xref: /openbmc/qemu/hw/ppc/pnv.c (revision 4715a0e9e6ced361a6b7a12c99ca78e99be2aca1)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016-2024, IBM Corporation.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/datadir.h"
24 #include "qemu/log.h"
25 #include "qemu/units.h"
26 #include "qemu/cutils.h"
27 #include "qapi/error.h"
28 #include "system/qtest.h"
29 #include "system/system.h"
30 #include "system/numa.h"
31 #include "system/reset.h"
32 #include "system/runstate.h"
33 #include "system/cpus.h"
34 #include "system/device_tree.h"
35 #include "system/hw_accel.h"
36 #include "target/ppc/cpu.h"
37 #include "hw/ppc/fdt.h"
38 #include "hw/ppc/ppc.h"
39 #include "hw/ppc/pnv.h"
40 #include "hw/ppc/pnv_core.h"
41 #include "hw/loader.h"
42 #include "hw/nmi.h"
43 #include "qapi/visitor.h"
44 #include "hw/intc/intc.h"
45 #include "hw/ipmi/ipmi.h"
46 #include "target/ppc/mmu-hash64.h"
47 #include "hw/pci/msi.h"
48 #include "hw/pci-host/pnv_phb.h"
49 #include "hw/pci-host/pnv_phb3.h"
50 #include "hw/pci-host/pnv_phb4.h"
51 
52 #include "hw/ppc/xics.h"
53 #include "hw/qdev-properties.h"
54 #include "hw/ppc/pnv_chip.h"
55 #include "hw/ppc/pnv_xscom.h"
56 #include "hw/ppc/pnv_pnor.h"
57 
58 #include "hw/isa/isa.h"
59 #include "hw/char/serial-isa.h"
60 #include "hw/rtc/mc146818rtc.h"
61 
62 #include <libfdt.h>
63 
64 #define FDT_MAX_SIZE            (1 * MiB)
65 
66 #define FW_FILE_NAME            "skiboot.lid"
67 #define FW_LOAD_ADDR            0x0
68 #define FW_MAX_SIZE             (16 * MiB)
69 
70 #define PNOR_FILE_NAME          "pnv-pnor.bin"
71 
72 #define KERNEL_LOAD_ADDR        0x20000000
73 #define KERNEL_MAX_SIZE         (128 * MiB)
74 #define INITRD_LOAD_ADDR        0x28000000
75 #define INITRD_MAX_SIZE         (128 * MiB)
76 
pnv_chip_core_typename(const PnvChip * o)77 static const char *pnv_chip_core_typename(const PnvChip *o)
78 {
79     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
80     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
81     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
82     const char *core_type = object_class_get_name(object_class_by_name(s));
83     g_free(s);
84     return core_type;
85 }
86 
87 /*
88  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
89  *     4 * 4 sockets * 12 cores * 8 threads = 1536
90  * Let's make it 2^11
91  */
92 #define MAX_CPUS                2048
93 
94 /*
95  * Memory nodes are created by hostboot, one for each range of memory
96  * that has a different "affinity". In practice, it means one range
97  * per chip.
98  */
pnv_dt_memory(void * fdt,int chip_id,hwaddr start,hwaddr size)99 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
100 {
101     char *mem_name;
102     uint64_t mem_reg_property[2];
103     int off;
104 
105     mem_reg_property[0] = cpu_to_be64(start);
106     mem_reg_property[1] = cpu_to_be64(size);
107 
108     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
109     off = fdt_add_subnode(fdt, 0, mem_name);
110     g_free(mem_name);
111 
112     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
113     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
114                        sizeof(mem_reg_property))));
115     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
116 }
117 
get_cpus_node(void * fdt)118 static int get_cpus_node(void *fdt)
119 {
120     int cpus_offset = fdt_path_offset(fdt, "/cpus");
121 
122     if (cpus_offset < 0) {
123         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
124         if (cpus_offset) {
125             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
126             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
127         }
128     }
129     _FDT(cpus_offset);
130     return cpus_offset;
131 }
132 
133 /*
134  * The PowerNV cores (and threads) need to use real HW ids and not an
135  * incremental index like it has been done on other platforms. This HW
136  * id is stored in the CPU PIR, it is used to create cpu nodes in the
137  * device tree, used in XSCOM to address cores and in interrupt
138  * servers.
139  */
pnv_dt_core(PnvChip * chip,PnvCore * pc,void * fdt)140 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
141 {
142     PowerPCCPU *cpu = pc->threads[0];
143     CPUState *cs = CPU(cpu);
144     DeviceClass *dc = DEVICE_GET_CLASS(cs);
145     int smt_threads = CPU_CORE(pc)->nr_threads;
146     CPUPPCState *env = &cpu->env;
147     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
148     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
149     uint32_t *servers_prop;
150     int i;
151     uint32_t pir, tir;
152     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
153                        0xffffffff, 0xffffffff};
154     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
155     uint32_t cpufreq = 1000000000;
156     uint32_t page_sizes_prop[64];
157     size_t page_sizes_prop_size;
158     int offset;
159     char *nodename;
160     int cpus_offset = get_cpus_node(fdt);
161 
162     pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir);
163 
164     /* Only one DT node per (big) core */
165     g_assert(tir == 0);
166 
167     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
168     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
169     _FDT(offset);
170     g_free(nodename);
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
173 
174     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
175     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
176     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
177 
178     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
179     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
180                             env->dcache_line_size)));
181     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
182                             env->dcache_line_size)));
183     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
184                             env->icache_line_size)));
185     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
186                             env->icache_line_size)));
187 
188     if (pcc->l1_dcache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
190                                pcc->l1_dcache_size)));
191     } else {
192         warn_report("Unknown L1 dcache size for cpu");
193     }
194     if (pcc->l1_icache_size) {
195         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
196                                pcc->l1_icache_size)));
197     } else {
198         warn_report("Unknown L1 icache size for cpu");
199     }
200 
201     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
202     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
203     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
204                            cpu->hash64_opts->slb_size)));
205     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
206     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
207 
208     if (ppc_has_spr(cpu, SPR_PURR)) {
209         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
210     }
211 
212     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
213         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
214                            segs, sizeof(segs))));
215     }
216 
217     /*
218      * Advertise VMX/VSX (vector extensions) if available
219      *   0 / no property == no vector extensions
220      *   1               == VMX / Altivec available
221      *   2               == VSX available
222      */
223     if (env->insns_flags & PPC_ALTIVEC) {
224         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
225 
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
227     }
228 
229     /*
230      * Advertise DFP (Decimal Floating Point) if available
231      *   0 / no property == no DFP
232      *   1               == DFP available
233      */
234     if (env->insns_flags2 & PPC2_DFP) {
235         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
236     }
237 
238     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
239                                                       sizeof(page_sizes_prop));
240     if (page_sizes_prop_size) {
241         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
242                            page_sizes_prop, page_sizes_prop_size)));
243     }
244 
245     /* Build interrupt servers properties */
246     if (pc->big_core) {
247         servers_prop = g_new(uint32_t, smt_threads * 2);
248         for (i = 0; i < smt_threads; i++) {
249             pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
250             servers_prop[i * 2] = cpu_to_be32(pir);
251 
252             pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL);
253             servers_prop[i * 2 + 1] = cpu_to_be32(pir);
254         }
255         _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
256                           servers_prop, sizeof(*servers_prop) * smt_threads
257                                         * 2)));
258     } else {
259         servers_prop = g_new(uint32_t, smt_threads);
260         for (i = 0; i < smt_threads; i++) {
261             pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
262             servers_prop[i] = cpu_to_be32(pir);
263         }
264         _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
265                           servers_prop, sizeof(*servers_prop) * smt_threads)));
266     }
267     g_free(servers_prop);
268 
269     return offset;
270 }
271 
pnv_dt_icp(PnvChip * chip,void * fdt,uint32_t hwid,uint32_t nr_threads)272 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
273                        uint32_t nr_threads)
274 {
275     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
276     uint32_t pir;
277     uint64_t addr;
278     char *name;
279     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
280     uint32_t irange[2], i, rsize;
281     uint64_t *reg;
282     int offset;
283 
284     pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
285     addr = PNV_ICP_BASE(chip) | (pir << 12);
286 
287     irange[0] = cpu_to_be32(pir);
288     irange[1] = cpu_to_be32(nr_threads);
289 
290     rsize = sizeof(uint64_t) * 2 * nr_threads;
291     reg = g_malloc(rsize);
292     for (i = 0; i < nr_threads; i++) {
293         /* We know P8 PIR is linear with thread id */
294         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
295         reg[i * 2 + 1] = cpu_to_be64(0x1000);
296     }
297 
298     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
299     offset = fdt_add_subnode(fdt, 0, name);
300     _FDT(offset);
301     g_free(name);
302 
303     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
304     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
305     _FDT((fdt_setprop_string(fdt, offset, "device_type",
306                               "PowerPC-External-Interrupt-Presentation")));
307     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
308     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
309                        irange, sizeof(irange))));
310     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
311     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
312     g_free(reg);
313 }
314 
315 /*
316  * Adds a PnvPHB to the chip on P8.
317  * Implemented here, like for defaults PHBs
318  */
pnv_chip_add_phb(PnvChip * chip,PnvPHB * phb)319 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
320 {
321     Pnv8Chip *chip8 = PNV8_CHIP(chip);
322 
323     phb->chip = chip;
324 
325     chip8->phbs[chip8->num_phbs] = phb;
326     chip8->num_phbs++;
327     return chip;
328 }
329 
330 /*
331  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
332  * HTM is always enabled because TCG does implement HTM, it's just a
333  * degenerate implementation.
334  */
335 static const uint8_t pa_features_207[] = { 24, 0,
336                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
337                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
338                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
339                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
340 
pnv_chip_power8_dt_populate(PnvChip * chip,void * fdt)341 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
342 {
343     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
344     int i;
345 
346     pnv_dt_xscom(chip, fdt, 0,
347                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
348                  cpu_to_be64(PNV_XSCOM_SIZE),
349                  compat, sizeof(compat));
350 
351     for (i = 0; i < chip->nr_cores; i++) {
352         PnvCore *pnv_core = chip->cores[i];
353         int offset;
354 
355         offset = pnv_dt_core(chip, pnv_core, fdt);
356 
357         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
358                            pa_features_207, sizeof(pa_features_207))));
359 
360         /* Interrupt Control Presenters (ICP). One per core. */
361         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
362     }
363 
364     if (chip->ram_size) {
365         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
366     }
367 }
368 
369 /*
370  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
371  */
372 static const uint8_t pa_features_300[] = { 66, 0,
373     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
374     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
375     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
376     /* 6: DS207 */
377     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
378     /* 16: Vector */
379     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
380     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
381     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
382     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
383     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
384     /* 32: LE atomic, 34: EBB + ext EBB */
385     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
386     /* 40: Radix MMU */
387     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
388     /* 42: PM, 44: PC RA, 46: SC vec'd */
389     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
390     /* 48: SIMD, 50: QP BFP, 52: String */
391     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
392     /* 54: DecFP, 56: DecI, 58: SHA */
393     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
394     /* 60: NM atomic, 62: RNG */
395     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
396 };
397 
pnv_chip_power9_dt_populate(PnvChip * chip,void * fdt)398 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
399 {
400     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
401     int i;
402 
403     pnv_dt_xscom(chip, fdt, 0,
404                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
405                  cpu_to_be64(PNV9_XSCOM_SIZE),
406                  compat, sizeof(compat));
407 
408     for (i = 0; i < chip->nr_cores; i++) {
409         PnvCore *pnv_core = chip->cores[i];
410         int offset;
411 
412         offset = pnv_dt_core(chip, pnv_core, fdt);
413 
414         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
415                            pa_features_300, sizeof(pa_features_300))));
416 
417         if (pnv_core->big_core) {
418             i++; /* Big-core groups two QEMU cores */
419         }
420     }
421 
422     if (chip->ram_size) {
423         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
424     }
425 
426     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
427 }
428 
429 /*
430  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
431  * always disables copy/paste.
432  */
433 static const uint8_t pa_features_31[] = { 74, 0,
434     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
435     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
436     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
437     /* 6: DS207 */
438     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
439     /* 16: Vector */
440     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
441     /* 18: Vec. Scalar, 20: Vec. XOR */
442     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
443     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
444     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
445     /* 32: LE atomic, 34: EBB + ext EBB */
446     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
447     /* 40: Radix MMU */
448     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
449     /* 42: PM, 44: PC RA, 46: SC vec'd */
450     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
451     /* 48: SIMD, 50: QP BFP, 52: String */
452     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
453     /* 54: DecFP, 56: DecI, 58: SHA */
454     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
455     /* 60: NM atomic, 62: RNG */
456     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
457     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
458     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
459     /* 72: [P]HASHST/[P]HASHCHK */
460     0x80, 0x00,                         /* 72 - 73 */
461 };
462 
pnv_chip_power10_dt_populate(PnvChip * chip,void * fdt)463 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
464 {
465     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
466     int i;
467 
468     pnv_dt_xscom(chip, fdt, 0,
469                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
470                  cpu_to_be64(PNV10_XSCOM_SIZE),
471                  compat, sizeof(compat));
472 
473     for (i = 0; i < chip->nr_cores; i++) {
474         PnvCore *pnv_core = chip->cores[i];
475         int offset;
476 
477         offset = pnv_dt_core(chip, pnv_core, fdt);
478 
479         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
480                            pa_features_31, sizeof(pa_features_31))));
481 
482         if (pnv_core->big_core) {
483             i++; /* Big-core groups two QEMU cores */
484         }
485     }
486 
487     if (chip->ram_size) {
488         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
489     }
490 
491     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
492 }
493 
pnv_dt_rtc(ISADevice * d,void * fdt,int lpc_off)494 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
495 {
496     uint32_t io_base = d->ioport_id;
497     uint32_t io_regs[] = {
498         cpu_to_be32(1),
499         cpu_to_be32(io_base),
500         cpu_to_be32(2)
501     };
502     char *name;
503     int node;
504 
505     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
506     node = fdt_add_subnode(fdt, lpc_off, name);
507     _FDT(node);
508     g_free(name);
509 
510     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
511     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
512 }
513 
pnv_dt_serial(ISADevice * d,void * fdt,int lpc_off)514 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
515 {
516     const char compatible[] = "ns16550\0pnpPNP,501";
517     uint32_t io_base = d->ioport_id;
518     uint32_t io_regs[] = {
519         cpu_to_be32(1),
520         cpu_to_be32(io_base),
521         cpu_to_be32(8)
522     };
523     uint32_t irq;
524     char *name;
525     int node;
526 
527     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
528 
529     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
530     node = fdt_add_subnode(fdt, lpc_off, name);
531     _FDT(node);
532     g_free(name);
533 
534     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
535     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
536                       sizeof(compatible))));
537 
538     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
539     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
540     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
541     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
542                            fdt_get_phandle(fdt, lpc_off))));
543 
544     /* This is needed by Linux */
545     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
546 }
547 
pnv_dt_ipmi_bt(ISADevice * d,void * fdt,int lpc_off)548 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
549 {
550     const char compatible[] = "bt\0ipmi-bt";
551     uint32_t io_base;
552     uint32_t io_regs[] = {
553         cpu_to_be32(1),
554         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
555         cpu_to_be32(3)
556     };
557     uint32_t irq;
558     char *name;
559     int node;
560 
561     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
562     io_regs[1] = cpu_to_be32(io_base);
563 
564     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
565 
566     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
567     node = fdt_add_subnode(fdt, lpc_off, name);
568     _FDT(node);
569     g_free(name);
570 
571     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
572     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
573                       sizeof(compatible))));
574 
575     /* Mark it as reserved to avoid Linux trying to claim it */
576     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
577     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
578     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
579                            fdt_get_phandle(fdt, lpc_off))));
580 }
581 
582 typedef struct ForeachPopulateArgs {
583     void *fdt;
584     int offset;
585 } ForeachPopulateArgs;
586 
pnv_dt_isa_device(DeviceState * dev,void * opaque)587 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
588 {
589     ForeachPopulateArgs *args = opaque;
590     ISADevice *d = ISA_DEVICE(dev);
591 
592     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
593         pnv_dt_rtc(d, args->fdt, args->offset);
594     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
595         pnv_dt_serial(d, args->fdt, args->offset);
596     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
597         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
598     } else {
599         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
600                      d->ioport_id);
601     }
602 
603     return 0;
604 }
605 
606 /*
607  * The default LPC bus of a multichip system is on chip 0. It's
608  * recognized by the firmware (skiboot) using a "primary" property.
609  */
pnv_dt_isa(PnvMachineState * pnv,void * fdt)610 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
611 {
612     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
613     ForeachPopulateArgs args = {
614         .fdt = fdt,
615         .offset = isa_offset,
616     };
617     uint32_t phandle;
618 
619     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
620 
621     phandle = qemu_fdt_alloc_phandle(fdt);
622     assert(phandle > 0);
623     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
624 
625     /*
626      * ISA devices are not necessarily parented to the ISA bus so we
627      * can not use object_child_foreach()
628      */
629     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
630                        &args);
631 }
632 
pnv_dt_power_mgt(PnvMachineState * pnv,void * fdt)633 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
634 {
635     int off;
636 
637     off = fdt_add_subnode(fdt, 0, "ibm,opal");
638     off = fdt_add_subnode(fdt, off, "power-mgt");
639 
640     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
641 }
642 
pnv_dt_create(MachineState * machine)643 static void *pnv_dt_create(MachineState *machine)
644 {
645     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
646     PnvMachineState *pnv = PNV_MACHINE(machine);
647     void *fdt;
648     char *buf;
649     int off;
650     int i;
651 
652     fdt = g_malloc0(FDT_MAX_SIZE);
653     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
654 
655     /* /qemu node */
656     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
657 
658     /* Root node */
659     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
660     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
661     _FDT((fdt_setprop_string(fdt, 0, "model",
662                              "IBM PowerNV (emulated by qemu)")));
663     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
664 
665     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
666     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
667     if (qemu_uuid_set) {
668         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
669     }
670     g_free(buf);
671 
672     off = fdt_add_subnode(fdt, 0, "chosen");
673     if (machine->kernel_cmdline) {
674         _FDT((fdt_setprop_string(fdt, off, "bootargs",
675                                  machine->kernel_cmdline)));
676     }
677 
678     if (pnv->initrd_size) {
679         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
680         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
681 
682         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
683                                &start_prop, sizeof(start_prop))));
684         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
685                                &end_prop, sizeof(end_prop))));
686     }
687 
688     /* Populate device tree for each chip */
689     for (i = 0; i < pnv->num_chips; i++) {
690         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
691     }
692 
693     /* Populate ISA devices on chip 0 */
694     pnv_dt_isa(pnv, fdt);
695 
696     if (pnv->bmc) {
697         pnv_dt_bmc_sensors(pnv->bmc, fdt);
698     }
699 
700     /* Create an extra node for power management on machines that support it */
701     if (pmc->dt_power_mgt) {
702         pmc->dt_power_mgt(pnv, fdt);
703     }
704 
705     return fdt;
706 }
707 
pnv_powerdown_notify(Notifier * n,void * opaque)708 static void pnv_powerdown_notify(Notifier *n, void *opaque)
709 {
710     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
711 
712     if (pnv->bmc) {
713         pnv_bmc_powerdown(pnv->bmc);
714     }
715 }
716 
pnv_reset(MachineState * machine,ResetType type)717 static void pnv_reset(MachineState *machine, ResetType type)
718 {
719     PnvMachineState *pnv = PNV_MACHINE(machine);
720     IPMIBmc *bmc;
721     void *fdt;
722 
723     qemu_devices_reset(type);
724 
725     /*
726      * The machine should provide by default an internal BMC simulator.
727      * If not, try to use the BMC device that was provided on the command
728      * line.
729      */
730     bmc = pnv_bmc_find(&error_fatal);
731     if (!pnv->bmc) {
732         if (!bmc) {
733             if (!qtest_enabled()) {
734                 warn_report("machine has no BMC device. Use '-device "
735                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
736                             "to define one");
737             }
738         } else {
739             pnv_bmc_set_pnor(bmc, pnv->pnor);
740             pnv->bmc = bmc;
741         }
742     }
743 
744     if (machine->fdt) {
745         fdt = machine->fdt;
746     } else {
747         fdt = pnv_dt_create(machine);
748         /* Pack resulting tree */
749         _FDT((fdt_pack(fdt)));
750     }
751 
752     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
753 
754     /* Update machine->fdt with latest fdt */
755     if (machine->fdt != fdt) {
756         /*
757          * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
758          * the existing machine->fdt to avoid leaking it during
759          * a reset.
760          */
761         g_free(machine->fdt);
762         machine->fdt = fdt;
763     }
764 }
765 
pnv_chip_power8_isa_create(PnvChip * chip,Error ** errp)766 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
767 {
768     Pnv8Chip *chip8 = PNV8_CHIP(chip);
769     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
770 
771     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
772 
773     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
774 }
775 
pnv_chip_power8nvl_isa_create(PnvChip * chip,Error ** errp)776 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
777 {
778     Pnv8Chip *chip8 = PNV8_CHIP(chip);
779     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
780 
781     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
782 
783     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
784 }
785 
pnv_chip_power9_isa_create(PnvChip * chip,Error ** errp)786 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
787 {
788     Pnv9Chip *chip9 = PNV9_CHIP(chip);
789     qemu_irq irq;
790 
791     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
792     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
793 
794     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
795     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
796     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
797     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
798     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
799     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
800     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
801     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
802 
803     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
804 }
805 
pnv_chip_power10_isa_create(PnvChip * chip,Error ** errp)806 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
807 {
808     Pnv10Chip *chip10 = PNV10_CHIP(chip);
809     qemu_irq irq;
810 
811     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
812     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
813 
814     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
815     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
816     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
817     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
818     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
819     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
820     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
821     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
822 
823     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
824 }
825 
pnv_isa_create(PnvChip * chip,Error ** errp)826 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
827 {
828     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
829 }
830 
pnv_chip_power8_pic_print_info(PnvChip * chip,GString * buf)831 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
832 {
833     Pnv8Chip *chip8 = PNV8_CHIP(chip);
834     int i;
835 
836     ics_pic_print_info(&chip8->psi.ics, buf);
837 
838     for (i = 0; i < chip8->num_phbs; i++) {
839         PnvPHB *phb = chip8->phbs[i];
840         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
841 
842         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
843         ics_pic_print_info(&phb3->lsis, buf);
844     }
845 }
846 
pnv_chip_power9_pic_print_info_child(Object * child,void * opaque)847 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
848 {
849     GString *buf = opaque;
850     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
851 
852     if (!phb) {
853         return 0;
854     }
855 
856     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
857 
858     return 0;
859 }
860 
pnv_chip_power9_pic_print_info(PnvChip * chip,GString * buf)861 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
862 {
863     Pnv9Chip *chip9 = PNV9_CHIP(chip);
864 
865     pnv_xive_pic_print_info(&chip9->xive, buf);
866     pnv_psi_pic_print_info(&chip9->psi, buf);
867     object_child_foreach_recursive(OBJECT(chip),
868                          pnv_chip_power9_pic_print_info_child, buf);
869 }
870 
pnv_chip_power8_xscom_core_base(PnvChip * chip,uint32_t core_id)871 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
872                                                 uint32_t core_id)
873 {
874     return PNV_XSCOM_EX_BASE(core_id);
875 }
876 
pnv_chip_power9_xscom_core_base(PnvChip * chip,uint32_t core_id)877 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
878                                                 uint32_t core_id)
879 {
880     return PNV9_XSCOM_EC_BASE(core_id);
881 }
882 
pnv_chip_power10_xscom_core_base(PnvChip * chip,uint32_t core_id)883 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
884                                                  uint32_t core_id)
885 {
886     return PNV10_XSCOM_EC_BASE(core_id);
887 }
888 
pnv_match_cpu(const char * default_type,const char * cpu_type)889 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
890 {
891     PowerPCCPUClass *ppc_default =
892         POWERPC_CPU_CLASS(object_class_by_name(default_type));
893     PowerPCCPUClass *ppc =
894         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
895 
896     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
897 }
898 
pnv_ipmi_bt_init(ISABus * bus,IPMIBmc * bmc,uint32_t irq)899 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
900 {
901     ISADevice *dev = isa_new("isa-ipmi-bt");
902 
903     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
904     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
905     isa_realize_and_unref(dev, bus, &error_fatal);
906 }
907 
pnv_chip_power10_pic_print_info(PnvChip * chip,GString * buf)908 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
909 {
910     Pnv10Chip *chip10 = PNV10_CHIP(chip);
911 
912     pnv_xive2_pic_print_info(&chip10->xive, buf);
913     pnv_psi_pic_print_info(&chip10->psi, buf);
914     object_child_foreach_recursive(OBJECT(chip),
915                          pnv_chip_power9_pic_print_info_child, buf);
916 }
917 
918 /* Always give the first 1GB to chip 0 else we won't boot */
pnv_chip_get_ram_size(PnvMachineState * pnv,int chip_id)919 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
920 {
921     MachineState *machine = MACHINE(pnv);
922     uint64_t ram_per_chip;
923 
924     assert(machine->ram_size >= 1 * GiB);
925 
926     ram_per_chip = machine->ram_size / pnv->num_chips;
927     if (ram_per_chip >= 1 * GiB) {
928         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
929     }
930 
931     assert(pnv->num_chips > 1);
932 
933     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
934     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
935 }
936 
pnv_init(MachineState * machine)937 static void pnv_init(MachineState *machine)
938 {
939     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
940     PnvMachineState *pnv = PNV_MACHINE(machine);
941     MachineClass *mc = MACHINE_GET_CLASS(machine);
942     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
943     int max_smt_threads = pmc->max_smt_threads;
944     char *fw_filename;
945     long fw_size;
946     uint64_t chip_ram_start = 0;
947     int i;
948     char *chip_typename;
949     DriveInfo *pnor;
950     DeviceState *dev;
951 
952     if (kvm_enabled()) {
953         error_report("machine %s does not support the KVM accelerator",
954                      mc->name);
955         exit(EXIT_FAILURE);
956     }
957 
958     /* allocate RAM */
959     if (machine->ram_size < mc->default_ram_size) {
960         char *sz = size_to_str(mc->default_ram_size);
961         error_report("Invalid RAM size, should be bigger than %s", sz);
962         g_free(sz);
963         exit(EXIT_FAILURE);
964     }
965 
966     /* checks for invalid option combinations */
967     if (machine->dtb && (strlen(machine->kernel_cmdline) != 0)) {
968         error_report("-append and -dtb cannot be used together, as passed"
969                 " command line is ignored in case of custom dtb");
970         exit(EXIT_FAILURE);
971     }
972 
973     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
974 
975     /*
976      * Create our simple PNOR device
977      */
978     dev = qdev_new(TYPE_PNV_PNOR);
979     pnor = drive_get(IF_MTD, 0, 0);
980     if (!pnor && defaults_enabled()) {
981         fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, PNOR_FILE_NAME);
982         if (!fw_filename) {
983             warn_report("Could not find PNOR '%s'", PNOR_FILE_NAME);
984         } else {
985             QemuOpts *opts;
986             opts = drive_add(IF_MTD, -1, fw_filename, "format=raw,readonly=on");
987             pnor = drive_new(opts, IF_MTD, &error_fatal);
988             g_free(fw_filename);
989         }
990     }
991     if (pnor) {
992         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
993     }
994     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
995     pnv->pnor = PNV_PNOR(dev);
996 
997     /* load skiboot firmware  */
998     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
999     if (!fw_filename) {
1000         error_report("Could not find OPAL firmware '%s'", bios_name);
1001         exit(1);
1002     }
1003 
1004     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
1005     if (fw_size < 0) {
1006         error_report("Could not load OPAL firmware '%s'", fw_filename);
1007         exit(1);
1008     }
1009     g_free(fw_filename);
1010 
1011     /* load kernel */
1012     if (machine->kernel_filename) {
1013         long kernel_size;
1014 
1015         kernel_size = load_image_targphys(machine->kernel_filename,
1016                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
1017         if (kernel_size < 0) {
1018             error_report("Could not load kernel '%s'",
1019                          machine->kernel_filename);
1020             exit(1);
1021         }
1022     }
1023 
1024     /* load initrd */
1025     if (machine->initrd_filename) {
1026         pnv->initrd_base = INITRD_LOAD_ADDR;
1027         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
1028                                   pnv->initrd_base, INITRD_MAX_SIZE);
1029         if (pnv->initrd_size < 0) {
1030             error_report("Could not load initial ram disk '%s'",
1031                          machine->initrd_filename);
1032             exit(1);
1033         }
1034     }
1035 
1036     /* load dtb if passed */
1037     if (machine->dtb) {
1038         int fdt_size;
1039 
1040         warn_report("with manually passed dtb, some options like '-append'"
1041                 " will get ignored and the dtb passed will be used as-is");
1042 
1043         /* read the file 'machine->dtb', and load it into 'fdt' buffer */
1044         machine->fdt = load_device_tree(machine->dtb, &fdt_size);
1045         if (!machine->fdt) {
1046             error_report("Could not load dtb '%s'", machine->dtb);
1047             exit(1);
1048         }
1049     }
1050 
1051     /* MSIs are supported on this platform */
1052     msi_nonbroken = true;
1053 
1054     /*
1055      * Check compatibility of the specified CPU with the machine
1056      * default.
1057      */
1058     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
1059         error_report("invalid CPU model '%s' for %s machine",
1060                      machine->cpu_type, mc->name);
1061         exit(1);
1062     }
1063 
1064     /* Create the processor chips */
1065     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
1066     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
1067                                     i, machine->cpu_type);
1068     if (!object_class_by_name(chip_typename)) {
1069         error_report("invalid chip model '%.*s' for %s machine",
1070                      i, machine->cpu_type, mc->name);
1071         exit(1);
1072     }
1073 
1074     /* Set lpar-per-core mode if lpar-per-thread is not supported */
1075     if (!pmc->has_lpar_per_thread) {
1076         pnv->lpar_per_core = true;
1077     }
1078 
1079     pnv->num_chips =
1080         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
1081 
1082     if (pnv->big_core) {
1083         if (machine->smp.threads % 2 == 1) {
1084             error_report("Cannot support %d threads with big-core option "
1085                          "because it must be an even number",
1086                          machine->smp.threads);
1087             exit(1);
1088         }
1089         max_smt_threads *= 2;
1090     }
1091 
1092     if (machine->smp.threads > max_smt_threads) {
1093         error_report("Cannot support more than %d threads/core "
1094                      "on %s machine", max_smt_threads, mc->desc);
1095         if (pmc->max_smt_threads == 4) {
1096             error_report("(use big-core=on for 8 threads per core)");
1097         }
1098         exit(1);
1099     }
1100 
1101     if (pnv->big_core) {
1102         /*
1103          * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore
1104          * per core, so adjust topology here. pnv_dt_core() processor
1105          * device-tree and TCG SMT code make the 2 cores appear as one big core
1106          * from software point of view. pnv pervasive models and xscoms tend to
1107          * see the big core as 2 small core halves.
1108          */
1109         machine->smp.cores *= 2;
1110         machine->smp.threads /= 2;
1111     }
1112 
1113     if (!is_power_of_2(machine->smp.threads)) {
1114         error_report("Cannot support %d threads/core on a powernv "
1115                      "machine because it must be a power of 2",
1116                      machine->smp.threads);
1117         exit(1);
1118     }
1119 
1120     /*
1121      * TODO: should we decide on how many chips we can create based
1122      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1123      */
1124     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1125         error_report("invalid number of chips: '%d'", pnv->num_chips);
1126         error_printf(
1127             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1128         exit(1);
1129     }
1130 
1131     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1132     for (i = 0; i < pnv->num_chips; i++) {
1133         char chip_name[32];
1134         Object *chip = OBJECT(qdev_new(chip_typename));
1135         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1136 
1137         pnv->chips[i] = PNV_CHIP(chip);
1138 
1139         /* Distribute RAM among the chips  */
1140         object_property_set_int(chip, "ram-start", chip_ram_start,
1141                                 &error_fatal);
1142         object_property_set_int(chip, "ram-size", chip_ram_size,
1143                                 &error_fatal);
1144         chip_ram_start += chip_ram_size;
1145 
1146         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1147         object_property_add_child(OBJECT(pnv), chip_name, chip);
1148         object_property_set_int(chip, "chip-id", i, &error_fatal);
1149         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1150                                 &error_fatal);
1151         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1152                                 &error_fatal);
1153         object_property_set_bool(chip, "big-core", pnv->big_core,
1154                                 &error_fatal);
1155         object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core,
1156                                 &error_fatal);
1157         /*
1158          * The POWER8 machine use the XICS interrupt interface.
1159          * Propagate the XICS fabric to the chip and its controllers.
1160          */
1161         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1162             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1163         }
1164         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1165             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1166                                      &error_abort);
1167         }
1168         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1169     }
1170     g_free(chip_typename);
1171 
1172     /* Instantiate ISA bus on chip 0 */
1173     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1174 
1175     /* Create serial port */
1176     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1177 
1178     /* Create an RTC ISA device too */
1179     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1180 
1181     /*
1182      * Create the machine BMC simulator and the IPMI BT device for
1183      * communication with the BMC
1184      */
1185     if (defaults_enabled()) {
1186         pnv->bmc = pnv_bmc_create(pnv->pnor);
1187         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1188     }
1189 
1190     /*
1191      * The PNOR is mapped on the LPC FW address space by the BMC.
1192      * Since we can not reach the remote BMC machine with LPC memops,
1193      * map it always for now.
1194      */
1195     memory_region_add_subregion(pnv->chips[0]->fw_mr, pnv->pnor->lpc_address,
1196                                 &pnv->pnor->mmio);
1197 
1198     /*
1199      * OpenPOWER systems use a IPMI SEL Event message to notify the
1200      * host to powerdown
1201      */
1202     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1203     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1204 
1205     /*
1206      * Create/Connect any machine-specific I2C devices
1207      */
1208     if (pmc->i2c_init) {
1209         pmc->i2c_init(pnv);
1210     }
1211 }
1212 
1213 /*
1214  *    0:21  Reserved - Read as zeros
1215  *   22:24  Chip ID
1216  *   25:28  Core number
1217  *   29:31  Thread ID
1218  */
pnv_get_pir_tir_p8(PnvChip * chip,uint32_t core_id,uint32_t thread_id,uint32_t * pir,uint32_t * tir)1219 static void pnv_get_pir_tir_p8(PnvChip *chip,
1220                                 uint32_t core_id, uint32_t thread_id,
1221                                 uint32_t *pir, uint32_t *tir)
1222 {
1223     if (pir) {
1224         *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
1225     }
1226     if (tir) {
1227         *tir = thread_id;
1228     }
1229 }
1230 
pnv_chip_power8_intc_create(PnvChip * chip,PowerPCCPU * cpu,Error ** errp)1231 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1232                                         Error **errp)
1233 {
1234     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1235     Error *local_err = NULL;
1236     Object *obj;
1237     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1238 
1239     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1240     if (local_err) {
1241         error_propagate(errp, local_err);
1242         return;
1243     }
1244 
1245     pnv_cpu->intc = obj;
1246 }
1247 
1248 
pnv_chip_power8_intc_reset(PnvChip * chip,PowerPCCPU * cpu)1249 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1250 {
1251     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1252 
1253     icp_reset(ICP(pnv_cpu->intc));
1254 }
1255 
pnv_chip_power8_intc_destroy(PnvChip * chip,PowerPCCPU * cpu)1256 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1257 {
1258     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1259 
1260     icp_destroy(ICP(pnv_cpu->intc));
1261     pnv_cpu->intc = NULL;
1262 }
1263 
pnv_chip_power8_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,GString * buf)1264 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1265                                             GString *buf)
1266 {
1267     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1268 }
1269 
1270 /*
1271  *    0:48  Reserved - Read as zeroes
1272  *   49:52  Node ID
1273  *   53:55  Chip ID
1274  *   56     Reserved - Read as zero
1275  *   57:61  Core number
1276  *   62:63  Thread ID
1277  *
1278  * We only care about the lower bits. uint32_t is fine for the moment.
1279  */
pnv_get_pir_tir_p9(PnvChip * chip,uint32_t core_id,uint32_t thread_id,uint32_t * pir,uint32_t * tir)1280 static void pnv_get_pir_tir_p9(PnvChip *chip,
1281                                 uint32_t core_id, uint32_t thread_id,
1282                                 uint32_t *pir, uint32_t *tir)
1283 {
1284     if (chip->big_core) {
1285         /* Big-core interleaves thread ID between small-cores */
1286         thread_id <<= 1;
1287         thread_id |= core_id & 1;
1288         core_id >>= 1;
1289 
1290         if (pir) {
1291             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1292         }
1293     } else {
1294         if (pir) {
1295             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1296         }
1297     }
1298     if (tir) {
1299         *tir = thread_id;
1300     }
1301 }
1302 
1303 /*
1304  *    0:48  Reserved - Read as zeroes
1305  *   49:52  Node ID
1306  *   53:55  Chip ID
1307  *   56     Reserved - Read as zero
1308  *   57:59  Quad ID
1309  *   60     Core Chiplet Pair ID
1310  *   61:63  Thread/Core Chiplet ID t0-t2
1311  *
1312  * We only care about the lower bits. uint32_t is fine for the moment.
1313  */
pnv_get_pir_tir_p10(PnvChip * chip,uint32_t core_id,uint32_t thread_id,uint32_t * pir,uint32_t * tir)1314 static void pnv_get_pir_tir_p10(PnvChip *chip,
1315                                 uint32_t core_id, uint32_t thread_id,
1316                                 uint32_t *pir, uint32_t *tir)
1317 {
1318     if (chip->big_core) {
1319         /* Big-core interleaves thread ID between small-cores */
1320         thread_id <<= 1;
1321         thread_id |= core_id & 1;
1322         core_id >>= 1;
1323 
1324         if (pir) {
1325             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1326         }
1327     } else {
1328         if (pir) {
1329             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1330         }
1331     }
1332     if (tir) {
1333         *tir = thread_id;
1334     }
1335 }
1336 
pnv_chip_power9_intc_create(PnvChip * chip,PowerPCCPU * cpu,Error ** errp)1337 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1338                                         Error **errp)
1339 {
1340     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1341     Error *local_err = NULL;
1342     Object *obj;
1343     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1344 
1345     /*
1346      * The core creates its interrupt presenter but the XIVE interrupt
1347      * controller object is initialized afterwards. Hopefully, it's
1348      * only used at runtime.
1349      */
1350     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1351                            &local_err);
1352     if (local_err) {
1353         error_propagate(errp, local_err);
1354         return;
1355     }
1356 
1357     pnv_cpu->intc = obj;
1358 }
1359 
pnv_chip_power9_intc_reset(PnvChip * chip,PowerPCCPU * cpu)1360 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1361 {
1362     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1363 
1364     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1365 }
1366 
pnv_chip_power9_intc_destroy(PnvChip * chip,PowerPCCPU * cpu)1367 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1368 {
1369     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1370 
1371     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1372     pnv_cpu->intc = NULL;
1373 }
1374 
pnv_chip_power9_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,GString * buf)1375 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1376                                             GString *buf)
1377 {
1378     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1379 }
1380 
pnv_chip_power10_intc_create(PnvChip * chip,PowerPCCPU * cpu,Error ** errp)1381 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1382                                         Error **errp)
1383 {
1384     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1385     Error *local_err = NULL;
1386     Object *obj;
1387     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1388 
1389     /*
1390      * The core creates its interrupt presenter but the XIVE2 interrupt
1391      * controller object is initialized afterwards. Hopefully, it's
1392      * only used at runtime.
1393      */
1394     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1395                            &local_err);
1396     if (local_err) {
1397         error_propagate(errp, local_err);
1398         return;
1399     }
1400 
1401     pnv_cpu->intc = obj;
1402 }
1403 
pnv_chip_power10_intc_reset(PnvChip * chip,PowerPCCPU * cpu)1404 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1405 {
1406     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1407 
1408     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1409 }
1410 
pnv_chip_power10_intc_destroy(PnvChip * chip,PowerPCCPU * cpu)1411 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1412 {
1413     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1414 
1415     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1416     pnv_cpu->intc = NULL;
1417 }
1418 
pnv_chip_power10_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,GString * buf)1419 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1420                                              GString *buf)
1421 {
1422     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1423 }
1424 
1425 /*
1426  * Allowed core identifiers on a POWER8 Processor Chip :
1427  *
1428  * <EX0 reserved>
1429  *  EX1  - Venice only
1430  *  EX2  - Venice only
1431  *  EX3  - Venice only
1432  *  EX4
1433  *  EX5
1434  *  EX6
1435  * <EX7,8 reserved> <reserved>
1436  *  EX9  - Venice only
1437  *  EX10 - Venice only
1438  *  EX11 - Venice only
1439  *  EX12
1440  *  EX13
1441  *  EX14
1442  * <EX15 reserved>
1443  */
1444 #define POWER8E_CORE_MASK  (0x7070ull)
1445 #define POWER8_CORE_MASK   (0x7e7eull)
1446 
1447 /*
1448  * POWER9 has 24 cores, ids starting at 0x0
1449  */
1450 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1451 
1452 
1453 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1454 
pnv_chip_power8_instance_init(Object * obj)1455 static void pnv_chip_power8_instance_init(Object *obj)
1456 {
1457     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1458     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1459     int i;
1460 
1461     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1462                              (Object **)&chip8->xics,
1463                              object_property_allow_set_link,
1464                              OBJ_PROP_LINK_STRONG);
1465 
1466     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1467 
1468     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1469 
1470     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1471 
1472     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1473 
1474     if (defaults_enabled()) {
1475         chip8->num_phbs = pcc->num_phbs;
1476 
1477         for (i = 0; i < chip8->num_phbs; i++) {
1478             Object *phb = object_new(TYPE_PNV_PHB);
1479 
1480             /*
1481              * We need the chip to parent the PHB to allow the DT
1482              * to build correctly (via pnv_xscom_dt()).
1483              *
1484              * TODO: the PHB should be parented by a PEC device that, at
1485              * this moment, is not modelled powernv8/phb3.
1486              */
1487             object_property_add_child(obj, "phb[*]", phb);
1488             chip8->phbs[i] = PNV_PHB(phb);
1489         }
1490     }
1491 
1492 }
1493 
pnv_chip_icp_realize(Pnv8Chip * chip8,Error ** errp)1494 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1495  {
1496     PnvChip *chip = PNV_CHIP(chip8);
1497     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1498     int i, j;
1499     char *name;
1500 
1501     name = g_strdup_printf("icp-%x", chip->chip_id);
1502     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1503     g_free(name);
1504     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1505                                 &chip8->icp_mmio);
1506 
1507     /* Map the ICP registers for each thread */
1508     for (i = 0; i < chip->nr_cores; i++) {
1509         PnvCore *pnv_core = chip->cores[i];
1510         int core_hwid = CPU_CORE(pnv_core)->core_id;
1511 
1512         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1513             uint32_t pir;
1514             PnvICPState *icp;
1515 
1516             pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
1517             icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1518 
1519             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1520                                         &icp->mmio);
1521         }
1522     }
1523 }
1524 
pnv_chip_power8_realize(DeviceState * dev,Error ** errp)1525 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1526 {
1527     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1528     PnvChip *chip = PNV_CHIP(dev);
1529     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1530     Pnv8Psi *psi8 = &chip8->psi;
1531     Error *local_err = NULL;
1532     int i;
1533 
1534     assert(chip8->xics);
1535 
1536     /* XSCOM bridge is first */
1537     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1538 
1539     pcc->parent_realize(dev, &local_err);
1540     if (local_err) {
1541         error_propagate(errp, local_err);
1542         return;
1543     }
1544 
1545     /* Processor Service Interface (PSI) Host Bridge */
1546     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1547                             &error_fatal);
1548     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1549                              OBJECT(chip8->xics), &error_abort);
1550     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1551         return;
1552     }
1553     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1554                             &PNV_PSI(psi8)->xscom_regs);
1555 
1556     /* Create LPC controller */
1557     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1558     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1559 
1560     chip->fw_mr = &chip8->lpc.isa_fw;
1561     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1562                                             (uint64_t) PNV_XSCOM_BASE(chip),
1563                                             PNV_XSCOM_LPC_BASE);
1564 
1565     /*
1566      * Interrupt Management Area. This is the memory region holding
1567      * all the Interrupt Control Presenter (ICP) registers
1568      */
1569     pnv_chip_icp_realize(chip8, &local_err);
1570     if (local_err) {
1571         error_propagate(errp, local_err);
1572         return;
1573     }
1574 
1575     /* HOMER (must be created before OCC) */
1576     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1577                              &error_abort);
1578     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1579         return;
1580     }
1581     /* Homer Xscom region */
1582     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1583     /* Homer RAM region */
1584     memory_region_add_subregion(get_system_memory(), chip8->homer.base,
1585                                 &chip8->homer.mem);
1586 
1587     /* Create the simplified OCC model */
1588     object_property_set_link(OBJECT(&chip8->occ), "homer",
1589                              OBJECT(&chip8->homer), &error_abort);
1590     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1591         return;
1592     }
1593     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1594     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1595                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1596 
1597     /* OCC SRAM model */
1598     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1599                                 &chip8->occ.sram_regs);
1600 
1601     /* PHB controllers */
1602     for (i = 0; i < chip8->num_phbs; i++) {
1603         PnvPHB *phb = chip8->phbs[i];
1604 
1605         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1606         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1607                                 &error_fatal);
1608         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1609                                  &error_fatal);
1610         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1611             return;
1612         }
1613     }
1614 }
1615 
pnv_chip_power8_xscom_pcba(PnvChip * chip,uint64_t addr)1616 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1617 {
1618     addr &= (PNV_XSCOM_SIZE - 1);
1619     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1620 }
1621 
pnv_chip_power8e_class_init(ObjectClass * klass,const void * data)1622 static void pnv_chip_power8e_class_init(ObjectClass *klass, const void *data)
1623 {
1624     DeviceClass *dc = DEVICE_CLASS(klass);
1625     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1626 
1627     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1628     k->cores_mask = POWER8E_CORE_MASK;
1629     k->num_phbs = 3;
1630     k->get_pir_tir = pnv_get_pir_tir_p8;
1631     k->intc_create = pnv_chip_power8_intc_create;
1632     k->intc_reset = pnv_chip_power8_intc_reset;
1633     k->intc_destroy = pnv_chip_power8_intc_destroy;
1634     k->intc_print_info = pnv_chip_power8_intc_print_info;
1635     k->isa_create = pnv_chip_power8_isa_create;
1636     k->dt_populate = pnv_chip_power8_dt_populate;
1637     k->pic_print_info = pnv_chip_power8_pic_print_info;
1638     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1639     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1640     dc->desc = "PowerNV Chip POWER8E";
1641 
1642     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1643                                     &k->parent_realize);
1644 }
1645 
pnv_chip_power8_class_init(ObjectClass * klass,const void * data)1646 static void pnv_chip_power8_class_init(ObjectClass *klass, const void *data)
1647 {
1648     DeviceClass *dc = DEVICE_CLASS(klass);
1649     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1650 
1651     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1652     k->cores_mask = POWER8_CORE_MASK;
1653     k->num_phbs = 3;
1654     k->get_pir_tir = pnv_get_pir_tir_p8;
1655     k->intc_create = pnv_chip_power8_intc_create;
1656     k->intc_reset = pnv_chip_power8_intc_reset;
1657     k->intc_destroy = pnv_chip_power8_intc_destroy;
1658     k->intc_print_info = pnv_chip_power8_intc_print_info;
1659     k->isa_create = pnv_chip_power8_isa_create;
1660     k->dt_populate = pnv_chip_power8_dt_populate;
1661     k->pic_print_info = pnv_chip_power8_pic_print_info;
1662     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1663     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1664     dc->desc = "PowerNV Chip POWER8";
1665 
1666     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1667                                     &k->parent_realize);
1668 }
1669 
pnv_chip_power8nvl_class_init(ObjectClass * klass,const void * data)1670 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, const void *data)
1671 {
1672     DeviceClass *dc = DEVICE_CLASS(klass);
1673     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1674 
1675     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1676     k->cores_mask = POWER8_CORE_MASK;
1677     k->num_phbs = 4;
1678     k->get_pir_tir = pnv_get_pir_tir_p8;
1679     k->intc_create = pnv_chip_power8_intc_create;
1680     k->intc_reset = pnv_chip_power8_intc_reset;
1681     k->intc_destroy = pnv_chip_power8_intc_destroy;
1682     k->intc_print_info = pnv_chip_power8_intc_print_info;
1683     k->isa_create = pnv_chip_power8nvl_isa_create;
1684     k->dt_populate = pnv_chip_power8_dt_populate;
1685     k->pic_print_info = pnv_chip_power8_pic_print_info;
1686     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1687     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1688     dc->desc = "PowerNV Chip POWER8NVL";
1689 
1690     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1691                                     &k->parent_realize);
1692 }
1693 
pnv_chip_power9_instance_init(Object * obj)1694 static void pnv_chip_power9_instance_init(Object *obj)
1695 {
1696     PnvChip *chip = PNV_CHIP(obj);
1697     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1698     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1699     int i;
1700 
1701     object_initialize_child(obj, "adu",  &chip9->adu, TYPE_PNV_ADU);
1702     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1703     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1704                               "xive-fabric");
1705 
1706     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1707 
1708     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1709 
1710     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1711 
1712     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1713 
1714     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1715 
1716     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1717 
1718     /* Number of PECs is the chip default */
1719     chip->num_pecs = pcc->num_pecs;
1720 
1721     for (i = 0; i < chip->num_pecs; i++) {
1722         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1723                                 TYPE_PNV_PHB4_PEC);
1724     }
1725 
1726     for (i = 0; i < pcc->i2c_num_engines; i++) {
1727         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1728     }
1729 }
1730 
pnv_chip_quad_realize_one(PnvChip * chip,PnvQuad * eq,PnvCore * pnv_core,const char * type)1731 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1732                                       PnvCore *pnv_core,
1733                                       const char *type)
1734 {
1735     char eq_name[32];
1736     int core_id = CPU_CORE(pnv_core)->core_id;
1737 
1738     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1739     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1740                                        sizeof(*eq), type,
1741                                        &error_fatal, NULL);
1742 
1743     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1744     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1745 }
1746 
pnv_chip_quad_realize(Pnv9Chip * chip9,Error ** errp)1747 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1748 {
1749     PnvChip *chip = PNV_CHIP(chip9);
1750     int i;
1751 
1752     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1753     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1754 
1755     for (i = 0; i < chip9->nr_quads; i++) {
1756         PnvQuad *eq = &chip9->quads[i];
1757 
1758         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1759                                   PNV_QUAD_TYPE_NAME("power9"));
1760 
1761         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1762                                 &eq->xscom_regs);
1763     }
1764 }
1765 
pnv_chip_power9_pec_realize(PnvChip * chip,Error ** errp)1766 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1767 {
1768     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1769     int i;
1770 
1771     for (i = 0; i < chip->num_pecs; i++) {
1772         PnvPhb4PecState *pec = &chip9->pecs[i];
1773         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1774         uint32_t pec_cplt_base;
1775         uint32_t pec_nest_base;
1776         uint32_t pec_pci_base;
1777 
1778         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1779         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1780                                 &error_fatal);
1781         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1782                                  &error_fatal);
1783         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1784             return;
1785         }
1786 
1787         pec_cplt_base = pecc->xscom_cplt_base(pec);
1788         pec_nest_base = pecc->xscom_nest_base(pec);
1789         pec_pci_base = pecc->xscom_pci_base(pec);
1790 
1791         pnv_xscom_add_subregion(chip, pec_cplt_base,
1792                  &pec->nest_pervasive.xscom_ctrl_regs_mr);
1793         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1794         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1795     }
1796 }
1797 
pnv_handle_sprd_load(CPUPPCState * env)1798 static uint64_t pnv_handle_sprd_load(CPUPPCState *env)
1799 {
1800     PowerPCCPU *cpu = env_archcpu(env);
1801     PnvCore *pc = pnv_cpu_state(cpu)->pnv_core;
1802     uint64_t sprc = env->spr[SPR_POWER_SPRC];
1803 
1804     if (pc->big_core) {
1805         pc = pnv_chip_find_core(pc->chip, CPU_CORE(pc)->core_id & ~0x1);
1806     }
1807 
1808     switch (sprc & 0x3e0) {
1809     case 0: /* SCRATCH0-3 */
1810     case 1: /* SCRATCH4-7 */
1811         return pc->scratch[(sprc >> 3) & 0x7];
1812 
1813     case 0x1e0: /* core thread state */
1814         if (env->excp_model == POWERPC_EXCP_POWER9) {
1815             /*
1816              * Only implement for POWER9 because skiboot uses it to check
1817              * big-core mode. Other bits are unimplemented so we would
1818              * prefer to get unimplemented message on POWER10 if it were
1819              * used anywhere.
1820              */
1821             if (pc->big_core) {
1822                 return PPC_BIT(63);
1823             } else {
1824                 return 0;
1825             }
1826         }
1827         /* fallthru */
1828 
1829     default:
1830         qemu_log_mask(LOG_UNIMP, "mfSPRD: Unimplemented SPRC:0x"
1831                                   TARGET_FMT_lx"\n", sprc);
1832         break;
1833     }
1834     return 0;
1835 }
1836 
pnv_handle_sprd_store(CPUPPCState * env,uint64_t val)1837 static void pnv_handle_sprd_store(CPUPPCState *env, uint64_t val)
1838 {
1839     PowerPCCPU *cpu = env_archcpu(env);
1840     uint64_t sprc = env->spr[SPR_POWER_SPRC];
1841     PnvCore *pc = pnv_cpu_state(cpu)->pnv_core;
1842     int nr;
1843 
1844     if (pc->big_core) {
1845         pc = pnv_chip_find_core(pc->chip, CPU_CORE(pc)->core_id & ~0x1);
1846     }
1847 
1848     switch (sprc & 0x3e0) {
1849     case 0: /* SCRATCH0-3 */
1850     case 1: /* SCRATCH4-7 */
1851         /*
1852          * Log stores to SCRATCH, because some firmware uses these for
1853          * debugging and logging, but they would normally be read by the BMC,
1854          * which is not implemented in QEMU yet. This gives a way to get at the
1855          * information. Could also dump these upon checkstop.
1856          */
1857         nr = (sprc >> 3) & 0x7;
1858         pc->scratch[nr] = val;
1859         break;
1860     default:
1861         qemu_log_mask(LOG_UNIMP, "mtSPRD: Unimplemented SPRC:0x"
1862                                   TARGET_FMT_lx"\n", sprc);
1863         break;
1864     }
1865 }
1866 
pnv_chip_power9_realize(DeviceState * dev,Error ** errp)1867 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1868 {
1869     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1870     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1871     PnvChip *chip = PNV_CHIP(dev);
1872     Pnv9Psi *psi9 = &chip9->psi;
1873     PowerPCCPU *cpu;
1874     PowerPCCPUClass *cpu_class;
1875     Error *local_err = NULL;
1876     int i;
1877 
1878     /* XSCOM bridge is first */
1879     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1880 
1881     pcc->parent_realize(dev, &local_err);
1882     if (local_err) {
1883         error_propagate(errp, local_err);
1884         return;
1885     }
1886 
1887     /* ADU */
1888     object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
1889                              &error_abort);
1890     if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
1891         return;
1892     }
1893     pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
1894                             &chip9->adu.xscom_regs);
1895 
1896     pnv_chip_quad_realize(chip9, &local_err);
1897     if (local_err) {
1898         error_propagate(errp, local_err);
1899         return;
1900     }
1901 
1902     /* Set handlers for Special registers, such as SPRD */
1903     cpu = chip->cores[0]->threads[0];
1904     cpu_class = POWERPC_CPU_GET_CLASS(cpu);
1905     cpu_class->load_sprd = pnv_handle_sprd_load;
1906     cpu_class->store_sprd = pnv_handle_sprd_store;
1907 
1908     /* XIVE interrupt controller (POWER9) */
1909     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1910                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1911     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1912                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1913     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1914                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1915     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1916                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1917     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1918                              &error_abort);
1919     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1920         return;
1921     }
1922     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1923                             &chip9->xive.xscom_regs);
1924 
1925     /* Processor Service Interface (PSI) Host Bridge */
1926     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1927                             &error_fatal);
1928     /* This is the only device with 4k ESB pages */
1929     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1930                             &error_fatal);
1931     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1932         return;
1933     }
1934     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1935                             &PNV_PSI(psi9)->xscom_regs);
1936 
1937     /* LPC */
1938     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1939         return;
1940     }
1941     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1942                                 &chip9->lpc.xscom_regs);
1943 
1944     chip->fw_mr = &chip9->lpc.isa_fw;
1945     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1946                                             (uint64_t) PNV9_LPCM_BASE(chip));
1947 
1948     /* ChipTOD */
1949     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1950                              chip->chip_id == 0, &error_abort);
1951     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1952                              chip->chip_id == 1, &error_abort);
1953     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1954                              &error_abort);
1955     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1956         return;
1957     }
1958     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1959                             &chip9->chiptod.xscom_regs);
1960 
1961     /* SBE */
1962     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1963         return;
1964     }
1965     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1966                             &chip9->sbe.xscom_ctrl_regs);
1967     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1968                             &chip9->sbe.xscom_mbox_regs);
1969     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1970                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1971 
1972     /* HOMER (must be created before OCC) */
1973     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1974                              &error_abort);
1975     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1976         return;
1977     }
1978     /* Homer Xscom region */
1979     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1980     /* Homer RAM region */
1981     memory_region_add_subregion(get_system_memory(), chip9->homer.base,
1982                                 &chip9->homer.mem);
1983 
1984     /* Create the simplified OCC model */
1985     object_property_set_link(OBJECT(&chip9->occ), "homer",
1986                              OBJECT(&chip9->homer), &error_abort);
1987     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1988         return;
1989     }
1990     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1991     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1992                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1993 
1994     /* OCC SRAM model */
1995     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1996                                 &chip9->occ.sram_regs);
1997 
1998     /* PEC PHBs */
1999     pnv_chip_power9_pec_realize(chip, &local_err);
2000     if (local_err) {
2001         error_propagate(errp, local_err);
2002         return;
2003     }
2004 
2005     /*
2006      * I2C
2007      */
2008     for (i = 0; i < pcc->i2c_num_engines; i++) {
2009         Object *obj =  OBJECT(&chip9->i2c[i]);
2010 
2011         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2012         object_property_set_int(obj, "num-busses",
2013                                 pcc->i2c_ports_per_engine[i],
2014                                 &error_fatal);
2015         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2016         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2017             return;
2018         }
2019         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
2020                                 (chip9->i2c[i].engine - 1) *
2021                                         PNV9_XSCOM_I2CM_SIZE,
2022                                 &chip9->i2c[i].xscom_regs);
2023         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
2024                               qdev_get_gpio_in(DEVICE(psi9),
2025                                                PSIHB9_IRQ_SBE_I2C));
2026     }
2027 }
2028 
pnv_chip_power9_xscom_pcba(PnvChip * chip,uint64_t addr)2029 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
2030 {
2031     addr &= (PNV9_XSCOM_SIZE - 1);
2032     return addr >> 3;
2033 }
2034 
pnv_chip_power9_class_init(ObjectClass * klass,const void * data)2035 static void pnv_chip_power9_class_init(ObjectClass *klass, const void *data)
2036 {
2037     DeviceClass *dc = DEVICE_CLASS(klass);
2038     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2039     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
2040 
2041     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
2042     k->cores_mask = POWER9_CORE_MASK;
2043     k->get_pir_tir = pnv_get_pir_tir_p9;
2044     k->intc_create = pnv_chip_power9_intc_create;
2045     k->intc_reset = pnv_chip_power9_intc_reset;
2046     k->intc_destroy = pnv_chip_power9_intc_destroy;
2047     k->intc_print_info = pnv_chip_power9_intc_print_info;
2048     k->isa_create = pnv_chip_power9_isa_create;
2049     k->dt_populate = pnv_chip_power9_dt_populate;
2050     k->pic_print_info = pnv_chip_power9_pic_print_info;
2051     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
2052     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
2053     dc->desc = "PowerNV Chip POWER9";
2054     k->num_pecs = PNV9_CHIP_MAX_PEC;
2055     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
2056     k->i2c_ports_per_engine = i2c_ports_per_engine;
2057 
2058     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
2059                                     &k->parent_realize);
2060 }
2061 
pnv_chip_power10_instance_init(Object * obj)2062 static void pnv_chip_power10_instance_init(Object *obj)
2063 {
2064     PnvChip *chip = PNV_CHIP(obj);
2065     Pnv10Chip *chip10 = PNV10_CHIP(obj);
2066     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
2067     int i;
2068 
2069     object_initialize_child(obj, "adu",  &chip10->adu, TYPE_PNV_ADU);
2070     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
2071     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
2072                               "xive-fabric");
2073     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
2074     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
2075     object_initialize_child(obj, "chiptod", &chip10->chiptod,
2076                             TYPE_PNV10_CHIPTOD);
2077     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
2078     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
2079     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
2080     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
2081                             TYPE_PNV_N1_CHIPLET);
2082 
2083     chip->num_pecs = pcc->num_pecs;
2084 
2085     for (i = 0; i < chip->num_pecs; i++) {
2086         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
2087                                 TYPE_PNV_PHB5_PEC);
2088     }
2089 
2090     for (i = 0; i < pcc->i2c_num_engines; i++) {
2091         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
2092     }
2093 
2094     for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
2095         object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i],
2096                                 TYPE_PNV_SPI);
2097     }
2098 }
2099 
pnv_chip_power10_quad_realize(Pnv10Chip * chip10,Error ** errp)2100 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
2101 {
2102     PnvChip *chip = PNV_CHIP(chip10);
2103     int i;
2104 
2105     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
2106     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
2107 
2108     for (i = 0; i < chip10->nr_quads; i++) {
2109         PnvQuad *eq = &chip10->quads[i];
2110 
2111         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
2112                                   PNV_QUAD_TYPE_NAME("power10"));
2113 
2114         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
2115                                 &eq->xscom_regs);
2116 
2117         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
2118                                 &eq->xscom_qme_regs);
2119     }
2120 }
2121 
pnv_chip_power10_phb_realize(PnvChip * chip,Error ** errp)2122 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
2123 {
2124     Pnv10Chip *chip10 = PNV10_CHIP(chip);
2125     int i;
2126 
2127     for (i = 0; i < chip->num_pecs; i++) {
2128         PnvPhb4PecState *pec = &chip10->pecs[i];
2129         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
2130         uint32_t pec_cplt_base;
2131         uint32_t pec_nest_base;
2132         uint32_t pec_pci_base;
2133 
2134         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
2135         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
2136                                 &error_fatal);
2137         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
2138                                  &error_fatal);
2139         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
2140             return;
2141         }
2142 
2143         pec_cplt_base = pecc->xscom_cplt_base(pec);
2144         pec_nest_base = pecc->xscom_nest_base(pec);
2145         pec_pci_base = pecc->xscom_pci_base(pec);
2146 
2147         pnv_xscom_add_subregion(chip, pec_cplt_base,
2148                  &pec->nest_pervasive.xscom_ctrl_regs_mr);
2149         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
2150         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
2151     }
2152 }
2153 
pnv_chip_power10_realize(DeviceState * dev,Error ** errp)2154 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
2155 {
2156     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
2157     PnvChip *chip = PNV_CHIP(dev);
2158     Pnv10Chip *chip10 = PNV10_CHIP(dev);
2159     PowerPCCPU *cpu;
2160     PowerPCCPUClass *cpu_class;
2161     Error *local_err = NULL;
2162     int i;
2163 
2164     /* XSCOM bridge is first */
2165     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
2166 
2167     pcc->parent_realize(dev, &local_err);
2168     if (local_err) {
2169         error_propagate(errp, local_err);
2170         return;
2171     }
2172 
2173     /* ADU */
2174     object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
2175                              &error_abort);
2176     if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
2177         return;
2178     }
2179     pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
2180                             &chip10->adu.xscom_regs);
2181 
2182     pnv_chip_power10_quad_realize(chip10, &local_err);
2183     if (local_err) {
2184         error_propagate(errp, local_err);
2185         return;
2186     }
2187 
2188     /* Set handlers for Special registers, such as SPRD */
2189     cpu = chip->cores[0]->threads[0];
2190     cpu_class = POWERPC_CPU_GET_CLASS(cpu);
2191     cpu_class->load_sprd = pnv_handle_sprd_load;
2192     cpu_class->store_sprd = pnv_handle_sprd_store;
2193 
2194     /* XIVE2 interrupt controller (POWER10) */
2195     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
2196                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
2197     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
2198                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
2199     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
2200                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
2201     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
2202                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
2203     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
2204                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
2205     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
2206                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
2207     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
2208                              &error_abort);
2209     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
2210         return;
2211     }
2212     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
2213                             &chip10->xive.xscom_regs);
2214 
2215     /* Processor Service Interface (PSI) Host Bridge */
2216     object_property_set_int(OBJECT(&chip10->psi), "bar",
2217                             PNV10_PSIHB_BASE(chip), &error_fatal);
2218     /* PSI can now be configured to use 64k ESB pages on POWER10 */
2219     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
2220                             &error_fatal);
2221     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
2222         return;
2223     }
2224     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
2225                             &PNV_PSI(&chip10->psi)->xscom_regs);
2226 
2227     /* LPC */
2228     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
2229         return;
2230     }
2231     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
2232                                 &chip10->lpc.xscom_regs);
2233 
2234     chip->fw_mr = &chip10->lpc.isa_fw;
2235     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
2236                                             (uint64_t) PNV10_LPCM_BASE(chip));
2237 
2238     /* ChipTOD */
2239     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
2240                              chip->chip_id == 0, &error_abort);
2241     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
2242                              chip->chip_id == 1, &error_abort);
2243     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
2244                              &error_abort);
2245     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
2246         return;
2247     }
2248     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
2249                             &chip10->chiptod.xscom_regs);
2250 
2251     /* HOMER (must be created before OCC) */
2252     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2253                              &error_abort);
2254     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2255         return;
2256     }
2257     /* Homer Xscom region */
2258     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2259                             &chip10->homer.pba_regs);
2260     /* Homer RAM region */
2261     memory_region_add_subregion(get_system_memory(), chip10->homer.base,
2262                                 &chip10->homer.mem);
2263 
2264     /* Create the simplified OCC model */
2265     object_property_set_link(OBJECT(&chip10->occ), "homer",
2266                              OBJECT(&chip10->homer), &error_abort);
2267     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
2268         return;
2269     }
2270     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
2271                             &chip10->occ.xscom_regs);
2272     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
2273                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
2274 
2275     /* OCC SRAM model */
2276     memory_region_add_subregion(get_system_memory(),
2277                                 PNV10_OCC_SENSOR_BASE(chip),
2278                                 &chip10->occ.sram_regs);
2279 
2280     /* SBE */
2281     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2282         return;
2283     }
2284     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2285                             &chip10->sbe.xscom_ctrl_regs);
2286     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2287                             &chip10->sbe.xscom_mbox_regs);
2288     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2289                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2290 
2291     /* N1 chiplet */
2292     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2293         return;
2294     }
2295     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2296              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2297 
2298     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2299                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2300 
2301     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2302                            &chip10->n1_chiplet.xscom_pb_es_mr);
2303 
2304     /* PHBs */
2305     pnv_chip_power10_phb_realize(chip, &local_err);
2306     if (local_err) {
2307         error_propagate(errp, local_err);
2308         return;
2309     }
2310 
2311 
2312     /*
2313      * I2C
2314      */
2315     for (i = 0; i < pcc->i2c_num_engines; i++) {
2316         Object *obj =  OBJECT(&chip10->i2c[i]);
2317 
2318         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2319         object_property_set_int(obj, "num-busses",
2320                                 pcc->i2c_ports_per_engine[i],
2321                                 &error_fatal);
2322         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2323         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2324             return;
2325         }
2326         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2327                                 (chip10->i2c[i].engine - 1) *
2328                                         PNV10_XSCOM_I2CM_SIZE,
2329                                 &chip10->i2c[i].xscom_regs);
2330         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2331                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2332                                                PSIHB9_IRQ_SBE_I2C));
2333     }
2334     /* PIB SPI Controller */
2335     for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
2336         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num",
2337                                 i, &error_fatal);
2338         /* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */
2339         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len",
2340                                 (i == 2) ? 1 : 4, &error_fatal);
2341         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "chip-id",
2342                                 chip->chip_id, &error_fatal);
2343         if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT
2344                                         (&chip10->pib_spic[i])), errp)) {
2345             return;
2346         }
2347         pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE +
2348                                 i * PNV10_XSCOM_PIB_SPIC_SIZE,
2349                                 &chip10->pib_spic[i].xscom_spic_regs);
2350     }
2351 }
2352 
pnv_rainier_i2c_init(PnvMachineState * pnv)2353 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2354 {
2355     int i;
2356     for (i = 0; i < pnv->num_chips; i++) {
2357         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2358 
2359         /*
2360          * Add a PCA9552 I2C device for PCIe hotplug control
2361          * to engine 2, bus 1, address 0x63
2362          */
2363         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2364                                                 "pca9552", 0x63);
2365 
2366         /*
2367          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2368          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2369          * after hypervisor code sets a SLOTx_EN pin high.
2370          */
2371         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2372         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2373         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2374         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2375         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2376 
2377         /*
2378          * Add a PCA9554 I2C device for cable card presence detection
2379          * to engine 2, bus 1, address 0x25
2380          */
2381         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2382     }
2383 }
2384 
pnv_chip_power10_xscom_pcba(PnvChip * chip,uint64_t addr)2385 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2386 {
2387     addr &= (PNV10_XSCOM_SIZE - 1);
2388     return addr >> 3;
2389 }
2390 
pnv_chip_power10_class_init(ObjectClass * klass,const void * data)2391 static void pnv_chip_power10_class_init(ObjectClass *klass, const void *data)
2392 {
2393     DeviceClass *dc = DEVICE_CLASS(klass);
2394     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2395     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2396 
2397     k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
2398     k->cores_mask = POWER10_CORE_MASK;
2399     k->get_pir_tir = pnv_get_pir_tir_p10;
2400     k->intc_create = pnv_chip_power10_intc_create;
2401     k->intc_reset = pnv_chip_power10_intc_reset;
2402     k->intc_destroy = pnv_chip_power10_intc_destroy;
2403     k->intc_print_info = pnv_chip_power10_intc_print_info;
2404     k->isa_create = pnv_chip_power10_isa_create;
2405     k->dt_populate = pnv_chip_power10_dt_populate;
2406     k->pic_print_info = pnv_chip_power10_pic_print_info;
2407     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2408     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2409     dc->desc = "PowerNV Chip POWER10";
2410     k->num_pecs = PNV10_CHIP_MAX_PEC;
2411     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2412     k->i2c_ports_per_engine = i2c_ports_per_engine;
2413 
2414     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2415                                     &k->parent_realize);
2416 }
2417 
pnv_chip_core_sanitize(PnvMachineState * pnv,PnvChip * chip,Error ** errp)2418 static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip,
2419                                    Error **errp)
2420 {
2421     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2422     int cores_max;
2423 
2424     /*
2425      * No custom mask for this chip, let's use the default one from *
2426      * the chip class
2427      */
2428     if (!chip->cores_mask) {
2429         chip->cores_mask = pcc->cores_mask;
2430     }
2431 
2432     /* filter alien core ids ! some are reserved */
2433     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2434         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2435                    chip->cores_mask);
2436         return;
2437     }
2438     chip->cores_mask &= pcc->cores_mask;
2439 
2440     /* Ensure small-cores a paired up in big-core mode */
2441     if (pnv->big_core) {
2442         uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL;
2443         uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL;
2444 
2445         if (even_cores ^ (odd_cores >> 1)) {
2446             error_setg(errp, "warning: unpaired cores in big-core mode !");
2447             return;
2448         }
2449     }
2450 
2451     /* now that we have a sane layout, let check the number of cores */
2452     cores_max = ctpop64(chip->cores_mask);
2453     if (chip->nr_cores > cores_max) {
2454         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2455                    cores_max);
2456         return;
2457     }
2458 }
2459 
pnv_chip_core_realize(PnvChip * chip,Error ** errp)2460 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2461 {
2462     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2463     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv);
2464     Error *error = NULL;
2465     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2466     const char *typename = pnv_chip_core_typename(chip);
2467     int i, core_hwid;
2468 
2469     if (!object_class_by_name(typename)) {
2470         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2471         return;
2472     }
2473 
2474     /* Cores */
2475     pnv_chip_core_sanitize(pnv, chip, &error);
2476     if (error) {
2477         error_propagate(errp, error);
2478         return;
2479     }
2480 
2481     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2482 
2483     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2484              && (i < chip->nr_cores); core_hwid++) {
2485         char core_name[32];
2486         PnvCore *pnv_core;
2487         uint64_t xscom_core_base;
2488 
2489         if (!(chip->cores_mask & (1ull << core_hwid))) {
2490             continue;
2491         }
2492 
2493         pnv_core = PNV_CORE(object_new(typename));
2494 
2495         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2496         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2497         chip->cores[i] = pnv_core;
2498         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2499                                 chip->nr_threads, &error_fatal);
2500         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2501                                 core_hwid, &error_fatal);
2502         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2503                                 &error_fatal);
2504         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2505                                 &error_fatal);
2506         object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core,
2507                                 &error_fatal);
2508         object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core",
2509                                 pmc->quirk_tb_big_core, &error_fatal);
2510         object_property_set_bool(OBJECT(pnv_core), "lpar-per-core",
2511                                 chip->lpar_per_core, &error_fatal);
2512         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2513                                  &error_abort);
2514 
2515         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2516 
2517         /* Each core has an XSCOM MMIO region */
2518         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2519 
2520         pnv_xscom_add_subregion(chip, xscom_core_base,
2521                                 &pnv_core->xscom_regs);
2522         i++;
2523     }
2524 }
2525 
pnv_chip_realize(DeviceState * dev,Error ** errp)2526 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2527 {
2528     PnvChip *chip = PNV_CHIP(dev);
2529     Error *error = NULL;
2530 
2531     /* Cores */
2532     pnv_chip_core_realize(chip, &error);
2533     if (error) {
2534         error_propagate(errp, error);
2535         return;
2536     }
2537 }
2538 
2539 static const Property pnv_chip_properties[] = {
2540     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2541     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2542     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2543     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2544     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2545     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2546     DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false),
2547     DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false),
2548 };
2549 
pnv_chip_class_init(ObjectClass * klass,const void * data)2550 static void pnv_chip_class_init(ObjectClass *klass, const void *data)
2551 {
2552     DeviceClass *dc = DEVICE_CLASS(klass);
2553 
2554     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2555     dc->realize = pnv_chip_realize;
2556     device_class_set_props(dc, pnv_chip_properties);
2557     dc->desc = "PowerNV Chip";
2558 }
2559 
pnv_chip_find_core(PnvChip * chip,uint32_t core_id)2560 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2561 {
2562     int i;
2563 
2564     for (i = 0; i < chip->nr_cores; i++) {
2565         PnvCore *pc = chip->cores[i];
2566         CPUCore *cc = CPU_CORE(pc);
2567 
2568         if (cc->core_id == core_id) {
2569             return pc;
2570         }
2571     }
2572     return NULL;
2573 }
2574 
pnv_chip_find_cpu(PnvChip * chip,uint32_t pir)2575 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2576 {
2577     int i, j;
2578 
2579     for (i = 0; i < chip->nr_cores; i++) {
2580         PnvCore *pc = chip->cores[i];
2581         CPUCore *cc = CPU_CORE(pc);
2582 
2583         for (j = 0; j < cc->nr_threads; j++) {
2584             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2585                 return pc->threads[j];
2586             }
2587         }
2588     }
2589     return NULL;
2590 }
2591 
pnv_chip_foreach_cpu(PnvChip * chip,void (* fn)(PnvChip * chip,PowerPCCPU * cpu,void * opaque),void * opaque)2592 static void pnv_chip_foreach_cpu(PnvChip *chip,
2593                    void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2594                    void *opaque)
2595 {
2596     int i, j;
2597 
2598     for (i = 0; i < chip->nr_cores; i++) {
2599         PnvCore *pc = chip->cores[i];
2600 
2601         for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2602             fn(chip, pc->threads[j], opaque);
2603         }
2604     }
2605 }
2606 
pnv_ics_get(XICSFabric * xi,int irq)2607 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2608 {
2609     PnvMachineState *pnv = PNV_MACHINE(xi);
2610     int i, j;
2611 
2612     for (i = 0; i < pnv->num_chips; i++) {
2613         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2614 
2615         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2616             return &chip8->psi.ics;
2617         }
2618 
2619         for (j = 0; j < chip8->num_phbs; j++) {
2620             PnvPHB *phb = chip8->phbs[j];
2621             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2622 
2623             if (ics_valid_irq(&phb3->lsis, irq)) {
2624                 return &phb3->lsis;
2625             }
2626 
2627             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2628                 return ICS(&phb3->msis);
2629             }
2630         }
2631     }
2632     return NULL;
2633 }
2634 
pnv_get_chip(PnvMachineState * pnv,uint32_t chip_id)2635 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2636 {
2637     int i;
2638 
2639     for (i = 0; i < pnv->num_chips; i++) {
2640         PnvChip *chip = pnv->chips[i];
2641         if (chip->chip_id == chip_id) {
2642             return chip;
2643         }
2644     }
2645     return NULL;
2646 }
2647 
pnv_ics_resend(XICSFabric * xi)2648 static void pnv_ics_resend(XICSFabric *xi)
2649 {
2650     PnvMachineState *pnv = PNV_MACHINE(xi);
2651     int i, j;
2652 
2653     for (i = 0; i < pnv->num_chips; i++) {
2654         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2655 
2656         ics_resend(&chip8->psi.ics);
2657 
2658         for (j = 0; j < chip8->num_phbs; j++) {
2659             PnvPHB *phb = chip8->phbs[j];
2660             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2661 
2662             ics_resend(&phb3->lsis);
2663             ics_resend(ICS(&phb3->msis));
2664         }
2665     }
2666 }
2667 
pnv_icp_get(XICSFabric * xi,int pir)2668 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2669 {
2670     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2671 
2672     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2673 }
2674 
pnv_pic_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,void * opaque)2675 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2676                                     void *opaque)
2677 {
2678     PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2679 }
2680 
pnv_pic_print_info(InterruptStatsProvider * obj,GString * buf)2681 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2682 {
2683     PnvMachineState *pnv = PNV_MACHINE(obj);
2684     int i;
2685 
2686     for (i = 0; i < pnv->num_chips; i++) {
2687         PnvChip *chip = pnv->chips[i];
2688 
2689         /* First CPU presenters */
2690         pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2691 
2692         /* Then other devices, PHB, PSI, XIVE */
2693         PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2694     }
2695 }
2696 
pnv_match_nvt(XiveFabric * xfb,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool crowd,bool cam_ignore,uint8_t priority,uint32_t logic_serv,XiveTCTXMatch * match)2697 static bool pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2698                           uint8_t nvt_blk, uint32_t nvt_idx,
2699                           bool crowd, bool cam_ignore, uint8_t priority,
2700                           uint32_t logic_serv,
2701                           XiveTCTXMatch *match)
2702 {
2703     PnvMachineState *pnv = PNV_MACHINE(xfb);
2704     int i;
2705 
2706     for (i = 0; i < pnv->num_chips; i++) {
2707         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2708         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2709         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2710 
2711         xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, crowd,
2712                        cam_ignore, priority, logic_serv, match);
2713     }
2714 
2715     return !!match->count;
2716 }
2717 
pnv10_xive_match_nvt(XiveFabric * xfb,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool crowd,bool cam_ignore,uint8_t priority,uint32_t logic_serv,XiveTCTXMatch * match)2718 static bool pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2719                                  uint8_t nvt_blk, uint32_t nvt_idx,
2720                                  bool crowd, bool cam_ignore, uint8_t priority,
2721                                  uint32_t logic_serv,
2722                                  XiveTCTXMatch *match)
2723 {
2724     PnvMachineState *pnv = PNV_MACHINE(xfb);
2725     int i;
2726 
2727     for (i = 0; i < pnv->num_chips; i++) {
2728         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2729         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2730         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2731 
2732         xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, crowd,
2733                        cam_ignore, priority, logic_serv, match);
2734     }
2735 
2736     return !!match->count;
2737 }
2738 
pnv10_xive_broadcast(XiveFabric * xfb,uint8_t nvt_blk,uint32_t nvt_idx,bool crowd,bool cam_ignore,uint8_t priority)2739 static int pnv10_xive_broadcast(XiveFabric *xfb,
2740                                 uint8_t nvt_blk, uint32_t nvt_idx,
2741                                 bool crowd, bool cam_ignore,
2742                                 uint8_t priority)
2743 {
2744     PnvMachineState *pnv = PNV_MACHINE(xfb);
2745     int i;
2746 
2747     for (i = 0; i < pnv->num_chips; i++) {
2748         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2749         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2750         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2751 
2752         xpc->broadcast(xptr, nvt_blk, nvt_idx, crowd, cam_ignore, priority);
2753     }
2754     return 0;
2755 }
2756 
pnv_machine_get_big_core(Object * obj,Error ** errp)2757 static bool pnv_machine_get_big_core(Object *obj, Error **errp)
2758 {
2759     PnvMachineState *pnv = PNV_MACHINE(obj);
2760     return pnv->big_core;
2761 }
2762 
pnv_machine_set_big_core(Object * obj,bool value,Error ** errp)2763 static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp)
2764 {
2765     PnvMachineState *pnv = PNV_MACHINE(obj);
2766     pnv->big_core = value;
2767 }
2768 
pnv_machine_get_lpar_per_core(Object * obj,Error ** errp)2769 static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp)
2770 {
2771     PnvMachineState *pnv = PNV_MACHINE(obj);
2772     return pnv->lpar_per_core;
2773 }
2774 
pnv_machine_set_lpar_per_core(Object * obj,bool value,Error ** errp)2775 static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp)
2776 {
2777     PnvMachineState *pnv = PNV_MACHINE(obj);
2778     pnv->lpar_per_core = value;
2779 }
2780 
pnv_machine_get_hb(Object * obj,Error ** errp)2781 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2782 {
2783     PnvMachineState *pnv = PNV_MACHINE(obj);
2784 
2785     return !!pnv->fw_load_addr;
2786 }
2787 
pnv_machine_set_hb(Object * obj,bool value,Error ** errp)2788 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2789 {
2790     PnvMachineState *pnv = PNV_MACHINE(obj);
2791 
2792     if (value) {
2793         pnv->fw_load_addr = 0x8000000;
2794     }
2795 }
2796 
pnv_machine_power8_class_init(ObjectClass * oc,const void * data)2797 static void pnv_machine_power8_class_init(ObjectClass *oc, const void *data)
2798 {
2799     MachineClass *mc = MACHINE_CLASS(oc);
2800     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2801     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2802     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2803 
2804     static GlobalProperty phb_compat[] = {
2805         { TYPE_PNV_PHB, "version", "3" },
2806         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2807     };
2808 
2809     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2810     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2811     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2812 
2813     xic->icp_get = pnv_icp_get;
2814     xic->ics_get = pnv_ics_get;
2815     xic->ics_resend = pnv_ics_resend;
2816 
2817     pmc->compat = compat;
2818     pmc->compat_size = sizeof(compat);
2819     pmc->max_smt_threads = 8;
2820     /* POWER8 is always lpar-per-core mode */
2821     pmc->has_lpar_per_thread = false;
2822 
2823     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2824 }
2825 
pnv_machine_power9_class_init(ObjectClass * oc,const void * data)2826 static void pnv_machine_power9_class_init(ObjectClass *oc, const void *data)
2827 {
2828     MachineClass *mc = MACHINE_CLASS(oc);
2829     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2830     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2831     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2832 
2833     static GlobalProperty phb_compat[] = {
2834         { TYPE_PNV_PHB, "version", "4" },
2835         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2836     };
2837 
2838     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2839     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2840     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2841 
2842     xfc->match_nvt = pnv_match_nvt;
2843 
2844     pmc->compat = compat;
2845     pmc->compat_size = sizeof(compat);
2846     pmc->max_smt_threads = 4;
2847     pmc->has_lpar_per_thread = true;
2848     pmc->dt_power_mgt = pnv_dt_power_mgt;
2849 
2850     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2851 
2852     object_class_property_add_bool(oc, "big-core",
2853                                    pnv_machine_get_big_core,
2854                                    pnv_machine_set_big_core);
2855     object_class_property_set_description(oc, "big-core",
2856                               "Use big-core (aka fused-core) mode");
2857 
2858     object_class_property_add_bool(oc, "lpar-per-core",
2859                                    pnv_machine_get_lpar_per_core,
2860                                    pnv_machine_set_lpar_per_core);
2861     object_class_property_set_description(oc, "lpar-per-core",
2862                               "Use 1 LPAR per core mode");
2863 }
2864 
pnv_machine_p10_common_class_init(ObjectClass * oc,const void * data)2865 static void pnv_machine_p10_common_class_init(ObjectClass *oc, const void *data)
2866 {
2867     MachineClass *mc = MACHINE_CLASS(oc);
2868     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2869     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2870     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2871 
2872     static GlobalProperty phb_compat[] = {
2873         { TYPE_PNV_PHB, "version", "5" },
2874         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2875     };
2876 
2877     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2878     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2879 
2880     mc->alias = "powernv";
2881 
2882     pmc->compat = compat;
2883     pmc->compat_size = sizeof(compat);
2884     pmc->max_smt_threads = 4;
2885     pmc->has_lpar_per_thread = true;
2886     pmc->quirk_tb_big_core = true;
2887     pmc->dt_power_mgt = pnv_dt_power_mgt;
2888 
2889     xfc->match_nvt = pnv10_xive_match_nvt;
2890     xfc->broadcast = pnv10_xive_broadcast;
2891 
2892     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2893 }
2894 
pnv_machine_power10_class_init(ObjectClass * oc,const void * data)2895 static void pnv_machine_power10_class_init(ObjectClass *oc, const void *data)
2896 {
2897     MachineClass *mc = MACHINE_CLASS(oc);
2898 
2899     pnv_machine_p10_common_class_init(oc, data);
2900     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2901 
2902     /*
2903      * This is the parent of POWER10 Rainier class, so properies go here
2904      * rather than common init (which would add them to both parent and
2905      * child which is invalid).
2906      */
2907     object_class_property_add_bool(oc, "big-core",
2908                                    pnv_machine_get_big_core,
2909                                    pnv_machine_set_big_core);
2910     object_class_property_set_description(oc, "big-core",
2911                               "Use big-core (aka fused-core) mode");
2912 
2913     object_class_property_add_bool(oc, "lpar-per-core",
2914                                    pnv_machine_get_lpar_per_core,
2915                                    pnv_machine_set_lpar_per_core);
2916     object_class_property_set_description(oc, "lpar-per-core",
2917                               "Use 1 LPAR per core mode");
2918 }
2919 
pnv_machine_p10_rainier_class_init(ObjectClass * oc,const void * data)2920 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc,
2921                                                const void *data)
2922 {
2923     MachineClass *mc = MACHINE_CLASS(oc);
2924     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2925 
2926     pnv_machine_p10_common_class_init(oc, data);
2927     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2928     pmc->i2c_init = pnv_rainier_i2c_init;
2929 }
2930 
pnv_cpu_do_nmi_on_cpu(CPUState * cs,run_on_cpu_data arg)2931 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2932 {
2933     CPUPPCState *env = cpu_env(cs);
2934 
2935     cpu_synchronize_state(cs);
2936     ppc_cpu_do_system_reset(cs);
2937     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2938         /*
2939          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2940          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2941          * (PPC_BIT(43)).
2942          */
2943         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2944             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2945             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2946         }
2947     } else {
2948         /*
2949          * For non-powersave system resets, SRR1[42:45] are defined to be
2950          * implementation-dependent. The POWER9 User Manual specifies that
2951          * an external (SCOM driven, which may come from a BMC nmi command or
2952          * another CPU requesting a NMI IPI) system reset exception should be
2953          * 0b0010 (PPC_BIT(44)).
2954          */
2955         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2956     }
2957     if (arg.host_int == 1) {
2958         cpu_resume(cs);
2959     }
2960 }
2961 
2962 /*
2963  * Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was
2964  * paused.
2965  */
pnv_cpu_do_nmi_resume(CPUState * cs)2966 void pnv_cpu_do_nmi_resume(CPUState *cs)
2967 {
2968     async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1));
2969 }
2970 
pnv_cpu_do_nmi(PnvChip * chip,PowerPCCPU * cpu,void * opaque)2971 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2972 {
2973     async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0));
2974 }
2975 
pnv_nmi(NMIState * n,int cpu_index,Error ** errp)2976 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2977 {
2978     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2979     int i;
2980 
2981     for (i = 0; i < pnv->num_chips; i++) {
2982         pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2983     }
2984 }
2985 
pnv_machine_class_init(ObjectClass * oc,const void * data)2986 static void pnv_machine_class_init(ObjectClass *oc, const void *data)
2987 {
2988     MachineClass *mc = MACHINE_CLASS(oc);
2989     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2990     NMIClass *nc = NMI_CLASS(oc);
2991 
2992     mc->desc = "IBM PowerNV (Non-Virtualized)";
2993     mc->init = pnv_init;
2994     mc->reset = pnv_reset;
2995     mc->max_cpus = MAX_CPUS;
2996     /* Pnv provides a AHCI device for storage */
2997     mc->block_default_type = IF_IDE;
2998     mc->no_parallel = 1;
2999     mc->default_boot_order = NULL;
3000     /*
3001      * RAM defaults to less than 2048 for 32-bit hosts, and large
3002      * enough to fit the maximum initrd size at it's load address
3003      */
3004     mc->default_ram_size = 1 * GiB;
3005     mc->default_ram_id = "pnv.ram";
3006     ispc->print_info = pnv_pic_print_info;
3007     nc->nmi_monitor_handler = pnv_nmi;
3008 
3009     object_class_property_add_bool(oc, "hb-mode",
3010                                    pnv_machine_get_hb, pnv_machine_set_hb);
3011     object_class_property_set_description(oc, "hb-mode",
3012                               "Use a hostboot like boot loader");
3013 }
3014 
3015 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
3016     {                                             \
3017         .name          = type,                    \
3018         .class_init    = class_initfn,            \
3019         .parent        = TYPE_PNV8_CHIP,          \
3020     }
3021 
3022 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
3023     {                                             \
3024         .name          = type,                    \
3025         .class_init    = class_initfn,            \
3026         .parent        = TYPE_PNV9_CHIP,          \
3027     }
3028 
3029 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
3030     {                                              \
3031         .name          = type,                     \
3032         .class_init    = class_initfn,             \
3033         .parent        = TYPE_PNV10_CHIP,          \
3034     }
3035 
3036 static const TypeInfo types[] = {
3037     {
3038         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
3039         .parent        = MACHINE_TYPE_NAME("powernv10"),
3040         .class_init    = pnv_machine_p10_rainier_class_init,
3041     },
3042     {
3043         .name          = MACHINE_TYPE_NAME("powernv10"),
3044         .parent        = TYPE_PNV_MACHINE,
3045         .class_init    = pnv_machine_power10_class_init,
3046         .interfaces = (const InterfaceInfo[]) {
3047             { TYPE_XIVE_FABRIC },
3048             { },
3049         },
3050     },
3051     {
3052         .name          = MACHINE_TYPE_NAME("powernv9"),
3053         .parent        = TYPE_PNV_MACHINE,
3054         .class_init    = pnv_machine_power9_class_init,
3055         .interfaces = (const InterfaceInfo[]) {
3056             { TYPE_XIVE_FABRIC },
3057             { },
3058         },
3059     },
3060     {
3061         .name          = MACHINE_TYPE_NAME("powernv8"),
3062         .parent        = TYPE_PNV_MACHINE,
3063         .class_init    = pnv_machine_power8_class_init,
3064         .interfaces = (const InterfaceInfo[]) {
3065             { TYPE_XICS_FABRIC },
3066             { },
3067         },
3068     },
3069     {
3070         .name          = TYPE_PNV_MACHINE,
3071         .parent        = TYPE_MACHINE,
3072         .abstract       = true,
3073         .instance_size = sizeof(PnvMachineState),
3074         .class_init    = pnv_machine_class_init,
3075         .class_size    = sizeof(PnvMachineClass),
3076         .interfaces = (const InterfaceInfo[]) {
3077             { TYPE_INTERRUPT_STATS_PROVIDER },
3078             { TYPE_NMI },
3079             { },
3080         },
3081     },
3082     {
3083         .name          = TYPE_PNV_CHIP,
3084         .parent        = TYPE_SYS_BUS_DEVICE,
3085         .class_init    = pnv_chip_class_init,
3086         .instance_size = sizeof(PnvChip),
3087         .class_size    = sizeof(PnvChipClass),
3088         .abstract      = true,
3089     },
3090 
3091     /*
3092      * P10 chip and variants
3093      */
3094     {
3095         .name          = TYPE_PNV10_CHIP,
3096         .parent        = TYPE_PNV_CHIP,
3097         .instance_init = pnv_chip_power10_instance_init,
3098         .instance_size = sizeof(Pnv10Chip),
3099     },
3100     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
3101 
3102     /*
3103      * P9 chip and variants
3104      */
3105     {
3106         .name          = TYPE_PNV9_CHIP,
3107         .parent        = TYPE_PNV_CHIP,
3108         .instance_init = pnv_chip_power9_instance_init,
3109         .instance_size = sizeof(Pnv9Chip),
3110     },
3111     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
3112 
3113     /*
3114      * P8 chip and variants
3115      */
3116     {
3117         .name          = TYPE_PNV8_CHIP,
3118         .parent        = TYPE_PNV_CHIP,
3119         .instance_init = pnv_chip_power8_instance_init,
3120         .instance_size = sizeof(Pnv8Chip),
3121     },
3122     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
3123     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
3124     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
3125                           pnv_chip_power8nvl_class_init),
3126 };
3127 
3128 DEFINE_TYPES(types)
3129