1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56
57 static bool vgic_present, kvm_arm_initialised;
58
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60
is_kvm_arm_initialised(void)61 bool is_kvm_arm_initialised(void)
62 {
63 return kvm_arm_initialised;
64 }
65
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)71 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
72 struct kvm_enable_cap *cap)
73 {
74 int r;
75 u64 new_cap;
76
77 if (cap->flags)
78 return -EINVAL;
79
80 switch (cap->cap) {
81 case KVM_CAP_ARM_NISV_TO_USER:
82 r = 0;
83 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
84 &kvm->arch.flags);
85 break;
86 case KVM_CAP_ARM_MTE:
87 mutex_lock(&kvm->lock);
88 if (!system_supports_mte() || kvm->created_vcpus) {
89 r = -EINVAL;
90 } else {
91 r = 0;
92 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
93 }
94 mutex_unlock(&kvm->lock);
95 break;
96 case KVM_CAP_ARM_SYSTEM_SUSPEND:
97 r = 0;
98 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
99 break;
100 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
101 new_cap = cap->args[0];
102
103 mutex_lock(&kvm->slots_lock);
104 /*
105 * To keep things simple, allow changing the chunk
106 * size only when no memory slots have been created.
107 */
108 if (!kvm_are_all_memslots_empty(kvm)) {
109 r = -EINVAL;
110 } else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
111 r = -EINVAL;
112 } else {
113 r = 0;
114 kvm->arch.mmu.split_page_chunk_size = new_cap;
115 }
116 mutex_unlock(&kvm->slots_lock);
117 break;
118 default:
119 r = -EINVAL;
120 break;
121 }
122
123 return r;
124 }
125
kvm_arm_default_max_vcpus(void)126 static int kvm_arm_default_max_vcpus(void)
127 {
128 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
129 }
130
131 /**
132 * kvm_arch_init_vm - initializes a VM data structure
133 * @kvm: pointer to the KVM struct
134 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)135 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
136 {
137 int ret;
138
139 mutex_init(&kvm->arch.config_lock);
140
141 #ifdef CONFIG_LOCKDEP
142 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
143 mutex_lock(&kvm->lock);
144 mutex_lock(&kvm->arch.config_lock);
145 mutex_unlock(&kvm->arch.config_lock);
146 mutex_unlock(&kvm->lock);
147 #endif
148
149 ret = kvm_share_hyp(kvm, kvm + 1);
150 if (ret)
151 return ret;
152
153 ret = pkvm_init_host_vm(kvm);
154 if (ret)
155 goto err_unshare_kvm;
156
157 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
158 ret = -ENOMEM;
159 goto err_unshare_kvm;
160 }
161 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
162
163 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
164 if (ret)
165 goto err_free_cpumask;
166
167 kvm_vgic_early_init(kvm);
168
169 kvm_timer_init_vm(kvm);
170
171 /* The maximum number of VCPUs is limited by the host's GIC model */
172 kvm->max_vcpus = kvm_arm_default_max_vcpus();
173
174 kvm_arm_init_hypercalls(kvm);
175
176 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
177
178 return 0;
179
180 err_free_cpumask:
181 free_cpumask_var(kvm->arch.supported_cpus);
182 err_unshare_kvm:
183 kvm_unshare_hyp(kvm, kvm + 1);
184 return ret;
185 }
186
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)187 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
188 {
189 return VM_FAULT_SIGBUS;
190 }
191
192
193 /**
194 * kvm_arch_destroy_vm - destroy the VM data structure
195 * @kvm: pointer to the KVM struct
196 */
kvm_arch_destroy_vm(struct kvm * kvm)197 void kvm_arch_destroy_vm(struct kvm *kvm)
198 {
199 bitmap_free(kvm->arch.pmu_filter);
200 free_cpumask_var(kvm->arch.supported_cpus);
201
202 kvm_vgic_destroy(kvm);
203
204 if (is_protected_kvm_enabled())
205 pkvm_destroy_hyp_vm(kvm);
206
207 kvm_destroy_vcpus(kvm);
208
209 kvm_unshare_hyp(kvm, kvm + 1);
210
211 kvm_arm_teardown_hypercalls(kvm);
212 }
213
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)214 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
215 {
216 int r;
217 switch (ext) {
218 case KVM_CAP_IRQCHIP:
219 r = vgic_present;
220 break;
221 case KVM_CAP_IOEVENTFD:
222 case KVM_CAP_DEVICE_CTRL:
223 case KVM_CAP_USER_MEMORY:
224 case KVM_CAP_SYNC_MMU:
225 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
226 case KVM_CAP_ONE_REG:
227 case KVM_CAP_ARM_PSCI:
228 case KVM_CAP_ARM_PSCI_0_2:
229 case KVM_CAP_READONLY_MEM:
230 case KVM_CAP_MP_STATE:
231 case KVM_CAP_IMMEDIATE_EXIT:
232 case KVM_CAP_VCPU_EVENTS:
233 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
234 case KVM_CAP_ARM_NISV_TO_USER:
235 case KVM_CAP_ARM_INJECT_EXT_DABT:
236 case KVM_CAP_SET_GUEST_DEBUG:
237 case KVM_CAP_VCPU_ATTRIBUTES:
238 case KVM_CAP_PTP_KVM:
239 case KVM_CAP_ARM_SYSTEM_SUSPEND:
240 case KVM_CAP_IRQFD_RESAMPLE:
241 case KVM_CAP_COUNTER_OFFSET:
242 r = 1;
243 break;
244 case KVM_CAP_SET_GUEST_DEBUG2:
245 return KVM_GUESTDBG_VALID_MASK;
246 case KVM_CAP_ARM_SET_DEVICE_ADDR:
247 r = 1;
248 break;
249 case KVM_CAP_NR_VCPUS:
250 /*
251 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
252 * architectures, as it does not always bound it to
253 * KVM_CAP_MAX_VCPUS. It should not matter much because
254 * this is just an advisory value.
255 */
256 r = min_t(unsigned int, num_online_cpus(),
257 kvm_arm_default_max_vcpus());
258 break;
259 case KVM_CAP_MAX_VCPUS:
260 case KVM_CAP_MAX_VCPU_ID:
261 if (kvm)
262 r = kvm->max_vcpus;
263 else
264 r = kvm_arm_default_max_vcpus();
265 break;
266 case KVM_CAP_MSI_DEVID:
267 if (!kvm)
268 r = -EINVAL;
269 else
270 r = kvm->arch.vgic.msis_require_devid;
271 break;
272 case KVM_CAP_ARM_USER_IRQ:
273 /*
274 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
275 * (bump this number if adding more devices)
276 */
277 r = 1;
278 break;
279 case KVM_CAP_ARM_MTE:
280 r = system_supports_mte();
281 break;
282 case KVM_CAP_STEAL_TIME:
283 r = kvm_arm_pvtime_supported();
284 break;
285 case KVM_CAP_ARM_EL1_32BIT:
286 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
287 break;
288 case KVM_CAP_GUEST_DEBUG_HW_BPS:
289 r = get_num_brps();
290 break;
291 case KVM_CAP_GUEST_DEBUG_HW_WPS:
292 r = get_num_wrps();
293 break;
294 case KVM_CAP_ARM_PMU_V3:
295 r = kvm_arm_support_pmu_v3();
296 break;
297 case KVM_CAP_ARM_INJECT_SERROR_ESR:
298 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
299 break;
300 case KVM_CAP_ARM_VM_IPA_SIZE:
301 r = get_kvm_ipa_limit();
302 break;
303 case KVM_CAP_ARM_SVE:
304 r = system_supports_sve();
305 break;
306 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
307 case KVM_CAP_ARM_PTRAUTH_GENERIC:
308 r = system_has_full_ptr_auth();
309 break;
310 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
311 if (kvm)
312 r = kvm->arch.mmu.split_page_chunk_size;
313 else
314 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
315 break;
316 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
317 r = kvm_supported_block_sizes();
318 break;
319 default:
320 r = 0;
321 }
322
323 return r;
324 }
325
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)326 long kvm_arch_dev_ioctl(struct file *filp,
327 unsigned int ioctl, unsigned long arg)
328 {
329 return -EINVAL;
330 }
331
kvm_arch_alloc_vm(void)332 struct kvm *kvm_arch_alloc_vm(void)
333 {
334 size_t sz = sizeof(struct kvm);
335
336 if (!has_vhe())
337 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
338
339 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
340 }
341
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)342 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
343 {
344 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
345 return -EBUSY;
346
347 if (id >= kvm->max_vcpus)
348 return -EINVAL;
349
350 return 0;
351 }
352
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)353 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
354 {
355 int err;
356
357 spin_lock_init(&vcpu->arch.mp_state_lock);
358
359 #ifdef CONFIG_LOCKDEP
360 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
361 mutex_lock(&vcpu->mutex);
362 mutex_lock(&vcpu->kvm->arch.config_lock);
363 mutex_unlock(&vcpu->kvm->arch.config_lock);
364 mutex_unlock(&vcpu->mutex);
365 #endif
366
367 /* Force users to call KVM_ARM_VCPU_INIT */
368 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
369 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
370
371 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
372
373 /*
374 * Default value for the FP state, will be overloaded at load
375 * time if we support FP (pretty likely)
376 */
377 vcpu->arch.fp_state = FP_STATE_FREE;
378
379 /* Set up the timer */
380 kvm_timer_vcpu_init(vcpu);
381
382 kvm_pmu_vcpu_init(vcpu);
383
384 kvm_arm_reset_debug_ptr(vcpu);
385
386 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
387
388 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
389
390 err = kvm_vgic_vcpu_init(vcpu);
391 if (err)
392 return err;
393
394 return kvm_share_hyp(vcpu, vcpu + 1);
395 }
396
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)397 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
398 {
399 }
400
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)401 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
402 {
403 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
404 kvm_timer_vcpu_terminate(vcpu);
405 kvm_pmu_vcpu_destroy(vcpu);
406 kvm_vgic_vcpu_destroy(vcpu);
407 kvm_arm_vcpu_destroy(vcpu);
408 }
409
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)410 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
411 {
412
413 }
414
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)415 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
416 {
417
418 }
419
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)420 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
421 {
422 struct kvm_s2_mmu *mmu;
423 int *last_ran;
424
425 mmu = vcpu->arch.hw_mmu;
426 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
427
428 /*
429 * We guarantee that both TLBs and I-cache are private to each
430 * vcpu. If detecting that a vcpu from the same VM has
431 * previously run on the same physical CPU, call into the
432 * hypervisor code to nuke the relevant contexts.
433 *
434 * We might get preempted before the vCPU actually runs, but
435 * over-invalidation doesn't affect correctness.
436 */
437 if (*last_ran != vcpu->vcpu_id) {
438 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
439 *last_ran = vcpu->vcpu_id;
440 }
441
442 vcpu->cpu = cpu;
443
444 kvm_vgic_load(vcpu);
445 kvm_timer_vcpu_load(vcpu);
446 if (has_vhe())
447 kvm_vcpu_load_sysregs_vhe(vcpu);
448 kvm_arch_vcpu_load_fp(vcpu);
449 kvm_vcpu_pmu_restore_guest(vcpu);
450 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
451 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
452
453 if (single_task_running())
454 vcpu_clear_wfx_traps(vcpu);
455 else
456 vcpu_set_wfx_traps(vcpu);
457
458 if (vcpu_has_ptrauth(vcpu))
459 vcpu_ptrauth_disable(vcpu);
460 kvm_arch_vcpu_load_debug_state_flags(vcpu);
461
462 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
463 vcpu_set_on_unsupported_cpu(vcpu);
464 }
465
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)466 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
467 {
468 kvm_arch_vcpu_put_debug_state_flags(vcpu);
469 kvm_arch_vcpu_put_fp(vcpu);
470 if (has_vhe())
471 kvm_vcpu_put_sysregs_vhe(vcpu);
472 kvm_timer_vcpu_put(vcpu);
473 kvm_vgic_put(vcpu);
474 kvm_vcpu_pmu_restore_host(vcpu);
475 kvm_arm_vmid_clear_active();
476
477 vcpu_clear_on_unsupported_cpu(vcpu);
478 vcpu->cpu = -1;
479 }
480
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)481 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
482 {
483 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
484 kvm_make_request(KVM_REQ_SLEEP, vcpu);
485 kvm_vcpu_kick(vcpu);
486 }
487
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)488 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
489 {
490 spin_lock(&vcpu->arch.mp_state_lock);
491 __kvm_arm_vcpu_power_off(vcpu);
492 spin_unlock(&vcpu->arch.mp_state_lock);
493 }
494
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)495 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
496 {
497 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
498 }
499
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)500 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
501 {
502 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
503 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
504 kvm_vcpu_kick(vcpu);
505 }
506
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)507 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
508 {
509 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
510 }
511
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)512 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
513 struct kvm_mp_state *mp_state)
514 {
515 *mp_state = READ_ONCE(vcpu->arch.mp_state);
516
517 return 0;
518 }
519
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)520 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
521 struct kvm_mp_state *mp_state)
522 {
523 int ret = 0;
524
525 spin_lock(&vcpu->arch.mp_state_lock);
526
527 switch (mp_state->mp_state) {
528 case KVM_MP_STATE_RUNNABLE:
529 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
530 break;
531 case KVM_MP_STATE_STOPPED:
532 __kvm_arm_vcpu_power_off(vcpu);
533 break;
534 case KVM_MP_STATE_SUSPENDED:
535 kvm_arm_vcpu_suspend(vcpu);
536 break;
537 default:
538 ret = -EINVAL;
539 }
540
541 spin_unlock(&vcpu->arch.mp_state_lock);
542
543 return ret;
544 }
545
546 /**
547 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
548 * @v: The VCPU pointer
549 *
550 * If the guest CPU is not waiting for interrupts or an interrupt line is
551 * asserted, the CPU is by definition runnable.
552 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)553 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
554 {
555 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
556 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
557 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
558 }
559
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)560 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
561 {
562 return vcpu_mode_priv(vcpu);
563 }
564
565 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)566 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
567 {
568 return *vcpu_pc(vcpu);
569 }
570 #endif
571
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)572 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
573 {
574 return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
575 }
576
577 /*
578 * Handle both the initialisation that is being done when the vcpu is
579 * run for the first time, as well as the updates that must be
580 * performed each time we get a new thread dealing with this vcpu.
581 */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)582 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
583 {
584 struct kvm *kvm = vcpu->kvm;
585 int ret;
586
587 if (!kvm_vcpu_initialized(vcpu))
588 return -ENOEXEC;
589
590 if (!kvm_arm_vcpu_is_finalized(vcpu))
591 return -EPERM;
592
593 ret = kvm_arch_vcpu_run_map_fp(vcpu);
594 if (ret)
595 return ret;
596
597 if (likely(vcpu_has_run_once(vcpu)))
598 return 0;
599
600 kvm_arm_vcpu_init_debug(vcpu);
601
602 if (likely(irqchip_in_kernel(kvm))) {
603 /*
604 * Map the VGIC hardware resources before running a vcpu the
605 * first time on this VM.
606 */
607 ret = kvm_vgic_map_resources(kvm);
608 if (ret)
609 return ret;
610 }
611
612 ret = kvm_timer_enable(vcpu);
613 if (ret)
614 return ret;
615
616 ret = kvm_arm_pmu_v3_enable(vcpu);
617 if (ret)
618 return ret;
619
620 if (is_protected_kvm_enabled()) {
621 ret = pkvm_create_hyp_vm(kvm);
622 if (ret)
623 return ret;
624 }
625
626 /*
627 * Initialize traps for protected VMs.
628 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
629 * the code is in place for first run initialization at EL2.
630 */
631 if (kvm_vm_is_protected(kvm))
632 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
633
634 mutex_lock(&kvm->arch.config_lock);
635 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
636 mutex_unlock(&kvm->arch.config_lock);
637
638 return ret;
639 }
640
kvm_arch_intc_initialized(struct kvm * kvm)641 bool kvm_arch_intc_initialized(struct kvm *kvm)
642 {
643 return vgic_initialized(kvm);
644 }
645
kvm_arm_halt_guest(struct kvm * kvm)646 void kvm_arm_halt_guest(struct kvm *kvm)
647 {
648 unsigned long i;
649 struct kvm_vcpu *vcpu;
650
651 kvm_for_each_vcpu(i, vcpu, kvm)
652 vcpu->arch.pause = true;
653 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
654 }
655
kvm_arm_resume_guest(struct kvm * kvm)656 void kvm_arm_resume_guest(struct kvm *kvm)
657 {
658 unsigned long i;
659 struct kvm_vcpu *vcpu;
660
661 kvm_for_each_vcpu(i, vcpu, kvm) {
662 vcpu->arch.pause = false;
663 __kvm_vcpu_wake_up(vcpu);
664 }
665 }
666
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)667 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
668 {
669 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
670
671 rcuwait_wait_event(wait,
672 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
673 TASK_INTERRUPTIBLE);
674
675 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
676 /* Awaken to handle a signal, request we sleep again later. */
677 kvm_make_request(KVM_REQ_SLEEP, vcpu);
678 }
679
680 /*
681 * Make sure we will observe a potential reset request if we've
682 * observed a change to the power state. Pairs with the smp_wmb() in
683 * kvm_psci_vcpu_on().
684 */
685 smp_rmb();
686 }
687
688 /**
689 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
690 * @vcpu: The VCPU pointer
691 *
692 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
693 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
694 * on when a wake event arrives, e.g. there may already be a pending wake event.
695 */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)696 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
697 {
698 /*
699 * Sync back the state of the GIC CPU interface so that we have
700 * the latest PMR and group enables. This ensures that
701 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
702 * we have pending interrupts, e.g. when determining if the
703 * vCPU should block.
704 *
705 * For the same reason, we want to tell GICv4 that we need
706 * doorbells to be signalled, should an interrupt become pending.
707 */
708 preempt_disable();
709 kvm_vgic_vmcr_sync(vcpu);
710 vcpu_set_flag(vcpu, IN_WFI);
711 vgic_v4_put(vcpu);
712 preempt_enable();
713
714 kvm_vcpu_halt(vcpu);
715 vcpu_clear_flag(vcpu, IN_WFIT);
716
717 preempt_disable();
718 vcpu_clear_flag(vcpu, IN_WFI);
719 vgic_v4_load(vcpu);
720 preempt_enable();
721 }
722
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)723 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
724 {
725 if (!kvm_arm_vcpu_suspended(vcpu))
726 return 1;
727
728 kvm_vcpu_wfi(vcpu);
729
730 /*
731 * The suspend state is sticky; we do not leave it until userspace
732 * explicitly marks the vCPU as runnable. Request that we suspend again
733 * later.
734 */
735 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
736
737 /*
738 * Check to make sure the vCPU is actually runnable. If so, exit to
739 * userspace informing it of the wakeup condition.
740 */
741 if (kvm_arch_vcpu_runnable(vcpu)) {
742 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
743 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
744 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
745 return 0;
746 }
747
748 /*
749 * Otherwise, we were unblocked to process a different event, such as a
750 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
751 * process the event.
752 */
753 return 1;
754 }
755
756 /**
757 * check_vcpu_requests - check and handle pending vCPU requests
758 * @vcpu: the VCPU pointer
759 *
760 * Return: 1 if we should enter the guest
761 * 0 if we should exit to userspace
762 * < 0 if we should exit to userspace, where the return value indicates
763 * an error
764 */
check_vcpu_requests(struct kvm_vcpu * vcpu)765 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
766 {
767 if (kvm_request_pending(vcpu)) {
768 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
769 return -EIO;
770
771 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
772 kvm_vcpu_sleep(vcpu);
773
774 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
775 kvm_reset_vcpu(vcpu);
776
777 /*
778 * Clear IRQ_PENDING requests that were made to guarantee
779 * that a VCPU sees new virtual interrupts.
780 */
781 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
782
783 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
784 kvm_update_stolen_time(vcpu);
785
786 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
787 /* The distributor enable bits were changed */
788 preempt_disable();
789 vgic_v4_put(vcpu);
790 vgic_v4_load(vcpu);
791 preempt_enable();
792 }
793
794 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
795 kvm_pmu_handle_pmcr(vcpu,
796 __vcpu_sys_reg(vcpu, PMCR_EL0));
797
798 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
799 kvm_vcpu_pmu_restore_guest(vcpu);
800
801 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
802 return kvm_vcpu_suspend(vcpu);
803
804 if (kvm_dirty_ring_check_request(vcpu))
805 return 0;
806 }
807
808 return 1;
809 }
810
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)811 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
812 {
813 if (likely(!vcpu_mode_is_32bit(vcpu)))
814 return false;
815
816 if (vcpu_has_nv(vcpu))
817 return true;
818
819 return !kvm_supports_32bit_el0();
820 }
821
822 /**
823 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
824 * @vcpu: The VCPU pointer
825 * @ret: Pointer to write optional return code
826 *
827 * Returns: true if the VCPU needs to return to a preemptible + interruptible
828 * and skip guest entry.
829 *
830 * This function disambiguates between two different types of exits: exits to a
831 * preemptible + interruptible kernel context and exits to userspace. For an
832 * exit to userspace, this function will write the return code to ret and return
833 * true. For an exit to preemptible + interruptible kernel context (i.e. check
834 * for pending work and re-enter), return true without writing to ret.
835 */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)836 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
837 {
838 struct kvm_run *run = vcpu->run;
839
840 /*
841 * If we're using a userspace irqchip, then check if we need
842 * to tell a userspace irqchip about timer or PMU level
843 * changes and if so, exit to userspace (the actual level
844 * state gets updated in kvm_timer_update_run and
845 * kvm_pmu_update_run below).
846 */
847 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
848 if (kvm_timer_should_notify_user(vcpu) ||
849 kvm_pmu_should_notify_user(vcpu)) {
850 *ret = -EINTR;
851 run->exit_reason = KVM_EXIT_INTR;
852 return true;
853 }
854 }
855
856 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
857 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
858 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
859 run->fail_entry.cpu = smp_processor_id();
860 *ret = 0;
861 return true;
862 }
863
864 return kvm_request_pending(vcpu) ||
865 xfer_to_guest_mode_work_pending();
866 }
867
868 /*
869 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
870 * the vCPU is running.
871 *
872 * This must be noinstr as instrumentation may make use of RCU, and this is not
873 * safe during the EQS.
874 */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)875 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
876 {
877 int ret;
878
879 guest_state_enter_irqoff();
880 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
881 guest_state_exit_irqoff();
882
883 return ret;
884 }
885
886 /**
887 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
888 * @vcpu: The VCPU pointer
889 *
890 * This function is called through the VCPU_RUN ioctl called from user space. It
891 * will execute VM code in a loop until the time slice for the process is used
892 * or some emulation is needed from user space in which case the function will
893 * return with return value 0 and with the kvm_run structure filled in with the
894 * required data for the requested emulation.
895 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)896 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
897 {
898 struct kvm_run *run = vcpu->run;
899 int ret;
900
901 if (run->exit_reason == KVM_EXIT_MMIO) {
902 ret = kvm_handle_mmio_return(vcpu);
903 if (ret <= 0)
904 return ret;
905 }
906
907 vcpu_load(vcpu);
908
909 if (run->immediate_exit) {
910 ret = -EINTR;
911 goto out;
912 }
913
914 kvm_sigset_activate(vcpu);
915
916 ret = 1;
917 run->exit_reason = KVM_EXIT_UNKNOWN;
918 run->flags = 0;
919 while (ret > 0) {
920 /*
921 * Check conditions before entering the guest
922 */
923 ret = xfer_to_guest_mode_handle_work(vcpu);
924 if (!ret)
925 ret = 1;
926
927 if (ret > 0)
928 ret = check_vcpu_requests(vcpu);
929
930 /*
931 * Preparing the interrupts to be injected also
932 * involves poking the GIC, which must be done in a
933 * non-preemptible context.
934 */
935 preempt_disable();
936
937 /*
938 * The VMID allocator only tracks active VMIDs per
939 * physical CPU, and therefore the VMID allocated may not be
940 * preserved on VMID roll-over if the task was preempted,
941 * making a thread's VMID inactive. So we need to call
942 * kvm_arm_vmid_update() in non-premptible context.
943 */
944 kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
945
946 kvm_pmu_flush_hwstate(vcpu);
947
948 local_irq_disable();
949
950 kvm_vgic_flush_hwstate(vcpu);
951
952 kvm_pmu_update_vcpu_events(vcpu);
953
954 /*
955 * Ensure we set mode to IN_GUEST_MODE after we disable
956 * interrupts and before the final VCPU requests check.
957 * See the comment in kvm_vcpu_exiting_guest_mode() and
958 * Documentation/virt/kvm/vcpu-requests.rst
959 */
960 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
961
962 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
963 vcpu->mode = OUTSIDE_GUEST_MODE;
964 isb(); /* Ensure work in x_flush_hwstate is committed */
965 kvm_pmu_sync_hwstate(vcpu);
966 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
967 kvm_timer_sync_user(vcpu);
968 kvm_vgic_sync_hwstate(vcpu);
969 local_irq_enable();
970 preempt_enable();
971 continue;
972 }
973
974 kvm_arm_setup_debug(vcpu);
975 kvm_arch_vcpu_ctxflush_fp(vcpu);
976
977 /**************************************************************
978 * Enter the guest
979 */
980 trace_kvm_entry(*vcpu_pc(vcpu));
981 guest_timing_enter_irqoff();
982
983 ret = kvm_arm_vcpu_enter_exit(vcpu);
984
985 vcpu->mode = OUTSIDE_GUEST_MODE;
986 vcpu->stat.exits++;
987 /*
988 * Back from guest
989 *************************************************************/
990
991 kvm_arm_clear_debug(vcpu);
992
993 /*
994 * We must sync the PMU state before the vgic state so
995 * that the vgic can properly sample the updated state of the
996 * interrupt line.
997 */
998 kvm_pmu_sync_hwstate(vcpu);
999
1000 /*
1001 * Sync the vgic state before syncing the timer state because
1002 * the timer code needs to know if the virtual timer
1003 * interrupts are active.
1004 */
1005 kvm_vgic_sync_hwstate(vcpu);
1006
1007 /*
1008 * Sync the timer hardware state before enabling interrupts as
1009 * we don't want vtimer interrupts to race with syncing the
1010 * timer virtual interrupt state.
1011 */
1012 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1013 kvm_timer_sync_user(vcpu);
1014
1015 kvm_arch_vcpu_ctxsync_fp(vcpu);
1016
1017 /*
1018 * We must ensure that any pending interrupts are taken before
1019 * we exit guest timing so that timer ticks are accounted as
1020 * guest time. Transiently unmask interrupts so that any
1021 * pending interrupts are taken.
1022 *
1023 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1024 * context synchronization event) is necessary to ensure that
1025 * pending interrupts are taken.
1026 */
1027 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1028 local_irq_enable();
1029 isb();
1030 local_irq_disable();
1031 }
1032
1033 guest_timing_exit_irqoff();
1034
1035 local_irq_enable();
1036
1037 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1038
1039 /* Exit types that need handling before we can be preempted */
1040 handle_exit_early(vcpu, ret);
1041
1042 preempt_enable();
1043
1044 /*
1045 * The ARMv8 architecture doesn't give the hypervisor
1046 * a mechanism to prevent a guest from dropping to AArch32 EL0
1047 * if implemented by the CPU. If we spot the guest in such
1048 * state and that we decided it wasn't supposed to do so (like
1049 * with the asymmetric AArch32 case), return to userspace with
1050 * a fatal error.
1051 */
1052 if (vcpu_mode_is_bad_32bit(vcpu)) {
1053 /*
1054 * As we have caught the guest red-handed, decide that
1055 * it isn't fit for purpose anymore by making the vcpu
1056 * invalid. The VMM can try and fix it by issuing a
1057 * KVM_ARM_VCPU_INIT if it really wants to.
1058 */
1059 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1060 ret = ARM_EXCEPTION_IL;
1061 }
1062
1063 ret = handle_exit(vcpu, ret);
1064 }
1065
1066 /* Tell userspace about in-kernel device output levels */
1067 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1068 kvm_timer_update_run(vcpu);
1069 kvm_pmu_update_run(vcpu);
1070 }
1071
1072 kvm_sigset_deactivate(vcpu);
1073
1074 out:
1075 /*
1076 * In the unlikely event that we are returning to userspace
1077 * with pending exceptions or PC adjustment, commit these
1078 * adjustments in order to give userspace a consistent view of
1079 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1080 * being preempt-safe on VHE.
1081 */
1082 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1083 vcpu_get_flag(vcpu, INCREMENT_PC)))
1084 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1085
1086 vcpu_put(vcpu);
1087 return ret;
1088 }
1089
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1090 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1091 {
1092 int bit_index;
1093 bool set;
1094 unsigned long *hcr;
1095
1096 if (number == KVM_ARM_IRQ_CPU_IRQ)
1097 bit_index = __ffs(HCR_VI);
1098 else /* KVM_ARM_IRQ_CPU_FIQ */
1099 bit_index = __ffs(HCR_VF);
1100
1101 hcr = vcpu_hcr(vcpu);
1102 if (level)
1103 set = test_and_set_bit(bit_index, hcr);
1104 else
1105 set = test_and_clear_bit(bit_index, hcr);
1106
1107 /*
1108 * If we didn't change anything, no need to wake up or kick other CPUs
1109 */
1110 if (set == level)
1111 return 0;
1112
1113 /*
1114 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1115 * trigger a world-switch round on the running physical CPU to set the
1116 * virtual IRQ/FIQ fields in the HCR appropriately.
1117 */
1118 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1119 kvm_vcpu_kick(vcpu);
1120
1121 return 0;
1122 }
1123
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1124 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1125 bool line_status)
1126 {
1127 u32 irq = irq_level->irq;
1128 unsigned int irq_type, vcpu_idx, irq_num;
1129 int nrcpus = atomic_read(&kvm->online_vcpus);
1130 struct kvm_vcpu *vcpu = NULL;
1131 bool level = irq_level->level;
1132
1133 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1134 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1135 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1136 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1137
1138 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1139
1140 switch (irq_type) {
1141 case KVM_ARM_IRQ_TYPE_CPU:
1142 if (irqchip_in_kernel(kvm))
1143 return -ENXIO;
1144
1145 if (vcpu_idx >= nrcpus)
1146 return -EINVAL;
1147
1148 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1149 if (!vcpu)
1150 return -EINVAL;
1151
1152 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1153 return -EINVAL;
1154
1155 return vcpu_interrupt_line(vcpu, irq_num, level);
1156 case KVM_ARM_IRQ_TYPE_PPI:
1157 if (!irqchip_in_kernel(kvm))
1158 return -ENXIO;
1159
1160 if (vcpu_idx >= nrcpus)
1161 return -EINVAL;
1162
1163 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1164 if (!vcpu)
1165 return -EINVAL;
1166
1167 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1168 return -EINVAL;
1169
1170 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1171 case KVM_ARM_IRQ_TYPE_SPI:
1172 if (!irqchip_in_kernel(kvm))
1173 return -ENXIO;
1174
1175 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1176 return -EINVAL;
1177
1178 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1179 }
1180
1181 return -EINVAL;
1182 }
1183
kvm_vcpu_init_check_features(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1184 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1185 const struct kvm_vcpu_init *init)
1186 {
1187 unsigned long features = init->features[0];
1188 int i;
1189
1190 if (features & ~KVM_VCPU_VALID_FEATURES)
1191 return -ENOENT;
1192
1193 for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1194 if (init->features[i])
1195 return -ENOENT;
1196 }
1197
1198 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1199 return 0;
1200
1201 if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
1202 return -EINVAL;
1203
1204 /* MTE is incompatible with AArch32 */
1205 if (kvm_has_mte(vcpu->kvm))
1206 return -EINVAL;
1207
1208 /* NV is incompatible with AArch32 */
1209 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1210 return -EINVAL;
1211
1212 return 0;
1213 }
1214
kvm_vcpu_init_changed(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1215 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1216 const struct kvm_vcpu_init *init)
1217 {
1218 unsigned long features = init->features[0];
1219
1220 return !bitmap_equal(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1221 }
1222
__kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1223 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1224 const struct kvm_vcpu_init *init)
1225 {
1226 unsigned long features = init->features[0];
1227 struct kvm *kvm = vcpu->kvm;
1228 int ret = -EINVAL;
1229
1230 mutex_lock(&kvm->arch.config_lock);
1231
1232 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1233 !bitmap_equal(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES))
1234 goto out_unlock;
1235
1236 bitmap_copy(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1237
1238 /* Now we know what it is, we can reset it. */
1239 ret = kvm_reset_vcpu(vcpu);
1240 if (ret) {
1241 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1242 goto out_unlock;
1243 }
1244
1245 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1246 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1247 vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1248 out_unlock:
1249 mutex_unlock(&kvm->arch.config_lock);
1250 return ret;
1251 }
1252
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1253 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1254 const struct kvm_vcpu_init *init)
1255 {
1256 int ret;
1257
1258 if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1259 init->target != kvm_target_cpu())
1260 return -EINVAL;
1261
1262 ret = kvm_vcpu_init_check_features(vcpu, init);
1263 if (ret)
1264 return ret;
1265
1266 if (!kvm_vcpu_initialized(vcpu))
1267 return __kvm_vcpu_set_target(vcpu, init);
1268
1269 if (kvm_vcpu_init_changed(vcpu, init))
1270 return -EINVAL;
1271
1272 return kvm_reset_vcpu(vcpu);
1273 }
1274
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1275 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1276 struct kvm_vcpu_init *init)
1277 {
1278 bool power_off = false;
1279 int ret;
1280
1281 /*
1282 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1283 * reflecting it in the finalized feature set, thus limiting its scope
1284 * to a single KVM_ARM_VCPU_INIT call.
1285 */
1286 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1287 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1288 power_off = true;
1289 }
1290
1291 ret = kvm_vcpu_set_target(vcpu, init);
1292 if (ret)
1293 return ret;
1294
1295 /*
1296 * Ensure a rebooted VM will fault in RAM pages and detect if the
1297 * guest MMU is turned off and flush the caches as needed.
1298 *
1299 * S2FWB enforces all memory accesses to RAM being cacheable,
1300 * ensuring that the data side is always coherent. We still
1301 * need to invalidate the I-cache though, as FWB does *not*
1302 * imply CTR_EL0.DIC.
1303 */
1304 if (vcpu_has_run_once(vcpu)) {
1305 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1306 stage2_unmap_vm(vcpu->kvm);
1307 else
1308 icache_inval_all_pou();
1309 }
1310
1311 vcpu_reset_hcr(vcpu);
1312
1313 /*
1314 * Handle the "start in power-off" case.
1315 */
1316 spin_lock(&vcpu->arch.mp_state_lock);
1317
1318 if (power_off)
1319 __kvm_arm_vcpu_power_off(vcpu);
1320 else
1321 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1322
1323 spin_unlock(&vcpu->arch.mp_state_lock);
1324
1325 return 0;
1326 }
1327
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1328 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1329 struct kvm_device_attr *attr)
1330 {
1331 int ret = -ENXIO;
1332
1333 switch (attr->group) {
1334 default:
1335 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1336 break;
1337 }
1338
1339 return ret;
1340 }
1341
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1342 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1343 struct kvm_device_attr *attr)
1344 {
1345 int ret = -ENXIO;
1346
1347 switch (attr->group) {
1348 default:
1349 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1350 break;
1351 }
1352
1353 return ret;
1354 }
1355
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1356 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1357 struct kvm_device_attr *attr)
1358 {
1359 int ret = -ENXIO;
1360
1361 switch (attr->group) {
1362 default:
1363 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1364 break;
1365 }
1366
1367 return ret;
1368 }
1369
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1370 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1371 struct kvm_vcpu_events *events)
1372 {
1373 memset(events, 0, sizeof(*events));
1374
1375 return __kvm_arm_vcpu_get_events(vcpu, events);
1376 }
1377
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1378 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1379 struct kvm_vcpu_events *events)
1380 {
1381 int i;
1382
1383 /* check whether the reserved field is zero */
1384 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1385 if (events->reserved[i])
1386 return -EINVAL;
1387
1388 /* check whether the pad field is zero */
1389 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1390 if (events->exception.pad[i])
1391 return -EINVAL;
1392
1393 return __kvm_arm_vcpu_set_events(vcpu, events);
1394 }
1395
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1396 long kvm_arch_vcpu_ioctl(struct file *filp,
1397 unsigned int ioctl, unsigned long arg)
1398 {
1399 struct kvm_vcpu *vcpu = filp->private_data;
1400 void __user *argp = (void __user *)arg;
1401 struct kvm_device_attr attr;
1402 long r;
1403
1404 switch (ioctl) {
1405 case KVM_ARM_VCPU_INIT: {
1406 struct kvm_vcpu_init init;
1407
1408 r = -EFAULT;
1409 if (copy_from_user(&init, argp, sizeof(init)))
1410 break;
1411
1412 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1413 break;
1414 }
1415 case KVM_SET_ONE_REG:
1416 case KVM_GET_ONE_REG: {
1417 struct kvm_one_reg reg;
1418
1419 r = -ENOEXEC;
1420 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1421 break;
1422
1423 r = -EFAULT;
1424 if (copy_from_user(®, argp, sizeof(reg)))
1425 break;
1426
1427 /*
1428 * We could owe a reset due to PSCI. Handle the pending reset
1429 * here to ensure userspace register accesses are ordered after
1430 * the reset.
1431 */
1432 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1433 kvm_reset_vcpu(vcpu);
1434
1435 if (ioctl == KVM_SET_ONE_REG)
1436 r = kvm_arm_set_reg(vcpu, ®);
1437 else
1438 r = kvm_arm_get_reg(vcpu, ®);
1439 break;
1440 }
1441 case KVM_GET_REG_LIST: {
1442 struct kvm_reg_list __user *user_list = argp;
1443 struct kvm_reg_list reg_list;
1444 unsigned n;
1445
1446 r = -ENOEXEC;
1447 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1448 break;
1449
1450 r = -EPERM;
1451 if (!kvm_arm_vcpu_is_finalized(vcpu))
1452 break;
1453
1454 r = -EFAULT;
1455 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1456 break;
1457 n = reg_list.n;
1458 reg_list.n = kvm_arm_num_regs(vcpu);
1459 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1460 break;
1461 r = -E2BIG;
1462 if (n < reg_list.n)
1463 break;
1464 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1465 break;
1466 }
1467 case KVM_SET_DEVICE_ATTR: {
1468 r = -EFAULT;
1469 if (copy_from_user(&attr, argp, sizeof(attr)))
1470 break;
1471 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1472 break;
1473 }
1474 case KVM_GET_DEVICE_ATTR: {
1475 r = -EFAULT;
1476 if (copy_from_user(&attr, argp, sizeof(attr)))
1477 break;
1478 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1479 break;
1480 }
1481 case KVM_HAS_DEVICE_ATTR: {
1482 r = -EFAULT;
1483 if (copy_from_user(&attr, argp, sizeof(attr)))
1484 break;
1485 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1486 break;
1487 }
1488 case KVM_GET_VCPU_EVENTS: {
1489 struct kvm_vcpu_events events;
1490
1491 if (kvm_arm_vcpu_get_events(vcpu, &events))
1492 return -EINVAL;
1493
1494 if (copy_to_user(argp, &events, sizeof(events)))
1495 return -EFAULT;
1496
1497 return 0;
1498 }
1499 case KVM_SET_VCPU_EVENTS: {
1500 struct kvm_vcpu_events events;
1501
1502 if (copy_from_user(&events, argp, sizeof(events)))
1503 return -EFAULT;
1504
1505 return kvm_arm_vcpu_set_events(vcpu, &events);
1506 }
1507 case KVM_ARM_VCPU_FINALIZE: {
1508 int what;
1509
1510 if (!kvm_vcpu_initialized(vcpu))
1511 return -ENOEXEC;
1512
1513 if (get_user(what, (const int __user *)argp))
1514 return -EFAULT;
1515
1516 return kvm_arm_vcpu_finalize(vcpu, what);
1517 }
1518 default:
1519 r = -EINVAL;
1520 }
1521
1522 return r;
1523 }
1524
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1525 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1526 {
1527
1528 }
1529
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1530 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1531 struct kvm_arm_device_addr *dev_addr)
1532 {
1533 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1534 case KVM_ARM_DEVICE_VGIC_V2:
1535 if (!vgic_present)
1536 return -ENXIO;
1537 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1538 default:
1539 return -ENODEV;
1540 }
1541 }
1542
kvm_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1543 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1544 {
1545 switch (attr->group) {
1546 case KVM_ARM_VM_SMCCC_CTRL:
1547 return kvm_vm_smccc_has_attr(kvm, attr);
1548 default:
1549 return -ENXIO;
1550 }
1551 }
1552
kvm_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1553 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1554 {
1555 switch (attr->group) {
1556 case KVM_ARM_VM_SMCCC_CTRL:
1557 return kvm_vm_smccc_set_attr(kvm, attr);
1558 default:
1559 return -ENXIO;
1560 }
1561 }
1562
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1563 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1564 {
1565 struct kvm *kvm = filp->private_data;
1566 void __user *argp = (void __user *)arg;
1567 struct kvm_device_attr attr;
1568
1569 switch (ioctl) {
1570 case KVM_CREATE_IRQCHIP: {
1571 int ret;
1572 if (!vgic_present)
1573 return -ENXIO;
1574 mutex_lock(&kvm->lock);
1575 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1576 mutex_unlock(&kvm->lock);
1577 return ret;
1578 }
1579 case KVM_ARM_SET_DEVICE_ADDR: {
1580 struct kvm_arm_device_addr dev_addr;
1581
1582 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1583 return -EFAULT;
1584 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1585 }
1586 case KVM_ARM_PREFERRED_TARGET: {
1587 struct kvm_vcpu_init init = {
1588 .target = KVM_ARM_TARGET_GENERIC_V8,
1589 };
1590
1591 if (copy_to_user(argp, &init, sizeof(init)))
1592 return -EFAULT;
1593
1594 return 0;
1595 }
1596 case KVM_ARM_MTE_COPY_TAGS: {
1597 struct kvm_arm_copy_mte_tags copy_tags;
1598
1599 if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
1600 return -EFAULT;
1601 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
1602 }
1603 case KVM_ARM_SET_COUNTER_OFFSET: {
1604 struct kvm_arm_counter_offset offset;
1605
1606 if (copy_from_user(&offset, argp, sizeof(offset)))
1607 return -EFAULT;
1608 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1609 }
1610 case KVM_HAS_DEVICE_ATTR: {
1611 if (copy_from_user(&attr, argp, sizeof(attr)))
1612 return -EFAULT;
1613
1614 return kvm_vm_has_attr(kvm, &attr);
1615 }
1616 case KVM_SET_DEVICE_ATTR: {
1617 if (copy_from_user(&attr, argp, sizeof(attr)))
1618 return -EFAULT;
1619
1620 return kvm_vm_set_attr(kvm, &attr);
1621 }
1622 default:
1623 return -EINVAL;
1624 }
1625 }
1626
1627 /* unlocks vcpus from @vcpu_lock_idx and smaller */
unlock_vcpus(struct kvm * kvm,int vcpu_lock_idx)1628 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1629 {
1630 struct kvm_vcpu *tmp_vcpu;
1631
1632 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1633 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1634 mutex_unlock(&tmp_vcpu->mutex);
1635 }
1636 }
1637
unlock_all_vcpus(struct kvm * kvm)1638 void unlock_all_vcpus(struct kvm *kvm)
1639 {
1640 lockdep_assert_held(&kvm->lock);
1641
1642 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1643 }
1644
1645 /* Returns true if all vcpus were locked, false otherwise */
lock_all_vcpus(struct kvm * kvm)1646 bool lock_all_vcpus(struct kvm *kvm)
1647 {
1648 struct kvm_vcpu *tmp_vcpu;
1649 unsigned long c;
1650
1651 lockdep_assert_held(&kvm->lock);
1652
1653 /*
1654 * Any time a vcpu is in an ioctl (including running), the
1655 * core KVM code tries to grab the vcpu->mutex.
1656 *
1657 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1658 * other VCPUs can fiddle with the state while we access it.
1659 */
1660 kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1661 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1662 unlock_vcpus(kvm, c - 1);
1663 return false;
1664 }
1665 }
1666
1667 return true;
1668 }
1669
nvhe_percpu_size(void)1670 static unsigned long nvhe_percpu_size(void)
1671 {
1672 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1673 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1674 }
1675
nvhe_percpu_order(void)1676 static unsigned long nvhe_percpu_order(void)
1677 {
1678 unsigned long size = nvhe_percpu_size();
1679
1680 return size ? get_order(size) : 0;
1681 }
1682
1683 /* A lookup table holding the hypervisor VA for each vector slot */
1684 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1685
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1686 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1687 {
1688 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1689 }
1690
kvm_init_vector_slots(void)1691 static int kvm_init_vector_slots(void)
1692 {
1693 int err;
1694 void *base;
1695
1696 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1697 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1698
1699 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1700 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1701
1702 if (kvm_system_needs_idmapped_vectors() &&
1703 !is_protected_kvm_enabled()) {
1704 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1705 __BP_HARDEN_HYP_VECS_SZ, &base);
1706 if (err)
1707 return err;
1708 }
1709
1710 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1711 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1712 return 0;
1713 }
1714
cpu_prepare_hyp_mode(int cpu,u32 hyp_va_bits)1715 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1716 {
1717 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1718 unsigned long tcr;
1719
1720 /*
1721 * Calculate the raw per-cpu offset without a translation from the
1722 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1723 * so that we can use adr_l to access per-cpu variables in EL2.
1724 * Also drop the KASAN tag which gets in the way...
1725 */
1726 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1727 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1728
1729 params->mair_el2 = read_sysreg(mair_el1);
1730
1731 tcr = read_sysreg(tcr_el1);
1732 if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1733 tcr |= TCR_EPD1_MASK;
1734 } else {
1735 tcr &= TCR_EL2_MASK;
1736 tcr |= TCR_EL2_RES1;
1737 }
1738 tcr &= ~TCR_T0SZ_MASK;
1739 tcr |= TCR_T0SZ(hyp_va_bits);
1740 params->tcr_el2 = tcr;
1741
1742 params->pgd_pa = kvm_mmu_get_httbr();
1743 if (is_protected_kvm_enabled())
1744 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1745 else
1746 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1747 if (cpus_have_final_cap(ARM64_KVM_HVHE))
1748 params->hcr_el2 |= HCR_E2H;
1749 params->vttbr = params->vtcr = 0;
1750
1751 /*
1752 * Flush the init params from the data cache because the struct will
1753 * be read while the MMU is off.
1754 */
1755 kvm_flush_dcache_to_poc(params, sizeof(*params));
1756 }
1757
hyp_install_host_vector(void)1758 static void hyp_install_host_vector(void)
1759 {
1760 struct kvm_nvhe_init_params *params;
1761 struct arm_smccc_res res;
1762
1763 /* Switch from the HYP stub to our own HYP init vector */
1764 __hyp_set_vectors(kvm_get_idmap_vector());
1765
1766 /*
1767 * Call initialization code, and switch to the full blown HYP code.
1768 * If the cpucaps haven't been finalized yet, something has gone very
1769 * wrong, and hyp will crash and burn when it uses any
1770 * cpus_have_const_cap() wrapper.
1771 */
1772 BUG_ON(!system_capabilities_finalized());
1773 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1774 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1775 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1776 }
1777
cpu_init_hyp_mode(void)1778 static void cpu_init_hyp_mode(void)
1779 {
1780 hyp_install_host_vector();
1781
1782 /*
1783 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1784 * at EL2.
1785 */
1786 if (this_cpu_has_cap(ARM64_SSBS) &&
1787 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1788 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1789 }
1790 }
1791
cpu_hyp_reset(void)1792 static void cpu_hyp_reset(void)
1793 {
1794 if (!is_kernel_in_hyp_mode())
1795 __hyp_reset_vectors();
1796 }
1797
1798 /*
1799 * EL2 vectors can be mapped and rerouted in a number of ways,
1800 * depending on the kernel configuration and CPU present:
1801 *
1802 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1803 * placed in one of the vector slots, which is executed before jumping
1804 * to the real vectors.
1805 *
1806 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1807 * containing the hardening sequence is mapped next to the idmap page,
1808 * and executed before jumping to the real vectors.
1809 *
1810 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1811 * empty slot is selected, mapped next to the idmap page, and
1812 * executed before jumping to the real vectors.
1813 *
1814 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1815 * VHE, as we don't have hypervisor-specific mappings. If the system
1816 * is VHE and yet selects this capability, it will be ignored.
1817 */
cpu_set_hyp_vector(void)1818 static void cpu_set_hyp_vector(void)
1819 {
1820 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1821 void *vector = hyp_spectre_vector_selector[data->slot];
1822
1823 if (!is_protected_kvm_enabled())
1824 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1825 else
1826 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1827 }
1828
cpu_hyp_init_context(void)1829 static void cpu_hyp_init_context(void)
1830 {
1831 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1832
1833 if (!is_kernel_in_hyp_mode())
1834 cpu_init_hyp_mode();
1835 }
1836
cpu_hyp_init_features(void)1837 static void cpu_hyp_init_features(void)
1838 {
1839 cpu_set_hyp_vector();
1840 kvm_arm_init_debug();
1841
1842 if (is_kernel_in_hyp_mode())
1843 kvm_timer_init_vhe();
1844
1845 if (vgic_present)
1846 kvm_vgic_init_cpu_hardware();
1847 }
1848
cpu_hyp_reinit(void)1849 static void cpu_hyp_reinit(void)
1850 {
1851 cpu_hyp_reset();
1852 cpu_hyp_init_context();
1853 cpu_hyp_init_features();
1854 }
1855
cpu_hyp_init(void * discard)1856 static void cpu_hyp_init(void *discard)
1857 {
1858 if (!__this_cpu_read(kvm_hyp_initialized)) {
1859 cpu_hyp_reinit();
1860 __this_cpu_write(kvm_hyp_initialized, 1);
1861 }
1862 }
1863
cpu_hyp_uninit(void * discard)1864 static void cpu_hyp_uninit(void *discard)
1865 {
1866 if (__this_cpu_read(kvm_hyp_initialized)) {
1867 cpu_hyp_reset();
1868 __this_cpu_write(kvm_hyp_initialized, 0);
1869 }
1870 }
1871
kvm_arch_hardware_enable(void)1872 int kvm_arch_hardware_enable(void)
1873 {
1874 /*
1875 * Most calls to this function are made with migration
1876 * disabled, but not with preemption disabled. The former is
1877 * enough to ensure correctness, but most of the helpers
1878 * expect the later and will throw a tantrum otherwise.
1879 */
1880 preempt_disable();
1881
1882 cpu_hyp_init(NULL);
1883
1884 kvm_vgic_cpu_up();
1885 kvm_timer_cpu_up();
1886
1887 preempt_enable();
1888
1889 return 0;
1890 }
1891
kvm_arch_hardware_disable(void)1892 void kvm_arch_hardware_disable(void)
1893 {
1894 kvm_timer_cpu_down();
1895 kvm_vgic_cpu_down();
1896
1897 if (!is_protected_kvm_enabled())
1898 cpu_hyp_uninit(NULL);
1899 }
1900
1901 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1902 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1903 unsigned long cmd,
1904 void *v)
1905 {
1906 /*
1907 * kvm_hyp_initialized is left with its old value over
1908 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1909 * re-enable hyp.
1910 */
1911 switch (cmd) {
1912 case CPU_PM_ENTER:
1913 if (__this_cpu_read(kvm_hyp_initialized))
1914 /*
1915 * don't update kvm_hyp_initialized here
1916 * so that the hyp will be re-enabled
1917 * when we resume. See below.
1918 */
1919 cpu_hyp_reset();
1920
1921 return NOTIFY_OK;
1922 case CPU_PM_ENTER_FAILED:
1923 case CPU_PM_EXIT:
1924 if (__this_cpu_read(kvm_hyp_initialized))
1925 /* The hyp was enabled before suspend. */
1926 cpu_hyp_reinit();
1927
1928 return NOTIFY_OK;
1929
1930 default:
1931 return NOTIFY_DONE;
1932 }
1933 }
1934
1935 static struct notifier_block hyp_init_cpu_pm_nb = {
1936 .notifier_call = hyp_init_cpu_pm_notifier,
1937 };
1938
hyp_cpu_pm_init(void)1939 static void __init hyp_cpu_pm_init(void)
1940 {
1941 if (!is_protected_kvm_enabled())
1942 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1943 }
hyp_cpu_pm_exit(void)1944 static void __init hyp_cpu_pm_exit(void)
1945 {
1946 if (!is_protected_kvm_enabled())
1947 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1948 }
1949 #else
hyp_cpu_pm_init(void)1950 static inline void __init hyp_cpu_pm_init(void)
1951 {
1952 }
hyp_cpu_pm_exit(void)1953 static inline void __init hyp_cpu_pm_exit(void)
1954 {
1955 }
1956 #endif
1957
init_cpu_logical_map(void)1958 static void __init init_cpu_logical_map(void)
1959 {
1960 unsigned int cpu;
1961
1962 /*
1963 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1964 * Only copy the set of online CPUs whose features have been checked
1965 * against the finalized system capabilities. The hypervisor will not
1966 * allow any other CPUs from the `possible` set to boot.
1967 */
1968 for_each_online_cpu(cpu)
1969 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1970 }
1971
1972 #define init_psci_0_1_impl_state(config, what) \
1973 config.psci_0_1_ ## what ## _implemented = psci_ops.what
1974
init_psci_relay(void)1975 static bool __init init_psci_relay(void)
1976 {
1977 /*
1978 * If PSCI has not been initialized, protected KVM cannot install
1979 * itself on newly booted CPUs.
1980 */
1981 if (!psci_ops.get_version) {
1982 kvm_err("Cannot initialize protected mode without PSCI\n");
1983 return false;
1984 }
1985
1986 kvm_host_psci_config.version = psci_ops.get_version();
1987 kvm_host_psci_config.smccc_version = arm_smccc_get_version();
1988
1989 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1990 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1991 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1992 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1993 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1994 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1995 }
1996 return true;
1997 }
1998
init_subsystems(void)1999 static int __init init_subsystems(void)
2000 {
2001 int err = 0;
2002
2003 /*
2004 * Enable hardware so that subsystem initialisation can access EL2.
2005 */
2006 on_each_cpu(cpu_hyp_init, NULL, 1);
2007
2008 /*
2009 * Register CPU lower-power notifier
2010 */
2011 hyp_cpu_pm_init();
2012
2013 /*
2014 * Init HYP view of VGIC
2015 */
2016 err = kvm_vgic_hyp_init();
2017 switch (err) {
2018 case 0:
2019 vgic_present = true;
2020 break;
2021 case -ENODEV:
2022 case -ENXIO:
2023 vgic_present = false;
2024 err = 0;
2025 break;
2026 default:
2027 goto out;
2028 }
2029
2030 /*
2031 * Init HYP architected timer support
2032 */
2033 err = kvm_timer_hyp_init(vgic_present);
2034 if (err)
2035 goto out;
2036
2037 kvm_register_perf_callbacks(NULL);
2038
2039 out:
2040 if (err)
2041 hyp_cpu_pm_exit();
2042
2043 if (err || !is_protected_kvm_enabled())
2044 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2045
2046 return err;
2047 }
2048
teardown_subsystems(void)2049 static void __init teardown_subsystems(void)
2050 {
2051 kvm_unregister_perf_callbacks();
2052 hyp_cpu_pm_exit();
2053 }
2054
teardown_hyp_mode(void)2055 static void __init teardown_hyp_mode(void)
2056 {
2057 int cpu;
2058
2059 free_hyp_pgds();
2060 for_each_possible_cpu(cpu) {
2061 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2062 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2063 }
2064 }
2065
do_pkvm_init(u32 hyp_va_bits)2066 static int __init do_pkvm_init(u32 hyp_va_bits)
2067 {
2068 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2069 int ret;
2070
2071 preempt_disable();
2072 cpu_hyp_init_context();
2073 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2074 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2075 hyp_va_bits);
2076 cpu_hyp_init_features();
2077
2078 /*
2079 * The stub hypercalls are now disabled, so set our local flag to
2080 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2081 */
2082 __this_cpu_write(kvm_hyp_initialized, 1);
2083 preempt_enable();
2084
2085 return ret;
2086 }
2087
get_hyp_id_aa64pfr0_el1(void)2088 static u64 get_hyp_id_aa64pfr0_el1(void)
2089 {
2090 /*
2091 * Track whether the system isn't affected by spectre/meltdown in the
2092 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2093 * Although this is per-CPU, we make it global for simplicity, e.g., not
2094 * to have to worry about vcpu migration.
2095 *
2096 * Unlike for non-protected VMs, userspace cannot override this for
2097 * protected VMs.
2098 */
2099 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2100
2101 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2102 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2103
2104 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2105 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2106 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2107 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2108
2109 return val;
2110 }
2111
kvm_hyp_init_symbols(void)2112 static void kvm_hyp_init_symbols(void)
2113 {
2114 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2115 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2116 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2117 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2118 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2119 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2120 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2121 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2122 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2123 kvm_nvhe_sym(__icache_flags) = __icache_flags;
2124 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2125 }
2126
kvm_hyp_init_protection(u32 hyp_va_bits)2127 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2128 {
2129 void *addr = phys_to_virt(hyp_mem_base);
2130 int ret;
2131
2132 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2133 if (ret)
2134 return ret;
2135
2136 ret = do_pkvm_init(hyp_va_bits);
2137 if (ret)
2138 return ret;
2139
2140 free_hyp_pgds();
2141
2142 return 0;
2143 }
2144
pkvm_hyp_init_ptrauth(void)2145 static void pkvm_hyp_init_ptrauth(void)
2146 {
2147 struct kvm_cpu_context *hyp_ctxt;
2148 int cpu;
2149
2150 for_each_possible_cpu(cpu) {
2151 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2152 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2153 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2154 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2155 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2156 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2157 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2158 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2159 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2160 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2161 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2162 }
2163 }
2164
2165 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)2166 static int __init init_hyp_mode(void)
2167 {
2168 u32 hyp_va_bits;
2169 int cpu;
2170 int err = -ENOMEM;
2171
2172 /*
2173 * The protected Hyp-mode cannot be initialized if the memory pool
2174 * allocation has failed.
2175 */
2176 if (is_protected_kvm_enabled() && !hyp_mem_base)
2177 goto out_err;
2178
2179 /*
2180 * Allocate Hyp PGD and setup Hyp identity mapping
2181 */
2182 err = kvm_mmu_init(&hyp_va_bits);
2183 if (err)
2184 goto out_err;
2185
2186 /*
2187 * Allocate stack pages for Hypervisor-mode
2188 */
2189 for_each_possible_cpu(cpu) {
2190 unsigned long stack_page;
2191
2192 stack_page = __get_free_page(GFP_KERNEL);
2193 if (!stack_page) {
2194 err = -ENOMEM;
2195 goto out_err;
2196 }
2197
2198 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2199 }
2200
2201 /*
2202 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2203 */
2204 for_each_possible_cpu(cpu) {
2205 struct page *page;
2206 void *page_addr;
2207
2208 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2209 if (!page) {
2210 err = -ENOMEM;
2211 goto out_err;
2212 }
2213
2214 page_addr = page_address(page);
2215 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2216 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2217 }
2218
2219 /*
2220 * Map the Hyp-code called directly from the host
2221 */
2222 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2223 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2224 if (err) {
2225 kvm_err("Cannot map world-switch code\n");
2226 goto out_err;
2227 }
2228
2229 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2230 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2231 if (err) {
2232 kvm_err("Cannot map .hyp.rodata section\n");
2233 goto out_err;
2234 }
2235
2236 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2237 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2238 if (err) {
2239 kvm_err("Cannot map rodata section\n");
2240 goto out_err;
2241 }
2242
2243 /*
2244 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2245 * section thanks to an assertion in the linker script. Map it RW and
2246 * the rest of .bss RO.
2247 */
2248 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2249 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2250 if (err) {
2251 kvm_err("Cannot map hyp bss section: %d\n", err);
2252 goto out_err;
2253 }
2254
2255 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2256 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2257 if (err) {
2258 kvm_err("Cannot map bss section\n");
2259 goto out_err;
2260 }
2261
2262 /*
2263 * Map the Hyp stack pages
2264 */
2265 for_each_possible_cpu(cpu) {
2266 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2267 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2268
2269 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va);
2270 if (err) {
2271 kvm_err("Cannot map hyp stack\n");
2272 goto out_err;
2273 }
2274
2275 /*
2276 * Save the stack PA in nvhe_init_params. This will be needed
2277 * to recreate the stack mapping in protected nVHE mode.
2278 * __hyp_pa() won't do the right thing there, since the stack
2279 * has been mapped in the flexible private VA space.
2280 */
2281 params->stack_pa = __pa(stack_page);
2282 }
2283
2284 for_each_possible_cpu(cpu) {
2285 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2286 char *percpu_end = percpu_begin + nvhe_percpu_size();
2287
2288 /* Map Hyp percpu pages */
2289 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2290 if (err) {
2291 kvm_err("Cannot map hyp percpu region\n");
2292 goto out_err;
2293 }
2294
2295 /* Prepare the CPU initialization parameters */
2296 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2297 }
2298
2299 kvm_hyp_init_symbols();
2300
2301 if (is_protected_kvm_enabled()) {
2302 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2303 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH))
2304 pkvm_hyp_init_ptrauth();
2305
2306 init_cpu_logical_map();
2307
2308 if (!init_psci_relay()) {
2309 err = -ENODEV;
2310 goto out_err;
2311 }
2312
2313 err = kvm_hyp_init_protection(hyp_va_bits);
2314 if (err) {
2315 kvm_err("Failed to init hyp memory protection\n");
2316 goto out_err;
2317 }
2318 }
2319
2320 return 0;
2321
2322 out_err:
2323 teardown_hyp_mode();
2324 kvm_err("error initializing Hyp mode: %d\n", err);
2325 return err;
2326 }
2327
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2328 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2329 {
2330 struct kvm_vcpu *vcpu;
2331 unsigned long i;
2332
2333 mpidr &= MPIDR_HWID_BITMASK;
2334 kvm_for_each_vcpu(i, vcpu, kvm) {
2335 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2336 return vcpu;
2337 }
2338 return NULL;
2339 }
2340
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2341 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2342 {
2343 return irqchip_in_kernel(kvm);
2344 }
2345
kvm_arch_has_irq_bypass(void)2346 bool kvm_arch_has_irq_bypass(void)
2347 {
2348 return true;
2349 }
2350
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2351 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2352 struct irq_bypass_producer *prod)
2353 {
2354 struct kvm_kernel_irqfd *irqfd =
2355 container_of(cons, struct kvm_kernel_irqfd, consumer);
2356
2357 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2358 &irqfd->irq_entry);
2359 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2360 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2361 struct irq_bypass_producer *prod)
2362 {
2363 struct kvm_kernel_irqfd *irqfd =
2364 container_of(cons, struct kvm_kernel_irqfd, consumer);
2365
2366 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2367 &irqfd->irq_entry);
2368 }
2369
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2370 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2371 {
2372 struct kvm_kernel_irqfd *irqfd =
2373 container_of(cons, struct kvm_kernel_irqfd, consumer);
2374
2375 kvm_arm_halt_guest(irqfd->kvm);
2376 }
2377
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2378 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2379 {
2380 struct kvm_kernel_irqfd *irqfd =
2381 container_of(cons, struct kvm_kernel_irqfd, consumer);
2382
2383 kvm_arm_resume_guest(irqfd->kvm);
2384 }
2385
2386 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2387 static __init int kvm_arm_init(void)
2388 {
2389 int err;
2390 bool in_hyp_mode;
2391
2392 if (!is_hyp_mode_available()) {
2393 kvm_info("HYP mode not available\n");
2394 return -ENODEV;
2395 }
2396
2397 if (kvm_get_mode() == KVM_MODE_NONE) {
2398 kvm_info("KVM disabled from command line\n");
2399 return -ENODEV;
2400 }
2401
2402 err = kvm_sys_reg_table_init();
2403 if (err) {
2404 kvm_info("Error initializing system register tables");
2405 return err;
2406 }
2407
2408 in_hyp_mode = is_kernel_in_hyp_mode();
2409
2410 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2411 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2412 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2413 "Only trusted guests should be used on this system.\n");
2414
2415 err = kvm_set_ipa_limit();
2416 if (err)
2417 return err;
2418
2419 err = kvm_arm_init_sve();
2420 if (err)
2421 return err;
2422
2423 err = kvm_arm_vmid_alloc_init();
2424 if (err) {
2425 kvm_err("Failed to initialize VMID allocator.\n");
2426 return err;
2427 }
2428
2429 if (!in_hyp_mode) {
2430 err = init_hyp_mode();
2431 if (err)
2432 goto out_err;
2433 }
2434
2435 err = kvm_init_vector_slots();
2436 if (err) {
2437 kvm_err("Cannot initialise vector slots\n");
2438 goto out_hyp;
2439 }
2440
2441 err = init_subsystems();
2442 if (err)
2443 goto out_hyp;
2444
2445 if (is_protected_kvm_enabled()) {
2446 kvm_info("Protected nVHE mode initialized successfully\n");
2447 } else if (in_hyp_mode) {
2448 kvm_info("VHE mode initialized successfully\n");
2449 } else {
2450 kvm_info("Hyp mode initialized successfully\n");
2451 }
2452
2453 /*
2454 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2455 * hypervisor protection is finalized.
2456 */
2457 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2458 if (err)
2459 goto out_subs;
2460
2461 kvm_arm_initialised = true;
2462
2463 return 0;
2464
2465 out_subs:
2466 teardown_subsystems();
2467 out_hyp:
2468 if (!in_hyp_mode)
2469 teardown_hyp_mode();
2470 out_err:
2471 kvm_arm_vmid_alloc_free();
2472 return err;
2473 }
2474
early_kvm_mode_cfg(char * arg)2475 static int __init early_kvm_mode_cfg(char *arg)
2476 {
2477 if (!arg)
2478 return -EINVAL;
2479
2480 if (strcmp(arg, "none") == 0) {
2481 kvm_mode = KVM_MODE_NONE;
2482 return 0;
2483 }
2484
2485 if (!is_hyp_mode_available()) {
2486 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2487 return 0;
2488 }
2489
2490 if (strcmp(arg, "protected") == 0) {
2491 if (!is_kernel_in_hyp_mode())
2492 kvm_mode = KVM_MODE_PROTECTED;
2493 else
2494 pr_warn_once("Protected KVM not available with VHE\n");
2495
2496 return 0;
2497 }
2498
2499 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2500 kvm_mode = KVM_MODE_DEFAULT;
2501 return 0;
2502 }
2503
2504 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2505 kvm_mode = KVM_MODE_NV;
2506 return 0;
2507 }
2508
2509 return -EINVAL;
2510 }
2511 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2512
kvm_get_mode(void)2513 enum kvm_mode kvm_get_mode(void)
2514 {
2515 return kvm_mode;
2516 }
2517
2518 module_init(kvm_arm_init);
2519