1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/breakpoint.h" 26 #include "exec/hwaddr.h" 27 #include "exec/vaddr.h" 28 #include "exec/memattrs.h" 29 #include "exec/mmu-access-type.h" 30 #include "exec/tlb-common.h" 31 #include "qapi/qapi-types-machine.h" 32 #include "qapi/qapi-types-run-state.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/rcu_queue.h" 35 #include "qemu/queue.h" 36 #include "qemu/lockcnt.h" 37 #include "qemu/thread.h" 38 #include "qom/object.h" 39 40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 41 void *opaque); 42 43 /** 44 * SECTION:cpu 45 * @section_id: QEMU-cpu 46 * @title: CPU Class 47 * @short_description: Base class for all CPUs 48 */ 49 50 #define TYPE_CPU "cpu" 51 52 /* Since this macro is used a lot in hot code paths and in conjunction with 53 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 54 * an unchecked cast. 55 */ 56 #define CPU(obj) ((CPUState *)(obj)) 57 58 /* 59 * The class checkers bring in CPU_GET_CLASS() which is potentially 60 * expensive given the eventual call to 61 * object_class_dynamic_cast_assert(). Because of this the CPUState 62 * has a cached value for the class in cs->cc which is set up in 63 * cpu_exec_realizefn() for use in hot code paths. 64 */ 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 /** 70 * OBJECT_DECLARE_CPU_TYPE: 71 * @CpuInstanceType: instance struct name 72 * @CpuClassType: class struct name 73 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 74 * 75 * This macro is typically used in "cpu-qom.h" header file, and will: 76 * 77 * - create the typedefs for the CPU object and class structs 78 * - register the type for use with g_autoptr 79 * - provide three standard type cast functions 80 * 81 * The object struct and class struct need to be declared manually. 82 */ 83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 84 typedef struct ArchCPU CpuInstanceType; \ 85 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 86 87 typedef struct CPUWatchpoint CPUWatchpoint; 88 89 /* see physmem.c */ 90 struct CPUAddressSpace; 91 92 /* see accel/tcg/tb-jmp-cache.h */ 93 struct CPUJumpCache; 94 95 /* see accel-cpu.h */ 96 struct AccelCPUClass; 97 98 /* see sysemu-cpu-ops.h */ 99 struct SysemuCPUOps; 100 101 /** 102 * CPUClass: 103 * @class_by_name: Callback to map -cpu command line model name to an 104 * instantiatable CPU type. 105 * @list_cpus: list available CPU models and flags. 106 * @parse_features: Callback to parse command line arguments. 107 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 108 * @memory_rw_debug: Callback for GDB memory access. 109 * @dump_state: Callback for dumping state. 110 * @query_cpu_fast: 111 * Fill in target specific information for the "query-cpus-fast" 112 * QAPI call. 113 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 114 * @set_pc: Callback for setting the Program Counter register. This 115 * should have the semantics used by the target architecture when 116 * setting the PC from a source such as an ELF file entry point; 117 * for example on Arm it will also set the Thumb mode bit based 118 * on the least significant bit of the new PC value. 119 * If the target behaviour here is anything other than "set 120 * the PC register to the value passed in" then the target must 121 * also implement the synchronize_from_tb hook. 122 * @get_pc: Callback for getting the Program Counter register. 123 * As above, with the semantics of the target architecture. 124 * @gdb_read_register: Callback for letting GDB read a register. 125 * No more than @gdb_num_core_regs registers can be read. 126 * @gdb_write_register: Callback for letting GDB write a register. 127 * No more than @gdb_num_core_regs registers can be written. 128 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 129 * breakpoint. Used by AVR to handle a gdb mis-feature with 130 * its Harvard architecture split code and data. 131 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer 132 * from @gdb_core_xml_file. 133 * @gdb_core_xml_file: File name for core registers GDB XML description. 134 * @gdb_get_core_xml_file: Optional callback that returns the file name for 135 * the core registers GDB XML description. The returned value is expected to 136 * be a simple constant string: the caller will not g_free() it. If this 137 * is NULL then @gdb_core_xml_file will be used instead. 138 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 139 * before the insn which triggers a watchpoint rather than after it. 140 * @gdb_arch_name: Optional callback that returns the architecture name known 141 * to GDB. The returned value is expected to be a simple constant string: 142 * the caller will not g_free() it. 143 * @disas_set_info: Setup architecture specific components of disassembly info 144 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 145 * address before attempting to match it against watchpoints. 146 * @deprecation_note: If this CPUClass is deprecated, this field provides 147 * related information. 148 * 149 * Represents a CPU family or model. 150 */ 151 struct CPUClass { 152 /*< private >*/ 153 DeviceClass parent_class; 154 /*< public >*/ 155 156 ObjectClass *(*class_by_name)(const char *cpu_model); 157 void (*list_cpus)(void); 158 void (*parse_features)(const char *typename, char *str, Error **errp); 159 160 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 161 uint8_t *buf, size_t len, bool is_write); 162 void (*dump_state)(CPUState *cpu, FILE *, int flags); 163 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 164 int64_t (*get_arch_id)(CPUState *cpu); 165 void (*set_pc)(CPUState *cpu, vaddr value); 166 vaddr (*get_pc)(CPUState *cpu); 167 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 168 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 169 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 170 171 const char *gdb_core_xml_file; 172 const char * (*gdb_arch_name)(CPUState *cpu); 173 const char * (*gdb_get_core_xml_file)(CPUState *cpu); 174 175 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 176 177 const char *deprecation_note; 178 struct AccelCPUClass *accel_cpu; 179 180 /* when system emulation is not available, this pointer is NULL */ 181 const struct SysemuCPUOps *sysemu_ops; 182 183 /* when TCG is not available, this pointer is NULL */ 184 const TCGCPUOps *tcg_ops; 185 186 /* 187 * if not NULL, this is called in order for the CPUClass to initialize 188 * class data that depends on the accelerator, see accel/accel-common.c. 189 */ 190 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 191 192 /* 193 * Keep non-pointer data at the end to minimize holes. 194 */ 195 int reset_dump_flags; 196 int gdb_num_core_regs; 197 bool gdb_stop_before_watchpoint; 198 }; 199 200 /* 201 * Fix the number of mmu modes across all targets. 202 * Current maximum is target/arm/. 203 */ 204 #define NB_MMU_MODES 22 205 typedef uint32_t MMUIdxMap; 206 207 /* Use a fully associative victim tlb of 8 entries. */ 208 #define CPU_VTLB_SIZE 8 209 210 /* 211 * The full TLB entry, which is not accessed by generated TCG code, 212 * so the layout is not as critical as that of CPUTLBEntry. This is 213 * also why we don't want to combine the two structs. 214 */ 215 struct CPUTLBEntryFull { 216 /* 217 * @xlat_section contains: 218 * - in the lower TARGET_PAGE_BITS, a physical section number 219 * - with the lower TARGET_PAGE_BITS masked off, an offset which 220 * must be added to the virtual address to obtain: 221 * + the ram_addr_t of the target RAM (if the physical section 222 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 223 * + the offset within the target MemoryRegion (otherwise) 224 */ 225 hwaddr xlat_section; 226 227 /* 228 * @phys_addr contains the physical address in the address space 229 * given by cpu_asidx_from_attrs(cpu, @attrs). 230 */ 231 hwaddr phys_addr; 232 233 /* @attrs contains the memory transaction attributes for the page. */ 234 MemTxAttrs attrs; 235 236 /* @prot contains the complete protections for the page. */ 237 uint8_t prot; 238 239 /* @lg_page_size contains the log2 of the page size. */ 240 uint8_t lg_page_size; 241 242 /* Additional tlb flags requested by tlb_fill. */ 243 uint8_t tlb_fill_flags; 244 245 /* 246 * Additional tlb flags for use by the slow path. If non-zero, 247 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 248 */ 249 uint8_t slow_flags[MMU_ACCESS_COUNT]; 250 251 /* 252 * Allow target-specific additions to this structure. 253 * This may be used to cache items from the guest cpu 254 * page tables for later use by the implementation. 255 */ 256 union { 257 /* 258 * Cache the attrs and shareability fields from the page table entry. 259 * 260 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 261 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 262 * For shareability and guarded, as in the SH and GP fields respectively 263 * of the VMSAv8-64 PTEs. 264 */ 265 struct { 266 uint8_t pte_attrs; 267 uint8_t shareability; 268 bool guarded; 269 } arm; 270 } extra; 271 }; 272 273 /* 274 * Data elements that are per MMU mode, minus the bits accessed by 275 * the TCG fast path. 276 */ 277 typedef struct CPUTLBDesc { 278 /* 279 * Describe a region covering all of the large pages allocated 280 * into the tlb. When any page within this region is flushed, 281 * we must flush the entire tlb. The region is matched if 282 * (addr & large_page_mask) == large_page_addr. 283 */ 284 vaddr large_page_addr; 285 vaddr large_page_mask; 286 /* host time (in ns) at the beginning of the time window */ 287 int64_t window_begin_ns; 288 /* maximum number of entries observed in the window */ 289 size_t window_max_entries; 290 size_t n_used_entries; 291 /* The next index to use in the tlb victim table. */ 292 size_t vindex; 293 /* The tlb victim table, in two parts. */ 294 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 295 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 296 CPUTLBEntryFull *fulltlb; 297 } CPUTLBDesc; 298 299 /* 300 * Data elements that are shared between all MMU modes. 301 */ 302 typedef struct CPUTLBCommon { 303 /* Serialize updates to f.table and d.vtable, and others as noted. */ 304 QemuSpin lock; 305 /* 306 * Within dirty, for each bit N, modifications have been made to 307 * mmu_idx N since the last time that mmu_idx was flushed. 308 * Protected by tlb_c.lock. 309 */ 310 MMUIdxMap dirty; 311 /* 312 * Statistics. These are not lock protected, but are read and 313 * written atomically. This allows the monitor to print a snapshot 314 * of the stats without interfering with the cpu. 315 */ 316 size_t full_flush_count; 317 size_t part_flush_count; 318 size_t elide_flush_count; 319 } CPUTLBCommon; 320 321 /* 322 * The entire softmmu tlb, for all MMU modes. 323 * The meaning of each of the MMU modes is defined in the target code. 324 * Since this is placed within CPUNegativeOffsetState, the smallest 325 * negative offsets are at the end of the struct. 326 */ 327 typedef struct CPUTLB { 328 #ifdef CONFIG_TCG 329 CPUTLBCommon c; 330 CPUTLBDesc d[NB_MMU_MODES]; 331 CPUTLBDescFast f[NB_MMU_MODES]; 332 #endif 333 } CPUTLB; 334 335 /* 336 * Low 16 bits: number of cycles left, used only in icount mode. 337 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 338 * for this CPU and return to its top level loop (even in non-icount mode). 339 * This allows a single read-compare-cbranch-write sequence to test 340 * for both decrementer underflow and exceptions. 341 */ 342 typedef union IcountDecr { 343 uint32_t u32; 344 struct { 345 #if HOST_BIG_ENDIAN 346 uint16_t high; 347 uint16_t low; 348 #else 349 uint16_t low; 350 uint16_t high; 351 #endif 352 } u16; 353 } IcountDecr; 354 355 /** 356 * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed 357 * from CPUArchState, via small negative offsets. 358 * @can_do_io: True if memory-mapped IO is allowed. 359 * @plugin_mem_cbs: active plugin memory callbacks 360 * @plugin_mem_value_low: 64 lower bits of latest accessed mem value. 361 * @plugin_mem_value_high: 64 higher bits of latest accessed mem value. 362 */ 363 typedef struct CPUNegativeOffsetState { 364 CPUTLB tlb; 365 #ifdef CONFIG_PLUGIN 366 /* 367 * The callback pointer are accessed via TCG (see gen_empty_mem_helper). 368 */ 369 GArray *plugin_mem_cbs; 370 uint64_t plugin_mem_value_low; 371 uint64_t plugin_mem_value_high; 372 int32_t plugin_cb_flags; 373 #endif 374 IcountDecr icount_decr; 375 bool can_do_io; 376 } CPUNegativeOffsetState; 377 378 struct KVMState; 379 struct kvm_run; 380 381 /* work queue */ 382 383 /* The union type allows passing of 64 bit target pointers on 32 bit 384 * hosts in a single parameter 385 */ 386 typedef union { 387 int host_int; 388 unsigned long host_ulong; 389 void *host_ptr; 390 vaddr target_ptr; 391 } run_on_cpu_data; 392 393 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 394 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 395 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 396 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 397 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 398 399 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 400 401 struct qemu_work_item; 402 403 #define CPU_UNSET_NUMA_NODE_ID -1 404 405 /** 406 * struct CPUState - common state of one CPU core or thread. 407 * 408 * @cpu_index: CPU index (informative). 409 * @cluster_index: Identifies which cluster this CPU is in. 410 * For boards which don't define clusters or for "loose" CPUs not assigned 411 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 412 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 413 * QOM parent. 414 * Under TCG this value is propagated to @tcg_cflags. 415 * See TranslationBlock::TCG CF_CLUSTER_MASK. 416 * @tcg_cflags: Pre-computed cflags for this cpu. 417 * @nr_threads: Number of threads within this CPU core. 418 * @thread: Host thread details, only live once @created is #true 419 * @sem: WIN32 only semaphore used only for qtest 420 * @thread_id: native thread id of vCPU, only live once @created is #true 421 * @running: #true if CPU is currently running (lockless). 422 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 423 * valid under cpu_list_lock. 424 * @created: Indicates whether the CPU thread has been successfully created. 425 * @halt_cond: condition variable sleeping threads can wait on. 426 * @exit_request: Another thread requests the CPU to call qemu_process_cpu_events(). 427 * Should be read only by CPU thread with load-acquire, to synchronize with 428 * other threads' store-release operation. 429 * 430 * In some cases, accelerator-specific code will write exit_request from 431 * within the same thread, to "bump" the effect of qemu_cpu_kick() to 432 * the one provided by cpu_exit(), especially when processing interrupt 433 * flags. In this case, the write and read happen in the same thread 434 * and the write therefore can use qemu_atomic_set(). 435 * @interrupt_request: Indicates a pending interrupt request. 436 * Only used by system emulation. 437 * @halted: Nonzero if the CPU is in suspended state. 438 * @stop: Indicates a pending stop request. 439 * @stopped: Indicates the CPU has been artificially stopped. 440 * @unplug: Indicates a pending CPU unplug request. 441 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 442 * @singlestep_enabled: Flags for single-stepping. 443 * @icount_extra: Instructions until next timer event. 444 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 445 * AddressSpaces this CPU has) 446 * @num_ases: number of CPUAddressSpaces in @cpu_ases 447 * @as: Pointer to the first AddressSpace, for the convenience of targets which 448 * only have a single AddressSpace 449 * @gdb_regs: Additional GDB registers. 450 * @gdb_num_regs: Number of total registers accessible to GDB. 451 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 452 * @node: QTAILQ of CPUs sharing TB cache. 453 * @opaque: User data. 454 * @mem_io_pc: Host Program Counter at which the memory was accessed. 455 * @accel: Pointer to accelerator specific state. 456 * @vcpu_dirty: Hardware accelerator is not synchronized with QEMU state 457 * @kvm_fd: vCPU file descriptor for KVM. 458 * @work_mutex: Lock to prevent multiple access to @work_list. 459 * @work_list: List of pending asynchronous work. 460 * @plugin_state: per-CPU plugin state 461 * @ignore_memory_transaction_failures: Cached copy of the MachineState 462 * flag of the same name: allows the board to suppress calling of the 463 * CPU do_transaction_failed hook function. 464 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 465 * ring is enabled. 466 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 467 * dirty ring structure. 468 * 469 * @neg_align: The CPUState is the common part of a concrete ArchCPU 470 * which is allocated when an individual CPU instance is created. As 471 * such care is taken is ensure there is no gap between between 472 * CPUState and CPUArchState within ArchCPU. 473 * 474 * @neg: The architectural register state ("cpu_env") immediately follows 475 * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds 476 * some common TCG CPU variables which are accessed with a negative offset 477 * from cpu_env. 478 */ 479 struct CPUState { 480 /*< private >*/ 481 DeviceState parent_obj; 482 /* cache to avoid expensive CPU_GET_CLASS */ 483 CPUClass *cc; 484 /*< public >*/ 485 486 int nr_threads; 487 488 struct QemuThread *thread; 489 #ifdef _WIN32 490 QemuSemaphore sem; 491 #endif 492 int thread_id; 493 bool running, has_waiter; 494 struct QemuCond *halt_cond; 495 bool thread_kicked; 496 bool created; 497 bool stop; 498 bool stopped; 499 500 /* Should CPU start in powered-off state? */ 501 bool start_powered_off; 502 503 bool unplug; 504 bool crash_occurred; 505 bool exit_request; 506 int exclusive_context_count; 507 uint32_t cflags_next_tb; 508 uint32_t interrupt_request; 509 int singlestep_enabled; 510 int64_t icount_budget; 511 int64_t icount_extra; 512 uint64_t random_seed; 513 sigjmp_buf jmp_env; 514 515 QemuMutex work_mutex; 516 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 517 518 struct CPUAddressSpace *cpu_ases; 519 int num_ases; 520 AddressSpace *as; 521 MemoryRegion *memory; 522 523 struct CPUJumpCache *tb_jmp_cache; 524 525 GArray *gdb_regs; 526 int gdb_num_regs; 527 int gdb_num_g_regs; 528 QTAILQ_ENTRY(CPUState) node; 529 530 /* ice debug support */ 531 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 532 533 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 534 CPUWatchpoint *watchpoint_hit; 535 536 void *opaque; 537 538 /* In order to avoid passing too many arguments to the MMIO helpers, 539 * we store some rarely used information in the CPU context. 540 */ 541 uintptr_t mem_io_pc; 542 543 /* Only used in KVM */ 544 int kvm_fd; 545 struct KVMState *kvm_state; 546 struct kvm_run *kvm_run; 547 struct kvm_dirty_gfn *kvm_dirty_gfns; 548 uint32_t kvm_fetch_index; 549 uint64_t dirty_pages; 550 int kvm_vcpu_stats_fd; 551 552 /* Use by accel-block: CPU is executing an ioctl() */ 553 QemuLockCnt in_ioctl_lock; 554 555 #ifdef CONFIG_PLUGIN 556 CPUPluginState *plugin_state; 557 #endif 558 559 /* TODO Move common fields from CPUArchState here. */ 560 int cpu_index; 561 int cluster_index; 562 uint32_t tcg_cflags; 563 uint32_t halted; 564 int32_t exception_index; 565 566 bool vcpu_dirty; 567 AccelCPUState *accel; 568 569 /* Used to keep track of an outstanding cpu throttle thread for migration 570 * autoconverge 571 */ 572 bool throttle_thread_scheduled; 573 574 /* 575 * Sleep throttle_us_per_full microseconds once dirty ring is full 576 * if dirty page rate limit is enabled. 577 */ 578 int64_t throttle_us_per_full; 579 580 bool ignore_memory_transaction_failures; 581 582 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 583 bool prctl_unalign_sigbus; 584 585 /* track IOMMUs whose translations we've cached in the TCG TLB */ 586 GArray *iommu_notifiers; 587 588 /* 589 * MUST BE LAST in order to minimize the displacement to CPUArchState. 590 */ 591 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 592 CPUNegativeOffsetState neg; 593 }; 594 595 /* Validate placement of CPUNegativeOffsetState. */ 596 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 597 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 598 599 static inline CPUArchState *cpu_env(CPUState *cpu) 600 { 601 /* We validate that CPUArchState follows CPUState in cpu-target.c */ 602 return (CPUArchState *)(cpu + 1); 603 } 604 605 #ifdef CONFIG_TCG 606 /* 607 * Invert the index order of the CPUTLBDescFast array so that lower 608 * mmu_idx have offsets from env with smaller magnitude. 609 */ 610 static inline int mmuidx_to_fast_index(int mmu_idx) 611 { 612 return NB_MMU_MODES - 1 - mmu_idx; 613 } 614 615 static inline CPUTLBDescFast *cpu_tlb_fast(CPUState *cpu, int mmu_idx) 616 { 617 return &cpu->neg.tlb.f[mmuidx_to_fast_index(mmu_idx)]; 618 } 619 #endif 620 621 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 622 extern CPUTailQ cpus_queue; 623 624 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 625 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 626 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 627 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 628 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 629 630 extern __thread CPUState *current_cpu; 631 632 /** 633 * cpu_paging_enabled: 634 * @cpu: The CPU whose state is to be inspected. 635 * 636 * Returns: %true if paging is enabled, %false otherwise. 637 */ 638 bool cpu_paging_enabled(const CPUState *cpu); 639 640 /** 641 * cpu_get_memory_mapping: 642 * @cpu: The CPU whose memory mappings are to be obtained. 643 * @list: Where to write the memory mappings to. 644 * @errp: Pointer for reporting an #Error. 645 * 646 * Returns: %true on success, %false otherwise. 647 */ 648 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 649 Error **errp); 650 651 /** 652 * cpu_write_elf64_note: 653 * @f: pointer to a function that writes memory to a file 654 * @cpu: The CPU whose memory is to be dumped 655 * @cpuid: ID number of the CPU 656 * @opaque: pointer to the CPUState struct 657 */ 658 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 659 int cpuid, void *opaque); 660 661 /** 662 * cpu_write_elf64_qemunote: 663 * @f: pointer to a function that writes memory to a file 664 * @cpu: The CPU whose memory is to be dumped 665 * @cpuid: ID number of the CPU 666 * @opaque: pointer to the CPUState struct 667 */ 668 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 669 void *opaque); 670 671 /** 672 * cpu_write_elf32_note: 673 * @f: pointer to a function that writes memory to a file 674 * @cpu: The CPU whose memory is to be dumped 675 * @cpuid: ID number of the CPU 676 * @opaque: pointer to the CPUState struct 677 */ 678 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 679 int cpuid, void *opaque); 680 681 /** 682 * cpu_write_elf32_qemunote: 683 * @f: pointer to a function that writes memory to a file 684 * @cpu: The CPU whose memory is to be dumped 685 * @cpuid: ID number of the CPU 686 * @opaque: pointer to the CPUState struct 687 */ 688 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 689 void *opaque); 690 691 /** 692 * cpu_memory_rw_debug: 693 * @cpu: The CPU whose memory is to be accessed 694 * @addr: guest virtual address 695 * @ptr: buffer with the data transferred 696 * @len: the number of bytes to read or write 697 * @is_write: indicates the transfer direction 698 * 699 * Take a virtual address, convert it to a physical address via 700 * an MMU lookup using the current settings of the specified CPU, 701 * and then perform the access (using address_space_rw() for 702 * reads or address_space_write_rom() for writes). 703 * 704 * This function is intended for use by the GDB stub and similar code. 705 * 706 * Returns: 0 on success, -1 on error 707 */ 708 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 709 void *ptr, size_t len, bool is_write); 710 711 /** 712 * cpu_get_crash_info: 713 * @cpu: The CPU to get crash information for 714 * 715 * Gets the previously saved crash information. 716 * Caller is responsible for freeing the data. 717 */ 718 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 719 720 /** 721 * CPUDumpFlags: 722 * @CPU_DUMP_CODE: 723 * @CPU_DUMP_FPU: dump FPU register state, not just integer 724 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 725 * @CPU_DUMP_VPU: dump VPU registers 726 */ 727 enum CPUDumpFlags { 728 CPU_DUMP_CODE = 0x00010000, 729 CPU_DUMP_FPU = 0x00020000, 730 CPU_DUMP_CCOP = 0x00040000, 731 CPU_DUMP_VPU = 0x00080000, 732 }; 733 734 /** 735 * cpu_dump_state: 736 * @cpu: The CPU whose state is to be dumped. 737 * @f: If non-null, dump to this stream, else to current print sink. 738 * 739 * Dumps CPU state. 740 */ 741 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 742 743 /** 744 * cpu_get_phys_page_attrs_debug: 745 * @cpu: The CPU to obtain the physical page address for. 746 * @addr: The virtual address. 747 * @attrs: Updated on return with the memory transaction attributes to use 748 * for this access. 749 * 750 * Obtains the physical page corresponding to a virtual one, together 751 * with the corresponding memory transaction attributes to use for the access. 752 * Use it only for debugging because no protection checks are done. 753 * 754 * Returns: Corresponding physical page address or -1 if no page found. 755 */ 756 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 757 MemTxAttrs *attrs); 758 759 /** 760 * cpu_get_phys_page_debug: 761 * @cpu: The CPU to obtain the physical page address for. 762 * @addr: The virtual address. 763 * 764 * Obtains the physical page corresponding to a virtual one. 765 * Use it only for debugging because no protection checks are done. 766 * 767 * Returns: Corresponding physical page address or -1 if no page found. 768 */ 769 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 770 771 /** cpu_asidx_from_attrs: 772 * @cpu: CPU 773 * @attrs: memory transaction attributes 774 * 775 * Returns the address space index specifying the CPU AddressSpace 776 * to use for a memory access with the given transaction attributes. 777 */ 778 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 779 780 /** 781 * cpu_virtio_is_big_endian: 782 * @cpu: CPU 783 784 * Returns %true if a CPU which supports runtime configurable endianness 785 * is currently big-endian. 786 */ 787 bool cpu_virtio_is_big_endian(CPUState *cpu); 788 789 /** 790 * cpu_has_work: 791 * @cpu: The vCPU to check. 792 * 793 * Checks whether the CPU has work to do. 794 * 795 * Returns: %true if the CPU has work, %false otherwise. 796 */ 797 bool cpu_has_work(CPUState *cpu); 798 799 /** 800 * cpu_list_add: 801 * @cpu: The CPU to be added to the list of CPUs. 802 */ 803 void cpu_list_add(CPUState *cpu); 804 805 /** 806 * cpu_list_remove: 807 * @cpu: The CPU to be removed from the list of CPUs. 808 */ 809 void cpu_list_remove(CPUState *cpu); 810 811 /** 812 * cpu_reset: 813 * @cpu: The CPU whose state is to be reset. 814 */ 815 void cpu_reset(CPUState *cpu); 816 817 /** 818 * cpu_class_by_name: 819 * @typename: The CPU base type. 820 * @cpu_model: The model string without any parameters. 821 * 822 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 823 * 824 * Returns: A concrete #CPUClass or %NULL if no matching class is found 825 * or if the matching class is abstract. 826 */ 827 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 828 829 /** 830 * cpu_model_from_type: 831 * @typename: The CPU type name 832 * 833 * Extract the CPU model name from the CPU type name. The 834 * CPU type name is either the combination of the CPU model 835 * name and suffix, or same to the CPU model name. 836 * 837 * Returns: CPU model name or NULL if the CPU class doesn't exist 838 * The user should g_free() the string once no longer needed. 839 */ 840 char *cpu_model_from_type(const char *typename); 841 842 /** 843 * cpu_create: 844 * @typename: The CPU type. 845 * 846 * Instantiates a CPU and realizes the CPU. 847 * 848 * Returns: A #CPUState or %NULL if an error occurred. 849 */ 850 CPUState *cpu_create(const char *typename); 851 852 /** 853 * parse_cpu_option: 854 * @cpu_option: The -cpu option including optional parameters. 855 * 856 * processes optional parameters and registers them as global properties 857 * 858 * Returns: type of CPU to create or prints error and terminates process 859 * if an error occurred. 860 */ 861 const char *parse_cpu_option(const char *cpu_option); 862 863 /** 864 * qemu_cpu_is_self: 865 * @cpu: The vCPU to check against. 866 * 867 * Checks whether the caller is executing on the vCPU thread. 868 * 869 * Returns: %true if called from @cpu's thread, %false otherwise. 870 */ 871 bool qemu_cpu_is_self(CPUState *cpu); 872 873 /** 874 * qemu_cpu_kick: 875 * @cpu: The vCPU to kick. 876 * 877 * Kicks @cpu's thread to exit the accelerator. For accelerators that 878 * can do that, the target vCPU thread will try not to take the BQL. 879 */ 880 void qemu_cpu_kick(CPUState *cpu); 881 882 /** 883 * cpu_is_stopped: 884 * @cpu: The CPU to check. 885 * 886 * Checks whether the CPU is stopped. 887 * 888 * Returns: %true if run state is not running or if artificially stopped; 889 * %false otherwise. 890 */ 891 bool cpu_is_stopped(CPUState *cpu); 892 893 /** 894 * do_run_on_cpu: 895 * @cpu: The vCPU to run on. 896 * @func: The function to be executed. 897 * @data: Data to pass to the function. 898 * @mutex: Mutex to release while waiting for @func to run. 899 * 900 * Used internally in the implementation of run_on_cpu. 901 */ 902 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 903 QemuMutex *mutex); 904 905 /** 906 * run_on_cpu: 907 * @cpu: The vCPU to run on. 908 * @func: The function to be executed. 909 * @data: Data to pass to the function. 910 * 911 * Schedules the function @func for execution on the vCPU @cpu. 912 */ 913 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 914 915 /** 916 * async_run_on_cpu: 917 * @cpu: The vCPU to run on. 918 * @func: The function to be executed. 919 * @data: Data to pass to the function. 920 * 921 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 922 */ 923 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 924 925 /** 926 * async_safe_run_on_cpu: 927 * @cpu: The vCPU to run on. 928 * @func: The function to be executed. 929 * @data: Data to pass to the function. 930 * 931 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 932 * while all other vCPUs are sleeping. 933 * 934 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 935 * BQL. 936 */ 937 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 938 939 /** 940 * cpu_in_exclusive_context() 941 * @cpu: The vCPU to check 942 * 943 * Returns true if @cpu is an exclusive context, for example running 944 * something which has previously been queued via async_safe_run_on_cpu(). 945 */ 946 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 947 { 948 return cpu->exclusive_context_count; 949 } 950 951 /** 952 * qemu_get_cpu: 953 * @index: The CPUState@cpu_index value of the CPU to obtain. 954 * 955 * Gets a CPU matching @index. 956 * 957 * Returns: The CPU or %NULL if there is no matching CPU. 958 */ 959 CPUState *qemu_get_cpu(int index); 960 961 /** 962 * cpu_exists: 963 * @id: Guest-exposed CPU ID to lookup. 964 * 965 * Search for CPU with specified ID. 966 * 967 * Returns: %true - CPU is found, %false - CPU isn't found. 968 */ 969 bool cpu_exists(int64_t id); 970 971 /** 972 * cpu_by_arch_id: 973 * @id: Guest-exposed CPU ID of the CPU to obtain. 974 * 975 * Get a CPU with matching @id. 976 * 977 * Returns: The CPU or %NULL if there is no matching CPU. 978 */ 979 CPUState *cpu_by_arch_id(int64_t id); 980 981 /** 982 * cpu_interrupt: 983 * @cpu: The CPU to set an interrupt on. 984 * @mask: The interrupts to set. 985 * 986 * Invokes the interrupt handler. 987 */ 988 989 void cpu_interrupt(CPUState *cpu, int mask); 990 991 /** 992 * cpu_test_interrupt: 993 * @cpu: The CPU to check interrupt(s) on. 994 * @mask: The interrupts to check. 995 * 996 * Checks if any of interrupts in @mask are pending on @cpu. 997 */ 998 static inline bool cpu_test_interrupt(CPUState *cpu, int mask) 999 { 1000 return qatomic_load_acquire(&cpu->interrupt_request) & mask; 1001 } 1002 1003 /** 1004 * cpu_set_interrupt: 1005 * @cpu: The CPU to set pending interrupt(s) on. 1006 * @mask: The interrupts to set. 1007 * 1008 * Sets interrupts in @mask as pending on @cpu. Unlike @cpu_interrupt, 1009 * this does not kick the vCPU. 1010 */ 1011 void cpu_set_interrupt(CPUState *cpu, int mask); 1012 1013 /** 1014 * cpu_set_pc: 1015 * @cpu: The CPU to set the program counter for. 1016 * @addr: Program counter value. 1017 * 1018 * Sets the program counter for a CPU. 1019 */ 1020 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 1021 { 1022 cpu->cc->set_pc(cpu, addr); 1023 } 1024 1025 /** 1026 * cpu_reset_interrupt: 1027 * @cpu: The CPU to clear the interrupt on. 1028 * @mask: The interrupt mask to clear. 1029 * 1030 * Resets interrupts on the vCPU @cpu. 1031 */ 1032 void cpu_reset_interrupt(CPUState *cpu, int mask); 1033 1034 /** 1035 * cpu_exit: 1036 * @cpu: The CPU to exit. 1037 * 1038 * Requests the CPU @cpu to exit execution. 1039 */ 1040 void cpu_exit(CPUState *cpu); 1041 1042 /** 1043 * cpu_pause: 1044 * @cpu: The CPU to pause. 1045 * 1046 * Pauses CPU, i.e. puts CPU into stopped state. 1047 */ 1048 void cpu_pause(CPUState *cpu); 1049 1050 /** 1051 * cpu_resume: 1052 * @cpu: The CPU to resume. 1053 * 1054 * Resumes CPU, i.e. puts CPU into runnable state. 1055 */ 1056 void cpu_resume(CPUState *cpu); 1057 1058 /** 1059 * cpu_remove_sync: 1060 * @cpu: The CPU to remove. 1061 * 1062 * Requests the CPU to be removed and waits till it is removed. 1063 */ 1064 void cpu_remove_sync(CPUState *cpu); 1065 1066 /** 1067 * free_queued_cpu_work() - free all items on CPU work queue 1068 * @cpu: The CPU which work queue to free. 1069 */ 1070 void free_queued_cpu_work(CPUState *cpu); 1071 1072 /** 1073 * process_queued_cpu_work() - process all items on CPU work queue 1074 * @cpu: The CPU which work queue to process. 1075 */ 1076 void process_queued_cpu_work(CPUState *cpu); 1077 1078 /** 1079 * cpu_exec_start: 1080 * @cpu: The CPU for the current thread. 1081 * 1082 * Record that a CPU has started execution and can be interrupted with 1083 * cpu_exit. 1084 */ 1085 void cpu_exec_start(CPUState *cpu); 1086 1087 /** 1088 * cpu_exec_end: 1089 * @cpu: The CPU for the current thread. 1090 * 1091 * Record that a CPU has stopped execution and exclusive sections 1092 * can be executed without interrupting it. 1093 */ 1094 void cpu_exec_end(CPUState *cpu); 1095 1096 /** 1097 * start_exclusive: 1098 * 1099 * Wait for a concurrent exclusive section to end, and then start 1100 * a section of work that is run while other CPUs are not running 1101 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1102 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1103 * during the exclusive section go to sleep until this CPU calls 1104 * end_exclusive. 1105 */ 1106 void start_exclusive(void); 1107 1108 /** 1109 * end_exclusive: 1110 * 1111 * Concludes an exclusive execution section started by start_exclusive. 1112 */ 1113 void end_exclusive(void); 1114 1115 /** 1116 * qemu_init_vcpu: 1117 * @cpu: The vCPU to initialize. 1118 * 1119 * Initializes a vCPU. 1120 */ 1121 void qemu_init_vcpu(CPUState *cpu); 1122 1123 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1124 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1125 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1126 1127 /** 1128 * cpu_single_step: 1129 * @cpu: CPU to the flags for. 1130 * @enabled: Flags to enable. 1131 * 1132 * Enables or disables single-stepping for @cpu. 1133 */ 1134 void cpu_single_step(CPUState *cpu, int enabled); 1135 1136 /* Breakpoint/watchpoint flags */ 1137 #define BP_MEM_READ 0x01 1138 #define BP_MEM_WRITE 0x02 1139 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1140 #define BP_STOP_BEFORE_ACCESS 0x04 1141 /* 0x08 currently unused */ 1142 #define BP_GDB 0x10 1143 #define BP_CPU 0x20 1144 #define BP_ANY (BP_GDB | BP_CPU) 1145 #define BP_HIT_SHIFT 6 1146 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1147 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1148 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1149 1150 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1151 CPUBreakpoint **breakpoint); 1152 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1153 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1154 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1155 1156 /* Return true if PC matches an installed breakpoint. */ 1157 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1158 { 1159 CPUBreakpoint *bp; 1160 1161 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1162 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1163 if (bp->pc == pc && (bp->flags & mask)) { 1164 return true; 1165 } 1166 } 1167 } 1168 return false; 1169 } 1170 1171 /** 1172 * cpu_get_address_space: 1173 * @cpu: CPU to get address space from 1174 * @asidx: index identifying which address space to get 1175 * 1176 * Return the requested address space of this CPU. @asidx 1177 * specifies which address space to read. 1178 */ 1179 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1180 1181 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1182 G_GNUC_PRINTF(2, 3); 1183 1184 /** 1185 * qemu_process_cpu_events: 1186 * @cpu: CPU that left the execution loop 1187 * 1188 * Perform accelerator-independent work after the CPU has left 1189 * the inner execution loop. 1190 */ 1191 void qemu_process_cpu_events(CPUState *cpu); 1192 1193 /* $(top_srcdir)/cpu.c */ 1194 void cpu_class_init_props(DeviceClass *dc); 1195 void cpu_exec_class_post_init(CPUClass *cc); 1196 void cpu_exec_initfn(CPUState *cpu); 1197 void cpu_vmstate_register(CPUState *cpu); 1198 void cpu_vmstate_unregister(CPUState *cpu); 1199 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1200 void cpu_exec_unrealizefn(CPUState *cpu); 1201 void cpu_exec_reset_hold(CPUState *cpu); 1202 1203 extern const VMStateDescription vmstate_cpu_common; 1204 1205 #define UNASSIGNED_CPU_INDEX -1 1206 #define UNASSIGNED_CLUSTER_INDEX -1 1207 1208 enum CacheType { 1209 DATA_CACHE, 1210 INSTRUCTION_CACHE, 1211 UNIFIED_CACHE 1212 }; 1213 1214 #endif 1215