1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/bitfield.h>
5 #include "igc_phy.h"
6 
7 /**
8  * igc_check_reset_block - Check if PHY reset is blocked
9  * @hw: pointer to the HW structure
10  *
11  * Read the PHY management control register and check whether a PHY reset
12  * is blocked.  If a reset is not blocked return 0, otherwise
13  * return IGC_ERR_BLK_PHY_RESET (12).
14  */
igc_check_reset_block(struct igc_hw * hw)15 s32 igc_check_reset_block(struct igc_hw *hw)
16 {
17 	u32 manc;
18 
19 	manc = rd32(IGC_MANC);
20 
21 	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
22 		IGC_ERR_BLK_PHY_RESET : 0;
23 }
24 
25 /**
26  * igc_get_phy_id - Retrieve the PHY ID and revision
27  * @hw: pointer to the HW structure
28  *
29  * Reads the PHY registers and stores the PHY ID and possibly the PHY
30  * revision in the hardware structure.
31  */
igc_get_phy_id(struct igc_hw * hw)32 s32 igc_get_phy_id(struct igc_hw *hw)
33 {
34 	struct igc_phy_info *phy = &hw->phy;
35 	s32 ret_val = 0;
36 	u16 phy_id;
37 
38 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
39 	if (ret_val)
40 		goto out;
41 
42 	phy->id = (u32)(phy_id << 16);
43 	usleep_range(200, 500);
44 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
45 	if (ret_val)
46 		goto out;
47 
48 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
49 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
50 
51 out:
52 	return ret_val;
53 }
54 
55 /**
56  * igc_phy_has_link - Polls PHY for link
57  * @hw: pointer to the HW structure
58  * @iterations: number of times to poll for link
59  * @usec_interval: delay between polling attempts
60  * @success: pointer to whether polling was successful or not
61  *
62  * Polls the PHY status register for link, 'iterations' number of times.
63  */
igc_phy_has_link(struct igc_hw * hw,u32 iterations,u32 usec_interval,bool * success)64 s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
65 		     u32 usec_interval, bool *success)
66 {
67 	u16 i, phy_status;
68 	s32 ret_val = 0;
69 
70 	for (i = 0; i < iterations; i++) {
71 		/* Some PHYs require the PHY_STATUS register to be read
72 		 * twice due to the link bit being sticky.  No harm doing
73 		 * it across the board.
74 		 */
75 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
76 		if (ret_val && usec_interval > 0) {
77 			/* If the first read fails, another entity may have
78 			 * ownership of the resources, wait and try again to
79 			 * see if they have relinquished the resources yet.
80 			 */
81 			if (usec_interval >= 1000)
82 				mdelay(usec_interval / 1000);
83 			else
84 				udelay(usec_interval);
85 		}
86 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
87 		if (ret_val)
88 			break;
89 		if (phy_status & MII_SR_LINK_STATUS)
90 			break;
91 		if (usec_interval >= 1000)
92 			mdelay(usec_interval / 1000);
93 		else
94 			udelay(usec_interval);
95 	}
96 
97 	*success = (i < iterations) ? true : false;
98 
99 	return ret_val;
100 }
101 
102 /**
103  * igc_power_up_phy_copper - Restore copper link in case of PHY power down
104  * @hw: pointer to the HW structure
105  *
106  * In the case of a PHY power down to save power, or to turn off link during a
107  * driver unload, restore the link to previous settings.
108  */
igc_power_up_phy_copper(struct igc_hw * hw)109 void igc_power_up_phy_copper(struct igc_hw *hw)
110 {
111 	u16 mii_reg = 0;
112 
113 	/* The PHY will retain its settings across a power down/up cycle */
114 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
115 	mii_reg &= ~MII_CR_POWER_DOWN;
116 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
117 }
118 
119 /**
120  * igc_power_down_phy_copper - Power down copper PHY
121  * @hw: pointer to the HW structure
122  *
123  * Power down PHY to save power when interface is down and wake on lan
124  * is not enabled.
125  */
igc_power_down_phy_copper(struct igc_hw * hw)126 void igc_power_down_phy_copper(struct igc_hw *hw)
127 {
128 	u16 mii_reg = 0;
129 
130 	/* The PHY will retain its settings across a power down/up cycle */
131 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
132 	mii_reg |= MII_CR_POWER_DOWN;
133 
134 	/* Temporary workaround - should be removed when PHY will implement
135 	 * IEEE registers as properly
136 	 */
137 	/* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
138 	usleep_range(1000, 2000);
139 }
140 
141 /**
142  * igc_check_downshift - Checks whether a downshift in speed occurred
143  * @hw: pointer to the HW structure
144  *
145  * A downshift is detected by querying the PHY link health.
146  */
igc_check_downshift(struct igc_hw * hw)147 void igc_check_downshift(struct igc_hw *hw)
148 {
149 	struct igc_phy_info *phy = &hw->phy;
150 
151 	/* speed downshift not supported */
152 	phy->speed_downgraded = false;
153 }
154 
155 /**
156  * igc_phy_hw_reset - PHY hardware reset
157  * @hw: pointer to the HW structure
158  *
159  * Verify the reset block is not blocking us from resetting.  Acquire
160  * semaphore (if necessary) and read/set/write the device control reset
161  * bit in the PHY.  Wait the appropriate delay time for the device to
162  * reset and release the semaphore (if necessary).
163  */
igc_phy_hw_reset(struct igc_hw * hw)164 s32 igc_phy_hw_reset(struct igc_hw *hw)
165 {
166 	struct igc_phy_info *phy = &hw->phy;
167 	u32 phpm = 0, timeout = 10000;
168 	s32  ret_val;
169 	u32 ctrl;
170 
171 	ret_val = igc_check_reset_block(hw);
172 	if (ret_val) {
173 		ret_val = 0;
174 		goto out;
175 	}
176 
177 	ret_val = phy->ops.acquire(hw);
178 	if (ret_val)
179 		goto out;
180 
181 	phpm = rd32(IGC_I225_PHPM);
182 
183 	ctrl = rd32(IGC_CTRL);
184 	wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
185 	wrfl();
186 
187 	udelay(phy->reset_delay_us);
188 
189 	wr32(IGC_CTRL, ctrl);
190 	wrfl();
191 
192 	/* SW should guarantee 100us for the completion of the PHY reset */
193 	usleep_range(100, 150);
194 	do {
195 		phpm = rd32(IGC_I225_PHPM);
196 		timeout--;
197 		udelay(1);
198 	} while (!(phpm & IGC_PHY_RST_COMP) && timeout);
199 
200 	if (!timeout)
201 		hw_dbg("Timeout is expired after a phy reset\n");
202 
203 	usleep_range(100, 150);
204 
205 	phy->ops.release(hw);
206 
207 out:
208 	return ret_val;
209 }
210 
211 /**
212  * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
213  * @hw: pointer to the HW structure
214  *
215  * Reads the MII auto-neg advertisement register and/or the 1000T control
216  * register and if the PHY is already setup for auto-negotiation, then
217  * return successful.  Otherwise, setup advertisement and flow control to
218  * the appropriate values for the wanted auto-negotiation.
219  */
igc_phy_setup_autoneg(struct igc_hw * hw)220 static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
221 {
222 	struct igc_phy_info *phy = &hw->phy;
223 	u16 aneg_multigbt_an_ctrl = 0;
224 	u16 mii_1000t_ctrl_reg = 0;
225 	u16 mii_autoneg_adv_reg;
226 	s32 ret_val;
227 
228 	phy->autoneg_advertised &= phy->autoneg_mask;
229 
230 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
231 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
232 	if (ret_val)
233 		return ret_val;
234 
235 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
236 		/* Read the MII 1000Base-T Control Register (Address 9). */
237 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
238 					    &mii_1000t_ctrl_reg);
239 		if (ret_val)
240 			return ret_val;
241 	}
242 
243 	if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
244 		/* Read the MULTI GBT AN Control Register - reg 7.32 */
245 		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
246 					    MMD_DEVADDR_SHIFT) |
247 					    ANEG_MULTIGBT_AN_CTRL,
248 					    &aneg_multigbt_an_ctrl);
249 
250 		if (ret_val)
251 			return ret_val;
252 	}
253 
254 	/* Need to parse both autoneg_advertised and fc and set up
255 	 * the appropriate PHY registers.  First we will parse for
256 	 * autoneg_advertised software override.  Since we can advertise
257 	 * a plethora of combinations, we need to check each bit
258 	 * individually.
259 	 */
260 
261 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
262 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
263 	 * the  1000Base-T Control Register (Address 9).
264 	 */
265 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
266 				 NWAY_AR_100TX_HD_CAPS |
267 				 NWAY_AR_10T_FD_CAPS   |
268 				 NWAY_AR_10T_HD_CAPS);
269 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
270 
271 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
272 
273 	/* Do we want to advertise 10 Mb Half Duplex? */
274 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
275 		hw_dbg("Advertise 10mb Half duplex\n");
276 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
277 	}
278 
279 	/* Do we want to advertise 10 Mb Full Duplex? */
280 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
281 		hw_dbg("Advertise 10mb Full duplex\n");
282 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
283 	}
284 
285 	/* Do we want to advertise 100 Mb Half Duplex? */
286 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
287 		hw_dbg("Advertise 100mb Half duplex\n");
288 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
289 	}
290 
291 	/* Do we want to advertise 100 Mb Full Duplex? */
292 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
293 		hw_dbg("Advertise 100mb Full duplex\n");
294 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
295 	}
296 
297 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
298 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
299 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
300 
301 	/* Do we want to advertise 1000 Mb Full Duplex? */
302 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
303 		hw_dbg("Advertise 1000mb Full duplex\n");
304 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
305 	}
306 
307 	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
308 	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
309 		hw_dbg("Advertise 2500mb Half duplex request denied!\n");
310 
311 	/* Do we want to advertise 2500 Mb Full Duplex? */
312 	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
313 		hw_dbg("Advertise 2500mb Full duplex\n");
314 		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
315 	} else {
316 		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
317 	}
318 
319 	/* Check for a software override of the flow control settings, and
320 	 * setup the PHY advertisement registers accordingly.  If
321 	 * auto-negotiation is enabled, then software will have to set the
322 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
323 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
324 	 * negotiation.
325 	 *
326 	 * The possible values of the "fc" parameter are:
327 	 *      0:  Flow control is completely disabled
328 	 *      1:  Rx flow control is enabled (we can receive pause frames
329 	 *          but not send pause frames).
330 	 *      2:  Tx flow control is enabled (we can send pause frames
331 	 *          but we do not support receiving pause frames).
332 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
333 	 *  other:  No software override.  The flow control configuration
334 	 *          in the EEPROM is used.
335 	 */
336 	switch (hw->fc.current_mode) {
337 	case igc_fc_none:
338 		/* Flow control (Rx & Tx) is completely disabled by a
339 		 * software over-ride.
340 		 */
341 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
342 		break;
343 	case igc_fc_rx_pause:
344 		/* Rx Flow control is enabled, and Tx Flow control is
345 		 * disabled, by a software over-ride.
346 		 *
347 		 * Since there really isn't a way to advertise that we are
348 		 * capable of Rx Pause ONLY, we will advertise that we
349 		 * support both symmetric and asymmetric Rx PAUSE.  Later
350 		 * (in igc_config_fc_after_link_up) we will disable the
351 		 * hw's ability to send PAUSE frames.
352 		 */
353 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
354 		break;
355 	case igc_fc_tx_pause:
356 		/* Tx Flow control is enabled, and Rx Flow control is
357 		 * disabled, by a software over-ride.
358 		 */
359 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
360 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
361 		break;
362 	case igc_fc_full:
363 		/* Flow control (both Rx and Tx) is enabled by a software
364 		 * over-ride.
365 		 */
366 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
367 		break;
368 	default:
369 		hw_dbg("Flow control param set incorrectly\n");
370 		return -IGC_ERR_CONFIG;
371 	}
372 
373 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
374 	if (ret_val)
375 		return ret_val;
376 
377 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
378 
379 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
380 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
381 					     mii_1000t_ctrl_reg);
382 
383 	if (phy->autoneg_mask & ADVERTISE_2500_FULL)
384 		ret_val = phy->ops.write_reg(hw,
385 					     (STANDARD_AN_REG_MASK <<
386 					     MMD_DEVADDR_SHIFT) |
387 					     ANEG_MULTIGBT_AN_CTRL,
388 					     aneg_multigbt_an_ctrl);
389 
390 	return ret_val;
391 }
392 
393 /**
394  * igc_wait_autoneg - Wait for auto-neg completion
395  * @hw: pointer to the HW structure
396  *
397  * Waits for auto-negotiation to complete or for the auto-negotiation time
398  * limit to expire, which ever happens first.
399  */
igc_wait_autoneg(struct igc_hw * hw)400 static s32 igc_wait_autoneg(struct igc_hw *hw)
401 {
402 	u16 i, phy_status;
403 	s32 ret_val = 0;
404 
405 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
406 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
407 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
408 		if (ret_val)
409 			break;
410 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
411 		if (ret_val)
412 			break;
413 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
414 			break;
415 		msleep(100);
416 	}
417 
418 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
419 	 * has completed.
420 	 */
421 	return ret_val;
422 }
423 
424 /**
425  * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
426  * @hw: pointer to the HW structure
427  *
428  * Performs initial bounds checking on autoneg advertisement parameter, then
429  * configure to advertise the full capability.  Setup the PHY to autoneg
430  * and restart the negotiation process between the link partner.  If
431  * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
432  */
igc_copper_link_autoneg(struct igc_hw * hw)433 static s32 igc_copper_link_autoneg(struct igc_hw *hw)
434 {
435 	struct igc_phy_info *phy = &hw->phy;
436 	u16 phy_ctrl;
437 	s32 ret_val;
438 
439 	/* Perform some bounds checking on the autoneg advertisement
440 	 * parameter.
441 	 */
442 	phy->autoneg_advertised &= phy->autoneg_mask;
443 
444 	/* If autoneg_advertised is zero, we assume it was not defaulted
445 	 * by the calling code so we set to advertise full capability.
446 	 */
447 	if (phy->autoneg_advertised == 0)
448 		phy->autoneg_advertised = phy->autoneg_mask;
449 
450 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
451 	ret_val = igc_phy_setup_autoneg(hw);
452 	if (ret_val) {
453 		hw_dbg("Error Setting up Auto-Negotiation\n");
454 		goto out;
455 	}
456 	hw_dbg("Restarting Auto-Neg\n");
457 
458 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
459 	 * the Auto Neg Restart bit in the PHY control register.
460 	 */
461 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
462 	if (ret_val)
463 		goto out;
464 
465 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
466 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
467 	if (ret_val)
468 		goto out;
469 
470 	/* Does the user want to wait for Auto-Neg to complete here, or
471 	 * check at a later time (for example, callback routine).
472 	 */
473 	if (phy->autoneg_wait_to_complete) {
474 		ret_val = igc_wait_autoneg(hw);
475 		if (ret_val) {
476 			hw_dbg("Error while waiting for autoneg to complete\n");
477 			goto out;
478 		}
479 	}
480 
481 	hw->mac.get_link_status = true;
482 
483 out:
484 	return ret_val;
485 }
486 
487 /**
488  * igc_setup_copper_link - Configure copper link settings
489  * @hw: pointer to the HW structure
490  *
491  * Calls the appropriate function to configure the link for auto-neg or forced
492  * speed and duplex.  Then we check for link, once link is established calls
493  * to configure collision distance and flow control are called.  If link is
494  * not established, we return -IGC_ERR_PHY (-2).
495  */
igc_setup_copper_link(struct igc_hw * hw)496 s32 igc_setup_copper_link(struct igc_hw *hw)
497 {
498 	s32 ret_val = 0;
499 	bool link;
500 
501 	if (hw->mac.autoneg) {
502 		/* Setup autoneg and flow control advertisement and perform
503 		 * autonegotiation.
504 		 */
505 		ret_val = igc_copper_link_autoneg(hw);
506 		if (ret_val)
507 			goto out;
508 	} else {
509 		/* PHY will be set to 10H, 10F, 100H or 100F
510 		 * depending on user settings.
511 		 */
512 		hw_dbg("Forcing Speed and Duplex\n");
513 		ret_val = hw->phy.ops.force_speed_duplex(hw);
514 		if (ret_val) {
515 			hw_dbg("Error Forcing Speed and Duplex\n");
516 			goto out;
517 		}
518 	}
519 
520 	/* Check link status. Wait up to 100 microseconds for link to become
521 	 * valid.
522 	 */
523 	ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
524 	if (ret_val)
525 		goto out;
526 
527 	if (link) {
528 		hw_dbg("Valid link established!!!\n");
529 		igc_config_collision_dist(hw);
530 		ret_val = igc_config_fc_after_link_up(hw);
531 	} else {
532 		hw_dbg("Unable to establish link!!!\n");
533 	}
534 
535 out:
536 	return ret_val;
537 }
538 
539 /**
540  * igc_read_phy_reg_mdic - Read MDI control register
541  * @hw: pointer to the HW structure
542  * @offset: register offset to be read
543  * @data: pointer to the read data
544  *
545  * Reads the MDI control register in the PHY at offset and stores the
546  * information read to data.
547  */
igc_read_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 * data)548 static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
549 {
550 	struct igc_phy_info *phy = &hw->phy;
551 	u32 i, mdic = 0;
552 	s32 ret_val = 0;
553 
554 	if (offset > MAX_PHY_REG_ADDRESS) {
555 		hw_dbg("PHY Address %d is out of range\n", offset);
556 		ret_val = -IGC_ERR_PARAM;
557 		goto out;
558 	}
559 
560 	/* Set up Op-code, Phy Address, and register offset in the MDI
561 	 * Control register.  The MAC will take care of interfacing with the
562 	 * PHY to retrieve the desired data.
563 	 */
564 	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
565 		(phy->addr << IGC_MDIC_PHY_SHIFT) |
566 		(IGC_MDIC_OP_READ));
567 
568 	wr32(IGC_MDIC, mdic);
569 
570 	/* Poll the ready bit to see if the MDI read completed
571 	 * Increasing the time out as testing showed failures with
572 	 * the lower time out
573 	 */
574 	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
575 		udelay(50);
576 		mdic = rd32(IGC_MDIC);
577 		if (mdic & IGC_MDIC_READY)
578 			break;
579 	}
580 	if (!(mdic & IGC_MDIC_READY)) {
581 		hw_dbg("MDI Read did not complete\n");
582 		ret_val = -IGC_ERR_PHY;
583 		goto out;
584 	}
585 	if (mdic & IGC_MDIC_ERROR) {
586 		hw_dbg("MDI Error\n");
587 		ret_val = -IGC_ERR_PHY;
588 		goto out;
589 	}
590 	*data = (u16)mdic;
591 
592 out:
593 	return ret_val;
594 }
595 
596 /**
597  * igc_write_phy_reg_mdic - Write MDI control register
598  * @hw: pointer to the HW structure
599  * @offset: register offset to write to
600  * @data: data to write to register at offset
601  *
602  * Writes data to MDI control register in the PHY at offset.
603  */
igc_write_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 data)604 static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
605 {
606 	struct igc_phy_info *phy = &hw->phy;
607 	u32 i, mdic = 0;
608 	s32 ret_val = 0;
609 
610 	if (offset > MAX_PHY_REG_ADDRESS) {
611 		hw_dbg("PHY Address %d is out of range\n", offset);
612 		ret_val = -IGC_ERR_PARAM;
613 		goto out;
614 	}
615 
616 	/* Set up Op-code, Phy Address, and register offset in the MDI
617 	 * Control register.  The MAC will take care of interfacing with the
618 	 * PHY to write the desired data.
619 	 */
620 	mdic = (((u32)data) |
621 		(offset << IGC_MDIC_REG_SHIFT) |
622 		(phy->addr << IGC_MDIC_PHY_SHIFT) |
623 		(IGC_MDIC_OP_WRITE));
624 
625 	wr32(IGC_MDIC, mdic);
626 
627 	/* Poll the ready bit to see if the MDI read completed
628 	 * Increasing the time out as testing showed failures with
629 	 * the lower time out
630 	 */
631 	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
632 		udelay(50);
633 		mdic = rd32(IGC_MDIC);
634 		if (mdic & IGC_MDIC_READY)
635 			break;
636 	}
637 	if (!(mdic & IGC_MDIC_READY)) {
638 		hw_dbg("MDI Write did not complete\n");
639 		ret_val = -IGC_ERR_PHY;
640 		goto out;
641 	}
642 	if (mdic & IGC_MDIC_ERROR) {
643 		hw_dbg("MDI Error\n");
644 		ret_val = -IGC_ERR_PHY;
645 		goto out;
646 	}
647 
648 out:
649 	return ret_val;
650 }
651 
652 /**
653  * __igc_access_xmdio_reg - Read/write XMDIO register
654  * @hw: pointer to the HW structure
655  * @address: XMDIO address to program
656  * @dev_addr: device address to program
657  * @data: pointer to value to read/write from/to the XMDIO address
658  * @read: boolean flag to indicate read or write
659  */
__igc_access_xmdio_reg(struct igc_hw * hw,u16 address,u8 dev_addr,u16 * data,bool read)660 static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
661 				  u8 dev_addr, u16 *data, bool read)
662 {
663 	s32 ret_val;
664 
665 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
666 	if (ret_val)
667 		return ret_val;
668 
669 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
670 	if (ret_val)
671 		return ret_val;
672 
673 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
674 					dev_addr);
675 	if (ret_val)
676 		return ret_val;
677 
678 	if (read)
679 		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
680 	else
681 		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
682 	if (ret_val)
683 		return ret_val;
684 
685 	/* Recalibrate the device back to 0 */
686 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
687 	if (ret_val)
688 		return ret_val;
689 
690 	return ret_val;
691 }
692 
693 /**
694  * igc_read_xmdio_reg - Read XMDIO register
695  * @hw: pointer to the HW structure
696  * @addr: XMDIO address to program
697  * @dev_addr: device address to program
698  * @data: value to be read from the EMI address
699  */
igc_read_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 * data)700 static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
701 			      u8 dev_addr, u16 *data)
702 {
703 	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
704 }
705 
706 /**
707  * igc_write_xmdio_reg - Write XMDIO register
708  * @hw: pointer to the HW structure
709  * @addr: XMDIO address to program
710  * @dev_addr: device address to program
711  * @data: value to be written to the XMDIO address
712  */
igc_write_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 data)713 static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
714 			       u8 dev_addr, u16 data)
715 {
716 	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
717 }
718 
719 /**
720  * igc_write_phy_reg_gpy - Write GPY PHY register
721  * @hw: pointer to the HW structure
722  * @offset: register offset to write to
723  * @data: data to write at register offset
724  *
725  * Acquires semaphore, if necessary, then writes the data to PHY register
726  * at the offset. Release any acquired semaphores before exiting.
727  */
igc_write_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 data)728 s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
729 {
730 	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
731 	s32 ret_val;
732 
733 	offset = offset & GPY_REG_MASK;
734 
735 	if (!dev_addr) {
736 		ret_val = hw->phy.ops.acquire(hw);
737 		if (ret_val)
738 			return ret_val;
739 		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
740 		hw->phy.ops.release(hw);
741 	} else {
742 		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
743 					      data);
744 	}
745 
746 	return ret_val;
747 }
748 
749 /**
750  * igc_read_phy_reg_gpy - Read GPY PHY register
751  * @hw: pointer to the HW structure
752  * @offset: lower half is register offset to read to
753  * upper half is MMD to use.
754  * @data: data to read at register offset
755  *
756  * Acquires semaphore, if necessary, then reads the data in the PHY register
757  * at the offset. Release any acquired semaphores before exiting.
758  */
igc_read_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 * data)759 s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
760 {
761 	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
762 	s32 ret_val;
763 
764 	offset = offset & GPY_REG_MASK;
765 
766 	if (!dev_addr) {
767 		ret_val = hw->phy.ops.acquire(hw);
768 		if (ret_val)
769 			return ret_val;
770 		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
771 		hw->phy.ops.release(hw);
772 	} else {
773 		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
774 					     data);
775 	}
776 
777 	return ret_val;
778 }
779 
780 /**
781  * igc_read_phy_fw_version - Read gPHY firmware version
782  * @hw: pointer to the HW structure
783  */
igc_read_phy_fw_version(struct igc_hw * hw)784 u16 igc_read_phy_fw_version(struct igc_hw *hw)
785 {
786 	struct igc_phy_info *phy = &hw->phy;
787 	u16 gphy_version = 0;
788 	u16 ret_val;
789 
790 	/* NVM image version is reported as firmware version for i225 device */
791 	ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version);
792 	if (ret_val)
793 		hw_dbg("igc_phy: read wrong gphy version\n");
794 
795 	return gphy_version;
796 }
797