1 /*
2 * QEMU CPU model
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/lockcnt.h"
37 #include "qemu/thread.h"
38 #include "qom/object.h"
39
40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
41 void *opaque);
42
43 /**
44 * SECTION:cpu
45 * @section_id: QEMU-cpu
46 * @title: CPU Class
47 * @short_description: Base class for all CPUs
48 */
49
50 #define TYPE_CPU "cpu"
51
52 /* Since this macro is used a lot in hot code paths and in conjunction with
53 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
54 * an unchecked cast.
55 */
56 #define CPU(obj) ((CPUState *)(obj))
57
58 /*
59 * The class checkers bring in CPU_GET_CLASS() which is potentially
60 * expensive given the eventual call to
61 * object_class_dynamic_cast_assert(). Because of this the CPUState
62 * has a cached value for the class in cs->cc which is set up in
63 * cpu_exec_realizefn() for use in hot code paths.
64 */
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67 TYPE_CPU)
68
69 /**
70 * OBJECT_DECLARE_CPU_TYPE:
71 * @CpuInstanceType: instance struct name
72 * @CpuClassType: class struct name
73 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
74 *
75 * This macro is typically used in "cpu-qom.h" header file, and will:
76 *
77 * - create the typedefs for the CPU object and class structs
78 * - register the type for use with g_autoptr
79 * - provide three standard type cast functions
80 *
81 * The object struct and class struct need to be declared manually.
82 */
83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
84 typedef struct ArchCPU CpuInstanceType; \
85 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
86
87 typedef struct CPUWatchpoint CPUWatchpoint;
88
89 /* see physmem.c */
90 struct CPUAddressSpace;
91
92 /* see accel/tcg/tb-jmp-cache.h */
93 struct CPUJumpCache;
94
95 /* see accel-cpu.h */
96 struct AccelCPUClass;
97
98 /* see sysemu-cpu-ops.h */
99 struct SysemuCPUOps;
100
101 /**
102 * CPUClass:
103 * @class_by_name: Callback to map -cpu command line model name to an
104 * instantiatable CPU type.
105 * @parse_features: Callback to parse command line arguments.
106 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
107 * @has_work: Callback for checking if there is work to do.
108 * @mmu_index: Callback for choosing softmmu mmu index;
109 * may be used internally by memory_rw_debug without TCG.
110 * @memory_rw_debug: Callback for GDB memory access.
111 * @dump_state: Callback for dumping state.
112 * @query_cpu_fast:
113 * Fill in target specific information for the "query-cpus-fast"
114 * QAPI call.
115 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
116 * @set_pc: Callback for setting the Program Counter register. This
117 * should have the semantics used by the target architecture when
118 * setting the PC from a source such as an ELF file entry point;
119 * for example on Arm it will also set the Thumb mode bit based
120 * on the least significant bit of the new PC value.
121 * If the target behaviour here is anything other than "set
122 * the PC register to the value passed in" then the target must
123 * also implement the synchronize_from_tb hook.
124 * @get_pc: Callback for getting the Program Counter register.
125 * As above, with the semantics of the target architecture.
126 * @gdb_read_register: Callback for letting GDB read a register.
127 * @gdb_write_register: Callback for letting GDB write a register.
128 * @gdb_adjust_breakpoint: Callback for adjusting the address of a
129 * breakpoint. Used by AVR to handle a gdb mis-feature with
130 * its Harvard architecture split code and data.
131 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
132 * from @gdb_core_xml_file.
133 * @gdb_core_xml_file: File name for core registers GDB XML description.
134 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
135 * before the insn which triggers a watchpoint rather than after it.
136 * @gdb_arch_name: Optional callback that returns the architecture name known
137 * to GDB. The caller must free the returned string with g_free.
138 * @disas_set_info: Setup architecture specific components of disassembly info
139 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
140 * address before attempting to match it against watchpoints.
141 * @deprecation_note: If this CPUClass is deprecated, this field provides
142 * related information.
143 *
144 * Represents a CPU family or model.
145 */
146 struct CPUClass {
147 /*< private >*/
148 DeviceClass parent_class;
149 /*< public >*/
150
151 ObjectClass *(*class_by_name)(const char *cpu_model);
152 void (*parse_features)(const char *typename, char *str, Error **errp);
153
154 bool (*has_work)(CPUState *cpu);
155 int (*mmu_index)(CPUState *cpu, bool ifetch);
156 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
157 uint8_t *buf, int len, bool is_write);
158 void (*dump_state)(CPUState *cpu, FILE *, int flags);
159 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
160 int64_t (*get_arch_id)(CPUState *cpu);
161 void (*set_pc)(CPUState *cpu, vaddr value);
162 vaddr (*get_pc)(CPUState *cpu);
163 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
164 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
165 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
166
167 const char *gdb_core_xml_file;
168 const gchar * (*gdb_arch_name)(CPUState *cpu);
169
170 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
171
172 const char *deprecation_note;
173 struct AccelCPUClass *accel_cpu;
174
175 /* when system emulation is not available, this pointer is NULL */
176 const struct SysemuCPUOps *sysemu_ops;
177
178 /* when TCG is not available, this pointer is NULL */
179 const TCGCPUOps *tcg_ops;
180
181 /*
182 * if not NULL, this is called in order for the CPUClass to initialize
183 * class data that depends on the accelerator, see accel/accel-common.c.
184 */
185 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
186
187 /*
188 * Keep non-pointer data at the end to minimize holes.
189 */
190 int reset_dump_flags;
191 int gdb_num_core_regs;
192 bool gdb_stop_before_watchpoint;
193 };
194
195 /*
196 * Fix the number of mmu modes to 16, which is also the maximum
197 * supported by the softmmu tlb api.
198 */
199 #define NB_MMU_MODES 16
200
201 /* Use a fully associative victim tlb of 8 entries. */
202 #define CPU_VTLB_SIZE 8
203
204 /*
205 * The full TLB entry, which is not accessed by generated TCG code,
206 * so the layout is not as critical as that of CPUTLBEntry. This is
207 * also why we don't want to combine the two structs.
208 */
209 struct CPUTLBEntryFull {
210 /*
211 * @xlat_section contains:
212 * - in the lower TARGET_PAGE_BITS, a physical section number
213 * - with the lower TARGET_PAGE_BITS masked off, an offset which
214 * must be added to the virtual address to obtain:
215 * + the ram_addr_t of the target RAM (if the physical section
216 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
217 * + the offset within the target MemoryRegion (otherwise)
218 */
219 hwaddr xlat_section;
220
221 /*
222 * @phys_addr contains the physical address in the address space
223 * given by cpu_asidx_from_attrs(cpu, @attrs).
224 */
225 hwaddr phys_addr;
226
227 /* @attrs contains the memory transaction attributes for the page. */
228 MemTxAttrs attrs;
229
230 /* @prot contains the complete protections for the page. */
231 uint8_t prot;
232
233 /* @lg_page_size contains the log2 of the page size. */
234 uint8_t lg_page_size;
235
236 /* Additional tlb flags requested by tlb_fill. */
237 uint8_t tlb_fill_flags;
238
239 /*
240 * Additional tlb flags for use by the slow path. If non-zero,
241 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
242 */
243 uint8_t slow_flags[MMU_ACCESS_COUNT];
244
245 /*
246 * Allow target-specific additions to this structure.
247 * This may be used to cache items from the guest cpu
248 * page tables for later use by the implementation.
249 */
250 union {
251 /*
252 * Cache the attrs and shareability fields from the page table entry.
253 *
254 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
255 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
256 * For shareability and guarded, as in the SH and GP fields respectively
257 * of the VMSAv8-64 PTEs.
258 */
259 struct {
260 uint8_t pte_attrs;
261 uint8_t shareability;
262 bool guarded;
263 } arm;
264 } extra;
265 };
266
267 /*
268 * Data elements that are per MMU mode, minus the bits accessed by
269 * the TCG fast path.
270 */
271 typedef struct CPUTLBDesc {
272 /*
273 * Describe a region covering all of the large pages allocated
274 * into the tlb. When any page within this region is flushed,
275 * we must flush the entire tlb. The region is matched if
276 * (addr & large_page_mask) == large_page_addr.
277 */
278 vaddr large_page_addr;
279 vaddr large_page_mask;
280 /* host time (in ns) at the beginning of the time window */
281 int64_t window_begin_ns;
282 /* maximum number of entries observed in the window */
283 size_t window_max_entries;
284 size_t n_used_entries;
285 /* The next index to use in the tlb victim table. */
286 size_t vindex;
287 /* The tlb victim table, in two parts. */
288 CPUTLBEntry vtable[CPU_VTLB_SIZE];
289 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
290 CPUTLBEntryFull *fulltlb;
291 } CPUTLBDesc;
292
293 /*
294 * Data elements that are shared between all MMU modes.
295 */
296 typedef struct CPUTLBCommon {
297 /* Serialize updates to f.table and d.vtable, and others as noted. */
298 QemuSpin lock;
299 /*
300 * Within dirty, for each bit N, modifications have been made to
301 * mmu_idx N since the last time that mmu_idx was flushed.
302 * Protected by tlb_c.lock.
303 */
304 uint16_t dirty;
305 /*
306 * Statistics. These are not lock protected, but are read and
307 * written atomically. This allows the monitor to print a snapshot
308 * of the stats without interfering with the cpu.
309 */
310 size_t full_flush_count;
311 size_t part_flush_count;
312 size_t elide_flush_count;
313 } CPUTLBCommon;
314
315 /*
316 * The entire softmmu tlb, for all MMU modes.
317 * The meaning of each of the MMU modes is defined in the target code.
318 * Since this is placed within CPUNegativeOffsetState, the smallest
319 * negative offsets are at the end of the struct.
320 */
321 typedef struct CPUTLB {
322 #ifdef CONFIG_TCG
323 CPUTLBCommon c;
324 CPUTLBDesc d[NB_MMU_MODES];
325 CPUTLBDescFast f[NB_MMU_MODES];
326 #endif
327 } CPUTLB;
328
329 /*
330 * Low 16 bits: number of cycles left, used only in icount mode.
331 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
332 * for this CPU and return to its top level loop (even in non-icount mode).
333 * This allows a single read-compare-cbranch-write sequence to test
334 * for both decrementer underflow and exceptions.
335 */
336 typedef union IcountDecr {
337 uint32_t u32;
338 struct {
339 #if HOST_BIG_ENDIAN
340 uint16_t high;
341 uint16_t low;
342 #else
343 uint16_t low;
344 uint16_t high;
345 #endif
346 } u16;
347 } IcountDecr;
348
349 /**
350 * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed
351 * from CPUArchState, via small negative offsets.
352 * @can_do_io: True if memory-mapped IO is allowed.
353 * @plugin_mem_cbs: active plugin memory callbacks
354 * @plugin_mem_value_low: 64 lower bits of latest accessed mem value.
355 * @plugin_mem_value_high: 64 higher bits of latest accessed mem value.
356 */
357 typedef struct CPUNegativeOffsetState {
358 CPUTLB tlb;
359 #ifdef CONFIG_PLUGIN
360 /*
361 * The callback pointer are accessed via TCG (see gen_empty_mem_helper).
362 */
363 GArray *plugin_mem_cbs;
364 uint64_t plugin_mem_value_low;
365 uint64_t plugin_mem_value_high;
366 #endif
367 IcountDecr icount_decr;
368 bool can_do_io;
369 } CPUNegativeOffsetState;
370
371 struct KVMState;
372 struct kvm_run;
373
374 /* work queue */
375
376 /* The union type allows passing of 64 bit target pointers on 32 bit
377 * hosts in a single parameter
378 */
379 typedef union {
380 int host_int;
381 unsigned long host_ulong;
382 void *host_ptr;
383 vaddr target_ptr;
384 } run_on_cpu_data;
385
386 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
387 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
388 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
389 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
390 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
391
392 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
393
394 struct qemu_work_item;
395
396 #define CPU_UNSET_NUMA_NODE_ID -1
397
398 /**
399 * struct CPUState - common state of one CPU core or thread.
400 *
401 * @cpu_index: CPU index (informative).
402 * @cluster_index: Identifies which cluster this CPU is in.
403 * For boards which don't define clusters or for "loose" CPUs not assigned
404 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
405 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
406 * QOM parent.
407 * Under TCG this value is propagated to @tcg_cflags.
408 * See TranslationBlock::TCG CF_CLUSTER_MASK.
409 * @tcg_cflags: Pre-computed cflags for this cpu.
410 * @nr_cores: Number of cores within this CPU package.
411 * @nr_threads: Number of threads within this CPU core.
412 * @thread: Host thread details, only live once @created is #true
413 * @sem: WIN32 only semaphore used only for qtest
414 * @thread_id: native thread id of vCPU, only live once @created is #true
415 * @running: #true if CPU is currently running (lockless).
416 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
417 * valid under cpu_list_lock.
418 * @created: Indicates whether the CPU thread has been successfully created.
419 * @halt_cond: condition variable sleeping threads can wait on.
420 * @interrupt_request: Indicates a pending interrupt request.
421 * @halted: Nonzero if the CPU is in suspended state.
422 * @stop: Indicates a pending stop request.
423 * @stopped: Indicates the CPU has been artificially stopped.
424 * @unplug: Indicates a pending CPU unplug request.
425 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
426 * @singlestep_enabled: Flags for single-stepping.
427 * @icount_extra: Instructions until next timer event.
428 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
429 * AddressSpaces this CPU has)
430 * @num_ases: number of CPUAddressSpaces in @cpu_ases
431 * @as: Pointer to the first AddressSpace, for the convenience of targets which
432 * only have a single AddressSpace
433 * @gdb_regs: Additional GDB registers.
434 * @gdb_num_regs: Number of total registers accessible to GDB.
435 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
436 * @node: QTAILQ of CPUs sharing TB cache.
437 * @opaque: User data.
438 * @mem_io_pc: Host Program Counter at which the memory was accessed.
439 * @accel: Pointer to accelerator specific state.
440 * @kvm_fd: vCPU file descriptor for KVM.
441 * @work_mutex: Lock to prevent multiple access to @work_list.
442 * @work_list: List of pending asynchronous work.
443 * @plugin_state: per-CPU plugin state
444 * @ignore_memory_transaction_failures: Cached copy of the MachineState
445 * flag of the same name: allows the board to suppress calling of the
446 * CPU do_transaction_failed hook function.
447 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
448 * ring is enabled.
449 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
450 * dirty ring structure.
451 *
452 * @neg_align: The CPUState is the common part of a concrete ArchCPU
453 * which is allocated when an individual CPU instance is created. As
454 * such care is taken is ensure there is no gap between between
455 * CPUState and CPUArchState within ArchCPU.
456 *
457 * @neg: The architectural register state ("cpu_env") immediately follows
458 * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds
459 * some common TCG CPU variables which are accessed with a negative offset
460 * from cpu_env.
461 */
462 struct CPUState {
463 /*< private >*/
464 DeviceState parent_obj;
465 /* cache to avoid expensive CPU_GET_CLASS */
466 CPUClass *cc;
467 /*< public >*/
468
469 int nr_cores;
470 int nr_threads;
471
472 struct QemuThread *thread;
473 #ifdef _WIN32
474 QemuSemaphore sem;
475 #endif
476 int thread_id;
477 bool running, has_waiter;
478 struct QemuCond *halt_cond;
479 bool thread_kicked;
480 bool created;
481 bool stop;
482 bool stopped;
483
484 /* Should CPU start in powered-off state? */
485 bool start_powered_off;
486
487 bool unplug;
488 bool crash_occurred;
489 bool exit_request;
490 int exclusive_context_count;
491 uint32_t cflags_next_tb;
492 /* updates protected by BQL */
493 uint32_t interrupt_request;
494 int singlestep_enabled;
495 int64_t icount_budget;
496 int64_t icount_extra;
497 uint64_t random_seed;
498 sigjmp_buf jmp_env;
499
500 QemuMutex work_mutex;
501 QSIMPLEQ_HEAD(, qemu_work_item) work_list;
502
503 struct CPUAddressSpace *cpu_ases;
504 int cpu_ases_count;
505 int num_ases;
506 AddressSpace *as;
507 MemoryRegion *memory;
508
509 struct CPUJumpCache *tb_jmp_cache;
510
511 GArray *gdb_regs;
512 int gdb_num_regs;
513 int gdb_num_g_regs;
514 QTAILQ_ENTRY(CPUState) node;
515
516 /* ice debug support */
517 QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
518
519 QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
520 CPUWatchpoint *watchpoint_hit;
521
522 void *opaque;
523
524 /* In order to avoid passing too many arguments to the MMIO helpers,
525 * we store some rarely used information in the CPU context.
526 */
527 uintptr_t mem_io_pc;
528
529 /* Only used in KVM */
530 int kvm_fd;
531 struct KVMState *kvm_state;
532 struct kvm_run *kvm_run;
533 struct kvm_dirty_gfn *kvm_dirty_gfns;
534 uint32_t kvm_fetch_index;
535 uint64_t dirty_pages;
536 int kvm_vcpu_stats_fd;
537 bool vcpu_dirty;
538
539 /* Use by accel-block: CPU is executing an ioctl() */
540 QemuLockCnt in_ioctl_lock;
541
542 #ifdef CONFIG_PLUGIN
543 CPUPluginState *plugin_state;
544 #endif
545
546 /* TODO Move common fields from CPUArchState here. */
547 int cpu_index;
548 int cluster_index;
549 uint32_t tcg_cflags;
550 uint32_t halted;
551 int32_t exception_index;
552
553 AccelCPUState *accel;
554
555 /* Used to keep track of an outstanding cpu throttle thread for migration
556 * autoconverge
557 */
558 bool throttle_thread_scheduled;
559
560 /*
561 * Sleep throttle_us_per_full microseconds once dirty ring is full
562 * if dirty page rate limit is enabled.
563 */
564 int64_t throttle_us_per_full;
565
566 bool ignore_memory_transaction_failures;
567
568 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
569 bool prctl_unalign_sigbus;
570
571 /* track IOMMUs whose translations we've cached in the TCG TLB */
572 GArray *iommu_notifiers;
573
574 /*
575 * MUST BE LAST in order to minimize the displacement to CPUArchState.
576 */
577 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
578 CPUNegativeOffsetState neg;
579 };
580
581 /* Validate placement of CPUNegativeOffsetState. */
582 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
583 sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
584
cpu_env(CPUState * cpu)585 static inline CPUArchState *cpu_env(CPUState *cpu)
586 {
587 /* We validate that CPUArchState follows CPUState in cpu-all.h. */
588 return (CPUArchState *)(cpu + 1);
589 }
590
591 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
592 extern CPUTailQ cpus_queue;
593
594 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue)
595 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
596 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
597 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
598 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
599
600 extern __thread CPUState *current_cpu;
601
602 /**
603 * qemu_tcg_mttcg_enabled:
604 * Check whether we are running MultiThread TCG or not.
605 *
606 * Returns: %true if we are in MTTCG mode %false otherwise.
607 */
608 extern bool mttcg_enabled;
609 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
610
611 /**
612 * cpu_paging_enabled:
613 * @cpu: The CPU whose state is to be inspected.
614 *
615 * Returns: %true if paging is enabled, %false otherwise.
616 */
617 bool cpu_paging_enabled(const CPUState *cpu);
618
619 /**
620 * cpu_get_memory_mapping:
621 * @cpu: The CPU whose memory mappings are to be obtained.
622 * @list: Where to write the memory mappings to.
623 * @errp: Pointer for reporting an #Error.
624 *
625 * Returns: %true on success, %false otherwise.
626 */
627 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
628 Error **errp);
629
630 #if !defined(CONFIG_USER_ONLY)
631
632 /**
633 * cpu_write_elf64_note:
634 * @f: pointer to a function that writes memory to a file
635 * @cpu: The CPU whose memory is to be dumped
636 * @cpuid: ID number of the CPU
637 * @opaque: pointer to the CPUState struct
638 */
639 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
640 int cpuid, void *opaque);
641
642 /**
643 * cpu_write_elf64_qemunote:
644 * @f: pointer to a function that writes memory to a file
645 * @cpu: The CPU whose memory is to be dumped
646 * @cpuid: ID number of the CPU
647 * @opaque: pointer to the CPUState struct
648 */
649 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
650 void *opaque);
651
652 /**
653 * cpu_write_elf32_note:
654 * @f: pointer to a function that writes memory to a file
655 * @cpu: The CPU whose memory is to be dumped
656 * @cpuid: ID number of the CPU
657 * @opaque: pointer to the CPUState struct
658 */
659 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
660 int cpuid, void *opaque);
661
662 /**
663 * cpu_write_elf32_qemunote:
664 * @f: pointer to a function that writes memory to a file
665 * @cpu: The CPU whose memory is to be dumped
666 * @cpuid: ID number of the CPU
667 * @opaque: pointer to the CPUState struct
668 */
669 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
670 void *opaque);
671
672 /**
673 * cpu_get_crash_info:
674 * @cpu: The CPU to get crash information for
675 *
676 * Gets the previously saved crash information.
677 * Caller is responsible for freeing the data.
678 */
679 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
680
681 #endif /* !CONFIG_USER_ONLY */
682
683 /**
684 * CPUDumpFlags:
685 * @CPU_DUMP_CODE:
686 * @CPU_DUMP_FPU: dump FPU register state, not just integer
687 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
688 * @CPU_DUMP_VPU: dump VPU registers
689 */
690 enum CPUDumpFlags {
691 CPU_DUMP_CODE = 0x00010000,
692 CPU_DUMP_FPU = 0x00020000,
693 CPU_DUMP_CCOP = 0x00040000,
694 CPU_DUMP_VPU = 0x00080000,
695 };
696
697 /**
698 * cpu_dump_state:
699 * @cpu: The CPU whose state is to be dumped.
700 * @f: If non-null, dump to this stream, else to current print sink.
701 *
702 * Dumps CPU state.
703 */
704 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
705
706 #ifndef CONFIG_USER_ONLY
707 /**
708 * cpu_get_phys_page_attrs_debug:
709 * @cpu: The CPU to obtain the physical page address for.
710 * @addr: The virtual address.
711 * @attrs: Updated on return with the memory transaction attributes to use
712 * for this access.
713 *
714 * Obtains the physical page corresponding to a virtual one, together
715 * with the corresponding memory transaction attributes to use for the access.
716 * Use it only for debugging because no protection checks are done.
717 *
718 * Returns: Corresponding physical page address or -1 if no page found.
719 */
720 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
721 MemTxAttrs *attrs);
722
723 /**
724 * cpu_get_phys_page_debug:
725 * @cpu: The CPU to obtain the physical page address for.
726 * @addr: The virtual address.
727 *
728 * Obtains the physical page corresponding to a virtual one.
729 * Use it only for debugging because no protection checks are done.
730 *
731 * Returns: Corresponding physical page address or -1 if no page found.
732 */
733 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
734
735 /** cpu_asidx_from_attrs:
736 * @cpu: CPU
737 * @attrs: memory transaction attributes
738 *
739 * Returns the address space index specifying the CPU AddressSpace
740 * to use for a memory access with the given transaction attributes.
741 */
742 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
743
744 /**
745 * cpu_virtio_is_big_endian:
746 * @cpu: CPU
747
748 * Returns %true if a CPU which supports runtime configurable endianness
749 * is currently big-endian.
750 */
751 bool cpu_virtio_is_big_endian(CPUState *cpu);
752
753 #endif /* CONFIG_USER_ONLY */
754
755 /**
756 * cpu_list_add:
757 * @cpu: The CPU to be added to the list of CPUs.
758 */
759 void cpu_list_add(CPUState *cpu);
760
761 /**
762 * cpu_list_remove:
763 * @cpu: The CPU to be removed from the list of CPUs.
764 */
765 void cpu_list_remove(CPUState *cpu);
766
767 /**
768 * cpu_reset:
769 * @cpu: The CPU whose state is to be reset.
770 */
771 void cpu_reset(CPUState *cpu);
772
773 /**
774 * cpu_class_by_name:
775 * @typename: The CPU base type.
776 * @cpu_model: The model string without any parameters.
777 *
778 * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
779 *
780 * Returns: A concrete #CPUClass or %NULL if no matching class is found
781 * or if the matching class is abstract.
782 */
783 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
784
785 /**
786 * cpu_model_from_type:
787 * @typename: The CPU type name
788 *
789 * Extract the CPU model name from the CPU type name. The
790 * CPU type name is either the combination of the CPU model
791 * name and suffix, or same to the CPU model name.
792 *
793 * Returns: CPU model name or NULL if the CPU class doesn't exist
794 * The user should g_free() the string once no longer needed.
795 */
796 char *cpu_model_from_type(const char *typename);
797
798 /**
799 * cpu_create:
800 * @typename: The CPU type.
801 *
802 * Instantiates a CPU and realizes the CPU.
803 *
804 * Returns: A #CPUState or %NULL if an error occurred.
805 */
806 CPUState *cpu_create(const char *typename);
807
808 /**
809 * parse_cpu_option:
810 * @cpu_option: The -cpu option including optional parameters.
811 *
812 * processes optional parameters and registers them as global properties
813 *
814 * Returns: type of CPU to create or prints error and terminates process
815 * if an error occurred.
816 */
817 const char *parse_cpu_option(const char *cpu_option);
818
819 /**
820 * cpu_has_work:
821 * @cpu: The vCPU to check.
822 *
823 * Checks whether the CPU has work to do.
824 *
825 * Returns: %true if the CPU has work, %false otherwise.
826 */
cpu_has_work(CPUState * cpu)827 static inline bool cpu_has_work(CPUState *cpu)
828 {
829 CPUClass *cc = CPU_GET_CLASS(cpu);
830
831 g_assert(cc->has_work);
832 return cc->has_work(cpu);
833 }
834
835 /**
836 * qemu_cpu_is_self:
837 * @cpu: The vCPU to check against.
838 *
839 * Checks whether the caller is executing on the vCPU thread.
840 *
841 * Returns: %true if called from @cpu's thread, %false otherwise.
842 */
843 bool qemu_cpu_is_self(CPUState *cpu);
844
845 /**
846 * qemu_cpu_kick:
847 * @cpu: The vCPU to kick.
848 *
849 * Kicks @cpu's thread.
850 */
851 void qemu_cpu_kick(CPUState *cpu);
852
853 /**
854 * cpu_is_stopped:
855 * @cpu: The CPU to check.
856 *
857 * Checks whether the CPU is stopped.
858 *
859 * Returns: %true if run state is not running or if artificially stopped;
860 * %false otherwise.
861 */
862 bool cpu_is_stopped(CPUState *cpu);
863
864 /**
865 * do_run_on_cpu:
866 * @cpu: The vCPU to run on.
867 * @func: The function to be executed.
868 * @data: Data to pass to the function.
869 * @mutex: Mutex to release while waiting for @func to run.
870 *
871 * Used internally in the implementation of run_on_cpu.
872 */
873 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
874 QemuMutex *mutex);
875
876 /**
877 * run_on_cpu:
878 * @cpu: The vCPU to run on.
879 * @func: The function to be executed.
880 * @data: Data to pass to the function.
881 *
882 * Schedules the function @func for execution on the vCPU @cpu.
883 */
884 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
885
886 /**
887 * async_run_on_cpu:
888 * @cpu: The vCPU to run on.
889 * @func: The function to be executed.
890 * @data: Data to pass to the function.
891 *
892 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
893 */
894 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
895
896 /**
897 * async_safe_run_on_cpu:
898 * @cpu: The vCPU to run on.
899 * @func: The function to be executed.
900 * @data: Data to pass to the function.
901 *
902 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
903 * while all other vCPUs are sleeping.
904 *
905 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
906 * BQL.
907 */
908 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
909
910 /**
911 * cpu_in_exclusive_context()
912 * @cpu: The vCPU to check
913 *
914 * Returns true if @cpu is an exclusive context, for example running
915 * something which has previously been queued via async_safe_run_on_cpu().
916 */
cpu_in_exclusive_context(const CPUState * cpu)917 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
918 {
919 return cpu->exclusive_context_count;
920 }
921
922 /**
923 * qemu_get_cpu:
924 * @index: The CPUState@cpu_index value of the CPU to obtain.
925 *
926 * Gets a CPU matching @index.
927 *
928 * Returns: The CPU or %NULL if there is no matching CPU.
929 */
930 CPUState *qemu_get_cpu(int index);
931
932 /**
933 * cpu_exists:
934 * @id: Guest-exposed CPU ID to lookup.
935 *
936 * Search for CPU with specified ID.
937 *
938 * Returns: %true - CPU is found, %false - CPU isn't found.
939 */
940 bool cpu_exists(int64_t id);
941
942 /**
943 * cpu_by_arch_id:
944 * @id: Guest-exposed CPU ID of the CPU to obtain.
945 *
946 * Get a CPU with matching @id.
947 *
948 * Returns: The CPU or %NULL if there is no matching CPU.
949 */
950 CPUState *cpu_by_arch_id(int64_t id);
951
952 /**
953 * cpu_interrupt:
954 * @cpu: The CPU to set an interrupt on.
955 * @mask: The interrupts to set.
956 *
957 * Invokes the interrupt handler.
958 */
959
960 void cpu_interrupt(CPUState *cpu, int mask);
961
962 /**
963 * cpu_set_pc:
964 * @cpu: The CPU to set the program counter for.
965 * @addr: Program counter value.
966 *
967 * Sets the program counter for a CPU.
968 */
cpu_set_pc(CPUState * cpu,vaddr addr)969 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
970 {
971 CPUClass *cc = CPU_GET_CLASS(cpu);
972
973 cc->set_pc(cpu, addr);
974 }
975
976 /**
977 * cpu_reset_interrupt:
978 * @cpu: The CPU to clear the interrupt on.
979 * @mask: The interrupt mask to clear.
980 *
981 * Resets interrupts on the vCPU @cpu.
982 */
983 void cpu_reset_interrupt(CPUState *cpu, int mask);
984
985 /**
986 * cpu_exit:
987 * @cpu: The CPU to exit.
988 *
989 * Requests the CPU @cpu to exit execution.
990 */
991 void cpu_exit(CPUState *cpu);
992
993 /**
994 * cpu_pause:
995 * @cpu: The CPU to pause.
996 *
997 * Pauses CPU, i.e. puts CPU into stopped state.
998 */
999 void cpu_pause(CPUState *cpu);
1000
1001 /**
1002 * cpu_resume:
1003 * @cpu: The CPU to resume.
1004 *
1005 * Resumes CPU, i.e. puts CPU into runnable state.
1006 */
1007 void cpu_resume(CPUState *cpu);
1008
1009 /**
1010 * cpu_remove_sync:
1011 * @cpu: The CPU to remove.
1012 *
1013 * Requests the CPU to be removed and waits till it is removed.
1014 */
1015 void cpu_remove_sync(CPUState *cpu);
1016
1017 /**
1018 * free_queued_cpu_work() - free all items on CPU work queue
1019 * @cpu: The CPU which work queue to free.
1020 */
1021 void free_queued_cpu_work(CPUState *cpu);
1022
1023 /**
1024 * process_queued_cpu_work() - process all items on CPU work queue
1025 * @cpu: The CPU which work queue to process.
1026 */
1027 void process_queued_cpu_work(CPUState *cpu);
1028
1029 /**
1030 * cpu_exec_start:
1031 * @cpu: The CPU for the current thread.
1032 *
1033 * Record that a CPU has started execution and can be interrupted with
1034 * cpu_exit.
1035 */
1036 void cpu_exec_start(CPUState *cpu);
1037
1038 /**
1039 * cpu_exec_end:
1040 * @cpu: The CPU for the current thread.
1041 *
1042 * Record that a CPU has stopped execution and exclusive sections
1043 * can be executed without interrupting it.
1044 */
1045 void cpu_exec_end(CPUState *cpu);
1046
1047 /**
1048 * start_exclusive:
1049 *
1050 * Wait for a concurrent exclusive section to end, and then start
1051 * a section of work that is run while other CPUs are not running
1052 * between cpu_exec_start and cpu_exec_end. CPUs that are running
1053 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
1054 * during the exclusive section go to sleep until this CPU calls
1055 * end_exclusive.
1056 */
1057 void start_exclusive(void);
1058
1059 /**
1060 * end_exclusive:
1061 *
1062 * Concludes an exclusive execution section started by start_exclusive.
1063 */
1064 void end_exclusive(void);
1065
1066 /**
1067 * qemu_init_vcpu:
1068 * @cpu: The vCPU to initialize.
1069 *
1070 * Initializes a vCPU.
1071 */
1072 void qemu_init_vcpu(CPUState *cpu);
1073
1074 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
1075 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
1076 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
1077
1078 /**
1079 * cpu_single_step:
1080 * @cpu: CPU to the flags for.
1081 * @enabled: Flags to enable.
1082 *
1083 * Enables or disables single-stepping for @cpu.
1084 */
1085 void cpu_single_step(CPUState *cpu, int enabled);
1086
1087 /* Breakpoint/watchpoint flags */
1088 #define BP_MEM_READ 0x01
1089 #define BP_MEM_WRITE 0x02
1090 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
1091 #define BP_STOP_BEFORE_ACCESS 0x04
1092 /* 0x08 currently unused */
1093 #define BP_GDB 0x10
1094 #define BP_CPU 0x20
1095 #define BP_ANY (BP_GDB | BP_CPU)
1096 #define BP_HIT_SHIFT 6
1097 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT)
1098 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1099 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT)
1100
1101 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1102 CPUBreakpoint **breakpoint);
1103 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1104 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1105 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1106
1107 /* Return true if PC matches an installed breakpoint. */
cpu_breakpoint_test(CPUState * cpu,vaddr pc,int mask)1108 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1109 {
1110 CPUBreakpoint *bp;
1111
1112 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1113 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1114 if (bp->pc == pc && (bp->flags & mask)) {
1115 return true;
1116 }
1117 }
1118 }
1119 return false;
1120 }
1121
1122 #if defined(CONFIG_USER_ONLY)
cpu_watchpoint_insert(CPUState * cpu,vaddr addr,vaddr len,int flags,CPUWatchpoint ** watchpoint)1123 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1124 int flags, CPUWatchpoint **watchpoint)
1125 {
1126 return -ENOSYS;
1127 }
1128
cpu_watchpoint_remove(CPUState * cpu,vaddr addr,vaddr len,int flags)1129 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1130 vaddr len, int flags)
1131 {
1132 return -ENOSYS;
1133 }
1134
cpu_watchpoint_remove_by_ref(CPUState * cpu,CPUWatchpoint * wp)1135 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1136 CPUWatchpoint *wp)
1137 {
1138 }
1139
cpu_watchpoint_remove_all(CPUState * cpu,int mask)1140 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1141 {
1142 }
1143 #else
1144 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1145 int flags, CPUWatchpoint **watchpoint);
1146 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1147 vaddr len, int flags);
1148 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1149 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1150 #endif
1151
1152 /**
1153 * cpu_get_address_space:
1154 * @cpu: CPU to get address space from
1155 * @asidx: index identifying which address space to get
1156 *
1157 * Return the requested address space of this CPU. @asidx
1158 * specifies which address space to read.
1159 */
1160 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1161
1162 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1163 G_GNUC_PRINTF(2, 3);
1164
1165 /* $(top_srcdir)/cpu.c */
1166 void cpu_class_init_props(DeviceClass *dc);
1167 void cpu_exec_initfn(CPUState *cpu);
1168 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1169 void cpu_exec_unrealizefn(CPUState *cpu);
1170 void cpu_exec_reset_hold(CPUState *cpu);
1171
1172 const char *target_name(void);
1173
1174 #ifdef COMPILING_PER_TARGET
1175
1176 #ifndef CONFIG_USER_ONLY
1177
1178 extern const VMStateDescription vmstate_cpu_common;
1179
1180 #define VMSTATE_CPU() { \
1181 .name = "parent_obj", \
1182 .size = sizeof(CPUState), \
1183 .vmsd = &vmstate_cpu_common, \
1184 .flags = VMS_STRUCT, \
1185 .offset = 0, \
1186 }
1187 #endif /* !CONFIG_USER_ONLY */
1188
1189 #endif /* COMPILING_PER_TARGET */
1190
1191 #define UNASSIGNED_CPU_INDEX -1
1192 #define UNASSIGNED_CLUSTER_INDEX -1
1193
1194 #endif
1195