13070 
13071 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13072 	if (err) {
13073 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13074 		return libbpf_err(err);
13075 	}
13076 
13077 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13078 		var_skel = &s->vars[var_idx];
13079 		map = *var_skel->map;
13080 		map_type_id = bpf_map__btf_value_type_id(map);
13081 		map_type = btf__type_by_id(btf, map_type_id);
13082 
13083 		if (!btf_is_datasec(map_type)) {
13084 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13085 				bpf_map__name(map),
13086 				__btf_kind_str(btf_kind(map_type)));
13087 			return libbpf_err(-EINVAL);
13088 		}
13089 
13090 		len = btf_vlen(map_type);
13091 		var = btf_var_secinfos(map_type);
13092 		for (i = 0; i < len; i++, var++) {
13093 			var_type = btf__type_by_id(btf, var->type);
13094 			var_name = btf__name_by_offset(btf, var_type->name_off);
13095 			if (strcmp(var_name, var_skel->name) == 0) {
13096 				*var_skel->addr = map->mmaped + var->offset;
13097 				break;
13098 			}
13099 		}
13100 	}
13101 	return 0;
13102 }
13103 
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)13104 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13105 {
13106 	if (!s)
13107 		return;
13108 	free(s->maps);
13109 	free(s->progs);
13110 	free(s->vars);
13111 	free(s);
13112 }
13113 
bpf_object__load_skeleton(struct bpf_object_skeleton * s)13114 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13115 {
13116 	int i, err;
13117 
13118 	err = bpf_object__load(*s->obj);
13119 	if (err) {
13120 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13121 		return libbpf_err(err);
13122 	}
13123 
13124 	for (i = 0; i < s->map_cnt; i++) {
13125 		struct bpf_map *map = *s->maps[i].map;
13126 		size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13127 		int prot, map_fd = bpf_map__fd(map);
13128 		void **mmaped = s->maps[i].mmaped;
13129 
13130 		if (!mmaped)
13131 			continue;
13132 
13133 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13134 			*mmaped = NULL;
13135 			continue;
13136 		}
13137 
13138 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13139 			prot = PROT_READ;
13140 		else
13141 			prot = PROT_READ | PROT_WRITE;
13142 
13143 		/* Remap anonymous mmap()-ed "map initialization image" as
13144 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13145 		 * memory address. This will cause kernel to change process'
13146 		 * page table to point to a different piece of kernel memory,
13147 		 * but from userspace point of view memory address (and its
13148 		 * contents, being identical at this point) will stay the
13149 		 * same. This mapping will be released by bpf_object__close()
13150 		 * as per normal clean up procedure, so we don't need to worry
13151 		 * about it from skeleton's clean up perspective.
13152 		 */
13153 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13154 		if (*mmaped == MAP_FAILED) {
13155 			err = -errno;
13156 			*mmaped = NULL;
13157 			pr_warn("failed to re-mmap() map '%s': %d\n",
13158 				 bpf_map__name(map), err);
13159 			return libbpf_err(err);
13160 		}
13161 	}
13162 
13163 	return 0;
13164 }
13165 
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)13166 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13167 {
13168 	int i, err;
13169 
13170 	for (i = 0; i < s->prog_cnt; i++) {
13171 		struct bpf_program *prog = *s->progs[i].prog;
13172 		struct bpf_link **link = s->progs[i].link;
13173 
13174 		if (!prog->autoload || !prog->autoattach)
13175 			continue;
13176 
13177 		/* auto-attaching not supported for this program */
13178 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13179 			continue;
13180 
13181 		/* if user already set the link manually, don't attempt auto-attach */
13182 		if (*link)
13183 			continue;
13184 
13185 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13186 		if (err) {
13187 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13188 				bpf_program__name(prog), err);
13189 			return libbpf_err(err);
13190 		}
13191 
13192 		/* It's possible that for some SEC() definitions auto-attach
13193 		 * is supported in some cases (e.g., if definition completely
13194 		 * specifies target information), but is not in other cases.
13195 		 * SEC("uprobe") is one such case. If user specified target
13196 		 * binary and function name, such BPF program can be
13197 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13198 		 * attach to fail. It should just be skipped.
13199 		 * attach_fn signals such case with returning 0 (no error) and
13200 		 * setting link to NULL.
13201 		 */
13202 	}
13203 
13204 	return 0;
13205 }
13206 
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)13207 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13208 {
13209 	int i;
13210 
13211 	for (i = 0; i < s->prog_cnt; i++) {
13212 		struct bpf_link **link = s->progs[i].link;
13213 
13214 		bpf_link__destroy(*link);
13215 		*link = NULL;
13216 	}
13217 }
13218 
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)13219 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13220 {
13221 	if (!s)
13222 		return;
13223 
13224 	if (s->progs)
13225 		bpf_object__detach_skeleton(s);
13226 	if (s->obj)
13227 		bpf_object__close(*s->obj);
13228 	free(s->maps);
13229 	free(s->progs);
13230 	free(s);
13231 }
13232