1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4  *
5  * Copyright (c) 2019-2020 Red Hat GmbH
6  *
7  * Author: Stefano Brivio <sbrivio@redhat.com>
8  */
9 
10 /**
11  * DOC: Theory of Operation
12  *
13  *
14  * Problem
15  * -------
16  *
17  * Match packet bytes against entries composed of ranged or non-ranged packet
18  * field specifiers, mapping them to arbitrary references. For example:
19  *
20  * ::
21  *
22  *               --- fields --->
23  *      |    [net],[port],[net]... => [reference]
24  *   entries [net],[port],[net]... => [reference]
25  *      |    [net],[port],[net]... => [reference]
26  *      V    ...
27  *
28  * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29  * ranges. Arbitrary packet fields can be matched.
30  *
31  *
32  * Algorithm Overview
33  * ------------------
34  *
35  * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36  * relies on the consideration that every contiguous range in a space of b bits
37  * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38  * as also illustrated in Section 9 of [Kogan 2014].
39  *
40  * Classification against a number of entries, that require matching given bits
41  * of a packet field, is performed by grouping those bits in sets of arbitrary
42  * size, and classifying packet bits one group at a time.
43  *
44  * Example:
45  *   to match the source port (16 bits) of a packet, we can divide those 16 bits
46  *   in 4 groups of 4 bits each. Given the entry:
47  *      0000 0001 0101 1001
48  *   and a packet with source port:
49  *      0000 0001 1010 1001
50  *   first and second groups match, but the third doesn't. We conclude that the
51  *   packet doesn't match the given entry.
52  *
53  * Translate the set to a sequence of lookup tables, one per field. Each table
54  * has two dimensions: bit groups to be matched for a single packet field, and
55  * all the possible values of said groups (buckets). Input entries are
56  * represented as one or more rules, depending on the number of composing
57  * netmasks for the given field specifier, and a group match is indicated as a
58  * set bit, with number corresponding to the rule index, in all the buckets
59  * whose value matches the entry for a given group.
60  *
61  * Rules are mapped between fields through an array of x, n pairs, with each
62  * item mapping a matched rule to one or more rules. The position of the pair in
63  * the array indicates the matched rule to be mapped to the next field, x
64  * indicates the first rule index in the next field, and n the amount of
65  * next-field rules the current rule maps to.
66  *
67  * The mapping array for the last field maps to the desired references.
68  *
69  * To match, we perform table lookups using the values of grouped packet bits,
70  * and use a sequence of bitwise operations to progressively evaluate rule
71  * matching.
72  *
73  * A stand-alone, reference implementation, also including notes about possible
74  * future optimisations, is available at:
75  *    https://pipapo.lameexcu.se/
76  *
77  * Insertion
78  * ---------
79  *
80  * - For each packet field:
81  *
82  *   - divide the b packet bits we want to classify into groups of size t,
83  *     obtaining ceil(b / t) groups
84  *
85  *      Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86  *      of 4 bits each
87  *
88  *   - allocate a lookup table with one column ("bucket") for each possible
89  *     value of a group, and with one row for each group
90  *
91  *      Example: 8 groups, 2^4 buckets:
92  *
93  * ::
94  *
95  *                     bucket
96  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
97  *        0
98  *        1
99  *        2
100  *        3
101  *        4
102  *        5
103  *        6
104  *        7
105  *
106  *   - map the bits we want to classify for the current field, for a given
107  *     entry, to a single rule for non-ranged and netmask set items, and to one
108  *     or multiple rules for ranges. Ranges are expanded to composing netmasks
109  *     by pipapo_expand().
110  *
111  *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112  *      - rule #0: 10.0.0.5
113  *      - rule #1: 192.168.1.0/24
114  *      - rule #2: 192.168.2.0/31
115  *
116  *   - insert references to the rules in the lookup table, selecting buckets
117  *     according to bit values of a rule in the given group. This is done by
118  *     pipapo_insert().
119  *
120  *      Example: given:
121  *      - rule #0: 10.0.0.5 mapping to buckets
122  *        < 0 10  0 0   0 0  0 5 >
123  *      - rule #1: 192.168.1.0/24 mapping to buckets
124  *        < 12 0  10 8  0 1  < 0..15 > < 0..15 > >
125  *      - rule #2: 192.168.2.0/31 mapping to buckets
126  *        < 12 0  10 8  0 2  0 < 0..1 > >
127  *
128  *      these bits are set in the lookup table:
129  *
130  * ::
131  *
132  *                     bucket
133  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
134  *        0    0                                              1,2
135  *        1   1,2                                      0
136  *        2    0                                      1,2
137  *        3    0                              1,2
138  *        4  0,1,2
139  *        5    0   1   2
140  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
141  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
142  *
143  *   - if this is not the last field in the set, fill a mapping array that maps
144  *     rules from the lookup table to rules belonging to the same entry in
145  *     the next lookup table, done by pipapo_map().
146  *
147  *     Note that as rules map to contiguous ranges of rules, given how netmask
148  *     expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149  *     this information as pairs of first rule index, rule count.
150  *
151  *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152  *      given lookup table #0 for field 0 (see example above):
153  *
154  * ::
155  *
156  *                     bucket
157  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
158  *        0    0                                              1,2
159  *        1   1,2                                      0
160  *        2    0                                      1,2
161  *        3    0                              1,2
162  *        4  0,1,2
163  *        5    0   1   2
164  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
165  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
166  *
167  *      and lookup table #1 for field 1 with:
168  *      - rule #0: 1024 mapping to buckets
169  *        < 0  0  4  0 >
170  *      - rule #1: 2048 mapping to buckets
171  *        < 0  0  5  0 >
172  *
173  * ::
174  *
175  *                     bucket
176  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
177  *        0   0,1
178  *        1   0,1
179  *        2                    0   1
180  *        3   0,1
181  *
182  *      we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183  *      in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184  *      (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185  *
186  * ::
187  *
188  *       rule indices in current field: 0    1    2
189  *       map to rules in next field:    0    1    1
190  *
191  *   - if this is the last field in the set, fill a mapping array that maps
192  *     rules from the last lookup table to element pointers, also done by
193  *     pipapo_map().
194  *
195  *     Note that, in this implementation, we have two elements (start, end) for
196  *     each entry. The pointer to the end element is stored in this array, and
197  *     the pointer to the start element is linked from it.
198  *
199  *      Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200  *      pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201  *      From the rules of lookup table #1 as mapped above:
202  *
203  * ::
204  *
205  *       rule indices in last field:    0    1
206  *       map to elements:             0x66  0x42
207  *
208  *
209  * Matching
210  * --------
211  *
212  * We use a result bitmap, with the size of a single lookup table bucket, to
213  * represent the matching state that applies at every algorithm step. This is
214  * done by pipapo_lookup().
215  *
216  * - For each packet field:
217  *
218  *   - start with an all-ones result bitmap (res_map in pipapo_lookup())
219  *
220  *   - perform a lookup into the table corresponding to the current field,
221  *     for each group, and at every group, AND the current result bitmap with
222  *     the value from the lookup table bucket
223  *
224  * ::
225  *
226  *      Example: 192.168.1.5 < 12 0  10 8  0 1  0 5 >, with lookup table from
227  *      insertion examples.
228  *      Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229  *      convenience in this example. Initial result bitmap is 0xff, the steps
230  *      below show the value of the result bitmap after each group is processed:
231  *
232  *                     bucket
233  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
234  *        0    0                                              1,2
235  *        result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236  *
237  *        1   1,2                                      0
238  *        result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239  *
240  *        2    0                                      1,2
241  *        result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242  *
243  *        3    0                              1,2
244  *        result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245  *
246  *        4  0,1,2
247  *        result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248  *
249  *        5    0   1   2
250  *        result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251  *
252  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
253  *        result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254  *
255  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
256  *        final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257  *
258  *   - at the next field, start with a new, all-zeroes result bitmap. For each
259  *     bit set in the previous result bitmap, fill the new result bitmap
260  *     (fill_map in pipapo_lookup()) with the rule indices from the
261  *     corresponding buckets of the mapping field for this field, done by
262  *     pipapo_refill()
263  *
264  *      Example: with mapping table from insertion examples, with the current
265  *      result bitmap from the previous example, 0x02:
266  *
267  * ::
268  *
269  *       rule indices in current field: 0    1    2
270  *       map to rules in next field:    0    1    1
271  *
272  *      the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273  *      set.
274  *
275  *      We can now extend this example to cover the second iteration of the step
276  *      above (lookup and AND bitmap): assuming the port field is
277  *      2048 < 0  0  5  0 >, with starting result bitmap 0x2, and lookup table
278  *      for "port" field from pre-computation example:
279  *
280  * ::
281  *
282  *                     bucket
283  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
284  *        0   0,1
285  *        1   0,1
286  *        2                    0   1
287  *        3   0,1
288  *
289  *       operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290  *       & 0x3 [bucket 0], resulting bitmap is 0x2.
291  *
292  *   - if this is the last field in the set, look up the value from the mapping
293  *     array corresponding to the final result bitmap
294  *
295  *      Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296  *      last field from insertion example:
297  *
298  * ::
299  *
300  *       rule indices in last field:    0    1
301  *       map to elements:             0x66  0x42
302  *
303  *      the matching element is at 0x42.
304  *
305  *
306  * References
307  * ----------
308  *
309  * [Ligatti 2010]
310  *      A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311  *      Automatic Time-space Tradeoffs
312  *      Jay Ligatti, Josh Kuhn, and Chris Gage.
313  *      Proceedings of the IEEE International Conference on Computer
314  *      Communication Networks (ICCCN), August 2010.
315  *      https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316  *
317  * [Rottenstreich 2010]
318  *      Worst-Case TCAM Rule Expansion
319  *      Ori Rottenstreich and Isaac Keslassy.
320  *      2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321  *      http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322  *
323  * [Kogan 2014]
324  *      SAX-PAC (Scalable And eXpressive PAcket Classification)
325  *      Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326  *      and Patrick Eugster.
327  *      Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328  *      https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329  */
330 
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
341 
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
344 
345 /**
346  * pipapo_refill() - For each set bit, set bits from selected mapping table item
347  * @map:	Bitmap to be scanned for set bits
348  * @len:	Length of bitmap in longs
349  * @rules:	Number of rules in field
350  * @dst:	Destination bitmap
351  * @mt:		Mapping table containing bit set specifiers
352  * @match_only:	Find a single bit and return, don't fill
353  *
354  * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
355  *
356  * For each bit set in map, select the bucket from mapping table with index
357  * corresponding to the position of the bit set. Use start bit and amount of
358  * bits specified in bucket to fill region in dst.
359  *
360  * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
361  */
pipapo_refill(unsigned long * map,int len,int rules,unsigned long * dst,const union nft_pipapo_map_bucket * mt,bool match_only)362 int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst,
363 		  const union nft_pipapo_map_bucket *mt, bool match_only)
364 {
365 	unsigned long bitset;
366 	int k, ret = -1;
367 
368 	for (k = 0; k < len; k++) {
369 		bitset = map[k];
370 		while (bitset) {
371 			unsigned long t = bitset & -bitset;
372 			int r = __builtin_ctzl(bitset);
373 			int i = k * BITS_PER_LONG + r;
374 
375 			if (unlikely(i >= rules)) {
376 				map[k] = 0;
377 				return -1;
378 			}
379 
380 			if (match_only) {
381 				bitmap_clear(map, i, 1);
382 				return i;
383 			}
384 
385 			ret = 0;
386 
387 			bitmap_set(dst, mt[i].to, mt[i].n);
388 
389 			bitset ^= t;
390 		}
391 		map[k] = 0;
392 	}
393 
394 	return ret;
395 }
396 
397 /**
398  * nft_pipapo_lookup() - Lookup function
399  * @net:	Network namespace
400  * @set:	nftables API set representation
401  * @key:	nftables API element representation containing key data
402  * @ext:	nftables API extension pointer, filled with matching reference
403  *
404  * For more details, see DOC: Theory of Operation.
405  *
406  * Return: true on match, false otherwise.
407  */
nft_pipapo_lookup(const struct net * net,const struct nft_set * set,const u32 * key,const struct nft_set_ext ** ext)408 bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
409 		       const u32 *key, const struct nft_set_ext **ext)
410 {
411 	struct nft_pipapo *priv = nft_set_priv(set);
412 	struct nft_pipapo_scratch *scratch;
413 	unsigned long *res_map, *fill_map;
414 	u8 genmask = nft_genmask_cur(net);
415 	const struct nft_pipapo_match *m;
416 	const struct nft_pipapo_field *f;
417 	const u8 *rp = (const u8 *)key;
418 	bool map_index;
419 	int i;
420 
421 	local_bh_disable();
422 
423 	m = rcu_dereference(priv->match);
424 
425 	if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
426 		goto out;
427 
428 	scratch = *raw_cpu_ptr(m->scratch);
429 
430 	map_index = scratch->map_index;
431 
432 	res_map  = scratch->map + (map_index ? m->bsize_max : 0);
433 	fill_map = scratch->map + (map_index ? 0 : m->bsize_max);
434 
435 	pipapo_resmap_init(m, res_map);
436 
437 	nft_pipapo_for_each_field(f, i, m) {
438 		bool last = i == m->field_count - 1;
439 		int b;
440 
441 		/* For each bit group: select lookup table bucket depending on
442 		 * packet bytes value, then AND bucket value
443 		 */
444 		if (likely(f->bb == 8))
445 			pipapo_and_field_buckets_8bit(f, res_map, rp);
446 		else
447 			pipapo_and_field_buckets_4bit(f, res_map, rp);
448 		NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
449 
450 		rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
451 
452 		/* Now populate the bitmap for the next field, unless this is
453 		 * the last field, in which case return the matched 'ext'
454 		 * pointer if any.
455 		 *
456 		 * Now res_map contains the matching bitmap, and fill_map is the
457 		 * bitmap for the next field.
458 		 */
459 next_match:
460 		b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
461 				  last);
462 		if (b < 0) {
463 			scratch->map_index = map_index;
464 			local_bh_enable();
465 
466 			return false;
467 		}
468 
469 		if (last) {
470 			*ext = &f->mt[b].e->ext;
471 			if (unlikely(nft_set_elem_expired(*ext) ||
472 				     !nft_set_elem_active(*ext, genmask)))
473 				goto next_match;
474 
475 			/* Last field: we're just returning the key without
476 			 * filling the initial bitmap for the next field, so the
477 			 * current inactive bitmap is clean and can be reused as
478 			 * *next* bitmap (not initial) for the next packet.
479 			 */
480 			scratch->map_index = map_index;
481 			local_bh_enable();
482 
483 			return true;
484 		}
485 
486 		/* Swap bitmap indices: res_map is the initial bitmap for the
487 		 * next field, and fill_map is guaranteed to be all-zeroes at
488 		 * this point.
489 		 */
490 		map_index = !map_index;
491 		swap(res_map, fill_map);
492 
493 		rp += NFT_PIPAPO_GROUPS_PADDING(f);
494 	}
495 
496 out:
497 	local_bh_enable();
498 	return false;
499 }
500 
501 /**
502  * pipapo_get() - Get matching element reference given key data
503  * @net:	Network namespace
504  * @set:	nftables API set representation
505  * @data:	Key data to be matched against existing elements
506  * @genmask:	If set, check that element is active in given genmask
507  *
508  * This is essentially the same as the lookup function, except that it matches
509  * key data against the uncommitted copy and doesn't use preallocated maps for
510  * bitmap results.
511  *
512  * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
513  */
pipapo_get(const struct net * net,const struct nft_set * set,const u8 * data,u8 genmask)514 static struct nft_pipapo_elem *pipapo_get(const struct net *net,
515 					  const struct nft_set *set,
516 					  const u8 *data, u8 genmask)
517 {
518 	struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
519 	struct nft_pipapo *priv = nft_set_priv(set);
520 	unsigned long *res_map, *fill_map = NULL;
521 	const struct nft_pipapo_match *m;
522 	const struct nft_pipapo_field *f;
523 	int i;
524 
525 	m = priv->clone;
526 
527 	res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
528 	if (!res_map) {
529 		ret = ERR_PTR(-ENOMEM);
530 		goto out;
531 	}
532 
533 	fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
534 	if (!fill_map) {
535 		ret = ERR_PTR(-ENOMEM);
536 		goto out;
537 	}
538 
539 	pipapo_resmap_init(m, res_map);
540 
541 	nft_pipapo_for_each_field(f, i, m) {
542 		bool last = i == m->field_count - 1;
543 		int b;
544 
545 		/* For each bit group: select lookup table bucket depending on
546 		 * packet bytes value, then AND bucket value
547 		 */
548 		if (f->bb == 8)
549 			pipapo_and_field_buckets_8bit(f, res_map, data);
550 		else if (f->bb == 4)
551 			pipapo_and_field_buckets_4bit(f, res_map, data);
552 		else
553 			BUG();
554 
555 		data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
556 
557 		/* Now populate the bitmap for the next field, unless this is
558 		 * the last field, in which case return the matched 'ext'
559 		 * pointer if any.
560 		 *
561 		 * Now res_map contains the matching bitmap, and fill_map is the
562 		 * bitmap for the next field.
563 		 */
564 next_match:
565 		b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
566 				  last);
567 		if (b < 0)
568 			goto out;
569 
570 		if (last) {
571 			if (nft_set_elem_expired(&f->mt[b].e->ext))
572 				goto next_match;
573 			if ((genmask &&
574 			     !nft_set_elem_active(&f->mt[b].e->ext, genmask)))
575 				goto next_match;
576 
577 			ret = f->mt[b].e;
578 			goto out;
579 		}
580 
581 		data += NFT_PIPAPO_GROUPS_PADDING(f);
582 
583 		/* Swap bitmap indices: fill_map will be the initial bitmap for
584 		 * the next field (i.e. the new res_map), and res_map is
585 		 * guaranteed to be all-zeroes at this point, ready to be filled
586 		 * according to the next mapping table.
587 		 */
588 		swap(res_map, fill_map);
589 	}
590 
591 out:
592 	kfree(fill_map);
593 	kfree(res_map);
594 	return ret;
595 }
596 
597 /**
598  * nft_pipapo_get() - Get matching element reference given key data
599  * @net:	Network namespace
600  * @set:	nftables API set representation
601  * @elem:	nftables API element representation containing key data
602  * @flags:	Unused
603  */
nft_pipapo_get(const struct net * net,const struct nft_set * set,const struct nft_set_elem * elem,unsigned int flags)604 static void *nft_pipapo_get(const struct net *net, const struct nft_set *set,
605 			    const struct nft_set_elem *elem, unsigned int flags)
606 {
607 	return pipapo_get(net, set, (const u8 *)elem->key.val.data,
608 			 nft_genmask_cur(net));
609 }
610 
611 /**
612  * pipapo_resize() - Resize lookup or mapping table, or both
613  * @f:		Field containing lookup and mapping tables
614  * @old_rules:	Previous amount of rules in field
615  * @rules:	New amount of rules
616  *
617  * Increase, decrease or maintain tables size depending on new amount of rules,
618  * and copy data over. In case the new size is smaller, throw away data for
619  * highest-numbered rules.
620  *
621  * Return: 0 on success, -ENOMEM on allocation failure.
622  */
pipapo_resize(struct nft_pipapo_field * f,int old_rules,int rules)623 static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
624 {
625 	long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
626 	union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
627 	size_t new_bucket_size, copy;
628 	int group, bucket;
629 
630 	new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
631 #ifdef NFT_PIPAPO_ALIGN
632 	new_bucket_size = roundup(new_bucket_size,
633 				  NFT_PIPAPO_ALIGN / sizeof(*new_lt));
634 #endif
635 
636 	if (new_bucket_size == f->bsize)
637 		goto mt;
638 
639 	if (new_bucket_size > f->bsize)
640 		copy = f->bsize;
641 	else
642 		copy = new_bucket_size;
643 
644 	new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
645 			  new_bucket_size * sizeof(*new_lt) +
646 			  NFT_PIPAPO_ALIGN_HEADROOM,
647 			  GFP_KERNEL);
648 	if (!new_lt)
649 		return -ENOMEM;
650 
651 	new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
652 	old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
653 
654 	for (group = 0; group < f->groups; group++) {
655 		for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
656 			memcpy(new_p, old_p, copy * sizeof(*new_p));
657 			new_p += copy;
658 			old_p += copy;
659 
660 			if (new_bucket_size > f->bsize)
661 				new_p += new_bucket_size - f->bsize;
662 			else
663 				old_p += f->bsize - new_bucket_size;
664 		}
665 	}
666 
667 mt:
668 	new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
669 	if (!new_mt) {
670 		kvfree(new_lt);
671 		return -ENOMEM;
672 	}
673 
674 	memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
675 	if (rules > old_rules) {
676 		memset(new_mt + old_rules, 0,
677 		       (rules - old_rules) * sizeof(*new_mt));
678 	}
679 
680 	if (new_lt) {
681 		f->bsize = new_bucket_size;
682 		NFT_PIPAPO_LT_ASSIGN(f, new_lt);
683 		kvfree(old_lt);
684 	}
685 
686 	f->mt = new_mt;
687 	kvfree(old_mt);
688 
689 	return 0;
690 }
691 
692 /**
693  * pipapo_bucket_set() - Set rule bit in bucket given group and group value
694  * @f:		Field containing lookup table
695  * @rule:	Rule index
696  * @group:	Group index
697  * @v:		Value of bit group
698  */
pipapo_bucket_set(struct nft_pipapo_field * f,int rule,int group,int v)699 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
700 			      int v)
701 {
702 	unsigned long *pos;
703 
704 	pos = NFT_PIPAPO_LT_ALIGN(f->lt);
705 	pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
706 	pos += f->bsize * v;
707 
708 	__set_bit(rule, pos);
709 }
710 
711 /**
712  * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
713  * @old_groups:	Number of current groups
714  * @bsize:	Size of one bucket, in longs
715  * @old_lt:	Pointer to the current lookup table
716  * @new_lt:	Pointer to the new, pre-allocated lookup table
717  *
718  * Each bucket with index b in the new lookup table, belonging to group g, is
719  * filled with the bit intersection between:
720  * - bucket with index given by the upper 4 bits of b, from group g, and
721  * - bucket with index given by the lower 4 bits of b, from group g + 1
722  *
723  * That is, given buckets from the new lookup table N(x, y) and the old lookup
724  * table O(x, y), with x bucket index, and y group index:
725  *
726  *	N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
727  *
728  * This ensures equivalence of the matching results on lookup. Two examples in
729  * pictures:
730  *
731  *              bucket
732  *  group  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 ... 254 255
733  *    0                ^
734  *    1                |                                                 ^
735  *   ...             ( & )                                               |
736  *                  /     \                                              |
737  *                 /       \                                         .-( & )-.
738  *                /  bucket \                                        |       |
739  *      group  0 / 1   2   3 \ 4   5   6   7   8   9  10  11  12  13 |14  15 |
740  *        0     /             \                                      |       |
741  *        1                    \                                     |       |
742  *        2                                                          |     --'
743  *        3                                                          '-
744  *       ...
745  */
pipapo_lt_4b_to_8b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)746 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
747 			       unsigned long *old_lt, unsigned long *new_lt)
748 {
749 	int g, b, i;
750 
751 	for (g = 0; g < old_groups / 2; g++) {
752 		int src_g0 = g * 2, src_g1 = g * 2 + 1;
753 
754 		for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
755 			int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
756 			int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
757 			int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
758 			int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
759 
760 			for (i = 0; i < bsize; i++) {
761 				*new_lt = old_lt[src_i0 * bsize + i] &
762 					  old_lt[src_i1 * bsize + i];
763 				new_lt++;
764 			}
765 		}
766 	}
767 }
768 
769 /**
770  * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
771  * @old_groups:	Number of current groups
772  * @bsize:	Size of one bucket, in longs
773  * @old_lt:	Pointer to the current lookup table
774  * @new_lt:	Pointer to the new, pre-allocated lookup table
775  *
776  * Each bucket with index b in the new lookup table, belonging to group g, is
777  * filled with the bit union of:
778  * - all the buckets with index such that the upper four bits of the lower byte
779  *   equal b, from group g, with g odd
780  * - all the buckets with index such that the lower four bits equal b, from
781  *   group g, with g even
782  *
783  * That is, given buckets from the new lookup table N(x, y) and the old lookup
784  * table O(x, y), with x bucket index, and y group index:
785  *
786  *	- with g odd:  N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
787  *	- with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
788  *
789  * where U() denotes the arbitrary union operation (binary OR of n terms). This
790  * ensures equivalence of the matching results on lookup.
791  */
pipapo_lt_8b_to_4b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)792 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
793 			       unsigned long *old_lt, unsigned long *new_lt)
794 {
795 	int g, b, bsrc, i;
796 
797 	memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
798 			  sizeof(unsigned long));
799 
800 	for (g = 0; g < old_groups * 2; g += 2) {
801 		int src_g = g / 2;
802 
803 		for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
804 			for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
805 			     bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
806 			     bsrc++) {
807 				if (((bsrc & 0xf0) >> 4) != b)
808 					continue;
809 
810 				for (i = 0; i < bsize; i++)
811 					new_lt[i] |= old_lt[bsrc * bsize + i];
812 			}
813 
814 			new_lt += bsize;
815 		}
816 
817 		for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
818 			for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
819 			     bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
820 			     bsrc++) {
821 				if ((bsrc & 0x0f) != b)
822 					continue;
823 
824 				for (i = 0; i < bsize; i++)
825 					new_lt[i] |= old_lt[bsrc * bsize + i];
826 			}
827 
828 			new_lt += bsize;
829 		}
830 	}
831 }
832 
833 /**
834  * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
835  * @f:		Field containing lookup table
836  */
pipapo_lt_bits_adjust(struct nft_pipapo_field * f)837 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
838 {
839 	unsigned long *new_lt;
840 	int groups, bb;
841 	size_t lt_size;
842 
843 	lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
844 		  sizeof(*f->lt);
845 
846 	if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
847 	    lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
848 		groups = f->groups * 2;
849 		bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
850 
851 		lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
852 			  sizeof(*f->lt);
853 	} else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
854 		   lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
855 		groups = f->groups / 2;
856 		bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
857 
858 		lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
859 			  sizeof(*f->lt);
860 
861 		/* Don't increase group width if the resulting lookup table size
862 		 * would exceed the upper size threshold for a "small" set.
863 		 */
864 		if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
865 			return;
866 	} else {
867 		return;
868 	}
869 
870 	new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
871 	if (!new_lt)
872 		return;
873 
874 	NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
875 	if (f->bb == 4 && bb == 8) {
876 		pipapo_lt_4b_to_8b(f->groups, f->bsize,
877 				   NFT_PIPAPO_LT_ALIGN(f->lt),
878 				   NFT_PIPAPO_LT_ALIGN(new_lt));
879 	} else if (f->bb == 8 && bb == 4) {
880 		pipapo_lt_8b_to_4b(f->groups, f->bsize,
881 				   NFT_PIPAPO_LT_ALIGN(f->lt),
882 				   NFT_PIPAPO_LT_ALIGN(new_lt));
883 	} else {
884 		BUG();
885 	}
886 
887 	f->groups = groups;
888 	f->bb = bb;
889 	kvfree(f->lt);
890 	NFT_PIPAPO_LT_ASSIGN(f, new_lt);
891 }
892 
893 /**
894  * pipapo_insert() - Insert new rule in field given input key and mask length
895  * @f:		Field containing lookup table
896  * @k:		Input key for classification, without nftables padding
897  * @mask_bits:	Length of mask; matches field length for non-ranged entry
898  *
899  * Insert a new rule reference in lookup buckets corresponding to k and
900  * mask_bits.
901  *
902  * Return: 1 on success (one rule inserted), negative error code on failure.
903  */
pipapo_insert(struct nft_pipapo_field * f,const uint8_t * k,int mask_bits)904 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
905 			 int mask_bits)
906 {
907 	int rule = f->rules, group, ret, bit_offset = 0;
908 
909 	ret = pipapo_resize(f, f->rules, f->rules + 1);
910 	if (ret)
911 		return ret;
912 
913 	f->rules++;
914 
915 	for (group = 0; group < f->groups; group++) {
916 		int i, v;
917 		u8 mask;
918 
919 		v = k[group / (BITS_PER_BYTE / f->bb)];
920 		v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
921 		v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
922 
923 		bit_offset += f->bb;
924 		bit_offset %= BITS_PER_BYTE;
925 
926 		if (mask_bits >= (group + 1) * f->bb) {
927 			/* Not masked */
928 			pipapo_bucket_set(f, rule, group, v);
929 		} else if (mask_bits <= group * f->bb) {
930 			/* Completely masked */
931 			for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
932 				pipapo_bucket_set(f, rule, group, i);
933 		} else {
934 			/* The mask limit falls on this group */
935 			mask = GENMASK(f->bb - 1, 0);
936 			mask >>= mask_bits - group * f->bb;
937 			for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
938 				if ((i & ~mask) == (v & ~mask))
939 					pipapo_bucket_set(f, rule, group, i);
940 			}
941 		}
942 	}
943 
944 	pipapo_lt_bits_adjust(f);
945 
946 	return 1;
947 }
948 
949 /**
950  * pipapo_step_diff() - Check if setting @step bit in netmask would change it
951  * @base:	Mask we are expanding
952  * @step:	Step bit for given expansion step
953  * @len:	Total length of mask space (set and unset bits), bytes
954  *
955  * Convenience function for mask expansion.
956  *
957  * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
958  */
pipapo_step_diff(u8 * base,int step,int len)959 static bool pipapo_step_diff(u8 *base, int step, int len)
960 {
961 	/* Network order, byte-addressed */
962 #ifdef __BIG_ENDIAN__
963 	return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
964 #else
965 	return !(BIT(step % BITS_PER_BYTE) &
966 		 base[len - 1 - step / BITS_PER_BYTE]);
967 #endif
968 }
969 
970 /**
971  * pipapo_step_after_end() - Check if mask exceeds range end with given step
972  * @base:	Mask we are expanding
973  * @end:	End of range
974  * @step:	Step bit for given expansion step, highest bit to be set
975  * @len:	Total length of mask space (set and unset bits), bytes
976  *
977  * Convenience function for mask expansion.
978  *
979  * Return: true if mask exceeds range setting step bits, false otherwise.
980  */
pipapo_step_after_end(const u8 * base,const u8 * end,int step,int len)981 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
982 				  int len)
983 {
984 	u8 tmp[NFT_PIPAPO_MAX_BYTES];
985 	int i;
986 
987 	memcpy(tmp, base, len);
988 
989 	/* Network order, byte-addressed */
990 	for (i = 0; i <= step; i++)
991 #ifdef __BIG_ENDIAN__
992 		tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
993 #else
994 		tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
995 #endif
996 
997 	return memcmp(tmp, end, len) > 0;
998 }
999 
1000 /**
1001  * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
1002  * @base:	Netmask base
1003  * @step:	Step bit to sum
1004  * @len:	Netmask length, bytes
1005  */
pipapo_base_sum(u8 * base,int step,int len)1006 static void pipapo_base_sum(u8 *base, int step, int len)
1007 {
1008 	bool carry = false;
1009 	int i;
1010 
1011 	/* Network order, byte-addressed */
1012 #ifdef __BIG_ENDIAN__
1013 	for (i = step / BITS_PER_BYTE; i < len; i++) {
1014 #else
1015 	for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1016 #endif
1017 		if (carry)
1018 			base[i]++;
1019 		else
1020 			base[i] += 1 << (step % BITS_PER_BYTE);
1021 
1022 		if (base[i])
1023 			break;
1024 
1025 		carry = true;
1026 	}
1027 }
1028 
1029 /**
1030  * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1031  * @f:		Field containing lookup table
1032  * @start:	Start of range
1033  * @end:	End of range
1034  * @len:	Length of value in bits
1035  *
1036  * Expand range to composing netmasks and insert corresponding rule references
1037  * in lookup buckets.
1038  *
1039  * Return: number of inserted rules on success, negative error code on failure.
1040  */
1041 static int pipapo_expand(struct nft_pipapo_field *f,
1042 			 const u8 *start, const u8 *end, int len)
1043 {
1044 	int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1045 	u8 base[NFT_PIPAPO_MAX_BYTES];
1046 
1047 	memcpy(base, start, bytes);
1048 	while (memcmp(base, end, bytes) <= 0) {
1049 		int err;
1050 
1051 		step = 0;
1052 		while (pipapo_step_diff(base, step, bytes)) {
1053 			if (pipapo_step_after_end(base, end, step, bytes))
1054 				break;
1055 
1056 			step++;
1057 			if (step >= len) {
1058 				if (!masks) {
1059 					err = pipapo_insert(f, base, 0);
1060 					if (err < 0)
1061 						return err;
1062 					masks = 1;
1063 				}
1064 				goto out;
1065 			}
1066 		}
1067 
1068 		err = pipapo_insert(f, base, len - step);
1069 
1070 		if (err < 0)
1071 			return err;
1072 
1073 		masks++;
1074 		pipapo_base_sum(base, step, bytes);
1075 	}
1076 out:
1077 	return masks;
1078 }
1079 
1080 /**
1081  * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1082  * @m:		Matching data, including mapping table
1083  * @map:	Table of rule maps: array of first rule and amount of rules
1084  *		in next field a given rule maps to, for each field
1085  * @e:		For last field, nft_set_ext pointer matching rules map to
1086  */
1087 static void pipapo_map(struct nft_pipapo_match *m,
1088 		       union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1089 		       struct nft_pipapo_elem *e)
1090 {
1091 	struct nft_pipapo_field *f;
1092 	int i, j;
1093 
1094 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1095 		for (j = 0; j < map[i].n; j++) {
1096 			f->mt[map[i].to + j].to = map[i + 1].to;
1097 			f->mt[map[i].to + j].n = map[i + 1].n;
1098 		}
1099 	}
1100 
1101 	/* Last field: map to ext instead of mapping to next field */
1102 	for (j = 0; j < map[i].n; j++)
1103 		f->mt[map[i].to + j].e = e;
1104 }
1105 
1106 /**
1107  * pipapo_free_scratch() - Free per-CPU map at original (not aligned) address
1108  * @m:		Matching data
1109  * @cpu:	CPU number
1110  */
1111 static void pipapo_free_scratch(const struct nft_pipapo_match *m, unsigned int cpu)
1112 {
1113 	struct nft_pipapo_scratch *s;
1114 	void *mem;
1115 
1116 	s = *per_cpu_ptr(m->scratch, cpu);
1117 	if (!s)
1118 		return;
1119 
1120 	mem = s;
1121 	mem -= s->align_off;
1122 	kfree(mem);
1123 }
1124 
1125 /**
1126  * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1127  * @clone:	Copy of matching data with pending insertions and deletions
1128  * @bsize_max:	Maximum bucket size, scratch maps cover two buckets
1129  *
1130  * Return: 0 on success, -ENOMEM on failure.
1131  */
1132 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1133 				  unsigned long bsize_max)
1134 {
1135 	int i;
1136 
1137 	for_each_possible_cpu(i) {
1138 		struct nft_pipapo_scratch *scratch;
1139 #ifdef NFT_PIPAPO_ALIGN
1140 		void *scratch_aligned;
1141 		u32 align_off;
1142 #endif
1143 		scratch = kzalloc_node(struct_size(scratch, map,
1144 						   bsize_max * 2) +
1145 				       NFT_PIPAPO_ALIGN_HEADROOM,
1146 				       GFP_KERNEL, cpu_to_node(i));
1147 		if (!scratch) {
1148 			/* On failure, there's no need to undo previous
1149 			 * allocations: this means that some scratch maps have
1150 			 * a bigger allocated size now (this is only called on
1151 			 * insertion), but the extra space won't be used by any
1152 			 * CPU as new elements are not inserted and m->bsize_max
1153 			 * is not updated.
1154 			 */
1155 			return -ENOMEM;
1156 		}
1157 
1158 		pipapo_free_scratch(clone, i);
1159 
1160 #ifdef NFT_PIPAPO_ALIGN
1161 		/* Align &scratch->map (not the struct itself): the extra
1162 		 * %NFT_PIPAPO_ALIGN_HEADROOM bytes passed to kzalloc_node()
1163 		 * above guarantee we can waste up to those bytes in order
1164 		 * to align the map field regardless of its offset within
1165 		 * the struct.
1166 		 */
1167 		BUILD_BUG_ON(offsetof(struct nft_pipapo_scratch, map) > NFT_PIPAPO_ALIGN_HEADROOM);
1168 
1169 		scratch_aligned = NFT_PIPAPO_LT_ALIGN(&scratch->map);
1170 		scratch_aligned -= offsetof(struct nft_pipapo_scratch, map);
1171 		align_off = scratch_aligned - (void *)scratch;
1172 
1173 		scratch = scratch_aligned;
1174 		scratch->align_off = align_off;
1175 #endif
1176 		*per_cpu_ptr(clone->scratch, i) = scratch;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 /**
1183  * nft_pipapo_insert() - Validate and insert ranged elements
1184  * @net:	Network namespace
1185  * @set:	nftables API set representation
1186  * @elem:	nftables API element representation containing key data
1187  * @ext2:	Filled with pointer to &struct nft_set_ext in inserted element
1188  *
1189  * Return: 0 on success, error pointer on failure.
1190  */
1191 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1192 			     const struct nft_set_elem *elem,
1193 			     struct nft_set_ext **ext2)
1194 {
1195 	const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1196 	union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1197 	const u8 *start = (const u8 *)elem->key.val.data, *end;
1198 	struct nft_pipapo_elem *e = elem->priv, *dup;
1199 	struct nft_pipapo *priv = nft_set_priv(set);
1200 	struct nft_pipapo_match *m = priv->clone;
1201 	u8 genmask = nft_genmask_next(net);
1202 	struct nft_pipapo_field *f;
1203 	const u8 *start_p, *end_p;
1204 	int i, bsize_max, err = 0;
1205 
1206 	if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1207 		end = (const u8 *)nft_set_ext_key_end(ext)->data;
1208 	else
1209 		end = start;
1210 
1211 	dup = pipapo_get(net, set, start, genmask);
1212 	if (!IS_ERR(dup)) {
1213 		/* Check if we already have the same exact entry */
1214 		const struct nft_data *dup_key, *dup_end;
1215 
1216 		dup_key = nft_set_ext_key(&dup->ext);
1217 		if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1218 			dup_end = nft_set_ext_key_end(&dup->ext);
1219 		else
1220 			dup_end = dup_key;
1221 
1222 		if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1223 		    !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1224 			*ext2 = &dup->ext;
1225 			return -EEXIST;
1226 		}
1227 
1228 		return -ENOTEMPTY;
1229 	}
1230 
1231 	if (PTR_ERR(dup) == -ENOENT) {
1232 		/* Look for partially overlapping entries */
1233 		dup = pipapo_get(net, set, end, nft_genmask_next(net));
1234 	}
1235 
1236 	if (PTR_ERR(dup) != -ENOENT) {
1237 		if (IS_ERR(dup))
1238 			return PTR_ERR(dup);
1239 		*ext2 = &dup->ext;
1240 		return -ENOTEMPTY;
1241 	}
1242 
1243 	/* Validate */
1244 	start_p = start;
1245 	end_p = end;
1246 	nft_pipapo_for_each_field(f, i, m) {
1247 		if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
1248 			return -ENOSPC;
1249 
1250 		if (memcmp(start_p, end_p,
1251 			   f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1252 			return -EINVAL;
1253 
1254 		start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1255 		end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1256 	}
1257 
1258 	/* Insert */
1259 	priv->dirty = true;
1260 
1261 	bsize_max = m->bsize_max;
1262 
1263 	nft_pipapo_for_each_field(f, i, m) {
1264 		int ret;
1265 
1266 		rulemap[i].to = f->rules;
1267 
1268 		ret = memcmp(start, end,
1269 			     f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1270 		if (!ret)
1271 			ret = pipapo_insert(f, start, f->groups * f->bb);
1272 		else
1273 			ret = pipapo_expand(f, start, end, f->groups * f->bb);
1274 
1275 		if (ret < 0)
1276 			return ret;
1277 
1278 		if (f->bsize > bsize_max)
1279 			bsize_max = f->bsize;
1280 
1281 		rulemap[i].n = ret;
1282 
1283 		start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1284 		end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1285 	}
1286 
1287 	if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1288 		put_cpu_ptr(m->scratch);
1289 
1290 		err = pipapo_realloc_scratch(m, bsize_max);
1291 		if (err)
1292 			return err;
1293 
1294 		m->bsize_max = bsize_max;
1295 	} else {
1296 		put_cpu_ptr(m->scratch);
1297 	}
1298 
1299 	*ext2 = &e->ext;
1300 
1301 	pipapo_map(m, rulemap, e);
1302 
1303 	return 0;
1304 }
1305 
1306 /**
1307  * pipapo_clone() - Clone matching data to create new working copy
1308  * @old:	Existing matching data
1309  *
1310  * Return: copy of matching data passed as 'old', error pointer on failure
1311  */
1312 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1313 {
1314 	struct nft_pipapo_field *dst, *src;
1315 	struct nft_pipapo_match *new;
1316 	int i;
1317 
1318 	new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL);
1319 	if (!new)
1320 		return ERR_PTR(-ENOMEM);
1321 
1322 	new->field_count = old->field_count;
1323 	new->bsize_max = old->bsize_max;
1324 
1325 	new->scratch = alloc_percpu(*new->scratch);
1326 	if (!new->scratch)
1327 		goto out_scratch;
1328 
1329 	for_each_possible_cpu(i)
1330 		*per_cpu_ptr(new->scratch, i) = NULL;
1331 
1332 	if (pipapo_realloc_scratch(new, old->bsize_max))
1333 		goto out_scratch_realloc;
1334 
1335 	rcu_head_init(&new->rcu);
1336 
1337 	src = old->f;
1338 	dst = new->f;
1339 
1340 	for (i = 0; i < old->field_count; i++) {
1341 		unsigned long *new_lt;
1342 
1343 		memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1344 
1345 		new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1346 				  src->bsize * sizeof(*dst->lt) +
1347 				  NFT_PIPAPO_ALIGN_HEADROOM,
1348 				  GFP_KERNEL);
1349 		if (!new_lt)
1350 			goto out_lt;
1351 
1352 		NFT_PIPAPO_LT_ASSIGN(dst, new_lt);
1353 
1354 		memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1355 		       NFT_PIPAPO_LT_ALIGN(src->lt),
1356 		       src->bsize * sizeof(*dst->lt) *
1357 		       src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1358 
1359 		dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
1360 		if (!dst->mt)
1361 			goto out_mt;
1362 
1363 		memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1364 		src++;
1365 		dst++;
1366 	}
1367 
1368 	return new;
1369 
1370 out_mt:
1371 	kvfree(dst->lt);
1372 out_lt:
1373 	for (dst--; i > 0; i--) {
1374 		kvfree(dst->mt);
1375 		kvfree(dst->lt);
1376 		dst--;
1377 	}
1378 out_scratch_realloc:
1379 	for_each_possible_cpu(i)
1380 		pipapo_free_scratch(new, i);
1381 out_scratch:
1382 	free_percpu(new->scratch);
1383 	kfree(new);
1384 
1385 	return ERR_PTR(-ENOMEM);
1386 }
1387 
1388 /**
1389  * pipapo_rules_same_key() - Get number of rules originated from the same entry
1390  * @f:		Field containing mapping table
1391  * @first:	Index of first rule in set of rules mapping to same entry
1392  *
1393  * Using the fact that all rules in a field that originated from the same entry
1394  * will map to the same set of rules in the next field, or to the same element
1395  * reference, return the cardinality of the set of rules that originated from
1396  * the same entry as the rule with index @first, @first rule included.
1397  *
1398  * In pictures:
1399  *				rules
1400  *	field #0		0    1    2    3    4
1401  *		map to:		0    1   2-4  2-4  5-9
1402  *				.    .    .......   . ...
1403  *				|    |    |    | \   \
1404  *				|    |    |    |  \   \
1405  *				|    |    |    |   \   \
1406  *				'    '    '    '    '   \
1407  *	in field #1		0    1    2    3    4    5 ...
1408  *
1409  * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1410  * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1411  *
1412  * For the last field in a set, we can rely on associated entries to map to the
1413  * same element references.
1414  *
1415  * Return: Number of rules that originated from the same entry as @first.
1416  */
1417 static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
1418 {
1419 	struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1420 	int r;
1421 
1422 	for (r = first; r < f->rules; r++) {
1423 		if (r != first && e != f->mt[r].e)
1424 			return r - first;
1425 
1426 		e = f->mt[r].e;
1427 	}
1428 
1429 	if (r != first)
1430 		return r - first;
1431 
1432 	return 0;
1433 }
1434 
1435 /**
1436  * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1437  * @mt:		Mapping array
1438  * @rules:	Original amount of rules in mapping table
1439  * @start:	First rule index to be removed
1440  * @n:		Amount of rules to be removed
1441  * @to_offset:	First rule index, in next field, this group of rules maps to
1442  * @is_last:	If this is the last field, delete reference from mapping array
1443  *
1444  * This is used to unmap rules from the mapping table for a single field,
1445  * maintaining consistency and compactness for the existing ones.
1446  *
1447  * In pictures: let's assume that we want to delete rules 2 and 3 from the
1448  * following mapping array:
1449  *
1450  *                 rules
1451  *               0      1      2      3      4
1452  *      map to:  4-10   4-10   11-15  11-15  16-18
1453  *
1454  * the result will be:
1455  *
1456  *                 rules
1457  *               0      1      2
1458  *      map to:  4-10   4-10   11-13
1459  *
1460  * for fields before the last one. In case this is the mapping table for the
1461  * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1462  *
1463  *                      rules
1464  *                        0      1      2      3      4
1465  *  element pointers:  0x42   0x42   0x33   0x33   0x44
1466  *
1467  * the result will be:
1468  *
1469  *                      rules
1470  *                        0      1      2
1471  *  element pointers:  0x42   0x42   0x44
1472  */
1473 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
1474 			 int start, int n, int to_offset, bool is_last)
1475 {
1476 	int i;
1477 
1478 	memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1479 	memset(mt + rules - n, 0, n * sizeof(*mt));
1480 
1481 	if (is_last)
1482 		return;
1483 
1484 	for (i = start; i < rules - n; i++)
1485 		mt[i].to -= to_offset;
1486 }
1487 
1488 /**
1489  * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1490  * @m:		Matching data
1491  * @rulemap:	Table of rule maps, arrays of first rule and amount of rules
1492  *		in next field a given entry maps to, for each field
1493  *
1494  * For each rule in lookup table buckets mapping to this set of rules, drop
1495  * all bits set in lookup table mapping. In pictures, assuming we want to drop
1496  * rules 0 and 1 from this lookup table:
1497  *
1498  *                     bucket
1499  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1500  *        0    0                                              1,2
1501  *        1   1,2                                      0
1502  *        2    0                                      1,2
1503  *        3    0                              1,2
1504  *        4  0,1,2
1505  *        5    0   1   2
1506  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1507  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
1508  *
1509  * rule 2 becomes rule 0, and the result will be:
1510  *
1511  *                     bucket
1512  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1513  *        0                                                    0
1514  *        1    0
1515  *        2                                            0
1516  *        3                                    0
1517  *        4    0
1518  *        5            0
1519  *        6    0
1520  *        7    0   0
1521  *
1522  * once this is done, call unmap() to drop all the corresponding rule references
1523  * from mapping tables.
1524  */
1525 static void pipapo_drop(struct nft_pipapo_match *m,
1526 			union nft_pipapo_map_bucket rulemap[])
1527 {
1528 	struct nft_pipapo_field *f;
1529 	int i;
1530 
1531 	nft_pipapo_for_each_field(f, i, m) {
1532 		int g;
1533 
1534 		for (g = 0; g < f->groups; g++) {
1535 			unsigned long *pos;
1536 			int b;
1537 
1538 			pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1539 			      NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1540 
1541 			for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1542 				bitmap_cut(pos, pos, rulemap[i].to,
1543 					   rulemap[i].n,
1544 					   f->bsize * BITS_PER_LONG);
1545 
1546 				pos += f->bsize;
1547 			}
1548 		}
1549 
1550 		pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1551 			     rulemap[i + 1].n, i == m->field_count - 1);
1552 		if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1553 			/* We can ignore this, a failure to shrink tables down
1554 			 * doesn't make tables invalid.
1555 			 */
1556 			;
1557 		}
1558 		f->rules -= rulemap[i].n;
1559 
1560 		pipapo_lt_bits_adjust(f);
1561 	}
1562 }
1563 
1564 static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set,
1565 				     struct nft_pipapo_elem *e)
1566 
1567 {
1568 	struct nft_set_elem elem = {
1569 		.priv	= e,
1570 	};
1571 
1572 	nft_setelem_data_deactivate(net, set, &elem);
1573 }
1574 
1575 /**
1576  * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1577  * @_set:	nftables API set representation
1578  * @m:		Matching data
1579  */
1580 static void pipapo_gc(const struct nft_set *_set, struct nft_pipapo_match *m)
1581 {
1582 	struct nft_set *set = (struct nft_set *) _set;
1583 	struct nft_pipapo *priv = nft_set_priv(set);
1584 	struct net *net = read_pnet(&set->net);
1585 	int rules_f0, first_rule = 0;
1586 	struct nft_pipapo_elem *e;
1587 	struct nft_trans_gc *gc;
1588 
1589 	gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL);
1590 	if (!gc)
1591 		return;
1592 
1593 	while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1594 		union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1595 		const struct nft_pipapo_field *f;
1596 		int i, start, rules_fx;
1597 
1598 		start = first_rule;
1599 		rules_fx = rules_f0;
1600 
1601 		nft_pipapo_for_each_field(f, i, m) {
1602 			rulemap[i].to = start;
1603 			rulemap[i].n = rules_fx;
1604 
1605 			if (i < m->field_count - 1) {
1606 				rules_fx = f->mt[start].n;
1607 				start = f->mt[start].to;
1608 			}
1609 		}
1610 
1611 		/* Pick the last field, and its last index */
1612 		f--;
1613 		i--;
1614 		e = f->mt[rulemap[i].to].e;
1615 
1616 		/* synchronous gc never fails, there is no need to set on
1617 		 * NFT_SET_ELEM_DEAD_BIT.
1618 		 */
1619 		if (nft_set_elem_expired(&e->ext)) {
1620 			priv->dirty = true;
1621 
1622 			gc = nft_trans_gc_queue_sync(gc, GFP_ATOMIC);
1623 			if (!gc)
1624 				return;
1625 
1626 			nft_pipapo_gc_deactivate(net, set, e);
1627 			pipapo_drop(m, rulemap);
1628 			nft_trans_gc_elem_add(gc, e);
1629 
1630 			/* And check again current first rule, which is now the
1631 			 * first we haven't checked.
1632 			 */
1633 		} else {
1634 			first_rule += rules_f0;
1635 		}
1636 	}
1637 
1638 	gc = nft_trans_gc_catchall_sync(gc);
1639 	if (gc) {
1640 		nft_trans_gc_queue_sync_done(gc);
1641 		priv->last_gc = jiffies;
1642 	}
1643 }
1644 
1645 /**
1646  * pipapo_free_fields() - Free per-field tables contained in matching data
1647  * @m:		Matching data
1648  */
1649 static void pipapo_free_fields(struct nft_pipapo_match *m)
1650 {
1651 	struct nft_pipapo_field *f;
1652 	int i;
1653 
1654 	nft_pipapo_for_each_field(f, i, m) {
1655 		kvfree(f->lt);
1656 		kvfree(f->mt);
1657 	}
1658 }
1659 
1660 static void pipapo_free_match(struct nft_pipapo_match *m)
1661 {
1662 	int i;
1663 
1664 	for_each_possible_cpu(i)
1665 		pipapo_free_scratch(m, i);
1666 
1667 	free_percpu(m->scratch);
1668 	pipapo_free_fields(m);
1669 
1670 	kfree(m);
1671 }
1672 
1673 /**
1674  * pipapo_reclaim_match - RCU callback to free fields from old matching data
1675  * @rcu:	RCU head
1676  */
1677 static void pipapo_reclaim_match(struct rcu_head *rcu)
1678 {
1679 	struct nft_pipapo_match *m;
1680 
1681 	m = container_of(rcu, struct nft_pipapo_match, rcu);
1682 	pipapo_free_match(m);
1683 }
1684 
1685 /**
1686  * nft_pipapo_commit() - Replace lookup data with current working copy
1687  * @set:	nftables API set representation
1688  *
1689  * While at it, check if we should perform garbage collection on the working
1690  * copy before committing it for lookup, and don't replace the table if the
1691  * working copy doesn't have pending changes.
1692  *
1693  * We also need to create a new working copy for subsequent insertions and
1694  * deletions.
1695  */
1696 static void nft_pipapo_commit(const struct nft_set *set)
1697 {
1698 	struct nft_pipapo *priv = nft_set_priv(set);
1699 	struct nft_pipapo_match *new_clone, *old;
1700 
1701 	if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1702 		pipapo_gc(set, priv->clone);
1703 
1704 	if (!priv->dirty)
1705 		return;
1706 
1707 	new_clone = pipapo_clone(priv->clone);
1708 	if (IS_ERR(new_clone))
1709 		return;
1710 
1711 	priv->dirty = false;
1712 
1713 	old = rcu_access_pointer(priv->match);
1714 	rcu_assign_pointer(priv->match, priv->clone);
1715 	if (old)
1716 		call_rcu(&old->rcu, pipapo_reclaim_match);
1717 
1718 	priv->clone = new_clone;
1719 }
1720 
1721 static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set)
1722 {
1723 #ifdef CONFIG_PROVE_LOCKING
1724 	const struct net *net = read_pnet(&set->net);
1725 
1726 	return lockdep_is_held(&nft_pernet(net)->commit_mutex);
1727 #else
1728 	return true;
1729 #endif
1730 }
1731 
1732 static void nft_pipapo_abort(const struct nft_set *set)
1733 {
1734 	struct nft_pipapo *priv = nft_set_priv(set);
1735 	struct nft_pipapo_match *new_clone, *m;
1736 
1737 	if (!priv->dirty)
1738 		return;
1739 
1740 	m = rcu_dereference_protected(priv->match, nft_pipapo_transaction_mutex_held(set));
1741 
1742 	new_clone = pipapo_clone(m);
1743 	if (IS_ERR(new_clone))
1744 		return;
1745 
1746 	priv->dirty = false;
1747 
1748 	pipapo_free_match(priv->clone);
1749 	priv->clone = new_clone;
1750 }
1751 
1752 /**
1753  * nft_pipapo_activate() - Mark element reference as active given key, commit
1754  * @net:	Network namespace
1755  * @set:	nftables API set representation
1756  * @elem:	nftables API element representation containing key data
1757  *
1758  * On insertion, elements are added to a copy of the matching data currently
1759  * in use for lookups, and not directly inserted into current lookup data. Both
1760  * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1761  * element, hence we can't purpose either one as a real commit operation.
1762  */
1763 static void nft_pipapo_activate(const struct net *net,
1764 				const struct nft_set *set,
1765 				const struct nft_set_elem *elem)
1766 {
1767 	struct nft_pipapo_elem *e = elem->priv;
1768 
1769 	nft_set_elem_change_active(net, set, &e->ext);
1770 }
1771 
1772 /**
1773  * pipapo_deactivate() - Check that element is in set, mark as inactive
1774  * @net:	Network namespace
1775  * @set:	nftables API set representation
1776  * @data:	Input key data
1777  * @ext:	nftables API extension pointer, used to check for end element
1778  *
1779  * This is a convenience function that can be called from both
1780  * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1781  * operation.
1782  *
1783  * Return: deactivated element if found, NULL otherwise.
1784  */
1785 static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1786 			       const u8 *data, const struct nft_set_ext *ext)
1787 {
1788 	struct nft_pipapo_elem *e;
1789 
1790 	e = pipapo_get(net, set, data, nft_genmask_next(net));
1791 	if (IS_ERR(e))
1792 		return NULL;
1793 
1794 	nft_set_elem_change_active(net, set, &e->ext);
1795 
1796 	return e;
1797 }
1798 
1799 /**
1800  * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1801  * @net:	Network namespace
1802  * @set:	nftables API set representation
1803  * @elem:	nftables API element representation containing key data
1804  *
1805  * Return: deactivated element if found, NULL otherwise.
1806  */
1807 static void *nft_pipapo_deactivate(const struct net *net,
1808 				   const struct nft_set *set,
1809 				   const struct nft_set_elem *elem)
1810 {
1811 	const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1812 
1813 	return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
1814 }
1815 
1816 /**
1817  * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1818  * @net:	Network namespace
1819  * @set:	nftables API set representation
1820  * @elem:	nftables API element representation containing key data
1821  *
1822  * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1823  * different interface, and it's also called once for each element in a set
1824  * being flushed, so we can't implement, strictly speaking, a flush operation,
1825  * which would otherwise be as simple as allocating an empty copy of the
1826  * matching data.
1827  *
1828  * Note that we could in theory do that, mark the set as flushed, and ignore
1829  * subsequent calls, but we would leak all the elements after the first one,
1830  * because they wouldn't then be freed as result of API calls.
1831  *
1832  * Return: true if element was found and deactivated.
1833  */
1834 static bool nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1835 			     void *elem)
1836 {
1837 	struct nft_pipapo_elem *e = elem;
1838 
1839 	return pipapo_deactivate(net, set, (const u8 *)nft_set_ext_key(&e->ext),
1840 				 &e->ext);
1841 }
1842 
1843 /**
1844  * pipapo_get_boundaries() - Get byte interval for associated rules
1845  * @f:		Field including lookup table
1846  * @first_rule:	First rule (lowest index)
1847  * @rule_count:	Number of associated rules
1848  * @left:	Byte expression for left boundary (start of range)
1849  * @right:	Byte expression for right boundary (end of range)
1850  *
1851  * Given the first rule and amount of rules that originated from the same entry,
1852  * build the original range associated with the entry, and calculate the length
1853  * of the originating netmask.
1854  *
1855  * In pictures:
1856  *
1857  *                     bucket
1858  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1859  *        0                                                   1,2
1860  *        1   1,2
1861  *        2                                           1,2
1862  *        3                                   1,2
1863  *        4   1,2
1864  *        5        1   2
1865  *        6   1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1866  *        7   1,2 1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1
1867  *
1868  * this is the lookup table corresponding to the IPv4 range
1869  * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1870  * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1871  *
1872  * This function fills @left and @right with the byte values of the leftmost
1873  * and rightmost bucket indices for the lowest and highest rule indices,
1874  * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1875  * nibbles:
1876  *   left:  < 12, 0, 10, 8, 0, 1, 0, 0 >
1877  *   right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1878  * corresponding to bytes:
1879  *   left:  < 192, 168, 1, 0 >
1880  *   right: < 192, 168, 2, 1 >
1881  * with mask length irrelevant here, unused on return, as the range is already
1882  * defined by its start and end points. The mask length is relevant for a single
1883  * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1884  * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1885  * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1886  * between leftmost and rightmost bucket indices for each group, would be 24.
1887  *
1888  * Return: mask length, in bits.
1889  */
1890 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1891 				 int rule_count, u8 *left, u8 *right)
1892 {
1893 	int g, mask_len = 0, bit_offset = 0;
1894 	u8 *l = left, *r = right;
1895 
1896 	for (g = 0; g < f->groups; g++) {
1897 		int b, x0, x1;
1898 
1899 		x0 = -1;
1900 		x1 = -1;
1901 		for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1902 			unsigned long *pos;
1903 
1904 			pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1905 			      (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1906 			if (test_bit(first_rule, pos) && x0 == -1)
1907 				x0 = b;
1908 			if (test_bit(first_rule + rule_count - 1, pos))
1909 				x1 = b;
1910 		}
1911 
1912 		*l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1913 		*r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1914 
1915 		bit_offset += f->bb;
1916 		if (bit_offset >= BITS_PER_BYTE) {
1917 			bit_offset %= BITS_PER_BYTE;
1918 			l++;
1919 			r++;
1920 		}
1921 
1922 		if (x1 - x0 == 0)
1923 			mask_len += 4;
1924 		else if (x1 - x0 == 1)
1925 			mask_len += 3;
1926 		else if (x1 - x0 == 3)
1927 			mask_len += 2;
1928 		else if (x1 - x0 == 7)
1929 			mask_len += 1;
1930 	}
1931 
1932 	return mask_len;
1933 }
1934 
1935 /**
1936  * pipapo_match_field() - Match rules against byte ranges
1937  * @f:		Field including the lookup table
1938  * @first_rule:	First of associated rules originating from same entry
1939  * @rule_count:	Amount of associated rules
1940  * @start:	Start of range to be matched
1941  * @end:	End of range to be matched
1942  *
1943  * Return: true on match, false otherwise.
1944  */
1945 static bool pipapo_match_field(struct nft_pipapo_field *f,
1946 			       int first_rule, int rule_count,
1947 			       const u8 *start, const u8 *end)
1948 {
1949 	u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1950 	u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1951 
1952 	pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1953 
1954 	return !memcmp(start, left,
1955 		       f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1956 	       !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1957 }
1958 
1959 /**
1960  * nft_pipapo_remove() - Remove element given key, commit
1961  * @net:	Network namespace
1962  * @set:	nftables API set representation
1963  * @elem:	nftables API element representation containing key data
1964  *
1965  * Similarly to nft_pipapo_activate(), this is used as commit operation by the
1966  * API, but it's called once per element in the pending transaction, so we can't
1967  * implement this as a single commit operation. Closest we can get is to remove
1968  * the matched element here, if any, and commit the updated matching data.
1969  */
1970 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
1971 			      const struct nft_set_elem *elem)
1972 {
1973 	struct nft_pipapo *priv = nft_set_priv(set);
1974 	struct nft_pipapo_match *m = priv->clone;
1975 	struct nft_pipapo_elem *e = elem->priv;
1976 	int rules_f0, first_rule = 0;
1977 	const u8 *data;
1978 
1979 	data = (const u8 *)nft_set_ext_key(&e->ext);
1980 
1981 	while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1982 		union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1983 		const u8 *match_start, *match_end;
1984 		struct nft_pipapo_field *f;
1985 		int i, start, rules_fx;
1986 
1987 		match_start = data;
1988 
1989 		if (nft_set_ext_exists(&e->ext, NFT_SET_EXT_KEY_END))
1990 			match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
1991 		else
1992 			match_end = data;
1993 
1994 		start = first_rule;
1995 		rules_fx = rules_f0;
1996 
1997 		nft_pipapo_for_each_field(f, i, m) {
1998 			bool last = i == m->field_count - 1;
1999 
2000 			if (!pipapo_match_field(f, start, rules_fx,
2001 						match_start, match_end))
2002 				break;
2003 
2004 			rulemap[i].to = start;
2005 			rulemap[i].n = rules_fx;
2006 
2007 			rules_fx = f->mt[start].n;
2008 			start = f->mt[start].to;
2009 
2010 			match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2011 			match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2012 
2013 			if (last && f->mt[rulemap[i].to].e == e) {
2014 				priv->dirty = true;
2015 				pipapo_drop(m, rulemap);
2016 				return;
2017 			}
2018 		}
2019 
2020 		first_rule += rules_f0;
2021 	}
2022 
2023 	WARN_ON_ONCE(1); /* elem_priv not found */
2024 }
2025 
2026 /**
2027  * nft_pipapo_walk() - Walk over elements
2028  * @ctx:	nftables API context
2029  * @set:	nftables API set representation
2030  * @iter:	Iterator
2031  *
2032  * As elements are referenced in the mapping array for the last field, directly
2033  * scan that array: there's no need to follow rule mappings from the first
2034  * field.
2035  */
2036 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
2037 			    struct nft_set_iter *iter)
2038 {
2039 	struct nft_pipapo *priv = nft_set_priv(set);
2040 	const struct nft_pipapo_match *m;
2041 	const struct nft_pipapo_field *f;
2042 	int i, r;
2043 
2044 	WARN_ON_ONCE(iter->type != NFT_ITER_READ &&
2045 		     iter->type != NFT_ITER_UPDATE);
2046 
2047 	rcu_read_lock();
2048 	if (iter->type == NFT_ITER_READ)
2049 		m = rcu_dereference(priv->match);
2050 	else
2051 		m = priv->clone;
2052 
2053 	if (unlikely(!m))
2054 		goto out;
2055 
2056 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2057 		;
2058 
2059 	for (r = 0; r < f->rules; r++) {
2060 		struct nft_pipapo_elem *e;
2061 		struct nft_set_elem elem;
2062 
2063 		if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2064 			continue;
2065 
2066 		if (iter->count < iter->skip)
2067 			goto cont;
2068 
2069 		e = f->mt[r].e;
2070 
2071 		if (!nft_set_elem_active(&e->ext, iter->genmask))
2072 			goto cont;
2073 
2074 		elem.priv = e;
2075 
2076 		iter->err = iter->fn(ctx, set, iter, &elem);
2077 		if (iter->err < 0)
2078 			goto out;
2079 
2080 cont:
2081 		iter->count++;
2082 	}
2083 
2084 out:
2085 	rcu_read_unlock();
2086 }
2087 
2088 /**
2089  * nft_pipapo_privsize() - Return the size of private data for the set
2090  * @nla:	netlink attributes, ignored as size doesn't depend on them
2091  * @desc:	Set description, ignored as size doesn't depend on it
2092  *
2093  * Return: size of private data for this set implementation, in bytes
2094  */
2095 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2096 			       const struct nft_set_desc *desc)
2097 {
2098 	return sizeof(struct nft_pipapo);
2099 }
2100 
2101 /**
2102  * nft_pipapo_estimate() - Set size, space and lookup complexity
2103  * @desc:	Set description, element count and field description used
2104  * @features:	Flags: NFT_SET_INTERVAL needs to be there
2105  * @est:	Storage for estimation data
2106  *
2107  * Return: true if set description is compatible, false otherwise
2108  */
2109 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2110 				struct nft_set_estimate *est)
2111 {
2112 	if (!(features & NFT_SET_INTERVAL) ||
2113 	    desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2114 		return false;
2115 
2116 	est->size = pipapo_estimate_size(desc);
2117 	if (!est->size)
2118 		return false;
2119 
2120 	est->lookup = NFT_SET_CLASS_O_LOG_N;
2121 
2122 	est->space = NFT_SET_CLASS_O_N;
2123 
2124 	return true;
2125 }
2126 
2127 /**
2128  * nft_pipapo_init() - Initialise data for a set instance
2129  * @set:	nftables API set representation
2130  * @desc:	Set description
2131  * @nla:	netlink attributes
2132  *
2133  * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2134  * attributes, initialise internal set parameters, current instance of matching
2135  * data and a copy for subsequent insertions.
2136  *
2137  * Return: 0 on success, negative error code on failure.
2138  */
2139 static int nft_pipapo_init(const struct nft_set *set,
2140 			   const struct nft_set_desc *desc,
2141 			   const struct nlattr * const nla[])
2142 {
2143 	struct nft_pipapo *priv = nft_set_priv(set);
2144 	struct nft_pipapo_match *m;
2145 	struct nft_pipapo_field *f;
2146 	int err, i, field_count;
2147 
2148 	field_count = desc->field_count ? : 1;
2149 
2150 	if (field_count > NFT_PIPAPO_MAX_FIELDS)
2151 		return -EINVAL;
2152 
2153 	m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL);
2154 	if (!m)
2155 		return -ENOMEM;
2156 
2157 	m->field_count = field_count;
2158 	m->bsize_max = 0;
2159 
2160 	m->scratch = alloc_percpu(struct nft_pipapo_scratch *);
2161 	if (!m->scratch) {
2162 		err = -ENOMEM;
2163 		goto out_scratch;
2164 	}
2165 	for_each_possible_cpu(i)
2166 		*per_cpu_ptr(m->scratch, i) = NULL;
2167 
2168 	rcu_head_init(&m->rcu);
2169 
2170 	nft_pipapo_for_each_field(f, i, m) {
2171 		int len = desc->field_len[i] ? : set->klen;
2172 
2173 		f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2174 		f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2175 
2176 		priv->width += round_up(len, sizeof(u32));
2177 
2178 		f->bsize = 0;
2179 		f->rules = 0;
2180 		NFT_PIPAPO_LT_ASSIGN(f, NULL);
2181 		f->mt = NULL;
2182 	}
2183 
2184 	/* Create an initial clone of matching data for next insertion */
2185 	priv->clone = pipapo_clone(m);
2186 	if (IS_ERR(priv->clone)) {
2187 		err = PTR_ERR(priv->clone);
2188 		goto out_free;
2189 	}
2190 
2191 	priv->dirty = false;
2192 
2193 	rcu_assign_pointer(priv->match, m);
2194 
2195 	return 0;
2196 
2197 out_free:
2198 	free_percpu(m->scratch);
2199 out_scratch:
2200 	kfree(m);
2201 
2202 	return err;
2203 }
2204 
2205 /**
2206  * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2207  * @ctx:	context
2208  * @set:	nftables API set representation
2209  * @m:		matching data pointing to key mapping array
2210  */
2211 static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx,
2212 					 const struct nft_set *set,
2213 					 struct nft_pipapo_match *m)
2214 {
2215 	struct nft_pipapo_field *f;
2216 	int i, r;
2217 
2218 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2219 		;
2220 
2221 	for (r = 0; r < f->rules; r++) {
2222 		struct nft_pipapo_elem *e;
2223 
2224 		if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2225 			continue;
2226 
2227 		e = f->mt[r].e;
2228 
2229 		nf_tables_set_elem_destroy(ctx, set, e);
2230 	}
2231 }
2232 
2233 /**
2234  * nft_pipapo_destroy() - Free private data for set and all committed elements
2235  * @ctx:	context
2236  * @set:	nftables API set representation
2237  */
2238 static void nft_pipapo_destroy(const struct nft_ctx *ctx,
2239 			       const struct nft_set *set)
2240 {
2241 	struct nft_pipapo *priv = nft_set_priv(set);
2242 	struct nft_pipapo_match *m;
2243 	int cpu;
2244 
2245 	m = rcu_dereference_protected(priv->match, true);
2246 	if (m) {
2247 		rcu_barrier();
2248 
2249 		for_each_possible_cpu(cpu)
2250 			pipapo_free_scratch(m, cpu);
2251 		free_percpu(m->scratch);
2252 		pipapo_free_fields(m);
2253 		kfree(m);
2254 		priv->match = NULL;
2255 	}
2256 
2257 	if (priv->clone) {
2258 		m = priv->clone;
2259 
2260 		nft_set_pipapo_match_destroy(ctx, set, m);
2261 
2262 		for_each_possible_cpu(cpu)
2263 			pipapo_free_scratch(priv->clone, cpu);
2264 		free_percpu(priv->clone->scratch);
2265 
2266 		pipapo_free_fields(priv->clone);
2267 		kfree(priv->clone);
2268 		priv->clone = NULL;
2269 	}
2270 }
2271 
2272 /**
2273  * nft_pipapo_gc_init() - Initialise garbage collection
2274  * @set:	nftables API set representation
2275  *
2276  * Instead of actually setting up a periodic work for garbage collection, as
2277  * this operation requires a swap of matching data with the working copy, we'll
2278  * do that opportunistically with other commit operations if the interval is
2279  * elapsed, so we just need to set the current jiffies timestamp here.
2280  */
2281 static void nft_pipapo_gc_init(const struct nft_set *set)
2282 {
2283 	struct nft_pipapo *priv = nft_set_priv(set);
2284 
2285 	priv->last_gc = jiffies;
2286 }
2287 
2288 const struct nft_set_type nft_set_pipapo_type = {
2289 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2290 			  NFT_SET_TIMEOUT,
2291 	.ops		= {
2292 		.lookup		= nft_pipapo_lookup,
2293 		.insert		= nft_pipapo_insert,
2294 		.activate	= nft_pipapo_activate,
2295 		.deactivate	= nft_pipapo_deactivate,
2296 		.flush		= nft_pipapo_flush,
2297 		.remove		= nft_pipapo_remove,
2298 		.walk		= nft_pipapo_walk,
2299 		.get		= nft_pipapo_get,
2300 		.privsize	= nft_pipapo_privsize,
2301 		.estimate	= nft_pipapo_estimate,
2302 		.init		= nft_pipapo_init,
2303 		.destroy	= nft_pipapo_destroy,
2304 		.gc_init	= nft_pipapo_gc_init,
2305 		.commit		= nft_pipapo_commit,
2306 		.abort		= nft_pipapo_abort,
2307 		.elemsize	= offsetof(struct nft_pipapo_elem, ext),
2308 	},
2309 };
2310 
2311 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2312 const struct nft_set_type nft_set_pipapo_avx2_type = {
2313 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2314 			  NFT_SET_TIMEOUT,
2315 	.ops		= {
2316 		.lookup		= nft_pipapo_avx2_lookup,
2317 		.insert		= nft_pipapo_insert,
2318 		.activate	= nft_pipapo_activate,
2319 		.deactivate	= nft_pipapo_deactivate,
2320 		.flush		= nft_pipapo_flush,
2321 		.remove		= nft_pipapo_remove,
2322 		.walk		= nft_pipapo_walk,
2323 		.get		= nft_pipapo_get,
2324 		.privsize	= nft_pipapo_privsize,
2325 		.estimate	= nft_pipapo_avx2_estimate,
2326 		.init		= nft_pipapo_init,
2327 		.destroy	= nft_pipapo_destroy,
2328 		.gc_init	= nft_pipapo_gc_init,
2329 		.commit		= nft_pipapo_commit,
2330 		.abort		= nft_pipapo_abort,
2331 		.elemsize	= offsetof(struct nft_pipapo_elem, ext),
2332 	},
2333 };
2334 #endif
2335