1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
4 */
5
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_extent_busy.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_log.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trace.h"
19 #include "xfs_discard.h"
20
21 /*
22 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
23 * recover, so we don't allow failure here. Also, we allocate in a context that
24 * we don't want to be issuing transactions from, so we need to tell the
25 * allocation code this as well.
26 *
27 * We don't reserve any space for the ticket - we are going to steal whatever
28 * space we require from transactions as they commit. To ensure we reserve all
29 * the space required, we need to set the current reservation of the ticket to
30 * zero so that we know to steal the initial transaction overhead from the
31 * first transaction commit.
32 */
33 static struct xlog_ticket *
xlog_cil_ticket_alloc(struct xlog * log)34 xlog_cil_ticket_alloc(
35 struct xlog *log)
36 {
37 struct xlog_ticket *tic;
38
39 tic = xlog_ticket_alloc(log, 0, 1, 0);
40
41 /*
42 * set the current reservation to zero so we know to steal the basic
43 * transaction overhead reservation from the first transaction commit.
44 */
45 tic->t_curr_res = 0;
46 tic->t_iclog_hdrs = 0;
47 return tic;
48 }
49
50 static inline void
xlog_cil_set_iclog_hdr_count(struct xfs_cil * cil)51 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil)
52 {
53 struct xlog *log = cil->xc_log;
54
55 atomic_set(&cil->xc_iclog_hdrs,
56 (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) /
57 (log->l_iclog_size - log->l_iclog_hsize)));
58 }
59
60 /*
61 * Check if the current log item was first committed in this sequence.
62 * We can't rely on just the log item being in the CIL, we have to check
63 * the recorded commit sequence number.
64 *
65 * Note: for this to be used in a non-racy manner, it has to be called with
66 * CIL flushing locked out. As a result, it should only be used during the
67 * transaction commit process when deciding what to format into the item.
68 */
69 static bool
xlog_item_in_current_chkpt(struct xfs_cil * cil,struct xfs_log_item * lip)70 xlog_item_in_current_chkpt(
71 struct xfs_cil *cil,
72 struct xfs_log_item *lip)
73 {
74 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
75 return false;
76
77 /*
78 * li_seq is written on the first commit of a log item to record the
79 * first checkpoint it is written to. Hence if it is different to the
80 * current sequence, we're in a new checkpoint.
81 */
82 return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
83 }
84
85 bool
xfs_log_item_in_current_chkpt(struct xfs_log_item * lip)86 xfs_log_item_in_current_chkpt(
87 struct xfs_log_item *lip)
88 {
89 return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip);
90 }
91
92 /*
93 * Unavoidable forward declaration - xlog_cil_push_work() calls
94 * xlog_cil_ctx_alloc() itself.
95 */
96 static void xlog_cil_push_work(struct work_struct *work);
97
98 static struct xfs_cil_ctx *
xlog_cil_ctx_alloc(void)99 xlog_cil_ctx_alloc(void)
100 {
101 struct xfs_cil_ctx *ctx;
102
103 ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS);
104 INIT_LIST_HEAD(&ctx->committing);
105 INIT_LIST_HEAD(&ctx->busy_extents.extent_list);
106 INIT_LIST_HEAD(&ctx->log_items);
107 INIT_LIST_HEAD(&ctx->lv_chain);
108 INIT_WORK(&ctx->push_work, xlog_cil_push_work);
109 return ctx;
110 }
111
112 /*
113 * Aggregate the CIL per cpu structures into global counts, lists, etc and
114 * clear the percpu state ready for the next context to use. This is called
115 * from the push code with the context lock held exclusively, hence nothing else
116 * will be accessing or modifying the per-cpu counters.
117 */
118 static void
xlog_cil_push_pcp_aggregate(struct xfs_cil * cil,struct xfs_cil_ctx * ctx)119 xlog_cil_push_pcp_aggregate(
120 struct xfs_cil *cil,
121 struct xfs_cil_ctx *ctx)
122 {
123 struct xlog_cil_pcp *cilpcp;
124 int cpu;
125
126 for_each_cpu(cpu, &ctx->cil_pcpmask) {
127 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
128
129 ctx->ticket->t_curr_res += cilpcp->space_reserved;
130 cilpcp->space_reserved = 0;
131
132 if (!list_empty(&cilpcp->busy_extents)) {
133 list_splice_init(&cilpcp->busy_extents,
134 &ctx->busy_extents.extent_list);
135 }
136 if (!list_empty(&cilpcp->log_items))
137 list_splice_init(&cilpcp->log_items, &ctx->log_items);
138
139 /*
140 * We're in the middle of switching cil contexts. Reset the
141 * counter we use to detect when the current context is nearing
142 * full.
143 */
144 cilpcp->space_used = 0;
145 }
146 }
147
148 /*
149 * Aggregate the CIL per-cpu space used counters into the global atomic value.
150 * This is called when the per-cpu counter aggregation will first pass the soft
151 * limit threshold so we can switch to atomic counter aggregation for accurate
152 * detection of hard limit traversal.
153 */
154 static void
xlog_cil_insert_pcp_aggregate(struct xfs_cil * cil,struct xfs_cil_ctx * ctx)155 xlog_cil_insert_pcp_aggregate(
156 struct xfs_cil *cil,
157 struct xfs_cil_ctx *ctx)
158 {
159 int cpu;
160 int count = 0;
161
162 /* Trigger atomic updates then aggregate only for the first caller */
163 if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags))
164 return;
165
166 /*
167 * We can race with other cpus setting cil_pcpmask. However, we've
168 * atomically cleared PCP_SPACE which forces other threads to add to
169 * the global space used count. cil_pcpmask is a superset of cilpcp
170 * structures that could have a nonzero space_used.
171 */
172 for_each_cpu(cpu, &ctx->cil_pcpmask) {
173 struct xlog_cil_pcp *cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
174 int old = READ_ONCE(cilpcp->space_used);
175
176 while (!try_cmpxchg(&cilpcp->space_used, &old, 0))
177 ;
178 count += old;
179 }
180 atomic_add(count, &ctx->space_used);
181 }
182
183 static void
xlog_cil_ctx_switch(struct xfs_cil * cil,struct xfs_cil_ctx * ctx)184 xlog_cil_ctx_switch(
185 struct xfs_cil *cil,
186 struct xfs_cil_ctx *ctx)
187 {
188 xlog_cil_set_iclog_hdr_count(cil);
189 set_bit(XLOG_CIL_EMPTY, &cil->xc_flags);
190 set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags);
191 ctx->sequence = ++cil->xc_current_sequence;
192 ctx->cil = cil;
193 cil->xc_ctx = ctx;
194 }
195
196 /*
197 * After the first stage of log recovery is done, we know where the head and
198 * tail of the log are. We need this log initialisation done before we can
199 * initialise the first CIL checkpoint context.
200 *
201 * Here we allocate a log ticket to track space usage during a CIL push. This
202 * ticket is passed to xlog_write() directly so that we don't slowly leak log
203 * space by failing to account for space used by log headers and additional
204 * region headers for split regions.
205 */
206 void
xlog_cil_init_post_recovery(struct xlog * log)207 xlog_cil_init_post_recovery(
208 struct xlog *log)
209 {
210 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
211 log->l_cilp->xc_ctx->sequence = 1;
212 xlog_cil_set_iclog_hdr_count(log->l_cilp);
213 }
214
215 static inline int
xlog_cil_iovec_space(uint niovecs)216 xlog_cil_iovec_space(
217 uint niovecs)
218 {
219 return round_up((sizeof(struct xfs_log_vec) +
220 niovecs * sizeof(struct xfs_log_iovec)),
221 sizeof(uint64_t));
222 }
223
224 /*
225 * Allocate or pin log vector buffers for CIL insertion.
226 *
227 * The CIL currently uses disposable buffers for copying a snapshot of the
228 * modified items into the log during a push. The biggest problem with this is
229 * the requirement to allocate the disposable buffer during the commit if:
230 * a) does not exist; or
231 * b) it is too small
232 *
233 * If we do this allocation within xlog_cil_insert_format_items(), it is done
234 * under the xc_ctx_lock, which means that a CIL push cannot occur during
235 * the memory allocation. This means that we have a potential deadlock situation
236 * under low memory conditions when we have lots of dirty metadata pinned in
237 * the CIL and we need a CIL commit to occur to free memory.
238 *
239 * To avoid this, we need to move the memory allocation outside the
240 * xc_ctx_lock, but because the log vector buffers are disposable, that opens
241 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
242 * vector buffers between the check and the formatting of the item into the
243 * log vector buffer within the xc_ctx_lock.
244 *
245 * Because the log vector buffer needs to be unchanged during the CIL push
246 * process, we cannot share the buffer between the transaction commit (which
247 * modifies the buffer) and the CIL push context that is writing the changes
248 * into the log. This means skipping preallocation of buffer space is
249 * unreliable, but we most definitely do not want to be allocating and freeing
250 * buffers unnecessarily during commits when overwrites can be done safely.
251 *
252 * The simplest solution to this problem is to allocate a shadow buffer when a
253 * log item is committed for the second time, and then to only use this buffer
254 * if necessary. The buffer can remain attached to the log item until such time
255 * it is needed, and this is the buffer that is reallocated to match the size of
256 * the incoming modification. Then during the formatting of the item we can swap
257 * the active buffer with the new one if we can't reuse the existing buffer. We
258 * don't free the old buffer as it may be reused on the next modification if
259 * it's size is right, otherwise we'll free and reallocate it at that point.
260 *
261 * This function builds a vector for the changes in each log item in the
262 * transaction. It then works out the length of the buffer needed for each log
263 * item, allocates them and attaches the vector to the log item in preparation
264 * for the formatting step which occurs under the xc_ctx_lock.
265 *
266 * While this means the memory footprint goes up, it avoids the repeated
267 * alloc/free pattern that repeated modifications of an item would otherwise
268 * cause, and hence minimises the CPU overhead of such behaviour.
269 */
270 static void
xlog_cil_alloc_shadow_bufs(struct xlog * log,struct xfs_trans * tp)271 xlog_cil_alloc_shadow_bufs(
272 struct xlog *log,
273 struct xfs_trans *tp)
274 {
275 struct xfs_log_item *lip;
276
277 list_for_each_entry(lip, &tp->t_items, li_trans) {
278 struct xfs_log_vec *lv;
279 int niovecs = 0;
280 int nbytes = 0;
281 int buf_size;
282 bool ordered = false;
283
284 /* Skip items which aren't dirty in this transaction. */
285 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
286 continue;
287
288 /* get number of vecs and size of data to be stored */
289 lip->li_ops->iop_size(lip, &niovecs, &nbytes);
290
291 /*
292 * Ordered items need to be tracked but we do not wish to write
293 * them. We need a logvec to track the object, but we do not
294 * need an iovec or buffer to be allocated for copying data.
295 */
296 if (niovecs == XFS_LOG_VEC_ORDERED) {
297 ordered = true;
298 niovecs = 0;
299 nbytes = 0;
300 }
301
302 /*
303 * We 64-bit align the length of each iovec so that the start of
304 * the next one is naturally aligned. We'll need to account for
305 * that slack space here.
306 *
307 * We also add the xlog_op_header to each region when
308 * formatting, but that's not accounted to the size of the item
309 * at this point. Hence we'll need an addition number of bytes
310 * for each vector to hold an opheader.
311 *
312 * Then round nbytes up to 64-bit alignment so that the initial
313 * buffer alignment is easy to calculate and verify.
314 */
315 nbytes += niovecs *
316 (sizeof(uint64_t) + sizeof(struct xlog_op_header));
317 nbytes = round_up(nbytes, sizeof(uint64_t));
318
319 /*
320 * The data buffer needs to start 64-bit aligned, so round up
321 * that space to ensure we can align it appropriately and not
322 * overrun the buffer.
323 */
324 buf_size = nbytes + xlog_cil_iovec_space(niovecs);
325
326 /*
327 * if we have no shadow buffer, or it is too small, we need to
328 * reallocate it.
329 */
330 if (!lip->li_lv_shadow ||
331 buf_size > lip->li_lv_shadow->lv_size) {
332 /*
333 * We free and allocate here as a realloc would copy
334 * unnecessary data. We don't use kvzalloc() for the
335 * same reason - we don't need to zero the data area in
336 * the buffer, only the log vector header and the iovec
337 * storage.
338 */
339 kmem_free(lip->li_lv_shadow);
340 lv = xlog_kvmalloc(buf_size);
341
342 memset(lv, 0, xlog_cil_iovec_space(niovecs));
343
344 INIT_LIST_HEAD(&lv->lv_list);
345 lv->lv_item = lip;
346 lv->lv_size = buf_size;
347 if (ordered)
348 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
349 else
350 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
351 lip->li_lv_shadow = lv;
352 } else {
353 /* same or smaller, optimise common overwrite case */
354 lv = lip->li_lv_shadow;
355 if (ordered)
356 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
357 else
358 lv->lv_buf_len = 0;
359 lv->lv_bytes = 0;
360 }
361
362 /* Ensure the lv is set up according to ->iop_size */
363 lv->lv_niovecs = niovecs;
364
365 /* The allocated data region lies beyond the iovec region */
366 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
367 }
368
369 }
370
371 /*
372 * Prepare the log item for insertion into the CIL. Calculate the difference in
373 * log space it will consume, and if it is a new item pin it as well.
374 */
375 STATIC void
xfs_cil_prepare_item(struct xlog * log,struct xfs_log_vec * lv,struct xfs_log_vec * old_lv,int * diff_len)376 xfs_cil_prepare_item(
377 struct xlog *log,
378 struct xfs_log_vec *lv,
379 struct xfs_log_vec *old_lv,
380 int *diff_len)
381 {
382 /* Account for the new LV being passed in */
383 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
384 *diff_len += lv->lv_bytes;
385
386 /*
387 * If there is no old LV, this is the first time we've seen the item in
388 * this CIL context and so we need to pin it. If we are replacing the
389 * old_lv, then remove the space it accounts for and make it the shadow
390 * buffer for later freeing. In both cases we are now switching to the
391 * shadow buffer, so update the pointer to it appropriately.
392 */
393 if (!old_lv) {
394 if (lv->lv_item->li_ops->iop_pin)
395 lv->lv_item->li_ops->iop_pin(lv->lv_item);
396 lv->lv_item->li_lv_shadow = NULL;
397 } else if (old_lv != lv) {
398 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
399
400 *diff_len -= old_lv->lv_bytes;
401 lv->lv_item->li_lv_shadow = old_lv;
402 }
403
404 /* attach new log vector to log item */
405 lv->lv_item->li_lv = lv;
406
407 /*
408 * If this is the first time the item is being committed to the
409 * CIL, store the sequence number on the log item so we can
410 * tell in future commits whether this is the first checkpoint
411 * the item is being committed into.
412 */
413 if (!lv->lv_item->li_seq)
414 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
415 }
416
417 /*
418 * Format log item into a flat buffers
419 *
420 * For delayed logging, we need to hold a formatted buffer containing all the
421 * changes on the log item. This enables us to relog the item in memory and
422 * write it out asynchronously without needing to relock the object that was
423 * modified at the time it gets written into the iclog.
424 *
425 * This function takes the prepared log vectors attached to each log item, and
426 * formats the changes into the log vector buffer. The buffer it uses is
427 * dependent on the current state of the vector in the CIL - the shadow lv is
428 * guaranteed to be large enough for the current modification, but we will only
429 * use that if we can't reuse the existing lv. If we can't reuse the existing
430 * lv, then simple swap it out for the shadow lv. We don't free it - that is
431 * done lazily either by th enext modification or the freeing of the log item.
432 *
433 * We don't set up region headers during this process; we simply copy the
434 * regions into the flat buffer. We can do this because we still have to do a
435 * formatting step to write the regions into the iclog buffer. Writing the
436 * ophdrs during the iclog write means that we can support splitting large
437 * regions across iclog boundares without needing a change in the format of the
438 * item/region encapsulation.
439 *
440 * Hence what we need to do now is change the rewrite the vector array to point
441 * to the copied region inside the buffer we just allocated. This allows us to
442 * format the regions into the iclog as though they are being formatted
443 * directly out of the objects themselves.
444 */
445 static void
xlog_cil_insert_format_items(struct xlog * log,struct xfs_trans * tp,int * diff_len)446 xlog_cil_insert_format_items(
447 struct xlog *log,
448 struct xfs_trans *tp,
449 int *diff_len)
450 {
451 struct xfs_log_item *lip;
452
453 /* Bail out if we didn't find a log item. */
454 if (list_empty(&tp->t_items)) {
455 ASSERT(0);
456 return;
457 }
458
459 list_for_each_entry(lip, &tp->t_items, li_trans) {
460 struct xfs_log_vec *lv;
461 struct xfs_log_vec *old_lv = NULL;
462 struct xfs_log_vec *shadow;
463 bool ordered = false;
464
465 /* Skip items which aren't dirty in this transaction. */
466 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
467 continue;
468
469 /*
470 * The formatting size information is already attached to
471 * the shadow lv on the log item.
472 */
473 shadow = lip->li_lv_shadow;
474 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
475 ordered = true;
476
477 /* Skip items that do not have any vectors for writing */
478 if (!shadow->lv_niovecs && !ordered)
479 continue;
480
481 /* compare to existing item size */
482 old_lv = lip->li_lv;
483 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
484 /* same or smaller, optimise common overwrite case */
485 lv = lip->li_lv;
486
487 if (ordered)
488 goto insert;
489
490 /*
491 * set the item up as though it is a new insertion so
492 * that the space reservation accounting is correct.
493 */
494 *diff_len -= lv->lv_bytes;
495
496 /* Ensure the lv is set up according to ->iop_size */
497 lv->lv_niovecs = shadow->lv_niovecs;
498
499 /* reset the lv buffer information for new formatting */
500 lv->lv_buf_len = 0;
501 lv->lv_bytes = 0;
502 lv->lv_buf = (char *)lv +
503 xlog_cil_iovec_space(lv->lv_niovecs);
504 } else {
505 /* switch to shadow buffer! */
506 lv = shadow;
507 lv->lv_item = lip;
508 if (ordered) {
509 /* track as an ordered logvec */
510 ASSERT(lip->li_lv == NULL);
511 goto insert;
512 }
513 }
514
515 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
516 lip->li_ops->iop_format(lip, lv);
517 insert:
518 xfs_cil_prepare_item(log, lv, old_lv, diff_len);
519 }
520 }
521
522 /*
523 * The use of lockless waitqueue_active() requires that the caller has
524 * serialised itself against the wakeup call in xlog_cil_push_work(). That
525 * can be done by either holding the push lock or the context lock.
526 */
527 static inline bool
xlog_cil_over_hard_limit(struct xlog * log,int32_t space_used)528 xlog_cil_over_hard_limit(
529 struct xlog *log,
530 int32_t space_used)
531 {
532 if (waitqueue_active(&log->l_cilp->xc_push_wait))
533 return true;
534 if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log))
535 return true;
536 return false;
537 }
538
539 /*
540 * Insert the log items into the CIL and calculate the difference in space
541 * consumed by the item. Add the space to the checkpoint ticket and calculate
542 * if the change requires additional log metadata. If it does, take that space
543 * as well. Remove the amount of space we added to the checkpoint ticket from
544 * the current transaction ticket so that the accounting works out correctly.
545 */
546 static void
xlog_cil_insert_items(struct xlog * log,struct xfs_trans * tp,uint32_t released_space)547 xlog_cil_insert_items(
548 struct xlog *log,
549 struct xfs_trans *tp,
550 uint32_t released_space)
551 {
552 struct xfs_cil *cil = log->l_cilp;
553 struct xfs_cil_ctx *ctx = cil->xc_ctx;
554 struct xfs_log_item *lip;
555 int len = 0;
556 int iovhdr_res = 0, split_res = 0, ctx_res = 0;
557 int space_used;
558 int order;
559 unsigned int cpu_nr;
560 struct xlog_cil_pcp *cilpcp;
561
562 ASSERT(tp);
563
564 /*
565 * We can do this safely because the context can't checkpoint until we
566 * are done so it doesn't matter exactly how we update the CIL.
567 */
568 xlog_cil_insert_format_items(log, tp, &len);
569
570 /*
571 * Subtract the space released by intent cancelation from the space we
572 * consumed so that we remove it from the CIL space and add it back to
573 * the current transaction reservation context.
574 */
575 len -= released_space;
576
577 /*
578 * Grab the per-cpu pointer for the CIL before we start any accounting.
579 * That ensures that we are running with pre-emption disabled and so we
580 * can't be scheduled away between split sample/update operations that
581 * are done without outside locking to serialise them.
582 */
583 cpu_nr = get_cpu();
584 cilpcp = this_cpu_ptr(cil->xc_pcp);
585
586 /* Tell the future push that there was work added by this CPU. */
587 if (!cpumask_test_cpu(cpu_nr, &ctx->cil_pcpmask))
588 cpumask_test_and_set_cpu(cpu_nr, &ctx->cil_pcpmask);
589
590 /*
591 * We need to take the CIL checkpoint unit reservation on the first
592 * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't
593 * unnecessarily do an atomic op in the fast path here. We can clear the
594 * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that
595 * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit.
596 */
597 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) &&
598 test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
599 ctx_res = ctx->ticket->t_unit_res;
600
601 /*
602 * Check if we need to steal iclog headers. atomic_read() is not a
603 * locked atomic operation, so we can check the value before we do any
604 * real atomic ops in the fast path. If we've already taken the CIL unit
605 * reservation from this commit, we've already got one iclog header
606 * space reserved so we have to account for that otherwise we risk
607 * overrunning the reservation on this ticket.
608 *
609 * If the CIL is already at the hard limit, we might need more header
610 * space that originally reserved. So steal more header space from every
611 * commit that occurs once we are over the hard limit to ensure the CIL
612 * push won't run out of reservation space.
613 *
614 * This can steal more than we need, but that's OK.
615 *
616 * The cil->xc_ctx_lock provides the serialisation necessary for safely
617 * calling xlog_cil_over_hard_limit() in this context.
618 */
619 space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len;
620 if (atomic_read(&cil->xc_iclog_hdrs) > 0 ||
621 xlog_cil_over_hard_limit(log, space_used)) {
622 split_res = log->l_iclog_hsize +
623 sizeof(struct xlog_op_header);
624 if (ctx_res)
625 ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1);
626 else
627 ctx_res = split_res * tp->t_ticket->t_iclog_hdrs;
628 atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs);
629 }
630 cilpcp->space_reserved += ctx_res;
631
632 /*
633 * Accurately account when over the soft limit, otherwise fold the
634 * percpu count into the global count if over the per-cpu threshold.
635 */
636 if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) {
637 atomic_add(len, &ctx->space_used);
638 } else if (cilpcp->space_used + len >
639 (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) {
640 space_used = atomic_add_return(cilpcp->space_used + len,
641 &ctx->space_used);
642 cilpcp->space_used = 0;
643
644 /*
645 * If we just transitioned over the soft limit, we need to
646 * transition to the global atomic counter.
647 */
648 if (space_used >= XLOG_CIL_SPACE_LIMIT(log))
649 xlog_cil_insert_pcp_aggregate(cil, ctx);
650 } else {
651 cilpcp->space_used += len;
652 }
653 /* attach the transaction to the CIL if it has any busy extents */
654 if (!list_empty(&tp->t_busy))
655 list_splice_init(&tp->t_busy, &cilpcp->busy_extents);
656
657 /*
658 * Now update the order of everything modified in the transaction
659 * and insert items into the CIL if they aren't already there.
660 * We do this here so we only need to take the CIL lock once during
661 * the transaction commit.
662 */
663 order = atomic_inc_return(&ctx->order_id);
664 list_for_each_entry(lip, &tp->t_items, li_trans) {
665 /* Skip items which aren't dirty in this transaction. */
666 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
667 continue;
668
669 lip->li_order_id = order;
670 if (!list_empty(&lip->li_cil))
671 continue;
672 list_add_tail(&lip->li_cil, &cilpcp->log_items);
673 }
674 put_cpu();
675
676 /*
677 * If we've overrun the reservation, dump the tx details before we move
678 * the log items. Shutdown is imminent...
679 */
680 tp->t_ticket->t_curr_res -= ctx_res + len;
681 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
682 xfs_warn(log->l_mp, "Transaction log reservation overrun:");
683 xfs_warn(log->l_mp,
684 " log items: %d bytes (iov hdrs: %d bytes)",
685 len, iovhdr_res);
686 xfs_warn(log->l_mp, " split region headers: %d bytes",
687 split_res);
688 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res);
689 xlog_print_trans(tp);
690 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
691 }
692 }
693
694 static void
xlog_cil_free_logvec(struct list_head * lv_chain)695 xlog_cil_free_logvec(
696 struct list_head *lv_chain)
697 {
698 struct xfs_log_vec *lv;
699
700 while (!list_empty(lv_chain)) {
701 lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list);
702 list_del_init(&lv->lv_list);
703 kmem_free(lv);
704 }
705 }
706
707 /*
708 * Mark all items committed and clear busy extents. We free the log vector
709 * chains in a separate pass so that we unpin the log items as quickly as
710 * possible.
711 */
712 static void
xlog_cil_committed(struct xfs_cil_ctx * ctx)713 xlog_cil_committed(
714 struct xfs_cil_ctx *ctx)
715 {
716 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
717 bool abort = xlog_is_shutdown(ctx->cil->xc_log);
718
719 /*
720 * If the I/O failed, we're aborting the commit and already shutdown.
721 * Wake any commit waiters before aborting the log items so we don't
722 * block async log pushers on callbacks. Async log pushers explicitly do
723 * not wait on log force completion because they may be holding locks
724 * required to unpin items.
725 */
726 if (abort) {
727 spin_lock(&ctx->cil->xc_push_lock);
728 wake_up_all(&ctx->cil->xc_start_wait);
729 wake_up_all(&ctx->cil->xc_commit_wait);
730 spin_unlock(&ctx->cil->xc_push_lock);
731 }
732
733 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, &ctx->lv_chain,
734 ctx->start_lsn, abort);
735
736 xfs_extent_busy_sort(&ctx->busy_extents.extent_list);
737 xfs_extent_busy_clear(mp, &ctx->busy_extents.extent_list,
738 xfs_has_discard(mp) && !abort);
739
740 spin_lock(&ctx->cil->xc_push_lock);
741 list_del(&ctx->committing);
742 spin_unlock(&ctx->cil->xc_push_lock);
743
744 xlog_cil_free_logvec(&ctx->lv_chain);
745
746 if (!list_empty(&ctx->busy_extents.extent_list)) {
747 ctx->busy_extents.mount = mp;
748 ctx->busy_extents.owner = ctx;
749 xfs_discard_extents(mp, &ctx->busy_extents);
750 return;
751 }
752
753 kmem_free(ctx);
754 }
755
756 void
xlog_cil_process_committed(struct list_head * list)757 xlog_cil_process_committed(
758 struct list_head *list)
759 {
760 struct xfs_cil_ctx *ctx;
761
762 while ((ctx = list_first_entry_or_null(list,
763 struct xfs_cil_ctx, iclog_entry))) {
764 list_del(&ctx->iclog_entry);
765 xlog_cil_committed(ctx);
766 }
767 }
768
769 /*
770 * Record the LSN of the iclog we were just granted space to start writing into.
771 * If the context doesn't have a start_lsn recorded, then this iclog will
772 * contain the start record for the checkpoint. Otherwise this write contains
773 * the commit record for the checkpoint.
774 */
775 void
xlog_cil_set_ctx_write_state(struct xfs_cil_ctx * ctx,struct xlog_in_core * iclog)776 xlog_cil_set_ctx_write_state(
777 struct xfs_cil_ctx *ctx,
778 struct xlog_in_core *iclog)
779 {
780 struct xfs_cil *cil = ctx->cil;
781 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
782
783 ASSERT(!ctx->commit_lsn);
784 if (!ctx->start_lsn) {
785 spin_lock(&cil->xc_push_lock);
786 /*
787 * The LSN we need to pass to the log items on transaction
788 * commit is the LSN reported by the first log vector write, not
789 * the commit lsn. If we use the commit record lsn then we can
790 * move the grant write head beyond the tail LSN and overwrite
791 * it.
792 */
793 ctx->start_lsn = lsn;
794 wake_up_all(&cil->xc_start_wait);
795 spin_unlock(&cil->xc_push_lock);
796
797 /*
798 * Make sure the metadata we are about to overwrite in the log
799 * has been flushed to stable storage before this iclog is
800 * issued.
801 */
802 spin_lock(&cil->xc_log->l_icloglock);
803 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
804 spin_unlock(&cil->xc_log->l_icloglock);
805 return;
806 }
807
808 /*
809 * Take a reference to the iclog for the context so that we still hold
810 * it when xlog_write is done and has released it. This means the
811 * context controls when the iclog is released for IO.
812 */
813 atomic_inc(&iclog->ic_refcnt);
814
815 /*
816 * xlog_state_get_iclog_space() guarantees there is enough space in the
817 * iclog for an entire commit record, so we can attach the context
818 * callbacks now. This needs to be done before we make the commit_lsn
819 * visible to waiters so that checkpoints with commit records in the
820 * same iclog order their IO completion callbacks in the same order that
821 * the commit records appear in the iclog.
822 */
823 spin_lock(&cil->xc_log->l_icloglock);
824 list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
825 spin_unlock(&cil->xc_log->l_icloglock);
826
827 /*
828 * Now we can record the commit LSN and wake anyone waiting for this
829 * sequence to have the ordered commit record assigned to a physical
830 * location in the log.
831 */
832 spin_lock(&cil->xc_push_lock);
833 ctx->commit_iclog = iclog;
834 ctx->commit_lsn = lsn;
835 wake_up_all(&cil->xc_commit_wait);
836 spin_unlock(&cil->xc_push_lock);
837 }
838
839
840 /*
841 * Ensure that the order of log writes follows checkpoint sequence order. This
842 * relies on the context LSN being zero until the log write has guaranteed the
843 * LSN that the log write will start at via xlog_state_get_iclog_space().
844 */
845 enum _record_type {
846 _START_RECORD,
847 _COMMIT_RECORD,
848 };
849
850 static int
xlog_cil_order_write(struct xfs_cil * cil,xfs_csn_t sequence,enum _record_type record)851 xlog_cil_order_write(
852 struct xfs_cil *cil,
853 xfs_csn_t sequence,
854 enum _record_type record)
855 {
856 struct xfs_cil_ctx *ctx;
857
858 restart:
859 spin_lock(&cil->xc_push_lock);
860 list_for_each_entry(ctx, &cil->xc_committing, committing) {
861 /*
862 * Avoid getting stuck in this loop because we were woken by the
863 * shutdown, but then went back to sleep once already in the
864 * shutdown state.
865 */
866 if (xlog_is_shutdown(cil->xc_log)) {
867 spin_unlock(&cil->xc_push_lock);
868 return -EIO;
869 }
870
871 /*
872 * Higher sequences will wait for this one so skip them.
873 * Don't wait for our own sequence, either.
874 */
875 if (ctx->sequence >= sequence)
876 continue;
877
878 /* Wait until the LSN for the record has been recorded. */
879 switch (record) {
880 case _START_RECORD:
881 if (!ctx->start_lsn) {
882 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
883 goto restart;
884 }
885 break;
886 case _COMMIT_RECORD:
887 if (!ctx->commit_lsn) {
888 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
889 goto restart;
890 }
891 break;
892 }
893 }
894 spin_unlock(&cil->xc_push_lock);
895 return 0;
896 }
897
898 /*
899 * Write out the log vector change now attached to the CIL context. This will
900 * write a start record that needs to be strictly ordered in ascending CIL
901 * sequence order so that log recovery will always use in-order start LSNs when
902 * replaying checkpoints.
903 */
904 static int
xlog_cil_write_chain(struct xfs_cil_ctx * ctx,uint32_t chain_len)905 xlog_cil_write_chain(
906 struct xfs_cil_ctx *ctx,
907 uint32_t chain_len)
908 {
909 struct xlog *log = ctx->cil->xc_log;
910 int error;
911
912 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
913 if (error)
914 return error;
915 return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len);
916 }
917
918 /*
919 * Write out the commit record of a checkpoint transaction to close off a
920 * running log write. These commit records are strictly ordered in ascending CIL
921 * sequence order so that log recovery will always replay the checkpoints in the
922 * correct order.
923 */
924 static int
xlog_cil_write_commit_record(struct xfs_cil_ctx * ctx)925 xlog_cil_write_commit_record(
926 struct xfs_cil_ctx *ctx)
927 {
928 struct xlog *log = ctx->cil->xc_log;
929 struct xlog_op_header ophdr = {
930 .oh_clientid = XFS_TRANSACTION,
931 .oh_tid = cpu_to_be32(ctx->ticket->t_tid),
932 .oh_flags = XLOG_COMMIT_TRANS,
933 };
934 struct xfs_log_iovec reg = {
935 .i_addr = &ophdr,
936 .i_len = sizeof(struct xlog_op_header),
937 .i_type = XLOG_REG_TYPE_COMMIT,
938 };
939 struct xfs_log_vec vec = {
940 .lv_niovecs = 1,
941 .lv_iovecp = ®,
942 };
943 int error;
944 LIST_HEAD(lv_chain);
945 list_add(&vec.lv_list, &lv_chain);
946
947 if (xlog_is_shutdown(log))
948 return -EIO;
949
950 error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
951 if (error)
952 return error;
953
954 /* account for space used by record data */
955 ctx->ticket->t_curr_res -= reg.i_len;
956 error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len);
957 if (error)
958 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
959 return error;
960 }
961
962 struct xlog_cil_trans_hdr {
963 struct xlog_op_header oph[2];
964 struct xfs_trans_header thdr;
965 struct xfs_log_iovec lhdr[2];
966 };
967
968 /*
969 * Build a checkpoint transaction header to begin the journal transaction. We
970 * need to account for the space used by the transaction header here as it is
971 * not accounted for in xlog_write().
972 *
973 * This is the only place we write a transaction header, so we also build the
974 * log opheaders that indicate the start of a log transaction and wrap the
975 * transaction header. We keep the start record in it's own log vector rather
976 * than compacting them into a single region as this ends up making the logic
977 * in xlog_write() for handling empty opheaders for start, commit and unmount
978 * records much simpler.
979 */
980 static void
xlog_cil_build_trans_hdr(struct xfs_cil_ctx * ctx,struct xlog_cil_trans_hdr * hdr,struct xfs_log_vec * lvhdr,int num_iovecs)981 xlog_cil_build_trans_hdr(
982 struct xfs_cil_ctx *ctx,
983 struct xlog_cil_trans_hdr *hdr,
984 struct xfs_log_vec *lvhdr,
985 int num_iovecs)
986 {
987 struct xlog_ticket *tic = ctx->ticket;
988 __be32 tid = cpu_to_be32(tic->t_tid);
989
990 memset(hdr, 0, sizeof(*hdr));
991
992 /* Log start record */
993 hdr->oph[0].oh_tid = tid;
994 hdr->oph[0].oh_clientid = XFS_TRANSACTION;
995 hdr->oph[0].oh_flags = XLOG_START_TRANS;
996
997 /* log iovec region pointer */
998 hdr->lhdr[0].i_addr = &hdr->oph[0];
999 hdr->lhdr[0].i_len = sizeof(struct xlog_op_header);
1000 hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER;
1001
1002 /* log opheader */
1003 hdr->oph[1].oh_tid = tid;
1004 hdr->oph[1].oh_clientid = XFS_TRANSACTION;
1005 hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header));
1006
1007 /* transaction header in host byte order format */
1008 hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1009 hdr->thdr.th_type = XFS_TRANS_CHECKPOINT;
1010 hdr->thdr.th_tid = tic->t_tid;
1011 hdr->thdr.th_num_items = num_iovecs;
1012
1013 /* log iovec region pointer */
1014 hdr->lhdr[1].i_addr = &hdr->oph[1];
1015 hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) +
1016 sizeof(struct xfs_trans_header);
1017 hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR;
1018
1019 lvhdr->lv_niovecs = 2;
1020 lvhdr->lv_iovecp = &hdr->lhdr[0];
1021 lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len;
1022
1023 tic->t_curr_res -= lvhdr->lv_bytes;
1024 }
1025
1026 /*
1027 * CIL item reordering compare function. We want to order in ascending ID order,
1028 * but we want to leave items with the same ID in the order they were added to
1029 * the list. This is important for operations like reflink where we log 4 order
1030 * dependent intents in a single transaction when we overwrite an existing
1031 * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop),
1032 * CUI (inc), BUI(remap)...
1033 */
1034 static int
xlog_cil_order_cmp(void * priv,const struct list_head * a,const struct list_head * b)1035 xlog_cil_order_cmp(
1036 void *priv,
1037 const struct list_head *a,
1038 const struct list_head *b)
1039 {
1040 struct xfs_log_vec *l1 = container_of(a, struct xfs_log_vec, lv_list);
1041 struct xfs_log_vec *l2 = container_of(b, struct xfs_log_vec, lv_list);
1042
1043 return l1->lv_order_id > l2->lv_order_id;
1044 }
1045
1046 /*
1047 * Pull all the log vectors off the items in the CIL, and remove the items from
1048 * the CIL. We don't need the CIL lock here because it's only needed on the
1049 * transaction commit side which is currently locked out by the flush lock.
1050 *
1051 * If a log item is marked with a whiteout, we do not need to write it to the
1052 * journal and so we just move them to the whiteout list for the caller to
1053 * dispose of appropriately.
1054 */
1055 static void
xlog_cil_build_lv_chain(struct xfs_cil_ctx * ctx,struct list_head * whiteouts,uint32_t * num_iovecs,uint32_t * num_bytes)1056 xlog_cil_build_lv_chain(
1057 struct xfs_cil_ctx *ctx,
1058 struct list_head *whiteouts,
1059 uint32_t *num_iovecs,
1060 uint32_t *num_bytes)
1061 {
1062 while (!list_empty(&ctx->log_items)) {
1063 struct xfs_log_item *item;
1064 struct xfs_log_vec *lv;
1065
1066 item = list_first_entry(&ctx->log_items,
1067 struct xfs_log_item, li_cil);
1068
1069 if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) {
1070 list_move(&item->li_cil, whiteouts);
1071 trace_xfs_cil_whiteout_skip(item);
1072 continue;
1073 }
1074
1075 lv = item->li_lv;
1076 lv->lv_order_id = item->li_order_id;
1077
1078 /* we don't write ordered log vectors */
1079 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
1080 *num_bytes += lv->lv_bytes;
1081 *num_iovecs += lv->lv_niovecs;
1082 list_add_tail(&lv->lv_list, &ctx->lv_chain);
1083
1084 list_del_init(&item->li_cil);
1085 item->li_order_id = 0;
1086 item->li_lv = NULL;
1087 }
1088 }
1089
1090 static void
xlog_cil_cleanup_whiteouts(struct list_head * whiteouts)1091 xlog_cil_cleanup_whiteouts(
1092 struct list_head *whiteouts)
1093 {
1094 while (!list_empty(whiteouts)) {
1095 struct xfs_log_item *item = list_first_entry(whiteouts,
1096 struct xfs_log_item, li_cil);
1097 list_del_init(&item->li_cil);
1098 trace_xfs_cil_whiteout_unpin(item);
1099 item->li_ops->iop_unpin(item, 1);
1100 }
1101 }
1102
1103 /*
1104 * Push the Committed Item List to the log.
1105 *
1106 * If the current sequence is the same as xc_push_seq we need to do a flush. If
1107 * xc_push_seq is less than the current sequence, then it has already been
1108 * flushed and we don't need to do anything - the caller will wait for it to
1109 * complete if necessary.
1110 *
1111 * xc_push_seq is checked unlocked against the sequence number for a match.
1112 * Hence we can allow log forces to run racily and not issue pushes for the
1113 * same sequence twice. If we get a race between multiple pushes for the same
1114 * sequence they will block on the first one and then abort, hence avoiding
1115 * needless pushes.
1116 */
1117 static void
xlog_cil_push_work(struct work_struct * work)1118 xlog_cil_push_work(
1119 struct work_struct *work)
1120 {
1121 struct xfs_cil_ctx *ctx =
1122 container_of(work, struct xfs_cil_ctx, push_work);
1123 struct xfs_cil *cil = ctx->cil;
1124 struct xlog *log = cil->xc_log;
1125 struct xfs_cil_ctx *new_ctx;
1126 int num_iovecs = 0;
1127 int num_bytes = 0;
1128 int error = 0;
1129 struct xlog_cil_trans_hdr thdr;
1130 struct xfs_log_vec lvhdr = {};
1131 xfs_csn_t push_seq;
1132 bool push_commit_stable;
1133 LIST_HEAD (whiteouts);
1134 struct xlog_ticket *ticket;
1135
1136 new_ctx = xlog_cil_ctx_alloc();
1137 new_ctx->ticket = xlog_cil_ticket_alloc(log);
1138
1139 down_write(&cil->xc_ctx_lock);
1140
1141 spin_lock(&cil->xc_push_lock);
1142 push_seq = cil->xc_push_seq;
1143 ASSERT(push_seq <= ctx->sequence);
1144 push_commit_stable = cil->xc_push_commit_stable;
1145 cil->xc_push_commit_stable = false;
1146
1147 /*
1148 * As we are about to switch to a new, empty CIL context, we no longer
1149 * need to throttle tasks on CIL space overruns. Wake any waiters that
1150 * the hard push throttle may have caught so they can start committing
1151 * to the new context. The ctx->xc_push_lock provides the serialisation
1152 * necessary for safely using the lockless waitqueue_active() check in
1153 * this context.
1154 */
1155 if (waitqueue_active(&cil->xc_push_wait))
1156 wake_up_all(&cil->xc_push_wait);
1157
1158 xlog_cil_push_pcp_aggregate(cil, ctx);
1159
1160 /*
1161 * Check if we've anything to push. If there is nothing, then we don't
1162 * move on to a new sequence number and so we have to be able to push
1163 * this sequence again later.
1164 */
1165 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1166 cil->xc_push_seq = 0;
1167 spin_unlock(&cil->xc_push_lock);
1168 goto out_skip;
1169 }
1170
1171
1172 /* check for a previously pushed sequence */
1173 if (push_seq < ctx->sequence) {
1174 spin_unlock(&cil->xc_push_lock);
1175 goto out_skip;
1176 }
1177
1178 /*
1179 * We are now going to push this context, so add it to the committing
1180 * list before we do anything else. This ensures that anyone waiting on
1181 * this push can easily detect the difference between a "push in
1182 * progress" and "CIL is empty, nothing to do".
1183 *
1184 * IOWs, a wait loop can now check for:
1185 * the current sequence not being found on the committing list;
1186 * an empty CIL; and
1187 * an unchanged sequence number
1188 * to detect a push that had nothing to do and therefore does not need
1189 * waiting on. If the CIL is not empty, we get put on the committing
1190 * list before emptying the CIL and bumping the sequence number. Hence
1191 * an empty CIL and an unchanged sequence number means we jumped out
1192 * above after doing nothing.
1193 *
1194 * Hence the waiter will either find the commit sequence on the
1195 * committing list or the sequence number will be unchanged and the CIL
1196 * still dirty. In that latter case, the push has not yet started, and
1197 * so the waiter will have to continue trying to check the CIL
1198 * committing list until it is found. In extreme cases of delay, the
1199 * sequence may fully commit between the attempts the wait makes to wait
1200 * on the commit sequence.
1201 */
1202 list_add(&ctx->committing, &cil->xc_committing);
1203 spin_unlock(&cil->xc_push_lock);
1204
1205 xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes);
1206
1207 /*
1208 * Switch the contexts so we can drop the context lock and move out
1209 * of a shared context. We can't just go straight to the commit record,
1210 * though - we need to synchronise with previous and future commits so
1211 * that the commit records are correctly ordered in the log to ensure
1212 * that we process items during log IO completion in the correct order.
1213 *
1214 * For example, if we get an EFI in one checkpoint and the EFD in the
1215 * next (e.g. due to log forces), we do not want the checkpoint with
1216 * the EFD to be committed before the checkpoint with the EFI. Hence
1217 * we must strictly order the commit records of the checkpoints so
1218 * that: a) the checkpoint callbacks are attached to the iclogs in the
1219 * correct order; and b) the checkpoints are replayed in correct order
1220 * in log recovery.
1221 *
1222 * Hence we need to add this context to the committing context list so
1223 * that higher sequences will wait for us to write out a commit record
1224 * before they do.
1225 *
1226 * xfs_log_force_seq requires us to mirror the new sequence into the cil
1227 * structure atomically with the addition of this sequence to the
1228 * committing list. This also ensures that we can do unlocked checks
1229 * against the current sequence in log forces without risking
1230 * deferencing a freed context pointer.
1231 */
1232 spin_lock(&cil->xc_push_lock);
1233 xlog_cil_ctx_switch(cil, new_ctx);
1234 spin_unlock(&cil->xc_push_lock);
1235 up_write(&cil->xc_ctx_lock);
1236
1237 /*
1238 * Sort the log vector chain before we add the transaction headers.
1239 * This ensures we always have the transaction headers at the start
1240 * of the chain.
1241 */
1242 list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp);
1243
1244 /*
1245 * Build a checkpoint transaction header and write it to the log to
1246 * begin the transaction. We need to account for the space used by the
1247 * transaction header here as it is not accounted for in xlog_write().
1248 * Add the lvhdr to the head of the lv chain we pass to xlog_write() so
1249 * it gets written into the iclog first.
1250 */
1251 xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs);
1252 num_bytes += lvhdr.lv_bytes;
1253 list_add(&lvhdr.lv_list, &ctx->lv_chain);
1254
1255 /*
1256 * Take the lvhdr back off the lv_chain immediately after calling
1257 * xlog_cil_write_chain() as it should not be passed to log IO
1258 * completion.
1259 */
1260 error = xlog_cil_write_chain(ctx, num_bytes);
1261 list_del(&lvhdr.lv_list);
1262 if (error)
1263 goto out_abort_free_ticket;
1264
1265 error = xlog_cil_write_commit_record(ctx);
1266 if (error)
1267 goto out_abort_free_ticket;
1268
1269 /*
1270 * Grab the ticket from the ctx so we can ungrant it after releasing the
1271 * commit_iclog. The ctx may be freed by the time we return from
1272 * releasing the commit_iclog (i.e. checkpoint has been completed and
1273 * callback run) so we can't reference the ctx after the call to
1274 * xlog_state_release_iclog().
1275 */
1276 ticket = ctx->ticket;
1277
1278 /*
1279 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1280 * to complete before we submit the commit_iclog. We can't use state
1281 * checks for this - ACTIVE can be either a past completed iclog or a
1282 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1283 * past or future iclog awaiting IO or ordered IO completion to be run.
1284 * In the latter case, if it's a future iclog and we wait on it, the we
1285 * will hang because it won't get processed through to ic_force_wait
1286 * wakeup until this commit_iclog is written to disk. Hence we use the
1287 * iclog header lsn and compare it to the commit lsn to determine if we
1288 * need to wait on iclogs or not.
1289 */
1290 spin_lock(&log->l_icloglock);
1291 if (ctx->start_lsn != ctx->commit_lsn) {
1292 xfs_lsn_t plsn;
1293
1294 plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1295 if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1296 /*
1297 * Waiting on ic_force_wait orders the completion of
1298 * iclogs older than ic_prev. Hence we only need to wait
1299 * on the most recent older iclog here.
1300 */
1301 xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1302 spin_lock(&log->l_icloglock);
1303 }
1304
1305 /*
1306 * We need to issue a pre-flush so that the ordering for this
1307 * checkpoint is correctly preserved down to stable storage.
1308 */
1309 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1310 }
1311
1312 /*
1313 * The commit iclog must be written to stable storage to guarantee
1314 * journal IO vs metadata writeback IO is correctly ordered on stable
1315 * storage.
1316 *
1317 * If the push caller needs the commit to be immediately stable and the
1318 * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1319 * will be written when released, switch it's state to WANT_SYNC right
1320 * now.
1321 */
1322 ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1323 if (push_commit_stable &&
1324 ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1325 xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1326 ticket = ctx->ticket;
1327 xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1328
1329 /* Not safe to reference ctx now! */
1330
1331 spin_unlock(&log->l_icloglock);
1332 xlog_cil_cleanup_whiteouts(&whiteouts);
1333 xfs_log_ticket_ungrant(log, ticket);
1334 return;
1335
1336 out_skip:
1337 up_write(&cil->xc_ctx_lock);
1338 xfs_log_ticket_put(new_ctx->ticket);
1339 kmem_free(new_ctx);
1340 return;
1341
1342 out_abort_free_ticket:
1343 ASSERT(xlog_is_shutdown(log));
1344 xlog_cil_cleanup_whiteouts(&whiteouts);
1345 if (!ctx->commit_iclog) {
1346 xfs_log_ticket_ungrant(log, ctx->ticket);
1347 xlog_cil_committed(ctx);
1348 return;
1349 }
1350 spin_lock(&log->l_icloglock);
1351 ticket = ctx->ticket;
1352 xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1353 /* Not safe to reference ctx now! */
1354 spin_unlock(&log->l_icloglock);
1355 xfs_log_ticket_ungrant(log, ticket);
1356 }
1357
1358 /*
1359 * We need to push CIL every so often so we don't cache more than we can fit in
1360 * the log. The limit really is that a checkpoint can't be more than half the
1361 * log (the current checkpoint is not allowed to overwrite the previous
1362 * checkpoint), but commit latency and memory usage limit this to a smaller
1363 * size.
1364 */
1365 static void
xlog_cil_push_background(struct xlog * log)1366 xlog_cil_push_background(
1367 struct xlog *log) __releases(cil->xc_ctx_lock)
1368 {
1369 struct xfs_cil *cil = log->l_cilp;
1370 int space_used = atomic_read(&cil->xc_ctx->space_used);
1371
1372 /*
1373 * The cil won't be empty because we are called while holding the
1374 * context lock so whatever we added to the CIL will still be there.
1375 */
1376 ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1377
1378 /*
1379 * We are done if:
1380 * - we haven't used up all the space available yet; or
1381 * - we've already queued up a push; and
1382 * - we're not over the hard limit; and
1383 * - nothing has been over the hard limit.
1384 *
1385 * If so, we don't need to take the push lock as there's nothing to do.
1386 */
1387 if (space_used < XLOG_CIL_SPACE_LIMIT(log) ||
1388 (cil->xc_push_seq == cil->xc_current_sequence &&
1389 space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) &&
1390 !waitqueue_active(&cil->xc_push_wait))) {
1391 up_read(&cil->xc_ctx_lock);
1392 return;
1393 }
1394
1395 spin_lock(&cil->xc_push_lock);
1396 if (cil->xc_push_seq < cil->xc_current_sequence) {
1397 cil->xc_push_seq = cil->xc_current_sequence;
1398 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1399 }
1400
1401 /*
1402 * Drop the context lock now, we can't hold that if we need to sleep
1403 * because we are over the blocking threshold. The push_lock is still
1404 * held, so blocking threshold sleep/wakeup is still correctly
1405 * serialised here.
1406 */
1407 up_read(&cil->xc_ctx_lock);
1408
1409 /*
1410 * If we are well over the space limit, throttle the work that is being
1411 * done until the push work on this context has begun. Enforce the hard
1412 * throttle on all transaction commits once it has been activated, even
1413 * if the committing transactions have resulted in the space usage
1414 * dipping back down under the hard limit.
1415 *
1416 * The ctx->xc_push_lock provides the serialisation necessary for safely
1417 * calling xlog_cil_over_hard_limit() in this context.
1418 */
1419 if (xlog_cil_over_hard_limit(log, space_used)) {
1420 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1421 ASSERT(space_used < log->l_logsize);
1422 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1423 return;
1424 }
1425
1426 spin_unlock(&cil->xc_push_lock);
1427
1428 }
1429
1430 /*
1431 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1432 * number that is passed. When it returns, the work will be queued for
1433 * @push_seq, but it won't be completed.
1434 *
1435 * If the caller is performing a synchronous force, we will flush the workqueue
1436 * to get previously queued work moving to minimise the wait time they will
1437 * undergo waiting for all outstanding pushes to complete. The caller is
1438 * expected to do the required waiting for push_seq to complete.
1439 *
1440 * If the caller is performing an async push, we need to ensure that the
1441 * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1442 * don't do this, then the commit record may remain sitting in memory in an
1443 * ACTIVE iclog. This then requires another full log force to push to disk,
1444 * which defeats the purpose of having an async, non-blocking CIL force
1445 * mechanism. Hence in this case we need to pass a flag to the push work to
1446 * indicate it needs to flush the commit record itself.
1447 */
1448 static void
xlog_cil_push_now(struct xlog * log,xfs_lsn_t push_seq,bool async)1449 xlog_cil_push_now(
1450 struct xlog *log,
1451 xfs_lsn_t push_seq,
1452 bool async)
1453 {
1454 struct xfs_cil *cil = log->l_cilp;
1455
1456 if (!cil)
1457 return;
1458
1459 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1460
1461 /* start on any pending background push to minimise wait time on it */
1462 if (!async)
1463 flush_workqueue(cil->xc_push_wq);
1464
1465 spin_lock(&cil->xc_push_lock);
1466
1467 /*
1468 * If this is an async flush request, we always need to set the
1469 * xc_push_commit_stable flag even if something else has already queued
1470 * a push. The flush caller is asking for the CIL to be on stable
1471 * storage when the next push completes, so regardless of who has queued
1472 * the push, the flush requires stable semantics from it.
1473 */
1474 cil->xc_push_commit_stable = async;
1475
1476 /*
1477 * If the CIL is empty or we've already pushed the sequence then
1478 * there's no more work that we need to do.
1479 */
1480 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) ||
1481 push_seq <= cil->xc_push_seq) {
1482 spin_unlock(&cil->xc_push_lock);
1483 return;
1484 }
1485
1486 cil->xc_push_seq = push_seq;
1487 queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1488 spin_unlock(&cil->xc_push_lock);
1489 }
1490
1491 bool
xlog_cil_empty(struct xlog * log)1492 xlog_cil_empty(
1493 struct xlog *log)
1494 {
1495 struct xfs_cil *cil = log->l_cilp;
1496 bool empty = false;
1497
1498 spin_lock(&cil->xc_push_lock);
1499 if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
1500 empty = true;
1501 spin_unlock(&cil->xc_push_lock);
1502 return empty;
1503 }
1504
1505 /*
1506 * If there are intent done items in this transaction and the related intent was
1507 * committed in the current (same) CIL checkpoint, we don't need to write either
1508 * the intent or intent done item to the journal as the change will be
1509 * journalled atomically within this checkpoint. As we cannot remove items from
1510 * the CIL here, mark the related intent with a whiteout so that the CIL push
1511 * can remove it rather than writing it to the journal. Then remove the intent
1512 * done item from the current transaction and release it so it doesn't get put
1513 * into the CIL at all.
1514 */
1515 static uint32_t
xlog_cil_process_intents(struct xfs_cil * cil,struct xfs_trans * tp)1516 xlog_cil_process_intents(
1517 struct xfs_cil *cil,
1518 struct xfs_trans *tp)
1519 {
1520 struct xfs_log_item *lip, *ilip, *next;
1521 uint32_t len = 0;
1522
1523 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1524 if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE))
1525 continue;
1526
1527 ilip = lip->li_ops->iop_intent(lip);
1528 if (!ilip || !xlog_item_in_current_chkpt(cil, ilip))
1529 continue;
1530 set_bit(XFS_LI_WHITEOUT, &ilip->li_flags);
1531 trace_xfs_cil_whiteout_mark(ilip);
1532 len += ilip->li_lv->lv_bytes;
1533 kmem_free(ilip->li_lv);
1534 ilip->li_lv = NULL;
1535
1536 xfs_trans_del_item(lip);
1537 lip->li_ops->iop_release(lip);
1538 }
1539 return len;
1540 }
1541
1542 /*
1543 * Commit a transaction with the given vector to the Committed Item List.
1544 *
1545 * To do this, we need to format the item, pin it in memory if required and
1546 * account for the space used by the transaction. Once we have done that we
1547 * need to release the unused reservation for the transaction, attach the
1548 * transaction to the checkpoint context so we carry the busy extents through
1549 * to checkpoint completion, and then unlock all the items in the transaction.
1550 *
1551 * Called with the context lock already held in read mode to lock out
1552 * background commit, returns without it held once background commits are
1553 * allowed again.
1554 */
1555 void
xlog_cil_commit(struct xlog * log,struct xfs_trans * tp,xfs_csn_t * commit_seq,bool regrant)1556 xlog_cil_commit(
1557 struct xlog *log,
1558 struct xfs_trans *tp,
1559 xfs_csn_t *commit_seq,
1560 bool regrant)
1561 {
1562 struct xfs_cil *cil = log->l_cilp;
1563 struct xfs_log_item *lip, *next;
1564 uint32_t released_space = 0;
1565
1566 /*
1567 * Do all necessary memory allocation before we lock the CIL.
1568 * This ensures the allocation does not deadlock with a CIL
1569 * push in memory reclaim (e.g. from kswapd).
1570 */
1571 xlog_cil_alloc_shadow_bufs(log, tp);
1572
1573 /* lock out background commit */
1574 down_read(&cil->xc_ctx_lock);
1575
1576 if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE)
1577 released_space = xlog_cil_process_intents(cil, tp);
1578
1579 xlog_cil_insert_items(log, tp, released_space);
1580
1581 if (regrant && !xlog_is_shutdown(log))
1582 xfs_log_ticket_regrant(log, tp->t_ticket);
1583 else
1584 xfs_log_ticket_ungrant(log, tp->t_ticket);
1585 tp->t_ticket = NULL;
1586 xfs_trans_unreserve_and_mod_sb(tp);
1587
1588 /*
1589 * Once all the items of the transaction have been copied to the CIL,
1590 * the items can be unlocked and possibly freed.
1591 *
1592 * This needs to be done before we drop the CIL context lock because we
1593 * have to update state in the log items and unlock them before they go
1594 * to disk. If we don't, then the CIL checkpoint can race with us and
1595 * we can run checkpoint completion before we've updated and unlocked
1596 * the log items. This affects (at least) processing of stale buffers,
1597 * inodes and EFIs.
1598 */
1599 trace_xfs_trans_commit_items(tp, _RET_IP_);
1600 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1601 xfs_trans_del_item(lip);
1602 if (lip->li_ops->iop_committing)
1603 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1604 }
1605 if (commit_seq)
1606 *commit_seq = cil->xc_ctx->sequence;
1607
1608 /* xlog_cil_push_background() releases cil->xc_ctx_lock */
1609 xlog_cil_push_background(log);
1610 }
1611
1612 /*
1613 * Flush the CIL to stable storage but don't wait for it to complete. This
1614 * requires the CIL push to ensure the commit record for the push hits the disk,
1615 * but otherwise is no different to a push done from a log force.
1616 */
1617 void
xlog_cil_flush(struct xlog * log)1618 xlog_cil_flush(
1619 struct xlog *log)
1620 {
1621 xfs_csn_t seq = log->l_cilp->xc_current_sequence;
1622
1623 trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1624 xlog_cil_push_now(log, seq, true);
1625
1626 /*
1627 * If the CIL is empty, make sure that any previous checkpoint that may
1628 * still be in an active iclog is pushed to stable storage.
1629 */
1630 if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags))
1631 xfs_log_force(log->l_mp, 0);
1632 }
1633
1634 /*
1635 * Conditionally push the CIL based on the sequence passed in.
1636 *
1637 * We only need to push if we haven't already pushed the sequence number given.
1638 * Hence the only time we will trigger a push here is if the push sequence is
1639 * the same as the current context.
1640 *
1641 * We return the current commit lsn to allow the callers to determine if a
1642 * iclog flush is necessary following this call.
1643 */
1644 xfs_lsn_t
xlog_cil_force_seq(struct xlog * log,xfs_csn_t sequence)1645 xlog_cil_force_seq(
1646 struct xlog *log,
1647 xfs_csn_t sequence)
1648 {
1649 struct xfs_cil *cil = log->l_cilp;
1650 struct xfs_cil_ctx *ctx;
1651 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
1652
1653 ASSERT(sequence <= cil->xc_current_sequence);
1654
1655 if (!sequence)
1656 sequence = cil->xc_current_sequence;
1657 trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1658
1659 /*
1660 * check to see if we need to force out the current context.
1661 * xlog_cil_push() handles racing pushes for the same sequence,
1662 * so no need to deal with it here.
1663 */
1664 restart:
1665 xlog_cil_push_now(log, sequence, false);
1666
1667 /*
1668 * See if we can find a previous sequence still committing.
1669 * We need to wait for all previous sequence commits to complete
1670 * before allowing the force of push_seq to go ahead. Hence block
1671 * on commits for those as well.
1672 */
1673 spin_lock(&cil->xc_push_lock);
1674 list_for_each_entry(ctx, &cil->xc_committing, committing) {
1675 /*
1676 * Avoid getting stuck in this loop because we were woken by the
1677 * shutdown, but then went back to sleep once already in the
1678 * shutdown state.
1679 */
1680 if (xlog_is_shutdown(log))
1681 goto out_shutdown;
1682 if (ctx->sequence > sequence)
1683 continue;
1684 if (!ctx->commit_lsn) {
1685 /*
1686 * It is still being pushed! Wait for the push to
1687 * complete, then start again from the beginning.
1688 */
1689 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1690 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1691 goto restart;
1692 }
1693 if (ctx->sequence != sequence)
1694 continue;
1695 /* found it! */
1696 commit_lsn = ctx->commit_lsn;
1697 }
1698
1699 /*
1700 * The call to xlog_cil_push_now() executes the push in the background.
1701 * Hence by the time we have got here it our sequence may not have been
1702 * pushed yet. This is true if the current sequence still matches the
1703 * push sequence after the above wait loop and the CIL still contains
1704 * dirty objects. This is guaranteed by the push code first adding the
1705 * context to the committing list before emptying the CIL.
1706 *
1707 * Hence if we don't find the context in the committing list and the
1708 * current sequence number is unchanged then the CIL contents are
1709 * significant. If the CIL is empty, if means there was nothing to push
1710 * and that means there is nothing to wait for. If the CIL is not empty,
1711 * it means we haven't yet started the push, because if it had started
1712 * we would have found the context on the committing list.
1713 */
1714 if (sequence == cil->xc_current_sequence &&
1715 !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1716 spin_unlock(&cil->xc_push_lock);
1717 goto restart;
1718 }
1719
1720 spin_unlock(&cil->xc_push_lock);
1721 return commit_lsn;
1722
1723 /*
1724 * We detected a shutdown in progress. We need to trigger the log force
1725 * to pass through it's iclog state machine error handling, even though
1726 * we are already in a shutdown state. Hence we can't return
1727 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1728 * LSN is already stable), so we return a zero LSN instead.
1729 */
1730 out_shutdown:
1731 spin_unlock(&cil->xc_push_lock);
1732 return 0;
1733 }
1734
1735 /*
1736 * Perform initial CIL structure initialisation.
1737 */
1738 int
xlog_cil_init(struct xlog * log)1739 xlog_cil_init(
1740 struct xlog *log)
1741 {
1742 struct xfs_cil *cil;
1743 struct xfs_cil_ctx *ctx;
1744 struct xlog_cil_pcp *cilpcp;
1745 int cpu;
1746
1747 cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1748 if (!cil)
1749 return -ENOMEM;
1750 /*
1751 * Limit the CIL pipeline depth to 4 concurrent works to bound the
1752 * concurrency the log spinlocks will be exposed to.
1753 */
1754 cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1755 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1756 4, log->l_mp->m_super->s_id);
1757 if (!cil->xc_push_wq)
1758 goto out_destroy_cil;
1759
1760 cil->xc_log = log;
1761 cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp);
1762 if (!cil->xc_pcp)
1763 goto out_destroy_wq;
1764
1765 for_each_possible_cpu(cpu) {
1766 cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1767 INIT_LIST_HEAD(&cilpcp->busy_extents);
1768 INIT_LIST_HEAD(&cilpcp->log_items);
1769 }
1770
1771 INIT_LIST_HEAD(&cil->xc_committing);
1772 spin_lock_init(&cil->xc_push_lock);
1773 init_waitqueue_head(&cil->xc_push_wait);
1774 init_rwsem(&cil->xc_ctx_lock);
1775 init_waitqueue_head(&cil->xc_start_wait);
1776 init_waitqueue_head(&cil->xc_commit_wait);
1777 log->l_cilp = cil;
1778
1779 ctx = xlog_cil_ctx_alloc();
1780 xlog_cil_ctx_switch(cil, ctx);
1781 return 0;
1782
1783 out_destroy_wq:
1784 destroy_workqueue(cil->xc_push_wq);
1785 out_destroy_cil:
1786 kmem_free(cil);
1787 return -ENOMEM;
1788 }
1789
1790 void
xlog_cil_destroy(struct xlog * log)1791 xlog_cil_destroy(
1792 struct xlog *log)
1793 {
1794 struct xfs_cil *cil = log->l_cilp;
1795
1796 if (cil->xc_ctx) {
1797 if (cil->xc_ctx->ticket)
1798 xfs_log_ticket_put(cil->xc_ctx->ticket);
1799 kmem_free(cil->xc_ctx);
1800 }
1801
1802 ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1803 free_percpu(cil->xc_pcp);
1804 destroy_workqueue(cil->xc_push_wq);
1805 kmem_free(cil);
1806 }
1807
1808