xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_process.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38 #include "amdgpu_reset.h"
39 
40 struct mm_struct;
41 
42 #include "kfd_priv.h"
43 #include "kfd_device_queue_manager.h"
44 #include "kfd_svm.h"
45 #include "kfd_smi_events.h"
46 #include "kfd_debug.h"
47 
48 /*
49  * List of struct kfd_process (field kfd_process).
50  * Unique/indexed by mm_struct*
51  */
52 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53 DEFINE_MUTEX(kfd_processes_mutex);
54 
55 DEFINE_SRCU(kfd_processes_srcu);
56 
57 /* For process termination handling */
58 static struct workqueue_struct *kfd_process_wq;
59 
60 /* Ordered, single-threaded workqueue for restoring evicted
61  * processes. Restoring multiple processes concurrently under memory
62  * pressure can lead to processes blocking each other from validating
63  * their BOs and result in a live-lock situation where processes
64  * remain evicted indefinitely.
65  */
66 static struct workqueue_struct *kfd_restore_wq;
67 
68 static struct kfd_process *find_process(const struct task_struct *thread,
69 					bool ref);
70 static void kfd_process_ref_release(struct kref *ref);
71 static struct kfd_process *create_process(const struct task_struct *thread);
72 
73 static void evict_process_worker(struct work_struct *work);
74 static void restore_process_worker(struct work_struct *work);
75 
76 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
77 
78 struct kfd_procfs_tree {
79 	struct kobject *kobj;
80 };
81 
82 static struct kfd_procfs_tree procfs;
83 
84 /*
85  * Structure for SDMA activity tracking
86  */
87 struct kfd_sdma_activity_handler_workarea {
88 	struct work_struct sdma_activity_work;
89 	struct kfd_process_device *pdd;
90 	uint64_t sdma_activity_counter;
91 };
92 
93 struct temp_sdma_queue_list {
94 	uint64_t __user *rptr;
95 	uint64_t sdma_val;
96 	unsigned int queue_id;
97 	struct list_head list;
98 };
99 
kfd_sdma_activity_worker(struct work_struct * work)100 static void kfd_sdma_activity_worker(struct work_struct *work)
101 {
102 	struct kfd_sdma_activity_handler_workarea *workarea;
103 	struct kfd_process_device *pdd;
104 	uint64_t val;
105 	struct mm_struct *mm;
106 	struct queue *q;
107 	struct qcm_process_device *qpd;
108 	struct device_queue_manager *dqm;
109 	int ret = 0;
110 	struct temp_sdma_queue_list sdma_q_list;
111 	struct temp_sdma_queue_list *sdma_q, *next;
112 
113 	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
114 				sdma_activity_work);
115 
116 	pdd = workarea->pdd;
117 	if (!pdd)
118 		return;
119 	dqm = pdd->dev->dqm;
120 	qpd = &pdd->qpd;
121 	if (!dqm || !qpd)
122 		return;
123 	/*
124 	 * Total SDMA activity is current SDMA activity + past SDMA activity
125 	 * Past SDMA count is stored in pdd.
126 	 * To get the current activity counters for all active SDMA queues,
127 	 * we loop over all SDMA queues and get their counts from user-space.
128 	 *
129 	 * We cannot call get_user() with dqm_lock held as it can cause
130 	 * a circular lock dependency situation. To read the SDMA stats,
131 	 * we need to do the following:
132 	 *
133 	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
134 	 *    with dqm_lock/dqm_unlock().
135 	 * 2. Call get_user() for each node in temporary list without dqm_lock.
136 	 *    Save the SDMA count for each node and also add the count to the total
137 	 *    SDMA count counter.
138 	 *    Its possible, during this step, a few SDMA queue nodes got deleted
139 	 *    from the qpd->queues_list.
140 	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
141 	 *    If any node got deleted, its SDMA count would be captured in the sdma
142 	 *    past activity counter. So subtract the SDMA counter stored in step 2
143 	 *    for this node from the total SDMA count.
144 	 */
145 	INIT_LIST_HEAD(&sdma_q_list.list);
146 
147 	/*
148 	 * Create the temp list of all SDMA queues
149 	 */
150 	dqm_lock(dqm);
151 
152 	list_for_each_entry(q, &qpd->queues_list, list) {
153 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
154 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
155 			continue;
156 
157 		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
158 		if (!sdma_q) {
159 			dqm_unlock(dqm);
160 			goto cleanup;
161 		}
162 
163 		INIT_LIST_HEAD(&sdma_q->list);
164 		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
165 		sdma_q->queue_id = q->properties.queue_id;
166 		list_add_tail(&sdma_q->list, &sdma_q_list.list);
167 	}
168 
169 	/*
170 	 * If the temp list is empty, then no SDMA queues nodes were found in
171 	 * qpd->queues_list. Return the past activity count as the total sdma
172 	 * count
173 	 */
174 	if (list_empty(&sdma_q_list.list)) {
175 		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
176 		dqm_unlock(dqm);
177 		return;
178 	}
179 
180 	dqm_unlock(dqm);
181 
182 	/*
183 	 * Get the usage count for each SDMA queue in temp_list.
184 	 */
185 	mm = get_task_mm(pdd->process->lead_thread);
186 	if (!mm)
187 		goto cleanup;
188 
189 	kthread_use_mm(mm);
190 
191 	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
192 		val = 0;
193 		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
194 		if (ret) {
195 			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
196 				 sdma_q->queue_id);
197 		} else {
198 			sdma_q->sdma_val = val;
199 			workarea->sdma_activity_counter += val;
200 		}
201 	}
202 
203 	kthread_unuse_mm(mm);
204 	mmput(mm);
205 
206 	/*
207 	 * Do a second iteration over qpd_queues_list to check if any SDMA
208 	 * nodes got deleted while fetching SDMA counter.
209 	 */
210 	dqm_lock(dqm);
211 
212 	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
213 
214 	list_for_each_entry(q, &qpd->queues_list, list) {
215 		if (list_empty(&sdma_q_list.list))
216 			break;
217 
218 		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
219 		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
220 			continue;
221 
222 		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
223 			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
224 			     (sdma_q->queue_id == q->properties.queue_id)) {
225 				list_del(&sdma_q->list);
226 				kfree(sdma_q);
227 				break;
228 			}
229 		}
230 	}
231 
232 	dqm_unlock(dqm);
233 
234 	/*
235 	 * If temp list is not empty, it implies some queues got deleted
236 	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
237 	 * count for each node from the total SDMA count.
238 	 */
239 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
240 		workarea->sdma_activity_counter -= sdma_q->sdma_val;
241 		list_del(&sdma_q->list);
242 		kfree(sdma_q);
243 	}
244 
245 	return;
246 
247 cleanup:
248 	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
249 		list_del(&sdma_q->list);
250 		kfree(sdma_q);
251 	}
252 }
253 
254 /**
255  * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
256  * by current process. Translates acquired wave count into number of compute units
257  * that are occupied.
258  *
259  * @attr: Handle of attribute that allows reporting of wave count. The attribute
260  * handle encapsulates GPU device it is associated with, thereby allowing collection
261  * of waves in flight, etc
262  * @buffer: Handle of user provided buffer updated with wave count
263  *
264  * Return: Number of bytes written to user buffer or an error value
265  */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268 	int cu_cnt;
269 	int wave_cnt;
270 	int max_waves_per_cu;
271 	struct kfd_node *dev = NULL;
272 	struct kfd_process *proc = NULL;
273 	struct kfd_process_device *pdd = NULL;
274 
275 	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
276 	dev = pdd->dev;
277 	if (dev->kfd2kgd->get_cu_occupancy == NULL)
278 		return -EINVAL;
279 
280 	cu_cnt = 0;
281 	proc = pdd->process;
282 	if (pdd->qpd.queue_count == 0) {
283 		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
284 			 dev->id, proc->pasid);
285 		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
286 	}
287 
288 	/* Collect wave count from device if it supports */
289 	wave_cnt = 0;
290 	max_waves_per_cu = 0;
291 	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
292 			&max_waves_per_cu, 0);
293 
294 	/* Translate wave count to number of compute units */
295 	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
296 	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
297 }
298 
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)299 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
300 			       char *buffer)
301 {
302 	if (strcmp(attr->name, "pasid") == 0) {
303 		struct kfd_process *p = container_of(attr, struct kfd_process,
304 						     attr_pasid);
305 
306 		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
307 	} else if (strncmp(attr->name, "vram_", 5) == 0) {
308 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
309 							      attr_vram);
310 		return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
311 	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
312 		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
313 							      attr_sdma);
314 		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
315 
316 		INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
317 				  kfd_sdma_activity_worker);
318 
319 		sdma_activity_work_handler.pdd = pdd;
320 		sdma_activity_work_handler.sdma_activity_counter = 0;
321 
322 		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
323 
324 		flush_work(&sdma_activity_work_handler.sdma_activity_work);
325 		destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
326 
327 		return snprintf(buffer, PAGE_SIZE, "%llu\n",
328 				(sdma_activity_work_handler.sdma_activity_counter)/
329 				 SDMA_ACTIVITY_DIVISOR);
330 	} else {
331 		pr_err("Invalid attribute");
332 		return -EINVAL;
333 	}
334 
335 	return 0;
336 }
337 
kfd_procfs_kobj_release(struct kobject * kobj)338 static void kfd_procfs_kobj_release(struct kobject *kobj)
339 {
340 	kfree(kobj);
341 }
342 
343 static const struct sysfs_ops kfd_procfs_ops = {
344 	.show = kfd_procfs_show,
345 };
346 
347 static const struct kobj_type procfs_type = {
348 	.release = kfd_procfs_kobj_release,
349 	.sysfs_ops = &kfd_procfs_ops,
350 };
351 
kfd_procfs_init(void)352 void kfd_procfs_init(void)
353 {
354 	int ret = 0;
355 
356 	procfs.kobj = kfd_alloc_struct(procfs.kobj);
357 	if (!procfs.kobj)
358 		return;
359 
360 	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
361 				   &kfd_device->kobj, "proc");
362 	if (ret) {
363 		pr_warn("Could not create procfs proc folder");
364 		/* If we fail to create the procfs, clean up */
365 		kfd_procfs_shutdown();
366 	}
367 }
368 
kfd_procfs_shutdown(void)369 void kfd_procfs_shutdown(void)
370 {
371 	if (procfs.kobj) {
372 		kobject_del(procfs.kobj);
373 		kobject_put(procfs.kobj);
374 		procfs.kobj = NULL;
375 	}
376 }
377 
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)378 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
379 				     struct attribute *attr, char *buffer)
380 {
381 	struct queue *q = container_of(kobj, struct queue, kobj);
382 
383 	if (!strcmp(attr->name, "size"))
384 		return snprintf(buffer, PAGE_SIZE, "%llu",
385 				q->properties.queue_size);
386 	else if (!strcmp(attr->name, "type"))
387 		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
388 	else if (!strcmp(attr->name, "gpuid"))
389 		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
390 	else
391 		pr_err("Invalid attribute");
392 
393 	return 0;
394 }
395 
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)396 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
397 				     struct attribute *attr, char *buffer)
398 {
399 	if (strcmp(attr->name, "evicted_ms") == 0) {
400 		struct kfd_process_device *pdd = container_of(attr,
401 				struct kfd_process_device,
402 				attr_evict);
403 		uint64_t evict_jiffies;
404 
405 		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
406 
407 		return snprintf(buffer,
408 				PAGE_SIZE,
409 				"%llu\n",
410 				jiffies64_to_msecs(evict_jiffies));
411 
412 	/* Sysfs handle that gets CU occupancy is per device */
413 	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
414 		return kfd_get_cu_occupancy(attr, buffer);
415 	} else {
416 		pr_err("Invalid attribute");
417 	}
418 
419 	return 0;
420 }
421 
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)422 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
423 				       struct attribute *attr, char *buf)
424 {
425 	struct kfd_process_device *pdd;
426 
427 	if (!strcmp(attr->name, "faults")) {
428 		pdd = container_of(attr, struct kfd_process_device,
429 				   attr_faults);
430 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
431 	}
432 	if (!strcmp(attr->name, "page_in")) {
433 		pdd = container_of(attr, struct kfd_process_device,
434 				   attr_page_in);
435 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
436 	}
437 	if (!strcmp(attr->name, "page_out")) {
438 		pdd = container_of(attr, struct kfd_process_device,
439 				   attr_page_out);
440 		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
441 	}
442 	return 0;
443 }
444 
445 static struct attribute attr_queue_size = {
446 	.name = "size",
447 	.mode = KFD_SYSFS_FILE_MODE
448 };
449 
450 static struct attribute attr_queue_type = {
451 	.name = "type",
452 	.mode = KFD_SYSFS_FILE_MODE
453 };
454 
455 static struct attribute attr_queue_gpuid = {
456 	.name = "gpuid",
457 	.mode = KFD_SYSFS_FILE_MODE
458 };
459 
460 static struct attribute *procfs_queue_attrs[] = {
461 	&attr_queue_size,
462 	&attr_queue_type,
463 	&attr_queue_gpuid,
464 	NULL
465 };
466 ATTRIBUTE_GROUPS(procfs_queue);
467 
468 static const struct sysfs_ops procfs_queue_ops = {
469 	.show = kfd_procfs_queue_show,
470 };
471 
472 static const struct kobj_type procfs_queue_type = {
473 	.sysfs_ops = &procfs_queue_ops,
474 	.default_groups = procfs_queue_groups,
475 };
476 
477 static const struct sysfs_ops procfs_stats_ops = {
478 	.show = kfd_procfs_stats_show,
479 };
480 
481 static const struct kobj_type procfs_stats_type = {
482 	.sysfs_ops = &procfs_stats_ops,
483 	.release = kfd_procfs_kobj_release,
484 };
485 
486 static const struct sysfs_ops sysfs_counters_ops = {
487 	.show = kfd_sysfs_counters_show,
488 };
489 
490 static const struct kobj_type sysfs_counters_type = {
491 	.sysfs_ops = &sysfs_counters_ops,
492 	.release = kfd_procfs_kobj_release,
493 };
494 
kfd_procfs_add_queue(struct queue * q)495 int kfd_procfs_add_queue(struct queue *q)
496 {
497 	struct kfd_process *proc;
498 	int ret;
499 
500 	if (!q || !q->process)
501 		return -EINVAL;
502 	proc = q->process;
503 
504 	/* Create proc/<pid>/queues/<queue id> folder */
505 	if (!proc->kobj_queues)
506 		return -EFAULT;
507 	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
508 			proc->kobj_queues, "%u", q->properties.queue_id);
509 	if (ret < 0) {
510 		pr_warn("Creating proc/<pid>/queues/%u failed",
511 			q->properties.queue_id);
512 		kobject_put(&q->kobj);
513 		return ret;
514 	}
515 
516 	return 0;
517 }
518 
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)519 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
520 				 char *name)
521 {
522 	int ret;
523 
524 	if (!kobj || !attr || !name)
525 		return;
526 
527 	attr->name = name;
528 	attr->mode = KFD_SYSFS_FILE_MODE;
529 	sysfs_attr_init(attr);
530 
531 	ret = sysfs_create_file(kobj, attr);
532 	if (ret)
533 		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
534 }
535 
kfd_procfs_add_sysfs_stats(struct kfd_process * p)536 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
537 {
538 	int ret;
539 	int i;
540 	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
541 
542 	if (!p || !p->kobj)
543 		return;
544 
545 	/*
546 	 * Create sysfs files for each GPU:
547 	 * - proc/<pid>/stats_<gpuid>/
548 	 * - proc/<pid>/stats_<gpuid>/evicted_ms
549 	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
550 	 */
551 	for (i = 0; i < p->n_pdds; i++) {
552 		struct kfd_process_device *pdd = p->pdds[i];
553 
554 		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
555 				"stats_%u", pdd->dev->id);
556 		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
557 		if (!pdd->kobj_stats)
558 			return;
559 
560 		ret = kobject_init_and_add(pdd->kobj_stats,
561 					   &procfs_stats_type,
562 					   p->kobj,
563 					   stats_dir_filename);
564 
565 		if (ret) {
566 			pr_warn("Creating KFD proc/stats_%s folder failed",
567 				stats_dir_filename);
568 			kobject_put(pdd->kobj_stats);
569 			pdd->kobj_stats = NULL;
570 			return;
571 		}
572 
573 		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
574 				      "evicted_ms");
575 		/* Add sysfs file to report compute unit occupancy */
576 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
577 			kfd_sysfs_create_file(pdd->kobj_stats,
578 					      &pdd->attr_cu_occupancy,
579 					      "cu_occupancy");
580 	}
581 }
582 
kfd_procfs_add_sysfs_counters(struct kfd_process * p)583 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
584 {
585 	int ret = 0;
586 	int i;
587 	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
588 
589 	if (!p || !p->kobj)
590 		return;
591 
592 	/*
593 	 * Create sysfs files for each GPU which supports SVM
594 	 * - proc/<pid>/counters_<gpuid>/
595 	 * - proc/<pid>/counters_<gpuid>/faults
596 	 * - proc/<pid>/counters_<gpuid>/page_in
597 	 * - proc/<pid>/counters_<gpuid>/page_out
598 	 */
599 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
600 		struct kfd_process_device *pdd = p->pdds[i];
601 		struct kobject *kobj_counters;
602 
603 		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
604 			"counters_%u", pdd->dev->id);
605 		kobj_counters = kfd_alloc_struct(kobj_counters);
606 		if (!kobj_counters)
607 			return;
608 
609 		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
610 					   p->kobj, counters_dir_filename);
611 		if (ret) {
612 			pr_warn("Creating KFD proc/%s folder failed",
613 				counters_dir_filename);
614 			kobject_put(kobj_counters);
615 			return;
616 		}
617 
618 		pdd->kobj_counters = kobj_counters;
619 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
620 				      "faults");
621 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
622 				      "page_in");
623 		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
624 				      "page_out");
625 	}
626 }
627 
kfd_procfs_add_sysfs_files(struct kfd_process * p)628 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
629 {
630 	int i;
631 
632 	if (!p || !p->kobj)
633 		return;
634 
635 	/*
636 	 * Create sysfs files for each GPU:
637 	 * - proc/<pid>/vram_<gpuid>
638 	 * - proc/<pid>/sdma_<gpuid>
639 	 */
640 	for (i = 0; i < p->n_pdds; i++) {
641 		struct kfd_process_device *pdd = p->pdds[i];
642 
643 		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
644 			 pdd->dev->id);
645 		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
646 				      pdd->vram_filename);
647 
648 		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
649 			 pdd->dev->id);
650 		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
651 					    pdd->sdma_filename);
652 	}
653 }
654 
kfd_procfs_del_queue(struct queue * q)655 void kfd_procfs_del_queue(struct queue *q)
656 {
657 	if (!q)
658 		return;
659 
660 	kobject_del(&q->kobj);
661 	kobject_put(&q->kobj);
662 }
663 
kfd_process_create_wq(void)664 int kfd_process_create_wq(void)
665 {
666 	if (!kfd_process_wq)
667 		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
668 	if (!kfd_restore_wq)
669 		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
670 
671 	if (!kfd_process_wq || !kfd_restore_wq) {
672 		kfd_process_destroy_wq();
673 		return -ENOMEM;
674 	}
675 
676 	return 0;
677 }
678 
kfd_process_destroy_wq(void)679 void kfd_process_destroy_wq(void)
680 {
681 	if (kfd_process_wq) {
682 		destroy_workqueue(kfd_process_wq);
683 		kfd_process_wq = NULL;
684 	}
685 	if (kfd_restore_wq) {
686 		destroy_workqueue(kfd_restore_wq);
687 		kfd_restore_wq = NULL;
688 	}
689 }
690 
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void ** kptr)691 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
692 			struct kfd_process_device *pdd, void **kptr)
693 {
694 	struct kfd_node *dev = pdd->dev;
695 
696 	if (kptr && *kptr) {
697 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
698 		*kptr = NULL;
699 	}
700 
701 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
702 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
703 					       NULL);
704 }
705 
706 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
707  *	This function should be only called right after the process
708  *	is created and when kfd_processes_mutex is still being held
709  *	to avoid concurrency. Because of that exclusiveness, we do
710  *	not need to take p->mutex.
711  */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)712 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
713 				   uint64_t gpu_va, uint32_t size,
714 				   uint32_t flags, struct kgd_mem **mem, void **kptr)
715 {
716 	struct kfd_node *kdev = pdd->dev;
717 	int err;
718 
719 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
720 						 pdd->drm_priv, mem, NULL,
721 						 flags, false);
722 	if (err)
723 		goto err_alloc_mem;
724 
725 	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
726 			pdd->drm_priv);
727 	if (err)
728 		goto err_map_mem;
729 
730 	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
731 	if (err) {
732 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
733 		goto sync_memory_failed;
734 	}
735 
736 	if (kptr) {
737 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
738 				(struct kgd_mem *)*mem, kptr, NULL);
739 		if (err) {
740 			pr_debug("Map GTT BO to kernel failed\n");
741 			goto sync_memory_failed;
742 		}
743 	}
744 
745 	return err;
746 
747 sync_memory_failed:
748 	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
749 
750 err_map_mem:
751 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
752 					       NULL);
753 err_alloc_mem:
754 	*mem = NULL;
755 	*kptr = NULL;
756 	return err;
757 }
758 
759 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
760  *	process for IB usage The memory reserved is for KFD to submit
761  *	IB to AMDGPU from kernel.  If the memory is reserved
762  *	successfully, ib_kaddr will have the CPU/kernel
763  *	address. Check ib_kaddr before accessing the memory.
764  */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)765 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
766 {
767 	struct qcm_process_device *qpd = &pdd->qpd;
768 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
769 			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
770 			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
771 			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
772 	struct kgd_mem *mem;
773 	void *kaddr;
774 	int ret;
775 
776 	if (qpd->ib_kaddr || !qpd->ib_base)
777 		return 0;
778 
779 	/* ib_base is only set for dGPU */
780 	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
781 				      &mem, &kaddr);
782 	if (ret)
783 		return ret;
784 
785 	qpd->ib_mem = mem;
786 	qpd->ib_kaddr = kaddr;
787 
788 	return 0;
789 }
790 
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)791 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
792 {
793 	struct qcm_process_device *qpd = &pdd->qpd;
794 
795 	if (!qpd->ib_kaddr || !qpd->ib_base)
796 		return;
797 
798 	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
799 }
800 
kfd_create_process(struct task_struct * thread)801 struct kfd_process *kfd_create_process(struct task_struct *thread)
802 {
803 	struct kfd_process *process;
804 	int ret;
805 
806 	if (!(thread->mm && mmget_not_zero(thread->mm)))
807 		return ERR_PTR(-EINVAL);
808 
809 	/* Only the pthreads threading model is supported. */
810 	if (thread->group_leader->mm != thread->mm) {
811 		mmput(thread->mm);
812 		return ERR_PTR(-EINVAL);
813 	}
814 
815 	/* If the process just called exec(3), it is possible that the
816 	 * cleanup of the kfd_process (following the release of the mm
817 	 * of the old process image) is still in the cleanup work queue.
818 	 * Make sure to drain any job before trying to recreate any
819 	 * resource for this process.
820 	 */
821 	flush_workqueue(kfd_process_wq);
822 
823 	/*
824 	 * take kfd processes mutex before starting of process creation
825 	 * so there won't be a case where two threads of the same process
826 	 * create two kfd_process structures
827 	 */
828 	mutex_lock(&kfd_processes_mutex);
829 
830 	if (kfd_is_locked()) {
831 		pr_debug("KFD is locked! Cannot create process");
832 		process = ERR_PTR(-EINVAL);
833 		goto out;
834 	}
835 
836 	/* A prior open of /dev/kfd could have already created the process. */
837 	process = find_process(thread, false);
838 	if (process) {
839 		pr_debug("Process already found\n");
840 	} else {
841 		process = create_process(thread);
842 		if (IS_ERR(process))
843 			goto out;
844 
845 		if (!procfs.kobj)
846 			goto out;
847 
848 		process->kobj = kfd_alloc_struct(process->kobj);
849 		if (!process->kobj) {
850 			pr_warn("Creating procfs kobject failed");
851 			goto out;
852 		}
853 		ret = kobject_init_and_add(process->kobj, &procfs_type,
854 					   procfs.kobj, "%d",
855 					   (int)process->lead_thread->pid);
856 		if (ret) {
857 			pr_warn("Creating procfs pid directory failed");
858 			kobject_put(process->kobj);
859 			goto out;
860 		}
861 
862 		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
863 				      "pasid");
864 
865 		process->kobj_queues = kobject_create_and_add("queues",
866 							process->kobj);
867 		if (!process->kobj_queues)
868 			pr_warn("Creating KFD proc/queues folder failed");
869 
870 		kfd_procfs_add_sysfs_stats(process);
871 		kfd_procfs_add_sysfs_files(process);
872 		kfd_procfs_add_sysfs_counters(process);
873 
874 		init_waitqueue_head(&process->wait_irq_drain);
875 	}
876 out:
877 	if (!IS_ERR(process))
878 		kref_get(&process->ref);
879 	mutex_unlock(&kfd_processes_mutex);
880 	mmput(thread->mm);
881 
882 	return process;
883 }
884 
kfd_get_process(const struct task_struct * thread)885 struct kfd_process *kfd_get_process(const struct task_struct *thread)
886 {
887 	struct kfd_process *process;
888 
889 	if (!thread->mm)
890 		return ERR_PTR(-EINVAL);
891 
892 	/* Only the pthreads threading model is supported. */
893 	if (thread->group_leader->mm != thread->mm)
894 		return ERR_PTR(-EINVAL);
895 
896 	process = find_process(thread, false);
897 	if (!process)
898 		return ERR_PTR(-EINVAL);
899 
900 	return process;
901 }
902 
find_process_by_mm(const struct mm_struct * mm)903 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
904 {
905 	struct kfd_process *process;
906 
907 	hash_for_each_possible_rcu(kfd_processes_table, process,
908 					kfd_processes, (uintptr_t)mm)
909 		if (process->mm == mm)
910 			return process;
911 
912 	return NULL;
913 }
914 
find_process(const struct task_struct * thread,bool ref)915 static struct kfd_process *find_process(const struct task_struct *thread,
916 					bool ref)
917 {
918 	struct kfd_process *p;
919 	int idx;
920 
921 	idx = srcu_read_lock(&kfd_processes_srcu);
922 	p = find_process_by_mm(thread->mm);
923 	if (p && ref)
924 		kref_get(&p->ref);
925 	srcu_read_unlock(&kfd_processes_srcu, idx);
926 
927 	return p;
928 }
929 
kfd_unref_process(struct kfd_process * p)930 void kfd_unref_process(struct kfd_process *p)
931 {
932 	kref_put(&p->ref, kfd_process_ref_release);
933 }
934 
935 /* This increments the process->ref counter. */
kfd_lookup_process_by_pid(struct pid * pid)936 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
937 {
938 	struct task_struct *task = NULL;
939 	struct kfd_process *p    = NULL;
940 
941 	if (!pid) {
942 		task = current;
943 		get_task_struct(task);
944 	} else {
945 		task = get_pid_task(pid, PIDTYPE_PID);
946 	}
947 
948 	if (task) {
949 		p = find_process(task, true);
950 		put_task_struct(task);
951 	}
952 
953 	return p;
954 }
955 
kfd_process_device_free_bos(struct kfd_process_device * pdd)956 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
957 {
958 	struct kfd_process *p = pdd->process;
959 	void *mem;
960 	int id;
961 	int i;
962 
963 	/*
964 	 * Remove all handles from idr and release appropriate
965 	 * local memory object
966 	 */
967 	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
968 
969 		for (i = 0; i < p->n_pdds; i++) {
970 			struct kfd_process_device *peer_pdd = p->pdds[i];
971 
972 			if (!peer_pdd->drm_priv)
973 				continue;
974 			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
975 				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
976 		}
977 
978 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
979 						       pdd->drm_priv, NULL);
980 		kfd_process_device_remove_obj_handle(pdd, id);
981 	}
982 }
983 
984 /*
985  * Just kunmap and unpin signal BO here. It will be freed in
986  * kfd_process_free_outstanding_kfd_bos()
987  */
kfd_process_kunmap_signal_bo(struct kfd_process * p)988 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
989 {
990 	struct kfd_process_device *pdd;
991 	struct kfd_node *kdev;
992 	void *mem;
993 
994 	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
995 	if (!kdev)
996 		return;
997 
998 	mutex_lock(&p->mutex);
999 
1000 	pdd = kfd_get_process_device_data(kdev, p);
1001 	if (!pdd)
1002 		goto out;
1003 
1004 	mem = kfd_process_device_translate_handle(
1005 		pdd, GET_IDR_HANDLE(p->signal_handle));
1006 	if (!mem)
1007 		goto out;
1008 
1009 	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1010 
1011 out:
1012 	mutex_unlock(&p->mutex);
1013 }
1014 
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)1015 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1016 {
1017 	int i;
1018 
1019 	for (i = 0; i < p->n_pdds; i++)
1020 		kfd_process_device_free_bos(p->pdds[i]);
1021 }
1022 
kfd_process_destroy_pdds(struct kfd_process * p)1023 static void kfd_process_destroy_pdds(struct kfd_process *p)
1024 {
1025 	int i;
1026 
1027 	for (i = 0; i < p->n_pdds; i++) {
1028 		struct kfd_process_device *pdd = p->pdds[i];
1029 
1030 		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1031 				pdd->dev->id, p->pasid);
1032 
1033 		kfd_process_device_destroy_cwsr_dgpu(pdd);
1034 		kfd_process_device_destroy_ib_mem(pdd);
1035 
1036 		if (pdd->drm_file) {
1037 			amdgpu_amdkfd_gpuvm_release_process_vm(
1038 					pdd->dev->adev, pdd->drm_priv);
1039 			fput(pdd->drm_file);
1040 		}
1041 
1042 		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1043 			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1044 				get_order(KFD_CWSR_TBA_TMA_SIZE));
1045 
1046 		idr_destroy(&pdd->alloc_idr);
1047 
1048 		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1049 
1050 		if (pdd->dev->kfd->shared_resources.enable_mes &&
1051 			pdd->proc_ctx_cpu_ptr)
1052 			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1053 						   &pdd->proc_ctx_bo);
1054 		/*
1055 		 * before destroying pdd, make sure to report availability
1056 		 * for auto suspend
1057 		 */
1058 		if (pdd->runtime_inuse) {
1059 			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1060 			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1061 			pdd->runtime_inuse = false;
1062 		}
1063 
1064 		kfree(pdd);
1065 		p->pdds[i] = NULL;
1066 	}
1067 	p->n_pdds = 0;
1068 }
1069 
kfd_process_remove_sysfs(struct kfd_process * p)1070 static void kfd_process_remove_sysfs(struct kfd_process *p)
1071 {
1072 	struct kfd_process_device *pdd;
1073 	int i;
1074 
1075 	if (!p->kobj)
1076 		return;
1077 
1078 	sysfs_remove_file(p->kobj, &p->attr_pasid);
1079 	kobject_del(p->kobj_queues);
1080 	kobject_put(p->kobj_queues);
1081 	p->kobj_queues = NULL;
1082 
1083 	for (i = 0; i < p->n_pdds; i++) {
1084 		pdd = p->pdds[i];
1085 
1086 		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1087 		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1088 
1089 		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1090 		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1091 			sysfs_remove_file(pdd->kobj_stats,
1092 					  &pdd->attr_cu_occupancy);
1093 		kobject_del(pdd->kobj_stats);
1094 		kobject_put(pdd->kobj_stats);
1095 		pdd->kobj_stats = NULL;
1096 	}
1097 
1098 	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1099 		pdd = p->pdds[i];
1100 
1101 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1102 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1103 		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1104 		kobject_del(pdd->kobj_counters);
1105 		kobject_put(pdd->kobj_counters);
1106 		pdd->kobj_counters = NULL;
1107 	}
1108 
1109 	kobject_del(p->kobj);
1110 	kobject_put(p->kobj);
1111 	p->kobj = NULL;
1112 }
1113 
1114 /*
1115  * If any GPU is ongoing reset, wait for reset complete.
1116  */
kfd_process_wait_gpu_reset_complete(struct kfd_process * p)1117 static void kfd_process_wait_gpu_reset_complete(struct kfd_process *p)
1118 {
1119 	int i;
1120 
1121 	for (i = 0; i < p->n_pdds; i++)
1122 		flush_workqueue(p->pdds[i]->dev->adev->reset_domain->wq);
1123 }
1124 
1125 /* No process locking is needed in this function, because the process
1126  * is not findable any more. We must assume that no other thread is
1127  * using it any more, otherwise we couldn't safely free the process
1128  * structure in the end.
1129  */
kfd_process_wq_release(struct work_struct * work)1130 static void kfd_process_wq_release(struct work_struct *work)
1131 {
1132 	struct kfd_process *p = container_of(work, struct kfd_process,
1133 					     release_work);
1134 
1135 	kfd_process_dequeue_from_all_devices(p);
1136 	pqm_uninit(&p->pqm);
1137 
1138 	/*
1139 	 * If GPU in reset, user queues may still running, wait for reset complete.
1140 	 */
1141 	kfd_process_wait_gpu_reset_complete(p);
1142 
1143 	/* Signal the eviction fence after user mode queues are
1144 	 * destroyed. This allows any BOs to be freed without
1145 	 * triggering pointless evictions or waiting for fences.
1146 	 */
1147 	dma_fence_signal(p->ef);
1148 
1149 	kfd_process_remove_sysfs(p);
1150 
1151 	kfd_process_kunmap_signal_bo(p);
1152 	kfd_process_free_outstanding_kfd_bos(p);
1153 	svm_range_list_fini(p);
1154 
1155 	kfd_process_destroy_pdds(p);
1156 	dma_fence_put(p->ef);
1157 
1158 	kfd_event_free_process(p);
1159 
1160 	kfd_pasid_free(p->pasid);
1161 	mutex_destroy(&p->mutex);
1162 
1163 	put_task_struct(p->lead_thread);
1164 
1165 	kfree(p);
1166 }
1167 
kfd_process_ref_release(struct kref * ref)1168 static void kfd_process_ref_release(struct kref *ref)
1169 {
1170 	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1171 
1172 	INIT_WORK(&p->release_work, kfd_process_wq_release);
1173 	queue_work(kfd_process_wq, &p->release_work);
1174 }
1175 
kfd_process_alloc_notifier(struct mm_struct * mm)1176 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1177 {
1178 	int idx = srcu_read_lock(&kfd_processes_srcu);
1179 	struct kfd_process *p = find_process_by_mm(mm);
1180 
1181 	srcu_read_unlock(&kfd_processes_srcu, idx);
1182 
1183 	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1184 }
1185 
kfd_process_free_notifier(struct mmu_notifier * mn)1186 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1187 {
1188 	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1189 }
1190 
kfd_process_notifier_release_internal(struct kfd_process * p)1191 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1192 {
1193 	int i;
1194 
1195 	cancel_delayed_work_sync(&p->eviction_work);
1196 	cancel_delayed_work_sync(&p->restore_work);
1197 
1198 	for (i = 0; i < p->n_pdds; i++) {
1199 		struct kfd_process_device *pdd = p->pdds[i];
1200 
1201 		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1202 		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1203 			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1204 	}
1205 
1206 	/* Indicate to other users that MM is no longer valid */
1207 	p->mm = NULL;
1208 	kfd_dbg_trap_disable(p);
1209 
1210 	if (atomic_read(&p->debugged_process_count) > 0) {
1211 		struct kfd_process *target;
1212 		unsigned int temp;
1213 		int idx = srcu_read_lock(&kfd_processes_srcu);
1214 
1215 		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1216 			if (target->debugger_process && target->debugger_process == p) {
1217 				mutex_lock_nested(&target->mutex, 1);
1218 				kfd_dbg_trap_disable(target);
1219 				mutex_unlock(&target->mutex);
1220 				if (atomic_read(&p->debugged_process_count) == 0)
1221 					break;
1222 			}
1223 		}
1224 
1225 		srcu_read_unlock(&kfd_processes_srcu, idx);
1226 	}
1227 
1228 	mmu_notifier_put(&p->mmu_notifier);
1229 }
1230 
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1231 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1232 					struct mm_struct *mm)
1233 {
1234 	struct kfd_process *p;
1235 
1236 	/*
1237 	 * The kfd_process structure can not be free because the
1238 	 * mmu_notifier srcu is read locked
1239 	 */
1240 	p = container_of(mn, struct kfd_process, mmu_notifier);
1241 	if (WARN_ON(p->mm != mm))
1242 		return;
1243 
1244 	mutex_lock(&kfd_processes_mutex);
1245 	/*
1246 	 * Do early return if table is empty.
1247 	 *
1248 	 * This could potentially happen if this function is called concurrently
1249 	 * by mmu_notifier and by kfd_cleanup_pocesses.
1250 	 *
1251 	 */
1252 	if (hash_empty(kfd_processes_table)) {
1253 		mutex_unlock(&kfd_processes_mutex);
1254 		return;
1255 	}
1256 	hash_del_rcu(&p->kfd_processes);
1257 	mutex_unlock(&kfd_processes_mutex);
1258 	synchronize_srcu(&kfd_processes_srcu);
1259 
1260 	kfd_process_notifier_release_internal(p);
1261 }
1262 
1263 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1264 	.release = kfd_process_notifier_release,
1265 	.alloc_notifier = kfd_process_alloc_notifier,
1266 	.free_notifier = kfd_process_free_notifier,
1267 };
1268 
1269 /*
1270  * This code handles the case when driver is being unloaded before all
1271  * mm_struct are released.  We need to safely free the kfd_process and
1272  * avoid race conditions with mmu_notifier that might try to free them.
1273  *
1274  */
kfd_cleanup_processes(void)1275 void kfd_cleanup_processes(void)
1276 {
1277 	struct kfd_process *p;
1278 	struct hlist_node *p_temp;
1279 	unsigned int temp;
1280 	HLIST_HEAD(cleanup_list);
1281 
1282 	/*
1283 	 * Move all remaining kfd_process from the process table to a
1284 	 * temp list for processing.   Once done, callback from mmu_notifier
1285 	 * release will not see the kfd_process in the table and do early return,
1286 	 * avoiding double free issues.
1287 	 */
1288 	mutex_lock(&kfd_processes_mutex);
1289 	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1290 		hash_del_rcu(&p->kfd_processes);
1291 		synchronize_srcu(&kfd_processes_srcu);
1292 		hlist_add_head(&p->kfd_processes, &cleanup_list);
1293 	}
1294 	mutex_unlock(&kfd_processes_mutex);
1295 
1296 	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1297 		kfd_process_notifier_release_internal(p);
1298 
1299 	/*
1300 	 * Ensures that all outstanding free_notifier get called, triggering
1301 	 * the release of the kfd_process struct.
1302 	 */
1303 	mmu_notifier_synchronize();
1304 }
1305 
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1306 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1307 {
1308 	unsigned long  offset;
1309 	int i;
1310 
1311 	if (p->has_cwsr)
1312 		return 0;
1313 
1314 	for (i = 0; i < p->n_pdds; i++) {
1315 		struct kfd_node *dev = p->pdds[i]->dev;
1316 		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1317 
1318 		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1319 			continue;
1320 
1321 		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1322 		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1323 			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1324 			MAP_SHARED, offset);
1325 
1326 		if (IS_ERR_VALUE(qpd->tba_addr)) {
1327 			int err = qpd->tba_addr;
1328 
1329 			dev_err(dev->adev->dev,
1330 				"Failure to set tba address. error %d.\n", err);
1331 			qpd->tba_addr = 0;
1332 			qpd->cwsr_kaddr = NULL;
1333 			return err;
1334 		}
1335 
1336 		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1337 
1338 		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1339 
1340 		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1341 		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1342 			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1343 	}
1344 
1345 	p->has_cwsr = true;
1346 
1347 	return 0;
1348 }
1349 
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1350 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1351 {
1352 	struct kfd_node *dev = pdd->dev;
1353 	struct qcm_process_device *qpd = &pdd->qpd;
1354 	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1355 			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1356 			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1357 	struct kgd_mem *mem;
1358 	void *kaddr;
1359 	int ret;
1360 
1361 	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1362 		return 0;
1363 
1364 	/* cwsr_base is only set for dGPU */
1365 	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1366 				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1367 	if (ret)
1368 		return ret;
1369 
1370 	qpd->cwsr_mem = mem;
1371 	qpd->cwsr_kaddr = kaddr;
1372 	qpd->tba_addr = qpd->cwsr_base;
1373 
1374 	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1375 
1376 	kfd_process_set_trap_debug_flag(&pdd->qpd,
1377 					pdd->process->debug_trap_enabled);
1378 
1379 	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1380 	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1381 		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1382 
1383 	return 0;
1384 }
1385 
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1386 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1387 {
1388 	struct kfd_node *dev = pdd->dev;
1389 	struct qcm_process_device *qpd = &pdd->qpd;
1390 
1391 	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1392 		return;
1393 
1394 	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1395 }
1396 
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1397 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1398 				  uint64_t tba_addr,
1399 				  uint64_t tma_addr)
1400 {
1401 	if (qpd->cwsr_kaddr) {
1402 		/* KFD trap handler is bound, record as second-level TBA/TMA
1403 		 * in first-level TMA. First-level trap will jump to second.
1404 		 */
1405 		uint64_t *tma =
1406 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1407 		tma[0] = tba_addr;
1408 		tma[1] = tma_addr;
1409 	} else {
1410 		/* No trap handler bound, bind as first-level TBA/TMA. */
1411 		qpd->tba_addr = tba_addr;
1412 		qpd->tma_addr = tma_addr;
1413 	}
1414 }
1415 
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1416 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1417 {
1418 	int i;
1419 
1420 	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1421 	 * boot time retry setting. Mixing processes with different
1422 	 * XNACK/retry settings can hang the GPU.
1423 	 *
1424 	 * Different GPUs can have different noretry settings depending
1425 	 * on HW bugs or limitations. We need to find at least one
1426 	 * XNACK mode for this process that's compatible with all GPUs.
1427 	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1428 	 * built for XNACK-off. On GFXv9 it may perform slower.
1429 	 *
1430 	 * Therefore applications built for XNACK-off can always be
1431 	 * supported and will be our fallback if any GPU does not
1432 	 * support retry.
1433 	 */
1434 	for (i = 0; i < p->n_pdds; i++) {
1435 		struct kfd_node *dev = p->pdds[i]->dev;
1436 
1437 		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1438 		 * support the SVM APIs and don't need to be considered
1439 		 * for the XNACK mode selection.
1440 		 */
1441 		if (!KFD_IS_SOC15(dev))
1442 			continue;
1443 		/* Aldebaran can always support XNACK because it can support
1444 		 * per-process XNACK mode selection. But let the dev->noretry
1445 		 * setting still influence the default XNACK mode.
1446 		 */
1447 		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev))
1448 			continue;
1449 
1450 		/* GFXv10 and later GPUs do not support shader preemption
1451 		 * during page faults. This can lead to poor QoS for queue
1452 		 * management and memory-manager-related preemptions or
1453 		 * even deadlocks.
1454 		 */
1455 		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1456 			return false;
1457 
1458 		if (dev->kfd->noretry)
1459 			return false;
1460 	}
1461 
1462 	return true;
1463 }
1464 
kfd_process_set_trap_debug_flag(struct qcm_process_device * qpd,bool enabled)1465 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1466 				     bool enabled)
1467 {
1468 	if (qpd->cwsr_kaddr) {
1469 		uint64_t *tma =
1470 			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1471 		tma[2] = enabled;
1472 	}
1473 }
1474 
1475 /*
1476  * On return the kfd_process is fully operational and will be freed when the
1477  * mm is released
1478  */
create_process(const struct task_struct * thread)1479 static struct kfd_process *create_process(const struct task_struct *thread)
1480 {
1481 	struct kfd_process *process;
1482 	struct mmu_notifier *mn;
1483 	int err = -ENOMEM;
1484 
1485 	process = kzalloc(sizeof(*process), GFP_KERNEL);
1486 	if (!process)
1487 		goto err_alloc_process;
1488 
1489 	kref_init(&process->ref);
1490 	mutex_init(&process->mutex);
1491 	process->mm = thread->mm;
1492 	process->lead_thread = thread->group_leader;
1493 	process->n_pdds = 0;
1494 	process->queues_paused = false;
1495 	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1496 	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1497 	process->last_restore_timestamp = get_jiffies_64();
1498 	err = kfd_event_init_process(process);
1499 	if (err)
1500 		goto err_event_init;
1501 	process->is_32bit_user_mode = in_compat_syscall();
1502 	process->debug_trap_enabled = false;
1503 	process->debugger_process = NULL;
1504 	process->exception_enable_mask = 0;
1505 	atomic_set(&process->debugged_process_count, 0);
1506 	sema_init(&process->runtime_enable_sema, 0);
1507 
1508 	process->pasid = kfd_pasid_alloc();
1509 	if (process->pasid == 0) {
1510 		err = -ENOSPC;
1511 		goto err_alloc_pasid;
1512 	}
1513 
1514 	err = pqm_init(&process->pqm, process);
1515 	if (err != 0)
1516 		goto err_process_pqm_init;
1517 
1518 	/* init process apertures*/
1519 	err = kfd_init_apertures(process);
1520 	if (err != 0)
1521 		goto err_init_apertures;
1522 
1523 	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1524 	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1525 
1526 	err = svm_range_list_init(process);
1527 	if (err)
1528 		goto err_init_svm_range_list;
1529 
1530 	/* alloc_notifier needs to find the process in the hash table */
1531 	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1532 			(uintptr_t)process->mm);
1533 
1534 	/* Avoid free_notifier to start kfd_process_wq_release if
1535 	 * mmu_notifier_get failed because of pending signal.
1536 	 */
1537 	kref_get(&process->ref);
1538 
1539 	/* MMU notifier registration must be the last call that can fail
1540 	 * because after this point we cannot unwind the process creation.
1541 	 * After this point, mmu_notifier_put will trigger the cleanup by
1542 	 * dropping the last process reference in the free_notifier.
1543 	 */
1544 	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1545 	if (IS_ERR(mn)) {
1546 		err = PTR_ERR(mn);
1547 		goto err_register_notifier;
1548 	}
1549 	BUG_ON(mn != &process->mmu_notifier);
1550 
1551 	kfd_unref_process(process);
1552 	get_task_struct(process->lead_thread);
1553 
1554 	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1555 
1556 	return process;
1557 
1558 err_register_notifier:
1559 	hash_del_rcu(&process->kfd_processes);
1560 	svm_range_list_fini(process);
1561 err_init_svm_range_list:
1562 	kfd_process_free_outstanding_kfd_bos(process);
1563 	kfd_process_destroy_pdds(process);
1564 err_init_apertures:
1565 	pqm_uninit(&process->pqm);
1566 err_process_pqm_init:
1567 	kfd_pasid_free(process->pasid);
1568 err_alloc_pasid:
1569 	kfd_event_free_process(process);
1570 err_event_init:
1571 	mutex_destroy(&process->mutex);
1572 	kfree(process);
1573 err_alloc_process:
1574 	return ERR_PTR(err);
1575 }
1576 
kfd_get_process_device_data(struct kfd_node * dev,struct kfd_process * p)1577 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1578 							struct kfd_process *p)
1579 {
1580 	int i;
1581 
1582 	for (i = 0; i < p->n_pdds; i++)
1583 		if (p->pdds[i]->dev == dev)
1584 			return p->pdds[i];
1585 
1586 	return NULL;
1587 }
1588 
kfd_create_process_device_data(struct kfd_node * dev,struct kfd_process * p)1589 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1590 							struct kfd_process *p)
1591 {
1592 	struct kfd_process_device *pdd = NULL;
1593 
1594 	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1595 		return NULL;
1596 	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1597 	if (!pdd)
1598 		return NULL;
1599 
1600 	pdd->dev = dev;
1601 	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1602 	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1603 	pdd->qpd.dqm = dev->dqm;
1604 	pdd->qpd.pqm = &p->pqm;
1605 	pdd->qpd.evicted = 0;
1606 	pdd->qpd.mapped_gws_queue = false;
1607 	pdd->process = p;
1608 	pdd->bound = PDD_UNBOUND;
1609 	pdd->already_dequeued = false;
1610 	pdd->runtime_inuse = false;
1611 	atomic64_set(&pdd->vram_usage, 0);
1612 	pdd->sdma_past_activity_counter = 0;
1613 	pdd->user_gpu_id = dev->id;
1614 	atomic64_set(&pdd->evict_duration_counter, 0);
1615 
1616 	p->pdds[p->n_pdds++] = pdd;
1617 	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1618 		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1619 							pdd->dev->adev,
1620 							false,
1621 							0);
1622 
1623 	/* Init idr used for memory handle translation */
1624 	idr_init(&pdd->alloc_idr);
1625 
1626 	return pdd;
1627 }
1628 
1629 /**
1630  * kfd_process_device_init_vm - Initialize a VM for a process-device
1631  *
1632  * @pdd: The process-device
1633  * @drm_file: Optional pointer to a DRM file descriptor
1634  *
1635  * If @drm_file is specified, it will be used to acquire the VM from
1636  * that file descriptor. If successful, the @pdd takes ownership of
1637  * the file descriptor.
1638  *
1639  * If @drm_file is NULL, a new VM is created.
1640  *
1641  * Returns 0 on success, -errno on failure.
1642  */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1643 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1644 			       struct file *drm_file)
1645 {
1646 	struct amdgpu_fpriv *drv_priv;
1647 	struct amdgpu_vm *avm;
1648 	struct kfd_process *p;
1649 	struct kfd_node *dev;
1650 	int ret;
1651 
1652 	if (!drm_file)
1653 		return -EINVAL;
1654 
1655 	if (pdd->drm_priv)
1656 		return -EBUSY;
1657 
1658 	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1659 	if (ret)
1660 		return ret;
1661 	avm = &drv_priv->vm;
1662 
1663 	p = pdd->process;
1664 	dev = pdd->dev;
1665 
1666 	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1667 						     &p->kgd_process_info,
1668 						     &p->ef);
1669 	if (ret) {
1670 		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1671 		return ret;
1672 	}
1673 	pdd->drm_priv = drm_file->private_data;
1674 	atomic64_set(&pdd->tlb_seq, 0);
1675 
1676 	ret = kfd_process_device_reserve_ib_mem(pdd);
1677 	if (ret)
1678 		goto err_reserve_ib_mem;
1679 	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1680 	if (ret)
1681 		goto err_init_cwsr;
1682 
1683 	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1684 	if (ret)
1685 		goto err_set_pasid;
1686 
1687 	pdd->drm_file = drm_file;
1688 
1689 	return 0;
1690 
1691 err_set_pasid:
1692 	kfd_process_device_destroy_cwsr_dgpu(pdd);
1693 err_init_cwsr:
1694 	kfd_process_device_destroy_ib_mem(pdd);
1695 err_reserve_ib_mem:
1696 	pdd->drm_priv = NULL;
1697 	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1698 
1699 	return ret;
1700 }
1701 
1702 /*
1703  * Direct the IOMMU to bind the process (specifically the pasid->mm)
1704  * to the device.
1705  * Unbinding occurs when the process dies or the device is removed.
1706  *
1707  * Assumes that the process lock is held.
1708  */
kfd_bind_process_to_device(struct kfd_node * dev,struct kfd_process * p)1709 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1710 							struct kfd_process *p)
1711 {
1712 	struct kfd_process_device *pdd;
1713 	int err;
1714 
1715 	pdd = kfd_get_process_device_data(dev, p);
1716 	if (!pdd) {
1717 		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1718 		return ERR_PTR(-ENOMEM);
1719 	}
1720 
1721 	if (!pdd->drm_priv)
1722 		return ERR_PTR(-ENODEV);
1723 
1724 	/*
1725 	 * signal runtime-pm system to auto resume and prevent
1726 	 * further runtime suspend once device pdd is created until
1727 	 * pdd is destroyed.
1728 	 */
1729 	if (!pdd->runtime_inuse) {
1730 		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1731 		if (err < 0) {
1732 			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1733 			return ERR_PTR(err);
1734 		}
1735 	}
1736 
1737 	/*
1738 	 * make sure that runtime_usage counter is incremented just once
1739 	 * per pdd
1740 	 */
1741 	pdd->runtime_inuse = true;
1742 
1743 	return pdd;
1744 }
1745 
1746 /* Create specific handle mapped to mem from process local memory idr
1747  * Assumes that the process lock is held.
1748  */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1749 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1750 					void *mem)
1751 {
1752 	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1753 }
1754 
1755 /* Translate specific handle from process local memory idr
1756  * Assumes that the process lock is held.
1757  */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1758 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1759 					int handle)
1760 {
1761 	if (handle < 0)
1762 		return NULL;
1763 
1764 	return idr_find(&pdd->alloc_idr, handle);
1765 }
1766 
1767 /* Remove specific handle from process local memory idr
1768  * Assumes that the process lock is held.
1769  */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1770 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1771 					int handle)
1772 {
1773 	if (handle >= 0)
1774 		idr_remove(&pdd->alloc_idr, handle);
1775 }
1776 
1777 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid)1778 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1779 {
1780 	struct kfd_process *p, *ret_p = NULL;
1781 	unsigned int temp;
1782 
1783 	int idx = srcu_read_lock(&kfd_processes_srcu);
1784 
1785 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1786 		if (p->pasid == pasid) {
1787 			kref_get(&p->ref);
1788 			ret_p = p;
1789 			break;
1790 		}
1791 	}
1792 
1793 	srcu_read_unlock(&kfd_processes_srcu, idx);
1794 
1795 	return ret_p;
1796 }
1797 
1798 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1799 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1800 {
1801 	struct kfd_process *p;
1802 
1803 	int idx = srcu_read_lock(&kfd_processes_srcu);
1804 
1805 	p = find_process_by_mm(mm);
1806 	if (p)
1807 		kref_get(&p->ref);
1808 
1809 	srcu_read_unlock(&kfd_processes_srcu, idx);
1810 
1811 	return p;
1812 }
1813 
1814 /* kfd_process_evict_queues - Evict all user queues of a process
1815  *
1816  * Eviction is reference-counted per process-device. This means multiple
1817  * evictions from different sources can be nested safely.
1818  */
kfd_process_evict_queues(struct kfd_process * p,uint32_t trigger)1819 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1820 {
1821 	int r = 0;
1822 	int i;
1823 	unsigned int n_evicted = 0;
1824 
1825 	for (i = 0; i < p->n_pdds; i++) {
1826 		struct kfd_process_device *pdd = p->pdds[i];
1827 		struct device *dev = pdd->dev->adev->dev;
1828 
1829 		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1830 					     trigger);
1831 
1832 		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1833 							    &pdd->qpd);
1834 		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1835 		 * we would like to set all the queues to be in evicted state to prevent
1836 		 * them been add back since they actually not be saved right now.
1837 		 */
1838 		if (r && r != -EIO) {
1839 			dev_err(dev, "Failed to evict process queues\n");
1840 			goto fail;
1841 		}
1842 		n_evicted++;
1843 	}
1844 
1845 	return r;
1846 
1847 fail:
1848 	/* To keep state consistent, roll back partial eviction by
1849 	 * restoring queues
1850 	 */
1851 	for (i = 0; i < p->n_pdds; i++) {
1852 		struct kfd_process_device *pdd = p->pdds[i];
1853 
1854 		if (n_evicted == 0)
1855 			break;
1856 
1857 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1858 
1859 		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1860 							      &pdd->qpd))
1861 			dev_err(pdd->dev->adev->dev,
1862 				"Failed to restore queues\n");
1863 
1864 		n_evicted--;
1865 	}
1866 
1867 	return r;
1868 }
1869 
1870 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)1871 int kfd_process_restore_queues(struct kfd_process *p)
1872 {
1873 	int r, ret = 0;
1874 	int i;
1875 
1876 	for (i = 0; i < p->n_pdds; i++) {
1877 		struct kfd_process_device *pdd = p->pdds[i];
1878 		struct device *dev = pdd->dev->adev->dev;
1879 
1880 		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1881 
1882 		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1883 							      &pdd->qpd);
1884 		if (r) {
1885 			dev_err(dev, "Failed to restore process queues\n");
1886 			if (!ret)
1887 				ret = r;
1888 		}
1889 	}
1890 
1891 	return ret;
1892 }
1893 
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)1894 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1895 {
1896 	int i;
1897 
1898 	for (i = 0; i < p->n_pdds; i++)
1899 		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1900 			return i;
1901 	return -EINVAL;
1902 }
1903 
1904 int
kfd_process_gpuid_from_node(struct kfd_process * p,struct kfd_node * node,uint32_t * gpuid,uint32_t * gpuidx)1905 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1906 			    uint32_t *gpuid, uint32_t *gpuidx)
1907 {
1908 	int i;
1909 
1910 	for (i = 0; i < p->n_pdds; i++)
1911 		if (p->pdds[i] && p->pdds[i]->dev == node) {
1912 			*gpuid = p->pdds[i]->user_gpu_id;
1913 			*gpuidx = i;
1914 			return 0;
1915 		}
1916 	return -EINVAL;
1917 }
1918 
evict_process_worker(struct work_struct * work)1919 static void evict_process_worker(struct work_struct *work)
1920 {
1921 	int ret;
1922 	struct kfd_process *p;
1923 	struct delayed_work *dwork;
1924 
1925 	dwork = to_delayed_work(work);
1926 
1927 	/* Process termination destroys this worker thread. So during the
1928 	 * lifetime of this thread, kfd_process p will be valid
1929 	 */
1930 	p = container_of(dwork, struct kfd_process, eviction_work);
1931 	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1932 		  "Eviction fence mismatch\n");
1933 
1934 	/* Narrow window of overlap between restore and evict work
1935 	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1936 	 * unreserves KFD BOs, it is possible to evicted again. But
1937 	 * restore has few more steps of finish. So lets wait for any
1938 	 * previous restore work to complete
1939 	 */
1940 	flush_delayed_work(&p->restore_work);
1941 
1942 	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1943 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1944 	if (!ret) {
1945 		dma_fence_signal(p->ef);
1946 		dma_fence_put(p->ef);
1947 		p->ef = NULL;
1948 		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1949 				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1950 
1951 		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1952 	} else
1953 		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1954 }
1955 
restore_process_worker(struct work_struct * work)1956 static void restore_process_worker(struct work_struct *work)
1957 {
1958 	struct delayed_work *dwork;
1959 	struct kfd_process *p;
1960 	int ret = 0;
1961 
1962 	dwork = to_delayed_work(work);
1963 
1964 	/* Process termination destroys this worker thread. So during the
1965 	 * lifetime of this thread, kfd_process p will be valid
1966 	 */
1967 	p = container_of(dwork, struct kfd_process, restore_work);
1968 	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1969 
1970 	/* Setting last_restore_timestamp before successful restoration.
1971 	 * Otherwise this would have to be set by KGD (restore_process_bos)
1972 	 * before KFD BOs are unreserved. If not, the process can be evicted
1973 	 * again before the timestamp is set.
1974 	 * If restore fails, the timestamp will be set again in the next
1975 	 * attempt. This would mean that the minimum GPU quanta would be
1976 	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1977 	 * functions)
1978 	 */
1979 
1980 	p->last_restore_timestamp = get_jiffies_64();
1981 	/* VMs may not have been acquired yet during debugging. */
1982 	if (p->kgd_process_info)
1983 		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1984 							     &p->ef);
1985 	if (ret) {
1986 		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1987 			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1988 		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1989 				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1990 		WARN(!ret, "reschedule restore work failed\n");
1991 		return;
1992 	}
1993 
1994 	ret = kfd_process_restore_queues(p);
1995 	if (!ret)
1996 		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1997 	else
1998 		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1999 }
2000 
kfd_suspend_all_processes(void)2001 void kfd_suspend_all_processes(void)
2002 {
2003 	struct kfd_process *p;
2004 	unsigned int temp;
2005 	int idx = srcu_read_lock(&kfd_processes_srcu);
2006 
2007 	WARN(debug_evictions, "Evicting all processes");
2008 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2009 		cancel_delayed_work_sync(&p->eviction_work);
2010 		flush_delayed_work(&p->restore_work);
2011 
2012 		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2013 			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2014 		dma_fence_signal(p->ef);
2015 		dma_fence_put(p->ef);
2016 		p->ef = NULL;
2017 	}
2018 	srcu_read_unlock(&kfd_processes_srcu, idx);
2019 }
2020 
kfd_resume_all_processes(void)2021 int kfd_resume_all_processes(void)
2022 {
2023 	struct kfd_process *p;
2024 	unsigned int temp;
2025 	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2026 
2027 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2028 		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
2029 			pr_err("Restore process %d failed during resume\n",
2030 			       p->pasid);
2031 			ret = -EFAULT;
2032 		}
2033 	}
2034 	srcu_read_unlock(&kfd_processes_srcu, idx);
2035 	return ret;
2036 }
2037 
kfd_reserved_mem_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)2038 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2039 			  struct vm_area_struct *vma)
2040 {
2041 	struct kfd_process_device *pdd;
2042 	struct qcm_process_device *qpd;
2043 
2044 	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2045 		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2046 		return -EINVAL;
2047 	}
2048 
2049 	pdd = kfd_get_process_device_data(dev, process);
2050 	if (!pdd)
2051 		return -EINVAL;
2052 	qpd = &pdd->qpd;
2053 
2054 	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2055 					get_order(KFD_CWSR_TBA_TMA_SIZE));
2056 	if (!qpd->cwsr_kaddr) {
2057 		dev_err(dev->adev->dev,
2058 			"Error allocating per process CWSR buffer.\n");
2059 		return -ENOMEM;
2060 	}
2061 
2062 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2063 		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2064 	/* Mapping pages to user process */
2065 	return remap_pfn_range(vma, vma->vm_start,
2066 			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2067 			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2068 }
2069 
kfd_flush_tlb(struct kfd_process_device * pdd,enum TLB_FLUSH_TYPE type)2070 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
2071 {
2072 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
2073 	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
2074 	struct kfd_node *dev = pdd->dev;
2075 	uint32_t xcc_mask = dev->xcc_mask;
2076 	int xcc = 0;
2077 
2078 	/*
2079 	 * It can be that we race and lose here, but that is extremely unlikely
2080 	 * and the worst thing which could happen is that we flush the changes
2081 	 * into the TLB once more which is harmless.
2082 	 */
2083 	if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2084 		return;
2085 
2086 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2087 		/* Nothing to flush until a VMID is assigned, which
2088 		 * only happens when the first queue is created.
2089 		 */
2090 		if (pdd->qpd.vmid)
2091 			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2092 							pdd->qpd.vmid);
2093 	} else {
2094 		for_each_inst(xcc, xcc_mask)
2095 			amdgpu_amdkfd_flush_gpu_tlb_pasid(
2096 				dev->adev, pdd->process->pasid, type, xcc);
2097 	}
2098 }
2099 
2100 /* assumes caller holds process lock. */
kfd_process_drain_interrupts(struct kfd_process_device * pdd)2101 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2102 {
2103 	uint32_t irq_drain_fence[8];
2104 	uint8_t node_id = 0;
2105 	int r = 0;
2106 
2107 	if (!KFD_IS_SOC15(pdd->dev))
2108 		return 0;
2109 
2110 	pdd->process->irq_drain_is_open = true;
2111 
2112 	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2113 	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2114 							KFD_IRQ_FENCE_CLIENTID;
2115 	irq_drain_fence[3] = pdd->process->pasid;
2116 
2117 	/*
2118 	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2119 	 */
2120 	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2121 		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2122 		irq_drain_fence[3] |= node_id << 16;
2123 	}
2124 
2125 	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2126 	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2127 						     irq_drain_fence)) {
2128 		pdd->process->irq_drain_is_open = false;
2129 		return 0;
2130 	}
2131 
2132 	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2133 				     !READ_ONCE(pdd->process->irq_drain_is_open));
2134 	if (r)
2135 		pdd->process->irq_drain_is_open = false;
2136 
2137 	return r;
2138 }
2139 
kfd_process_close_interrupt_drain(unsigned int pasid)2140 void kfd_process_close_interrupt_drain(unsigned int pasid)
2141 {
2142 	struct kfd_process *p;
2143 
2144 	p = kfd_lookup_process_by_pasid(pasid);
2145 
2146 	if (!p)
2147 		return;
2148 
2149 	WRITE_ONCE(p->irq_drain_is_open, false);
2150 	wake_up_all(&p->wait_irq_drain);
2151 	kfd_unref_process(p);
2152 }
2153 
2154 struct send_exception_work_handler_workarea {
2155 	struct work_struct work;
2156 	struct kfd_process *p;
2157 	unsigned int queue_id;
2158 	uint64_t error_reason;
2159 };
2160 
send_exception_work_handler(struct work_struct * work)2161 static void send_exception_work_handler(struct work_struct *work)
2162 {
2163 	struct send_exception_work_handler_workarea *workarea;
2164 	struct kfd_process *p;
2165 	struct queue *q;
2166 	struct mm_struct *mm;
2167 	struct kfd_context_save_area_header __user *csa_header;
2168 	uint64_t __user *err_payload_ptr;
2169 	uint64_t cur_err;
2170 	uint32_t ev_id;
2171 
2172 	workarea = container_of(work,
2173 				struct send_exception_work_handler_workarea,
2174 				work);
2175 	p = workarea->p;
2176 
2177 	mm = get_task_mm(p->lead_thread);
2178 
2179 	if (!mm)
2180 		return;
2181 
2182 	kthread_use_mm(mm);
2183 
2184 	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2185 
2186 	if (!q)
2187 		goto out;
2188 
2189 	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2190 
2191 	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2192 	get_user(cur_err, err_payload_ptr);
2193 	cur_err |= workarea->error_reason;
2194 	put_user(cur_err, err_payload_ptr);
2195 	get_user(ev_id, &csa_header->err_event_id);
2196 
2197 	kfd_set_event(p, ev_id);
2198 
2199 out:
2200 	kthread_unuse_mm(mm);
2201 	mmput(mm);
2202 }
2203 
kfd_send_exception_to_runtime(struct kfd_process * p,unsigned int queue_id,uint64_t error_reason)2204 int kfd_send_exception_to_runtime(struct kfd_process *p,
2205 			unsigned int queue_id,
2206 			uint64_t error_reason)
2207 {
2208 	struct send_exception_work_handler_workarea worker;
2209 
2210 	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2211 
2212 	worker.p = p;
2213 	worker.queue_id = queue_id;
2214 	worker.error_reason = error_reason;
2215 
2216 	schedule_work(&worker.work);
2217 	flush_work(&worker.work);
2218 	destroy_work_on_stack(&worker.work);
2219 
2220 	return 0;
2221 }
2222 
kfd_process_device_data_by_id(struct kfd_process * p,uint32_t gpu_id)2223 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2224 {
2225 	int i;
2226 
2227 	if (gpu_id) {
2228 		for (i = 0; i < p->n_pdds; i++) {
2229 			struct kfd_process_device *pdd = p->pdds[i];
2230 
2231 			if (pdd->user_gpu_id == gpu_id)
2232 				return pdd;
2233 		}
2234 	}
2235 	return NULL;
2236 }
2237 
kfd_process_get_user_gpu_id(struct kfd_process * p,uint32_t actual_gpu_id)2238 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2239 {
2240 	int i;
2241 
2242 	if (!actual_gpu_id)
2243 		return 0;
2244 
2245 	for (i = 0; i < p->n_pdds; i++) {
2246 		struct kfd_process_device *pdd = p->pdds[i];
2247 
2248 		if (pdd->dev->id == actual_gpu_id)
2249 			return pdd->user_gpu_id;
2250 	}
2251 	return -EINVAL;
2252 }
2253 
2254 #if defined(CONFIG_DEBUG_FS)
2255 
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)2256 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2257 {
2258 	struct kfd_process *p;
2259 	unsigned int temp;
2260 	int r = 0;
2261 
2262 	int idx = srcu_read_lock(&kfd_processes_srcu);
2263 
2264 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2265 		seq_printf(m, "Process %d PASID 0x%x:\n",
2266 			   p->lead_thread->tgid, p->pasid);
2267 
2268 		mutex_lock(&p->mutex);
2269 		r = pqm_debugfs_mqds(m, &p->pqm);
2270 		mutex_unlock(&p->mutex);
2271 
2272 		if (r)
2273 			break;
2274 	}
2275 
2276 	srcu_read_unlock(&kfd_processes_srcu, idx);
2277 
2278 	return r;
2279 }
2280 
2281 #endif
2282