xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision 9464bf9762a8b16f4fbd05b115dcde51b339ac58)
1  // SPDX-License-Identifier: GPL-2.0 OR MIT
2  /*
3   * Copyright 2020-2021 Advanced Micro Devices, Inc.
4   *
5   * Permission is hereby granted, free of charge, to any person obtaining a
6   * copy of this software and associated documentation files (the "Software"),
7   * to deal in the Software without restriction, including without limitation
8   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9   * and/or sell copies of the Software, and to permit persons to whom the
10   * Software is furnished to do so, subject to the following conditions:
11   *
12   * The above copyright notice and this permission notice shall be included in
13   * all copies or substantial portions of the Software.
14   *
15   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18   * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21   * OTHER DEALINGS IN THE SOFTWARE.
22   */
23  
24  #include <linux/types.h>
25  #include <linux/sched/task.h>
26  #include <linux/dynamic_debug.h>
27  #include <drm/ttm/ttm_tt.h>
28  #include <drm/drm_exec.h>
29  
30  #include "amdgpu_sync.h"
31  #include "amdgpu_object.h"
32  #include "amdgpu_vm.h"
33  #include "amdgpu_hmm.h"
34  #include "amdgpu.h"
35  #include "amdgpu_xgmi.h"
36  #include "kfd_priv.h"
37  #include "kfd_svm.h"
38  #include "kfd_migrate.h"
39  #include "kfd_smi_events.h"
40  
41  #ifdef dev_fmt
42  #undef dev_fmt
43  #endif
44  #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45  
46  #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47  
48  /* Long enough to ensure no retry fault comes after svm range is restored and
49   * page table is updated.
50   */
51  #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52  #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53  #define dynamic_svm_range_dump(svms) \
54  	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55  #else
56  #define dynamic_svm_range_dump(svms) \
57  	do { if (0) svm_range_debug_dump(svms); } while (0)
58  #endif
59  
60  /* Giant svm range split into smaller ranges based on this, it is decided using
61   * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62   * power of 2MB.
63   */
64  static uint64_t max_svm_range_pages;
65  
66  struct criu_svm_metadata {
67  	struct list_head list;
68  	struct kfd_criu_svm_range_priv_data data;
69  };
70  
71  static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72  static bool
73  svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74  				    const struct mmu_notifier_range *range,
75  				    unsigned long cur_seq);
76  static int
77  svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78  		   uint64_t *bo_s, uint64_t *bo_l);
79  static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80  	.invalidate = svm_range_cpu_invalidate_pagetables,
81  };
82  
83  /**
84   * svm_range_unlink - unlink svm_range from lists and interval tree
85   * @prange: svm range structure to be removed
86   *
87   * Remove the svm_range from the svms and svm_bo lists and the svms
88   * interval tree.
89   *
90   * Context: The caller must hold svms->lock
91   */
svm_range_unlink(struct svm_range * prange)92  static void svm_range_unlink(struct svm_range *prange)
93  {
94  	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95  		 prange, prange->start, prange->last);
96  
97  	if (prange->svm_bo) {
98  		spin_lock(&prange->svm_bo->list_lock);
99  		list_del(&prange->svm_bo_list);
100  		spin_unlock(&prange->svm_bo->list_lock);
101  	}
102  
103  	list_del(&prange->list);
104  	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105  		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106  }
107  
108  static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109  svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110  {
111  	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112  		 prange, prange->start, prange->last);
113  
114  	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115  				     prange->start << PAGE_SHIFT,
116  				     prange->npages << PAGE_SHIFT,
117  				     &svm_range_mn_ops);
118  }
119  
120  /**
121   * svm_range_add_to_svms - add svm range to svms
122   * @prange: svm range structure to be added
123   *
124   * Add the svm range to svms interval tree and link list
125   *
126   * Context: The caller must hold svms->lock
127   */
svm_range_add_to_svms(struct svm_range * prange)128  static void svm_range_add_to_svms(struct svm_range *prange)
129  {
130  	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131  		 prange, prange->start, prange->last);
132  
133  	list_move_tail(&prange->list, &prange->svms->list);
134  	prange->it_node.start = prange->start;
135  	prange->it_node.last = prange->last;
136  	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137  }
138  
svm_range_remove_notifier(struct svm_range * prange)139  static void svm_range_remove_notifier(struct svm_range *prange)
140  {
141  	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142  		 prange->svms, prange,
143  		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144  		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145  
146  	if (prange->notifier.interval_tree.start != 0 &&
147  	    prange->notifier.interval_tree.last != 0)
148  		mmu_interval_notifier_remove(&prange->notifier);
149  }
150  
151  static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152  svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153  {
154  	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155  	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156  }
157  
158  static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159  svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160  		      unsigned long offset, unsigned long npages,
161  		      unsigned long *hmm_pfns, uint32_t gpuidx)
162  {
163  	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164  	dma_addr_t *addr = prange->dma_addr[gpuidx];
165  	struct device *dev = adev->dev;
166  	struct page *page;
167  	int i, r;
168  
169  	if (!addr) {
170  		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171  		if (!addr)
172  			return -ENOMEM;
173  		prange->dma_addr[gpuidx] = addr;
174  	}
175  
176  	addr += offset;
177  	for (i = 0; i < npages; i++) {
178  		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179  			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180  
181  		page = hmm_pfn_to_page(hmm_pfns[i]);
182  		if (is_zone_device_page(page)) {
183  			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184  
185  			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186  				   bo_adev->vm_manager.vram_base_offset -
187  				   bo_adev->kfd.pgmap.range.start;
188  			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189  			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190  			continue;
191  		}
192  		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193  		r = dma_mapping_error(dev, addr[i]);
194  		if (r) {
195  			dev_err(dev, "failed %d dma_map_page\n", r);
196  			return r;
197  		}
198  		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199  				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200  	}
201  	return 0;
202  }
203  
204  static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)205  svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
206  		  unsigned long offset, unsigned long npages,
207  		  unsigned long *hmm_pfns)
208  {
209  	struct kfd_process *p;
210  	uint32_t gpuidx;
211  	int r;
212  
213  	p = container_of(prange->svms, struct kfd_process, svms);
214  
215  	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
216  		struct kfd_process_device *pdd;
217  
218  		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
219  		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
220  		if (!pdd) {
221  			pr_debug("failed to find device idx %d\n", gpuidx);
222  			return -EINVAL;
223  		}
224  
225  		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
226  					  hmm_pfns, gpuidx);
227  		if (r)
228  			break;
229  	}
230  
231  	return r;
232  }
233  
svm_range_dma_unmap(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)234  void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
235  			 unsigned long offset, unsigned long npages)
236  {
237  	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
238  	int i;
239  
240  	if (!dma_addr)
241  		return;
242  
243  	for (i = offset; i < offset + npages; i++) {
244  		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
245  			continue;
246  		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
247  		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
248  		dma_addr[i] = 0;
249  	}
250  }
251  
svm_range_free_dma_mappings(struct svm_range * prange,bool unmap_dma)252  void svm_range_free_dma_mappings(struct svm_range *prange, bool unmap_dma)
253  {
254  	struct kfd_process_device *pdd;
255  	dma_addr_t *dma_addr;
256  	struct device *dev;
257  	struct kfd_process *p;
258  	uint32_t gpuidx;
259  
260  	p = container_of(prange->svms, struct kfd_process, svms);
261  
262  	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
263  		dma_addr = prange->dma_addr[gpuidx];
264  		if (!dma_addr)
265  			continue;
266  
267  		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
268  		if (!pdd) {
269  			pr_debug("failed to find device idx %d\n", gpuidx);
270  			continue;
271  		}
272  		dev = &pdd->dev->adev->pdev->dev;
273  		if (unmap_dma)
274  			svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
275  		kvfree(dma_addr);
276  		prange->dma_addr[gpuidx] = NULL;
277  	}
278  }
279  
svm_range_free(struct svm_range * prange,bool do_unmap)280  static void svm_range_free(struct svm_range *prange, bool do_unmap)
281  {
282  	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
283  	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
284  
285  	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286  		 prange->start, prange->last);
287  
288  	svm_range_vram_node_free(prange);
289  	svm_range_free_dma_mappings(prange, do_unmap);
290  
291  	if (do_unmap && !p->xnack_enabled) {
292  		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
293  		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
294  					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
295  	}
296  	mutex_destroy(&prange->lock);
297  	mutex_destroy(&prange->migrate_mutex);
298  	kfree(prange);
299  }
300  
301  static void
svm_range_set_default_attributes(int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)302  svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
303  				 uint8_t *granularity, uint32_t *flags)
304  {
305  	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
306  	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
307  	*granularity = 9;
308  	*flags =
309  		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
310  }
311  
312  static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)313  svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
314  			 uint64_t last, bool update_mem_usage)
315  {
316  	uint64_t size = last - start + 1;
317  	struct svm_range *prange;
318  	struct kfd_process *p;
319  
320  	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
321  	if (!prange)
322  		return NULL;
323  
324  	p = container_of(svms, struct kfd_process, svms);
325  	if (!p->xnack_enabled && update_mem_usage &&
326  	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
327  				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
328  		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
329  		kfree(prange);
330  		return NULL;
331  	}
332  	prange->npages = size;
333  	prange->svms = svms;
334  	prange->start = start;
335  	prange->last = last;
336  	INIT_LIST_HEAD(&prange->list);
337  	INIT_LIST_HEAD(&prange->update_list);
338  	INIT_LIST_HEAD(&prange->svm_bo_list);
339  	INIT_LIST_HEAD(&prange->deferred_list);
340  	INIT_LIST_HEAD(&prange->child_list);
341  	atomic_set(&prange->invalid, 0);
342  	prange->validate_timestamp = 0;
343  	mutex_init(&prange->migrate_mutex);
344  	mutex_init(&prange->lock);
345  
346  	if (p->xnack_enabled)
347  		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
348  			    MAX_GPU_INSTANCE);
349  
350  	svm_range_set_default_attributes(&prange->preferred_loc,
351  					 &prange->prefetch_loc,
352  					 &prange->granularity, &prange->flags);
353  
354  	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
355  
356  	return prange;
357  }
358  
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)359  static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
360  {
361  	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
362  		return false;
363  
364  	return true;
365  }
366  
svm_range_bo_release(struct kref * kref)367  static void svm_range_bo_release(struct kref *kref)
368  {
369  	struct svm_range_bo *svm_bo;
370  
371  	svm_bo = container_of(kref, struct svm_range_bo, kref);
372  	pr_debug("svm_bo 0x%p\n", svm_bo);
373  
374  	spin_lock(&svm_bo->list_lock);
375  	while (!list_empty(&svm_bo->range_list)) {
376  		struct svm_range *prange =
377  				list_first_entry(&svm_bo->range_list,
378  						struct svm_range, svm_bo_list);
379  		/* list_del_init tells a concurrent svm_range_vram_node_new when
380  		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
381  		 */
382  		list_del_init(&prange->svm_bo_list);
383  		spin_unlock(&svm_bo->list_lock);
384  
385  		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
386  			 prange->start, prange->last);
387  		mutex_lock(&prange->lock);
388  		prange->svm_bo = NULL;
389  		mutex_unlock(&prange->lock);
390  
391  		spin_lock(&svm_bo->list_lock);
392  	}
393  	spin_unlock(&svm_bo->list_lock);
394  
395  	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
396  		struct kfd_process_device *pdd;
397  		struct kfd_process *p;
398  		struct mm_struct *mm;
399  
400  		mm = svm_bo->eviction_fence->mm;
401  		/*
402  		 * The forked child process takes svm_bo device pages ref, svm_bo could be
403  		 * released after parent process is gone.
404  		 */
405  		p = kfd_lookup_process_by_mm(mm);
406  		if (p) {
407  			pdd = kfd_get_process_device_data(svm_bo->node, p);
408  			if (pdd)
409  				atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
410  			kfd_unref_process(p);
411  		}
412  		mmput(mm);
413  	}
414  
415  	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
416  		/* We're not in the eviction worker. Signal the fence. */
417  		dma_fence_signal(&svm_bo->eviction_fence->base);
418  	dma_fence_put(&svm_bo->eviction_fence->base);
419  	amdgpu_bo_unref(&svm_bo->bo);
420  	kfree(svm_bo);
421  }
422  
svm_range_bo_wq_release(struct work_struct * work)423  static void svm_range_bo_wq_release(struct work_struct *work)
424  {
425  	struct svm_range_bo *svm_bo;
426  
427  	svm_bo = container_of(work, struct svm_range_bo, release_work);
428  	svm_range_bo_release(&svm_bo->kref);
429  }
430  
svm_range_bo_release_async(struct kref * kref)431  static void svm_range_bo_release_async(struct kref *kref)
432  {
433  	struct svm_range_bo *svm_bo;
434  
435  	svm_bo = container_of(kref, struct svm_range_bo, kref);
436  	pr_debug("svm_bo 0x%p\n", svm_bo);
437  	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
438  	schedule_work(&svm_bo->release_work);
439  }
440  
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)441  void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
442  {
443  	kref_put(&svm_bo->kref, svm_range_bo_release_async);
444  }
445  
svm_range_bo_unref(struct svm_range_bo * svm_bo)446  static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
447  {
448  	if (svm_bo)
449  		kref_put(&svm_bo->kref, svm_range_bo_release);
450  }
451  
452  static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)453  svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
454  {
455  	mutex_lock(&prange->lock);
456  	if (!prange->svm_bo) {
457  		mutex_unlock(&prange->lock);
458  		return false;
459  	}
460  	if (prange->ttm_res) {
461  		/* We still have a reference, all is well */
462  		mutex_unlock(&prange->lock);
463  		return true;
464  	}
465  	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
466  		/*
467  		 * Migrate from GPU to GPU, remove range from source svm_bo->node
468  		 * range list, and return false to allocate svm_bo from destination
469  		 * node.
470  		 */
471  		if (prange->svm_bo->node != node) {
472  			mutex_unlock(&prange->lock);
473  
474  			spin_lock(&prange->svm_bo->list_lock);
475  			list_del_init(&prange->svm_bo_list);
476  			spin_unlock(&prange->svm_bo->list_lock);
477  
478  			svm_range_bo_unref(prange->svm_bo);
479  			return false;
480  		}
481  		if (READ_ONCE(prange->svm_bo->evicting)) {
482  			struct dma_fence *f;
483  			struct svm_range_bo *svm_bo;
484  			/* The BO is getting evicted,
485  			 * we need to get a new one
486  			 */
487  			mutex_unlock(&prange->lock);
488  			svm_bo = prange->svm_bo;
489  			f = dma_fence_get(&svm_bo->eviction_fence->base);
490  			svm_range_bo_unref(prange->svm_bo);
491  			/* wait for the fence to avoid long spin-loop
492  			 * at list_empty_careful
493  			 */
494  			dma_fence_wait(f, false);
495  			dma_fence_put(f);
496  		} else {
497  			/* The BO was still around and we got
498  			 * a new reference to it
499  			 */
500  			mutex_unlock(&prange->lock);
501  			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
502  				 prange->svms, prange->start, prange->last);
503  
504  			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
505  			return true;
506  		}
507  
508  	} else {
509  		mutex_unlock(&prange->lock);
510  	}
511  
512  	/* We need a new svm_bo. Spin-loop to wait for concurrent
513  	 * svm_range_bo_release to finish removing this range from
514  	 * its range list and set prange->svm_bo to null. After this,
515  	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
516  	 */
517  	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
518  		cond_resched();
519  
520  	return false;
521  }
522  
svm_range_bo_new(void)523  static struct svm_range_bo *svm_range_bo_new(void)
524  {
525  	struct svm_range_bo *svm_bo;
526  
527  	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
528  	if (!svm_bo)
529  		return NULL;
530  
531  	kref_init(&svm_bo->kref);
532  	INIT_LIST_HEAD(&svm_bo->range_list);
533  	spin_lock_init(&svm_bo->list_lock);
534  
535  	return svm_bo;
536  }
537  
538  int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)539  svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
540  			bool clear)
541  {
542  	struct kfd_process_device *pdd;
543  	struct amdgpu_bo_param bp;
544  	struct svm_range_bo *svm_bo;
545  	struct amdgpu_bo_user *ubo;
546  	struct amdgpu_bo *bo;
547  	struct kfd_process *p;
548  	struct mm_struct *mm;
549  	int r;
550  
551  	p = container_of(prange->svms, struct kfd_process, svms);
552  	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
553  		 prange->start, prange->last);
554  
555  	if (svm_range_validate_svm_bo(node, prange))
556  		return 0;
557  
558  	svm_bo = svm_range_bo_new();
559  	if (!svm_bo) {
560  		pr_debug("failed to alloc svm bo\n");
561  		return -ENOMEM;
562  	}
563  	mm = get_task_mm(p->lead_thread);
564  	if (!mm) {
565  		pr_debug("failed to get mm\n");
566  		kfree(svm_bo);
567  		return -ESRCH;
568  	}
569  	svm_bo->node = node;
570  	svm_bo->eviction_fence =
571  		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
572  					   mm,
573  					   svm_bo);
574  	mmput(mm);
575  	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
576  	svm_bo->evicting = 0;
577  	memset(&bp, 0, sizeof(bp));
578  	bp.size = prange->npages * PAGE_SIZE;
579  	bp.byte_align = PAGE_SIZE;
580  	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
581  	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
582  	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
583  	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
584  	bp.type = ttm_bo_type_device;
585  	bp.resv = NULL;
586  	if (node->xcp)
587  		bp.xcp_id_plus1 = node->xcp->id + 1;
588  
589  	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
590  	if (r) {
591  		pr_debug("failed %d to create bo\n", r);
592  		goto create_bo_failed;
593  	}
594  	bo = &ubo->bo;
595  
596  	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
597  		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
598  		 bp.xcp_id_plus1 - 1);
599  
600  	r = amdgpu_bo_reserve(bo, true);
601  	if (r) {
602  		pr_debug("failed %d to reserve bo\n", r);
603  		goto reserve_bo_failed;
604  	}
605  
606  	if (clear) {
607  		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
608  		if (r) {
609  			pr_debug("failed %d to sync bo\n", r);
610  			amdgpu_bo_unreserve(bo);
611  			goto reserve_bo_failed;
612  		}
613  	}
614  
615  	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
616  	if (r) {
617  		pr_debug("failed %d to reserve bo\n", r);
618  		amdgpu_bo_unreserve(bo);
619  		goto reserve_bo_failed;
620  	}
621  	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
622  
623  	amdgpu_bo_unreserve(bo);
624  
625  	svm_bo->bo = bo;
626  	prange->svm_bo = svm_bo;
627  	prange->ttm_res = bo->tbo.resource;
628  	prange->offset = 0;
629  
630  	spin_lock(&svm_bo->list_lock);
631  	list_add(&prange->svm_bo_list, &svm_bo->range_list);
632  	spin_unlock(&svm_bo->list_lock);
633  
634  	pdd = svm_range_get_pdd_by_node(prange, node);
635  	if (pdd)
636  		atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
637  
638  	return 0;
639  
640  reserve_bo_failed:
641  	amdgpu_bo_unref(&bo);
642  create_bo_failed:
643  	dma_fence_put(&svm_bo->eviction_fence->base);
644  	kfree(svm_bo);
645  	prange->ttm_res = NULL;
646  
647  	return r;
648  }
649  
svm_range_vram_node_free(struct svm_range * prange)650  void svm_range_vram_node_free(struct svm_range *prange)
651  {
652  	/* serialize prange->svm_bo unref */
653  	mutex_lock(&prange->lock);
654  	/* prange->svm_bo has not been unref */
655  	if (prange->ttm_res) {
656  		prange->ttm_res = NULL;
657  		mutex_unlock(&prange->lock);
658  		svm_range_bo_unref(prange->svm_bo);
659  	} else
660  		mutex_unlock(&prange->lock);
661  }
662  
663  struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)664  svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
665  {
666  	struct kfd_process *p;
667  	struct kfd_process_device *pdd;
668  
669  	p = container_of(prange->svms, struct kfd_process, svms);
670  	pdd = kfd_process_device_data_by_id(p, gpu_id);
671  	if (!pdd) {
672  		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
673  		return NULL;
674  	}
675  
676  	return pdd->dev;
677  }
678  
679  struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)680  svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
681  {
682  	struct kfd_process *p;
683  
684  	p = container_of(prange->svms, struct kfd_process, svms);
685  
686  	return kfd_get_process_device_data(node, p);
687  }
688  
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)689  static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
690  {
691  	struct ttm_operation_ctx ctx = { false, false };
692  
693  	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
694  
695  	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
696  }
697  
698  static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)699  svm_range_check_attr(struct kfd_process *p,
700  		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
701  {
702  	uint32_t i;
703  
704  	for (i = 0; i < nattr; i++) {
705  		uint32_t val = attrs[i].value;
706  		int gpuidx = MAX_GPU_INSTANCE;
707  
708  		switch (attrs[i].type) {
709  		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
710  			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
711  			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
712  				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
713  			break;
714  		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
715  			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
716  				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
717  			break;
718  		case KFD_IOCTL_SVM_ATTR_ACCESS:
719  		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
720  		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
721  			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
722  			break;
723  		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
724  			break;
725  		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
726  			break;
727  		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
728  			break;
729  		default:
730  			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
731  			return -EINVAL;
732  		}
733  
734  		if (gpuidx < 0) {
735  			pr_debug("no GPU 0x%x found\n", val);
736  			return -EINVAL;
737  		} else if (gpuidx < MAX_GPU_INSTANCE &&
738  			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
739  			pr_debug("GPU 0x%x not supported\n", val);
740  			return -EINVAL;
741  		}
742  	}
743  
744  	return 0;
745  }
746  
747  static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)748  svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
749  		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
750  		      bool *update_mapping)
751  {
752  	uint32_t i;
753  	int gpuidx;
754  
755  	for (i = 0; i < nattr; i++) {
756  		switch (attrs[i].type) {
757  		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
758  			prange->preferred_loc = attrs[i].value;
759  			break;
760  		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
761  			prange->prefetch_loc = attrs[i].value;
762  			break;
763  		case KFD_IOCTL_SVM_ATTR_ACCESS:
764  		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
765  		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
766  			if (!p->xnack_enabled)
767  				*update_mapping = true;
768  
769  			gpuidx = kfd_process_gpuidx_from_gpuid(p,
770  							       attrs[i].value);
771  			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
772  				bitmap_clear(prange->bitmap_access, gpuidx, 1);
773  				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
774  			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
775  				bitmap_set(prange->bitmap_access, gpuidx, 1);
776  				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
777  			} else {
778  				bitmap_clear(prange->bitmap_access, gpuidx, 1);
779  				bitmap_set(prange->bitmap_aip, gpuidx, 1);
780  			}
781  			break;
782  		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
783  			*update_mapping = true;
784  			prange->flags |= attrs[i].value;
785  			break;
786  		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
787  			*update_mapping = true;
788  			prange->flags &= ~attrs[i].value;
789  			break;
790  		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
791  			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
792  			break;
793  		default:
794  			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
795  		}
796  	}
797  }
798  
799  static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)800  svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
801  			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
802  {
803  	uint32_t i;
804  	int gpuidx;
805  
806  	for (i = 0; i < nattr; i++) {
807  		switch (attrs[i].type) {
808  		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
809  			if (prange->preferred_loc != attrs[i].value)
810  				return false;
811  			break;
812  		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
813  			/* Prefetch should always trigger a migration even
814  			 * if the value of the attribute didn't change.
815  			 */
816  			return false;
817  		case KFD_IOCTL_SVM_ATTR_ACCESS:
818  		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
819  		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
820  			gpuidx = kfd_process_gpuidx_from_gpuid(p,
821  							       attrs[i].value);
822  			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
823  				if (test_bit(gpuidx, prange->bitmap_access) ||
824  				    test_bit(gpuidx, prange->bitmap_aip))
825  					return false;
826  			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
827  				if (!test_bit(gpuidx, prange->bitmap_access))
828  					return false;
829  			} else {
830  				if (!test_bit(gpuidx, prange->bitmap_aip))
831  					return false;
832  			}
833  			break;
834  		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
835  			if ((prange->flags & attrs[i].value) != attrs[i].value)
836  				return false;
837  			break;
838  		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
839  			if ((prange->flags & attrs[i].value) != 0)
840  				return false;
841  			break;
842  		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
843  			if (prange->granularity != attrs[i].value)
844  				return false;
845  			break;
846  		default:
847  			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
848  		}
849  	}
850  
851  	return true;
852  }
853  
854  /**
855   * svm_range_debug_dump - print all range information from svms
856   * @svms: svm range list header
857   *
858   * debug output svm range start, end, prefetch location from svms
859   * interval tree and link list
860   *
861   * Context: The caller must hold svms->lock
862   */
svm_range_debug_dump(struct svm_range_list * svms)863  static void svm_range_debug_dump(struct svm_range_list *svms)
864  {
865  	struct interval_tree_node *node;
866  	struct svm_range *prange;
867  
868  	pr_debug("dump svms 0x%p list\n", svms);
869  	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
870  
871  	list_for_each_entry(prange, &svms->list, list) {
872  		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
873  			 prange, prange->start, prange->npages,
874  			 prange->start + prange->npages - 1,
875  			 prange->actual_loc);
876  	}
877  
878  	pr_debug("dump svms 0x%p interval tree\n", svms);
879  	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
880  	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
881  	while (node) {
882  		prange = container_of(node, struct svm_range, it_node);
883  		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
884  			 prange, prange->start, prange->npages,
885  			 prange->start + prange->npages - 1,
886  			 prange->actual_loc);
887  		node = interval_tree_iter_next(node, 0, ~0ULL);
888  	}
889  }
890  
891  static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset)892  svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
893  		     uint64_t offset)
894  {
895  	unsigned char *dst;
896  
897  	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
898  	if (!dst)
899  		return NULL;
900  	memcpy(dst, (unsigned char *)psrc + offset, num_elements * size);
901  
902  	return (void *)dst;
903  }
904  
905  static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)906  svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
907  {
908  	int i;
909  
910  	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
911  		if (!src->dma_addr[i])
912  			continue;
913  		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
914  					sizeof(*src->dma_addr[i]), src->npages, 0);
915  		if (!dst->dma_addr[i])
916  			return -ENOMEM;
917  	}
918  
919  	return 0;
920  }
921  
922  static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n)923  svm_range_split_array(void *ppnew, void *ppold, size_t size,
924  		      uint64_t old_start, uint64_t old_n,
925  		      uint64_t new_start, uint64_t new_n)
926  {
927  	unsigned char *new, *old, *pold;
928  	uint64_t d;
929  
930  	if (!ppold)
931  		return 0;
932  	pold = *(unsigned char **)ppold;
933  	if (!pold)
934  		return 0;
935  
936  	d = (new_start - old_start) * size;
937  	new = svm_range_copy_array(pold, size, new_n, d);
938  	if (!new)
939  		return -ENOMEM;
940  	d = (new_start == old_start) ? new_n * size : 0;
941  	old = svm_range_copy_array(pold, size, old_n, d);
942  	if (!old) {
943  		kvfree(new);
944  		return -ENOMEM;
945  	}
946  	kvfree(pold);
947  	*(void **)ppold = old;
948  	*(void **)ppnew = new;
949  
950  	return 0;
951  }
952  
953  static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)954  svm_range_split_pages(struct svm_range *new, struct svm_range *old,
955  		      uint64_t start, uint64_t last)
956  {
957  	uint64_t npages = last - start + 1;
958  	int i, r;
959  
960  	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
961  		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
962  					  sizeof(*old->dma_addr[i]), old->start,
963  					  npages, new->start, new->npages);
964  		if (r)
965  			return r;
966  	}
967  
968  	return 0;
969  }
970  
971  static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)972  svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
973  		      uint64_t start, uint64_t last)
974  {
975  	uint64_t npages = last - start + 1;
976  
977  	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
978  		 new->svms, new, new->start, start, last);
979  
980  	if (new->start == old->start) {
981  		new->offset = old->offset;
982  		old->offset += new->npages;
983  	} else {
984  		new->offset = old->offset + npages;
985  	}
986  
987  	new->svm_bo = svm_range_bo_ref(old->svm_bo);
988  	new->ttm_res = old->ttm_res;
989  
990  	spin_lock(&new->svm_bo->list_lock);
991  	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
992  	spin_unlock(&new->svm_bo->list_lock);
993  
994  	return 0;
995  }
996  
997  /**
998   * svm_range_split_adjust - split range and adjust
999   *
1000   * @new: new range
1001   * @old: the old range
1002   * @start: the old range adjust to start address in pages
1003   * @last: the old range adjust to last address in pages
1004   *
1005   * Copy system memory dma_addr or vram ttm_res in old range to new
1006   * range from new_start up to size new->npages, the remaining old range is from
1007   * start to last
1008   *
1009   * Return:
1010   * 0 - OK, -ENOMEM - out of memory
1011   */
1012  static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1013  svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1014  		      uint64_t start, uint64_t last)
1015  {
1016  	int r;
1017  
1018  	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1019  		 new->svms, new->start, old->start, old->last, start, last);
1020  
1021  	if (new->start < old->start ||
1022  	    new->last > old->last) {
1023  		WARN_ONCE(1, "invalid new range start or last\n");
1024  		return -EINVAL;
1025  	}
1026  
1027  	r = svm_range_split_pages(new, old, start, last);
1028  	if (r)
1029  		return r;
1030  
1031  	if (old->actual_loc && old->ttm_res) {
1032  		r = svm_range_split_nodes(new, old, start, last);
1033  		if (r)
1034  			return r;
1035  	}
1036  
1037  	old->npages = last - start + 1;
1038  	old->start = start;
1039  	old->last = last;
1040  	new->flags = old->flags;
1041  	new->preferred_loc = old->preferred_loc;
1042  	new->prefetch_loc = old->prefetch_loc;
1043  	new->actual_loc = old->actual_loc;
1044  	new->granularity = old->granularity;
1045  	new->mapped_to_gpu = old->mapped_to_gpu;
1046  	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1047  	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1048  
1049  	return 0;
1050  }
1051  
1052  /**
1053   * svm_range_split - split a range in 2 ranges
1054   *
1055   * @prange: the svm range to split
1056   * @start: the remaining range start address in pages
1057   * @last: the remaining range last address in pages
1058   * @new: the result new range generated
1059   *
1060   * Two cases only:
1061   * case 1: if start == prange->start
1062   *         prange ==> prange[start, last]
1063   *         new range [last + 1, prange->last]
1064   *
1065   * case 2: if last == prange->last
1066   *         prange ==> prange[start, last]
1067   *         new range [prange->start, start - 1]
1068   *
1069   * Return:
1070   * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1071   */
1072  static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1073  svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1074  		struct svm_range **new)
1075  {
1076  	uint64_t old_start = prange->start;
1077  	uint64_t old_last = prange->last;
1078  	struct svm_range_list *svms;
1079  	int r = 0;
1080  
1081  	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1082  		 old_start, old_last, start, last);
1083  
1084  	if (old_start != start && old_last != last)
1085  		return -EINVAL;
1086  	if (start < old_start || last > old_last)
1087  		return -EINVAL;
1088  
1089  	svms = prange->svms;
1090  	if (old_start == start)
1091  		*new = svm_range_new(svms, last + 1, old_last, false);
1092  	else
1093  		*new = svm_range_new(svms, old_start, start - 1, false);
1094  	if (!*new)
1095  		return -ENOMEM;
1096  
1097  	r = svm_range_split_adjust(*new, prange, start, last);
1098  	if (r) {
1099  		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1100  			 r, old_start, old_last, start, last);
1101  		svm_range_free(*new, false);
1102  		*new = NULL;
1103  	}
1104  
1105  	return r;
1106  }
1107  
1108  static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list)1109  svm_range_split_tail(struct svm_range *prange,
1110  		     uint64_t new_last, struct list_head *insert_list)
1111  {
1112  	struct svm_range *tail;
1113  	int r = svm_range_split(prange, prange->start, new_last, &tail);
1114  
1115  	if (!r)
1116  		list_add(&tail->list, insert_list);
1117  	return r;
1118  }
1119  
1120  static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list)1121  svm_range_split_head(struct svm_range *prange,
1122  		     uint64_t new_start, struct list_head *insert_list)
1123  {
1124  	struct svm_range *head;
1125  	int r = svm_range_split(prange, new_start, prange->last, &head);
1126  
1127  	if (!r)
1128  		list_add(&head->list, insert_list);
1129  	return r;
1130  }
1131  
1132  static void
svm_range_add_child(struct svm_range * prange,struct mm_struct * mm,struct svm_range * pchild,enum svm_work_list_ops op)1133  svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1134  		    struct svm_range *pchild, enum svm_work_list_ops op)
1135  {
1136  	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1137  		 pchild, pchild->start, pchild->last, prange, op);
1138  
1139  	pchild->work_item.mm = mm;
1140  	pchild->work_item.op = op;
1141  	list_add_tail(&pchild->child_list, &prange->child_list);
1142  }
1143  
1144  /**
1145   * svm_range_split_by_granularity - collect ranges within granularity boundary
1146   *
1147   * @p: the process with svms list
1148   * @mm: mm structure
1149   * @addr: the vm fault address in pages, to split the prange
1150   * @parent: parent range if prange is from child list
1151   * @prange: prange to split
1152   *
1153   * Trims @prange to be a single aligned block of prange->granularity if
1154   * possible. The head and tail are added to the child_list in @parent.
1155   *
1156   * Context: caller must hold mmap_read_lock and prange->lock
1157   *
1158   * Return:
1159   * 0 - OK, otherwise error code
1160   */
1161  int
svm_range_split_by_granularity(struct kfd_process * p,struct mm_struct * mm,unsigned long addr,struct svm_range * parent,struct svm_range * prange)1162  svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
1163  			       unsigned long addr, struct svm_range *parent,
1164  			       struct svm_range *prange)
1165  {
1166  	struct svm_range *head, *tail;
1167  	unsigned long start, last, size;
1168  	int r;
1169  
1170  	/* Align splited range start and size to granularity size, then a single
1171  	 * PTE will be used for whole range, this reduces the number of PTE
1172  	 * updated and the L1 TLB space used for translation.
1173  	 */
1174  	size = 1UL << prange->granularity;
1175  	start = ALIGN_DOWN(addr, size);
1176  	last = ALIGN(addr + 1, size) - 1;
1177  
1178  	pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1179  		 prange->svms, prange->start, prange->last, start, last, size);
1180  
1181  	if (start > prange->start) {
1182  		r = svm_range_split(prange, start, prange->last, &head);
1183  		if (r)
1184  			return r;
1185  		svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
1186  	}
1187  
1188  	if (last < prange->last) {
1189  		r = svm_range_split(prange, prange->start, last, &tail);
1190  		if (r)
1191  			return r;
1192  		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
1193  	}
1194  
1195  	/* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1196  	if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1197  		prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1198  		pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1199  			 prange, prange->start, prange->last,
1200  			 SVM_OP_ADD_RANGE_AND_MAP);
1201  	}
1202  	return 0;
1203  }
1204  static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1205  svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1206  {
1207  	return (node_a->adev == node_b->adev ||
1208  		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1209  }
1210  
1211  static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1212  svm_range_get_pte_flags(struct kfd_node *node,
1213  			struct svm_range *prange, int domain)
1214  {
1215  	struct kfd_node *bo_node;
1216  	uint32_t flags = prange->flags;
1217  	uint32_t mapping_flags = 0;
1218  	uint64_t pte_flags;
1219  	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1220  	bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT;
1221  	bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1222  	unsigned int mtype_local;
1223  
1224  	if (domain == SVM_RANGE_VRAM_DOMAIN)
1225  		bo_node = prange->svm_bo->node;
1226  
1227  	switch (node->adev->ip_versions[GC_HWIP][0]) {
1228  	case IP_VERSION(9, 4, 1):
1229  		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1230  			if (bo_node == node) {
1231  				mapping_flags |= coherent ?
1232  					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1233  			} else {
1234  				mapping_flags |= coherent ?
1235  					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1236  				if (svm_nodes_in_same_hive(node, bo_node))
1237  					snoop = true;
1238  			}
1239  		} else {
1240  			mapping_flags |= coherent ?
1241  				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1242  		}
1243  		break;
1244  	case IP_VERSION(9, 4, 2):
1245  		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1246  			if (bo_node == node) {
1247  				mapping_flags |= coherent ?
1248  					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1249  				if (node->adev->gmc.xgmi.connected_to_cpu)
1250  					snoop = true;
1251  			} else {
1252  				mapping_flags |= coherent ?
1253  					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1254  				if (svm_nodes_in_same_hive(node, bo_node))
1255  					snoop = true;
1256  			}
1257  		} else {
1258  			mapping_flags |= coherent ?
1259  				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1260  		}
1261  		break;
1262  	case IP_VERSION(9, 4, 3):
1263  		mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1264  			     (amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW);
1265  		snoop = true;
1266  		if (uncached) {
1267  			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1268  		} else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1269  			/* local HBM region close to partition */
1270  			if (bo_node->adev == node->adev &&
1271  			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1272  				mapping_flags |= mtype_local;
1273  			/* local HBM region far from partition or remote XGMI GPU */
1274  			else if (svm_nodes_in_same_hive(bo_node, node))
1275  				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1276  			/* PCIe P2P */
1277  			else
1278  				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1279  		/* system memory accessed by the APU */
1280  		} else if (node->adev->flags & AMD_IS_APU) {
1281  			/* On NUMA systems, locality is determined per-page
1282  			 * in amdgpu_gmc_override_vm_pte_flags
1283  			 */
1284  			if (num_possible_nodes() <= 1)
1285  				mapping_flags |= mtype_local;
1286  			else
1287  				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1288  		/* system memory accessed by the dGPU */
1289  		} else {
1290  			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1291  		}
1292  		break;
1293  	default:
1294  		mapping_flags |= coherent ?
1295  			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1296  	}
1297  
1298  	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1299  
1300  	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1301  		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1302  	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1303  		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1304  
1305  	pte_flags = AMDGPU_PTE_VALID;
1306  	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1307  	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1308  
1309  	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1310  	return pte_flags;
1311  }
1312  
1313  static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1314  svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1315  			 uint64_t start, uint64_t last,
1316  			 struct dma_fence **fence)
1317  {
1318  	uint64_t init_pte_value = 0;
1319  
1320  	pr_debug("[0x%llx 0x%llx]\n", start, last);
1321  
1322  	return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start,
1323  				      last, init_pte_value, 0, 0, NULL, NULL,
1324  				      fence);
1325  }
1326  
1327  static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1328  svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1329  			  unsigned long last, uint32_t trigger)
1330  {
1331  	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1332  	struct kfd_process_device *pdd;
1333  	struct dma_fence *fence = NULL;
1334  	struct kfd_process *p;
1335  	uint32_t gpuidx;
1336  	int r = 0;
1337  
1338  	if (!prange->mapped_to_gpu) {
1339  		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1340  			 prange, prange->start, prange->last);
1341  		return 0;
1342  	}
1343  
1344  	if (prange->start == start && prange->last == last) {
1345  		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1346  		prange->mapped_to_gpu = false;
1347  	}
1348  
1349  	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1350  		  MAX_GPU_INSTANCE);
1351  	p = container_of(prange->svms, struct kfd_process, svms);
1352  
1353  	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1354  		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1355  		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1356  		if (!pdd) {
1357  			pr_debug("failed to find device idx %d\n", gpuidx);
1358  			return -EINVAL;
1359  		}
1360  
1361  		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1362  					     start, last, trigger);
1363  
1364  		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1365  					     drm_priv_to_vm(pdd->drm_priv),
1366  					     start, last, &fence);
1367  		if (r)
1368  			break;
1369  
1370  		if (fence) {
1371  			r = dma_fence_wait(fence, false);
1372  			dma_fence_put(fence);
1373  			fence = NULL;
1374  			if (r)
1375  				break;
1376  		}
1377  		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1378  	}
1379  
1380  	return r;
1381  }
1382  
1383  static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1384  svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1385  		     unsigned long offset, unsigned long npages, bool readonly,
1386  		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1387  		     struct dma_fence **fence, bool flush_tlb)
1388  {
1389  	struct amdgpu_device *adev = pdd->dev->adev;
1390  	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1391  	uint64_t pte_flags;
1392  	unsigned long last_start;
1393  	int last_domain;
1394  	int r = 0;
1395  	int64_t i, j;
1396  
1397  	last_start = prange->start + offset;
1398  
1399  	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1400  		 last_start, last_start + npages - 1, readonly);
1401  
1402  	for (i = offset; i < offset + npages; i++) {
1403  		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1404  		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1405  
1406  		/* Collect all pages in the same address range and memory domain
1407  		 * that can be mapped with a single call to update mapping.
1408  		 */
1409  		if (i < offset + npages - 1 &&
1410  		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1411  			continue;
1412  
1413  		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1414  			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1415  
1416  		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1417  		if (readonly)
1418  			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1419  
1420  		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1421  			 prange->svms, last_start, prange->start + i,
1422  			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1423  			 pte_flags);
1424  
1425  		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1426  		 * different memory partition based on fpfn/lpfn, we should use
1427  		 * same vm_manager.vram_base_offset regardless memory partition.
1428  		 */
1429  		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL,
1430  					   last_start, prange->start + i,
1431  					   pte_flags,
1432  					   (last_start - prange->start) << PAGE_SHIFT,
1433  					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1434  					   NULL, dma_addr, &vm->last_update);
1435  
1436  		for (j = last_start - prange->start; j <= i; j++)
1437  			dma_addr[j] |= last_domain;
1438  
1439  		if (r) {
1440  			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1441  			goto out;
1442  		}
1443  		last_start = prange->start + i + 1;
1444  	}
1445  
1446  	r = amdgpu_vm_update_pdes(adev, vm, false);
1447  	if (r) {
1448  		pr_debug("failed %d to update directories 0x%lx\n", r,
1449  			 prange->start);
1450  		goto out;
1451  	}
1452  
1453  	if (fence)
1454  		*fence = dma_fence_get(vm->last_update);
1455  
1456  out:
1457  	return r;
1458  }
1459  
1460  static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1461  svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1462  		      unsigned long npages, bool readonly,
1463  		      unsigned long *bitmap, bool wait, bool flush_tlb)
1464  {
1465  	struct kfd_process_device *pdd;
1466  	struct amdgpu_device *bo_adev = NULL;
1467  	struct kfd_process *p;
1468  	struct dma_fence *fence = NULL;
1469  	uint32_t gpuidx;
1470  	int r = 0;
1471  
1472  	if (prange->svm_bo && prange->ttm_res)
1473  		bo_adev = prange->svm_bo->node->adev;
1474  
1475  	p = container_of(prange->svms, struct kfd_process, svms);
1476  	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1477  		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1478  		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1479  		if (!pdd) {
1480  			pr_debug("failed to find device idx %d\n", gpuidx);
1481  			return -EINVAL;
1482  		}
1483  
1484  		pdd = kfd_bind_process_to_device(pdd->dev, p);
1485  		if (IS_ERR(pdd))
1486  			return -EINVAL;
1487  
1488  		if (bo_adev && pdd->dev->adev != bo_adev &&
1489  		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1490  			pr_debug("cannot map to device idx %d\n", gpuidx);
1491  			continue;
1492  		}
1493  
1494  		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1495  					 prange->dma_addr[gpuidx],
1496  					 bo_adev, wait ? &fence : NULL,
1497  					 flush_tlb);
1498  		if (r)
1499  			break;
1500  
1501  		if (fence) {
1502  			r = dma_fence_wait(fence, false);
1503  			dma_fence_put(fence);
1504  			fence = NULL;
1505  			if (r) {
1506  				pr_debug("failed %d to dma fence wait\n", r);
1507  				break;
1508  			}
1509  		}
1510  
1511  		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1512  	}
1513  
1514  	return r;
1515  }
1516  
1517  struct svm_validate_context {
1518  	struct kfd_process *process;
1519  	struct svm_range *prange;
1520  	bool intr;
1521  	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1522  	struct drm_exec exec;
1523  };
1524  
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1525  static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1526  {
1527  	struct kfd_process_device *pdd;
1528  	struct amdgpu_vm *vm;
1529  	uint32_t gpuidx;
1530  	int r;
1531  
1532  	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0);
1533  	drm_exec_until_all_locked(&ctx->exec) {
1534  		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1535  			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1536  			if (!pdd) {
1537  				pr_debug("failed to find device idx %d\n", gpuidx);
1538  				r = -EINVAL;
1539  				goto unreserve_out;
1540  			}
1541  			vm = drm_priv_to_vm(pdd->drm_priv);
1542  
1543  			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1544  			drm_exec_retry_on_contention(&ctx->exec);
1545  			if (unlikely(r)) {
1546  				pr_debug("failed %d to reserve bo\n", r);
1547  				goto unreserve_out;
1548  			}
1549  		}
1550  	}
1551  
1552  	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1553  		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1554  		if (!pdd) {
1555  			pr_debug("failed to find device idx %d\n", gpuidx);
1556  			r = -EINVAL;
1557  			goto unreserve_out;
1558  		}
1559  
1560  		r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1561  					      drm_priv_to_vm(pdd->drm_priv),
1562  					      svm_range_bo_validate, NULL);
1563  		if (r) {
1564  			pr_debug("failed %d validate pt bos\n", r);
1565  			goto unreserve_out;
1566  		}
1567  	}
1568  
1569  	return 0;
1570  
1571  unreserve_out:
1572  	drm_exec_fini(&ctx->exec);
1573  	return r;
1574  }
1575  
svm_range_unreserve_bos(struct svm_validate_context * ctx)1576  static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1577  {
1578  	drm_exec_fini(&ctx->exec);
1579  }
1580  
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1581  static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1582  {
1583  	struct kfd_process_device *pdd;
1584  
1585  	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1586  	if (!pdd)
1587  		return NULL;
1588  
1589  	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1590  }
1591  
1592  /*
1593   * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1594   *
1595   * To prevent concurrent destruction or change of range attributes, the
1596   * svm_read_lock must be held. The caller must not hold the svm_write_lock
1597   * because that would block concurrent evictions and lead to deadlocks. To
1598   * serialize concurrent migrations or validations of the same range, the
1599   * prange->migrate_mutex must be held.
1600   *
1601   * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1602   * eviction fence.
1603   *
1604   * The following sequence ensures race-free validation and GPU mapping:
1605   *
1606   * 1. Reserve page table (and SVM BO if range is in VRAM)
1607   * 2. hmm_range_fault to get page addresses (if system memory)
1608   * 3. DMA-map pages (if system memory)
1609   * 4-a. Take notifier lock
1610   * 4-b. Check that pages still valid (mmu_interval_read_retry)
1611   * 4-c. Check that the range was not split or otherwise invalidated
1612   * 4-d. Update GPU page table
1613   * 4.e. Release notifier lock
1614   * 5. Release page table (and SVM BO) reservation
1615   */
svm_range_validate_and_map(struct mm_struct * mm,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1616  static int svm_range_validate_and_map(struct mm_struct *mm,
1617  				      struct svm_range *prange, int32_t gpuidx,
1618  				      bool intr, bool wait, bool flush_tlb)
1619  {
1620  	struct svm_validate_context *ctx;
1621  	unsigned long start, end, addr;
1622  	struct kfd_process *p;
1623  	void *owner;
1624  	int32_t idx;
1625  	int r = 0;
1626  
1627  	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1628  	if (!ctx)
1629  		return -ENOMEM;
1630  	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1631  	ctx->prange = prange;
1632  	ctx->intr = intr;
1633  
1634  	if (gpuidx < MAX_GPU_INSTANCE) {
1635  		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1636  		bitmap_set(ctx->bitmap, gpuidx, 1);
1637  	} else if (ctx->process->xnack_enabled) {
1638  		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1639  
1640  		/* If prefetch range to GPU, or GPU retry fault migrate range to
1641  		 * GPU, which has ACCESS attribute to the range, create mapping
1642  		 * on that GPU.
1643  		 */
1644  		if (prange->actual_loc) {
1645  			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1646  							prange->actual_loc);
1647  			if (gpuidx < 0) {
1648  				WARN_ONCE(1, "failed get device by id 0x%x\n",
1649  					 prange->actual_loc);
1650  				r = -EINVAL;
1651  				goto free_ctx;
1652  			}
1653  			if (test_bit(gpuidx, prange->bitmap_access))
1654  				bitmap_set(ctx->bitmap, gpuidx, 1);
1655  		}
1656  
1657  		/*
1658  		 * If prange is already mapped or with always mapped flag,
1659  		 * update mapping on GPUs with ACCESS attribute
1660  		 */
1661  		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1662  			if (prange->mapped_to_gpu ||
1663  			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1664  				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1665  		}
1666  	} else {
1667  		bitmap_or(ctx->bitmap, prange->bitmap_access,
1668  			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1669  	}
1670  
1671  	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1672  		r = 0;
1673  		goto free_ctx;
1674  	}
1675  
1676  	if (prange->actual_loc && !prange->ttm_res) {
1677  		/* This should never happen. actual_loc gets set by
1678  		 * svm_migrate_ram_to_vram after allocating a BO.
1679  		 */
1680  		WARN_ONCE(1, "VRAM BO missing during validation\n");
1681  		r = -EINVAL;
1682  		goto free_ctx;
1683  	}
1684  
1685  	svm_range_reserve_bos(ctx, intr);
1686  
1687  	p = container_of(prange->svms, struct kfd_process, svms);
1688  	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1689  						MAX_GPU_INSTANCE));
1690  	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1691  		if (kfd_svm_page_owner(p, idx) != owner) {
1692  			owner = NULL;
1693  			break;
1694  		}
1695  	}
1696  
1697  	start = prange->start << PAGE_SHIFT;
1698  	end = (prange->last + 1) << PAGE_SHIFT;
1699  	for (addr = start; !r && addr < end; ) {
1700  		struct hmm_range *hmm_range;
1701  		struct vm_area_struct *vma;
1702  		unsigned long next = 0;
1703  		unsigned long offset;
1704  		unsigned long npages;
1705  		bool readonly;
1706  
1707  		vma = vma_lookup(mm, addr);
1708  		if (vma) {
1709  			readonly = !(vma->vm_flags & VM_WRITE);
1710  
1711  			next = min(vma->vm_end, end);
1712  			npages = (next - addr) >> PAGE_SHIFT;
1713  			WRITE_ONCE(p->svms.faulting_task, current);
1714  			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1715  						       readonly, owner, NULL,
1716  						       &hmm_range);
1717  			WRITE_ONCE(p->svms.faulting_task, NULL);
1718  			if (r) {
1719  				pr_debug("failed %d to get svm range pages\n", r);
1720  				if (r == -EBUSY)
1721  					r = -EAGAIN;
1722  			}
1723  		} else {
1724  			r = -EFAULT;
1725  		}
1726  
1727  		if (!r) {
1728  			offset = (addr - start) >> PAGE_SHIFT;
1729  			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1730  					      hmm_range->hmm_pfns);
1731  			if (r)
1732  				pr_debug("failed %d to dma map range\n", r);
1733  		}
1734  
1735  		svm_range_lock(prange);
1736  		if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
1737  			pr_debug("hmm update the range, need validate again\n");
1738  			r = -EAGAIN;
1739  		}
1740  
1741  		if (!r && !list_empty(&prange->child_list)) {
1742  			pr_debug("range split by unmap in parallel, validate again\n");
1743  			r = -EAGAIN;
1744  		}
1745  
1746  		if (!r)
1747  			r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1748  						  ctx->bitmap, wait, flush_tlb);
1749  
1750  		if (!r && next == end)
1751  			prange->mapped_to_gpu = true;
1752  
1753  		svm_range_unlock(prange);
1754  
1755  		addr = next;
1756  	}
1757  
1758  	svm_range_unreserve_bos(ctx);
1759  	if (!r)
1760  		prange->validate_timestamp = ktime_get_boottime();
1761  
1762  free_ctx:
1763  	kfree(ctx);
1764  
1765  	return r;
1766  }
1767  
1768  /**
1769   * svm_range_list_lock_and_flush_work - flush pending deferred work
1770   *
1771   * @svms: the svm range list
1772   * @mm: the mm structure
1773   *
1774   * Context: Returns with mmap write lock held, pending deferred work flushed
1775   *
1776   */
1777  void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1778  svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1779  				   struct mm_struct *mm)
1780  {
1781  retry_flush_work:
1782  	flush_work(&svms->deferred_list_work);
1783  	mmap_write_lock(mm);
1784  
1785  	if (list_empty(&svms->deferred_range_list))
1786  		return;
1787  	mmap_write_unlock(mm);
1788  	pr_debug("retry flush\n");
1789  	goto retry_flush_work;
1790  }
1791  
svm_range_restore_work(struct work_struct * work)1792  static void svm_range_restore_work(struct work_struct *work)
1793  {
1794  	struct delayed_work *dwork = to_delayed_work(work);
1795  	struct amdkfd_process_info *process_info;
1796  	struct svm_range_list *svms;
1797  	struct svm_range *prange;
1798  	struct kfd_process *p;
1799  	struct mm_struct *mm;
1800  	int evicted_ranges;
1801  	int invalid;
1802  	int r;
1803  
1804  	svms = container_of(dwork, struct svm_range_list, restore_work);
1805  	evicted_ranges = atomic_read(&svms->evicted_ranges);
1806  	if (!evicted_ranges)
1807  		return;
1808  
1809  	pr_debug("restore svm ranges\n");
1810  
1811  	p = container_of(svms, struct kfd_process, svms);
1812  	process_info = p->kgd_process_info;
1813  
1814  	/* Keep mm reference when svm_range_validate_and_map ranges */
1815  	mm = get_task_mm(p->lead_thread);
1816  	if (!mm) {
1817  		pr_debug("svms 0x%p process mm gone\n", svms);
1818  		return;
1819  	}
1820  
1821  	mutex_lock(&process_info->lock);
1822  	svm_range_list_lock_and_flush_work(svms, mm);
1823  	mutex_lock(&svms->lock);
1824  
1825  	evicted_ranges = atomic_read(&svms->evicted_ranges);
1826  
1827  	list_for_each_entry(prange, &svms->list, list) {
1828  		invalid = atomic_read(&prange->invalid);
1829  		if (!invalid)
1830  			continue;
1831  
1832  		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1833  			 prange->svms, prange, prange->start, prange->last,
1834  			 invalid);
1835  
1836  		/*
1837  		 * If range is migrating, wait for migration is done.
1838  		 */
1839  		mutex_lock(&prange->migrate_mutex);
1840  
1841  		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1842  					       false, true, false);
1843  		if (r)
1844  			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1845  				 prange->start);
1846  
1847  		mutex_unlock(&prange->migrate_mutex);
1848  		if (r)
1849  			goto out_reschedule;
1850  
1851  		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1852  			goto out_reschedule;
1853  	}
1854  
1855  	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1856  	    evicted_ranges)
1857  		goto out_reschedule;
1858  
1859  	evicted_ranges = 0;
1860  
1861  	r = kgd2kfd_resume_mm(mm);
1862  	if (r) {
1863  		/* No recovery from this failure. Probably the CP is
1864  		 * hanging. No point trying again.
1865  		 */
1866  		pr_debug("failed %d to resume KFD\n", r);
1867  	}
1868  
1869  	pr_debug("restore svm ranges successfully\n");
1870  
1871  out_reschedule:
1872  	mutex_unlock(&svms->lock);
1873  	mmap_write_unlock(mm);
1874  	mutex_unlock(&process_info->lock);
1875  
1876  	/* If validation failed, reschedule another attempt */
1877  	if (evicted_ranges) {
1878  		pr_debug("reschedule to restore svm range\n");
1879  		schedule_delayed_work(&svms->restore_work,
1880  			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1881  
1882  		kfd_smi_event_queue_restore_rescheduled(mm);
1883  	}
1884  	mmput(mm);
1885  }
1886  
1887  /**
1888   * svm_range_evict - evict svm range
1889   * @prange: svm range structure
1890   * @mm: current process mm_struct
1891   * @start: starting process queue number
1892   * @last: last process queue number
1893   * @event: mmu notifier event when range is evicted or migrated
1894   *
1895   * Stop all queues of the process to ensure GPU doesn't access the memory, then
1896   * return to let CPU evict the buffer and proceed CPU pagetable update.
1897   *
1898   * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1899   * If invalidation happens while restore work is running, restore work will
1900   * restart to ensure to get the latest CPU pages mapping to GPU, then start
1901   * the queues.
1902   */
1903  static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1904  svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1905  		unsigned long start, unsigned long last,
1906  		enum mmu_notifier_event event)
1907  {
1908  	struct svm_range_list *svms = prange->svms;
1909  	struct svm_range *pchild;
1910  	struct kfd_process *p;
1911  	int r = 0;
1912  
1913  	p = container_of(svms, struct kfd_process, svms);
1914  
1915  	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1916  		 svms, prange->start, prange->last, start, last);
1917  
1918  	if (!p->xnack_enabled ||
1919  	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1920  		int evicted_ranges;
1921  		bool mapped = prange->mapped_to_gpu;
1922  
1923  		list_for_each_entry(pchild, &prange->child_list, child_list) {
1924  			if (!pchild->mapped_to_gpu)
1925  				continue;
1926  			mapped = true;
1927  			mutex_lock_nested(&pchild->lock, 1);
1928  			if (pchild->start <= last && pchild->last >= start) {
1929  				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1930  					 pchild->start, pchild->last);
1931  				atomic_inc(&pchild->invalid);
1932  			}
1933  			mutex_unlock(&pchild->lock);
1934  		}
1935  
1936  		if (!mapped)
1937  			return r;
1938  
1939  		if (prange->start <= last && prange->last >= start)
1940  			atomic_inc(&prange->invalid);
1941  
1942  		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1943  		if (evicted_ranges != 1)
1944  			return r;
1945  
1946  		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1947  			 prange->svms, prange->start, prange->last);
1948  
1949  		/* First eviction, stop the queues */
1950  		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1951  		if (r)
1952  			pr_debug("failed to quiesce KFD\n");
1953  
1954  		pr_debug("schedule to restore svm %p ranges\n", svms);
1955  		schedule_delayed_work(&svms->restore_work,
1956  			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1957  	} else {
1958  		unsigned long s, l;
1959  		uint32_t trigger;
1960  
1961  		if (event == MMU_NOTIFY_MIGRATE)
1962  			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1963  		else
1964  			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1965  
1966  		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1967  			 prange->svms, start, last);
1968  		list_for_each_entry(pchild, &prange->child_list, child_list) {
1969  			mutex_lock_nested(&pchild->lock, 1);
1970  			s = max(start, pchild->start);
1971  			l = min(last, pchild->last);
1972  			if (l >= s)
1973  				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1974  			mutex_unlock(&pchild->lock);
1975  		}
1976  		s = max(start, prange->start);
1977  		l = min(last, prange->last);
1978  		if (l >= s)
1979  			svm_range_unmap_from_gpus(prange, s, l, trigger);
1980  	}
1981  
1982  	return r;
1983  }
1984  
svm_range_clone(struct svm_range * old)1985  static struct svm_range *svm_range_clone(struct svm_range *old)
1986  {
1987  	struct svm_range *new;
1988  
1989  	new = svm_range_new(old->svms, old->start, old->last, false);
1990  	if (!new)
1991  		return NULL;
1992  	if (svm_range_copy_dma_addrs(new, old)) {
1993  		svm_range_free(new, false);
1994  		return NULL;
1995  	}
1996  	if (old->svm_bo) {
1997  		new->ttm_res = old->ttm_res;
1998  		new->offset = old->offset;
1999  		new->svm_bo = svm_range_bo_ref(old->svm_bo);
2000  		spin_lock(&new->svm_bo->list_lock);
2001  		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2002  		spin_unlock(&new->svm_bo->list_lock);
2003  	}
2004  	new->flags = old->flags;
2005  	new->preferred_loc = old->preferred_loc;
2006  	new->prefetch_loc = old->prefetch_loc;
2007  	new->actual_loc = old->actual_loc;
2008  	new->granularity = old->granularity;
2009  	new->mapped_to_gpu = old->mapped_to_gpu;
2010  	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2011  	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2012  
2013  	return new;
2014  }
2015  
svm_range_set_max_pages(struct amdgpu_device * adev)2016  void svm_range_set_max_pages(struct amdgpu_device *adev)
2017  {
2018  	uint64_t max_pages;
2019  	uint64_t pages, _pages;
2020  	uint64_t min_pages = 0;
2021  	int i, id;
2022  
2023  	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2024  		if (adev->kfd.dev->nodes[i]->xcp)
2025  			id = adev->kfd.dev->nodes[i]->xcp->id;
2026  		else
2027  			id = -1;
2028  		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2029  		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2030  		pages = rounddown_pow_of_two(pages);
2031  		min_pages = min_not_zero(min_pages, pages);
2032  	}
2033  
2034  	do {
2035  		max_pages = READ_ONCE(max_svm_range_pages);
2036  		_pages = min_not_zero(max_pages, min_pages);
2037  	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2038  }
2039  
2040  static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2041  svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2042  		    uint64_t max_pages, struct list_head *insert_list,
2043  		    struct list_head *update_list)
2044  {
2045  	struct svm_range *prange;
2046  	uint64_t l;
2047  
2048  	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2049  		 max_pages, start, last);
2050  
2051  	while (last >= start) {
2052  		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2053  
2054  		prange = svm_range_new(svms, start, l, true);
2055  		if (!prange)
2056  			return -ENOMEM;
2057  		list_add(&prange->list, insert_list);
2058  		list_add(&prange->update_list, update_list);
2059  
2060  		start = l + 1;
2061  	}
2062  	return 0;
2063  }
2064  
2065  /**
2066   * svm_range_add - add svm range and handle overlap
2067   * @p: the range add to this process svms
2068   * @start: page size aligned
2069   * @size: page size aligned
2070   * @nattr: number of attributes
2071   * @attrs: array of attributes
2072   * @update_list: output, the ranges need validate and update GPU mapping
2073   * @insert_list: output, the ranges need insert to svms
2074   * @remove_list: output, the ranges are replaced and need remove from svms
2075   *
2076   * Check if the virtual address range has overlap with any existing ranges,
2077   * split partly overlapping ranges and add new ranges in the gaps. All changes
2078   * should be applied to the range_list and interval tree transactionally. If
2079   * any range split or allocation fails, the entire update fails. Therefore any
2080   * existing overlapping svm_ranges are cloned and the original svm_ranges left
2081   * unchanged.
2082   *
2083   * If the transaction succeeds, the caller can update and insert clones and
2084   * new ranges, then free the originals.
2085   *
2086   * Otherwise the caller can free the clones and new ranges, while the old
2087   * svm_ranges remain unchanged.
2088   *
2089   * Context: Process context, caller must hold svms->lock
2090   *
2091   * Return:
2092   * 0 - OK, otherwise error code
2093   */
2094  static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list)2095  svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2096  	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2097  	      struct list_head *update_list, struct list_head *insert_list,
2098  	      struct list_head *remove_list)
2099  {
2100  	unsigned long last = start + size - 1UL;
2101  	struct svm_range_list *svms = &p->svms;
2102  	struct interval_tree_node *node;
2103  	struct svm_range *prange;
2104  	struct svm_range *tmp;
2105  	struct list_head new_list;
2106  	int r = 0;
2107  
2108  	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2109  
2110  	INIT_LIST_HEAD(update_list);
2111  	INIT_LIST_HEAD(insert_list);
2112  	INIT_LIST_HEAD(remove_list);
2113  	INIT_LIST_HEAD(&new_list);
2114  
2115  	node = interval_tree_iter_first(&svms->objects, start, last);
2116  	while (node) {
2117  		struct interval_tree_node *next;
2118  		unsigned long next_start;
2119  
2120  		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2121  			 node->last);
2122  
2123  		prange = container_of(node, struct svm_range, it_node);
2124  		next = interval_tree_iter_next(node, start, last);
2125  		next_start = min(node->last, last) + 1;
2126  
2127  		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2128  		    prange->mapped_to_gpu) {
2129  			/* nothing to do */
2130  		} else if (node->start < start || node->last > last) {
2131  			/* node intersects the update range and its attributes
2132  			 * will change. Clone and split it, apply updates only
2133  			 * to the overlapping part
2134  			 */
2135  			struct svm_range *old = prange;
2136  
2137  			prange = svm_range_clone(old);
2138  			if (!prange) {
2139  				r = -ENOMEM;
2140  				goto out;
2141  			}
2142  
2143  			list_add(&old->update_list, remove_list);
2144  			list_add(&prange->list, insert_list);
2145  			list_add(&prange->update_list, update_list);
2146  
2147  			if (node->start < start) {
2148  				pr_debug("change old range start\n");
2149  				r = svm_range_split_head(prange, start,
2150  							 insert_list);
2151  				if (r)
2152  					goto out;
2153  			}
2154  			if (node->last > last) {
2155  				pr_debug("change old range last\n");
2156  				r = svm_range_split_tail(prange, last,
2157  							 insert_list);
2158  				if (r)
2159  					goto out;
2160  			}
2161  		} else {
2162  			/* The node is contained within start..last,
2163  			 * just update it
2164  			 */
2165  			list_add(&prange->update_list, update_list);
2166  		}
2167  
2168  		/* insert a new node if needed */
2169  		if (node->start > start) {
2170  			r = svm_range_split_new(svms, start, node->start - 1,
2171  						READ_ONCE(max_svm_range_pages),
2172  						&new_list, update_list);
2173  			if (r)
2174  				goto out;
2175  		}
2176  
2177  		node = next;
2178  		start = next_start;
2179  	}
2180  
2181  	/* add a final range at the end if needed */
2182  	if (start <= last)
2183  		r = svm_range_split_new(svms, start, last,
2184  					READ_ONCE(max_svm_range_pages),
2185  					&new_list, update_list);
2186  
2187  out:
2188  	if (r) {
2189  		list_for_each_entry_safe(prange, tmp, insert_list, list)
2190  			svm_range_free(prange, false);
2191  		list_for_each_entry_safe(prange, tmp, &new_list, list)
2192  			svm_range_free(prange, true);
2193  	} else {
2194  		list_splice(&new_list, insert_list);
2195  	}
2196  
2197  	return r;
2198  }
2199  
2200  static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2201  svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2202  					    struct svm_range *prange)
2203  {
2204  	unsigned long start;
2205  	unsigned long last;
2206  
2207  	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2208  	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2209  
2210  	if (prange->start == start && prange->last == last)
2211  		return;
2212  
2213  	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2214  		  prange->svms, prange, start, last, prange->start,
2215  		  prange->last);
2216  
2217  	if (start != 0 && last != 0) {
2218  		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2219  		svm_range_remove_notifier(prange);
2220  	}
2221  	prange->it_node.start = prange->start;
2222  	prange->it_node.last = prange->last;
2223  
2224  	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2225  	svm_range_add_notifier_locked(mm, prange);
2226  }
2227  
2228  static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2229  svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2230  			 struct mm_struct *mm)
2231  {
2232  	switch (prange->work_item.op) {
2233  	case SVM_OP_NULL:
2234  		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2235  			 svms, prange, prange->start, prange->last);
2236  		break;
2237  	case SVM_OP_UNMAP_RANGE:
2238  		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2239  			 svms, prange, prange->start, prange->last);
2240  		svm_range_unlink(prange);
2241  		svm_range_remove_notifier(prange);
2242  		svm_range_free(prange, true);
2243  		break;
2244  	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2245  		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2246  			 svms, prange, prange->start, prange->last);
2247  		svm_range_update_notifier_and_interval_tree(mm, prange);
2248  		break;
2249  	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2250  		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2251  			 svms, prange, prange->start, prange->last);
2252  		svm_range_update_notifier_and_interval_tree(mm, prange);
2253  		/* TODO: implement deferred validation and mapping */
2254  		break;
2255  	case SVM_OP_ADD_RANGE:
2256  		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2257  			 prange->start, prange->last);
2258  		svm_range_add_to_svms(prange);
2259  		svm_range_add_notifier_locked(mm, prange);
2260  		break;
2261  	case SVM_OP_ADD_RANGE_AND_MAP:
2262  		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2263  			 prange, prange->start, prange->last);
2264  		svm_range_add_to_svms(prange);
2265  		svm_range_add_notifier_locked(mm, prange);
2266  		/* TODO: implement deferred validation and mapping */
2267  		break;
2268  	default:
2269  		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2270  			 prange->work_item.op);
2271  	}
2272  }
2273  
svm_range_drain_retry_fault(struct svm_range_list * svms)2274  static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2275  {
2276  	struct kfd_process_device *pdd;
2277  	struct kfd_process *p;
2278  	int drain;
2279  	uint32_t i;
2280  
2281  	p = container_of(svms, struct kfd_process, svms);
2282  
2283  restart:
2284  	drain = atomic_read(&svms->drain_pagefaults);
2285  	if (!drain)
2286  		return;
2287  
2288  	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2289  		pdd = p->pdds[i];
2290  		if (!pdd)
2291  			continue;
2292  
2293  		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2294  
2295  		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2296  				pdd->dev->adev->irq.retry_cam_enabled ?
2297  				&pdd->dev->adev->irq.ih :
2298  				&pdd->dev->adev->irq.ih1);
2299  
2300  		if (pdd->dev->adev->irq.retry_cam_enabled)
2301  			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2302  				&pdd->dev->adev->irq.ih_soft);
2303  
2304  
2305  		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2306  	}
2307  	if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2308  		goto restart;
2309  }
2310  
svm_range_deferred_list_work(struct work_struct * work)2311  static void svm_range_deferred_list_work(struct work_struct *work)
2312  {
2313  	struct svm_range_list *svms;
2314  	struct svm_range *prange;
2315  	struct mm_struct *mm;
2316  
2317  	svms = container_of(work, struct svm_range_list, deferred_list_work);
2318  	pr_debug("enter svms 0x%p\n", svms);
2319  
2320  	spin_lock(&svms->deferred_list_lock);
2321  	while (!list_empty(&svms->deferred_range_list)) {
2322  		prange = list_first_entry(&svms->deferred_range_list,
2323  					  struct svm_range, deferred_list);
2324  		spin_unlock(&svms->deferred_list_lock);
2325  
2326  		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2327  			 prange->start, prange->last, prange->work_item.op);
2328  
2329  		mm = prange->work_item.mm;
2330  retry:
2331  		mmap_write_lock(mm);
2332  
2333  		/* Checking for the need to drain retry faults must be inside
2334  		 * mmap write lock to serialize with munmap notifiers.
2335  		 */
2336  		if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2337  			mmap_write_unlock(mm);
2338  			svm_range_drain_retry_fault(svms);
2339  			goto retry;
2340  		}
2341  
2342  		/* Remove from deferred_list must be inside mmap write lock, for
2343  		 * two race cases:
2344  		 * 1. unmap_from_cpu may change work_item.op and add the range
2345  		 *    to deferred_list again, cause use after free bug.
2346  		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2347  		 *    lock and continue because deferred_list is empty, but
2348  		 *    deferred_list work is actually waiting for mmap lock.
2349  		 */
2350  		spin_lock(&svms->deferred_list_lock);
2351  		list_del_init(&prange->deferred_list);
2352  		spin_unlock(&svms->deferred_list_lock);
2353  
2354  		mutex_lock(&svms->lock);
2355  		mutex_lock(&prange->migrate_mutex);
2356  		while (!list_empty(&prange->child_list)) {
2357  			struct svm_range *pchild;
2358  
2359  			pchild = list_first_entry(&prange->child_list,
2360  						struct svm_range, child_list);
2361  			pr_debug("child prange 0x%p op %d\n", pchild,
2362  				 pchild->work_item.op);
2363  			list_del_init(&pchild->child_list);
2364  			svm_range_handle_list_op(svms, pchild, mm);
2365  		}
2366  		mutex_unlock(&prange->migrate_mutex);
2367  
2368  		svm_range_handle_list_op(svms, prange, mm);
2369  		mutex_unlock(&svms->lock);
2370  		mmap_write_unlock(mm);
2371  
2372  		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2373  		 * last mm refcount, schedule release work to avoid circular locking
2374  		 */
2375  		mmput_async(mm);
2376  
2377  		spin_lock(&svms->deferred_list_lock);
2378  	}
2379  	spin_unlock(&svms->deferred_list_lock);
2380  	pr_debug("exit svms 0x%p\n", svms);
2381  }
2382  
2383  void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2384  svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2385  			struct mm_struct *mm, enum svm_work_list_ops op)
2386  {
2387  	spin_lock(&svms->deferred_list_lock);
2388  	/* if prange is on the deferred list */
2389  	if (!list_empty(&prange->deferred_list)) {
2390  		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2391  		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2392  		if (op != SVM_OP_NULL &&
2393  		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2394  			prange->work_item.op = op;
2395  	} else {
2396  		prange->work_item.op = op;
2397  
2398  		/* Pairs with mmput in deferred_list_work */
2399  		mmget(mm);
2400  		prange->work_item.mm = mm;
2401  		list_add_tail(&prange->deferred_list,
2402  			      &prange->svms->deferred_range_list);
2403  		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2404  			 prange, prange->start, prange->last, op);
2405  	}
2406  	spin_unlock(&svms->deferred_list_lock);
2407  }
2408  
schedule_deferred_list_work(struct svm_range_list * svms)2409  void schedule_deferred_list_work(struct svm_range_list *svms)
2410  {
2411  	spin_lock(&svms->deferred_list_lock);
2412  	if (!list_empty(&svms->deferred_range_list))
2413  		schedule_work(&svms->deferred_list_work);
2414  	spin_unlock(&svms->deferred_list_lock);
2415  }
2416  
2417  static void
svm_range_unmap_split(struct mm_struct * mm,struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2418  svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2419  		      struct svm_range *prange, unsigned long start,
2420  		      unsigned long last)
2421  {
2422  	struct svm_range *head;
2423  	struct svm_range *tail;
2424  
2425  	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2426  		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2427  			 prange->start, prange->last);
2428  		return;
2429  	}
2430  	if (start > prange->last || last < prange->start)
2431  		return;
2432  
2433  	head = tail = prange;
2434  	if (start > prange->start)
2435  		svm_range_split(prange, prange->start, start - 1, &tail);
2436  	if (last < tail->last)
2437  		svm_range_split(tail, last + 1, tail->last, &head);
2438  
2439  	if (head != prange && tail != prange) {
2440  		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2441  		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2442  	} else if (tail != prange) {
2443  		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2444  	} else if (head != prange) {
2445  		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2446  	} else if (parent != prange) {
2447  		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2448  	}
2449  }
2450  
2451  static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2452  svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2453  			 unsigned long start, unsigned long last)
2454  {
2455  	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2456  	struct svm_range_list *svms;
2457  	struct svm_range *pchild;
2458  	struct kfd_process *p;
2459  	unsigned long s, l;
2460  	bool unmap_parent;
2461  
2462  	p = kfd_lookup_process_by_mm(mm);
2463  	if (!p)
2464  		return;
2465  	svms = &p->svms;
2466  
2467  	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2468  		 prange, prange->start, prange->last, start, last);
2469  
2470  	/* Make sure pending page faults are drained in the deferred worker
2471  	 * before the range is freed to avoid straggler interrupts on
2472  	 * unmapped memory causing "phantom faults".
2473  	 */
2474  	atomic_inc(&svms->drain_pagefaults);
2475  
2476  	unmap_parent = start <= prange->start && last >= prange->last;
2477  
2478  	list_for_each_entry(pchild, &prange->child_list, child_list) {
2479  		mutex_lock_nested(&pchild->lock, 1);
2480  		s = max(start, pchild->start);
2481  		l = min(last, pchild->last);
2482  		if (l >= s)
2483  			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2484  		svm_range_unmap_split(mm, prange, pchild, start, last);
2485  		mutex_unlock(&pchild->lock);
2486  	}
2487  	s = max(start, prange->start);
2488  	l = min(last, prange->last);
2489  	if (l >= s)
2490  		svm_range_unmap_from_gpus(prange, s, l, trigger);
2491  	svm_range_unmap_split(mm, prange, prange, start, last);
2492  
2493  	if (unmap_parent)
2494  		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2495  	else
2496  		svm_range_add_list_work(svms, prange, mm,
2497  					SVM_OP_UPDATE_RANGE_NOTIFIER);
2498  	schedule_deferred_list_work(svms);
2499  
2500  	kfd_unref_process(p);
2501  }
2502  
2503  /**
2504   * svm_range_cpu_invalidate_pagetables - interval notifier callback
2505   * @mni: mmu_interval_notifier struct
2506   * @range: mmu_notifier_range struct
2507   * @cur_seq: value to pass to mmu_interval_set_seq()
2508   *
2509   * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2510   * is from migration, or CPU page invalidation callback.
2511   *
2512   * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2513   * work thread, and split prange if only part of prange is unmapped.
2514   *
2515   * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2516   * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2517   * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2518   * update GPU mapping to recover.
2519   *
2520   * Context: mmap lock, notifier_invalidate_start lock are held
2521   *          for invalidate event, prange lock is held if this is from migration
2522   */
2523  static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2524  svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2525  				    const struct mmu_notifier_range *range,
2526  				    unsigned long cur_seq)
2527  {
2528  	struct svm_range *prange;
2529  	unsigned long start;
2530  	unsigned long last;
2531  
2532  	if (range->event == MMU_NOTIFY_RELEASE)
2533  		return true;
2534  	if (!mmget_not_zero(mni->mm))
2535  		return true;
2536  
2537  	start = mni->interval_tree.start;
2538  	last = mni->interval_tree.last;
2539  	start = max(start, range->start) >> PAGE_SHIFT;
2540  	last = min(last, range->end - 1) >> PAGE_SHIFT;
2541  	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2542  		 start, last, range->start >> PAGE_SHIFT,
2543  		 (range->end - 1) >> PAGE_SHIFT,
2544  		 mni->interval_tree.start >> PAGE_SHIFT,
2545  		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2546  
2547  	prange = container_of(mni, struct svm_range, notifier);
2548  
2549  	svm_range_lock(prange);
2550  	mmu_interval_set_seq(mni, cur_seq);
2551  
2552  	switch (range->event) {
2553  	case MMU_NOTIFY_UNMAP:
2554  		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2555  		break;
2556  	default:
2557  		svm_range_evict(prange, mni->mm, start, last, range->event);
2558  		break;
2559  	}
2560  
2561  	svm_range_unlock(prange);
2562  	mmput(mni->mm);
2563  
2564  	return true;
2565  }
2566  
2567  /**
2568   * svm_range_from_addr - find svm range from fault address
2569   * @svms: svm range list header
2570   * @addr: address to search range interval tree, in pages
2571   * @parent: parent range if range is on child list
2572   *
2573   * Context: The caller must hold svms->lock
2574   *
2575   * Return: the svm_range found or NULL
2576   */
2577  struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2578  svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2579  		    struct svm_range **parent)
2580  {
2581  	struct interval_tree_node *node;
2582  	struct svm_range *prange;
2583  	struct svm_range *pchild;
2584  
2585  	node = interval_tree_iter_first(&svms->objects, addr, addr);
2586  	if (!node)
2587  		return NULL;
2588  
2589  	prange = container_of(node, struct svm_range, it_node);
2590  	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2591  		 addr, prange->start, prange->last, node->start, node->last);
2592  
2593  	if (addr >= prange->start && addr <= prange->last) {
2594  		if (parent)
2595  			*parent = prange;
2596  		return prange;
2597  	}
2598  	list_for_each_entry(pchild, &prange->child_list, child_list)
2599  		if (addr >= pchild->start && addr <= pchild->last) {
2600  			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2601  				 addr, pchild->start, pchild->last);
2602  			if (parent)
2603  				*parent = prange;
2604  			return pchild;
2605  		}
2606  
2607  	return NULL;
2608  }
2609  
2610  /* svm_range_best_restore_location - decide the best fault restore location
2611   * @prange: svm range structure
2612   * @adev: the GPU on which vm fault happened
2613   *
2614   * This is only called when xnack is on, to decide the best location to restore
2615   * the range mapping after GPU vm fault. Caller uses the best location to do
2616   * migration if actual loc is not best location, then update GPU page table
2617   * mapping to the best location.
2618   *
2619   * If the preferred loc is accessible by faulting GPU, use preferred loc.
2620   * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2621   * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2622   *    if range actual loc is cpu, best_loc is cpu
2623   *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2624   *    range actual loc.
2625   * Otherwise, GPU no access, best_loc is -1.
2626   *
2627   * Return:
2628   * -1 means vm fault GPU no access
2629   * 0 for CPU or GPU id
2630   */
2631  static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2632  svm_range_best_restore_location(struct svm_range *prange,
2633  				struct kfd_node *node,
2634  				int32_t *gpuidx)
2635  {
2636  	struct kfd_node *bo_node, *preferred_node;
2637  	struct kfd_process *p;
2638  	uint32_t gpuid;
2639  	int r;
2640  
2641  	p = container_of(prange->svms, struct kfd_process, svms);
2642  
2643  	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2644  	if (r < 0) {
2645  		pr_debug("failed to get gpuid from kgd\n");
2646  		return -1;
2647  	}
2648  
2649  	if (node->adev->gmc.is_app_apu)
2650  		return 0;
2651  
2652  	if (prange->preferred_loc == gpuid ||
2653  	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2654  		return prange->preferred_loc;
2655  	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2656  		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2657  		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2658  			return prange->preferred_loc;
2659  		/* fall through */
2660  	}
2661  
2662  	if (test_bit(*gpuidx, prange->bitmap_access))
2663  		return gpuid;
2664  
2665  	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2666  		if (!prange->actual_loc)
2667  			return 0;
2668  
2669  		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2670  		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2671  			return prange->actual_loc;
2672  		else
2673  			return 0;
2674  	}
2675  
2676  	return -1;
2677  }
2678  
2679  static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2680  svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2681  			       unsigned long *start, unsigned long *last,
2682  			       bool *is_heap_stack)
2683  {
2684  	struct vm_area_struct *vma;
2685  	struct interval_tree_node *node;
2686  	struct rb_node *rb_node;
2687  	unsigned long start_limit, end_limit;
2688  
2689  	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2690  	if (!vma) {
2691  		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2692  		return -EFAULT;
2693  	}
2694  
2695  	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2696  
2697  	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2698  		      (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2699  	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2700  		    (unsigned long)ALIGN(addr + 1, 2UL << 8));
2701  	/* First range that starts after the fault address */
2702  	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2703  	if (node) {
2704  		end_limit = min(end_limit, node->start);
2705  		/* Last range that ends before the fault address */
2706  		rb_node = rb_prev(&node->rb);
2707  	} else {
2708  		/* Last range must end before addr because
2709  		 * there was no range after addr
2710  		 */
2711  		rb_node = rb_last(&p->svms.objects.rb_root);
2712  	}
2713  	if (rb_node) {
2714  		node = container_of(rb_node, struct interval_tree_node, rb);
2715  		if (node->last >= addr) {
2716  			WARN(1, "Overlap with prev node and page fault addr\n");
2717  			return -EFAULT;
2718  		}
2719  		start_limit = max(start_limit, node->last + 1);
2720  	}
2721  
2722  	*start = start_limit;
2723  	*last = end_limit - 1;
2724  
2725  	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2726  		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2727  		 *start, *last, *is_heap_stack);
2728  
2729  	return 0;
2730  }
2731  
2732  static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2733  svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2734  			   uint64_t *bo_s, uint64_t *bo_l)
2735  {
2736  	struct amdgpu_bo_va_mapping *mapping;
2737  	struct interval_tree_node *node;
2738  	struct amdgpu_bo *bo = NULL;
2739  	unsigned long userptr;
2740  	uint32_t i;
2741  	int r;
2742  
2743  	for (i = 0; i < p->n_pdds; i++) {
2744  		struct amdgpu_vm *vm;
2745  
2746  		if (!p->pdds[i]->drm_priv)
2747  			continue;
2748  
2749  		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2750  		r = amdgpu_bo_reserve(vm->root.bo, false);
2751  		if (r)
2752  			return r;
2753  
2754  		/* Check userptr by searching entire vm->va interval tree */
2755  		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2756  		while (node) {
2757  			mapping = container_of((struct rb_node *)node,
2758  					       struct amdgpu_bo_va_mapping, rb);
2759  			bo = mapping->bo_va->base.bo;
2760  
2761  			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2762  							 start << PAGE_SHIFT,
2763  							 last << PAGE_SHIFT,
2764  							 &userptr)) {
2765  				node = interval_tree_iter_next(node, 0, ~0ULL);
2766  				continue;
2767  			}
2768  
2769  			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2770  				 start, last);
2771  			if (bo_s && bo_l) {
2772  				*bo_s = userptr >> PAGE_SHIFT;
2773  				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2774  			}
2775  			amdgpu_bo_unreserve(vm->root.bo);
2776  			return -EADDRINUSE;
2777  		}
2778  		amdgpu_bo_unreserve(vm->root.bo);
2779  	}
2780  	return 0;
2781  }
2782  
2783  static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2784  svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2785  						struct kfd_process *p,
2786  						struct mm_struct *mm,
2787  						int64_t addr)
2788  {
2789  	struct svm_range *prange = NULL;
2790  	unsigned long start, last;
2791  	uint32_t gpuid, gpuidx;
2792  	bool is_heap_stack;
2793  	uint64_t bo_s = 0;
2794  	uint64_t bo_l = 0;
2795  	int r;
2796  
2797  	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2798  					   &is_heap_stack))
2799  		return NULL;
2800  
2801  	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2802  	if (r != -EADDRINUSE)
2803  		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2804  
2805  	if (r == -EADDRINUSE) {
2806  		if (addr >= bo_s && addr <= bo_l)
2807  			return NULL;
2808  
2809  		/* Create one page svm range if 2MB range overlapping */
2810  		start = addr;
2811  		last = addr;
2812  	}
2813  
2814  	prange = svm_range_new(&p->svms, start, last, true);
2815  	if (!prange) {
2816  		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2817  		return NULL;
2818  	}
2819  	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2820  		pr_debug("failed to get gpuid from kgd\n");
2821  		svm_range_free(prange, true);
2822  		return NULL;
2823  	}
2824  
2825  	if (is_heap_stack)
2826  		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2827  
2828  	svm_range_add_to_svms(prange);
2829  	svm_range_add_notifier_locked(mm, prange);
2830  
2831  	return prange;
2832  }
2833  
2834  /* svm_range_skip_recover - decide if prange can be recovered
2835   * @prange: svm range structure
2836   *
2837   * GPU vm retry fault handle skip recover the range for cases:
2838   * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2839   *    deferred list work will drain the stale fault before free the prange.
2840   * 2. prange is on deferred list to add interval notifier after split, or
2841   * 3. prange is child range, it is split from parent prange, recover later
2842   *    after interval notifier is added.
2843   *
2844   * Return: true to skip recover, false to recover
2845   */
svm_range_skip_recover(struct svm_range * prange)2846  static bool svm_range_skip_recover(struct svm_range *prange)
2847  {
2848  	struct svm_range_list *svms = prange->svms;
2849  
2850  	spin_lock(&svms->deferred_list_lock);
2851  	if (list_empty(&prange->deferred_list) &&
2852  	    list_empty(&prange->child_list)) {
2853  		spin_unlock(&svms->deferred_list_lock);
2854  		return false;
2855  	}
2856  	spin_unlock(&svms->deferred_list_lock);
2857  
2858  	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2859  		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2860  			 svms, prange, prange->start, prange->last);
2861  		return true;
2862  	}
2863  	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2864  	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2865  		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2866  			 svms, prange, prange->start, prange->last);
2867  		return true;
2868  	}
2869  	return false;
2870  }
2871  
2872  static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2873  svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2874  		      int32_t gpuidx)
2875  {
2876  	struct kfd_process_device *pdd;
2877  
2878  	/* fault is on different page of same range
2879  	 * or fault is skipped to recover later
2880  	 * or fault is on invalid virtual address
2881  	 */
2882  	if (gpuidx == MAX_GPU_INSTANCE) {
2883  		uint32_t gpuid;
2884  		int r;
2885  
2886  		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2887  		if (r < 0)
2888  			return;
2889  	}
2890  
2891  	/* fault is recovered
2892  	 * or fault cannot recover because GPU no access on the range
2893  	 */
2894  	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2895  	if (pdd)
2896  		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2897  }
2898  
2899  static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2900  svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2901  {
2902  	unsigned long requested = VM_READ;
2903  
2904  	if (write_fault)
2905  		requested |= VM_WRITE;
2906  
2907  	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2908  		vma->vm_flags);
2909  	return (vma->vm_flags & requested) == requested;
2910  }
2911  
2912  int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,bool write_fault)2913  svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2914  			uint32_t vmid, uint32_t node_id,
2915  			uint64_t addr, bool write_fault)
2916  {
2917  	struct mm_struct *mm = NULL;
2918  	struct svm_range_list *svms;
2919  	struct svm_range *prange;
2920  	struct kfd_process *p;
2921  	ktime_t timestamp = ktime_get_boottime();
2922  	struct kfd_node *node;
2923  	int32_t best_loc;
2924  	int32_t gpuidx = MAX_GPU_INSTANCE;
2925  	bool write_locked = false;
2926  	struct vm_area_struct *vma;
2927  	bool migration = false;
2928  	int r = 0;
2929  
2930  	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2931  		pr_debug("device does not support SVM\n");
2932  		return -EFAULT;
2933  	}
2934  
2935  	p = kfd_lookup_process_by_pasid(pasid);
2936  	if (!p) {
2937  		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2938  		return 0;
2939  	}
2940  	svms = &p->svms;
2941  
2942  	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2943  
2944  	if (atomic_read(&svms->drain_pagefaults)) {
2945  		pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2946  		r = 0;
2947  		goto out;
2948  	}
2949  
2950  	if (!p->xnack_enabled) {
2951  		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2952  		r = -EFAULT;
2953  		goto out;
2954  	}
2955  
2956  	/* p->lead_thread is available as kfd_process_wq_release flush the work
2957  	 * before releasing task ref.
2958  	 */
2959  	mm = get_task_mm(p->lead_thread);
2960  	if (!mm) {
2961  		pr_debug("svms 0x%p failed to get mm\n", svms);
2962  		r = 0;
2963  		goto out;
2964  	}
2965  
2966  	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2967  	if (!node) {
2968  		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2969  			 vmid);
2970  		r = -EFAULT;
2971  		goto out;
2972  	}
2973  	mmap_read_lock(mm);
2974  retry_write_locked:
2975  	mutex_lock(&svms->lock);
2976  	prange = svm_range_from_addr(svms, addr, NULL);
2977  	if (!prange) {
2978  		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2979  			 svms, addr);
2980  		if (!write_locked) {
2981  			/* Need the write lock to create new range with MMU notifier.
2982  			 * Also flush pending deferred work to make sure the interval
2983  			 * tree is up to date before we add a new range
2984  			 */
2985  			mutex_unlock(&svms->lock);
2986  			mmap_read_unlock(mm);
2987  			mmap_write_lock(mm);
2988  			write_locked = true;
2989  			goto retry_write_locked;
2990  		}
2991  		prange = svm_range_create_unregistered_range(node, p, mm, addr);
2992  		if (!prange) {
2993  			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2994  				 svms, addr);
2995  			mmap_write_downgrade(mm);
2996  			r = -EFAULT;
2997  			goto out_unlock_svms;
2998  		}
2999  	}
3000  	if (write_locked)
3001  		mmap_write_downgrade(mm);
3002  
3003  	mutex_lock(&prange->migrate_mutex);
3004  
3005  	if (svm_range_skip_recover(prange)) {
3006  		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3007  		r = 0;
3008  		goto out_unlock_range;
3009  	}
3010  
3011  	/* skip duplicate vm fault on different pages of same range */
3012  	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3013  				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3014  		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3015  			 svms, prange->start, prange->last);
3016  		r = 0;
3017  		goto out_unlock_range;
3018  	}
3019  
3020  	/* __do_munmap removed VMA, return success as we are handling stale
3021  	 * retry fault.
3022  	 */
3023  	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3024  	if (!vma) {
3025  		pr_debug("address 0x%llx VMA is removed\n", addr);
3026  		r = 0;
3027  		goto out_unlock_range;
3028  	}
3029  
3030  	if (!svm_fault_allowed(vma, write_fault)) {
3031  		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3032  			write_fault ? "write" : "read");
3033  		r = -EPERM;
3034  		goto out_unlock_range;
3035  	}
3036  
3037  	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3038  	if (best_loc == -1) {
3039  		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3040  			 svms, prange->start, prange->last);
3041  		r = -EACCES;
3042  		goto out_unlock_range;
3043  	}
3044  
3045  	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3046  		 svms, prange->start, prange->last, best_loc,
3047  		 prange->actual_loc);
3048  
3049  	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3050  				       write_fault, timestamp);
3051  
3052  	if (prange->actual_loc != best_loc) {
3053  		migration = true;
3054  		if (best_loc) {
3055  			r = svm_migrate_to_vram(prange, best_loc, mm,
3056  					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3057  			if (r) {
3058  				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3059  					 r, addr);
3060  				/* Fallback to system memory if migration to
3061  				 * VRAM failed
3062  				 */
3063  				if (prange->actual_loc)
3064  					r = svm_migrate_vram_to_ram(prange, mm,
3065  					   KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3066  					   NULL);
3067  				else
3068  					r = 0;
3069  			}
3070  		} else {
3071  			r = svm_migrate_vram_to_ram(prange, mm,
3072  					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3073  					NULL);
3074  		}
3075  		if (r) {
3076  			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3077  				 r, svms, prange->start, prange->last);
3078  			goto out_unlock_range;
3079  		}
3080  	}
3081  
3082  	r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
3083  	if (r)
3084  		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3085  			 r, svms, prange->start, prange->last);
3086  
3087  	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3088  				     migration);
3089  
3090  out_unlock_range:
3091  	mutex_unlock(&prange->migrate_mutex);
3092  out_unlock_svms:
3093  	mutex_unlock(&svms->lock);
3094  	mmap_read_unlock(mm);
3095  
3096  	svm_range_count_fault(node, p, gpuidx);
3097  
3098  	mmput(mm);
3099  out:
3100  	kfd_unref_process(p);
3101  
3102  	if (r == -EAGAIN) {
3103  		pr_debug("recover vm fault later\n");
3104  		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3105  		r = 0;
3106  	}
3107  	return r;
3108  }
3109  
3110  int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3111  svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3112  {
3113  	struct svm_range *prange, *pchild;
3114  	uint64_t reserved_size = 0;
3115  	uint64_t size;
3116  	int r = 0;
3117  
3118  	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3119  
3120  	mutex_lock(&p->svms.lock);
3121  
3122  	list_for_each_entry(prange, &p->svms.list, list) {
3123  		svm_range_lock(prange);
3124  		list_for_each_entry(pchild, &prange->child_list, child_list) {
3125  			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3126  			if (xnack_enabled) {
3127  				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3128  					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3129  			} else {
3130  				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3131  					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3132  				if (r)
3133  					goto out_unlock;
3134  				reserved_size += size;
3135  			}
3136  		}
3137  
3138  		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3139  		if (xnack_enabled) {
3140  			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3141  					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3142  		} else {
3143  			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3144  					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3145  			if (r)
3146  				goto out_unlock;
3147  			reserved_size += size;
3148  		}
3149  out_unlock:
3150  		svm_range_unlock(prange);
3151  		if (r)
3152  			break;
3153  	}
3154  
3155  	if (r)
3156  		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3157  					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3158  	else
3159  		/* Change xnack mode must be inside svms lock, to avoid race with
3160  		 * svm_range_deferred_list_work unreserve memory in parallel.
3161  		 */
3162  		p->xnack_enabled = xnack_enabled;
3163  
3164  	mutex_unlock(&p->svms.lock);
3165  	return r;
3166  }
3167  
svm_range_list_fini(struct kfd_process * p)3168  void svm_range_list_fini(struct kfd_process *p)
3169  {
3170  	struct svm_range *prange;
3171  	struct svm_range *next;
3172  
3173  	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3174  
3175  	cancel_delayed_work_sync(&p->svms.restore_work);
3176  
3177  	/* Ensure list work is finished before process is destroyed */
3178  	flush_work(&p->svms.deferred_list_work);
3179  
3180  	/*
3181  	 * Ensure no retry fault comes in afterwards, as page fault handler will
3182  	 * not find kfd process and take mm lock to recover fault.
3183  	 */
3184  	atomic_inc(&p->svms.drain_pagefaults);
3185  	svm_range_drain_retry_fault(&p->svms);
3186  
3187  	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3188  		svm_range_unlink(prange);
3189  		svm_range_remove_notifier(prange);
3190  		svm_range_free(prange, true);
3191  	}
3192  
3193  	mutex_destroy(&p->svms.lock);
3194  
3195  	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3196  }
3197  
svm_range_list_init(struct kfd_process * p)3198  int svm_range_list_init(struct kfd_process *p)
3199  {
3200  	struct svm_range_list *svms = &p->svms;
3201  	int i;
3202  
3203  	svms->objects = RB_ROOT_CACHED;
3204  	mutex_init(&svms->lock);
3205  	INIT_LIST_HEAD(&svms->list);
3206  	atomic_set(&svms->evicted_ranges, 0);
3207  	atomic_set(&svms->drain_pagefaults, 0);
3208  	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3209  	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3210  	INIT_LIST_HEAD(&svms->deferred_range_list);
3211  	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3212  	spin_lock_init(&svms->deferred_list_lock);
3213  
3214  	for (i = 0; i < p->n_pdds; i++)
3215  		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3216  			bitmap_set(svms->bitmap_supported, i, 1);
3217  
3218  	return 0;
3219  }
3220  
3221  /**
3222   * svm_range_check_vm - check if virtual address range mapped already
3223   * @p: current kfd_process
3224   * @start: range start address, in pages
3225   * @last: range last address, in pages
3226   * @bo_s: mapping start address in pages if address range already mapped
3227   * @bo_l: mapping last address in pages if address range already mapped
3228   *
3229   * The purpose is to avoid virtual address ranges already allocated by
3230   * kfd_ioctl_alloc_memory_of_gpu ioctl.
3231   * It looks for each pdd in the kfd_process.
3232   *
3233   * Context: Process context
3234   *
3235   * Return 0 - OK, if the range is not mapped.
3236   * Otherwise error code:
3237   * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3238   * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3239   * a signal. Release all buffer reservations and return to user-space.
3240   */
3241  static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3242  svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3243  		   uint64_t *bo_s, uint64_t *bo_l)
3244  {
3245  	struct amdgpu_bo_va_mapping *mapping;
3246  	struct interval_tree_node *node;
3247  	uint32_t i;
3248  	int r;
3249  
3250  	for (i = 0; i < p->n_pdds; i++) {
3251  		struct amdgpu_vm *vm;
3252  
3253  		if (!p->pdds[i]->drm_priv)
3254  			continue;
3255  
3256  		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3257  		r = amdgpu_bo_reserve(vm->root.bo, false);
3258  		if (r)
3259  			return r;
3260  
3261  		node = interval_tree_iter_first(&vm->va, start, last);
3262  		if (node) {
3263  			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3264  				 start, last);
3265  			mapping = container_of((struct rb_node *)node,
3266  					       struct amdgpu_bo_va_mapping, rb);
3267  			if (bo_s && bo_l) {
3268  				*bo_s = mapping->start;
3269  				*bo_l = mapping->last;
3270  			}
3271  			amdgpu_bo_unreserve(vm->root.bo);
3272  			return -EADDRINUSE;
3273  		}
3274  		amdgpu_bo_unreserve(vm->root.bo);
3275  	}
3276  
3277  	return 0;
3278  }
3279  
3280  /**
3281   * svm_range_is_valid - check if virtual address range is valid
3282   * @p: current kfd_process
3283   * @start: range start address, in pages
3284   * @size: range size, in pages
3285   *
3286   * Valid virtual address range means it belongs to one or more VMAs
3287   *
3288   * Context: Process context
3289   *
3290   * Return:
3291   *  0 - OK, otherwise error code
3292   */
3293  static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3294  svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3295  {
3296  	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3297  	struct vm_area_struct *vma;
3298  	unsigned long end;
3299  	unsigned long start_unchg = start;
3300  
3301  	start <<= PAGE_SHIFT;
3302  	end = start + (size << PAGE_SHIFT);
3303  	do {
3304  		vma = vma_lookup(p->mm, start);
3305  		if (!vma || (vma->vm_flags & device_vma))
3306  			return -EFAULT;
3307  		start = min(end, vma->vm_end);
3308  	} while (start < end);
3309  
3310  	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3311  				  NULL);
3312  }
3313  
3314  /**
3315   * svm_range_best_prefetch_location - decide the best prefetch location
3316   * @prange: svm range structure
3317   *
3318   * For xnack off:
3319   * If range map to single GPU, the best prefetch location is prefetch_loc, which
3320   * can be CPU or GPU.
3321   *
3322   * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3323   * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3324   * the best prefetch location is always CPU, because GPU can not have coherent
3325   * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3326   *
3327   * For xnack on:
3328   * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3329   * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3330   *
3331   * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3332   * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3333   * prefetch location is always CPU.
3334   *
3335   * Context: Process context
3336   *
3337   * Return:
3338   * 0 for CPU or GPU id
3339   */
3340  static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3341  svm_range_best_prefetch_location(struct svm_range *prange)
3342  {
3343  	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3344  	uint32_t best_loc = prange->prefetch_loc;
3345  	struct kfd_process_device *pdd;
3346  	struct kfd_node *bo_node;
3347  	struct kfd_process *p;
3348  	uint32_t gpuidx;
3349  
3350  	p = container_of(prange->svms, struct kfd_process, svms);
3351  
3352  	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3353  		goto out;
3354  
3355  	bo_node = svm_range_get_node_by_id(prange, best_loc);
3356  	if (!bo_node) {
3357  		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3358  		best_loc = 0;
3359  		goto out;
3360  	}
3361  
3362  	if (bo_node->adev->gmc.is_app_apu) {
3363  		best_loc = 0;
3364  		goto out;
3365  	}
3366  
3367  	if (p->xnack_enabled)
3368  		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3369  	else
3370  		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3371  			  MAX_GPU_INSTANCE);
3372  
3373  	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3374  		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3375  		if (!pdd) {
3376  			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3377  			continue;
3378  		}
3379  
3380  		if (pdd->dev->adev == bo_node->adev)
3381  			continue;
3382  
3383  		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3384  			best_loc = 0;
3385  			break;
3386  		}
3387  	}
3388  
3389  out:
3390  	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3391  		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3392  		 best_loc);
3393  
3394  	return best_loc;
3395  }
3396  
3397  /* svm_range_trigger_migration - start page migration if prefetch loc changed
3398   * @mm: current process mm_struct
3399   * @prange: svm range structure
3400   * @migrated: output, true if migration is triggered
3401   *
3402   * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3403   * from ram to vram.
3404   * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3405   * from vram to ram.
3406   *
3407   * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3408   * and restore work:
3409   * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3410   *    stops all queues, schedule restore work
3411   * 2. svm_range_restore_work wait for migration is done by
3412   *    a. svm_range_validate_vram takes prange->migrate_mutex
3413   *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3414   * 3. restore work update mappings of GPU, resume all queues.
3415   *
3416   * Context: Process context
3417   *
3418   * Return:
3419   * 0 - OK, otherwise - error code of migration
3420   */
3421  static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3422  svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3423  			    bool *migrated)
3424  {
3425  	uint32_t best_loc;
3426  	int r = 0;
3427  
3428  	*migrated = false;
3429  	best_loc = svm_range_best_prefetch_location(prange);
3430  
3431  	if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3432  	    best_loc == prange->actual_loc)
3433  		return 0;
3434  
3435  	if (!best_loc) {
3436  		r = svm_migrate_vram_to_ram(prange, mm,
3437  					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3438  		*migrated = !r;
3439  		return r;
3440  	}
3441  
3442  	r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3443  	*migrated = !r;
3444  
3445  	return 0;
3446  }
3447  
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3448  int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3449  {
3450  	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3451  	 * signaled yet and we're under the protection of the fence->lock.
3452  	 * After the fence is signaled in svm_range_bo_release, we cannot get
3453  	 * here any more.
3454  	 *
3455  	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3456  	 */
3457  	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3458  		WRITE_ONCE(fence->svm_bo->evicting, 1);
3459  		schedule_work(&fence->svm_bo->eviction_work);
3460  	}
3461  
3462  	return 0;
3463  }
3464  
svm_range_evict_svm_bo_worker(struct work_struct * work)3465  static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3466  {
3467  	struct svm_range_bo *svm_bo;
3468  	struct mm_struct *mm;
3469  	int r = 0;
3470  
3471  	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3472  
3473  	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3474  		mm = svm_bo->eviction_fence->mm;
3475  	} else {
3476  		svm_range_bo_unref(svm_bo);
3477  		return;
3478  	}
3479  
3480  	mmap_read_lock(mm);
3481  	spin_lock(&svm_bo->list_lock);
3482  	while (!list_empty(&svm_bo->range_list) && !r) {
3483  		struct svm_range *prange =
3484  				list_first_entry(&svm_bo->range_list,
3485  						struct svm_range, svm_bo_list);
3486  		int retries = 3;
3487  
3488  		list_del_init(&prange->svm_bo_list);
3489  		spin_unlock(&svm_bo->list_lock);
3490  
3491  		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3492  			 prange->start, prange->last);
3493  
3494  		mutex_lock(&prange->migrate_mutex);
3495  		do {
3496  			r = svm_migrate_vram_to_ram(prange, mm,
3497  					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3498  		} while (!r && prange->actual_loc && --retries);
3499  
3500  		if (!r && prange->actual_loc)
3501  			pr_info_once("Migration failed during eviction");
3502  
3503  		if (!prange->actual_loc) {
3504  			mutex_lock(&prange->lock);
3505  			prange->svm_bo = NULL;
3506  			mutex_unlock(&prange->lock);
3507  		}
3508  		mutex_unlock(&prange->migrate_mutex);
3509  
3510  		spin_lock(&svm_bo->list_lock);
3511  	}
3512  	spin_unlock(&svm_bo->list_lock);
3513  	mmap_read_unlock(mm);
3514  	mmput(mm);
3515  
3516  	dma_fence_signal(&svm_bo->eviction_fence->base);
3517  
3518  	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3519  	 * has been called in svm_migrate_vram_to_ram
3520  	 */
3521  	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3522  	svm_range_bo_unref(svm_bo);
3523  }
3524  
3525  static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3526  svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3527  		   uint64_t start, uint64_t size, uint32_t nattr,
3528  		   struct kfd_ioctl_svm_attribute *attrs)
3529  {
3530  	struct amdkfd_process_info *process_info = p->kgd_process_info;
3531  	struct list_head update_list;
3532  	struct list_head insert_list;
3533  	struct list_head remove_list;
3534  	struct svm_range_list *svms;
3535  	struct svm_range *prange;
3536  	struct svm_range *next;
3537  	bool update_mapping = false;
3538  	bool flush_tlb;
3539  	int r, ret = 0;
3540  
3541  	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3542  		 p->pasid, &p->svms, start, start + size - 1, size);
3543  
3544  	r = svm_range_check_attr(p, nattr, attrs);
3545  	if (r)
3546  		return r;
3547  
3548  	svms = &p->svms;
3549  
3550  	mutex_lock(&process_info->lock);
3551  
3552  	svm_range_list_lock_and_flush_work(svms, mm);
3553  
3554  	r = svm_range_is_valid(p, start, size);
3555  	if (r) {
3556  		pr_debug("invalid range r=%d\n", r);
3557  		mmap_write_unlock(mm);
3558  		goto out;
3559  	}
3560  
3561  	mutex_lock(&svms->lock);
3562  
3563  	/* Add new range and split existing ranges as needed */
3564  	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3565  			  &insert_list, &remove_list);
3566  	if (r) {
3567  		mutex_unlock(&svms->lock);
3568  		mmap_write_unlock(mm);
3569  		goto out;
3570  	}
3571  	/* Apply changes as a transaction */
3572  	list_for_each_entry_safe(prange, next, &insert_list, list) {
3573  		svm_range_add_to_svms(prange);
3574  		svm_range_add_notifier_locked(mm, prange);
3575  	}
3576  	list_for_each_entry(prange, &update_list, update_list) {
3577  		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3578  		/* TODO: unmap ranges from GPU that lost access */
3579  	}
3580  	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3581  		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3582  			 prange->svms, prange, prange->start,
3583  			 prange->last);
3584  		svm_range_unlink(prange);
3585  		svm_range_remove_notifier(prange);
3586  		svm_range_free(prange, false);
3587  	}
3588  
3589  	mmap_write_downgrade(mm);
3590  	/* Trigger migrations and revalidate and map to GPUs as needed. If
3591  	 * this fails we may be left with partially completed actions. There
3592  	 * is no clean way of rolling back to the previous state in such a
3593  	 * case because the rollback wouldn't be guaranteed to work either.
3594  	 */
3595  	list_for_each_entry(prange, &update_list, update_list) {
3596  		bool migrated;
3597  
3598  		mutex_lock(&prange->migrate_mutex);
3599  
3600  		r = svm_range_trigger_migration(mm, prange, &migrated);
3601  		if (r)
3602  			goto out_unlock_range;
3603  
3604  		if (migrated && (!p->xnack_enabled ||
3605  		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3606  		    prange->mapped_to_gpu) {
3607  			pr_debug("restore_work will update mappings of GPUs\n");
3608  			mutex_unlock(&prange->migrate_mutex);
3609  			continue;
3610  		}
3611  
3612  		if (!migrated && !update_mapping) {
3613  			mutex_unlock(&prange->migrate_mutex);
3614  			continue;
3615  		}
3616  
3617  		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3618  
3619  		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3620  					       true, true, flush_tlb);
3621  		if (r)
3622  			pr_debug("failed %d to map svm range\n", r);
3623  
3624  out_unlock_range:
3625  		mutex_unlock(&prange->migrate_mutex);
3626  		if (r)
3627  			ret = r;
3628  	}
3629  
3630  	dynamic_svm_range_dump(svms);
3631  
3632  	mutex_unlock(&svms->lock);
3633  	mmap_read_unlock(mm);
3634  out:
3635  	mutex_unlock(&process_info->lock);
3636  
3637  	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3638  		 &p->svms, start, start + size - 1, r);
3639  
3640  	return ret ? ret : r;
3641  }
3642  
3643  static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3644  svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3645  		   uint64_t start, uint64_t size, uint32_t nattr,
3646  		   struct kfd_ioctl_svm_attribute *attrs)
3647  {
3648  	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3649  	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3650  	bool get_preferred_loc = false;
3651  	bool get_prefetch_loc = false;
3652  	bool get_granularity = false;
3653  	bool get_accessible = false;
3654  	bool get_flags = false;
3655  	uint64_t last = start + size - 1UL;
3656  	uint8_t granularity = 0xff;
3657  	struct interval_tree_node *node;
3658  	struct svm_range_list *svms;
3659  	struct svm_range *prange;
3660  	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3661  	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3662  	uint32_t flags_and = 0xffffffff;
3663  	uint32_t flags_or = 0;
3664  	int gpuidx;
3665  	uint32_t i;
3666  	int r = 0;
3667  
3668  	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3669  		 start + size - 1, nattr);
3670  
3671  	/* Flush pending deferred work to avoid racing with deferred actions from
3672  	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3673  	 * can still race with get_attr because we don't hold the mmap lock. But that
3674  	 * would be a race condition in the application anyway, and undefined
3675  	 * behaviour is acceptable in that case.
3676  	 */
3677  	flush_work(&p->svms.deferred_list_work);
3678  
3679  	mmap_read_lock(mm);
3680  	r = svm_range_is_valid(p, start, size);
3681  	mmap_read_unlock(mm);
3682  	if (r) {
3683  		pr_debug("invalid range r=%d\n", r);
3684  		return r;
3685  	}
3686  
3687  	for (i = 0; i < nattr; i++) {
3688  		switch (attrs[i].type) {
3689  		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3690  			get_preferred_loc = true;
3691  			break;
3692  		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3693  			get_prefetch_loc = true;
3694  			break;
3695  		case KFD_IOCTL_SVM_ATTR_ACCESS:
3696  			get_accessible = true;
3697  			break;
3698  		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3699  		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3700  			get_flags = true;
3701  			break;
3702  		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3703  			get_granularity = true;
3704  			break;
3705  		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3706  		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3707  			fallthrough;
3708  		default:
3709  			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3710  			return -EINVAL;
3711  		}
3712  	}
3713  
3714  	svms = &p->svms;
3715  
3716  	mutex_lock(&svms->lock);
3717  
3718  	node = interval_tree_iter_first(&svms->objects, start, last);
3719  	if (!node) {
3720  		pr_debug("range attrs not found return default values\n");
3721  		svm_range_set_default_attributes(&location, &prefetch_loc,
3722  						 &granularity, &flags_and);
3723  		flags_or = flags_and;
3724  		if (p->xnack_enabled)
3725  			bitmap_copy(bitmap_access, svms->bitmap_supported,
3726  				    MAX_GPU_INSTANCE);
3727  		else
3728  			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3729  		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3730  		goto fill_values;
3731  	}
3732  	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3733  	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3734  
3735  	while (node) {
3736  		struct interval_tree_node *next;
3737  
3738  		prange = container_of(node, struct svm_range, it_node);
3739  		next = interval_tree_iter_next(node, start, last);
3740  
3741  		if (get_preferred_loc) {
3742  			if (prange->preferred_loc ==
3743  					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3744  			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3745  			     location != prange->preferred_loc)) {
3746  				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3747  				get_preferred_loc = false;
3748  			} else {
3749  				location = prange->preferred_loc;
3750  			}
3751  		}
3752  		if (get_prefetch_loc) {
3753  			if (prange->prefetch_loc ==
3754  					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3755  			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3756  			     prefetch_loc != prange->prefetch_loc)) {
3757  				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3758  				get_prefetch_loc = false;
3759  			} else {
3760  				prefetch_loc = prange->prefetch_loc;
3761  			}
3762  		}
3763  		if (get_accessible) {
3764  			bitmap_and(bitmap_access, bitmap_access,
3765  				   prange->bitmap_access, MAX_GPU_INSTANCE);
3766  			bitmap_and(bitmap_aip, bitmap_aip,
3767  				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3768  		}
3769  		if (get_flags) {
3770  			flags_and &= prange->flags;
3771  			flags_or |= prange->flags;
3772  		}
3773  
3774  		if (get_granularity && prange->granularity < granularity)
3775  			granularity = prange->granularity;
3776  
3777  		node = next;
3778  	}
3779  fill_values:
3780  	mutex_unlock(&svms->lock);
3781  
3782  	for (i = 0; i < nattr; i++) {
3783  		switch (attrs[i].type) {
3784  		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3785  			attrs[i].value = location;
3786  			break;
3787  		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3788  			attrs[i].value = prefetch_loc;
3789  			break;
3790  		case KFD_IOCTL_SVM_ATTR_ACCESS:
3791  			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3792  							       attrs[i].value);
3793  			if (gpuidx < 0) {
3794  				pr_debug("invalid gpuid %x\n", attrs[i].value);
3795  				return -EINVAL;
3796  			}
3797  			if (test_bit(gpuidx, bitmap_access))
3798  				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3799  			else if (test_bit(gpuidx, bitmap_aip))
3800  				attrs[i].type =
3801  					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3802  			else
3803  				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3804  			break;
3805  		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3806  			attrs[i].value = flags_and;
3807  			break;
3808  		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3809  			attrs[i].value = ~flags_or;
3810  			break;
3811  		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3812  			attrs[i].value = (uint32_t)granularity;
3813  			break;
3814  		}
3815  	}
3816  
3817  	return 0;
3818  }
3819  
kfd_criu_resume_svm(struct kfd_process * p)3820  int kfd_criu_resume_svm(struct kfd_process *p)
3821  {
3822  	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3823  	int nattr_common = 4, nattr_accessibility = 1;
3824  	struct criu_svm_metadata *criu_svm_md = NULL;
3825  	struct svm_range_list *svms = &p->svms;
3826  	struct criu_svm_metadata *next = NULL;
3827  	uint32_t set_flags = 0xffffffff;
3828  	int i, j, num_attrs, ret = 0;
3829  	uint64_t set_attr_size;
3830  	struct mm_struct *mm;
3831  
3832  	if (list_empty(&svms->criu_svm_metadata_list)) {
3833  		pr_debug("No SVM data from CRIU restore stage 2\n");
3834  		return ret;
3835  	}
3836  
3837  	mm = get_task_mm(p->lead_thread);
3838  	if (!mm) {
3839  		pr_err("failed to get mm for the target process\n");
3840  		return -ESRCH;
3841  	}
3842  
3843  	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3844  
3845  	i = j = 0;
3846  	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3847  		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3848  			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3849  
3850  		for (j = 0; j < num_attrs; j++) {
3851  			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3852  				 i, j, criu_svm_md->data.attrs[j].type,
3853  				 i, j, criu_svm_md->data.attrs[j].value);
3854  			switch (criu_svm_md->data.attrs[j].type) {
3855  			/* During Checkpoint operation, the query for
3856  			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3857  			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3858  			 * not used by the range which was checkpointed. Care
3859  			 * must be taken to not restore with an invalid value
3860  			 * otherwise the gpuidx value will be invalid and
3861  			 * set_attr would eventually fail so just replace those
3862  			 * with another dummy attribute such as
3863  			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3864  			 */
3865  			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3866  				if (criu_svm_md->data.attrs[j].value ==
3867  				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3868  					criu_svm_md->data.attrs[j].type =
3869  						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3870  					criu_svm_md->data.attrs[j].value = 0;
3871  				}
3872  				break;
3873  			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3874  				set_flags = criu_svm_md->data.attrs[j].value;
3875  				break;
3876  			default:
3877  				break;
3878  			}
3879  		}
3880  
3881  		/* CLR_FLAGS is not available via get_attr during checkpoint but
3882  		 * it needs to be inserted before restoring the ranges so
3883  		 * allocate extra space for it before calling set_attr
3884  		 */
3885  		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3886  						(num_attrs + 1);
3887  		set_attr_new = krealloc(set_attr, set_attr_size,
3888  					    GFP_KERNEL);
3889  		if (!set_attr_new) {
3890  			ret = -ENOMEM;
3891  			goto exit;
3892  		}
3893  		set_attr = set_attr_new;
3894  
3895  		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3896  					sizeof(struct kfd_ioctl_svm_attribute));
3897  		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3898  		set_attr[num_attrs].value = ~set_flags;
3899  
3900  		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3901  					 criu_svm_md->data.size, num_attrs + 1,
3902  					 set_attr);
3903  		if (ret) {
3904  			pr_err("CRIU: failed to set range attributes\n");
3905  			goto exit;
3906  		}
3907  
3908  		i++;
3909  	}
3910  exit:
3911  	kfree(set_attr);
3912  	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3913  		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3914  						criu_svm_md->data.start_addr);
3915  		kfree(criu_svm_md);
3916  	}
3917  
3918  	mmput(mm);
3919  	return ret;
3920  
3921  }
3922  
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)3923  int kfd_criu_restore_svm(struct kfd_process *p,
3924  			 uint8_t __user *user_priv_ptr,
3925  			 uint64_t *priv_data_offset,
3926  			 uint64_t max_priv_data_size)
3927  {
3928  	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3929  	int nattr_common = 4, nattr_accessibility = 1;
3930  	struct criu_svm_metadata *criu_svm_md = NULL;
3931  	struct svm_range_list *svms = &p->svms;
3932  	uint32_t num_devices;
3933  	int ret = 0;
3934  
3935  	num_devices = p->n_pdds;
3936  	/* Handle one SVM range object at a time, also the number of gpus are
3937  	 * assumed to be same on the restore node, checking must be done while
3938  	 * evaluating the topology earlier
3939  	 */
3940  
3941  	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3942  		(nattr_common + nattr_accessibility * num_devices);
3943  	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3944  
3945  	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3946  								svm_attrs_size;
3947  
3948  	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3949  	if (!criu_svm_md) {
3950  		pr_err("failed to allocate memory to store svm metadata\n");
3951  		return -ENOMEM;
3952  	}
3953  	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3954  		ret = -EINVAL;
3955  		goto exit;
3956  	}
3957  
3958  	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3959  			     svm_priv_data_size);
3960  	if (ret) {
3961  		ret = -EFAULT;
3962  		goto exit;
3963  	}
3964  	*priv_data_offset += svm_priv_data_size;
3965  
3966  	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3967  
3968  	return 0;
3969  
3970  
3971  exit:
3972  	kfree(criu_svm_md);
3973  	return ret;
3974  }
3975  
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)3976  int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3977  		       uint64_t *svm_priv_data_size)
3978  {
3979  	uint64_t total_size, accessibility_size, common_attr_size;
3980  	int nattr_common = 4, nattr_accessibility = 1;
3981  	int num_devices = p->n_pdds;
3982  	struct svm_range_list *svms;
3983  	struct svm_range *prange;
3984  	uint32_t count = 0;
3985  
3986  	*svm_priv_data_size = 0;
3987  
3988  	svms = &p->svms;
3989  	if (!svms)
3990  		return -EINVAL;
3991  
3992  	mutex_lock(&svms->lock);
3993  	list_for_each_entry(prange, &svms->list, list) {
3994  		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3995  			 prange, prange->start, prange->npages,
3996  			 prange->start + prange->npages - 1);
3997  		count++;
3998  	}
3999  	mutex_unlock(&svms->lock);
4000  
4001  	*num_svm_ranges = count;
4002  	/* Only the accessbility attributes need to be queried for all the gpus
4003  	 * individually, remaining ones are spanned across the entire process
4004  	 * regardless of the various gpu nodes. Of the remaining attributes,
4005  	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4006  	 *
4007  	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4008  	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4009  	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4010  	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4011  	 *
4012  	 * ** ACCESSBILITY ATTRIBUTES **
4013  	 * (Considered as one, type is altered during query, value is gpuid)
4014  	 * KFD_IOCTL_SVM_ATTR_ACCESS
4015  	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4016  	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4017  	 */
4018  	if (*num_svm_ranges > 0) {
4019  		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4020  			nattr_common;
4021  		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4022  			nattr_accessibility * num_devices;
4023  
4024  		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4025  			common_attr_size + accessibility_size;
4026  
4027  		*svm_priv_data_size = *num_svm_ranges * total_size;
4028  	}
4029  
4030  	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4031  		 *svm_priv_data_size);
4032  	return 0;
4033  }
4034  
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4035  int kfd_criu_checkpoint_svm(struct kfd_process *p,
4036  			    uint8_t __user *user_priv_data,
4037  			    uint64_t *priv_data_offset)
4038  {
4039  	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4040  	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4041  	uint64_t svm_priv_data_size, query_attr_size = 0;
4042  	int index, nattr_common = 4, ret = 0;
4043  	struct svm_range_list *svms;
4044  	int num_devices = p->n_pdds;
4045  	struct svm_range *prange;
4046  	struct mm_struct *mm;
4047  
4048  	svms = &p->svms;
4049  	if (!svms)
4050  		return -EINVAL;
4051  
4052  	mm = get_task_mm(p->lead_thread);
4053  	if (!mm) {
4054  		pr_err("failed to get mm for the target process\n");
4055  		return -ESRCH;
4056  	}
4057  
4058  	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4059  				(nattr_common + num_devices);
4060  
4061  	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4062  	if (!query_attr) {
4063  		ret = -ENOMEM;
4064  		goto exit;
4065  	}
4066  
4067  	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4068  	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4069  	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4070  	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4071  
4072  	for (index = 0; index < num_devices; index++) {
4073  		struct kfd_process_device *pdd = p->pdds[index];
4074  
4075  		query_attr[index + nattr_common].type =
4076  			KFD_IOCTL_SVM_ATTR_ACCESS;
4077  		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4078  	}
4079  
4080  	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4081  
4082  	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4083  	if (!svm_priv) {
4084  		ret = -ENOMEM;
4085  		goto exit_query;
4086  	}
4087  
4088  	index = 0;
4089  	list_for_each_entry(prange, &svms->list, list) {
4090  
4091  		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4092  		svm_priv->start_addr = prange->start;
4093  		svm_priv->size = prange->npages;
4094  		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4095  		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4096  			 prange, prange->start, prange->npages,
4097  			 prange->start + prange->npages - 1,
4098  			 prange->npages * PAGE_SIZE);
4099  
4100  		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4101  					 svm_priv->size,
4102  					 (nattr_common + num_devices),
4103  					 svm_priv->attrs);
4104  		if (ret) {
4105  			pr_err("CRIU: failed to obtain range attributes\n");
4106  			goto exit_priv;
4107  		}
4108  
4109  		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4110  				 svm_priv_data_size)) {
4111  			pr_err("Failed to copy svm priv to user\n");
4112  			ret = -EFAULT;
4113  			goto exit_priv;
4114  		}
4115  
4116  		*priv_data_offset += svm_priv_data_size;
4117  
4118  	}
4119  
4120  
4121  exit_priv:
4122  	kfree(svm_priv);
4123  exit_query:
4124  	kfree(query_attr);
4125  exit:
4126  	mmput(mm);
4127  	return ret;
4128  }
4129  
4130  int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4131  svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4132  	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4133  {
4134  	struct mm_struct *mm = current->mm;
4135  	int r;
4136  
4137  	start >>= PAGE_SHIFT;
4138  	size >>= PAGE_SHIFT;
4139  
4140  	switch (op) {
4141  	case KFD_IOCTL_SVM_OP_SET_ATTR:
4142  		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4143  		break;
4144  	case KFD_IOCTL_SVM_OP_GET_ATTR:
4145  		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4146  		break;
4147  	default:
4148  		r = EINVAL;
4149  		break;
4150  	}
4151  
4152  	return r;
4153  }
4154