1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
70 };
71
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
105 *
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
116 };
117 int ret;
118
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
122 if (!ret)
123 ret = data.ret;
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
130
131 return ret;
132 }
133
134 /**
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156 }
157
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
160 {
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164 }
165
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168 {
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
is_kernel_event(struct perf_event * event)176 static bool is_kernel_event(struct perf_event *event)
177 {
178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
perf_cpu_task_ctx(void)183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 lockdep_assert_irqs_disabled();
186 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190 * On task ctx scheduling...
191 *
192 * When !ctx->nr_events a task context will not be scheduled. This means
193 * we can disable the scheduler hooks (for performance) without leaving
194 * pending task ctx state.
195 *
196 * This however results in two special cases:
197 *
198 * - removing the last event from a task ctx; this is relatively straight
199 * forward and is done in __perf_remove_from_context.
200 *
201 * - adding the first event to a task ctx; this is tricky because we cannot
202 * rely on ctx->is_active and therefore cannot use event_function_call().
203 * See perf_install_in_context().
204 *
205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206 */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 struct perf_event_context *, void *);
210
211 struct event_function_struct {
212 struct perf_event *event;
213 event_f func;
214 void *data;
215 };
216
event_function(void * info)217 static int event_function(void *info)
218 {
219 struct event_function_struct *efs = info;
220 struct perf_event *event = efs->event;
221 struct perf_event_context *ctx = event->ctx;
222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 int ret = 0;
225
226 lockdep_assert_irqs_disabled();
227
228 perf_ctx_lock(cpuctx, task_ctx);
229 /*
230 * Since we do the IPI call without holding ctx->lock things can have
231 * changed, double check we hit the task we set out to hit.
232 */
233 if (ctx->task) {
234 if (ctx->task != current) {
235 ret = -ESRCH;
236 goto unlock;
237 }
238
239 /*
240 * We only use event_function_call() on established contexts,
241 * and event_function() is only ever called when active (or
242 * rather, we'll have bailed in task_function_call() or the
243 * above ctx->task != current test), therefore we must have
244 * ctx->is_active here.
245 */
246 WARN_ON_ONCE(!ctx->is_active);
247 /*
248 * And since we have ctx->is_active, cpuctx->task_ctx must
249 * match.
250 */
251 WARN_ON_ONCE(task_ctx != ctx);
252 } else {
253 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 }
255
256 efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 perf_ctx_unlock(cpuctx, task_ctx);
259
260 return ret;
261 }
262
event_function_call(struct perf_event * event,event_f func,void * data)263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 struct perf_event_context *ctx = event->ctx;
266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 struct perf_cpu_context *cpuctx;
268 struct event_function_struct efs = {
269 .event = event,
270 .func = func,
271 .data = data,
272 };
273
274 if (!event->parent) {
275 /*
276 * If this is a !child event, we must hold ctx::mutex to
277 * stabilize the event->ctx relation. See
278 * perf_event_ctx_lock().
279 */
280 lockdep_assert_held(&ctx->mutex);
281 }
282
283 if (!task) {
284 cpu_function_call(event->cpu, event_function, &efs);
285 return;
286 }
287
288 if (task == TASK_TOMBSTONE)
289 return;
290
291 again:
292 if (!task_function_call(task, event_function, &efs))
293 return;
294
295 local_irq_disable();
296 cpuctx = this_cpu_ptr(&perf_cpu_context);
297 perf_ctx_lock(cpuctx, ctx);
298 /*
299 * Reload the task pointer, it might have been changed by
300 * a concurrent perf_event_context_sched_out().
301 */
302 task = ctx->task;
303 if (task == TASK_TOMBSTONE)
304 goto unlock;
305 if (ctx->is_active) {
306 perf_ctx_unlock(cpuctx, ctx);
307 local_irq_enable();
308 goto again;
309 }
310 func(event, NULL, ctx, data);
311 unlock:
312 perf_ctx_unlock(cpuctx, ctx);
313 local_irq_enable();
314 }
315
316 /*
317 * Similar to event_function_call() + event_function(), but hard assumes IRQs
318 * are already disabled and we're on the right CPU.
319 */
event_function_local(struct perf_event * event,event_f func,void * data)320 static void event_function_local(struct perf_event *event, event_f func, void *data)
321 {
322 struct perf_event_context *ctx = event->ctx;
323 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
324 struct task_struct *task = READ_ONCE(ctx->task);
325 struct perf_event_context *task_ctx = NULL;
326
327 lockdep_assert_irqs_disabled();
328
329 if (task) {
330 if (task == TASK_TOMBSTONE)
331 return;
332
333 task_ctx = ctx;
334 }
335
336 perf_ctx_lock(cpuctx, task_ctx);
337
338 task = ctx->task;
339 if (task == TASK_TOMBSTONE)
340 goto unlock;
341
342 if (task) {
343 /*
344 * We must be either inactive or active and the right task,
345 * otherwise we're screwed, since we cannot IPI to somewhere
346 * else.
347 */
348 if (ctx->is_active) {
349 if (WARN_ON_ONCE(task != current))
350 goto unlock;
351
352 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
353 goto unlock;
354 }
355 } else {
356 WARN_ON_ONCE(&cpuctx->ctx != ctx);
357 }
358
359 func(event, cpuctx, ctx, data);
360 unlock:
361 perf_ctx_unlock(cpuctx, task_ctx);
362 }
363
364 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
365 PERF_FLAG_FD_OUTPUT |\
366 PERF_FLAG_PID_CGROUP |\
367 PERF_FLAG_FD_CLOEXEC)
368
369 /*
370 * branch priv levels that need permission checks
371 */
372 #define PERF_SAMPLE_BRANCH_PERM_PLM \
373 (PERF_SAMPLE_BRANCH_KERNEL |\
374 PERF_SAMPLE_BRANCH_HV)
375
376 enum event_type_t {
377 EVENT_FLEXIBLE = 0x1,
378 EVENT_PINNED = 0x2,
379 EVENT_TIME = 0x4,
380 /* see ctx_resched() for details */
381 EVENT_CPU = 0x8,
382 EVENT_CGROUP = 0x10,
383 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
384 };
385
386 /*
387 * perf_sched_events : >0 events exist
388 */
389
390 static void perf_sched_delayed(struct work_struct *work);
391 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
392 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
393 static DEFINE_MUTEX(perf_sched_mutex);
394 static atomic_t perf_sched_count;
395
396 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
397
398 static atomic_t nr_mmap_events __read_mostly;
399 static atomic_t nr_comm_events __read_mostly;
400 static atomic_t nr_namespaces_events __read_mostly;
401 static atomic_t nr_task_events __read_mostly;
402 static atomic_t nr_freq_events __read_mostly;
403 static atomic_t nr_switch_events __read_mostly;
404 static atomic_t nr_ksymbol_events __read_mostly;
405 static atomic_t nr_bpf_events __read_mostly;
406 static atomic_t nr_cgroup_events __read_mostly;
407 static atomic_t nr_text_poke_events __read_mostly;
408 static atomic_t nr_build_id_events __read_mostly;
409
410 static LIST_HEAD(pmus);
411 static DEFINE_MUTEX(pmus_lock);
412 static struct srcu_struct pmus_srcu;
413 static cpumask_var_t perf_online_mask;
414 static struct kmem_cache *perf_event_cache;
415
416 /*
417 * perf event paranoia level:
418 * -1 - not paranoid at all
419 * 0 - disallow raw tracepoint access for unpriv
420 * 1 - disallow cpu events for unpriv
421 * 2 - disallow kernel profiling for unpriv
422 */
423 int sysctl_perf_event_paranoid __read_mostly = 2;
424
425 /* Minimum for 512 kiB + 1 user control page */
426 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
427
428 /*
429 * max perf event sample rate
430 */
431 #define DEFAULT_MAX_SAMPLE_RATE 100000
432 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
433 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
434
435 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
436
437 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
438 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
439
440 static int perf_sample_allowed_ns __read_mostly =
441 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
442
update_perf_cpu_limits(void)443 static void update_perf_cpu_limits(void)
444 {
445 u64 tmp = perf_sample_period_ns;
446
447 tmp *= sysctl_perf_cpu_time_max_percent;
448 tmp = div_u64(tmp, 100);
449 if (!tmp)
450 tmp = 1;
451
452 WRITE_ONCE(perf_sample_allowed_ns, tmp);
453 }
454
455 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
456
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)457 int perf_proc_update_handler(struct ctl_table *table, int write,
458 void *buffer, size_t *lenp, loff_t *ppos)
459 {
460 int ret;
461 int perf_cpu = sysctl_perf_cpu_time_max_percent;
462 /*
463 * If throttling is disabled don't allow the write:
464 */
465 if (write && (perf_cpu == 100 || perf_cpu == 0))
466 return -EINVAL;
467
468 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469 if (ret || !write)
470 return ret;
471
472 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
473 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
474 update_perf_cpu_limits();
475
476 return 0;
477 }
478
479 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
480
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)481 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
482 void *buffer, size_t *lenp, loff_t *ppos)
483 {
484 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
485
486 if (ret || !write)
487 return ret;
488
489 if (sysctl_perf_cpu_time_max_percent == 100 ||
490 sysctl_perf_cpu_time_max_percent == 0) {
491 printk(KERN_WARNING
492 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
493 WRITE_ONCE(perf_sample_allowed_ns, 0);
494 } else {
495 update_perf_cpu_limits();
496 }
497
498 return 0;
499 }
500
501 /*
502 * perf samples are done in some very critical code paths (NMIs).
503 * If they take too much CPU time, the system can lock up and not
504 * get any real work done. This will drop the sample rate when
505 * we detect that events are taking too long.
506 */
507 #define NR_ACCUMULATED_SAMPLES 128
508 static DEFINE_PER_CPU(u64, running_sample_length);
509
510 static u64 __report_avg;
511 static u64 __report_allowed;
512
perf_duration_warn(struct irq_work * w)513 static void perf_duration_warn(struct irq_work *w)
514 {
515 printk_ratelimited(KERN_INFO
516 "perf: interrupt took too long (%lld > %lld), lowering "
517 "kernel.perf_event_max_sample_rate to %d\n",
518 __report_avg, __report_allowed,
519 sysctl_perf_event_sample_rate);
520 }
521
522 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
523
perf_sample_event_took(u64 sample_len_ns)524 void perf_sample_event_took(u64 sample_len_ns)
525 {
526 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
527 u64 running_len;
528 u64 avg_len;
529 u32 max;
530
531 if (max_len == 0)
532 return;
533
534 /* Decay the counter by 1 average sample. */
535 running_len = __this_cpu_read(running_sample_length);
536 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
537 running_len += sample_len_ns;
538 __this_cpu_write(running_sample_length, running_len);
539
540 /*
541 * Note: this will be biased artifically low until we have
542 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
543 * from having to maintain a count.
544 */
545 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
546 if (avg_len <= max_len)
547 return;
548
549 __report_avg = avg_len;
550 __report_allowed = max_len;
551
552 /*
553 * Compute a throttle threshold 25% below the current duration.
554 */
555 avg_len += avg_len / 4;
556 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
557 if (avg_len < max)
558 max /= (u32)avg_len;
559 else
560 max = 1;
561
562 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
563 WRITE_ONCE(max_samples_per_tick, max);
564
565 sysctl_perf_event_sample_rate = max * HZ;
566 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
567
568 if (!irq_work_queue(&perf_duration_work)) {
569 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
570 "kernel.perf_event_max_sample_rate to %d\n",
571 __report_avg, __report_allowed,
572 sysctl_perf_event_sample_rate);
573 }
574 }
575
576 static atomic64_t perf_event_id;
577
578 static void update_context_time(struct perf_event_context *ctx);
579 static u64 perf_event_time(struct perf_event *event);
580
perf_event_print_debug(void)581 void __weak perf_event_print_debug(void) { }
582
perf_clock(void)583 static inline u64 perf_clock(void)
584 {
585 return local_clock();
586 }
587
perf_event_clock(struct perf_event * event)588 static inline u64 perf_event_clock(struct perf_event *event)
589 {
590 return event->clock();
591 }
592
593 /*
594 * State based event timekeeping...
595 *
596 * The basic idea is to use event->state to determine which (if any) time
597 * fields to increment with the current delta. This means we only need to
598 * update timestamps when we change state or when they are explicitly requested
599 * (read).
600 *
601 * Event groups make things a little more complicated, but not terribly so. The
602 * rules for a group are that if the group leader is OFF the entire group is
603 * OFF, irrespecive of what the group member states are. This results in
604 * __perf_effective_state().
605 *
606 * A futher ramification is that when a group leader flips between OFF and
607 * !OFF, we need to update all group member times.
608 *
609 *
610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
611 * need to make sure the relevant context time is updated before we try and
612 * update our timestamps.
613 */
614
615 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)616 __perf_effective_state(struct perf_event *event)
617 {
618 struct perf_event *leader = event->group_leader;
619
620 if (leader->state <= PERF_EVENT_STATE_OFF)
621 return leader->state;
622
623 return event->state;
624 }
625
626 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628 {
629 enum perf_event_state state = __perf_effective_state(event);
630 u64 delta = now - event->tstamp;
631
632 *enabled = event->total_time_enabled;
633 if (state >= PERF_EVENT_STATE_INACTIVE)
634 *enabled += delta;
635
636 *running = event->total_time_running;
637 if (state >= PERF_EVENT_STATE_ACTIVE)
638 *running += delta;
639 }
640
perf_event_update_time(struct perf_event * event)641 static void perf_event_update_time(struct perf_event *event)
642 {
643 u64 now = perf_event_time(event);
644
645 __perf_update_times(event, now, &event->total_time_enabled,
646 &event->total_time_running);
647 event->tstamp = now;
648 }
649
perf_event_update_sibling_time(struct perf_event * leader)650 static void perf_event_update_sibling_time(struct perf_event *leader)
651 {
652 struct perf_event *sibling;
653
654 for_each_sibling_event(sibling, leader)
655 perf_event_update_time(sibling);
656 }
657
658 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)659 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660 {
661 if (event->state == state)
662 return;
663
664 perf_event_update_time(event);
665 /*
666 * If a group leader gets enabled/disabled all its siblings
667 * are affected too.
668 */
669 if ((event->state < 0) ^ (state < 0))
670 perf_event_update_sibling_time(event);
671
672 WRITE_ONCE(event->state, state);
673 }
674
675 /*
676 * UP store-release, load-acquire
677 */
678
679 #define __store_release(ptr, val) \
680 do { \
681 barrier(); \
682 WRITE_ONCE(*(ptr), (val)); \
683 } while (0)
684
685 #define __load_acquire(ptr) \
686 ({ \
687 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
688 barrier(); \
689 ___p; \
690 })
691
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)692 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
693 {
694 struct perf_event_pmu_context *pmu_ctx;
695
696 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
697 if (cgroup && !pmu_ctx->nr_cgroups)
698 continue;
699 perf_pmu_disable(pmu_ctx->pmu);
700 }
701 }
702
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)703 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
704 {
705 struct perf_event_pmu_context *pmu_ctx;
706
707 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
708 if (cgroup && !pmu_ctx->nr_cgroups)
709 continue;
710 perf_pmu_enable(pmu_ctx->pmu);
711 }
712 }
713
714 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
715 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
716
717 #ifdef CONFIG_CGROUP_PERF
718
719 static inline bool
perf_cgroup_match(struct perf_event * event)720 perf_cgroup_match(struct perf_event *event)
721 {
722 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
723
724 /* @event doesn't care about cgroup */
725 if (!event->cgrp)
726 return true;
727
728 /* wants specific cgroup scope but @cpuctx isn't associated with any */
729 if (!cpuctx->cgrp)
730 return false;
731
732 /*
733 * Cgroup scoping is recursive. An event enabled for a cgroup is
734 * also enabled for all its descendant cgroups. If @cpuctx's
735 * cgroup is a descendant of @event's (the test covers identity
736 * case), it's a match.
737 */
738 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
739 event->cgrp->css.cgroup);
740 }
741
perf_detach_cgroup(struct perf_event * event)742 static inline void perf_detach_cgroup(struct perf_event *event)
743 {
744 css_put(&event->cgrp->css);
745 event->cgrp = NULL;
746 }
747
is_cgroup_event(struct perf_event * event)748 static inline int is_cgroup_event(struct perf_event *event)
749 {
750 return event->cgrp != NULL;
751 }
752
perf_cgroup_event_time(struct perf_event * event)753 static inline u64 perf_cgroup_event_time(struct perf_event *event)
754 {
755 struct perf_cgroup_info *t;
756
757 t = per_cpu_ptr(event->cgrp->info, event->cpu);
758 return t->time;
759 }
760
perf_cgroup_event_time_now(struct perf_event * event,u64 now)761 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
762 {
763 struct perf_cgroup_info *t;
764
765 t = per_cpu_ptr(event->cgrp->info, event->cpu);
766 if (!__load_acquire(&t->active))
767 return t->time;
768 now += READ_ONCE(t->timeoffset);
769 return now;
770 }
771
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)772 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
773 {
774 if (adv)
775 info->time += now - info->timestamp;
776 info->timestamp = now;
777 /*
778 * see update_context_time()
779 */
780 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
781 }
782
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)783 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
784 {
785 struct perf_cgroup *cgrp = cpuctx->cgrp;
786 struct cgroup_subsys_state *css;
787 struct perf_cgroup_info *info;
788
789 if (cgrp) {
790 u64 now = perf_clock();
791
792 for (css = &cgrp->css; css; css = css->parent) {
793 cgrp = container_of(css, struct perf_cgroup, css);
794 info = this_cpu_ptr(cgrp->info);
795
796 __update_cgrp_time(info, now, true);
797 if (final)
798 __store_release(&info->active, 0);
799 }
800 }
801 }
802
update_cgrp_time_from_event(struct perf_event * event)803 static inline void update_cgrp_time_from_event(struct perf_event *event)
804 {
805 struct perf_cgroup_info *info;
806
807 /*
808 * ensure we access cgroup data only when needed and
809 * when we know the cgroup is pinned (css_get)
810 */
811 if (!is_cgroup_event(event))
812 return;
813
814 info = this_cpu_ptr(event->cgrp->info);
815 /*
816 * Do not update time when cgroup is not active
817 */
818 if (info->active)
819 __update_cgrp_time(info, perf_clock(), true);
820 }
821
822 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)823 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
824 {
825 struct perf_event_context *ctx = &cpuctx->ctx;
826 struct perf_cgroup *cgrp = cpuctx->cgrp;
827 struct perf_cgroup_info *info;
828 struct cgroup_subsys_state *css;
829
830 /*
831 * ctx->lock held by caller
832 * ensure we do not access cgroup data
833 * unless we have the cgroup pinned (css_get)
834 */
835 if (!cgrp)
836 return;
837
838 WARN_ON_ONCE(!ctx->nr_cgroups);
839
840 for (css = &cgrp->css; css; css = css->parent) {
841 cgrp = container_of(css, struct perf_cgroup, css);
842 info = this_cpu_ptr(cgrp->info);
843 __update_cgrp_time(info, ctx->timestamp, false);
844 __store_release(&info->active, 1);
845 }
846 }
847
848 /*
849 * reschedule events based on the cgroup constraint of task.
850 */
perf_cgroup_switch(struct task_struct * task)851 static void perf_cgroup_switch(struct task_struct *task)
852 {
853 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
854 struct perf_cgroup *cgrp;
855
856 /*
857 * cpuctx->cgrp is set when the first cgroup event enabled,
858 * and is cleared when the last cgroup event disabled.
859 */
860 if (READ_ONCE(cpuctx->cgrp) == NULL)
861 return;
862
863 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
864
865 cgrp = perf_cgroup_from_task(task, NULL);
866 if (READ_ONCE(cpuctx->cgrp) == cgrp)
867 return;
868
869 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
870 perf_ctx_disable(&cpuctx->ctx, true);
871
872 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
873 /*
874 * must not be done before ctxswout due
875 * to update_cgrp_time_from_cpuctx() in
876 * ctx_sched_out()
877 */
878 cpuctx->cgrp = cgrp;
879 /*
880 * set cgrp before ctxsw in to allow
881 * perf_cgroup_set_timestamp() in ctx_sched_in()
882 * to not have to pass task around
883 */
884 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
885
886 perf_ctx_enable(&cpuctx->ctx, true);
887 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
888 }
889
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)890 static int perf_cgroup_ensure_storage(struct perf_event *event,
891 struct cgroup_subsys_state *css)
892 {
893 struct perf_cpu_context *cpuctx;
894 struct perf_event **storage;
895 int cpu, heap_size, ret = 0;
896
897 /*
898 * Allow storage to have sufficent space for an iterator for each
899 * possibly nested cgroup plus an iterator for events with no cgroup.
900 */
901 for (heap_size = 1; css; css = css->parent)
902 heap_size++;
903
904 for_each_possible_cpu(cpu) {
905 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
906 if (heap_size <= cpuctx->heap_size)
907 continue;
908
909 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
910 GFP_KERNEL, cpu_to_node(cpu));
911 if (!storage) {
912 ret = -ENOMEM;
913 break;
914 }
915
916 raw_spin_lock_irq(&cpuctx->ctx.lock);
917 if (cpuctx->heap_size < heap_size) {
918 swap(cpuctx->heap, storage);
919 if (storage == cpuctx->heap_default)
920 storage = NULL;
921 cpuctx->heap_size = heap_size;
922 }
923 raw_spin_unlock_irq(&cpuctx->ctx.lock);
924
925 kfree(storage);
926 }
927
928 return ret;
929 }
930
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)931 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
932 struct perf_event_attr *attr,
933 struct perf_event *group_leader)
934 {
935 struct perf_cgroup *cgrp;
936 struct cgroup_subsys_state *css;
937 struct fd f = fdget(fd);
938 int ret = 0;
939
940 if (!f.file)
941 return -EBADF;
942
943 css = css_tryget_online_from_dir(f.file->f_path.dentry,
944 &perf_event_cgrp_subsys);
945 if (IS_ERR(css)) {
946 ret = PTR_ERR(css);
947 goto out;
948 }
949
950 ret = perf_cgroup_ensure_storage(event, css);
951 if (ret)
952 goto out;
953
954 cgrp = container_of(css, struct perf_cgroup, css);
955 event->cgrp = cgrp;
956
957 /*
958 * all events in a group must monitor
959 * the same cgroup because a task belongs
960 * to only one perf cgroup at a time
961 */
962 if (group_leader && group_leader->cgrp != cgrp) {
963 perf_detach_cgroup(event);
964 ret = -EINVAL;
965 }
966 out:
967 fdput(f);
968 return ret;
969 }
970
971 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)972 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
973 {
974 struct perf_cpu_context *cpuctx;
975
976 if (!is_cgroup_event(event))
977 return;
978
979 event->pmu_ctx->nr_cgroups++;
980
981 /*
982 * Because cgroup events are always per-cpu events,
983 * @ctx == &cpuctx->ctx.
984 */
985 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
986
987 if (ctx->nr_cgroups++)
988 return;
989
990 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
991 }
992
993 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)994 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
995 {
996 struct perf_cpu_context *cpuctx;
997
998 if (!is_cgroup_event(event))
999 return;
1000
1001 event->pmu_ctx->nr_cgroups--;
1002
1003 /*
1004 * Because cgroup events are always per-cpu events,
1005 * @ctx == &cpuctx->ctx.
1006 */
1007 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1008
1009 if (--ctx->nr_cgroups)
1010 return;
1011
1012 cpuctx->cgrp = NULL;
1013 }
1014
1015 #else /* !CONFIG_CGROUP_PERF */
1016
1017 static inline bool
perf_cgroup_match(struct perf_event * event)1018 perf_cgroup_match(struct perf_event *event)
1019 {
1020 return true;
1021 }
1022
perf_detach_cgroup(struct perf_event * event)1023 static inline void perf_detach_cgroup(struct perf_event *event)
1024 {}
1025
is_cgroup_event(struct perf_event * event)1026 static inline int is_cgroup_event(struct perf_event *event)
1027 {
1028 return 0;
1029 }
1030
update_cgrp_time_from_event(struct perf_event * event)1031 static inline void update_cgrp_time_from_event(struct perf_event *event)
1032 {
1033 }
1034
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1035 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1036 bool final)
1037 {
1038 }
1039
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1040 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1041 struct perf_event_attr *attr,
1042 struct perf_event *group_leader)
1043 {
1044 return -EINVAL;
1045 }
1046
1047 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1048 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1049 {
1050 }
1051
perf_cgroup_event_time(struct perf_event * event)1052 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1053 {
1054 return 0;
1055 }
1056
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1057 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1058 {
1059 return 0;
1060 }
1061
1062 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1063 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1064 {
1065 }
1066
1067 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 }
1071
perf_cgroup_switch(struct task_struct * task)1072 static void perf_cgroup_switch(struct task_struct *task)
1073 {
1074 }
1075 #endif
1076
1077 /*
1078 * set default to be dependent on timer tick just
1079 * like original code
1080 */
1081 #define PERF_CPU_HRTIMER (1000 / HZ)
1082 /*
1083 * function must be called with interrupts disabled
1084 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1085 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1086 {
1087 struct perf_cpu_pmu_context *cpc;
1088 bool rotations;
1089
1090 lockdep_assert_irqs_disabled();
1091
1092 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1093 rotations = perf_rotate_context(cpc);
1094
1095 raw_spin_lock(&cpc->hrtimer_lock);
1096 if (rotations)
1097 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1098 else
1099 cpc->hrtimer_active = 0;
1100 raw_spin_unlock(&cpc->hrtimer_lock);
1101
1102 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1103 }
1104
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1105 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1106 {
1107 struct hrtimer *timer = &cpc->hrtimer;
1108 struct pmu *pmu = cpc->epc.pmu;
1109 u64 interval;
1110
1111 /*
1112 * check default is sane, if not set then force to
1113 * default interval (1/tick)
1114 */
1115 interval = pmu->hrtimer_interval_ms;
1116 if (interval < 1)
1117 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1118
1119 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1120
1121 raw_spin_lock_init(&cpc->hrtimer_lock);
1122 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1123 timer->function = perf_mux_hrtimer_handler;
1124 }
1125
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1126 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1127 {
1128 struct hrtimer *timer = &cpc->hrtimer;
1129 unsigned long flags;
1130
1131 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1132 if (!cpc->hrtimer_active) {
1133 cpc->hrtimer_active = 1;
1134 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1135 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1136 }
1137 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1138
1139 return 0;
1140 }
1141
perf_mux_hrtimer_restart_ipi(void * arg)1142 static int perf_mux_hrtimer_restart_ipi(void *arg)
1143 {
1144 return perf_mux_hrtimer_restart(arg);
1145 }
1146
perf_pmu_disable(struct pmu * pmu)1147 void perf_pmu_disable(struct pmu *pmu)
1148 {
1149 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1150 if (!(*count)++)
1151 pmu->pmu_disable(pmu);
1152 }
1153
perf_pmu_enable(struct pmu * pmu)1154 void perf_pmu_enable(struct pmu *pmu)
1155 {
1156 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1157 if (!--(*count))
1158 pmu->pmu_enable(pmu);
1159 }
1160
perf_assert_pmu_disabled(struct pmu * pmu)1161 static void perf_assert_pmu_disabled(struct pmu *pmu)
1162 {
1163 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1164 }
1165
get_ctx(struct perf_event_context * ctx)1166 static void get_ctx(struct perf_event_context *ctx)
1167 {
1168 refcount_inc(&ctx->refcount);
1169 }
1170
alloc_task_ctx_data(struct pmu * pmu)1171 static void *alloc_task_ctx_data(struct pmu *pmu)
1172 {
1173 if (pmu->task_ctx_cache)
1174 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1175
1176 return NULL;
1177 }
1178
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1179 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1180 {
1181 if (pmu->task_ctx_cache && task_ctx_data)
1182 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1183 }
1184
free_ctx(struct rcu_head * head)1185 static void free_ctx(struct rcu_head *head)
1186 {
1187 struct perf_event_context *ctx;
1188
1189 ctx = container_of(head, struct perf_event_context, rcu_head);
1190 kfree(ctx);
1191 }
1192
put_ctx(struct perf_event_context * ctx)1193 static void put_ctx(struct perf_event_context *ctx)
1194 {
1195 if (refcount_dec_and_test(&ctx->refcount)) {
1196 if (ctx->parent_ctx)
1197 put_ctx(ctx->parent_ctx);
1198 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1199 put_task_struct(ctx->task);
1200 call_rcu(&ctx->rcu_head, free_ctx);
1201 }
1202 }
1203
1204 /*
1205 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1206 * perf_pmu_migrate_context() we need some magic.
1207 *
1208 * Those places that change perf_event::ctx will hold both
1209 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1210 *
1211 * Lock ordering is by mutex address. There are two other sites where
1212 * perf_event_context::mutex nests and those are:
1213 *
1214 * - perf_event_exit_task_context() [ child , 0 ]
1215 * perf_event_exit_event()
1216 * put_event() [ parent, 1 ]
1217 *
1218 * - perf_event_init_context() [ parent, 0 ]
1219 * inherit_task_group()
1220 * inherit_group()
1221 * inherit_event()
1222 * perf_event_alloc()
1223 * perf_init_event()
1224 * perf_try_init_event() [ child , 1 ]
1225 *
1226 * While it appears there is an obvious deadlock here -- the parent and child
1227 * nesting levels are inverted between the two. This is in fact safe because
1228 * life-time rules separate them. That is an exiting task cannot fork, and a
1229 * spawning task cannot (yet) exit.
1230 *
1231 * But remember that these are parent<->child context relations, and
1232 * migration does not affect children, therefore these two orderings should not
1233 * interact.
1234 *
1235 * The change in perf_event::ctx does not affect children (as claimed above)
1236 * because the sys_perf_event_open() case will install a new event and break
1237 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1238 * concerned with cpuctx and that doesn't have children.
1239 *
1240 * The places that change perf_event::ctx will issue:
1241 *
1242 * perf_remove_from_context();
1243 * synchronize_rcu();
1244 * perf_install_in_context();
1245 *
1246 * to affect the change. The remove_from_context() + synchronize_rcu() should
1247 * quiesce the event, after which we can install it in the new location. This
1248 * means that only external vectors (perf_fops, prctl) can perturb the event
1249 * while in transit. Therefore all such accessors should also acquire
1250 * perf_event_context::mutex to serialize against this.
1251 *
1252 * However; because event->ctx can change while we're waiting to acquire
1253 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1254 * function.
1255 *
1256 * Lock order:
1257 * exec_update_lock
1258 * task_struct::perf_event_mutex
1259 * perf_event_context::mutex
1260 * perf_event::child_mutex;
1261 * perf_event_context::lock
1262 * mmap_lock
1263 * perf_event::mmap_mutex
1264 * perf_buffer::aux_mutex
1265 * perf_addr_filters_head::lock
1266 *
1267 * cpu_hotplug_lock
1268 * pmus_lock
1269 * cpuctx->mutex / perf_event_context::mutex
1270 */
1271 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1272 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1273 {
1274 struct perf_event_context *ctx;
1275
1276 again:
1277 rcu_read_lock();
1278 ctx = READ_ONCE(event->ctx);
1279 if (!refcount_inc_not_zero(&ctx->refcount)) {
1280 rcu_read_unlock();
1281 goto again;
1282 }
1283 rcu_read_unlock();
1284
1285 mutex_lock_nested(&ctx->mutex, nesting);
1286 if (event->ctx != ctx) {
1287 mutex_unlock(&ctx->mutex);
1288 put_ctx(ctx);
1289 goto again;
1290 }
1291
1292 return ctx;
1293 }
1294
1295 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1296 perf_event_ctx_lock(struct perf_event *event)
1297 {
1298 return perf_event_ctx_lock_nested(event, 0);
1299 }
1300
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1301 static void perf_event_ctx_unlock(struct perf_event *event,
1302 struct perf_event_context *ctx)
1303 {
1304 mutex_unlock(&ctx->mutex);
1305 put_ctx(ctx);
1306 }
1307
1308 /*
1309 * This must be done under the ctx->lock, such as to serialize against
1310 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1311 * calling scheduler related locks and ctx->lock nests inside those.
1312 */
1313 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1314 unclone_ctx(struct perf_event_context *ctx)
1315 {
1316 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1317
1318 lockdep_assert_held(&ctx->lock);
1319
1320 if (parent_ctx)
1321 ctx->parent_ctx = NULL;
1322 ctx->generation++;
1323
1324 return parent_ctx;
1325 }
1326
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1327 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1328 enum pid_type type)
1329 {
1330 u32 nr;
1331 /*
1332 * only top level events have the pid namespace they were created in
1333 */
1334 if (event->parent)
1335 event = event->parent;
1336
1337 nr = __task_pid_nr_ns(p, type, event->ns);
1338 /* avoid -1 if it is idle thread or runs in another ns */
1339 if (!nr && !pid_alive(p))
1340 nr = -1;
1341 return nr;
1342 }
1343
perf_event_pid(struct perf_event * event,struct task_struct * p)1344 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1345 {
1346 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1347 }
1348
perf_event_tid(struct perf_event * event,struct task_struct * p)1349 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1350 {
1351 return perf_event_pid_type(event, p, PIDTYPE_PID);
1352 }
1353
1354 /*
1355 * If we inherit events we want to return the parent event id
1356 * to userspace.
1357 */
primary_event_id(struct perf_event * event)1358 static u64 primary_event_id(struct perf_event *event)
1359 {
1360 u64 id = event->id;
1361
1362 if (event->parent)
1363 id = event->parent->id;
1364
1365 return id;
1366 }
1367
1368 /*
1369 * Get the perf_event_context for a task and lock it.
1370 *
1371 * This has to cope with the fact that until it is locked,
1372 * the context could get moved to another task.
1373 */
1374 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1375 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1376 {
1377 struct perf_event_context *ctx;
1378
1379 retry:
1380 /*
1381 * One of the few rules of preemptible RCU is that one cannot do
1382 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1383 * part of the read side critical section was irqs-enabled -- see
1384 * rcu_read_unlock_special().
1385 *
1386 * Since ctx->lock nests under rq->lock we must ensure the entire read
1387 * side critical section has interrupts disabled.
1388 */
1389 local_irq_save(*flags);
1390 rcu_read_lock();
1391 ctx = rcu_dereference(task->perf_event_ctxp);
1392 if (ctx) {
1393 /*
1394 * If this context is a clone of another, it might
1395 * get swapped for another underneath us by
1396 * perf_event_task_sched_out, though the
1397 * rcu_read_lock() protects us from any context
1398 * getting freed. Lock the context and check if it
1399 * got swapped before we could get the lock, and retry
1400 * if so. If we locked the right context, then it
1401 * can't get swapped on us any more.
1402 */
1403 raw_spin_lock(&ctx->lock);
1404 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1405 raw_spin_unlock(&ctx->lock);
1406 rcu_read_unlock();
1407 local_irq_restore(*flags);
1408 goto retry;
1409 }
1410
1411 if (ctx->task == TASK_TOMBSTONE ||
1412 !refcount_inc_not_zero(&ctx->refcount)) {
1413 raw_spin_unlock(&ctx->lock);
1414 ctx = NULL;
1415 } else {
1416 WARN_ON_ONCE(ctx->task != task);
1417 }
1418 }
1419 rcu_read_unlock();
1420 if (!ctx)
1421 local_irq_restore(*flags);
1422 return ctx;
1423 }
1424
1425 /*
1426 * Get the context for a task and increment its pin_count so it
1427 * can't get swapped to another task. This also increments its
1428 * reference count so that the context can't get freed.
1429 */
1430 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1431 perf_pin_task_context(struct task_struct *task)
1432 {
1433 struct perf_event_context *ctx;
1434 unsigned long flags;
1435
1436 ctx = perf_lock_task_context(task, &flags);
1437 if (ctx) {
1438 ++ctx->pin_count;
1439 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1440 }
1441 return ctx;
1442 }
1443
perf_unpin_context(struct perf_event_context * ctx)1444 static void perf_unpin_context(struct perf_event_context *ctx)
1445 {
1446 unsigned long flags;
1447
1448 raw_spin_lock_irqsave(&ctx->lock, flags);
1449 --ctx->pin_count;
1450 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1451 }
1452
1453 /*
1454 * Update the record of the current time in a context.
1455 */
__update_context_time(struct perf_event_context * ctx,bool adv)1456 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1457 {
1458 u64 now = perf_clock();
1459
1460 lockdep_assert_held(&ctx->lock);
1461
1462 if (adv)
1463 ctx->time += now - ctx->timestamp;
1464 ctx->timestamp = now;
1465
1466 /*
1467 * The above: time' = time + (now - timestamp), can be re-arranged
1468 * into: time` = now + (time - timestamp), which gives a single value
1469 * offset to compute future time without locks on.
1470 *
1471 * See perf_event_time_now(), which can be used from NMI context where
1472 * it's (obviously) not possible to acquire ctx->lock in order to read
1473 * both the above values in a consistent manner.
1474 */
1475 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1476 }
1477
update_context_time(struct perf_event_context * ctx)1478 static void update_context_time(struct perf_event_context *ctx)
1479 {
1480 __update_context_time(ctx, true);
1481 }
1482
perf_event_time(struct perf_event * event)1483 static u64 perf_event_time(struct perf_event *event)
1484 {
1485 struct perf_event_context *ctx = event->ctx;
1486
1487 if (unlikely(!ctx))
1488 return 0;
1489
1490 if (is_cgroup_event(event))
1491 return perf_cgroup_event_time(event);
1492
1493 return ctx->time;
1494 }
1495
perf_event_time_now(struct perf_event * event,u64 now)1496 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1497 {
1498 struct perf_event_context *ctx = event->ctx;
1499
1500 if (unlikely(!ctx))
1501 return 0;
1502
1503 if (is_cgroup_event(event))
1504 return perf_cgroup_event_time_now(event, now);
1505
1506 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1507 return ctx->time;
1508
1509 now += READ_ONCE(ctx->timeoffset);
1510 return now;
1511 }
1512
get_event_type(struct perf_event * event)1513 static enum event_type_t get_event_type(struct perf_event *event)
1514 {
1515 struct perf_event_context *ctx = event->ctx;
1516 enum event_type_t event_type;
1517
1518 lockdep_assert_held(&ctx->lock);
1519
1520 /*
1521 * It's 'group type', really, because if our group leader is
1522 * pinned, so are we.
1523 */
1524 if (event->group_leader != event)
1525 event = event->group_leader;
1526
1527 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1528 if (!ctx->task)
1529 event_type |= EVENT_CPU;
1530
1531 return event_type;
1532 }
1533
1534 /*
1535 * Helper function to initialize event group nodes.
1536 */
init_event_group(struct perf_event * event)1537 static void init_event_group(struct perf_event *event)
1538 {
1539 RB_CLEAR_NODE(&event->group_node);
1540 event->group_index = 0;
1541 }
1542
1543 /*
1544 * Extract pinned or flexible groups from the context
1545 * based on event attrs bits.
1546 */
1547 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1548 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1549 {
1550 if (event->attr.pinned)
1551 return &ctx->pinned_groups;
1552 else
1553 return &ctx->flexible_groups;
1554 }
1555
1556 /*
1557 * Helper function to initializes perf_event_group trees.
1558 */
perf_event_groups_init(struct perf_event_groups * groups)1559 static void perf_event_groups_init(struct perf_event_groups *groups)
1560 {
1561 groups->tree = RB_ROOT;
1562 groups->index = 0;
1563 }
1564
event_cgroup(const struct perf_event * event)1565 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1566 {
1567 struct cgroup *cgroup = NULL;
1568
1569 #ifdef CONFIG_CGROUP_PERF
1570 if (event->cgrp)
1571 cgroup = event->cgrp->css.cgroup;
1572 #endif
1573
1574 return cgroup;
1575 }
1576
1577 /*
1578 * Compare function for event groups;
1579 *
1580 * Implements complex key that first sorts by CPU and then by virtual index
1581 * which provides ordering when rotating groups for the same CPU.
1582 */
1583 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1584 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1585 const struct cgroup *left_cgroup, const u64 left_group_index,
1586 const struct perf_event *right)
1587 {
1588 if (left_cpu < right->cpu)
1589 return -1;
1590 if (left_cpu > right->cpu)
1591 return 1;
1592
1593 if (left_pmu) {
1594 if (left_pmu < right->pmu_ctx->pmu)
1595 return -1;
1596 if (left_pmu > right->pmu_ctx->pmu)
1597 return 1;
1598 }
1599
1600 #ifdef CONFIG_CGROUP_PERF
1601 {
1602 const struct cgroup *right_cgroup = event_cgroup(right);
1603
1604 if (left_cgroup != right_cgroup) {
1605 if (!left_cgroup) {
1606 /*
1607 * Left has no cgroup but right does, no
1608 * cgroups come first.
1609 */
1610 return -1;
1611 }
1612 if (!right_cgroup) {
1613 /*
1614 * Right has no cgroup but left does, no
1615 * cgroups come first.
1616 */
1617 return 1;
1618 }
1619 /* Two dissimilar cgroups, order by id. */
1620 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1621 return -1;
1622
1623 return 1;
1624 }
1625 }
1626 #endif
1627
1628 if (left_group_index < right->group_index)
1629 return -1;
1630 if (left_group_index > right->group_index)
1631 return 1;
1632
1633 return 0;
1634 }
1635
1636 #define __node_2_pe(node) \
1637 rb_entry((node), struct perf_event, group_node)
1638
__group_less(struct rb_node * a,const struct rb_node * b)1639 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1640 {
1641 struct perf_event *e = __node_2_pe(a);
1642 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1643 e->group_index, __node_2_pe(b)) < 0;
1644 }
1645
1646 struct __group_key {
1647 int cpu;
1648 struct pmu *pmu;
1649 struct cgroup *cgroup;
1650 };
1651
__group_cmp(const void * key,const struct rb_node * node)1652 static inline int __group_cmp(const void *key, const struct rb_node *node)
1653 {
1654 const struct __group_key *a = key;
1655 const struct perf_event *b = __node_2_pe(node);
1656
1657 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1658 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1659 }
1660
1661 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1662 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1663 {
1664 const struct __group_key *a = key;
1665 const struct perf_event *b = __node_2_pe(node);
1666
1667 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1668 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1669 b->group_index, b);
1670 }
1671
1672 /*
1673 * Insert @event into @groups' tree; using
1674 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1675 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1676 */
1677 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1678 perf_event_groups_insert(struct perf_event_groups *groups,
1679 struct perf_event *event)
1680 {
1681 event->group_index = ++groups->index;
1682
1683 rb_add(&event->group_node, &groups->tree, __group_less);
1684 }
1685
1686 /*
1687 * Helper function to insert event into the pinned or flexible groups.
1688 */
1689 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1690 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1691 {
1692 struct perf_event_groups *groups;
1693
1694 groups = get_event_groups(event, ctx);
1695 perf_event_groups_insert(groups, event);
1696 }
1697
1698 /*
1699 * Delete a group from a tree.
1700 */
1701 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1702 perf_event_groups_delete(struct perf_event_groups *groups,
1703 struct perf_event *event)
1704 {
1705 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1706 RB_EMPTY_ROOT(&groups->tree));
1707
1708 rb_erase(&event->group_node, &groups->tree);
1709 init_event_group(event);
1710 }
1711
1712 /*
1713 * Helper function to delete event from its groups.
1714 */
1715 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1716 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1717 {
1718 struct perf_event_groups *groups;
1719
1720 groups = get_event_groups(event, ctx);
1721 perf_event_groups_delete(groups, event);
1722 }
1723
1724 /*
1725 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1726 */
1727 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1728 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1729 struct pmu *pmu, struct cgroup *cgrp)
1730 {
1731 struct __group_key key = {
1732 .cpu = cpu,
1733 .pmu = pmu,
1734 .cgroup = cgrp,
1735 };
1736 struct rb_node *node;
1737
1738 node = rb_find_first(&key, &groups->tree, __group_cmp);
1739 if (node)
1740 return __node_2_pe(node);
1741
1742 return NULL;
1743 }
1744
1745 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1746 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1747 {
1748 struct __group_key key = {
1749 .cpu = event->cpu,
1750 .pmu = pmu,
1751 .cgroup = event_cgroup(event),
1752 };
1753 struct rb_node *next;
1754
1755 next = rb_next_match(&key, &event->group_node, __group_cmp);
1756 if (next)
1757 return __node_2_pe(next);
1758
1759 return NULL;
1760 }
1761
1762 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1763 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1764 event; event = perf_event_groups_next(event, pmu))
1765
1766 /*
1767 * Iterate through the whole groups tree.
1768 */
1769 #define perf_event_groups_for_each(event, groups) \
1770 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1771 typeof(*event), group_node); event; \
1772 event = rb_entry_safe(rb_next(&event->group_node), \
1773 typeof(*event), group_node))
1774
1775 /*
1776 * Add an event from the lists for its context.
1777 * Must be called with ctx->mutex and ctx->lock held.
1778 */
1779 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1780 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1781 {
1782 lockdep_assert_held(&ctx->lock);
1783
1784 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1785 event->attach_state |= PERF_ATTACH_CONTEXT;
1786
1787 event->tstamp = perf_event_time(event);
1788
1789 /*
1790 * If we're a stand alone event or group leader, we go to the context
1791 * list, group events are kept attached to the group so that
1792 * perf_group_detach can, at all times, locate all siblings.
1793 */
1794 if (event->group_leader == event) {
1795 event->group_caps = event->event_caps;
1796 add_event_to_groups(event, ctx);
1797 }
1798
1799 list_add_rcu(&event->event_entry, &ctx->event_list);
1800 ctx->nr_events++;
1801 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1802 ctx->nr_user++;
1803 if (event->attr.inherit_stat)
1804 ctx->nr_stat++;
1805
1806 if (event->state > PERF_EVENT_STATE_OFF)
1807 perf_cgroup_event_enable(event, ctx);
1808
1809 ctx->generation++;
1810 event->pmu_ctx->nr_events++;
1811 }
1812
1813 /*
1814 * Initialize event state based on the perf_event_attr::disabled.
1815 */
perf_event__state_init(struct perf_event * event)1816 static inline void perf_event__state_init(struct perf_event *event)
1817 {
1818 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1819 PERF_EVENT_STATE_INACTIVE;
1820 }
1821
__perf_event_read_size(u64 read_format,int nr_siblings)1822 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1823 {
1824 int entry = sizeof(u64); /* value */
1825 int size = 0;
1826 int nr = 1;
1827
1828 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1829 size += sizeof(u64);
1830
1831 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1832 size += sizeof(u64);
1833
1834 if (read_format & PERF_FORMAT_ID)
1835 entry += sizeof(u64);
1836
1837 if (read_format & PERF_FORMAT_LOST)
1838 entry += sizeof(u64);
1839
1840 if (read_format & PERF_FORMAT_GROUP) {
1841 nr += nr_siblings;
1842 size += sizeof(u64);
1843 }
1844
1845 /*
1846 * Since perf_event_validate_size() limits this to 16k and inhibits
1847 * adding more siblings, this will never overflow.
1848 */
1849 return size + nr * entry;
1850 }
1851
__perf_event_header_size(struct perf_event * event,u64 sample_type)1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1853 {
1854 struct perf_sample_data *data;
1855 u16 size = 0;
1856
1857 if (sample_type & PERF_SAMPLE_IP)
1858 size += sizeof(data->ip);
1859
1860 if (sample_type & PERF_SAMPLE_ADDR)
1861 size += sizeof(data->addr);
1862
1863 if (sample_type & PERF_SAMPLE_PERIOD)
1864 size += sizeof(data->period);
1865
1866 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1867 size += sizeof(data->weight.full);
1868
1869 if (sample_type & PERF_SAMPLE_READ)
1870 size += event->read_size;
1871
1872 if (sample_type & PERF_SAMPLE_DATA_SRC)
1873 size += sizeof(data->data_src.val);
1874
1875 if (sample_type & PERF_SAMPLE_TRANSACTION)
1876 size += sizeof(data->txn);
1877
1878 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1879 size += sizeof(data->phys_addr);
1880
1881 if (sample_type & PERF_SAMPLE_CGROUP)
1882 size += sizeof(data->cgroup);
1883
1884 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1885 size += sizeof(data->data_page_size);
1886
1887 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1888 size += sizeof(data->code_page_size);
1889
1890 event->header_size = size;
1891 }
1892
1893 /*
1894 * Called at perf_event creation and when events are attached/detached from a
1895 * group.
1896 */
perf_event__header_size(struct perf_event * event)1897 static void perf_event__header_size(struct perf_event *event)
1898 {
1899 event->read_size =
1900 __perf_event_read_size(event->attr.read_format,
1901 event->group_leader->nr_siblings);
1902 __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904
perf_event__id_header_size(struct perf_event * event)1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907 struct perf_sample_data *data;
1908 u64 sample_type = event->attr.sample_type;
1909 u16 size = 0;
1910
1911 if (sample_type & PERF_SAMPLE_TID)
1912 size += sizeof(data->tid_entry);
1913
1914 if (sample_type & PERF_SAMPLE_TIME)
1915 size += sizeof(data->time);
1916
1917 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918 size += sizeof(data->id);
1919
1920 if (sample_type & PERF_SAMPLE_ID)
1921 size += sizeof(data->id);
1922
1923 if (sample_type & PERF_SAMPLE_STREAM_ID)
1924 size += sizeof(data->stream_id);
1925
1926 if (sample_type & PERF_SAMPLE_CPU)
1927 size += sizeof(data->cpu_entry);
1928
1929 event->id_header_size = size;
1930 }
1931
1932 /*
1933 * Check that adding an event to the group does not result in anybody
1934 * overflowing the 64k event limit imposed by the output buffer.
1935 *
1936 * Specifically, check that the read_size for the event does not exceed 16k,
1937 * read_size being the one term that grows with groups size. Since read_size
1938 * depends on per-event read_format, also (re)check the existing events.
1939 *
1940 * This leaves 48k for the constant size fields and things like callchains,
1941 * branch stacks and register sets.
1942 */
perf_event_validate_size(struct perf_event * event)1943 static bool perf_event_validate_size(struct perf_event *event)
1944 {
1945 struct perf_event *sibling, *group_leader = event->group_leader;
1946
1947 if (__perf_event_read_size(event->attr.read_format,
1948 group_leader->nr_siblings + 1) > 16*1024)
1949 return false;
1950
1951 if (__perf_event_read_size(group_leader->attr.read_format,
1952 group_leader->nr_siblings + 1) > 16*1024)
1953 return false;
1954
1955 /*
1956 * When creating a new group leader, group_leader->ctx is initialized
1957 * after the size has been validated, but we cannot safely use
1958 * for_each_sibling_event() until group_leader->ctx is set. A new group
1959 * leader cannot have any siblings yet, so we can safely skip checking
1960 * the non-existent siblings.
1961 */
1962 if (event == group_leader)
1963 return true;
1964
1965 for_each_sibling_event(sibling, group_leader) {
1966 if (__perf_event_read_size(sibling->attr.read_format,
1967 group_leader->nr_siblings + 1) > 16*1024)
1968 return false;
1969 }
1970
1971 return true;
1972 }
1973
perf_group_attach(struct perf_event * event)1974 static void perf_group_attach(struct perf_event *event)
1975 {
1976 struct perf_event *group_leader = event->group_leader, *pos;
1977
1978 lockdep_assert_held(&event->ctx->lock);
1979
1980 /*
1981 * We can have double attach due to group movement (move_group) in
1982 * perf_event_open().
1983 */
1984 if (event->attach_state & PERF_ATTACH_GROUP)
1985 return;
1986
1987 event->attach_state |= PERF_ATTACH_GROUP;
1988
1989 if (group_leader == event)
1990 return;
1991
1992 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1993
1994 group_leader->group_caps &= event->event_caps;
1995
1996 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1997 group_leader->nr_siblings++;
1998 group_leader->group_generation++;
1999
2000 perf_event__header_size(group_leader);
2001
2002 for_each_sibling_event(pos, group_leader)
2003 perf_event__header_size(pos);
2004 }
2005
2006 /*
2007 * Remove an event from the lists for its context.
2008 * Must be called with ctx->mutex and ctx->lock held.
2009 */
2010 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2011 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2012 {
2013 WARN_ON_ONCE(event->ctx != ctx);
2014 lockdep_assert_held(&ctx->lock);
2015
2016 /*
2017 * We can have double detach due to exit/hot-unplug + close.
2018 */
2019 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2020 return;
2021
2022 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2023
2024 ctx->nr_events--;
2025 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2026 ctx->nr_user--;
2027 if (event->attr.inherit_stat)
2028 ctx->nr_stat--;
2029
2030 list_del_rcu(&event->event_entry);
2031
2032 if (event->group_leader == event)
2033 del_event_from_groups(event, ctx);
2034
2035 /*
2036 * If event was in error state, then keep it
2037 * that way, otherwise bogus counts will be
2038 * returned on read(). The only way to get out
2039 * of error state is by explicit re-enabling
2040 * of the event
2041 */
2042 if (event->state > PERF_EVENT_STATE_OFF) {
2043 perf_cgroup_event_disable(event, ctx);
2044 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2045 }
2046
2047 ctx->generation++;
2048 event->pmu_ctx->nr_events--;
2049 }
2050
2051 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2052 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2053 {
2054 if (!has_aux(aux_event))
2055 return 0;
2056
2057 if (!event->pmu->aux_output_match)
2058 return 0;
2059
2060 return event->pmu->aux_output_match(aux_event);
2061 }
2062
2063 static void put_event(struct perf_event *event);
2064 static void event_sched_out(struct perf_event *event,
2065 struct perf_event_context *ctx);
2066
perf_put_aux_event(struct perf_event * event)2067 static void perf_put_aux_event(struct perf_event *event)
2068 {
2069 struct perf_event_context *ctx = event->ctx;
2070 struct perf_event *iter;
2071
2072 /*
2073 * If event uses aux_event tear down the link
2074 */
2075 if (event->aux_event) {
2076 iter = event->aux_event;
2077 event->aux_event = NULL;
2078 put_event(iter);
2079 return;
2080 }
2081
2082 /*
2083 * If the event is an aux_event, tear down all links to
2084 * it from other events.
2085 */
2086 for_each_sibling_event(iter, event->group_leader) {
2087 if (iter->aux_event != event)
2088 continue;
2089
2090 iter->aux_event = NULL;
2091 put_event(event);
2092
2093 /*
2094 * If it's ACTIVE, schedule it out and put it into ERROR
2095 * state so that we don't try to schedule it again. Note
2096 * that perf_event_enable() will clear the ERROR status.
2097 */
2098 event_sched_out(iter, ctx);
2099 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2100 }
2101 }
2102
perf_need_aux_event(struct perf_event * event)2103 static bool perf_need_aux_event(struct perf_event *event)
2104 {
2105 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2106 }
2107
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2108 static int perf_get_aux_event(struct perf_event *event,
2109 struct perf_event *group_leader)
2110 {
2111 /*
2112 * Our group leader must be an aux event if we want to be
2113 * an aux_output. This way, the aux event will precede its
2114 * aux_output events in the group, and therefore will always
2115 * schedule first.
2116 */
2117 if (!group_leader)
2118 return 0;
2119
2120 /*
2121 * aux_output and aux_sample_size are mutually exclusive.
2122 */
2123 if (event->attr.aux_output && event->attr.aux_sample_size)
2124 return 0;
2125
2126 if (event->attr.aux_output &&
2127 !perf_aux_output_match(event, group_leader))
2128 return 0;
2129
2130 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2131 return 0;
2132
2133 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2134 return 0;
2135
2136 /*
2137 * Link aux_outputs to their aux event; this is undone in
2138 * perf_group_detach() by perf_put_aux_event(). When the
2139 * group in torn down, the aux_output events loose their
2140 * link to the aux_event and can't schedule any more.
2141 */
2142 event->aux_event = group_leader;
2143
2144 return 1;
2145 }
2146
get_event_list(struct perf_event * event)2147 static inline struct list_head *get_event_list(struct perf_event *event)
2148 {
2149 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2150 &event->pmu_ctx->flexible_active;
2151 }
2152
2153 /*
2154 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2155 * cannot exist on their own, schedule them out and move them into the ERROR
2156 * state. Also see _perf_event_enable(), it will not be able to recover
2157 * this ERROR state.
2158 */
perf_remove_sibling_event(struct perf_event * event)2159 static inline void perf_remove_sibling_event(struct perf_event *event)
2160 {
2161 event_sched_out(event, event->ctx);
2162 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2163 }
2164
perf_group_detach(struct perf_event * event)2165 static void perf_group_detach(struct perf_event *event)
2166 {
2167 struct perf_event *leader = event->group_leader;
2168 struct perf_event *sibling, *tmp;
2169 struct perf_event_context *ctx = event->ctx;
2170
2171 lockdep_assert_held(&ctx->lock);
2172
2173 /*
2174 * We can have double detach due to exit/hot-unplug + close.
2175 */
2176 if (!(event->attach_state & PERF_ATTACH_GROUP))
2177 return;
2178
2179 event->attach_state &= ~PERF_ATTACH_GROUP;
2180
2181 perf_put_aux_event(event);
2182
2183 /*
2184 * If this is a sibling, remove it from its group.
2185 */
2186 if (leader != event) {
2187 list_del_init(&event->sibling_list);
2188 event->group_leader->nr_siblings--;
2189 event->group_leader->group_generation++;
2190 goto out;
2191 }
2192
2193 /*
2194 * If this was a group event with sibling events then
2195 * upgrade the siblings to singleton events by adding them
2196 * to whatever list we are on.
2197 */
2198 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2199
2200 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2201 perf_remove_sibling_event(sibling);
2202
2203 sibling->group_leader = sibling;
2204 list_del_init(&sibling->sibling_list);
2205
2206 /* Inherit group flags from the previous leader */
2207 sibling->group_caps = event->group_caps;
2208
2209 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2210 add_event_to_groups(sibling, event->ctx);
2211
2212 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2213 list_add_tail(&sibling->active_list, get_event_list(sibling));
2214 }
2215
2216 WARN_ON_ONCE(sibling->ctx != event->ctx);
2217 }
2218
2219 out:
2220 for_each_sibling_event(tmp, leader)
2221 perf_event__header_size(tmp);
2222
2223 perf_event__header_size(leader);
2224 }
2225
2226 static void sync_child_event(struct perf_event *child_event);
2227
perf_child_detach(struct perf_event * event)2228 static void perf_child_detach(struct perf_event *event)
2229 {
2230 struct perf_event *parent_event = event->parent;
2231
2232 if (!(event->attach_state & PERF_ATTACH_CHILD))
2233 return;
2234
2235 event->attach_state &= ~PERF_ATTACH_CHILD;
2236
2237 if (WARN_ON_ONCE(!parent_event))
2238 return;
2239
2240 lockdep_assert_held(&parent_event->child_mutex);
2241
2242 sync_child_event(event);
2243 list_del_init(&event->child_list);
2244 }
2245
is_orphaned_event(struct perf_event * event)2246 static bool is_orphaned_event(struct perf_event *event)
2247 {
2248 return event->state == PERF_EVENT_STATE_DEAD;
2249 }
2250
2251 static inline int
event_filter_match(struct perf_event * event)2252 event_filter_match(struct perf_event *event)
2253 {
2254 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2255 perf_cgroup_match(event);
2256 }
2257
2258 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2259 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2260 {
2261 struct perf_event_pmu_context *epc = event->pmu_ctx;
2262 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2263 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2264
2265 // XXX cpc serialization, probably per-cpu IRQ disabled
2266
2267 WARN_ON_ONCE(event->ctx != ctx);
2268 lockdep_assert_held(&ctx->lock);
2269
2270 if (event->state != PERF_EVENT_STATE_ACTIVE)
2271 return;
2272
2273 /*
2274 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2275 * we can schedule events _OUT_ individually through things like
2276 * __perf_remove_from_context().
2277 */
2278 list_del_init(&event->active_list);
2279
2280 perf_pmu_disable(event->pmu);
2281
2282 event->pmu->del(event, 0);
2283 event->oncpu = -1;
2284
2285 if (event->pending_disable) {
2286 event->pending_disable = 0;
2287 perf_cgroup_event_disable(event, ctx);
2288 state = PERF_EVENT_STATE_OFF;
2289 }
2290
2291 if (event->pending_sigtrap) {
2292 event->pending_sigtrap = 0;
2293 if (state != PERF_EVENT_STATE_OFF &&
2294 !event->pending_work &&
2295 !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2296 event->pending_work = 1;
2297 } else {
2298 local_dec(&event->ctx->nr_pending);
2299 }
2300 }
2301
2302 perf_event_set_state(event, state);
2303
2304 if (!is_software_event(event))
2305 cpc->active_oncpu--;
2306 if (event->attr.freq && event->attr.sample_freq)
2307 ctx->nr_freq--;
2308 if (event->attr.exclusive || !cpc->active_oncpu)
2309 cpc->exclusive = 0;
2310
2311 perf_pmu_enable(event->pmu);
2312 }
2313
2314 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2315 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2316 {
2317 struct perf_event *event;
2318
2319 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2320 return;
2321
2322 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2323
2324 event_sched_out(group_event, ctx);
2325
2326 /*
2327 * Schedule out siblings (if any):
2328 */
2329 for_each_sibling_event(event, group_event)
2330 event_sched_out(event, ctx);
2331 }
2332
2333 #define DETACH_GROUP 0x01UL
2334 #define DETACH_CHILD 0x02UL
2335 #define DETACH_DEAD 0x04UL
2336
2337 /*
2338 * Cross CPU call to remove a performance event
2339 *
2340 * We disable the event on the hardware level first. After that we
2341 * remove it from the context list.
2342 */
2343 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2344 __perf_remove_from_context(struct perf_event *event,
2345 struct perf_cpu_context *cpuctx,
2346 struct perf_event_context *ctx,
2347 void *info)
2348 {
2349 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2350 unsigned long flags = (unsigned long)info;
2351
2352 if (ctx->is_active & EVENT_TIME) {
2353 update_context_time(ctx);
2354 update_cgrp_time_from_cpuctx(cpuctx, false);
2355 }
2356
2357 /*
2358 * Ensure event_sched_out() switches to OFF, at the very least
2359 * this avoids raising perf_pending_task() at this time.
2360 */
2361 if (flags & DETACH_DEAD)
2362 event->pending_disable = 1;
2363 event_sched_out(event, ctx);
2364 if (flags & DETACH_GROUP)
2365 perf_group_detach(event);
2366 if (flags & DETACH_CHILD)
2367 perf_child_detach(event);
2368 list_del_event(event, ctx);
2369 if (flags & DETACH_DEAD)
2370 event->state = PERF_EVENT_STATE_DEAD;
2371
2372 if (!pmu_ctx->nr_events) {
2373 pmu_ctx->rotate_necessary = 0;
2374
2375 if (ctx->task && ctx->is_active) {
2376 struct perf_cpu_pmu_context *cpc;
2377
2378 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2379 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2380 cpc->task_epc = NULL;
2381 }
2382 }
2383
2384 if (!ctx->nr_events && ctx->is_active) {
2385 if (ctx == &cpuctx->ctx)
2386 update_cgrp_time_from_cpuctx(cpuctx, true);
2387
2388 ctx->is_active = 0;
2389 if (ctx->task) {
2390 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2391 cpuctx->task_ctx = NULL;
2392 }
2393 }
2394 }
2395
2396 /*
2397 * Remove the event from a task's (or a CPU's) list of events.
2398 *
2399 * If event->ctx is a cloned context, callers must make sure that
2400 * every task struct that event->ctx->task could possibly point to
2401 * remains valid. This is OK when called from perf_release since
2402 * that only calls us on the top-level context, which can't be a clone.
2403 * When called from perf_event_exit_task, it's OK because the
2404 * context has been detached from its task.
2405 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2406 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2407 {
2408 struct perf_event_context *ctx = event->ctx;
2409
2410 lockdep_assert_held(&ctx->mutex);
2411
2412 /*
2413 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2414 * to work in the face of TASK_TOMBSTONE, unlike every other
2415 * event_function_call() user.
2416 */
2417 raw_spin_lock_irq(&ctx->lock);
2418 if (!ctx->is_active) {
2419 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2420 ctx, (void *)flags);
2421 raw_spin_unlock_irq(&ctx->lock);
2422 return;
2423 }
2424 raw_spin_unlock_irq(&ctx->lock);
2425
2426 event_function_call(event, __perf_remove_from_context, (void *)flags);
2427 }
2428
2429 /*
2430 * Cross CPU call to disable a performance event
2431 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2432 static void __perf_event_disable(struct perf_event *event,
2433 struct perf_cpu_context *cpuctx,
2434 struct perf_event_context *ctx,
2435 void *info)
2436 {
2437 if (event->state < PERF_EVENT_STATE_INACTIVE)
2438 return;
2439
2440 if (ctx->is_active & EVENT_TIME) {
2441 update_context_time(ctx);
2442 update_cgrp_time_from_event(event);
2443 }
2444
2445 perf_pmu_disable(event->pmu_ctx->pmu);
2446
2447 if (event == event->group_leader)
2448 group_sched_out(event, ctx);
2449 else
2450 event_sched_out(event, ctx);
2451
2452 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2453 perf_cgroup_event_disable(event, ctx);
2454
2455 perf_pmu_enable(event->pmu_ctx->pmu);
2456 }
2457
2458 /*
2459 * Disable an event.
2460 *
2461 * If event->ctx is a cloned context, callers must make sure that
2462 * every task struct that event->ctx->task could possibly point to
2463 * remains valid. This condition is satisfied when called through
2464 * perf_event_for_each_child or perf_event_for_each because they
2465 * hold the top-level event's child_mutex, so any descendant that
2466 * goes to exit will block in perf_event_exit_event().
2467 *
2468 * When called from perf_pending_irq it's OK because event->ctx
2469 * is the current context on this CPU and preemption is disabled,
2470 * hence we can't get into perf_event_task_sched_out for this context.
2471 */
_perf_event_disable(struct perf_event * event)2472 static void _perf_event_disable(struct perf_event *event)
2473 {
2474 struct perf_event_context *ctx = event->ctx;
2475
2476 raw_spin_lock_irq(&ctx->lock);
2477 if (event->state <= PERF_EVENT_STATE_OFF) {
2478 raw_spin_unlock_irq(&ctx->lock);
2479 return;
2480 }
2481 raw_spin_unlock_irq(&ctx->lock);
2482
2483 event_function_call(event, __perf_event_disable, NULL);
2484 }
2485
perf_event_disable_local(struct perf_event * event)2486 void perf_event_disable_local(struct perf_event *event)
2487 {
2488 event_function_local(event, __perf_event_disable, NULL);
2489 }
2490
2491 /*
2492 * Strictly speaking kernel users cannot create groups and therefore this
2493 * interface does not need the perf_event_ctx_lock() magic.
2494 */
perf_event_disable(struct perf_event * event)2495 void perf_event_disable(struct perf_event *event)
2496 {
2497 struct perf_event_context *ctx;
2498
2499 ctx = perf_event_ctx_lock(event);
2500 _perf_event_disable(event);
2501 perf_event_ctx_unlock(event, ctx);
2502 }
2503 EXPORT_SYMBOL_GPL(perf_event_disable);
2504
perf_event_disable_inatomic(struct perf_event * event)2505 void perf_event_disable_inatomic(struct perf_event *event)
2506 {
2507 event->pending_disable = 1;
2508 irq_work_queue(&event->pending_irq);
2509 }
2510
2511 #define MAX_INTERRUPTS (~0ULL)
2512
2513 static void perf_log_throttle(struct perf_event *event, int enable);
2514 static void perf_log_itrace_start(struct perf_event *event);
2515
2516 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2517 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2518 {
2519 struct perf_event_pmu_context *epc = event->pmu_ctx;
2520 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2521 int ret = 0;
2522
2523 WARN_ON_ONCE(event->ctx != ctx);
2524
2525 lockdep_assert_held(&ctx->lock);
2526
2527 if (event->state <= PERF_EVENT_STATE_OFF)
2528 return 0;
2529
2530 WRITE_ONCE(event->oncpu, smp_processor_id());
2531 /*
2532 * Order event::oncpu write to happen before the ACTIVE state is
2533 * visible. This allows perf_event_{stop,read}() to observe the correct
2534 * ->oncpu if it sees ACTIVE.
2535 */
2536 smp_wmb();
2537 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2538
2539 /*
2540 * Unthrottle events, since we scheduled we might have missed several
2541 * ticks already, also for a heavily scheduling task there is little
2542 * guarantee it'll get a tick in a timely manner.
2543 */
2544 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2545 perf_log_throttle(event, 1);
2546 event->hw.interrupts = 0;
2547 }
2548
2549 perf_pmu_disable(event->pmu);
2550
2551 perf_log_itrace_start(event);
2552
2553 if (event->pmu->add(event, PERF_EF_START)) {
2554 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2555 event->oncpu = -1;
2556 ret = -EAGAIN;
2557 goto out;
2558 }
2559
2560 if (!is_software_event(event))
2561 cpc->active_oncpu++;
2562 if (event->attr.freq && event->attr.sample_freq)
2563 ctx->nr_freq++;
2564
2565 if (event->attr.exclusive)
2566 cpc->exclusive = 1;
2567
2568 out:
2569 perf_pmu_enable(event->pmu);
2570
2571 return ret;
2572 }
2573
2574 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2575 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2576 {
2577 struct perf_event *event, *partial_group = NULL;
2578 struct pmu *pmu = group_event->pmu_ctx->pmu;
2579
2580 if (group_event->state == PERF_EVENT_STATE_OFF)
2581 return 0;
2582
2583 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2584
2585 if (event_sched_in(group_event, ctx))
2586 goto error;
2587
2588 /*
2589 * Schedule in siblings as one group (if any):
2590 */
2591 for_each_sibling_event(event, group_event) {
2592 if (event_sched_in(event, ctx)) {
2593 partial_group = event;
2594 goto group_error;
2595 }
2596 }
2597
2598 if (!pmu->commit_txn(pmu))
2599 return 0;
2600
2601 group_error:
2602 /*
2603 * Groups can be scheduled in as one unit only, so undo any
2604 * partial group before returning:
2605 * The events up to the failed event are scheduled out normally.
2606 */
2607 for_each_sibling_event(event, group_event) {
2608 if (event == partial_group)
2609 break;
2610
2611 event_sched_out(event, ctx);
2612 }
2613 event_sched_out(group_event, ctx);
2614
2615 error:
2616 pmu->cancel_txn(pmu);
2617 return -EAGAIN;
2618 }
2619
2620 /*
2621 * Work out whether we can put this event group on the CPU now.
2622 */
group_can_go_on(struct perf_event * event,int can_add_hw)2623 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2624 {
2625 struct perf_event_pmu_context *epc = event->pmu_ctx;
2626 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2627
2628 /*
2629 * Groups consisting entirely of software events can always go on.
2630 */
2631 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2632 return 1;
2633 /*
2634 * If an exclusive group is already on, no other hardware
2635 * events can go on.
2636 */
2637 if (cpc->exclusive)
2638 return 0;
2639 /*
2640 * If this group is exclusive and there are already
2641 * events on the CPU, it can't go on.
2642 */
2643 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2644 return 0;
2645 /*
2646 * Otherwise, try to add it if all previous groups were able
2647 * to go on.
2648 */
2649 return can_add_hw;
2650 }
2651
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2652 static void add_event_to_ctx(struct perf_event *event,
2653 struct perf_event_context *ctx)
2654 {
2655 list_add_event(event, ctx);
2656 perf_group_attach(event);
2657 }
2658
task_ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)2659 static void task_ctx_sched_out(struct perf_event_context *ctx,
2660 enum event_type_t event_type)
2661 {
2662 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2663
2664 if (!cpuctx->task_ctx)
2665 return;
2666
2667 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2668 return;
2669
2670 ctx_sched_out(ctx, event_type);
2671 }
2672
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2673 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2674 struct perf_event_context *ctx)
2675 {
2676 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2677 if (ctx)
2678 ctx_sched_in(ctx, EVENT_PINNED);
2679 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2680 if (ctx)
2681 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2682 }
2683
2684 /*
2685 * We want to maintain the following priority of scheduling:
2686 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2687 * - task pinned (EVENT_PINNED)
2688 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2689 * - task flexible (EVENT_FLEXIBLE).
2690 *
2691 * In order to avoid unscheduling and scheduling back in everything every
2692 * time an event is added, only do it for the groups of equal priority and
2693 * below.
2694 *
2695 * This can be called after a batch operation on task events, in which case
2696 * event_type is a bit mask of the types of events involved. For CPU events,
2697 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2698 */
2699 /*
2700 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2701 * event to the context or enabling existing event in the context. We can
2702 * probably optimize it by rescheduling only affected pmu_ctx.
2703 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2704 static void ctx_resched(struct perf_cpu_context *cpuctx,
2705 struct perf_event_context *task_ctx,
2706 enum event_type_t event_type)
2707 {
2708 bool cpu_event = !!(event_type & EVENT_CPU);
2709
2710 /*
2711 * If pinned groups are involved, flexible groups also need to be
2712 * scheduled out.
2713 */
2714 if (event_type & EVENT_PINNED)
2715 event_type |= EVENT_FLEXIBLE;
2716
2717 event_type &= EVENT_ALL;
2718
2719 perf_ctx_disable(&cpuctx->ctx, false);
2720 if (task_ctx) {
2721 perf_ctx_disable(task_ctx, false);
2722 task_ctx_sched_out(task_ctx, event_type);
2723 }
2724
2725 /*
2726 * Decide which cpu ctx groups to schedule out based on the types
2727 * of events that caused rescheduling:
2728 * - EVENT_CPU: schedule out corresponding groups;
2729 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2730 * - otherwise, do nothing more.
2731 */
2732 if (cpu_event)
2733 ctx_sched_out(&cpuctx->ctx, event_type);
2734 else if (event_type & EVENT_PINNED)
2735 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2736
2737 perf_event_sched_in(cpuctx, task_ctx);
2738
2739 perf_ctx_enable(&cpuctx->ctx, false);
2740 if (task_ctx)
2741 perf_ctx_enable(task_ctx, false);
2742 }
2743
perf_pmu_resched(struct pmu * pmu)2744 void perf_pmu_resched(struct pmu *pmu)
2745 {
2746 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2747 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2748
2749 perf_ctx_lock(cpuctx, task_ctx);
2750 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2751 perf_ctx_unlock(cpuctx, task_ctx);
2752 }
2753
2754 /*
2755 * Cross CPU call to install and enable a performance event
2756 *
2757 * Very similar to remote_function() + event_function() but cannot assume that
2758 * things like ctx->is_active and cpuctx->task_ctx are set.
2759 */
__perf_install_in_context(void * info)2760 static int __perf_install_in_context(void *info)
2761 {
2762 struct perf_event *event = info;
2763 struct perf_event_context *ctx = event->ctx;
2764 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2765 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2766 bool reprogram = true;
2767 int ret = 0;
2768
2769 raw_spin_lock(&cpuctx->ctx.lock);
2770 if (ctx->task) {
2771 raw_spin_lock(&ctx->lock);
2772 task_ctx = ctx;
2773
2774 reprogram = (ctx->task == current);
2775
2776 /*
2777 * If the task is running, it must be running on this CPU,
2778 * otherwise we cannot reprogram things.
2779 *
2780 * If its not running, we don't care, ctx->lock will
2781 * serialize against it becoming runnable.
2782 */
2783 if (task_curr(ctx->task) && !reprogram) {
2784 ret = -ESRCH;
2785 goto unlock;
2786 }
2787
2788 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2789 } else if (task_ctx) {
2790 raw_spin_lock(&task_ctx->lock);
2791 }
2792
2793 #ifdef CONFIG_CGROUP_PERF
2794 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2795 /*
2796 * If the current cgroup doesn't match the event's
2797 * cgroup, we should not try to schedule it.
2798 */
2799 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2800 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2801 event->cgrp->css.cgroup);
2802 }
2803 #endif
2804
2805 if (reprogram) {
2806 ctx_sched_out(ctx, EVENT_TIME);
2807 add_event_to_ctx(event, ctx);
2808 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2809 } else {
2810 add_event_to_ctx(event, ctx);
2811 }
2812
2813 unlock:
2814 perf_ctx_unlock(cpuctx, task_ctx);
2815
2816 return ret;
2817 }
2818
2819 static bool exclusive_event_installable(struct perf_event *event,
2820 struct perf_event_context *ctx);
2821
2822 /*
2823 * Attach a performance event to a context.
2824 *
2825 * Very similar to event_function_call, see comment there.
2826 */
2827 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2828 perf_install_in_context(struct perf_event_context *ctx,
2829 struct perf_event *event,
2830 int cpu)
2831 {
2832 struct task_struct *task = READ_ONCE(ctx->task);
2833
2834 lockdep_assert_held(&ctx->mutex);
2835
2836 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2837
2838 if (event->cpu != -1)
2839 WARN_ON_ONCE(event->cpu != cpu);
2840
2841 /*
2842 * Ensures that if we can observe event->ctx, both the event and ctx
2843 * will be 'complete'. See perf_iterate_sb_cpu().
2844 */
2845 smp_store_release(&event->ctx, ctx);
2846
2847 /*
2848 * perf_event_attr::disabled events will not run and can be initialized
2849 * without IPI. Except when this is the first event for the context, in
2850 * that case we need the magic of the IPI to set ctx->is_active.
2851 *
2852 * The IOC_ENABLE that is sure to follow the creation of a disabled
2853 * event will issue the IPI and reprogram the hardware.
2854 */
2855 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2856 ctx->nr_events && !is_cgroup_event(event)) {
2857 raw_spin_lock_irq(&ctx->lock);
2858 if (ctx->task == TASK_TOMBSTONE) {
2859 raw_spin_unlock_irq(&ctx->lock);
2860 return;
2861 }
2862 add_event_to_ctx(event, ctx);
2863 raw_spin_unlock_irq(&ctx->lock);
2864 return;
2865 }
2866
2867 if (!task) {
2868 cpu_function_call(cpu, __perf_install_in_context, event);
2869 return;
2870 }
2871
2872 /*
2873 * Should not happen, we validate the ctx is still alive before calling.
2874 */
2875 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2876 return;
2877
2878 /*
2879 * Installing events is tricky because we cannot rely on ctx->is_active
2880 * to be set in case this is the nr_events 0 -> 1 transition.
2881 *
2882 * Instead we use task_curr(), which tells us if the task is running.
2883 * However, since we use task_curr() outside of rq::lock, we can race
2884 * against the actual state. This means the result can be wrong.
2885 *
2886 * If we get a false positive, we retry, this is harmless.
2887 *
2888 * If we get a false negative, things are complicated. If we are after
2889 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2890 * value must be correct. If we're before, it doesn't matter since
2891 * perf_event_context_sched_in() will program the counter.
2892 *
2893 * However, this hinges on the remote context switch having observed
2894 * our task->perf_event_ctxp[] store, such that it will in fact take
2895 * ctx::lock in perf_event_context_sched_in().
2896 *
2897 * We do this by task_function_call(), if the IPI fails to hit the task
2898 * we know any future context switch of task must see the
2899 * perf_event_ctpx[] store.
2900 */
2901
2902 /*
2903 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2904 * task_cpu() load, such that if the IPI then does not find the task
2905 * running, a future context switch of that task must observe the
2906 * store.
2907 */
2908 smp_mb();
2909 again:
2910 if (!task_function_call(task, __perf_install_in_context, event))
2911 return;
2912
2913 raw_spin_lock_irq(&ctx->lock);
2914 task = ctx->task;
2915 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2916 /*
2917 * Cannot happen because we already checked above (which also
2918 * cannot happen), and we hold ctx->mutex, which serializes us
2919 * against perf_event_exit_task_context().
2920 */
2921 raw_spin_unlock_irq(&ctx->lock);
2922 return;
2923 }
2924 /*
2925 * If the task is not running, ctx->lock will avoid it becoming so,
2926 * thus we can safely install the event.
2927 */
2928 if (task_curr(task)) {
2929 raw_spin_unlock_irq(&ctx->lock);
2930 goto again;
2931 }
2932 add_event_to_ctx(event, ctx);
2933 raw_spin_unlock_irq(&ctx->lock);
2934 }
2935
2936 /*
2937 * Cross CPU call to enable a performance event
2938 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2939 static void __perf_event_enable(struct perf_event *event,
2940 struct perf_cpu_context *cpuctx,
2941 struct perf_event_context *ctx,
2942 void *info)
2943 {
2944 struct perf_event *leader = event->group_leader;
2945 struct perf_event_context *task_ctx;
2946
2947 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2948 event->state <= PERF_EVENT_STATE_ERROR)
2949 return;
2950
2951 if (ctx->is_active)
2952 ctx_sched_out(ctx, EVENT_TIME);
2953
2954 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2955 perf_cgroup_event_enable(event, ctx);
2956
2957 if (!ctx->is_active)
2958 return;
2959
2960 if (!event_filter_match(event)) {
2961 ctx_sched_in(ctx, EVENT_TIME);
2962 return;
2963 }
2964
2965 /*
2966 * If the event is in a group and isn't the group leader,
2967 * then don't put it on unless the group is on.
2968 */
2969 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2970 ctx_sched_in(ctx, EVENT_TIME);
2971 return;
2972 }
2973
2974 task_ctx = cpuctx->task_ctx;
2975 if (ctx->task)
2976 WARN_ON_ONCE(task_ctx != ctx);
2977
2978 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2979 }
2980
2981 /*
2982 * Enable an event.
2983 *
2984 * If event->ctx is a cloned context, callers must make sure that
2985 * every task struct that event->ctx->task could possibly point to
2986 * remains valid. This condition is satisfied when called through
2987 * perf_event_for_each_child or perf_event_for_each as described
2988 * for perf_event_disable.
2989 */
_perf_event_enable(struct perf_event * event)2990 static void _perf_event_enable(struct perf_event *event)
2991 {
2992 struct perf_event_context *ctx = event->ctx;
2993
2994 raw_spin_lock_irq(&ctx->lock);
2995 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2996 event->state < PERF_EVENT_STATE_ERROR) {
2997 out:
2998 raw_spin_unlock_irq(&ctx->lock);
2999 return;
3000 }
3001
3002 /*
3003 * If the event is in error state, clear that first.
3004 *
3005 * That way, if we see the event in error state below, we know that it
3006 * has gone back into error state, as distinct from the task having
3007 * been scheduled away before the cross-call arrived.
3008 */
3009 if (event->state == PERF_EVENT_STATE_ERROR) {
3010 /*
3011 * Detached SIBLING events cannot leave ERROR state.
3012 */
3013 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3014 event->group_leader == event)
3015 goto out;
3016
3017 event->state = PERF_EVENT_STATE_OFF;
3018 }
3019 raw_spin_unlock_irq(&ctx->lock);
3020
3021 event_function_call(event, __perf_event_enable, NULL);
3022 }
3023
3024 /*
3025 * See perf_event_disable();
3026 */
perf_event_enable(struct perf_event * event)3027 void perf_event_enable(struct perf_event *event)
3028 {
3029 struct perf_event_context *ctx;
3030
3031 ctx = perf_event_ctx_lock(event);
3032 _perf_event_enable(event);
3033 perf_event_ctx_unlock(event, ctx);
3034 }
3035 EXPORT_SYMBOL_GPL(perf_event_enable);
3036
3037 struct stop_event_data {
3038 struct perf_event *event;
3039 unsigned int restart;
3040 };
3041
__perf_event_stop(void * info)3042 static int __perf_event_stop(void *info)
3043 {
3044 struct stop_event_data *sd = info;
3045 struct perf_event *event = sd->event;
3046
3047 /* if it's already INACTIVE, do nothing */
3048 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3049 return 0;
3050
3051 /* matches smp_wmb() in event_sched_in() */
3052 smp_rmb();
3053
3054 /*
3055 * There is a window with interrupts enabled before we get here,
3056 * so we need to check again lest we try to stop another CPU's event.
3057 */
3058 if (READ_ONCE(event->oncpu) != smp_processor_id())
3059 return -EAGAIN;
3060
3061 event->pmu->stop(event, PERF_EF_UPDATE);
3062
3063 /*
3064 * May race with the actual stop (through perf_pmu_output_stop()),
3065 * but it is only used for events with AUX ring buffer, and such
3066 * events will refuse to restart because of rb::aux_mmap_count==0,
3067 * see comments in perf_aux_output_begin().
3068 *
3069 * Since this is happening on an event-local CPU, no trace is lost
3070 * while restarting.
3071 */
3072 if (sd->restart)
3073 event->pmu->start(event, 0);
3074
3075 return 0;
3076 }
3077
perf_event_stop(struct perf_event * event,int restart)3078 static int perf_event_stop(struct perf_event *event, int restart)
3079 {
3080 struct stop_event_data sd = {
3081 .event = event,
3082 .restart = restart,
3083 };
3084 int ret = 0;
3085
3086 do {
3087 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3088 return 0;
3089
3090 /* matches smp_wmb() in event_sched_in() */
3091 smp_rmb();
3092
3093 /*
3094 * We only want to restart ACTIVE events, so if the event goes
3095 * inactive here (event->oncpu==-1), there's nothing more to do;
3096 * fall through with ret==-ENXIO.
3097 */
3098 ret = cpu_function_call(READ_ONCE(event->oncpu),
3099 __perf_event_stop, &sd);
3100 } while (ret == -EAGAIN);
3101
3102 return ret;
3103 }
3104
3105 /*
3106 * In order to contain the amount of racy and tricky in the address filter
3107 * configuration management, it is a two part process:
3108 *
3109 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3110 * we update the addresses of corresponding vmas in
3111 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3112 * (p2) when an event is scheduled in (pmu::add), it calls
3113 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3114 * if the generation has changed since the previous call.
3115 *
3116 * If (p1) happens while the event is active, we restart it to force (p2).
3117 *
3118 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3119 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3120 * ioctl;
3121 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3122 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3123 * for reading;
3124 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3125 * of exec.
3126 */
perf_event_addr_filters_sync(struct perf_event * event)3127 void perf_event_addr_filters_sync(struct perf_event *event)
3128 {
3129 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3130
3131 if (!has_addr_filter(event))
3132 return;
3133
3134 raw_spin_lock(&ifh->lock);
3135 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3136 event->pmu->addr_filters_sync(event);
3137 event->hw.addr_filters_gen = event->addr_filters_gen;
3138 }
3139 raw_spin_unlock(&ifh->lock);
3140 }
3141 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3142
_perf_event_refresh(struct perf_event * event,int refresh)3143 static int _perf_event_refresh(struct perf_event *event, int refresh)
3144 {
3145 /*
3146 * not supported on inherited events
3147 */
3148 if (event->attr.inherit || !is_sampling_event(event))
3149 return -EINVAL;
3150
3151 atomic_add(refresh, &event->event_limit);
3152 _perf_event_enable(event);
3153
3154 return 0;
3155 }
3156
3157 /*
3158 * See perf_event_disable()
3159 */
perf_event_refresh(struct perf_event * event,int refresh)3160 int perf_event_refresh(struct perf_event *event, int refresh)
3161 {
3162 struct perf_event_context *ctx;
3163 int ret;
3164
3165 ctx = perf_event_ctx_lock(event);
3166 ret = _perf_event_refresh(event, refresh);
3167 perf_event_ctx_unlock(event, ctx);
3168
3169 return ret;
3170 }
3171 EXPORT_SYMBOL_GPL(perf_event_refresh);
3172
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3173 static int perf_event_modify_breakpoint(struct perf_event *bp,
3174 struct perf_event_attr *attr)
3175 {
3176 int err;
3177
3178 _perf_event_disable(bp);
3179
3180 err = modify_user_hw_breakpoint_check(bp, attr, true);
3181
3182 if (!bp->attr.disabled)
3183 _perf_event_enable(bp);
3184
3185 return err;
3186 }
3187
3188 /*
3189 * Copy event-type-independent attributes that may be modified.
3190 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3191 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3192 const struct perf_event_attr *from)
3193 {
3194 to->sig_data = from->sig_data;
3195 }
3196
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3197 static int perf_event_modify_attr(struct perf_event *event,
3198 struct perf_event_attr *attr)
3199 {
3200 int (*func)(struct perf_event *, struct perf_event_attr *);
3201 struct perf_event *child;
3202 int err;
3203
3204 if (event->attr.type != attr->type)
3205 return -EINVAL;
3206
3207 switch (event->attr.type) {
3208 case PERF_TYPE_BREAKPOINT:
3209 func = perf_event_modify_breakpoint;
3210 break;
3211 default:
3212 /* Place holder for future additions. */
3213 return -EOPNOTSUPP;
3214 }
3215
3216 WARN_ON_ONCE(event->ctx->parent_ctx);
3217
3218 mutex_lock(&event->child_mutex);
3219 /*
3220 * Event-type-independent attributes must be copied before event-type
3221 * modification, which will validate that final attributes match the
3222 * source attributes after all relevant attributes have been copied.
3223 */
3224 perf_event_modify_copy_attr(&event->attr, attr);
3225 err = func(event, attr);
3226 if (err)
3227 goto out;
3228 list_for_each_entry(child, &event->child_list, child_list) {
3229 perf_event_modify_copy_attr(&child->attr, attr);
3230 err = func(child, attr);
3231 if (err)
3232 goto out;
3233 }
3234 out:
3235 mutex_unlock(&event->child_mutex);
3236 return err;
3237 }
3238
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3239 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3240 enum event_type_t event_type)
3241 {
3242 struct perf_event_context *ctx = pmu_ctx->ctx;
3243 struct perf_event *event, *tmp;
3244 struct pmu *pmu = pmu_ctx->pmu;
3245
3246 if (ctx->task && !ctx->is_active) {
3247 struct perf_cpu_pmu_context *cpc;
3248
3249 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3250 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3251 cpc->task_epc = NULL;
3252 }
3253
3254 if (!event_type)
3255 return;
3256
3257 perf_pmu_disable(pmu);
3258 if (event_type & EVENT_PINNED) {
3259 list_for_each_entry_safe(event, tmp,
3260 &pmu_ctx->pinned_active,
3261 active_list)
3262 group_sched_out(event, ctx);
3263 }
3264
3265 if (event_type & EVENT_FLEXIBLE) {
3266 list_for_each_entry_safe(event, tmp,
3267 &pmu_ctx->flexible_active,
3268 active_list)
3269 group_sched_out(event, ctx);
3270 /*
3271 * Since we cleared EVENT_FLEXIBLE, also clear
3272 * rotate_necessary, is will be reset by
3273 * ctx_flexible_sched_in() when needed.
3274 */
3275 pmu_ctx->rotate_necessary = 0;
3276 }
3277 perf_pmu_enable(pmu);
3278 }
3279
3280 static void
ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)3281 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3282 {
3283 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3284 struct perf_event_pmu_context *pmu_ctx;
3285 int is_active = ctx->is_active;
3286 bool cgroup = event_type & EVENT_CGROUP;
3287
3288 event_type &= ~EVENT_CGROUP;
3289
3290 lockdep_assert_held(&ctx->lock);
3291
3292 if (likely(!ctx->nr_events)) {
3293 /*
3294 * See __perf_remove_from_context().
3295 */
3296 WARN_ON_ONCE(ctx->is_active);
3297 if (ctx->task)
3298 WARN_ON_ONCE(cpuctx->task_ctx);
3299 return;
3300 }
3301
3302 /*
3303 * Always update time if it was set; not only when it changes.
3304 * Otherwise we can 'forget' to update time for any but the last
3305 * context we sched out. For example:
3306 *
3307 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3308 * ctx_sched_out(.event_type = EVENT_PINNED)
3309 *
3310 * would only update time for the pinned events.
3311 */
3312 if (is_active & EVENT_TIME) {
3313 /* update (and stop) ctx time */
3314 update_context_time(ctx);
3315 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3316 /*
3317 * CPU-release for the below ->is_active store,
3318 * see __load_acquire() in perf_event_time_now()
3319 */
3320 barrier();
3321 }
3322
3323 ctx->is_active &= ~event_type;
3324 if (!(ctx->is_active & EVENT_ALL))
3325 ctx->is_active = 0;
3326
3327 if (ctx->task) {
3328 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3329 if (!ctx->is_active)
3330 cpuctx->task_ctx = NULL;
3331 }
3332
3333 is_active ^= ctx->is_active; /* changed bits */
3334
3335 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3336 if (cgroup && !pmu_ctx->nr_cgroups)
3337 continue;
3338 __pmu_ctx_sched_out(pmu_ctx, is_active);
3339 }
3340 }
3341
3342 /*
3343 * Test whether two contexts are equivalent, i.e. whether they have both been
3344 * cloned from the same version of the same context.
3345 *
3346 * Equivalence is measured using a generation number in the context that is
3347 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3348 * and list_del_event().
3349 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3350 static int context_equiv(struct perf_event_context *ctx1,
3351 struct perf_event_context *ctx2)
3352 {
3353 lockdep_assert_held(&ctx1->lock);
3354 lockdep_assert_held(&ctx2->lock);
3355
3356 /* Pinning disables the swap optimization */
3357 if (ctx1->pin_count || ctx2->pin_count)
3358 return 0;
3359
3360 /* If ctx1 is the parent of ctx2 */
3361 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3362 return 1;
3363
3364 /* If ctx2 is the parent of ctx1 */
3365 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3366 return 1;
3367
3368 /*
3369 * If ctx1 and ctx2 have the same parent; we flatten the parent
3370 * hierarchy, see perf_event_init_context().
3371 */
3372 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3373 ctx1->parent_gen == ctx2->parent_gen)
3374 return 1;
3375
3376 /* Unmatched */
3377 return 0;
3378 }
3379
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3380 static void __perf_event_sync_stat(struct perf_event *event,
3381 struct perf_event *next_event)
3382 {
3383 u64 value;
3384
3385 if (!event->attr.inherit_stat)
3386 return;
3387
3388 /*
3389 * Update the event value, we cannot use perf_event_read()
3390 * because we're in the middle of a context switch and have IRQs
3391 * disabled, which upsets smp_call_function_single(), however
3392 * we know the event must be on the current CPU, therefore we
3393 * don't need to use it.
3394 */
3395 if (event->state == PERF_EVENT_STATE_ACTIVE)
3396 event->pmu->read(event);
3397
3398 perf_event_update_time(event);
3399
3400 /*
3401 * In order to keep per-task stats reliable we need to flip the event
3402 * values when we flip the contexts.
3403 */
3404 value = local64_read(&next_event->count);
3405 value = local64_xchg(&event->count, value);
3406 local64_set(&next_event->count, value);
3407
3408 swap(event->total_time_enabled, next_event->total_time_enabled);
3409 swap(event->total_time_running, next_event->total_time_running);
3410
3411 /*
3412 * Since we swizzled the values, update the user visible data too.
3413 */
3414 perf_event_update_userpage(event);
3415 perf_event_update_userpage(next_event);
3416 }
3417
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3418 static void perf_event_sync_stat(struct perf_event_context *ctx,
3419 struct perf_event_context *next_ctx)
3420 {
3421 struct perf_event *event, *next_event;
3422
3423 if (!ctx->nr_stat)
3424 return;
3425
3426 update_context_time(ctx);
3427
3428 event = list_first_entry(&ctx->event_list,
3429 struct perf_event, event_entry);
3430
3431 next_event = list_first_entry(&next_ctx->event_list,
3432 struct perf_event, event_entry);
3433
3434 while (&event->event_entry != &ctx->event_list &&
3435 &next_event->event_entry != &next_ctx->event_list) {
3436
3437 __perf_event_sync_stat(event, next_event);
3438
3439 event = list_next_entry(event, event_entry);
3440 next_event = list_next_entry(next_event, event_entry);
3441 }
3442 }
3443
3444 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3445 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3446 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3447 !list_entry_is_head(pos1, head1, member) && \
3448 !list_entry_is_head(pos2, head2, member); \
3449 pos1 = list_next_entry(pos1, member), \
3450 pos2 = list_next_entry(pos2, member))
3451
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3452 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3453 struct perf_event_context *next_ctx)
3454 {
3455 struct perf_event_pmu_context *prev_epc, *next_epc;
3456
3457 if (!prev_ctx->nr_task_data)
3458 return;
3459
3460 double_list_for_each_entry(prev_epc, next_epc,
3461 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3462 pmu_ctx_entry) {
3463
3464 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3465 continue;
3466
3467 /*
3468 * PMU specific parts of task perf context can require
3469 * additional synchronization. As an example of such
3470 * synchronization see implementation details of Intel
3471 * LBR call stack data profiling;
3472 */
3473 if (prev_epc->pmu->swap_task_ctx)
3474 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3475 else
3476 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3477 }
3478 }
3479
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3480 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3481 {
3482 struct perf_event_pmu_context *pmu_ctx;
3483 struct perf_cpu_pmu_context *cpc;
3484
3485 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3486 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3487
3488 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3489 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3490 }
3491 }
3492
3493 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3494 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3495 {
3496 struct perf_event_context *ctx = task->perf_event_ctxp;
3497 struct perf_event_context *next_ctx;
3498 struct perf_event_context *parent, *next_parent;
3499 int do_switch = 1;
3500
3501 if (likely(!ctx))
3502 return;
3503
3504 rcu_read_lock();
3505 next_ctx = rcu_dereference(next->perf_event_ctxp);
3506 if (!next_ctx)
3507 goto unlock;
3508
3509 parent = rcu_dereference(ctx->parent_ctx);
3510 next_parent = rcu_dereference(next_ctx->parent_ctx);
3511
3512 /* If neither context have a parent context; they cannot be clones. */
3513 if (!parent && !next_parent)
3514 goto unlock;
3515
3516 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3517 /*
3518 * Looks like the two contexts are clones, so we might be
3519 * able to optimize the context switch. We lock both
3520 * contexts and check that they are clones under the
3521 * lock (including re-checking that neither has been
3522 * uncloned in the meantime). It doesn't matter which
3523 * order we take the locks because no other cpu could
3524 * be trying to lock both of these tasks.
3525 */
3526 raw_spin_lock(&ctx->lock);
3527 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3528 if (context_equiv(ctx, next_ctx)) {
3529
3530 perf_ctx_disable(ctx, false);
3531
3532 /* PMIs are disabled; ctx->nr_pending is stable. */
3533 if (local_read(&ctx->nr_pending) ||
3534 local_read(&next_ctx->nr_pending)) {
3535 /*
3536 * Must not swap out ctx when there's pending
3537 * events that rely on the ctx->task relation.
3538 */
3539 raw_spin_unlock(&next_ctx->lock);
3540 rcu_read_unlock();
3541 goto inside_switch;
3542 }
3543
3544 WRITE_ONCE(ctx->task, next);
3545 WRITE_ONCE(next_ctx->task, task);
3546
3547 perf_ctx_sched_task_cb(ctx, false);
3548 perf_event_swap_task_ctx_data(ctx, next_ctx);
3549
3550 perf_ctx_enable(ctx, false);
3551
3552 /*
3553 * RCU_INIT_POINTER here is safe because we've not
3554 * modified the ctx and the above modification of
3555 * ctx->task and ctx->task_ctx_data are immaterial
3556 * since those values are always verified under
3557 * ctx->lock which we're now holding.
3558 */
3559 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3560 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3561
3562 do_switch = 0;
3563
3564 perf_event_sync_stat(ctx, next_ctx);
3565 }
3566 raw_spin_unlock(&next_ctx->lock);
3567 raw_spin_unlock(&ctx->lock);
3568 }
3569 unlock:
3570 rcu_read_unlock();
3571
3572 if (do_switch) {
3573 raw_spin_lock(&ctx->lock);
3574 perf_ctx_disable(ctx, false);
3575
3576 inside_switch:
3577 perf_ctx_sched_task_cb(ctx, false);
3578 task_ctx_sched_out(ctx, EVENT_ALL);
3579
3580 perf_ctx_enable(ctx, false);
3581 raw_spin_unlock(&ctx->lock);
3582 }
3583 }
3584
3585 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3586 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3587
perf_sched_cb_dec(struct pmu * pmu)3588 void perf_sched_cb_dec(struct pmu *pmu)
3589 {
3590 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3591
3592 this_cpu_dec(perf_sched_cb_usages);
3593 barrier();
3594
3595 if (!--cpc->sched_cb_usage)
3596 list_del(&cpc->sched_cb_entry);
3597 }
3598
3599
perf_sched_cb_inc(struct pmu * pmu)3600 void perf_sched_cb_inc(struct pmu *pmu)
3601 {
3602 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3603
3604 if (!cpc->sched_cb_usage++)
3605 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3606
3607 barrier();
3608 this_cpu_inc(perf_sched_cb_usages);
3609 }
3610
3611 /*
3612 * This function provides the context switch callback to the lower code
3613 * layer. It is invoked ONLY when the context switch callback is enabled.
3614 *
3615 * This callback is relevant even to per-cpu events; for example multi event
3616 * PEBS requires this to provide PID/TID information. This requires we flush
3617 * all queued PEBS records before we context switch to a new task.
3618 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3619 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3620 {
3621 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3622 struct pmu *pmu;
3623
3624 pmu = cpc->epc.pmu;
3625
3626 /* software PMUs will not have sched_task */
3627 if (WARN_ON_ONCE(!pmu->sched_task))
3628 return;
3629
3630 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3631 perf_pmu_disable(pmu);
3632
3633 pmu->sched_task(cpc->task_epc, sched_in);
3634
3635 perf_pmu_enable(pmu);
3636 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3637 }
3638
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3639 static void perf_pmu_sched_task(struct task_struct *prev,
3640 struct task_struct *next,
3641 bool sched_in)
3642 {
3643 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3644 struct perf_cpu_pmu_context *cpc;
3645
3646 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3647 if (prev == next || cpuctx->task_ctx)
3648 return;
3649
3650 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3651 __perf_pmu_sched_task(cpc, sched_in);
3652 }
3653
3654 static void perf_event_switch(struct task_struct *task,
3655 struct task_struct *next_prev, bool sched_in);
3656
3657 /*
3658 * Called from scheduler to remove the events of the current task,
3659 * with interrupts disabled.
3660 *
3661 * We stop each event and update the event value in event->count.
3662 *
3663 * This does not protect us against NMI, but disable()
3664 * sets the disabled bit in the control field of event _before_
3665 * accessing the event control register. If a NMI hits, then it will
3666 * not restart the event.
3667 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3668 void __perf_event_task_sched_out(struct task_struct *task,
3669 struct task_struct *next)
3670 {
3671 if (__this_cpu_read(perf_sched_cb_usages))
3672 perf_pmu_sched_task(task, next, false);
3673
3674 if (atomic_read(&nr_switch_events))
3675 perf_event_switch(task, next, false);
3676
3677 perf_event_context_sched_out(task, next);
3678
3679 /*
3680 * if cgroup events exist on this CPU, then we need
3681 * to check if we have to switch out PMU state.
3682 * cgroup event are system-wide mode only
3683 */
3684 perf_cgroup_switch(next);
3685 }
3686
perf_less_group_idx(const void * l,const void * r)3687 static bool perf_less_group_idx(const void *l, const void *r)
3688 {
3689 const struct perf_event *le = *(const struct perf_event **)l;
3690 const struct perf_event *re = *(const struct perf_event **)r;
3691
3692 return le->group_index < re->group_index;
3693 }
3694
swap_ptr(void * l,void * r)3695 static void swap_ptr(void *l, void *r)
3696 {
3697 void **lp = l, **rp = r;
3698
3699 swap(*lp, *rp);
3700 }
3701
3702 static const struct min_heap_callbacks perf_min_heap = {
3703 .elem_size = sizeof(struct perf_event *),
3704 .less = perf_less_group_idx,
3705 .swp = swap_ptr,
3706 };
3707
__heap_add(struct min_heap * heap,struct perf_event * event)3708 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3709 {
3710 struct perf_event **itrs = heap->data;
3711
3712 if (event) {
3713 itrs[heap->nr] = event;
3714 heap->nr++;
3715 }
3716 }
3717
__link_epc(struct perf_event_pmu_context * pmu_ctx)3718 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3719 {
3720 struct perf_cpu_pmu_context *cpc;
3721
3722 if (!pmu_ctx->ctx->task)
3723 return;
3724
3725 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3726 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3727 cpc->task_epc = pmu_ctx;
3728 }
3729
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3730 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3731 struct perf_event_groups *groups, int cpu,
3732 struct pmu *pmu,
3733 int (*func)(struct perf_event *, void *),
3734 void *data)
3735 {
3736 #ifdef CONFIG_CGROUP_PERF
3737 struct cgroup_subsys_state *css = NULL;
3738 #endif
3739 struct perf_cpu_context *cpuctx = NULL;
3740 /* Space for per CPU and/or any CPU event iterators. */
3741 struct perf_event *itrs[2];
3742 struct min_heap event_heap;
3743 struct perf_event **evt;
3744 int ret;
3745
3746 if (pmu->filter && pmu->filter(pmu, cpu))
3747 return 0;
3748
3749 if (!ctx->task) {
3750 cpuctx = this_cpu_ptr(&perf_cpu_context);
3751 event_heap = (struct min_heap){
3752 .data = cpuctx->heap,
3753 .nr = 0,
3754 .size = cpuctx->heap_size,
3755 };
3756
3757 lockdep_assert_held(&cpuctx->ctx.lock);
3758
3759 #ifdef CONFIG_CGROUP_PERF
3760 if (cpuctx->cgrp)
3761 css = &cpuctx->cgrp->css;
3762 #endif
3763 } else {
3764 event_heap = (struct min_heap){
3765 .data = itrs,
3766 .nr = 0,
3767 .size = ARRAY_SIZE(itrs),
3768 };
3769 /* Events not within a CPU context may be on any CPU. */
3770 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3771 }
3772 evt = event_heap.data;
3773
3774 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3775
3776 #ifdef CONFIG_CGROUP_PERF
3777 for (; css; css = css->parent)
3778 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3779 #endif
3780
3781 if (event_heap.nr) {
3782 __link_epc((*evt)->pmu_ctx);
3783 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3784 }
3785
3786 min_heapify_all(&event_heap, &perf_min_heap);
3787
3788 while (event_heap.nr) {
3789 ret = func(*evt, data);
3790 if (ret)
3791 return ret;
3792
3793 *evt = perf_event_groups_next(*evt, pmu);
3794 if (*evt)
3795 min_heapify(&event_heap, 0, &perf_min_heap);
3796 else
3797 min_heap_pop(&event_heap, &perf_min_heap);
3798 }
3799
3800 return 0;
3801 }
3802
3803 /*
3804 * Because the userpage is strictly per-event (there is no concept of context,
3805 * so there cannot be a context indirection), every userpage must be updated
3806 * when context time starts :-(
3807 *
3808 * IOW, we must not miss EVENT_TIME edges.
3809 */
event_update_userpage(struct perf_event * event)3810 static inline bool event_update_userpage(struct perf_event *event)
3811 {
3812 if (likely(!atomic_read(&event->mmap_count)))
3813 return false;
3814
3815 perf_event_update_time(event);
3816 perf_event_update_userpage(event);
3817
3818 return true;
3819 }
3820
group_update_userpage(struct perf_event * group_event)3821 static inline void group_update_userpage(struct perf_event *group_event)
3822 {
3823 struct perf_event *event;
3824
3825 if (!event_update_userpage(group_event))
3826 return;
3827
3828 for_each_sibling_event(event, group_event)
3829 event_update_userpage(event);
3830 }
3831
merge_sched_in(struct perf_event * event,void * data)3832 static int merge_sched_in(struct perf_event *event, void *data)
3833 {
3834 struct perf_event_context *ctx = event->ctx;
3835 int *can_add_hw = data;
3836
3837 if (event->state <= PERF_EVENT_STATE_OFF)
3838 return 0;
3839
3840 if (!event_filter_match(event))
3841 return 0;
3842
3843 if (group_can_go_on(event, *can_add_hw)) {
3844 if (!group_sched_in(event, ctx))
3845 list_add_tail(&event->active_list, get_event_list(event));
3846 }
3847
3848 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3849 *can_add_hw = 0;
3850 if (event->attr.pinned) {
3851 perf_cgroup_event_disable(event, ctx);
3852 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3853 } else {
3854 struct perf_cpu_pmu_context *cpc;
3855
3856 event->pmu_ctx->rotate_necessary = 1;
3857 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3858 perf_mux_hrtimer_restart(cpc);
3859 group_update_userpage(event);
3860 }
3861 }
3862
3863 return 0;
3864 }
3865
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3866 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3867 struct perf_event_groups *groups,
3868 struct pmu *pmu)
3869 {
3870 int can_add_hw = 1;
3871 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3872 merge_sched_in, &can_add_hw);
3873 }
3874
ctx_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,bool cgroup)3875 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3876 struct perf_event_groups *groups,
3877 bool cgroup)
3878 {
3879 struct perf_event_pmu_context *pmu_ctx;
3880
3881 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3882 if (cgroup && !pmu_ctx->nr_cgroups)
3883 continue;
3884 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3885 }
3886 }
3887
__pmu_ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu)3888 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3889 struct pmu *pmu)
3890 {
3891 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3892 }
3893
3894 static void
ctx_sched_in(struct perf_event_context * ctx,enum event_type_t event_type)3895 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3896 {
3897 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3898 int is_active = ctx->is_active;
3899 bool cgroup = event_type & EVENT_CGROUP;
3900
3901 event_type &= ~EVENT_CGROUP;
3902
3903 lockdep_assert_held(&ctx->lock);
3904
3905 if (likely(!ctx->nr_events))
3906 return;
3907
3908 if (!(is_active & EVENT_TIME)) {
3909 /* start ctx time */
3910 __update_context_time(ctx, false);
3911 perf_cgroup_set_timestamp(cpuctx);
3912 /*
3913 * CPU-release for the below ->is_active store,
3914 * see __load_acquire() in perf_event_time_now()
3915 */
3916 barrier();
3917 }
3918
3919 ctx->is_active |= (event_type | EVENT_TIME);
3920 if (ctx->task) {
3921 if (!is_active)
3922 cpuctx->task_ctx = ctx;
3923 else
3924 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3925 }
3926
3927 is_active ^= ctx->is_active; /* changed bits */
3928
3929 /*
3930 * First go through the list and put on any pinned groups
3931 * in order to give them the best chance of going on.
3932 */
3933 if (is_active & EVENT_PINNED)
3934 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3935
3936 /* Then walk through the lower prio flexible groups */
3937 if (is_active & EVENT_FLEXIBLE)
3938 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3939 }
3940
perf_event_context_sched_in(struct task_struct * task)3941 static void perf_event_context_sched_in(struct task_struct *task)
3942 {
3943 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3944 struct perf_event_context *ctx;
3945
3946 rcu_read_lock();
3947 ctx = rcu_dereference(task->perf_event_ctxp);
3948 if (!ctx)
3949 goto rcu_unlock;
3950
3951 if (cpuctx->task_ctx == ctx) {
3952 perf_ctx_lock(cpuctx, ctx);
3953 perf_ctx_disable(ctx, false);
3954
3955 perf_ctx_sched_task_cb(ctx, true);
3956
3957 perf_ctx_enable(ctx, false);
3958 perf_ctx_unlock(cpuctx, ctx);
3959 goto rcu_unlock;
3960 }
3961
3962 perf_ctx_lock(cpuctx, ctx);
3963 /*
3964 * We must check ctx->nr_events while holding ctx->lock, such
3965 * that we serialize against perf_install_in_context().
3966 */
3967 if (!ctx->nr_events)
3968 goto unlock;
3969
3970 perf_ctx_disable(ctx, false);
3971 /*
3972 * We want to keep the following priority order:
3973 * cpu pinned (that don't need to move), task pinned,
3974 * cpu flexible, task flexible.
3975 *
3976 * However, if task's ctx is not carrying any pinned
3977 * events, no need to flip the cpuctx's events around.
3978 */
3979 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3980 perf_ctx_disable(&cpuctx->ctx, false);
3981 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3982 }
3983
3984 perf_event_sched_in(cpuctx, ctx);
3985
3986 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3987
3988 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3989 perf_ctx_enable(&cpuctx->ctx, false);
3990
3991 perf_ctx_enable(ctx, false);
3992
3993 unlock:
3994 perf_ctx_unlock(cpuctx, ctx);
3995 rcu_unlock:
3996 rcu_read_unlock();
3997 }
3998
3999 /*
4000 * Called from scheduler to add the events of the current task
4001 * with interrupts disabled.
4002 *
4003 * We restore the event value and then enable it.
4004 *
4005 * This does not protect us against NMI, but enable()
4006 * sets the enabled bit in the control field of event _before_
4007 * accessing the event control register. If a NMI hits, then it will
4008 * keep the event running.
4009 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4010 void __perf_event_task_sched_in(struct task_struct *prev,
4011 struct task_struct *task)
4012 {
4013 perf_event_context_sched_in(task);
4014
4015 if (atomic_read(&nr_switch_events))
4016 perf_event_switch(task, prev, true);
4017
4018 if (__this_cpu_read(perf_sched_cb_usages))
4019 perf_pmu_sched_task(prev, task, true);
4020 }
4021
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4022 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4023 {
4024 u64 frequency = event->attr.sample_freq;
4025 u64 sec = NSEC_PER_SEC;
4026 u64 divisor, dividend;
4027
4028 int count_fls, nsec_fls, frequency_fls, sec_fls;
4029
4030 count_fls = fls64(count);
4031 nsec_fls = fls64(nsec);
4032 frequency_fls = fls64(frequency);
4033 sec_fls = 30;
4034
4035 /*
4036 * We got @count in @nsec, with a target of sample_freq HZ
4037 * the target period becomes:
4038 *
4039 * @count * 10^9
4040 * period = -------------------
4041 * @nsec * sample_freq
4042 *
4043 */
4044
4045 /*
4046 * Reduce accuracy by one bit such that @a and @b converge
4047 * to a similar magnitude.
4048 */
4049 #define REDUCE_FLS(a, b) \
4050 do { \
4051 if (a##_fls > b##_fls) { \
4052 a >>= 1; \
4053 a##_fls--; \
4054 } else { \
4055 b >>= 1; \
4056 b##_fls--; \
4057 } \
4058 } while (0)
4059
4060 /*
4061 * Reduce accuracy until either term fits in a u64, then proceed with
4062 * the other, so that finally we can do a u64/u64 division.
4063 */
4064 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4065 REDUCE_FLS(nsec, frequency);
4066 REDUCE_FLS(sec, count);
4067 }
4068
4069 if (count_fls + sec_fls > 64) {
4070 divisor = nsec * frequency;
4071
4072 while (count_fls + sec_fls > 64) {
4073 REDUCE_FLS(count, sec);
4074 divisor >>= 1;
4075 }
4076
4077 dividend = count * sec;
4078 } else {
4079 dividend = count * sec;
4080
4081 while (nsec_fls + frequency_fls > 64) {
4082 REDUCE_FLS(nsec, frequency);
4083 dividend >>= 1;
4084 }
4085
4086 divisor = nsec * frequency;
4087 }
4088
4089 if (!divisor)
4090 return dividend;
4091
4092 return div64_u64(dividend, divisor);
4093 }
4094
4095 static DEFINE_PER_CPU(int, perf_throttled_count);
4096 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4097
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4098 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4099 {
4100 struct hw_perf_event *hwc = &event->hw;
4101 s64 period, sample_period;
4102 s64 delta;
4103
4104 period = perf_calculate_period(event, nsec, count);
4105
4106 delta = (s64)(period - hwc->sample_period);
4107 if (delta >= 0)
4108 delta += 7;
4109 else
4110 delta -= 7;
4111 delta /= 8; /* low pass filter */
4112
4113 sample_period = hwc->sample_period + delta;
4114
4115 if (!sample_period)
4116 sample_period = 1;
4117
4118 hwc->sample_period = sample_period;
4119
4120 if (local64_read(&hwc->period_left) > 8*sample_period) {
4121 if (disable)
4122 event->pmu->stop(event, PERF_EF_UPDATE);
4123
4124 local64_set(&hwc->period_left, 0);
4125
4126 if (disable)
4127 event->pmu->start(event, PERF_EF_RELOAD);
4128 }
4129 }
4130
4131 /*
4132 * combine freq adjustment with unthrottling to avoid two passes over the
4133 * events. At the same time, make sure, having freq events does not change
4134 * the rate of unthrottling as that would introduce bias.
4135 */
4136 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4137 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4138 {
4139 struct perf_event *event;
4140 struct hw_perf_event *hwc;
4141 u64 now, period = TICK_NSEC;
4142 s64 delta;
4143
4144 /*
4145 * only need to iterate over all events iff:
4146 * - context have events in frequency mode (needs freq adjust)
4147 * - there are events to unthrottle on this cpu
4148 */
4149 if (!(ctx->nr_freq || unthrottle))
4150 return;
4151
4152 raw_spin_lock(&ctx->lock);
4153
4154 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4155 if (event->state != PERF_EVENT_STATE_ACTIVE)
4156 continue;
4157
4158 // XXX use visit thingy to avoid the -1,cpu match
4159 if (!event_filter_match(event))
4160 continue;
4161
4162 perf_pmu_disable(event->pmu);
4163
4164 hwc = &event->hw;
4165
4166 if (hwc->interrupts == MAX_INTERRUPTS) {
4167 hwc->interrupts = 0;
4168 perf_log_throttle(event, 1);
4169 event->pmu->start(event, 0);
4170 }
4171
4172 if (!event->attr.freq || !event->attr.sample_freq)
4173 goto next;
4174
4175 /*
4176 * stop the event and update event->count
4177 */
4178 event->pmu->stop(event, PERF_EF_UPDATE);
4179
4180 now = local64_read(&event->count);
4181 delta = now - hwc->freq_count_stamp;
4182 hwc->freq_count_stamp = now;
4183
4184 /*
4185 * restart the event
4186 * reload only if value has changed
4187 * we have stopped the event so tell that
4188 * to perf_adjust_period() to avoid stopping it
4189 * twice.
4190 */
4191 if (delta > 0)
4192 perf_adjust_period(event, period, delta, false);
4193
4194 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4195 next:
4196 perf_pmu_enable(event->pmu);
4197 }
4198
4199 raw_spin_unlock(&ctx->lock);
4200 }
4201
4202 /*
4203 * Move @event to the tail of the @ctx's elegible events.
4204 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4205 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4206 {
4207 /*
4208 * Rotate the first entry last of non-pinned groups. Rotation might be
4209 * disabled by the inheritance code.
4210 */
4211 if (ctx->rotate_disable)
4212 return;
4213
4214 perf_event_groups_delete(&ctx->flexible_groups, event);
4215 perf_event_groups_insert(&ctx->flexible_groups, event);
4216 }
4217
4218 /* pick an event from the flexible_groups to rotate */
4219 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4220 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4221 {
4222 struct perf_event *event;
4223 struct rb_node *node;
4224 struct rb_root *tree;
4225 struct __group_key key = {
4226 .pmu = pmu_ctx->pmu,
4227 };
4228
4229 /* pick the first active flexible event */
4230 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4231 struct perf_event, active_list);
4232 if (event)
4233 goto out;
4234
4235 /* if no active flexible event, pick the first event */
4236 tree = &pmu_ctx->ctx->flexible_groups.tree;
4237
4238 if (!pmu_ctx->ctx->task) {
4239 key.cpu = smp_processor_id();
4240
4241 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4242 if (node)
4243 event = __node_2_pe(node);
4244 goto out;
4245 }
4246
4247 key.cpu = -1;
4248 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4249 if (node) {
4250 event = __node_2_pe(node);
4251 goto out;
4252 }
4253
4254 key.cpu = smp_processor_id();
4255 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4256 if (node)
4257 event = __node_2_pe(node);
4258
4259 out:
4260 /*
4261 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4262 * finds there are unschedulable events, it will set it again.
4263 */
4264 pmu_ctx->rotate_necessary = 0;
4265
4266 return event;
4267 }
4268
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4269 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4270 {
4271 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4272 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4273 struct perf_event *cpu_event = NULL, *task_event = NULL;
4274 int cpu_rotate, task_rotate;
4275 struct pmu *pmu;
4276
4277 /*
4278 * Since we run this from IRQ context, nobody can install new
4279 * events, thus the event count values are stable.
4280 */
4281
4282 cpu_epc = &cpc->epc;
4283 pmu = cpu_epc->pmu;
4284 task_epc = cpc->task_epc;
4285
4286 cpu_rotate = cpu_epc->rotate_necessary;
4287 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4288
4289 if (!(cpu_rotate || task_rotate))
4290 return false;
4291
4292 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4293 perf_pmu_disable(pmu);
4294
4295 if (task_rotate)
4296 task_event = ctx_event_to_rotate(task_epc);
4297 if (cpu_rotate)
4298 cpu_event = ctx_event_to_rotate(cpu_epc);
4299
4300 /*
4301 * As per the order given at ctx_resched() first 'pop' task flexible
4302 * and then, if needed CPU flexible.
4303 */
4304 if (task_event || (task_epc && cpu_event)) {
4305 update_context_time(task_epc->ctx);
4306 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4307 }
4308
4309 if (cpu_event) {
4310 update_context_time(&cpuctx->ctx);
4311 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4312 rotate_ctx(&cpuctx->ctx, cpu_event);
4313 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4314 }
4315
4316 if (task_event)
4317 rotate_ctx(task_epc->ctx, task_event);
4318
4319 if (task_event || (task_epc && cpu_event))
4320 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4321
4322 perf_pmu_enable(pmu);
4323 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4324
4325 return true;
4326 }
4327
perf_event_task_tick(void)4328 void perf_event_task_tick(void)
4329 {
4330 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4331 struct perf_event_context *ctx;
4332 int throttled;
4333
4334 lockdep_assert_irqs_disabled();
4335
4336 __this_cpu_inc(perf_throttled_seq);
4337 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4338 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4339
4340 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4341
4342 rcu_read_lock();
4343 ctx = rcu_dereference(current->perf_event_ctxp);
4344 if (ctx)
4345 perf_adjust_freq_unthr_context(ctx, !!throttled);
4346 rcu_read_unlock();
4347 }
4348
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4349 static int event_enable_on_exec(struct perf_event *event,
4350 struct perf_event_context *ctx)
4351 {
4352 if (!event->attr.enable_on_exec)
4353 return 0;
4354
4355 event->attr.enable_on_exec = 0;
4356 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4357 return 0;
4358
4359 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4360
4361 return 1;
4362 }
4363
4364 /*
4365 * Enable all of a task's events that have been marked enable-on-exec.
4366 * This expects task == current.
4367 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4368 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4369 {
4370 struct perf_event_context *clone_ctx = NULL;
4371 enum event_type_t event_type = 0;
4372 struct perf_cpu_context *cpuctx;
4373 struct perf_event *event;
4374 unsigned long flags;
4375 int enabled = 0;
4376
4377 local_irq_save(flags);
4378 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4379 goto out;
4380
4381 if (!ctx->nr_events)
4382 goto out;
4383
4384 cpuctx = this_cpu_ptr(&perf_cpu_context);
4385 perf_ctx_lock(cpuctx, ctx);
4386 ctx_sched_out(ctx, EVENT_TIME);
4387
4388 list_for_each_entry(event, &ctx->event_list, event_entry) {
4389 enabled |= event_enable_on_exec(event, ctx);
4390 event_type |= get_event_type(event);
4391 }
4392
4393 /*
4394 * Unclone and reschedule this context if we enabled any event.
4395 */
4396 if (enabled) {
4397 clone_ctx = unclone_ctx(ctx);
4398 ctx_resched(cpuctx, ctx, event_type);
4399 } else {
4400 ctx_sched_in(ctx, EVENT_TIME);
4401 }
4402 perf_ctx_unlock(cpuctx, ctx);
4403
4404 out:
4405 local_irq_restore(flags);
4406
4407 if (clone_ctx)
4408 put_ctx(clone_ctx);
4409 }
4410
4411 static void perf_remove_from_owner(struct perf_event *event);
4412 static void perf_event_exit_event(struct perf_event *event,
4413 struct perf_event_context *ctx);
4414
4415 /*
4416 * Removes all events from the current task that have been marked
4417 * remove-on-exec, and feeds their values back to parent events.
4418 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4419 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4420 {
4421 struct perf_event_context *clone_ctx = NULL;
4422 struct perf_event *event, *next;
4423 unsigned long flags;
4424 bool modified = false;
4425
4426 mutex_lock(&ctx->mutex);
4427
4428 if (WARN_ON_ONCE(ctx->task != current))
4429 goto unlock;
4430
4431 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4432 if (!event->attr.remove_on_exec)
4433 continue;
4434
4435 if (!is_kernel_event(event))
4436 perf_remove_from_owner(event);
4437
4438 modified = true;
4439
4440 perf_event_exit_event(event, ctx);
4441 }
4442
4443 raw_spin_lock_irqsave(&ctx->lock, flags);
4444 if (modified)
4445 clone_ctx = unclone_ctx(ctx);
4446 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4447
4448 unlock:
4449 mutex_unlock(&ctx->mutex);
4450
4451 if (clone_ctx)
4452 put_ctx(clone_ctx);
4453 }
4454
4455 struct perf_read_data {
4456 struct perf_event *event;
4457 bool group;
4458 int ret;
4459 };
4460
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4461 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4462 {
4463 u16 local_pkg, event_pkg;
4464
4465 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4466 int local_cpu = smp_processor_id();
4467
4468 event_pkg = topology_physical_package_id(event_cpu);
4469 local_pkg = topology_physical_package_id(local_cpu);
4470
4471 if (event_pkg == local_pkg)
4472 return local_cpu;
4473 }
4474
4475 return event_cpu;
4476 }
4477
4478 /*
4479 * Cross CPU call to read the hardware event
4480 */
__perf_event_read(void * info)4481 static void __perf_event_read(void *info)
4482 {
4483 struct perf_read_data *data = info;
4484 struct perf_event *sub, *event = data->event;
4485 struct perf_event_context *ctx = event->ctx;
4486 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4487 struct pmu *pmu = event->pmu;
4488
4489 /*
4490 * If this is a task context, we need to check whether it is
4491 * the current task context of this cpu. If not it has been
4492 * scheduled out before the smp call arrived. In that case
4493 * event->count would have been updated to a recent sample
4494 * when the event was scheduled out.
4495 */
4496 if (ctx->task && cpuctx->task_ctx != ctx)
4497 return;
4498
4499 raw_spin_lock(&ctx->lock);
4500 if (ctx->is_active & EVENT_TIME) {
4501 update_context_time(ctx);
4502 update_cgrp_time_from_event(event);
4503 }
4504
4505 perf_event_update_time(event);
4506 if (data->group)
4507 perf_event_update_sibling_time(event);
4508
4509 if (event->state != PERF_EVENT_STATE_ACTIVE)
4510 goto unlock;
4511
4512 if (!data->group) {
4513 pmu->read(event);
4514 data->ret = 0;
4515 goto unlock;
4516 }
4517
4518 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4519
4520 pmu->read(event);
4521
4522 for_each_sibling_event(sub, event) {
4523 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4524 /*
4525 * Use sibling's PMU rather than @event's since
4526 * sibling could be on different (eg: software) PMU.
4527 */
4528 sub->pmu->read(sub);
4529 }
4530 }
4531
4532 data->ret = pmu->commit_txn(pmu);
4533
4534 unlock:
4535 raw_spin_unlock(&ctx->lock);
4536 }
4537
perf_event_count(struct perf_event * event)4538 static inline u64 perf_event_count(struct perf_event *event)
4539 {
4540 return local64_read(&event->count) + atomic64_read(&event->child_count);
4541 }
4542
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4543 static void calc_timer_values(struct perf_event *event,
4544 u64 *now,
4545 u64 *enabled,
4546 u64 *running)
4547 {
4548 u64 ctx_time;
4549
4550 *now = perf_clock();
4551 ctx_time = perf_event_time_now(event, *now);
4552 __perf_update_times(event, ctx_time, enabled, running);
4553 }
4554
4555 /*
4556 * NMI-safe method to read a local event, that is an event that
4557 * is:
4558 * - either for the current task, or for this CPU
4559 * - does not have inherit set, for inherited task events
4560 * will not be local and we cannot read them atomically
4561 * - must not have a pmu::count method
4562 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4563 int perf_event_read_local(struct perf_event *event, u64 *value,
4564 u64 *enabled, u64 *running)
4565 {
4566 unsigned long flags;
4567 int ret = 0;
4568
4569 /*
4570 * Disabling interrupts avoids all counter scheduling (context
4571 * switches, timer based rotation and IPIs).
4572 */
4573 local_irq_save(flags);
4574
4575 /*
4576 * It must not be an event with inherit set, we cannot read
4577 * all child counters from atomic context.
4578 */
4579 if (event->attr.inherit) {
4580 ret = -EOPNOTSUPP;
4581 goto out;
4582 }
4583
4584 /* If this is a per-task event, it must be for current */
4585 if ((event->attach_state & PERF_ATTACH_TASK) &&
4586 event->hw.target != current) {
4587 ret = -EINVAL;
4588 goto out;
4589 }
4590
4591 /* If this is a per-CPU event, it must be for this CPU */
4592 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4593 event->cpu != smp_processor_id()) {
4594 ret = -EINVAL;
4595 goto out;
4596 }
4597
4598 /* If this is a pinned event it must be running on this CPU */
4599 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4600 ret = -EBUSY;
4601 goto out;
4602 }
4603
4604 /*
4605 * If the event is currently on this CPU, its either a per-task event,
4606 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4607 * oncpu == -1).
4608 */
4609 if (event->oncpu == smp_processor_id())
4610 event->pmu->read(event);
4611
4612 *value = local64_read(&event->count);
4613 if (enabled || running) {
4614 u64 __enabled, __running, __now;
4615
4616 calc_timer_values(event, &__now, &__enabled, &__running);
4617 if (enabled)
4618 *enabled = __enabled;
4619 if (running)
4620 *running = __running;
4621 }
4622 out:
4623 local_irq_restore(flags);
4624
4625 return ret;
4626 }
4627
perf_event_read(struct perf_event * event,bool group)4628 static int perf_event_read(struct perf_event *event, bool group)
4629 {
4630 enum perf_event_state state = READ_ONCE(event->state);
4631 int event_cpu, ret = 0;
4632
4633 /*
4634 * If event is enabled and currently active on a CPU, update the
4635 * value in the event structure:
4636 */
4637 again:
4638 if (state == PERF_EVENT_STATE_ACTIVE) {
4639 struct perf_read_data data;
4640
4641 /*
4642 * Orders the ->state and ->oncpu loads such that if we see
4643 * ACTIVE we must also see the right ->oncpu.
4644 *
4645 * Matches the smp_wmb() from event_sched_in().
4646 */
4647 smp_rmb();
4648
4649 event_cpu = READ_ONCE(event->oncpu);
4650 if ((unsigned)event_cpu >= nr_cpu_ids)
4651 return 0;
4652
4653 data = (struct perf_read_data){
4654 .event = event,
4655 .group = group,
4656 .ret = 0,
4657 };
4658
4659 preempt_disable();
4660 event_cpu = __perf_event_read_cpu(event, event_cpu);
4661
4662 /*
4663 * Purposely ignore the smp_call_function_single() return
4664 * value.
4665 *
4666 * If event_cpu isn't a valid CPU it means the event got
4667 * scheduled out and that will have updated the event count.
4668 *
4669 * Therefore, either way, we'll have an up-to-date event count
4670 * after this.
4671 */
4672 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4673 preempt_enable();
4674 ret = data.ret;
4675
4676 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4677 struct perf_event_context *ctx = event->ctx;
4678 unsigned long flags;
4679
4680 raw_spin_lock_irqsave(&ctx->lock, flags);
4681 state = event->state;
4682 if (state != PERF_EVENT_STATE_INACTIVE) {
4683 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4684 goto again;
4685 }
4686
4687 /*
4688 * May read while context is not active (e.g., thread is
4689 * blocked), in that case we cannot update context time
4690 */
4691 if (ctx->is_active & EVENT_TIME) {
4692 update_context_time(ctx);
4693 update_cgrp_time_from_event(event);
4694 }
4695
4696 perf_event_update_time(event);
4697 if (group)
4698 perf_event_update_sibling_time(event);
4699 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4700 }
4701
4702 return ret;
4703 }
4704
4705 /*
4706 * Initialize the perf_event context in a task_struct:
4707 */
__perf_event_init_context(struct perf_event_context * ctx)4708 static void __perf_event_init_context(struct perf_event_context *ctx)
4709 {
4710 raw_spin_lock_init(&ctx->lock);
4711 mutex_init(&ctx->mutex);
4712 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4713 perf_event_groups_init(&ctx->pinned_groups);
4714 perf_event_groups_init(&ctx->flexible_groups);
4715 INIT_LIST_HEAD(&ctx->event_list);
4716 refcount_set(&ctx->refcount, 1);
4717 }
4718
4719 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4720 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4721 {
4722 epc->pmu = pmu;
4723 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4724 INIT_LIST_HEAD(&epc->pinned_active);
4725 INIT_LIST_HEAD(&epc->flexible_active);
4726 atomic_set(&epc->refcount, 1);
4727 }
4728
4729 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4730 alloc_perf_context(struct task_struct *task)
4731 {
4732 struct perf_event_context *ctx;
4733
4734 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4735 if (!ctx)
4736 return NULL;
4737
4738 __perf_event_init_context(ctx);
4739 if (task)
4740 ctx->task = get_task_struct(task);
4741
4742 return ctx;
4743 }
4744
4745 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4746 find_lively_task_by_vpid(pid_t vpid)
4747 {
4748 struct task_struct *task;
4749
4750 rcu_read_lock();
4751 if (!vpid)
4752 task = current;
4753 else
4754 task = find_task_by_vpid(vpid);
4755 if (task)
4756 get_task_struct(task);
4757 rcu_read_unlock();
4758
4759 if (!task)
4760 return ERR_PTR(-ESRCH);
4761
4762 return task;
4763 }
4764
4765 /*
4766 * Returns a matching context with refcount and pincount.
4767 */
4768 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4769 find_get_context(struct task_struct *task, struct perf_event *event)
4770 {
4771 struct perf_event_context *ctx, *clone_ctx = NULL;
4772 struct perf_cpu_context *cpuctx;
4773 unsigned long flags;
4774 int err;
4775
4776 if (!task) {
4777 /* Must be root to operate on a CPU event: */
4778 err = perf_allow_cpu(&event->attr);
4779 if (err)
4780 return ERR_PTR(err);
4781
4782 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4783 ctx = &cpuctx->ctx;
4784 get_ctx(ctx);
4785 raw_spin_lock_irqsave(&ctx->lock, flags);
4786 ++ctx->pin_count;
4787 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4788
4789 return ctx;
4790 }
4791
4792 err = -EINVAL;
4793 retry:
4794 ctx = perf_lock_task_context(task, &flags);
4795 if (ctx) {
4796 clone_ctx = unclone_ctx(ctx);
4797 ++ctx->pin_count;
4798
4799 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4800
4801 if (clone_ctx)
4802 put_ctx(clone_ctx);
4803 } else {
4804 ctx = alloc_perf_context(task);
4805 err = -ENOMEM;
4806 if (!ctx)
4807 goto errout;
4808
4809 err = 0;
4810 mutex_lock(&task->perf_event_mutex);
4811 /*
4812 * If it has already passed perf_event_exit_task().
4813 * we must see PF_EXITING, it takes this mutex too.
4814 */
4815 if (task->flags & PF_EXITING)
4816 err = -ESRCH;
4817 else if (task->perf_event_ctxp)
4818 err = -EAGAIN;
4819 else {
4820 get_ctx(ctx);
4821 ++ctx->pin_count;
4822 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4823 }
4824 mutex_unlock(&task->perf_event_mutex);
4825
4826 if (unlikely(err)) {
4827 put_ctx(ctx);
4828
4829 if (err == -EAGAIN)
4830 goto retry;
4831 goto errout;
4832 }
4833 }
4834
4835 return ctx;
4836
4837 errout:
4838 return ERR_PTR(err);
4839 }
4840
4841 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4842 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4843 struct perf_event *event)
4844 {
4845 struct perf_event_pmu_context *new = NULL, *epc;
4846 void *task_ctx_data = NULL;
4847
4848 if (!ctx->task) {
4849 /*
4850 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4851 * relies on the fact that find_get_pmu_context() cannot fail
4852 * for CPU contexts.
4853 */
4854 struct perf_cpu_pmu_context *cpc;
4855
4856 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4857 epc = &cpc->epc;
4858 raw_spin_lock_irq(&ctx->lock);
4859 if (!epc->ctx) {
4860 atomic_set(&epc->refcount, 1);
4861 epc->embedded = 1;
4862 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4863 epc->ctx = ctx;
4864 } else {
4865 WARN_ON_ONCE(epc->ctx != ctx);
4866 atomic_inc(&epc->refcount);
4867 }
4868 raw_spin_unlock_irq(&ctx->lock);
4869 return epc;
4870 }
4871
4872 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4873 if (!new)
4874 return ERR_PTR(-ENOMEM);
4875
4876 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4877 task_ctx_data = alloc_task_ctx_data(pmu);
4878 if (!task_ctx_data) {
4879 kfree(new);
4880 return ERR_PTR(-ENOMEM);
4881 }
4882 }
4883
4884 __perf_init_event_pmu_context(new, pmu);
4885
4886 /*
4887 * XXX
4888 *
4889 * lockdep_assert_held(&ctx->mutex);
4890 *
4891 * can't because perf_event_init_task() doesn't actually hold the
4892 * child_ctx->mutex.
4893 */
4894
4895 raw_spin_lock_irq(&ctx->lock);
4896 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4897 if (epc->pmu == pmu) {
4898 WARN_ON_ONCE(epc->ctx != ctx);
4899 atomic_inc(&epc->refcount);
4900 goto found_epc;
4901 }
4902 }
4903
4904 epc = new;
4905 new = NULL;
4906
4907 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4908 epc->ctx = ctx;
4909
4910 found_epc:
4911 if (task_ctx_data && !epc->task_ctx_data) {
4912 epc->task_ctx_data = task_ctx_data;
4913 task_ctx_data = NULL;
4914 ctx->nr_task_data++;
4915 }
4916 raw_spin_unlock_irq(&ctx->lock);
4917
4918 free_task_ctx_data(pmu, task_ctx_data);
4919 kfree(new);
4920
4921 return epc;
4922 }
4923
get_pmu_ctx(struct perf_event_pmu_context * epc)4924 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4925 {
4926 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4927 }
4928
free_epc_rcu(struct rcu_head * head)4929 static void free_epc_rcu(struct rcu_head *head)
4930 {
4931 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4932
4933 kfree(epc->task_ctx_data);
4934 kfree(epc);
4935 }
4936
put_pmu_ctx(struct perf_event_pmu_context * epc)4937 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4938 {
4939 struct perf_event_context *ctx = epc->ctx;
4940 unsigned long flags;
4941
4942 /*
4943 * XXX
4944 *
4945 * lockdep_assert_held(&ctx->mutex);
4946 *
4947 * can't because of the call-site in _free_event()/put_event()
4948 * which isn't always called under ctx->mutex.
4949 */
4950 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4951 return;
4952
4953 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4954
4955 list_del_init(&epc->pmu_ctx_entry);
4956 epc->ctx = NULL;
4957
4958 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4959 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4960
4961 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4962
4963 if (epc->embedded)
4964 return;
4965
4966 call_rcu(&epc->rcu_head, free_epc_rcu);
4967 }
4968
4969 static void perf_event_free_filter(struct perf_event *event);
4970
free_event_rcu(struct rcu_head * head)4971 static void free_event_rcu(struct rcu_head *head)
4972 {
4973 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4974
4975 if (event->ns)
4976 put_pid_ns(event->ns);
4977 perf_event_free_filter(event);
4978 kmem_cache_free(perf_event_cache, event);
4979 }
4980
4981 static void ring_buffer_attach(struct perf_event *event,
4982 struct perf_buffer *rb);
4983
detach_sb_event(struct perf_event * event)4984 static void detach_sb_event(struct perf_event *event)
4985 {
4986 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4987
4988 raw_spin_lock(&pel->lock);
4989 list_del_rcu(&event->sb_list);
4990 raw_spin_unlock(&pel->lock);
4991 }
4992
is_sb_event(struct perf_event * event)4993 static bool is_sb_event(struct perf_event *event)
4994 {
4995 struct perf_event_attr *attr = &event->attr;
4996
4997 if (event->parent)
4998 return false;
4999
5000 if (event->attach_state & PERF_ATTACH_TASK)
5001 return false;
5002
5003 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5004 attr->comm || attr->comm_exec ||
5005 attr->task || attr->ksymbol ||
5006 attr->context_switch || attr->text_poke ||
5007 attr->bpf_event)
5008 return true;
5009 return false;
5010 }
5011
unaccount_pmu_sb_event(struct perf_event * event)5012 static void unaccount_pmu_sb_event(struct perf_event *event)
5013 {
5014 if (is_sb_event(event))
5015 detach_sb_event(event);
5016 }
5017
5018 #ifdef CONFIG_NO_HZ_FULL
5019 static DEFINE_SPINLOCK(nr_freq_lock);
5020 #endif
5021
unaccount_freq_event_nohz(void)5022 static void unaccount_freq_event_nohz(void)
5023 {
5024 #ifdef CONFIG_NO_HZ_FULL
5025 spin_lock(&nr_freq_lock);
5026 if (atomic_dec_and_test(&nr_freq_events))
5027 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5028 spin_unlock(&nr_freq_lock);
5029 #endif
5030 }
5031
unaccount_freq_event(void)5032 static void unaccount_freq_event(void)
5033 {
5034 if (tick_nohz_full_enabled())
5035 unaccount_freq_event_nohz();
5036 else
5037 atomic_dec(&nr_freq_events);
5038 }
5039
unaccount_event(struct perf_event * event)5040 static void unaccount_event(struct perf_event *event)
5041 {
5042 bool dec = false;
5043
5044 if (event->parent)
5045 return;
5046
5047 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5048 dec = true;
5049 if (event->attr.mmap || event->attr.mmap_data)
5050 atomic_dec(&nr_mmap_events);
5051 if (event->attr.build_id)
5052 atomic_dec(&nr_build_id_events);
5053 if (event->attr.comm)
5054 atomic_dec(&nr_comm_events);
5055 if (event->attr.namespaces)
5056 atomic_dec(&nr_namespaces_events);
5057 if (event->attr.cgroup)
5058 atomic_dec(&nr_cgroup_events);
5059 if (event->attr.task)
5060 atomic_dec(&nr_task_events);
5061 if (event->attr.freq)
5062 unaccount_freq_event();
5063 if (event->attr.context_switch) {
5064 dec = true;
5065 atomic_dec(&nr_switch_events);
5066 }
5067 if (is_cgroup_event(event))
5068 dec = true;
5069 if (has_branch_stack(event))
5070 dec = true;
5071 if (event->attr.ksymbol)
5072 atomic_dec(&nr_ksymbol_events);
5073 if (event->attr.bpf_event)
5074 atomic_dec(&nr_bpf_events);
5075 if (event->attr.text_poke)
5076 atomic_dec(&nr_text_poke_events);
5077
5078 if (dec) {
5079 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5080 schedule_delayed_work(&perf_sched_work, HZ);
5081 }
5082
5083 unaccount_pmu_sb_event(event);
5084 }
5085
perf_sched_delayed(struct work_struct * work)5086 static void perf_sched_delayed(struct work_struct *work)
5087 {
5088 mutex_lock(&perf_sched_mutex);
5089 if (atomic_dec_and_test(&perf_sched_count))
5090 static_branch_disable(&perf_sched_events);
5091 mutex_unlock(&perf_sched_mutex);
5092 }
5093
5094 /*
5095 * The following implement mutual exclusion of events on "exclusive" pmus
5096 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5097 * at a time, so we disallow creating events that might conflict, namely:
5098 *
5099 * 1) cpu-wide events in the presence of per-task events,
5100 * 2) per-task events in the presence of cpu-wide events,
5101 * 3) two matching events on the same perf_event_context.
5102 *
5103 * The former two cases are handled in the allocation path (perf_event_alloc(),
5104 * _free_event()), the latter -- before the first perf_install_in_context().
5105 */
exclusive_event_init(struct perf_event * event)5106 static int exclusive_event_init(struct perf_event *event)
5107 {
5108 struct pmu *pmu = event->pmu;
5109
5110 if (!is_exclusive_pmu(pmu))
5111 return 0;
5112
5113 /*
5114 * Prevent co-existence of per-task and cpu-wide events on the
5115 * same exclusive pmu.
5116 *
5117 * Negative pmu::exclusive_cnt means there are cpu-wide
5118 * events on this "exclusive" pmu, positive means there are
5119 * per-task events.
5120 *
5121 * Since this is called in perf_event_alloc() path, event::ctx
5122 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5123 * to mean "per-task event", because unlike other attach states it
5124 * never gets cleared.
5125 */
5126 if (event->attach_state & PERF_ATTACH_TASK) {
5127 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5128 return -EBUSY;
5129 } else {
5130 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5131 return -EBUSY;
5132 }
5133
5134 return 0;
5135 }
5136
exclusive_event_destroy(struct perf_event * event)5137 static void exclusive_event_destroy(struct perf_event *event)
5138 {
5139 struct pmu *pmu = event->pmu;
5140
5141 if (!is_exclusive_pmu(pmu))
5142 return;
5143
5144 /* see comment in exclusive_event_init() */
5145 if (event->attach_state & PERF_ATTACH_TASK)
5146 atomic_dec(&pmu->exclusive_cnt);
5147 else
5148 atomic_inc(&pmu->exclusive_cnt);
5149 }
5150
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5151 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5152 {
5153 if ((e1->pmu == e2->pmu) &&
5154 (e1->cpu == e2->cpu ||
5155 e1->cpu == -1 ||
5156 e2->cpu == -1))
5157 return true;
5158 return false;
5159 }
5160
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5161 static bool exclusive_event_installable(struct perf_event *event,
5162 struct perf_event_context *ctx)
5163 {
5164 struct perf_event *iter_event;
5165 struct pmu *pmu = event->pmu;
5166
5167 lockdep_assert_held(&ctx->mutex);
5168
5169 if (!is_exclusive_pmu(pmu))
5170 return true;
5171
5172 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5173 if (exclusive_event_match(iter_event, event))
5174 return false;
5175 }
5176
5177 return true;
5178 }
5179
5180 static void perf_addr_filters_splice(struct perf_event *event,
5181 struct list_head *head);
5182
perf_pending_task_sync(struct perf_event * event)5183 static void perf_pending_task_sync(struct perf_event *event)
5184 {
5185 struct callback_head *head = &event->pending_task;
5186
5187 if (!event->pending_work)
5188 return;
5189 /*
5190 * If the task is queued to the current task's queue, we
5191 * obviously can't wait for it to complete. Simply cancel it.
5192 */
5193 if (task_work_cancel(current, head)) {
5194 event->pending_work = 0;
5195 local_dec(&event->ctx->nr_pending);
5196 return;
5197 }
5198
5199 /*
5200 * All accesses related to the event are within the same
5201 * non-preemptible section in perf_pending_task(). The RCU
5202 * grace period before the event is freed will make sure all
5203 * those accesses are complete by then.
5204 */
5205 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5206 }
5207
_free_event(struct perf_event * event)5208 static void _free_event(struct perf_event *event)
5209 {
5210 irq_work_sync(&event->pending_irq);
5211 perf_pending_task_sync(event);
5212
5213 unaccount_event(event);
5214
5215 security_perf_event_free(event);
5216
5217 if (event->rb) {
5218 /*
5219 * Can happen when we close an event with re-directed output.
5220 *
5221 * Since we have a 0 refcount, perf_mmap_close() will skip
5222 * over us; possibly making our ring_buffer_put() the last.
5223 */
5224 mutex_lock(&event->mmap_mutex);
5225 ring_buffer_attach(event, NULL);
5226 mutex_unlock(&event->mmap_mutex);
5227 }
5228
5229 if (is_cgroup_event(event))
5230 perf_detach_cgroup(event);
5231
5232 if (!event->parent) {
5233 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5234 put_callchain_buffers();
5235 }
5236
5237 perf_event_free_bpf_prog(event);
5238 perf_addr_filters_splice(event, NULL);
5239 kfree(event->addr_filter_ranges);
5240
5241 if (event->destroy)
5242 event->destroy(event);
5243
5244 /*
5245 * Must be after ->destroy(), due to uprobe_perf_close() using
5246 * hw.target.
5247 */
5248 if (event->hw.target)
5249 put_task_struct(event->hw.target);
5250
5251 if (event->pmu_ctx)
5252 put_pmu_ctx(event->pmu_ctx);
5253
5254 /*
5255 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5256 * all task references must be cleaned up.
5257 */
5258 if (event->ctx)
5259 put_ctx(event->ctx);
5260
5261 exclusive_event_destroy(event);
5262 module_put(event->pmu->module);
5263
5264 call_rcu(&event->rcu_head, free_event_rcu);
5265 }
5266
5267 /*
5268 * Used to free events which have a known refcount of 1, such as in error paths
5269 * where the event isn't exposed yet and inherited events.
5270 */
free_event(struct perf_event * event)5271 static void free_event(struct perf_event *event)
5272 {
5273 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5274 "unexpected event refcount: %ld; ptr=%p\n",
5275 atomic_long_read(&event->refcount), event)) {
5276 /* leak to avoid use-after-free */
5277 return;
5278 }
5279
5280 _free_event(event);
5281 }
5282
5283 /*
5284 * Remove user event from the owner task.
5285 */
perf_remove_from_owner(struct perf_event * event)5286 static void perf_remove_from_owner(struct perf_event *event)
5287 {
5288 struct task_struct *owner;
5289
5290 rcu_read_lock();
5291 /*
5292 * Matches the smp_store_release() in perf_event_exit_task(). If we
5293 * observe !owner it means the list deletion is complete and we can
5294 * indeed free this event, otherwise we need to serialize on
5295 * owner->perf_event_mutex.
5296 */
5297 owner = READ_ONCE(event->owner);
5298 if (owner) {
5299 /*
5300 * Since delayed_put_task_struct() also drops the last
5301 * task reference we can safely take a new reference
5302 * while holding the rcu_read_lock().
5303 */
5304 get_task_struct(owner);
5305 }
5306 rcu_read_unlock();
5307
5308 if (owner) {
5309 /*
5310 * If we're here through perf_event_exit_task() we're already
5311 * holding ctx->mutex which would be an inversion wrt. the
5312 * normal lock order.
5313 *
5314 * However we can safely take this lock because its the child
5315 * ctx->mutex.
5316 */
5317 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5318
5319 /*
5320 * We have to re-check the event->owner field, if it is cleared
5321 * we raced with perf_event_exit_task(), acquiring the mutex
5322 * ensured they're done, and we can proceed with freeing the
5323 * event.
5324 */
5325 if (event->owner) {
5326 list_del_init(&event->owner_entry);
5327 smp_store_release(&event->owner, NULL);
5328 }
5329 mutex_unlock(&owner->perf_event_mutex);
5330 put_task_struct(owner);
5331 }
5332 }
5333
put_event(struct perf_event * event)5334 static void put_event(struct perf_event *event)
5335 {
5336 if (!atomic_long_dec_and_test(&event->refcount))
5337 return;
5338
5339 _free_event(event);
5340 }
5341
5342 /*
5343 * Kill an event dead; while event:refcount will preserve the event
5344 * object, it will not preserve its functionality. Once the last 'user'
5345 * gives up the object, we'll destroy the thing.
5346 */
perf_event_release_kernel(struct perf_event * event)5347 int perf_event_release_kernel(struct perf_event *event)
5348 {
5349 struct perf_event_context *ctx = event->ctx;
5350 struct perf_event *child, *tmp;
5351 LIST_HEAD(free_list);
5352
5353 /*
5354 * If we got here through err_alloc: free_event(event); we will not
5355 * have attached to a context yet.
5356 */
5357 if (!ctx) {
5358 WARN_ON_ONCE(event->attach_state &
5359 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5360 goto no_ctx;
5361 }
5362
5363 if (!is_kernel_event(event))
5364 perf_remove_from_owner(event);
5365
5366 ctx = perf_event_ctx_lock(event);
5367 WARN_ON_ONCE(ctx->parent_ctx);
5368
5369 /*
5370 * Mark this event as STATE_DEAD, there is no external reference to it
5371 * anymore.
5372 *
5373 * Anybody acquiring event->child_mutex after the below loop _must_
5374 * also see this, most importantly inherit_event() which will avoid
5375 * placing more children on the list.
5376 *
5377 * Thus this guarantees that we will in fact observe and kill _ALL_
5378 * child events.
5379 */
5380 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5381
5382 perf_event_ctx_unlock(event, ctx);
5383
5384 again:
5385 mutex_lock(&event->child_mutex);
5386 list_for_each_entry(child, &event->child_list, child_list) {
5387 void *var = NULL;
5388
5389 /*
5390 * Cannot change, child events are not migrated, see the
5391 * comment with perf_event_ctx_lock_nested().
5392 */
5393 ctx = READ_ONCE(child->ctx);
5394 /*
5395 * Since child_mutex nests inside ctx::mutex, we must jump
5396 * through hoops. We start by grabbing a reference on the ctx.
5397 *
5398 * Since the event cannot get freed while we hold the
5399 * child_mutex, the context must also exist and have a !0
5400 * reference count.
5401 */
5402 get_ctx(ctx);
5403
5404 /*
5405 * Now that we have a ctx ref, we can drop child_mutex, and
5406 * acquire ctx::mutex without fear of it going away. Then we
5407 * can re-acquire child_mutex.
5408 */
5409 mutex_unlock(&event->child_mutex);
5410 mutex_lock(&ctx->mutex);
5411 mutex_lock(&event->child_mutex);
5412
5413 /*
5414 * Now that we hold ctx::mutex and child_mutex, revalidate our
5415 * state, if child is still the first entry, it didn't get freed
5416 * and we can continue doing so.
5417 */
5418 tmp = list_first_entry_or_null(&event->child_list,
5419 struct perf_event, child_list);
5420 if (tmp == child) {
5421 perf_remove_from_context(child, DETACH_GROUP);
5422 list_move(&child->child_list, &free_list);
5423 /*
5424 * This matches the refcount bump in inherit_event();
5425 * this can't be the last reference.
5426 */
5427 put_event(event);
5428 } else {
5429 var = &ctx->refcount;
5430 }
5431
5432 mutex_unlock(&event->child_mutex);
5433 mutex_unlock(&ctx->mutex);
5434 put_ctx(ctx);
5435
5436 if (var) {
5437 /*
5438 * If perf_event_free_task() has deleted all events from the
5439 * ctx while the child_mutex got released above, make sure to
5440 * notify about the preceding put_ctx().
5441 */
5442 smp_mb(); /* pairs with wait_var_event() */
5443 wake_up_var(var);
5444 }
5445 goto again;
5446 }
5447 mutex_unlock(&event->child_mutex);
5448
5449 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5450 void *var = &child->ctx->refcount;
5451
5452 list_del(&child->child_list);
5453 free_event(child);
5454
5455 /*
5456 * Wake any perf_event_free_task() waiting for this event to be
5457 * freed.
5458 */
5459 smp_mb(); /* pairs with wait_var_event() */
5460 wake_up_var(var);
5461 }
5462
5463 no_ctx:
5464 put_event(event); /* Must be the 'last' reference */
5465 return 0;
5466 }
5467 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5468
5469 /*
5470 * Called when the last reference to the file is gone.
5471 */
perf_release(struct inode * inode,struct file * file)5472 static int perf_release(struct inode *inode, struct file *file)
5473 {
5474 perf_event_release_kernel(file->private_data);
5475 return 0;
5476 }
5477
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5478 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5479 {
5480 struct perf_event *child;
5481 u64 total = 0;
5482
5483 *enabled = 0;
5484 *running = 0;
5485
5486 mutex_lock(&event->child_mutex);
5487
5488 (void)perf_event_read(event, false);
5489 total += perf_event_count(event);
5490
5491 *enabled += event->total_time_enabled +
5492 atomic64_read(&event->child_total_time_enabled);
5493 *running += event->total_time_running +
5494 atomic64_read(&event->child_total_time_running);
5495
5496 list_for_each_entry(child, &event->child_list, child_list) {
5497 (void)perf_event_read(child, false);
5498 total += perf_event_count(child);
5499 *enabled += child->total_time_enabled;
5500 *running += child->total_time_running;
5501 }
5502 mutex_unlock(&event->child_mutex);
5503
5504 return total;
5505 }
5506
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5507 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5508 {
5509 struct perf_event_context *ctx;
5510 u64 count;
5511
5512 ctx = perf_event_ctx_lock(event);
5513 count = __perf_event_read_value(event, enabled, running);
5514 perf_event_ctx_unlock(event, ctx);
5515
5516 return count;
5517 }
5518 EXPORT_SYMBOL_GPL(perf_event_read_value);
5519
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5520 static int __perf_read_group_add(struct perf_event *leader,
5521 u64 read_format, u64 *values)
5522 {
5523 struct perf_event_context *ctx = leader->ctx;
5524 struct perf_event *sub, *parent;
5525 unsigned long flags;
5526 int n = 1; /* skip @nr */
5527 int ret;
5528
5529 ret = perf_event_read(leader, true);
5530 if (ret)
5531 return ret;
5532
5533 raw_spin_lock_irqsave(&ctx->lock, flags);
5534 /*
5535 * Verify the grouping between the parent and child (inherited)
5536 * events is still in tact.
5537 *
5538 * Specifically:
5539 * - leader->ctx->lock pins leader->sibling_list
5540 * - parent->child_mutex pins parent->child_list
5541 * - parent->ctx->mutex pins parent->sibling_list
5542 *
5543 * Because parent->ctx != leader->ctx (and child_list nests inside
5544 * ctx->mutex), group destruction is not atomic between children, also
5545 * see perf_event_release_kernel(). Additionally, parent can grow the
5546 * group.
5547 *
5548 * Therefore it is possible to have parent and child groups in a
5549 * different configuration and summing over such a beast makes no sense
5550 * what so ever.
5551 *
5552 * Reject this.
5553 */
5554 parent = leader->parent;
5555 if (parent &&
5556 (parent->group_generation != leader->group_generation ||
5557 parent->nr_siblings != leader->nr_siblings)) {
5558 ret = -ECHILD;
5559 goto unlock;
5560 }
5561
5562 /*
5563 * Since we co-schedule groups, {enabled,running} times of siblings
5564 * will be identical to those of the leader, so we only publish one
5565 * set.
5566 */
5567 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5568 values[n++] += leader->total_time_enabled +
5569 atomic64_read(&leader->child_total_time_enabled);
5570 }
5571
5572 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5573 values[n++] += leader->total_time_running +
5574 atomic64_read(&leader->child_total_time_running);
5575 }
5576
5577 /*
5578 * Write {count,id} tuples for every sibling.
5579 */
5580 values[n++] += perf_event_count(leader);
5581 if (read_format & PERF_FORMAT_ID)
5582 values[n++] = primary_event_id(leader);
5583 if (read_format & PERF_FORMAT_LOST)
5584 values[n++] = atomic64_read(&leader->lost_samples);
5585
5586 for_each_sibling_event(sub, leader) {
5587 values[n++] += perf_event_count(sub);
5588 if (read_format & PERF_FORMAT_ID)
5589 values[n++] = primary_event_id(sub);
5590 if (read_format & PERF_FORMAT_LOST)
5591 values[n++] = atomic64_read(&sub->lost_samples);
5592 }
5593
5594 unlock:
5595 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5596 return ret;
5597 }
5598
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5599 static int perf_read_group(struct perf_event *event,
5600 u64 read_format, char __user *buf)
5601 {
5602 struct perf_event *leader = event->group_leader, *child;
5603 struct perf_event_context *ctx = leader->ctx;
5604 int ret;
5605 u64 *values;
5606
5607 lockdep_assert_held(&ctx->mutex);
5608
5609 values = kzalloc(event->read_size, GFP_KERNEL);
5610 if (!values)
5611 return -ENOMEM;
5612
5613 values[0] = 1 + leader->nr_siblings;
5614
5615 mutex_lock(&leader->child_mutex);
5616
5617 ret = __perf_read_group_add(leader, read_format, values);
5618 if (ret)
5619 goto unlock;
5620
5621 list_for_each_entry(child, &leader->child_list, child_list) {
5622 ret = __perf_read_group_add(child, read_format, values);
5623 if (ret)
5624 goto unlock;
5625 }
5626
5627 mutex_unlock(&leader->child_mutex);
5628
5629 ret = event->read_size;
5630 if (copy_to_user(buf, values, event->read_size))
5631 ret = -EFAULT;
5632 goto out;
5633
5634 unlock:
5635 mutex_unlock(&leader->child_mutex);
5636 out:
5637 kfree(values);
5638 return ret;
5639 }
5640
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5641 static int perf_read_one(struct perf_event *event,
5642 u64 read_format, char __user *buf)
5643 {
5644 u64 enabled, running;
5645 u64 values[5];
5646 int n = 0;
5647
5648 values[n++] = __perf_event_read_value(event, &enabled, &running);
5649 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5650 values[n++] = enabled;
5651 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5652 values[n++] = running;
5653 if (read_format & PERF_FORMAT_ID)
5654 values[n++] = primary_event_id(event);
5655 if (read_format & PERF_FORMAT_LOST)
5656 values[n++] = atomic64_read(&event->lost_samples);
5657
5658 if (copy_to_user(buf, values, n * sizeof(u64)))
5659 return -EFAULT;
5660
5661 return n * sizeof(u64);
5662 }
5663
is_event_hup(struct perf_event * event)5664 static bool is_event_hup(struct perf_event *event)
5665 {
5666 bool no_children;
5667
5668 if (event->state > PERF_EVENT_STATE_EXIT)
5669 return false;
5670
5671 mutex_lock(&event->child_mutex);
5672 no_children = list_empty(&event->child_list);
5673 mutex_unlock(&event->child_mutex);
5674 return no_children;
5675 }
5676
5677 /*
5678 * Read the performance event - simple non blocking version for now
5679 */
5680 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5681 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5682 {
5683 u64 read_format = event->attr.read_format;
5684 int ret;
5685
5686 /*
5687 * Return end-of-file for a read on an event that is in
5688 * error state (i.e. because it was pinned but it couldn't be
5689 * scheduled on to the CPU at some point).
5690 */
5691 if (event->state == PERF_EVENT_STATE_ERROR)
5692 return 0;
5693
5694 if (count < event->read_size)
5695 return -ENOSPC;
5696
5697 WARN_ON_ONCE(event->ctx->parent_ctx);
5698 if (read_format & PERF_FORMAT_GROUP)
5699 ret = perf_read_group(event, read_format, buf);
5700 else
5701 ret = perf_read_one(event, read_format, buf);
5702
5703 return ret;
5704 }
5705
5706 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5707 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5708 {
5709 struct perf_event *event = file->private_data;
5710 struct perf_event_context *ctx;
5711 int ret;
5712
5713 ret = security_perf_event_read(event);
5714 if (ret)
5715 return ret;
5716
5717 ctx = perf_event_ctx_lock(event);
5718 ret = __perf_read(event, buf, count);
5719 perf_event_ctx_unlock(event, ctx);
5720
5721 return ret;
5722 }
5723
perf_poll(struct file * file,poll_table * wait)5724 static __poll_t perf_poll(struct file *file, poll_table *wait)
5725 {
5726 struct perf_event *event = file->private_data;
5727 struct perf_buffer *rb;
5728 __poll_t events = EPOLLHUP;
5729
5730 poll_wait(file, &event->waitq, wait);
5731
5732 if (is_event_hup(event))
5733 return events;
5734
5735 /*
5736 * Pin the event->rb by taking event->mmap_mutex; otherwise
5737 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5738 */
5739 mutex_lock(&event->mmap_mutex);
5740 rb = event->rb;
5741 if (rb)
5742 events = atomic_xchg(&rb->poll, 0);
5743 mutex_unlock(&event->mmap_mutex);
5744 return events;
5745 }
5746
_perf_event_reset(struct perf_event * event)5747 static void _perf_event_reset(struct perf_event *event)
5748 {
5749 (void)perf_event_read(event, false);
5750 local64_set(&event->count, 0);
5751 perf_event_update_userpage(event);
5752 }
5753
5754 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5755 u64 perf_event_pause(struct perf_event *event, bool reset)
5756 {
5757 struct perf_event_context *ctx;
5758 u64 count;
5759
5760 ctx = perf_event_ctx_lock(event);
5761 WARN_ON_ONCE(event->attr.inherit);
5762 _perf_event_disable(event);
5763 count = local64_read(&event->count);
5764 if (reset)
5765 local64_set(&event->count, 0);
5766 perf_event_ctx_unlock(event, ctx);
5767
5768 return count;
5769 }
5770 EXPORT_SYMBOL_GPL(perf_event_pause);
5771
5772 /*
5773 * Holding the top-level event's child_mutex means that any
5774 * descendant process that has inherited this event will block
5775 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5776 * task existence requirements of perf_event_enable/disable.
5777 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5778 static void perf_event_for_each_child(struct perf_event *event,
5779 void (*func)(struct perf_event *))
5780 {
5781 struct perf_event *child;
5782
5783 WARN_ON_ONCE(event->ctx->parent_ctx);
5784
5785 mutex_lock(&event->child_mutex);
5786 func(event);
5787 list_for_each_entry(child, &event->child_list, child_list)
5788 func(child);
5789 mutex_unlock(&event->child_mutex);
5790 }
5791
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5792 static void perf_event_for_each(struct perf_event *event,
5793 void (*func)(struct perf_event *))
5794 {
5795 struct perf_event_context *ctx = event->ctx;
5796 struct perf_event *sibling;
5797
5798 lockdep_assert_held(&ctx->mutex);
5799
5800 event = event->group_leader;
5801
5802 perf_event_for_each_child(event, func);
5803 for_each_sibling_event(sibling, event)
5804 perf_event_for_each_child(sibling, func);
5805 }
5806
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5807 static void __perf_event_period(struct perf_event *event,
5808 struct perf_cpu_context *cpuctx,
5809 struct perf_event_context *ctx,
5810 void *info)
5811 {
5812 u64 value = *((u64 *)info);
5813 bool active;
5814
5815 if (event->attr.freq) {
5816 event->attr.sample_freq = value;
5817 } else {
5818 event->attr.sample_period = value;
5819 event->hw.sample_period = value;
5820 }
5821
5822 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5823 if (active) {
5824 perf_pmu_disable(event->pmu);
5825 /*
5826 * We could be throttled; unthrottle now to avoid the tick
5827 * trying to unthrottle while we already re-started the event.
5828 */
5829 if (event->hw.interrupts == MAX_INTERRUPTS) {
5830 event->hw.interrupts = 0;
5831 perf_log_throttle(event, 1);
5832 }
5833 event->pmu->stop(event, PERF_EF_UPDATE);
5834 }
5835
5836 local64_set(&event->hw.period_left, 0);
5837
5838 if (active) {
5839 event->pmu->start(event, PERF_EF_RELOAD);
5840 perf_pmu_enable(event->pmu);
5841 }
5842 }
5843
perf_event_check_period(struct perf_event * event,u64 value)5844 static int perf_event_check_period(struct perf_event *event, u64 value)
5845 {
5846 return event->pmu->check_period(event, value);
5847 }
5848
_perf_event_period(struct perf_event * event,u64 value)5849 static int _perf_event_period(struct perf_event *event, u64 value)
5850 {
5851 if (!is_sampling_event(event))
5852 return -EINVAL;
5853
5854 if (!value)
5855 return -EINVAL;
5856
5857 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5858 return -EINVAL;
5859
5860 if (perf_event_check_period(event, value))
5861 return -EINVAL;
5862
5863 if (!event->attr.freq && (value & (1ULL << 63)))
5864 return -EINVAL;
5865
5866 event_function_call(event, __perf_event_period, &value);
5867
5868 return 0;
5869 }
5870
perf_event_period(struct perf_event * event,u64 value)5871 int perf_event_period(struct perf_event *event, u64 value)
5872 {
5873 struct perf_event_context *ctx;
5874 int ret;
5875
5876 ctx = perf_event_ctx_lock(event);
5877 ret = _perf_event_period(event, value);
5878 perf_event_ctx_unlock(event, ctx);
5879
5880 return ret;
5881 }
5882 EXPORT_SYMBOL_GPL(perf_event_period);
5883
5884 static const struct file_operations perf_fops;
5885
perf_fget_light(int fd,struct fd * p)5886 static inline int perf_fget_light(int fd, struct fd *p)
5887 {
5888 struct fd f = fdget(fd);
5889 if (!f.file)
5890 return -EBADF;
5891
5892 if (f.file->f_op != &perf_fops) {
5893 fdput(f);
5894 return -EBADF;
5895 }
5896 *p = f;
5897 return 0;
5898 }
5899
5900 static int perf_event_set_output(struct perf_event *event,
5901 struct perf_event *output_event);
5902 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5903 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5904 struct perf_event_attr *attr);
5905
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5906 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5907 {
5908 void (*func)(struct perf_event *);
5909 u32 flags = arg;
5910
5911 switch (cmd) {
5912 case PERF_EVENT_IOC_ENABLE:
5913 func = _perf_event_enable;
5914 break;
5915 case PERF_EVENT_IOC_DISABLE:
5916 func = _perf_event_disable;
5917 break;
5918 case PERF_EVENT_IOC_RESET:
5919 func = _perf_event_reset;
5920 break;
5921
5922 case PERF_EVENT_IOC_REFRESH:
5923 return _perf_event_refresh(event, arg);
5924
5925 case PERF_EVENT_IOC_PERIOD:
5926 {
5927 u64 value;
5928
5929 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5930 return -EFAULT;
5931
5932 return _perf_event_period(event, value);
5933 }
5934 case PERF_EVENT_IOC_ID:
5935 {
5936 u64 id = primary_event_id(event);
5937
5938 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5939 return -EFAULT;
5940 return 0;
5941 }
5942
5943 case PERF_EVENT_IOC_SET_OUTPUT:
5944 {
5945 int ret;
5946 if (arg != -1) {
5947 struct perf_event *output_event;
5948 struct fd output;
5949 ret = perf_fget_light(arg, &output);
5950 if (ret)
5951 return ret;
5952 output_event = output.file->private_data;
5953 ret = perf_event_set_output(event, output_event);
5954 fdput(output);
5955 } else {
5956 ret = perf_event_set_output(event, NULL);
5957 }
5958 return ret;
5959 }
5960
5961 case PERF_EVENT_IOC_SET_FILTER:
5962 return perf_event_set_filter(event, (void __user *)arg);
5963
5964 case PERF_EVENT_IOC_SET_BPF:
5965 {
5966 struct bpf_prog *prog;
5967 int err;
5968
5969 prog = bpf_prog_get(arg);
5970 if (IS_ERR(prog))
5971 return PTR_ERR(prog);
5972
5973 err = perf_event_set_bpf_prog(event, prog, 0);
5974 if (err) {
5975 bpf_prog_put(prog);
5976 return err;
5977 }
5978
5979 return 0;
5980 }
5981
5982 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5983 struct perf_buffer *rb;
5984
5985 rcu_read_lock();
5986 rb = rcu_dereference(event->rb);
5987 if (!rb || !rb->nr_pages) {
5988 rcu_read_unlock();
5989 return -EINVAL;
5990 }
5991 rb_toggle_paused(rb, !!arg);
5992 rcu_read_unlock();
5993 return 0;
5994 }
5995
5996 case PERF_EVENT_IOC_QUERY_BPF:
5997 return perf_event_query_prog_array(event, (void __user *)arg);
5998
5999 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6000 struct perf_event_attr new_attr;
6001 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6002 &new_attr);
6003
6004 if (err)
6005 return err;
6006
6007 return perf_event_modify_attr(event, &new_attr);
6008 }
6009 default:
6010 return -ENOTTY;
6011 }
6012
6013 if (flags & PERF_IOC_FLAG_GROUP)
6014 perf_event_for_each(event, func);
6015 else
6016 perf_event_for_each_child(event, func);
6017
6018 return 0;
6019 }
6020
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6021 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6022 {
6023 struct perf_event *event = file->private_data;
6024 struct perf_event_context *ctx;
6025 long ret;
6026
6027 /* Treat ioctl like writes as it is likely a mutating operation. */
6028 ret = security_perf_event_write(event);
6029 if (ret)
6030 return ret;
6031
6032 ctx = perf_event_ctx_lock(event);
6033 ret = _perf_ioctl(event, cmd, arg);
6034 perf_event_ctx_unlock(event, ctx);
6035
6036 return ret;
6037 }
6038
6039 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6040 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6041 unsigned long arg)
6042 {
6043 switch (_IOC_NR(cmd)) {
6044 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6045 case _IOC_NR(PERF_EVENT_IOC_ID):
6046 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6047 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6048 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6049 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6050 cmd &= ~IOCSIZE_MASK;
6051 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6052 }
6053 break;
6054 }
6055 return perf_ioctl(file, cmd, arg);
6056 }
6057 #else
6058 # define perf_compat_ioctl NULL
6059 #endif
6060
perf_event_task_enable(void)6061 int perf_event_task_enable(void)
6062 {
6063 struct perf_event_context *ctx;
6064 struct perf_event *event;
6065
6066 mutex_lock(¤t->perf_event_mutex);
6067 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6068 ctx = perf_event_ctx_lock(event);
6069 perf_event_for_each_child(event, _perf_event_enable);
6070 perf_event_ctx_unlock(event, ctx);
6071 }
6072 mutex_unlock(¤t->perf_event_mutex);
6073
6074 return 0;
6075 }
6076
perf_event_task_disable(void)6077 int perf_event_task_disable(void)
6078 {
6079 struct perf_event_context *ctx;
6080 struct perf_event *event;
6081
6082 mutex_lock(¤t->perf_event_mutex);
6083 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6084 ctx = perf_event_ctx_lock(event);
6085 perf_event_for_each_child(event, _perf_event_disable);
6086 perf_event_ctx_unlock(event, ctx);
6087 }
6088 mutex_unlock(¤t->perf_event_mutex);
6089
6090 return 0;
6091 }
6092
perf_event_index(struct perf_event * event)6093 static int perf_event_index(struct perf_event *event)
6094 {
6095 if (event->hw.state & PERF_HES_STOPPED)
6096 return 0;
6097
6098 if (event->state != PERF_EVENT_STATE_ACTIVE)
6099 return 0;
6100
6101 return event->pmu->event_idx(event);
6102 }
6103
perf_event_init_userpage(struct perf_event * event)6104 static void perf_event_init_userpage(struct perf_event *event)
6105 {
6106 struct perf_event_mmap_page *userpg;
6107 struct perf_buffer *rb;
6108
6109 rcu_read_lock();
6110 rb = rcu_dereference(event->rb);
6111 if (!rb)
6112 goto unlock;
6113
6114 userpg = rb->user_page;
6115
6116 /* Allow new userspace to detect that bit 0 is deprecated */
6117 userpg->cap_bit0_is_deprecated = 1;
6118 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6119 userpg->data_offset = PAGE_SIZE;
6120 userpg->data_size = perf_data_size(rb);
6121
6122 unlock:
6123 rcu_read_unlock();
6124 }
6125
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6126 void __weak arch_perf_update_userpage(
6127 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6128 {
6129 }
6130
6131 /*
6132 * Callers need to ensure there can be no nesting of this function, otherwise
6133 * the seqlock logic goes bad. We can not serialize this because the arch
6134 * code calls this from NMI context.
6135 */
perf_event_update_userpage(struct perf_event * event)6136 void perf_event_update_userpage(struct perf_event *event)
6137 {
6138 struct perf_event_mmap_page *userpg;
6139 struct perf_buffer *rb;
6140 u64 enabled, running, now;
6141
6142 rcu_read_lock();
6143 rb = rcu_dereference(event->rb);
6144 if (!rb)
6145 goto unlock;
6146
6147 /*
6148 * compute total_time_enabled, total_time_running
6149 * based on snapshot values taken when the event
6150 * was last scheduled in.
6151 *
6152 * we cannot simply called update_context_time()
6153 * because of locking issue as we can be called in
6154 * NMI context
6155 */
6156 calc_timer_values(event, &now, &enabled, &running);
6157
6158 userpg = rb->user_page;
6159 /*
6160 * Disable preemption to guarantee consistent time stamps are stored to
6161 * the user page.
6162 */
6163 preempt_disable();
6164 ++userpg->lock;
6165 barrier();
6166 userpg->index = perf_event_index(event);
6167 userpg->offset = perf_event_count(event);
6168 if (userpg->index)
6169 userpg->offset -= local64_read(&event->hw.prev_count);
6170
6171 userpg->time_enabled = enabled +
6172 atomic64_read(&event->child_total_time_enabled);
6173
6174 userpg->time_running = running +
6175 atomic64_read(&event->child_total_time_running);
6176
6177 arch_perf_update_userpage(event, userpg, now);
6178
6179 barrier();
6180 ++userpg->lock;
6181 preempt_enable();
6182 unlock:
6183 rcu_read_unlock();
6184 }
6185 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6186
perf_mmap_fault(struct vm_fault * vmf)6187 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6188 {
6189 struct perf_event *event = vmf->vma->vm_file->private_data;
6190 struct perf_buffer *rb;
6191 vm_fault_t ret = VM_FAULT_SIGBUS;
6192
6193 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6194 if (vmf->pgoff == 0)
6195 ret = 0;
6196 return ret;
6197 }
6198
6199 rcu_read_lock();
6200 rb = rcu_dereference(event->rb);
6201 if (!rb)
6202 goto unlock;
6203
6204 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6205 goto unlock;
6206
6207 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6208 if (!vmf->page)
6209 goto unlock;
6210
6211 get_page(vmf->page);
6212 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6213 vmf->page->index = vmf->pgoff;
6214
6215 ret = 0;
6216 unlock:
6217 rcu_read_unlock();
6218
6219 return ret;
6220 }
6221
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6222 static void ring_buffer_attach(struct perf_event *event,
6223 struct perf_buffer *rb)
6224 {
6225 struct perf_buffer *old_rb = NULL;
6226 unsigned long flags;
6227
6228 WARN_ON_ONCE(event->parent);
6229
6230 if (event->rb) {
6231 /*
6232 * Should be impossible, we set this when removing
6233 * event->rb_entry and wait/clear when adding event->rb_entry.
6234 */
6235 WARN_ON_ONCE(event->rcu_pending);
6236
6237 old_rb = event->rb;
6238 spin_lock_irqsave(&old_rb->event_lock, flags);
6239 list_del_rcu(&event->rb_entry);
6240 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6241
6242 event->rcu_batches = get_state_synchronize_rcu();
6243 event->rcu_pending = 1;
6244 }
6245
6246 if (rb) {
6247 if (event->rcu_pending) {
6248 cond_synchronize_rcu(event->rcu_batches);
6249 event->rcu_pending = 0;
6250 }
6251
6252 spin_lock_irqsave(&rb->event_lock, flags);
6253 list_add_rcu(&event->rb_entry, &rb->event_list);
6254 spin_unlock_irqrestore(&rb->event_lock, flags);
6255 }
6256
6257 /*
6258 * Avoid racing with perf_mmap_close(AUX): stop the event
6259 * before swizzling the event::rb pointer; if it's getting
6260 * unmapped, its aux_mmap_count will be 0 and it won't
6261 * restart. See the comment in __perf_pmu_output_stop().
6262 *
6263 * Data will inevitably be lost when set_output is done in
6264 * mid-air, but then again, whoever does it like this is
6265 * not in for the data anyway.
6266 */
6267 if (has_aux(event))
6268 perf_event_stop(event, 0);
6269
6270 rcu_assign_pointer(event->rb, rb);
6271
6272 if (old_rb) {
6273 ring_buffer_put(old_rb);
6274 /*
6275 * Since we detached before setting the new rb, so that we
6276 * could attach the new rb, we could have missed a wakeup.
6277 * Provide it now.
6278 */
6279 wake_up_all(&event->waitq);
6280 }
6281 }
6282
ring_buffer_wakeup(struct perf_event * event)6283 static void ring_buffer_wakeup(struct perf_event *event)
6284 {
6285 struct perf_buffer *rb;
6286
6287 if (event->parent)
6288 event = event->parent;
6289
6290 rcu_read_lock();
6291 rb = rcu_dereference(event->rb);
6292 if (rb) {
6293 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6294 wake_up_all(&event->waitq);
6295 }
6296 rcu_read_unlock();
6297 }
6298
ring_buffer_get(struct perf_event * event)6299 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6300 {
6301 struct perf_buffer *rb;
6302
6303 if (event->parent)
6304 event = event->parent;
6305
6306 rcu_read_lock();
6307 rb = rcu_dereference(event->rb);
6308 if (rb) {
6309 if (!refcount_inc_not_zero(&rb->refcount))
6310 rb = NULL;
6311 }
6312 rcu_read_unlock();
6313
6314 return rb;
6315 }
6316
ring_buffer_put(struct perf_buffer * rb)6317 void ring_buffer_put(struct perf_buffer *rb)
6318 {
6319 if (!refcount_dec_and_test(&rb->refcount))
6320 return;
6321
6322 WARN_ON_ONCE(!list_empty(&rb->event_list));
6323
6324 call_rcu(&rb->rcu_head, rb_free_rcu);
6325 }
6326
perf_mmap_open(struct vm_area_struct * vma)6327 static void perf_mmap_open(struct vm_area_struct *vma)
6328 {
6329 struct perf_event *event = vma->vm_file->private_data;
6330
6331 atomic_inc(&event->mmap_count);
6332 atomic_inc(&event->rb->mmap_count);
6333
6334 if (vma->vm_pgoff)
6335 atomic_inc(&event->rb->aux_mmap_count);
6336
6337 if (event->pmu->event_mapped)
6338 event->pmu->event_mapped(event, vma->vm_mm);
6339 }
6340
6341 static void perf_pmu_output_stop(struct perf_event *event);
6342
6343 /*
6344 * A buffer can be mmap()ed multiple times; either directly through the same
6345 * event, or through other events by use of perf_event_set_output().
6346 *
6347 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6348 * the buffer here, where we still have a VM context. This means we need
6349 * to detach all events redirecting to us.
6350 */
perf_mmap_close(struct vm_area_struct * vma)6351 static void perf_mmap_close(struct vm_area_struct *vma)
6352 {
6353 struct perf_event *event = vma->vm_file->private_data;
6354 struct perf_buffer *rb = ring_buffer_get(event);
6355 struct user_struct *mmap_user = rb->mmap_user;
6356 int mmap_locked = rb->mmap_locked;
6357 unsigned long size = perf_data_size(rb);
6358 bool detach_rest = false;
6359
6360 if (event->pmu->event_unmapped)
6361 event->pmu->event_unmapped(event, vma->vm_mm);
6362
6363 /*
6364 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6365 * to avoid complications.
6366 */
6367 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6368 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6369 /*
6370 * Stop all AUX events that are writing to this buffer,
6371 * so that we can free its AUX pages and corresponding PMU
6372 * data. Note that after rb::aux_mmap_count dropped to zero,
6373 * they won't start any more (see perf_aux_output_begin()).
6374 */
6375 perf_pmu_output_stop(event);
6376
6377 /* now it's safe to free the pages */
6378 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6379 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6380
6381 /* this has to be the last one */
6382 rb_free_aux(rb);
6383 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6384
6385 mutex_unlock(&rb->aux_mutex);
6386 }
6387
6388 if (atomic_dec_and_test(&rb->mmap_count))
6389 detach_rest = true;
6390
6391 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6392 goto out_put;
6393
6394 ring_buffer_attach(event, NULL);
6395 mutex_unlock(&event->mmap_mutex);
6396
6397 /* If there's still other mmap()s of this buffer, we're done. */
6398 if (!detach_rest)
6399 goto out_put;
6400
6401 /*
6402 * No other mmap()s, detach from all other events that might redirect
6403 * into the now unreachable buffer. Somewhat complicated by the
6404 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6405 */
6406 again:
6407 rcu_read_lock();
6408 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6409 if (!atomic_long_inc_not_zero(&event->refcount)) {
6410 /*
6411 * This event is en-route to free_event() which will
6412 * detach it and remove it from the list.
6413 */
6414 continue;
6415 }
6416 rcu_read_unlock();
6417
6418 mutex_lock(&event->mmap_mutex);
6419 /*
6420 * Check we didn't race with perf_event_set_output() which can
6421 * swizzle the rb from under us while we were waiting to
6422 * acquire mmap_mutex.
6423 *
6424 * If we find a different rb; ignore this event, a next
6425 * iteration will no longer find it on the list. We have to
6426 * still restart the iteration to make sure we're not now
6427 * iterating the wrong list.
6428 */
6429 if (event->rb == rb)
6430 ring_buffer_attach(event, NULL);
6431
6432 mutex_unlock(&event->mmap_mutex);
6433 put_event(event);
6434
6435 /*
6436 * Restart the iteration; either we're on the wrong list or
6437 * destroyed its integrity by doing a deletion.
6438 */
6439 goto again;
6440 }
6441 rcu_read_unlock();
6442
6443 /*
6444 * It could be there's still a few 0-ref events on the list; they'll
6445 * get cleaned up by free_event() -- they'll also still have their
6446 * ref on the rb and will free it whenever they are done with it.
6447 *
6448 * Aside from that, this buffer is 'fully' detached and unmapped,
6449 * undo the VM accounting.
6450 */
6451
6452 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6453 &mmap_user->locked_vm);
6454 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6455 free_uid(mmap_user);
6456
6457 out_put:
6458 ring_buffer_put(rb); /* could be last */
6459 }
6460
6461 static const struct vm_operations_struct perf_mmap_vmops = {
6462 .open = perf_mmap_open,
6463 .close = perf_mmap_close, /* non mergeable */
6464 .fault = perf_mmap_fault,
6465 .page_mkwrite = perf_mmap_fault,
6466 };
6467
perf_mmap(struct file * file,struct vm_area_struct * vma)6468 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6469 {
6470 struct perf_event *event = file->private_data;
6471 unsigned long user_locked, user_lock_limit;
6472 struct user_struct *user = current_user();
6473 struct mutex *aux_mutex = NULL;
6474 struct perf_buffer *rb = NULL;
6475 unsigned long locked, lock_limit;
6476 unsigned long vma_size;
6477 unsigned long nr_pages;
6478 long user_extra = 0, extra = 0;
6479 int ret = 0, flags = 0;
6480
6481 /*
6482 * Don't allow mmap() of inherited per-task counters. This would
6483 * create a performance issue due to all children writing to the
6484 * same rb.
6485 */
6486 if (event->cpu == -1 && event->attr.inherit)
6487 return -EINVAL;
6488
6489 if (!(vma->vm_flags & VM_SHARED))
6490 return -EINVAL;
6491
6492 ret = security_perf_event_read(event);
6493 if (ret)
6494 return ret;
6495
6496 vma_size = vma->vm_end - vma->vm_start;
6497
6498 if (vma->vm_pgoff == 0) {
6499 nr_pages = (vma_size / PAGE_SIZE) - 1;
6500 } else {
6501 /*
6502 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6503 * mapped, all subsequent mappings should have the same size
6504 * and offset. Must be above the normal perf buffer.
6505 */
6506 u64 aux_offset, aux_size;
6507
6508 if (!event->rb)
6509 return -EINVAL;
6510
6511 nr_pages = vma_size / PAGE_SIZE;
6512 if (nr_pages > INT_MAX)
6513 return -ENOMEM;
6514
6515 mutex_lock(&event->mmap_mutex);
6516 ret = -EINVAL;
6517
6518 rb = event->rb;
6519 if (!rb)
6520 goto aux_unlock;
6521
6522 aux_mutex = &rb->aux_mutex;
6523 mutex_lock(aux_mutex);
6524
6525 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6526 aux_size = READ_ONCE(rb->user_page->aux_size);
6527
6528 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6529 goto aux_unlock;
6530
6531 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6532 goto aux_unlock;
6533
6534 /* already mapped with a different offset */
6535 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6536 goto aux_unlock;
6537
6538 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6539 goto aux_unlock;
6540
6541 /* already mapped with a different size */
6542 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6543 goto aux_unlock;
6544
6545 if (!is_power_of_2(nr_pages))
6546 goto aux_unlock;
6547
6548 if (!atomic_inc_not_zero(&rb->mmap_count))
6549 goto aux_unlock;
6550
6551 if (rb_has_aux(rb)) {
6552 atomic_inc(&rb->aux_mmap_count);
6553 ret = 0;
6554 goto unlock;
6555 }
6556
6557 atomic_set(&rb->aux_mmap_count, 1);
6558 user_extra = nr_pages;
6559
6560 goto accounting;
6561 }
6562
6563 /*
6564 * If we have rb pages ensure they're a power-of-two number, so we
6565 * can do bitmasks instead of modulo.
6566 */
6567 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6568 return -EINVAL;
6569
6570 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6571 return -EINVAL;
6572
6573 WARN_ON_ONCE(event->ctx->parent_ctx);
6574 again:
6575 mutex_lock(&event->mmap_mutex);
6576 if (event->rb) {
6577 if (data_page_nr(event->rb) != nr_pages) {
6578 ret = -EINVAL;
6579 goto unlock;
6580 }
6581
6582 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6583 /*
6584 * Raced against perf_mmap_close(); remove the
6585 * event and try again.
6586 */
6587 ring_buffer_attach(event, NULL);
6588 mutex_unlock(&event->mmap_mutex);
6589 goto again;
6590 }
6591
6592 goto unlock;
6593 }
6594
6595 user_extra = nr_pages + 1;
6596
6597 accounting:
6598 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6599
6600 /*
6601 * Increase the limit linearly with more CPUs:
6602 */
6603 user_lock_limit *= num_online_cpus();
6604
6605 user_locked = atomic_long_read(&user->locked_vm);
6606
6607 /*
6608 * sysctl_perf_event_mlock may have changed, so that
6609 * user->locked_vm > user_lock_limit
6610 */
6611 if (user_locked > user_lock_limit)
6612 user_locked = user_lock_limit;
6613 user_locked += user_extra;
6614
6615 if (user_locked > user_lock_limit) {
6616 /*
6617 * charge locked_vm until it hits user_lock_limit;
6618 * charge the rest from pinned_vm
6619 */
6620 extra = user_locked - user_lock_limit;
6621 user_extra -= extra;
6622 }
6623
6624 lock_limit = rlimit(RLIMIT_MEMLOCK);
6625 lock_limit >>= PAGE_SHIFT;
6626 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6627
6628 if ((locked > lock_limit) && perf_is_paranoid() &&
6629 !capable(CAP_IPC_LOCK)) {
6630 ret = -EPERM;
6631 goto unlock;
6632 }
6633
6634 WARN_ON(!rb && event->rb);
6635
6636 if (vma->vm_flags & VM_WRITE)
6637 flags |= RING_BUFFER_WRITABLE;
6638
6639 if (!rb) {
6640 rb = rb_alloc(nr_pages,
6641 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6642 event->cpu, flags);
6643
6644 if (!rb) {
6645 ret = -ENOMEM;
6646 goto unlock;
6647 }
6648
6649 atomic_set(&rb->mmap_count, 1);
6650 rb->mmap_user = get_current_user();
6651 rb->mmap_locked = extra;
6652
6653 ring_buffer_attach(event, rb);
6654
6655 perf_event_update_time(event);
6656 perf_event_init_userpage(event);
6657 perf_event_update_userpage(event);
6658 } else {
6659 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6660 event->attr.aux_watermark, flags);
6661 if (!ret)
6662 rb->aux_mmap_locked = extra;
6663 }
6664
6665 unlock:
6666 if (!ret) {
6667 atomic_long_add(user_extra, &user->locked_vm);
6668 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6669
6670 atomic_inc(&event->mmap_count);
6671 } else if (rb) {
6672 atomic_dec(&rb->mmap_count);
6673 }
6674 aux_unlock:
6675 if (aux_mutex)
6676 mutex_unlock(aux_mutex);
6677 mutex_unlock(&event->mmap_mutex);
6678
6679 /*
6680 * Since pinned accounting is per vm we cannot allow fork() to copy our
6681 * vma.
6682 */
6683 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6684 vma->vm_ops = &perf_mmap_vmops;
6685
6686 if (event->pmu->event_mapped)
6687 event->pmu->event_mapped(event, vma->vm_mm);
6688
6689 return ret;
6690 }
6691
perf_fasync(int fd,struct file * filp,int on)6692 static int perf_fasync(int fd, struct file *filp, int on)
6693 {
6694 struct inode *inode = file_inode(filp);
6695 struct perf_event *event = filp->private_data;
6696 int retval;
6697
6698 inode_lock(inode);
6699 retval = fasync_helper(fd, filp, on, &event->fasync);
6700 inode_unlock(inode);
6701
6702 if (retval < 0)
6703 return retval;
6704
6705 return 0;
6706 }
6707
6708 static const struct file_operations perf_fops = {
6709 .llseek = no_llseek,
6710 .release = perf_release,
6711 .read = perf_read,
6712 .poll = perf_poll,
6713 .unlocked_ioctl = perf_ioctl,
6714 .compat_ioctl = perf_compat_ioctl,
6715 .mmap = perf_mmap,
6716 .fasync = perf_fasync,
6717 };
6718
6719 /*
6720 * Perf event wakeup
6721 *
6722 * If there's data, ensure we set the poll() state and publish everything
6723 * to user-space before waking everybody up.
6724 */
6725
perf_event_fasync(struct perf_event * event)6726 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6727 {
6728 /* only the parent has fasync state */
6729 if (event->parent)
6730 event = event->parent;
6731 return &event->fasync;
6732 }
6733
perf_event_wakeup(struct perf_event * event)6734 void perf_event_wakeup(struct perf_event *event)
6735 {
6736 ring_buffer_wakeup(event);
6737
6738 if (event->pending_kill) {
6739 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6740 event->pending_kill = 0;
6741 }
6742 }
6743
perf_sigtrap(struct perf_event * event)6744 static void perf_sigtrap(struct perf_event *event)
6745 {
6746 /*
6747 * We'd expect this to only occur if the irq_work is delayed and either
6748 * ctx->task or current has changed in the meantime. This can be the
6749 * case on architectures that do not implement arch_irq_work_raise().
6750 */
6751 if (WARN_ON_ONCE(event->ctx->task != current))
6752 return;
6753
6754 /*
6755 * Both perf_pending_task() and perf_pending_irq() can race with the
6756 * task exiting.
6757 */
6758 if (current->flags & PF_EXITING)
6759 return;
6760
6761 send_sig_perf((void __user *)event->pending_addr,
6762 event->orig_type, event->attr.sig_data);
6763 }
6764
6765 /*
6766 * Deliver the pending work in-event-context or follow the context.
6767 */
__perf_pending_irq(struct perf_event * event)6768 static void __perf_pending_irq(struct perf_event *event)
6769 {
6770 int cpu = READ_ONCE(event->oncpu);
6771
6772 /*
6773 * If the event isn't running; we done. event_sched_out() will have
6774 * taken care of things.
6775 */
6776 if (cpu < 0)
6777 return;
6778
6779 /*
6780 * Yay, we hit home and are in the context of the event.
6781 */
6782 if (cpu == smp_processor_id()) {
6783 if (event->pending_sigtrap) {
6784 event->pending_sigtrap = 0;
6785 perf_sigtrap(event);
6786 local_dec(&event->ctx->nr_pending);
6787 }
6788 if (event->pending_disable) {
6789 event->pending_disable = 0;
6790 perf_event_disable_local(event);
6791 }
6792 return;
6793 }
6794
6795 /*
6796 * CPU-A CPU-B
6797 *
6798 * perf_event_disable_inatomic()
6799 * @pending_disable = CPU-A;
6800 * irq_work_queue();
6801 *
6802 * sched-out
6803 * @pending_disable = -1;
6804 *
6805 * sched-in
6806 * perf_event_disable_inatomic()
6807 * @pending_disable = CPU-B;
6808 * irq_work_queue(); // FAILS
6809 *
6810 * irq_work_run()
6811 * perf_pending_irq()
6812 *
6813 * But the event runs on CPU-B and wants disabling there.
6814 */
6815 irq_work_queue_on(&event->pending_irq, cpu);
6816 }
6817
perf_pending_irq(struct irq_work * entry)6818 static void perf_pending_irq(struct irq_work *entry)
6819 {
6820 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6821 int rctx;
6822
6823 /*
6824 * If we 'fail' here, that's OK, it means recursion is already disabled
6825 * and we won't recurse 'further'.
6826 */
6827 rctx = perf_swevent_get_recursion_context();
6828
6829 /*
6830 * The wakeup isn't bound to the context of the event -- it can happen
6831 * irrespective of where the event is.
6832 */
6833 if (event->pending_wakeup) {
6834 event->pending_wakeup = 0;
6835 perf_event_wakeup(event);
6836 }
6837
6838 __perf_pending_irq(event);
6839
6840 if (rctx >= 0)
6841 perf_swevent_put_recursion_context(rctx);
6842 }
6843
perf_pending_task(struct callback_head * head)6844 static void perf_pending_task(struct callback_head *head)
6845 {
6846 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6847 int rctx;
6848
6849 /*
6850 * All accesses to the event must belong to the same implicit RCU read-side
6851 * critical section as the ->pending_work reset. See comment in
6852 * perf_pending_task_sync().
6853 */
6854 preempt_disable_notrace();
6855 /*
6856 * If we 'fail' here, that's OK, it means recursion is already disabled
6857 * and we won't recurse 'further'.
6858 */
6859 rctx = perf_swevent_get_recursion_context();
6860
6861 if (event->pending_work) {
6862 event->pending_work = 0;
6863 perf_sigtrap(event);
6864 local_dec(&event->ctx->nr_pending);
6865 rcuwait_wake_up(&event->pending_work_wait);
6866 }
6867
6868 if (rctx >= 0)
6869 perf_swevent_put_recursion_context(rctx);
6870 preempt_enable_notrace();
6871 }
6872
6873 #ifdef CONFIG_GUEST_PERF_EVENTS
6874 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6875
6876 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6877 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6878 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6879
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6880 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6881 {
6882 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6883 return;
6884
6885 rcu_assign_pointer(perf_guest_cbs, cbs);
6886 static_call_update(__perf_guest_state, cbs->state);
6887 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6888
6889 /* Implementing ->handle_intel_pt_intr is optional. */
6890 if (cbs->handle_intel_pt_intr)
6891 static_call_update(__perf_guest_handle_intel_pt_intr,
6892 cbs->handle_intel_pt_intr);
6893 }
6894 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6895
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6896 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6897 {
6898 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6899 return;
6900
6901 rcu_assign_pointer(perf_guest_cbs, NULL);
6902 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6903 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6904 static_call_update(__perf_guest_handle_intel_pt_intr,
6905 (void *)&__static_call_return0);
6906 synchronize_rcu();
6907 }
6908 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6909 #endif
6910
6911 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6912 perf_output_sample_regs(struct perf_output_handle *handle,
6913 struct pt_regs *regs, u64 mask)
6914 {
6915 int bit;
6916 DECLARE_BITMAP(_mask, 64);
6917
6918 bitmap_from_u64(_mask, mask);
6919 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6920 u64 val;
6921
6922 val = perf_reg_value(regs, bit);
6923 perf_output_put(handle, val);
6924 }
6925 }
6926
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6927 static void perf_sample_regs_user(struct perf_regs *regs_user,
6928 struct pt_regs *regs)
6929 {
6930 if (user_mode(regs)) {
6931 regs_user->abi = perf_reg_abi(current);
6932 regs_user->regs = regs;
6933 } else if (!(current->flags & PF_KTHREAD)) {
6934 perf_get_regs_user(regs_user, regs);
6935 } else {
6936 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6937 regs_user->regs = NULL;
6938 }
6939 }
6940
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6941 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6942 struct pt_regs *regs)
6943 {
6944 regs_intr->regs = regs;
6945 regs_intr->abi = perf_reg_abi(current);
6946 }
6947
6948
6949 /*
6950 * Get remaining task size from user stack pointer.
6951 *
6952 * It'd be better to take stack vma map and limit this more
6953 * precisely, but there's no way to get it safely under interrupt,
6954 * so using TASK_SIZE as limit.
6955 */
perf_ustack_task_size(struct pt_regs * regs)6956 static u64 perf_ustack_task_size(struct pt_regs *regs)
6957 {
6958 unsigned long addr = perf_user_stack_pointer(regs);
6959
6960 if (!addr || addr >= TASK_SIZE)
6961 return 0;
6962
6963 return TASK_SIZE - addr;
6964 }
6965
6966 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6967 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6968 struct pt_regs *regs)
6969 {
6970 u64 task_size;
6971
6972 /* No regs, no stack pointer, no dump. */
6973 if (!regs)
6974 return 0;
6975
6976 /*
6977 * Check if we fit in with the requested stack size into the:
6978 * - TASK_SIZE
6979 * If we don't, we limit the size to the TASK_SIZE.
6980 *
6981 * - remaining sample size
6982 * If we don't, we customize the stack size to
6983 * fit in to the remaining sample size.
6984 */
6985
6986 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6987 stack_size = min(stack_size, (u16) task_size);
6988
6989 /* Current header size plus static size and dynamic size. */
6990 header_size += 2 * sizeof(u64);
6991
6992 /* Do we fit in with the current stack dump size? */
6993 if ((u16) (header_size + stack_size) < header_size) {
6994 /*
6995 * If we overflow the maximum size for the sample,
6996 * we customize the stack dump size to fit in.
6997 */
6998 stack_size = USHRT_MAX - header_size - sizeof(u64);
6999 stack_size = round_up(stack_size, sizeof(u64));
7000 }
7001
7002 return stack_size;
7003 }
7004
7005 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7006 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7007 struct pt_regs *regs)
7008 {
7009 /* Case of a kernel thread, nothing to dump */
7010 if (!regs) {
7011 u64 size = 0;
7012 perf_output_put(handle, size);
7013 } else {
7014 unsigned long sp;
7015 unsigned int rem;
7016 u64 dyn_size;
7017
7018 /*
7019 * We dump:
7020 * static size
7021 * - the size requested by user or the best one we can fit
7022 * in to the sample max size
7023 * data
7024 * - user stack dump data
7025 * dynamic size
7026 * - the actual dumped size
7027 */
7028
7029 /* Static size. */
7030 perf_output_put(handle, dump_size);
7031
7032 /* Data. */
7033 sp = perf_user_stack_pointer(regs);
7034 rem = __output_copy_user(handle, (void *) sp, dump_size);
7035 dyn_size = dump_size - rem;
7036
7037 perf_output_skip(handle, rem);
7038
7039 /* Dynamic size. */
7040 perf_output_put(handle, dyn_size);
7041 }
7042 }
7043
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7044 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7045 struct perf_sample_data *data,
7046 size_t size)
7047 {
7048 struct perf_event *sampler = event->aux_event;
7049 struct perf_buffer *rb;
7050
7051 data->aux_size = 0;
7052
7053 if (!sampler)
7054 goto out;
7055
7056 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7057 goto out;
7058
7059 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7060 goto out;
7061
7062 rb = ring_buffer_get(sampler);
7063 if (!rb)
7064 goto out;
7065
7066 /*
7067 * If this is an NMI hit inside sampling code, don't take
7068 * the sample. See also perf_aux_sample_output().
7069 */
7070 if (READ_ONCE(rb->aux_in_sampling)) {
7071 data->aux_size = 0;
7072 } else {
7073 size = min_t(size_t, size, perf_aux_size(rb));
7074 data->aux_size = ALIGN(size, sizeof(u64));
7075 }
7076 ring_buffer_put(rb);
7077
7078 out:
7079 return data->aux_size;
7080 }
7081
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7082 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7083 struct perf_event *event,
7084 struct perf_output_handle *handle,
7085 unsigned long size)
7086 {
7087 unsigned long flags;
7088 long ret;
7089
7090 /*
7091 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7092 * paths. If we start calling them in NMI context, they may race with
7093 * the IRQ ones, that is, for example, re-starting an event that's just
7094 * been stopped, which is why we're using a separate callback that
7095 * doesn't change the event state.
7096 *
7097 * IRQs need to be disabled to prevent IPIs from racing with us.
7098 */
7099 local_irq_save(flags);
7100 /*
7101 * Guard against NMI hits inside the critical section;
7102 * see also perf_prepare_sample_aux().
7103 */
7104 WRITE_ONCE(rb->aux_in_sampling, 1);
7105 barrier();
7106
7107 ret = event->pmu->snapshot_aux(event, handle, size);
7108
7109 barrier();
7110 WRITE_ONCE(rb->aux_in_sampling, 0);
7111 local_irq_restore(flags);
7112
7113 return ret;
7114 }
7115
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7116 static void perf_aux_sample_output(struct perf_event *event,
7117 struct perf_output_handle *handle,
7118 struct perf_sample_data *data)
7119 {
7120 struct perf_event *sampler = event->aux_event;
7121 struct perf_buffer *rb;
7122 unsigned long pad;
7123 long size;
7124
7125 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7126 return;
7127
7128 rb = ring_buffer_get(sampler);
7129 if (!rb)
7130 return;
7131
7132 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7133
7134 /*
7135 * An error here means that perf_output_copy() failed (returned a
7136 * non-zero surplus that it didn't copy), which in its current
7137 * enlightened implementation is not possible. If that changes, we'd
7138 * like to know.
7139 */
7140 if (WARN_ON_ONCE(size < 0))
7141 goto out_put;
7142
7143 /*
7144 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7145 * perf_prepare_sample_aux(), so should not be more than that.
7146 */
7147 pad = data->aux_size - size;
7148 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7149 pad = 8;
7150
7151 if (pad) {
7152 u64 zero = 0;
7153 perf_output_copy(handle, &zero, pad);
7154 }
7155
7156 out_put:
7157 ring_buffer_put(rb);
7158 }
7159
7160 /*
7161 * A set of common sample data types saved even for non-sample records
7162 * when event->attr.sample_id_all is set.
7163 */
7164 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7165 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7166 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7167
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7168 static void __perf_event_header__init_id(struct perf_sample_data *data,
7169 struct perf_event *event,
7170 u64 sample_type)
7171 {
7172 data->type = event->attr.sample_type;
7173 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7174
7175 if (sample_type & PERF_SAMPLE_TID) {
7176 /* namespace issues */
7177 data->tid_entry.pid = perf_event_pid(event, current);
7178 data->tid_entry.tid = perf_event_tid(event, current);
7179 }
7180
7181 if (sample_type & PERF_SAMPLE_TIME)
7182 data->time = perf_event_clock(event);
7183
7184 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7185 data->id = primary_event_id(event);
7186
7187 if (sample_type & PERF_SAMPLE_STREAM_ID)
7188 data->stream_id = event->id;
7189
7190 if (sample_type & PERF_SAMPLE_CPU) {
7191 data->cpu_entry.cpu = raw_smp_processor_id();
7192 data->cpu_entry.reserved = 0;
7193 }
7194 }
7195
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7196 void perf_event_header__init_id(struct perf_event_header *header,
7197 struct perf_sample_data *data,
7198 struct perf_event *event)
7199 {
7200 if (event->attr.sample_id_all) {
7201 header->size += event->id_header_size;
7202 __perf_event_header__init_id(data, event, event->attr.sample_type);
7203 }
7204 }
7205
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7206 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7207 struct perf_sample_data *data)
7208 {
7209 u64 sample_type = data->type;
7210
7211 if (sample_type & PERF_SAMPLE_TID)
7212 perf_output_put(handle, data->tid_entry);
7213
7214 if (sample_type & PERF_SAMPLE_TIME)
7215 perf_output_put(handle, data->time);
7216
7217 if (sample_type & PERF_SAMPLE_ID)
7218 perf_output_put(handle, data->id);
7219
7220 if (sample_type & PERF_SAMPLE_STREAM_ID)
7221 perf_output_put(handle, data->stream_id);
7222
7223 if (sample_type & PERF_SAMPLE_CPU)
7224 perf_output_put(handle, data->cpu_entry);
7225
7226 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7227 perf_output_put(handle, data->id);
7228 }
7229
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7230 void perf_event__output_id_sample(struct perf_event *event,
7231 struct perf_output_handle *handle,
7232 struct perf_sample_data *sample)
7233 {
7234 if (event->attr.sample_id_all)
7235 __perf_event__output_id_sample(handle, sample);
7236 }
7237
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7238 static void perf_output_read_one(struct perf_output_handle *handle,
7239 struct perf_event *event,
7240 u64 enabled, u64 running)
7241 {
7242 u64 read_format = event->attr.read_format;
7243 u64 values[5];
7244 int n = 0;
7245
7246 values[n++] = perf_event_count(event);
7247 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7248 values[n++] = enabled +
7249 atomic64_read(&event->child_total_time_enabled);
7250 }
7251 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7252 values[n++] = running +
7253 atomic64_read(&event->child_total_time_running);
7254 }
7255 if (read_format & PERF_FORMAT_ID)
7256 values[n++] = primary_event_id(event);
7257 if (read_format & PERF_FORMAT_LOST)
7258 values[n++] = atomic64_read(&event->lost_samples);
7259
7260 __output_copy(handle, values, n * sizeof(u64));
7261 }
7262
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7263 static void perf_output_read_group(struct perf_output_handle *handle,
7264 struct perf_event *event,
7265 u64 enabled, u64 running)
7266 {
7267 struct perf_event *leader = event->group_leader, *sub;
7268 u64 read_format = event->attr.read_format;
7269 unsigned long flags;
7270 u64 values[6];
7271 int n = 0;
7272
7273 /*
7274 * Disabling interrupts avoids all counter scheduling
7275 * (context switches, timer based rotation and IPIs).
7276 */
7277 local_irq_save(flags);
7278
7279 values[n++] = 1 + leader->nr_siblings;
7280
7281 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7282 values[n++] = enabled;
7283
7284 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7285 values[n++] = running;
7286
7287 if ((leader != event) &&
7288 (leader->state == PERF_EVENT_STATE_ACTIVE))
7289 leader->pmu->read(leader);
7290
7291 values[n++] = perf_event_count(leader);
7292 if (read_format & PERF_FORMAT_ID)
7293 values[n++] = primary_event_id(leader);
7294 if (read_format & PERF_FORMAT_LOST)
7295 values[n++] = atomic64_read(&leader->lost_samples);
7296
7297 __output_copy(handle, values, n * sizeof(u64));
7298
7299 for_each_sibling_event(sub, leader) {
7300 n = 0;
7301
7302 if ((sub != event) &&
7303 (sub->state == PERF_EVENT_STATE_ACTIVE))
7304 sub->pmu->read(sub);
7305
7306 values[n++] = perf_event_count(sub);
7307 if (read_format & PERF_FORMAT_ID)
7308 values[n++] = primary_event_id(sub);
7309 if (read_format & PERF_FORMAT_LOST)
7310 values[n++] = atomic64_read(&sub->lost_samples);
7311
7312 __output_copy(handle, values, n * sizeof(u64));
7313 }
7314
7315 local_irq_restore(flags);
7316 }
7317
7318 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7319 PERF_FORMAT_TOTAL_TIME_RUNNING)
7320
7321 /*
7322 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7323 *
7324 * The problem is that its both hard and excessively expensive to iterate the
7325 * child list, not to mention that its impossible to IPI the children running
7326 * on another CPU, from interrupt/NMI context.
7327 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7328 static void perf_output_read(struct perf_output_handle *handle,
7329 struct perf_event *event)
7330 {
7331 u64 enabled = 0, running = 0, now;
7332 u64 read_format = event->attr.read_format;
7333
7334 /*
7335 * compute total_time_enabled, total_time_running
7336 * based on snapshot values taken when the event
7337 * was last scheduled in.
7338 *
7339 * we cannot simply called update_context_time()
7340 * because of locking issue as we are called in
7341 * NMI context
7342 */
7343 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7344 calc_timer_values(event, &now, &enabled, &running);
7345
7346 if (event->attr.read_format & PERF_FORMAT_GROUP)
7347 perf_output_read_group(handle, event, enabled, running);
7348 else
7349 perf_output_read_one(handle, event, enabled, running);
7350 }
7351
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7352 void perf_output_sample(struct perf_output_handle *handle,
7353 struct perf_event_header *header,
7354 struct perf_sample_data *data,
7355 struct perf_event *event)
7356 {
7357 u64 sample_type = data->type;
7358
7359 perf_output_put(handle, *header);
7360
7361 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7362 perf_output_put(handle, data->id);
7363
7364 if (sample_type & PERF_SAMPLE_IP)
7365 perf_output_put(handle, data->ip);
7366
7367 if (sample_type & PERF_SAMPLE_TID)
7368 perf_output_put(handle, data->tid_entry);
7369
7370 if (sample_type & PERF_SAMPLE_TIME)
7371 perf_output_put(handle, data->time);
7372
7373 if (sample_type & PERF_SAMPLE_ADDR)
7374 perf_output_put(handle, data->addr);
7375
7376 if (sample_type & PERF_SAMPLE_ID)
7377 perf_output_put(handle, data->id);
7378
7379 if (sample_type & PERF_SAMPLE_STREAM_ID)
7380 perf_output_put(handle, data->stream_id);
7381
7382 if (sample_type & PERF_SAMPLE_CPU)
7383 perf_output_put(handle, data->cpu_entry);
7384
7385 if (sample_type & PERF_SAMPLE_PERIOD)
7386 perf_output_put(handle, data->period);
7387
7388 if (sample_type & PERF_SAMPLE_READ)
7389 perf_output_read(handle, event);
7390
7391 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7392 int size = 1;
7393
7394 size += data->callchain->nr;
7395 size *= sizeof(u64);
7396 __output_copy(handle, data->callchain, size);
7397 }
7398
7399 if (sample_type & PERF_SAMPLE_RAW) {
7400 struct perf_raw_record *raw = data->raw;
7401
7402 if (raw) {
7403 struct perf_raw_frag *frag = &raw->frag;
7404
7405 perf_output_put(handle, raw->size);
7406 do {
7407 if (frag->copy) {
7408 __output_custom(handle, frag->copy,
7409 frag->data, frag->size);
7410 } else {
7411 __output_copy(handle, frag->data,
7412 frag->size);
7413 }
7414 if (perf_raw_frag_last(frag))
7415 break;
7416 frag = frag->next;
7417 } while (1);
7418 if (frag->pad)
7419 __output_skip(handle, NULL, frag->pad);
7420 } else {
7421 struct {
7422 u32 size;
7423 u32 data;
7424 } raw = {
7425 .size = sizeof(u32),
7426 .data = 0,
7427 };
7428 perf_output_put(handle, raw);
7429 }
7430 }
7431
7432 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7433 if (data->br_stack) {
7434 size_t size;
7435
7436 size = data->br_stack->nr
7437 * sizeof(struct perf_branch_entry);
7438
7439 perf_output_put(handle, data->br_stack->nr);
7440 if (branch_sample_hw_index(event))
7441 perf_output_put(handle, data->br_stack->hw_idx);
7442 perf_output_copy(handle, data->br_stack->entries, size);
7443 } else {
7444 /*
7445 * we always store at least the value of nr
7446 */
7447 u64 nr = 0;
7448 perf_output_put(handle, nr);
7449 }
7450 }
7451
7452 if (sample_type & PERF_SAMPLE_REGS_USER) {
7453 u64 abi = data->regs_user.abi;
7454
7455 /*
7456 * If there are no regs to dump, notice it through
7457 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7458 */
7459 perf_output_put(handle, abi);
7460
7461 if (abi) {
7462 u64 mask = event->attr.sample_regs_user;
7463 perf_output_sample_regs(handle,
7464 data->regs_user.regs,
7465 mask);
7466 }
7467 }
7468
7469 if (sample_type & PERF_SAMPLE_STACK_USER) {
7470 perf_output_sample_ustack(handle,
7471 data->stack_user_size,
7472 data->regs_user.regs);
7473 }
7474
7475 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7476 perf_output_put(handle, data->weight.full);
7477
7478 if (sample_type & PERF_SAMPLE_DATA_SRC)
7479 perf_output_put(handle, data->data_src.val);
7480
7481 if (sample_type & PERF_SAMPLE_TRANSACTION)
7482 perf_output_put(handle, data->txn);
7483
7484 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7485 u64 abi = data->regs_intr.abi;
7486 /*
7487 * If there are no regs to dump, notice it through
7488 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7489 */
7490 perf_output_put(handle, abi);
7491
7492 if (abi) {
7493 u64 mask = event->attr.sample_regs_intr;
7494
7495 perf_output_sample_regs(handle,
7496 data->regs_intr.regs,
7497 mask);
7498 }
7499 }
7500
7501 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7502 perf_output_put(handle, data->phys_addr);
7503
7504 if (sample_type & PERF_SAMPLE_CGROUP)
7505 perf_output_put(handle, data->cgroup);
7506
7507 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7508 perf_output_put(handle, data->data_page_size);
7509
7510 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7511 perf_output_put(handle, data->code_page_size);
7512
7513 if (sample_type & PERF_SAMPLE_AUX) {
7514 perf_output_put(handle, data->aux_size);
7515
7516 if (data->aux_size)
7517 perf_aux_sample_output(event, handle, data);
7518 }
7519
7520 if (!event->attr.watermark) {
7521 int wakeup_events = event->attr.wakeup_events;
7522
7523 if (wakeup_events) {
7524 struct perf_buffer *rb = handle->rb;
7525 int events = local_inc_return(&rb->events);
7526
7527 if (events >= wakeup_events) {
7528 local_sub(wakeup_events, &rb->events);
7529 local_inc(&rb->wakeup);
7530 }
7531 }
7532 }
7533 }
7534
perf_virt_to_phys(u64 virt)7535 static u64 perf_virt_to_phys(u64 virt)
7536 {
7537 u64 phys_addr = 0;
7538
7539 if (!virt)
7540 return 0;
7541
7542 if (virt >= TASK_SIZE) {
7543 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7544 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7545 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7546 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7547 } else {
7548 /*
7549 * Walking the pages tables for user address.
7550 * Interrupts are disabled, so it prevents any tear down
7551 * of the page tables.
7552 * Try IRQ-safe get_user_page_fast_only first.
7553 * If failed, leave phys_addr as 0.
7554 */
7555 if (current->mm != NULL) {
7556 struct page *p;
7557
7558 pagefault_disable();
7559 if (get_user_page_fast_only(virt, 0, &p)) {
7560 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7561 put_page(p);
7562 }
7563 pagefault_enable();
7564 }
7565 }
7566
7567 return phys_addr;
7568 }
7569
7570 /*
7571 * Return the pagetable size of a given virtual address.
7572 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7573 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7574 {
7575 u64 size = 0;
7576
7577 #ifdef CONFIG_HAVE_FAST_GUP
7578 pgd_t *pgdp, pgd;
7579 p4d_t *p4dp, p4d;
7580 pud_t *pudp, pud;
7581 pmd_t *pmdp, pmd;
7582 pte_t *ptep, pte;
7583
7584 pgdp = pgd_offset(mm, addr);
7585 pgd = READ_ONCE(*pgdp);
7586 if (pgd_none(pgd))
7587 return 0;
7588
7589 if (pgd_leaf(pgd))
7590 return pgd_leaf_size(pgd);
7591
7592 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7593 p4d = READ_ONCE(*p4dp);
7594 if (!p4d_present(p4d))
7595 return 0;
7596
7597 if (p4d_leaf(p4d))
7598 return p4d_leaf_size(p4d);
7599
7600 pudp = pud_offset_lockless(p4dp, p4d, addr);
7601 pud = READ_ONCE(*pudp);
7602 if (!pud_present(pud))
7603 return 0;
7604
7605 if (pud_leaf(pud))
7606 return pud_leaf_size(pud);
7607
7608 pmdp = pmd_offset_lockless(pudp, pud, addr);
7609 again:
7610 pmd = pmdp_get_lockless(pmdp);
7611 if (!pmd_present(pmd))
7612 return 0;
7613
7614 if (pmd_leaf(pmd))
7615 return pmd_leaf_size(pmd);
7616
7617 ptep = pte_offset_map(&pmd, addr);
7618 if (!ptep)
7619 goto again;
7620
7621 pte = ptep_get_lockless(ptep);
7622 if (pte_present(pte))
7623 size = pte_leaf_size(pte);
7624 pte_unmap(ptep);
7625 #endif /* CONFIG_HAVE_FAST_GUP */
7626
7627 return size;
7628 }
7629
perf_get_page_size(unsigned long addr)7630 static u64 perf_get_page_size(unsigned long addr)
7631 {
7632 struct mm_struct *mm;
7633 unsigned long flags;
7634 u64 size;
7635
7636 if (!addr)
7637 return 0;
7638
7639 /*
7640 * Software page-table walkers must disable IRQs,
7641 * which prevents any tear down of the page tables.
7642 */
7643 local_irq_save(flags);
7644
7645 mm = current->mm;
7646 if (!mm) {
7647 /*
7648 * For kernel threads and the like, use init_mm so that
7649 * we can find kernel memory.
7650 */
7651 mm = &init_mm;
7652 }
7653
7654 size = perf_get_pgtable_size(mm, addr);
7655
7656 local_irq_restore(flags);
7657
7658 return size;
7659 }
7660
7661 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7662
7663 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7664 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7665 {
7666 bool kernel = !event->attr.exclude_callchain_kernel;
7667 bool user = !event->attr.exclude_callchain_user;
7668 /* Disallow cross-task user callchains. */
7669 bool crosstask = event->ctx->task && event->ctx->task != current;
7670 const u32 max_stack = event->attr.sample_max_stack;
7671 struct perf_callchain_entry *callchain;
7672
7673 if (!kernel && !user)
7674 return &__empty_callchain;
7675
7676 callchain = get_perf_callchain(regs, 0, kernel, user,
7677 max_stack, crosstask, true);
7678 return callchain ?: &__empty_callchain;
7679 }
7680
__cond_set(u64 flags,u64 s,u64 d)7681 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7682 {
7683 return d * !!(flags & s);
7684 }
7685
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7686 void perf_prepare_sample(struct perf_sample_data *data,
7687 struct perf_event *event,
7688 struct pt_regs *regs)
7689 {
7690 u64 sample_type = event->attr.sample_type;
7691 u64 filtered_sample_type;
7692
7693 /*
7694 * Add the sample flags that are dependent to others. And clear the
7695 * sample flags that have already been done by the PMU driver.
7696 */
7697 filtered_sample_type = sample_type;
7698 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7699 PERF_SAMPLE_IP);
7700 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7701 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7702 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7703 PERF_SAMPLE_REGS_USER);
7704 filtered_sample_type &= ~data->sample_flags;
7705
7706 if (filtered_sample_type == 0) {
7707 /* Make sure it has the correct data->type for output */
7708 data->type = event->attr.sample_type;
7709 return;
7710 }
7711
7712 __perf_event_header__init_id(data, event, filtered_sample_type);
7713
7714 if (filtered_sample_type & PERF_SAMPLE_IP) {
7715 data->ip = perf_instruction_pointer(regs);
7716 data->sample_flags |= PERF_SAMPLE_IP;
7717 }
7718
7719 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7720 perf_sample_save_callchain(data, event, regs);
7721
7722 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7723 data->raw = NULL;
7724 data->dyn_size += sizeof(u64);
7725 data->sample_flags |= PERF_SAMPLE_RAW;
7726 }
7727
7728 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7729 data->br_stack = NULL;
7730 data->dyn_size += sizeof(u64);
7731 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7732 }
7733
7734 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7735 perf_sample_regs_user(&data->regs_user, regs);
7736
7737 /*
7738 * It cannot use the filtered_sample_type here as REGS_USER can be set
7739 * by STACK_USER (using __cond_set() above) and we don't want to update
7740 * the dyn_size if it's not requested by users.
7741 */
7742 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7743 /* regs dump ABI info */
7744 int size = sizeof(u64);
7745
7746 if (data->regs_user.regs) {
7747 u64 mask = event->attr.sample_regs_user;
7748 size += hweight64(mask) * sizeof(u64);
7749 }
7750
7751 data->dyn_size += size;
7752 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7753 }
7754
7755 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7756 /*
7757 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7758 * processed as the last one or have additional check added
7759 * in case new sample type is added, because we could eat
7760 * up the rest of the sample size.
7761 */
7762 u16 stack_size = event->attr.sample_stack_user;
7763 u16 header_size = perf_sample_data_size(data, event);
7764 u16 size = sizeof(u64);
7765
7766 stack_size = perf_sample_ustack_size(stack_size, header_size,
7767 data->regs_user.regs);
7768
7769 /*
7770 * If there is something to dump, add space for the dump
7771 * itself and for the field that tells the dynamic size,
7772 * which is how many have been actually dumped.
7773 */
7774 if (stack_size)
7775 size += sizeof(u64) + stack_size;
7776
7777 data->stack_user_size = stack_size;
7778 data->dyn_size += size;
7779 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7780 }
7781
7782 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7783 data->weight.full = 0;
7784 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7785 }
7786
7787 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7788 data->data_src.val = PERF_MEM_NA;
7789 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7790 }
7791
7792 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7793 data->txn = 0;
7794 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7795 }
7796
7797 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7798 data->addr = 0;
7799 data->sample_flags |= PERF_SAMPLE_ADDR;
7800 }
7801
7802 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7803 /* regs dump ABI info */
7804 int size = sizeof(u64);
7805
7806 perf_sample_regs_intr(&data->regs_intr, regs);
7807
7808 if (data->regs_intr.regs) {
7809 u64 mask = event->attr.sample_regs_intr;
7810
7811 size += hweight64(mask) * sizeof(u64);
7812 }
7813
7814 data->dyn_size += size;
7815 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7816 }
7817
7818 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7819 data->phys_addr = perf_virt_to_phys(data->addr);
7820 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7821 }
7822
7823 #ifdef CONFIG_CGROUP_PERF
7824 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7825 struct cgroup *cgrp;
7826
7827 /* protected by RCU */
7828 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7829 data->cgroup = cgroup_id(cgrp);
7830 data->sample_flags |= PERF_SAMPLE_CGROUP;
7831 }
7832 #endif
7833
7834 /*
7835 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7836 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7837 * but the value will not dump to the userspace.
7838 */
7839 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7840 data->data_page_size = perf_get_page_size(data->addr);
7841 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7842 }
7843
7844 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7845 data->code_page_size = perf_get_page_size(data->ip);
7846 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7847 }
7848
7849 if (filtered_sample_type & PERF_SAMPLE_AUX) {
7850 u64 size;
7851 u16 header_size = perf_sample_data_size(data, event);
7852
7853 header_size += sizeof(u64); /* size */
7854
7855 /*
7856 * Given the 16bit nature of header::size, an AUX sample can
7857 * easily overflow it, what with all the preceding sample bits.
7858 * Make sure this doesn't happen by using up to U16_MAX bytes
7859 * per sample in total (rounded down to 8 byte boundary).
7860 */
7861 size = min_t(size_t, U16_MAX - header_size,
7862 event->attr.aux_sample_size);
7863 size = rounddown(size, 8);
7864 size = perf_prepare_sample_aux(event, data, size);
7865
7866 WARN_ON_ONCE(size + header_size > U16_MAX);
7867 data->dyn_size += size + sizeof(u64); /* size above */
7868 data->sample_flags |= PERF_SAMPLE_AUX;
7869 }
7870 }
7871
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7872 void perf_prepare_header(struct perf_event_header *header,
7873 struct perf_sample_data *data,
7874 struct perf_event *event,
7875 struct pt_regs *regs)
7876 {
7877 header->type = PERF_RECORD_SAMPLE;
7878 header->size = perf_sample_data_size(data, event);
7879 header->misc = perf_misc_flags(regs);
7880
7881 /*
7882 * If you're adding more sample types here, you likely need to do
7883 * something about the overflowing header::size, like repurpose the
7884 * lowest 3 bits of size, which should be always zero at the moment.
7885 * This raises a more important question, do we really need 512k sized
7886 * samples and why, so good argumentation is in order for whatever you
7887 * do here next.
7888 */
7889 WARN_ON_ONCE(header->size & 7);
7890 }
7891
7892 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7893 __perf_event_output(struct perf_event *event,
7894 struct perf_sample_data *data,
7895 struct pt_regs *regs,
7896 int (*output_begin)(struct perf_output_handle *,
7897 struct perf_sample_data *,
7898 struct perf_event *,
7899 unsigned int))
7900 {
7901 struct perf_output_handle handle;
7902 struct perf_event_header header;
7903 int err;
7904
7905 /* protect the callchain buffers */
7906 rcu_read_lock();
7907
7908 perf_prepare_sample(data, event, regs);
7909 perf_prepare_header(&header, data, event, regs);
7910
7911 err = output_begin(&handle, data, event, header.size);
7912 if (err)
7913 goto exit;
7914
7915 perf_output_sample(&handle, &header, data, event);
7916
7917 perf_output_end(&handle);
7918
7919 exit:
7920 rcu_read_unlock();
7921 return err;
7922 }
7923
7924 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7925 perf_event_output_forward(struct perf_event *event,
7926 struct perf_sample_data *data,
7927 struct pt_regs *regs)
7928 {
7929 __perf_event_output(event, data, regs, perf_output_begin_forward);
7930 }
7931
7932 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7933 perf_event_output_backward(struct perf_event *event,
7934 struct perf_sample_data *data,
7935 struct pt_regs *regs)
7936 {
7937 __perf_event_output(event, data, regs, perf_output_begin_backward);
7938 }
7939
7940 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7941 perf_event_output(struct perf_event *event,
7942 struct perf_sample_data *data,
7943 struct pt_regs *regs)
7944 {
7945 return __perf_event_output(event, data, regs, perf_output_begin);
7946 }
7947
7948 /*
7949 * read event_id
7950 */
7951
7952 struct perf_read_event {
7953 struct perf_event_header header;
7954
7955 u32 pid;
7956 u32 tid;
7957 };
7958
7959 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7960 perf_event_read_event(struct perf_event *event,
7961 struct task_struct *task)
7962 {
7963 struct perf_output_handle handle;
7964 struct perf_sample_data sample;
7965 struct perf_read_event read_event = {
7966 .header = {
7967 .type = PERF_RECORD_READ,
7968 .misc = 0,
7969 .size = sizeof(read_event) + event->read_size,
7970 },
7971 .pid = perf_event_pid(event, task),
7972 .tid = perf_event_tid(event, task),
7973 };
7974 int ret;
7975
7976 perf_event_header__init_id(&read_event.header, &sample, event);
7977 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7978 if (ret)
7979 return;
7980
7981 perf_output_put(&handle, read_event);
7982 perf_output_read(&handle, event);
7983 perf_event__output_id_sample(event, &handle, &sample);
7984
7985 perf_output_end(&handle);
7986 }
7987
7988 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7989
7990 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7991 perf_iterate_ctx(struct perf_event_context *ctx,
7992 perf_iterate_f output,
7993 void *data, bool all)
7994 {
7995 struct perf_event *event;
7996
7997 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7998 if (!all) {
7999 if (event->state < PERF_EVENT_STATE_INACTIVE)
8000 continue;
8001 if (!event_filter_match(event))
8002 continue;
8003 }
8004
8005 output(event, data);
8006 }
8007 }
8008
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8009 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8010 {
8011 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8012 struct perf_event *event;
8013
8014 list_for_each_entry_rcu(event, &pel->list, sb_list) {
8015 /*
8016 * Skip events that are not fully formed yet; ensure that
8017 * if we observe event->ctx, both event and ctx will be
8018 * complete enough. See perf_install_in_context().
8019 */
8020 if (!smp_load_acquire(&event->ctx))
8021 continue;
8022
8023 if (event->state < PERF_EVENT_STATE_INACTIVE)
8024 continue;
8025 if (!event_filter_match(event))
8026 continue;
8027 output(event, data);
8028 }
8029 }
8030
8031 /*
8032 * Iterate all events that need to receive side-band events.
8033 *
8034 * For new callers; ensure that account_pmu_sb_event() includes
8035 * your event, otherwise it might not get delivered.
8036 */
8037 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8038 perf_iterate_sb(perf_iterate_f output, void *data,
8039 struct perf_event_context *task_ctx)
8040 {
8041 struct perf_event_context *ctx;
8042
8043 rcu_read_lock();
8044 preempt_disable();
8045
8046 /*
8047 * If we have task_ctx != NULL we only notify the task context itself.
8048 * The task_ctx is set only for EXIT events before releasing task
8049 * context.
8050 */
8051 if (task_ctx) {
8052 perf_iterate_ctx(task_ctx, output, data, false);
8053 goto done;
8054 }
8055
8056 perf_iterate_sb_cpu(output, data);
8057
8058 ctx = rcu_dereference(current->perf_event_ctxp);
8059 if (ctx)
8060 perf_iterate_ctx(ctx, output, data, false);
8061 done:
8062 preempt_enable();
8063 rcu_read_unlock();
8064 }
8065
8066 /*
8067 * Clear all file-based filters at exec, they'll have to be
8068 * re-instated when/if these objects are mmapped again.
8069 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8070 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8071 {
8072 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8073 struct perf_addr_filter *filter;
8074 unsigned int restart = 0, count = 0;
8075 unsigned long flags;
8076
8077 if (!has_addr_filter(event))
8078 return;
8079
8080 raw_spin_lock_irqsave(&ifh->lock, flags);
8081 list_for_each_entry(filter, &ifh->list, entry) {
8082 if (filter->path.dentry) {
8083 event->addr_filter_ranges[count].start = 0;
8084 event->addr_filter_ranges[count].size = 0;
8085 restart++;
8086 }
8087
8088 count++;
8089 }
8090
8091 if (restart)
8092 event->addr_filters_gen++;
8093 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8094
8095 if (restart)
8096 perf_event_stop(event, 1);
8097 }
8098
perf_event_exec(void)8099 void perf_event_exec(void)
8100 {
8101 struct perf_event_context *ctx;
8102
8103 ctx = perf_pin_task_context(current);
8104 if (!ctx)
8105 return;
8106
8107 perf_event_enable_on_exec(ctx);
8108 perf_event_remove_on_exec(ctx);
8109 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8110
8111 perf_unpin_context(ctx);
8112 put_ctx(ctx);
8113 }
8114
8115 struct remote_output {
8116 struct perf_buffer *rb;
8117 int err;
8118 };
8119
__perf_event_output_stop(struct perf_event * event,void * data)8120 static void __perf_event_output_stop(struct perf_event *event, void *data)
8121 {
8122 struct perf_event *parent = event->parent;
8123 struct remote_output *ro = data;
8124 struct perf_buffer *rb = ro->rb;
8125 struct stop_event_data sd = {
8126 .event = event,
8127 };
8128
8129 if (!has_aux(event))
8130 return;
8131
8132 if (!parent)
8133 parent = event;
8134
8135 /*
8136 * In case of inheritance, it will be the parent that links to the
8137 * ring-buffer, but it will be the child that's actually using it.
8138 *
8139 * We are using event::rb to determine if the event should be stopped,
8140 * however this may race with ring_buffer_attach() (through set_output),
8141 * which will make us skip the event that actually needs to be stopped.
8142 * So ring_buffer_attach() has to stop an aux event before re-assigning
8143 * its rb pointer.
8144 */
8145 if (rcu_dereference(parent->rb) == rb)
8146 ro->err = __perf_event_stop(&sd);
8147 }
8148
__perf_pmu_output_stop(void * info)8149 static int __perf_pmu_output_stop(void *info)
8150 {
8151 struct perf_event *event = info;
8152 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8153 struct remote_output ro = {
8154 .rb = event->rb,
8155 };
8156
8157 rcu_read_lock();
8158 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8159 if (cpuctx->task_ctx)
8160 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8161 &ro, false);
8162 rcu_read_unlock();
8163
8164 return ro.err;
8165 }
8166
perf_pmu_output_stop(struct perf_event * event)8167 static void perf_pmu_output_stop(struct perf_event *event)
8168 {
8169 struct perf_event *iter;
8170 int err, cpu;
8171
8172 restart:
8173 rcu_read_lock();
8174 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8175 /*
8176 * For per-CPU events, we need to make sure that neither they
8177 * nor their children are running; for cpu==-1 events it's
8178 * sufficient to stop the event itself if it's active, since
8179 * it can't have children.
8180 */
8181 cpu = iter->cpu;
8182 if (cpu == -1)
8183 cpu = READ_ONCE(iter->oncpu);
8184
8185 if (cpu == -1)
8186 continue;
8187
8188 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8189 if (err == -EAGAIN) {
8190 rcu_read_unlock();
8191 goto restart;
8192 }
8193 }
8194 rcu_read_unlock();
8195 }
8196
8197 /*
8198 * task tracking -- fork/exit
8199 *
8200 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8201 */
8202
8203 struct perf_task_event {
8204 struct task_struct *task;
8205 struct perf_event_context *task_ctx;
8206
8207 struct {
8208 struct perf_event_header header;
8209
8210 u32 pid;
8211 u32 ppid;
8212 u32 tid;
8213 u32 ptid;
8214 u64 time;
8215 } event_id;
8216 };
8217
perf_event_task_match(struct perf_event * event)8218 static int perf_event_task_match(struct perf_event *event)
8219 {
8220 return event->attr.comm || event->attr.mmap ||
8221 event->attr.mmap2 || event->attr.mmap_data ||
8222 event->attr.task;
8223 }
8224
perf_event_task_output(struct perf_event * event,void * data)8225 static void perf_event_task_output(struct perf_event *event,
8226 void *data)
8227 {
8228 struct perf_task_event *task_event = data;
8229 struct perf_output_handle handle;
8230 struct perf_sample_data sample;
8231 struct task_struct *task = task_event->task;
8232 int ret, size = task_event->event_id.header.size;
8233
8234 if (!perf_event_task_match(event))
8235 return;
8236
8237 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8238
8239 ret = perf_output_begin(&handle, &sample, event,
8240 task_event->event_id.header.size);
8241 if (ret)
8242 goto out;
8243
8244 task_event->event_id.pid = perf_event_pid(event, task);
8245 task_event->event_id.tid = perf_event_tid(event, task);
8246
8247 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8248 task_event->event_id.ppid = perf_event_pid(event,
8249 task->real_parent);
8250 task_event->event_id.ptid = perf_event_pid(event,
8251 task->real_parent);
8252 } else { /* PERF_RECORD_FORK */
8253 task_event->event_id.ppid = perf_event_pid(event, current);
8254 task_event->event_id.ptid = perf_event_tid(event, current);
8255 }
8256
8257 task_event->event_id.time = perf_event_clock(event);
8258
8259 perf_output_put(&handle, task_event->event_id);
8260
8261 perf_event__output_id_sample(event, &handle, &sample);
8262
8263 perf_output_end(&handle);
8264 out:
8265 task_event->event_id.header.size = size;
8266 }
8267
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8268 static void perf_event_task(struct task_struct *task,
8269 struct perf_event_context *task_ctx,
8270 int new)
8271 {
8272 struct perf_task_event task_event;
8273
8274 if (!atomic_read(&nr_comm_events) &&
8275 !atomic_read(&nr_mmap_events) &&
8276 !atomic_read(&nr_task_events))
8277 return;
8278
8279 task_event = (struct perf_task_event){
8280 .task = task,
8281 .task_ctx = task_ctx,
8282 .event_id = {
8283 .header = {
8284 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8285 .misc = 0,
8286 .size = sizeof(task_event.event_id),
8287 },
8288 /* .pid */
8289 /* .ppid */
8290 /* .tid */
8291 /* .ptid */
8292 /* .time */
8293 },
8294 };
8295
8296 perf_iterate_sb(perf_event_task_output,
8297 &task_event,
8298 task_ctx);
8299 }
8300
perf_event_fork(struct task_struct * task)8301 void perf_event_fork(struct task_struct *task)
8302 {
8303 perf_event_task(task, NULL, 1);
8304 perf_event_namespaces(task);
8305 }
8306
8307 /*
8308 * comm tracking
8309 */
8310
8311 struct perf_comm_event {
8312 struct task_struct *task;
8313 char *comm;
8314 int comm_size;
8315
8316 struct {
8317 struct perf_event_header header;
8318
8319 u32 pid;
8320 u32 tid;
8321 } event_id;
8322 };
8323
perf_event_comm_match(struct perf_event * event)8324 static int perf_event_comm_match(struct perf_event *event)
8325 {
8326 return event->attr.comm;
8327 }
8328
perf_event_comm_output(struct perf_event * event,void * data)8329 static void perf_event_comm_output(struct perf_event *event,
8330 void *data)
8331 {
8332 struct perf_comm_event *comm_event = data;
8333 struct perf_output_handle handle;
8334 struct perf_sample_data sample;
8335 int size = comm_event->event_id.header.size;
8336 int ret;
8337
8338 if (!perf_event_comm_match(event))
8339 return;
8340
8341 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8342 ret = perf_output_begin(&handle, &sample, event,
8343 comm_event->event_id.header.size);
8344
8345 if (ret)
8346 goto out;
8347
8348 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8349 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8350
8351 perf_output_put(&handle, comm_event->event_id);
8352 __output_copy(&handle, comm_event->comm,
8353 comm_event->comm_size);
8354
8355 perf_event__output_id_sample(event, &handle, &sample);
8356
8357 perf_output_end(&handle);
8358 out:
8359 comm_event->event_id.header.size = size;
8360 }
8361
perf_event_comm_event(struct perf_comm_event * comm_event)8362 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8363 {
8364 char comm[TASK_COMM_LEN];
8365 unsigned int size;
8366
8367 memset(comm, 0, sizeof(comm));
8368 strscpy(comm, comm_event->task->comm, sizeof(comm));
8369 size = ALIGN(strlen(comm)+1, sizeof(u64));
8370
8371 comm_event->comm = comm;
8372 comm_event->comm_size = size;
8373
8374 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8375
8376 perf_iterate_sb(perf_event_comm_output,
8377 comm_event,
8378 NULL);
8379 }
8380
perf_event_comm(struct task_struct * task,bool exec)8381 void perf_event_comm(struct task_struct *task, bool exec)
8382 {
8383 struct perf_comm_event comm_event;
8384
8385 if (!atomic_read(&nr_comm_events))
8386 return;
8387
8388 comm_event = (struct perf_comm_event){
8389 .task = task,
8390 /* .comm */
8391 /* .comm_size */
8392 .event_id = {
8393 .header = {
8394 .type = PERF_RECORD_COMM,
8395 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8396 /* .size */
8397 },
8398 /* .pid */
8399 /* .tid */
8400 },
8401 };
8402
8403 perf_event_comm_event(&comm_event);
8404 }
8405
8406 /*
8407 * namespaces tracking
8408 */
8409
8410 struct perf_namespaces_event {
8411 struct task_struct *task;
8412
8413 struct {
8414 struct perf_event_header header;
8415
8416 u32 pid;
8417 u32 tid;
8418 u64 nr_namespaces;
8419 struct perf_ns_link_info link_info[NR_NAMESPACES];
8420 } event_id;
8421 };
8422
perf_event_namespaces_match(struct perf_event * event)8423 static int perf_event_namespaces_match(struct perf_event *event)
8424 {
8425 return event->attr.namespaces;
8426 }
8427
perf_event_namespaces_output(struct perf_event * event,void * data)8428 static void perf_event_namespaces_output(struct perf_event *event,
8429 void *data)
8430 {
8431 struct perf_namespaces_event *namespaces_event = data;
8432 struct perf_output_handle handle;
8433 struct perf_sample_data sample;
8434 u16 header_size = namespaces_event->event_id.header.size;
8435 int ret;
8436
8437 if (!perf_event_namespaces_match(event))
8438 return;
8439
8440 perf_event_header__init_id(&namespaces_event->event_id.header,
8441 &sample, event);
8442 ret = perf_output_begin(&handle, &sample, event,
8443 namespaces_event->event_id.header.size);
8444 if (ret)
8445 goto out;
8446
8447 namespaces_event->event_id.pid = perf_event_pid(event,
8448 namespaces_event->task);
8449 namespaces_event->event_id.tid = perf_event_tid(event,
8450 namespaces_event->task);
8451
8452 perf_output_put(&handle, namespaces_event->event_id);
8453
8454 perf_event__output_id_sample(event, &handle, &sample);
8455
8456 perf_output_end(&handle);
8457 out:
8458 namespaces_event->event_id.header.size = header_size;
8459 }
8460
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8461 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8462 struct task_struct *task,
8463 const struct proc_ns_operations *ns_ops)
8464 {
8465 struct path ns_path;
8466 struct inode *ns_inode;
8467 int error;
8468
8469 error = ns_get_path(&ns_path, task, ns_ops);
8470 if (!error) {
8471 ns_inode = ns_path.dentry->d_inode;
8472 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8473 ns_link_info->ino = ns_inode->i_ino;
8474 path_put(&ns_path);
8475 }
8476 }
8477
perf_event_namespaces(struct task_struct * task)8478 void perf_event_namespaces(struct task_struct *task)
8479 {
8480 struct perf_namespaces_event namespaces_event;
8481 struct perf_ns_link_info *ns_link_info;
8482
8483 if (!atomic_read(&nr_namespaces_events))
8484 return;
8485
8486 namespaces_event = (struct perf_namespaces_event){
8487 .task = task,
8488 .event_id = {
8489 .header = {
8490 .type = PERF_RECORD_NAMESPACES,
8491 .misc = 0,
8492 .size = sizeof(namespaces_event.event_id),
8493 },
8494 /* .pid */
8495 /* .tid */
8496 .nr_namespaces = NR_NAMESPACES,
8497 /* .link_info[NR_NAMESPACES] */
8498 },
8499 };
8500
8501 ns_link_info = namespaces_event.event_id.link_info;
8502
8503 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8504 task, &mntns_operations);
8505
8506 #ifdef CONFIG_USER_NS
8507 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8508 task, &userns_operations);
8509 #endif
8510 #ifdef CONFIG_NET_NS
8511 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8512 task, &netns_operations);
8513 #endif
8514 #ifdef CONFIG_UTS_NS
8515 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8516 task, &utsns_operations);
8517 #endif
8518 #ifdef CONFIG_IPC_NS
8519 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8520 task, &ipcns_operations);
8521 #endif
8522 #ifdef CONFIG_PID_NS
8523 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8524 task, &pidns_operations);
8525 #endif
8526 #ifdef CONFIG_CGROUPS
8527 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8528 task, &cgroupns_operations);
8529 #endif
8530
8531 perf_iterate_sb(perf_event_namespaces_output,
8532 &namespaces_event,
8533 NULL);
8534 }
8535
8536 /*
8537 * cgroup tracking
8538 */
8539 #ifdef CONFIG_CGROUP_PERF
8540
8541 struct perf_cgroup_event {
8542 char *path;
8543 int path_size;
8544 struct {
8545 struct perf_event_header header;
8546 u64 id;
8547 char path[];
8548 } event_id;
8549 };
8550
perf_event_cgroup_match(struct perf_event * event)8551 static int perf_event_cgroup_match(struct perf_event *event)
8552 {
8553 return event->attr.cgroup;
8554 }
8555
perf_event_cgroup_output(struct perf_event * event,void * data)8556 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8557 {
8558 struct perf_cgroup_event *cgroup_event = data;
8559 struct perf_output_handle handle;
8560 struct perf_sample_data sample;
8561 u16 header_size = cgroup_event->event_id.header.size;
8562 int ret;
8563
8564 if (!perf_event_cgroup_match(event))
8565 return;
8566
8567 perf_event_header__init_id(&cgroup_event->event_id.header,
8568 &sample, event);
8569 ret = perf_output_begin(&handle, &sample, event,
8570 cgroup_event->event_id.header.size);
8571 if (ret)
8572 goto out;
8573
8574 perf_output_put(&handle, cgroup_event->event_id);
8575 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8576
8577 perf_event__output_id_sample(event, &handle, &sample);
8578
8579 perf_output_end(&handle);
8580 out:
8581 cgroup_event->event_id.header.size = header_size;
8582 }
8583
perf_event_cgroup(struct cgroup * cgrp)8584 static void perf_event_cgroup(struct cgroup *cgrp)
8585 {
8586 struct perf_cgroup_event cgroup_event;
8587 char path_enomem[16] = "//enomem";
8588 char *pathname;
8589 size_t size;
8590
8591 if (!atomic_read(&nr_cgroup_events))
8592 return;
8593
8594 cgroup_event = (struct perf_cgroup_event){
8595 .event_id = {
8596 .header = {
8597 .type = PERF_RECORD_CGROUP,
8598 .misc = 0,
8599 .size = sizeof(cgroup_event.event_id),
8600 },
8601 .id = cgroup_id(cgrp),
8602 },
8603 };
8604
8605 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8606 if (pathname == NULL) {
8607 cgroup_event.path = path_enomem;
8608 } else {
8609 /* just to be sure to have enough space for alignment */
8610 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8611 cgroup_event.path = pathname;
8612 }
8613
8614 /*
8615 * Since our buffer works in 8 byte units we need to align our string
8616 * size to a multiple of 8. However, we must guarantee the tail end is
8617 * zero'd out to avoid leaking random bits to userspace.
8618 */
8619 size = strlen(cgroup_event.path) + 1;
8620 while (!IS_ALIGNED(size, sizeof(u64)))
8621 cgroup_event.path[size++] = '\0';
8622
8623 cgroup_event.event_id.header.size += size;
8624 cgroup_event.path_size = size;
8625
8626 perf_iterate_sb(perf_event_cgroup_output,
8627 &cgroup_event,
8628 NULL);
8629
8630 kfree(pathname);
8631 }
8632
8633 #endif
8634
8635 /*
8636 * mmap tracking
8637 */
8638
8639 struct perf_mmap_event {
8640 struct vm_area_struct *vma;
8641
8642 const char *file_name;
8643 int file_size;
8644 int maj, min;
8645 u64 ino;
8646 u64 ino_generation;
8647 u32 prot, flags;
8648 u8 build_id[BUILD_ID_SIZE_MAX];
8649 u32 build_id_size;
8650
8651 struct {
8652 struct perf_event_header header;
8653
8654 u32 pid;
8655 u32 tid;
8656 u64 start;
8657 u64 len;
8658 u64 pgoff;
8659 } event_id;
8660 };
8661
perf_event_mmap_match(struct perf_event * event,void * data)8662 static int perf_event_mmap_match(struct perf_event *event,
8663 void *data)
8664 {
8665 struct perf_mmap_event *mmap_event = data;
8666 struct vm_area_struct *vma = mmap_event->vma;
8667 int executable = vma->vm_flags & VM_EXEC;
8668
8669 return (!executable && event->attr.mmap_data) ||
8670 (executable && (event->attr.mmap || event->attr.mmap2));
8671 }
8672
perf_event_mmap_output(struct perf_event * event,void * data)8673 static void perf_event_mmap_output(struct perf_event *event,
8674 void *data)
8675 {
8676 struct perf_mmap_event *mmap_event = data;
8677 struct perf_output_handle handle;
8678 struct perf_sample_data sample;
8679 int size = mmap_event->event_id.header.size;
8680 u32 type = mmap_event->event_id.header.type;
8681 bool use_build_id;
8682 int ret;
8683
8684 if (!perf_event_mmap_match(event, data))
8685 return;
8686
8687 if (event->attr.mmap2) {
8688 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8689 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8690 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8691 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8692 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8693 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8694 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8695 }
8696
8697 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8698 ret = perf_output_begin(&handle, &sample, event,
8699 mmap_event->event_id.header.size);
8700 if (ret)
8701 goto out;
8702
8703 mmap_event->event_id.pid = perf_event_pid(event, current);
8704 mmap_event->event_id.tid = perf_event_tid(event, current);
8705
8706 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8707
8708 if (event->attr.mmap2 && use_build_id)
8709 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8710
8711 perf_output_put(&handle, mmap_event->event_id);
8712
8713 if (event->attr.mmap2) {
8714 if (use_build_id) {
8715 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8716
8717 __output_copy(&handle, size, 4);
8718 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8719 } else {
8720 perf_output_put(&handle, mmap_event->maj);
8721 perf_output_put(&handle, mmap_event->min);
8722 perf_output_put(&handle, mmap_event->ino);
8723 perf_output_put(&handle, mmap_event->ino_generation);
8724 }
8725 perf_output_put(&handle, mmap_event->prot);
8726 perf_output_put(&handle, mmap_event->flags);
8727 }
8728
8729 __output_copy(&handle, mmap_event->file_name,
8730 mmap_event->file_size);
8731
8732 perf_event__output_id_sample(event, &handle, &sample);
8733
8734 perf_output_end(&handle);
8735 out:
8736 mmap_event->event_id.header.size = size;
8737 mmap_event->event_id.header.type = type;
8738 }
8739
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8740 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8741 {
8742 struct vm_area_struct *vma = mmap_event->vma;
8743 struct file *file = vma->vm_file;
8744 int maj = 0, min = 0;
8745 u64 ino = 0, gen = 0;
8746 u32 prot = 0, flags = 0;
8747 unsigned int size;
8748 char tmp[16];
8749 char *buf = NULL;
8750 char *name = NULL;
8751
8752 if (vma->vm_flags & VM_READ)
8753 prot |= PROT_READ;
8754 if (vma->vm_flags & VM_WRITE)
8755 prot |= PROT_WRITE;
8756 if (vma->vm_flags & VM_EXEC)
8757 prot |= PROT_EXEC;
8758
8759 if (vma->vm_flags & VM_MAYSHARE)
8760 flags = MAP_SHARED;
8761 else
8762 flags = MAP_PRIVATE;
8763
8764 if (vma->vm_flags & VM_LOCKED)
8765 flags |= MAP_LOCKED;
8766 if (is_vm_hugetlb_page(vma))
8767 flags |= MAP_HUGETLB;
8768
8769 if (file) {
8770 struct inode *inode;
8771 dev_t dev;
8772
8773 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8774 if (!buf) {
8775 name = "//enomem";
8776 goto cpy_name;
8777 }
8778 /*
8779 * d_path() works from the end of the rb backwards, so we
8780 * need to add enough zero bytes after the string to handle
8781 * the 64bit alignment we do later.
8782 */
8783 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8784 if (IS_ERR(name)) {
8785 name = "//toolong";
8786 goto cpy_name;
8787 }
8788 inode = file_inode(vma->vm_file);
8789 dev = inode->i_sb->s_dev;
8790 ino = inode->i_ino;
8791 gen = inode->i_generation;
8792 maj = MAJOR(dev);
8793 min = MINOR(dev);
8794
8795 goto got_name;
8796 } else {
8797 if (vma->vm_ops && vma->vm_ops->name)
8798 name = (char *) vma->vm_ops->name(vma);
8799 if (!name)
8800 name = (char *)arch_vma_name(vma);
8801 if (!name) {
8802 if (vma_is_initial_heap(vma))
8803 name = "[heap]";
8804 else if (vma_is_initial_stack(vma))
8805 name = "[stack]";
8806 else
8807 name = "//anon";
8808 }
8809 }
8810
8811 cpy_name:
8812 strscpy(tmp, name, sizeof(tmp));
8813 name = tmp;
8814 got_name:
8815 /*
8816 * Since our buffer works in 8 byte units we need to align our string
8817 * size to a multiple of 8. However, we must guarantee the tail end is
8818 * zero'd out to avoid leaking random bits to userspace.
8819 */
8820 size = strlen(name)+1;
8821 while (!IS_ALIGNED(size, sizeof(u64)))
8822 name[size++] = '\0';
8823
8824 mmap_event->file_name = name;
8825 mmap_event->file_size = size;
8826 mmap_event->maj = maj;
8827 mmap_event->min = min;
8828 mmap_event->ino = ino;
8829 mmap_event->ino_generation = gen;
8830 mmap_event->prot = prot;
8831 mmap_event->flags = flags;
8832
8833 if (!(vma->vm_flags & VM_EXEC))
8834 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8835
8836 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8837
8838 if (atomic_read(&nr_build_id_events))
8839 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8840
8841 perf_iterate_sb(perf_event_mmap_output,
8842 mmap_event,
8843 NULL);
8844
8845 kfree(buf);
8846 }
8847
8848 /*
8849 * Check whether inode and address range match filter criteria.
8850 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8851 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8852 struct file *file, unsigned long offset,
8853 unsigned long size)
8854 {
8855 /* d_inode(NULL) won't be equal to any mapped user-space file */
8856 if (!filter->path.dentry)
8857 return false;
8858
8859 if (d_inode(filter->path.dentry) != file_inode(file))
8860 return false;
8861
8862 if (filter->offset > offset + size)
8863 return false;
8864
8865 if (filter->offset + filter->size < offset)
8866 return false;
8867
8868 return true;
8869 }
8870
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8871 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8872 struct vm_area_struct *vma,
8873 struct perf_addr_filter_range *fr)
8874 {
8875 unsigned long vma_size = vma->vm_end - vma->vm_start;
8876 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8877 struct file *file = vma->vm_file;
8878
8879 if (!perf_addr_filter_match(filter, file, off, vma_size))
8880 return false;
8881
8882 if (filter->offset < off) {
8883 fr->start = vma->vm_start;
8884 fr->size = min(vma_size, filter->size - (off - filter->offset));
8885 } else {
8886 fr->start = vma->vm_start + filter->offset - off;
8887 fr->size = min(vma->vm_end - fr->start, filter->size);
8888 }
8889
8890 return true;
8891 }
8892
__perf_addr_filters_adjust(struct perf_event * event,void * data)8893 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8894 {
8895 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8896 struct vm_area_struct *vma = data;
8897 struct perf_addr_filter *filter;
8898 unsigned int restart = 0, count = 0;
8899 unsigned long flags;
8900
8901 if (!has_addr_filter(event))
8902 return;
8903
8904 if (!vma->vm_file)
8905 return;
8906
8907 raw_spin_lock_irqsave(&ifh->lock, flags);
8908 list_for_each_entry(filter, &ifh->list, entry) {
8909 if (perf_addr_filter_vma_adjust(filter, vma,
8910 &event->addr_filter_ranges[count]))
8911 restart++;
8912
8913 count++;
8914 }
8915
8916 if (restart)
8917 event->addr_filters_gen++;
8918 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8919
8920 if (restart)
8921 perf_event_stop(event, 1);
8922 }
8923
8924 /*
8925 * Adjust all task's events' filters to the new vma
8926 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8927 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8928 {
8929 struct perf_event_context *ctx;
8930
8931 /*
8932 * Data tracing isn't supported yet and as such there is no need
8933 * to keep track of anything that isn't related to executable code:
8934 */
8935 if (!(vma->vm_flags & VM_EXEC))
8936 return;
8937
8938 rcu_read_lock();
8939 ctx = rcu_dereference(current->perf_event_ctxp);
8940 if (ctx)
8941 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8942 rcu_read_unlock();
8943 }
8944
perf_event_mmap(struct vm_area_struct * vma)8945 void perf_event_mmap(struct vm_area_struct *vma)
8946 {
8947 struct perf_mmap_event mmap_event;
8948
8949 if (!atomic_read(&nr_mmap_events))
8950 return;
8951
8952 mmap_event = (struct perf_mmap_event){
8953 .vma = vma,
8954 /* .file_name */
8955 /* .file_size */
8956 .event_id = {
8957 .header = {
8958 .type = PERF_RECORD_MMAP,
8959 .misc = PERF_RECORD_MISC_USER,
8960 /* .size */
8961 },
8962 /* .pid */
8963 /* .tid */
8964 .start = vma->vm_start,
8965 .len = vma->vm_end - vma->vm_start,
8966 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8967 },
8968 /* .maj (attr_mmap2 only) */
8969 /* .min (attr_mmap2 only) */
8970 /* .ino (attr_mmap2 only) */
8971 /* .ino_generation (attr_mmap2 only) */
8972 /* .prot (attr_mmap2 only) */
8973 /* .flags (attr_mmap2 only) */
8974 };
8975
8976 perf_addr_filters_adjust(vma);
8977 perf_event_mmap_event(&mmap_event);
8978 }
8979
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8980 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8981 unsigned long size, u64 flags)
8982 {
8983 struct perf_output_handle handle;
8984 struct perf_sample_data sample;
8985 struct perf_aux_event {
8986 struct perf_event_header header;
8987 u64 offset;
8988 u64 size;
8989 u64 flags;
8990 } rec = {
8991 .header = {
8992 .type = PERF_RECORD_AUX,
8993 .misc = 0,
8994 .size = sizeof(rec),
8995 },
8996 .offset = head,
8997 .size = size,
8998 .flags = flags,
8999 };
9000 int ret;
9001
9002 perf_event_header__init_id(&rec.header, &sample, event);
9003 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9004
9005 if (ret)
9006 return;
9007
9008 perf_output_put(&handle, rec);
9009 perf_event__output_id_sample(event, &handle, &sample);
9010
9011 perf_output_end(&handle);
9012 }
9013
9014 /*
9015 * Lost/dropped samples logging
9016 */
perf_log_lost_samples(struct perf_event * event,u64 lost)9017 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9018 {
9019 struct perf_output_handle handle;
9020 struct perf_sample_data sample;
9021 int ret;
9022
9023 struct {
9024 struct perf_event_header header;
9025 u64 lost;
9026 } lost_samples_event = {
9027 .header = {
9028 .type = PERF_RECORD_LOST_SAMPLES,
9029 .misc = 0,
9030 .size = sizeof(lost_samples_event),
9031 },
9032 .lost = lost,
9033 };
9034
9035 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9036
9037 ret = perf_output_begin(&handle, &sample, event,
9038 lost_samples_event.header.size);
9039 if (ret)
9040 return;
9041
9042 perf_output_put(&handle, lost_samples_event);
9043 perf_event__output_id_sample(event, &handle, &sample);
9044 perf_output_end(&handle);
9045 }
9046
9047 /*
9048 * context_switch tracking
9049 */
9050
9051 struct perf_switch_event {
9052 struct task_struct *task;
9053 struct task_struct *next_prev;
9054
9055 struct {
9056 struct perf_event_header header;
9057 u32 next_prev_pid;
9058 u32 next_prev_tid;
9059 } event_id;
9060 };
9061
perf_event_switch_match(struct perf_event * event)9062 static int perf_event_switch_match(struct perf_event *event)
9063 {
9064 return event->attr.context_switch;
9065 }
9066
perf_event_switch_output(struct perf_event * event,void * data)9067 static void perf_event_switch_output(struct perf_event *event, void *data)
9068 {
9069 struct perf_switch_event *se = data;
9070 struct perf_output_handle handle;
9071 struct perf_sample_data sample;
9072 int ret;
9073
9074 if (!perf_event_switch_match(event))
9075 return;
9076
9077 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9078 if (event->ctx->task) {
9079 se->event_id.header.type = PERF_RECORD_SWITCH;
9080 se->event_id.header.size = sizeof(se->event_id.header);
9081 } else {
9082 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9083 se->event_id.header.size = sizeof(se->event_id);
9084 se->event_id.next_prev_pid =
9085 perf_event_pid(event, se->next_prev);
9086 se->event_id.next_prev_tid =
9087 perf_event_tid(event, se->next_prev);
9088 }
9089
9090 perf_event_header__init_id(&se->event_id.header, &sample, event);
9091
9092 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9093 if (ret)
9094 return;
9095
9096 if (event->ctx->task)
9097 perf_output_put(&handle, se->event_id.header);
9098 else
9099 perf_output_put(&handle, se->event_id);
9100
9101 perf_event__output_id_sample(event, &handle, &sample);
9102
9103 perf_output_end(&handle);
9104 }
9105
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9106 static void perf_event_switch(struct task_struct *task,
9107 struct task_struct *next_prev, bool sched_in)
9108 {
9109 struct perf_switch_event switch_event;
9110
9111 /* N.B. caller checks nr_switch_events != 0 */
9112
9113 switch_event = (struct perf_switch_event){
9114 .task = task,
9115 .next_prev = next_prev,
9116 .event_id = {
9117 .header = {
9118 /* .type */
9119 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9120 /* .size */
9121 },
9122 /* .next_prev_pid */
9123 /* .next_prev_tid */
9124 },
9125 };
9126
9127 if (!sched_in && task->on_rq) {
9128 switch_event.event_id.header.misc |=
9129 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9130 }
9131
9132 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9133 }
9134
9135 /*
9136 * IRQ throttle logging
9137 */
9138
perf_log_throttle(struct perf_event * event,int enable)9139 static void perf_log_throttle(struct perf_event *event, int enable)
9140 {
9141 struct perf_output_handle handle;
9142 struct perf_sample_data sample;
9143 int ret;
9144
9145 struct {
9146 struct perf_event_header header;
9147 u64 time;
9148 u64 id;
9149 u64 stream_id;
9150 } throttle_event = {
9151 .header = {
9152 .type = PERF_RECORD_THROTTLE,
9153 .misc = 0,
9154 .size = sizeof(throttle_event),
9155 },
9156 .time = perf_event_clock(event),
9157 .id = primary_event_id(event),
9158 .stream_id = event->id,
9159 };
9160
9161 if (enable)
9162 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9163
9164 perf_event_header__init_id(&throttle_event.header, &sample, event);
9165
9166 ret = perf_output_begin(&handle, &sample, event,
9167 throttle_event.header.size);
9168 if (ret)
9169 return;
9170
9171 perf_output_put(&handle, throttle_event);
9172 perf_event__output_id_sample(event, &handle, &sample);
9173 perf_output_end(&handle);
9174 }
9175
9176 /*
9177 * ksymbol register/unregister tracking
9178 */
9179
9180 struct perf_ksymbol_event {
9181 const char *name;
9182 int name_len;
9183 struct {
9184 struct perf_event_header header;
9185 u64 addr;
9186 u32 len;
9187 u16 ksym_type;
9188 u16 flags;
9189 } event_id;
9190 };
9191
perf_event_ksymbol_match(struct perf_event * event)9192 static int perf_event_ksymbol_match(struct perf_event *event)
9193 {
9194 return event->attr.ksymbol;
9195 }
9196
perf_event_ksymbol_output(struct perf_event * event,void * data)9197 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9198 {
9199 struct perf_ksymbol_event *ksymbol_event = data;
9200 struct perf_output_handle handle;
9201 struct perf_sample_data sample;
9202 int ret;
9203
9204 if (!perf_event_ksymbol_match(event))
9205 return;
9206
9207 perf_event_header__init_id(&ksymbol_event->event_id.header,
9208 &sample, event);
9209 ret = perf_output_begin(&handle, &sample, event,
9210 ksymbol_event->event_id.header.size);
9211 if (ret)
9212 return;
9213
9214 perf_output_put(&handle, ksymbol_event->event_id);
9215 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9216 perf_event__output_id_sample(event, &handle, &sample);
9217
9218 perf_output_end(&handle);
9219 }
9220
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9221 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9222 const char *sym)
9223 {
9224 struct perf_ksymbol_event ksymbol_event;
9225 char name[KSYM_NAME_LEN];
9226 u16 flags = 0;
9227 int name_len;
9228
9229 if (!atomic_read(&nr_ksymbol_events))
9230 return;
9231
9232 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9233 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9234 goto err;
9235
9236 strscpy(name, sym, KSYM_NAME_LEN);
9237 name_len = strlen(name) + 1;
9238 while (!IS_ALIGNED(name_len, sizeof(u64)))
9239 name[name_len++] = '\0';
9240 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9241
9242 if (unregister)
9243 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9244
9245 ksymbol_event = (struct perf_ksymbol_event){
9246 .name = name,
9247 .name_len = name_len,
9248 .event_id = {
9249 .header = {
9250 .type = PERF_RECORD_KSYMBOL,
9251 .size = sizeof(ksymbol_event.event_id) +
9252 name_len,
9253 },
9254 .addr = addr,
9255 .len = len,
9256 .ksym_type = ksym_type,
9257 .flags = flags,
9258 },
9259 };
9260
9261 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9262 return;
9263 err:
9264 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9265 }
9266
9267 /*
9268 * bpf program load/unload tracking
9269 */
9270
9271 struct perf_bpf_event {
9272 struct bpf_prog *prog;
9273 struct {
9274 struct perf_event_header header;
9275 u16 type;
9276 u16 flags;
9277 u32 id;
9278 u8 tag[BPF_TAG_SIZE];
9279 } event_id;
9280 };
9281
perf_event_bpf_match(struct perf_event * event)9282 static int perf_event_bpf_match(struct perf_event *event)
9283 {
9284 return event->attr.bpf_event;
9285 }
9286
perf_event_bpf_output(struct perf_event * event,void * data)9287 static void perf_event_bpf_output(struct perf_event *event, void *data)
9288 {
9289 struct perf_bpf_event *bpf_event = data;
9290 struct perf_output_handle handle;
9291 struct perf_sample_data sample;
9292 int ret;
9293
9294 if (!perf_event_bpf_match(event))
9295 return;
9296
9297 perf_event_header__init_id(&bpf_event->event_id.header,
9298 &sample, event);
9299 ret = perf_output_begin(&handle, &sample, event,
9300 bpf_event->event_id.header.size);
9301 if (ret)
9302 return;
9303
9304 perf_output_put(&handle, bpf_event->event_id);
9305 perf_event__output_id_sample(event, &handle, &sample);
9306
9307 perf_output_end(&handle);
9308 }
9309
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9310 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9311 enum perf_bpf_event_type type)
9312 {
9313 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9314 int i;
9315
9316 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9317 (u64)(unsigned long)prog->bpf_func,
9318 prog->jited_len, unregister,
9319 prog->aux->ksym.name);
9320
9321 for (i = 1; i < prog->aux->func_cnt; i++) {
9322 struct bpf_prog *subprog = prog->aux->func[i];
9323
9324 perf_event_ksymbol(
9325 PERF_RECORD_KSYMBOL_TYPE_BPF,
9326 (u64)(unsigned long)subprog->bpf_func,
9327 subprog->jited_len, unregister,
9328 subprog->aux->ksym.name);
9329 }
9330 }
9331
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9332 void perf_event_bpf_event(struct bpf_prog *prog,
9333 enum perf_bpf_event_type type,
9334 u16 flags)
9335 {
9336 struct perf_bpf_event bpf_event;
9337
9338 if (type <= PERF_BPF_EVENT_UNKNOWN ||
9339 type >= PERF_BPF_EVENT_MAX)
9340 return;
9341
9342 switch (type) {
9343 case PERF_BPF_EVENT_PROG_LOAD:
9344 case PERF_BPF_EVENT_PROG_UNLOAD:
9345 if (atomic_read(&nr_ksymbol_events))
9346 perf_event_bpf_emit_ksymbols(prog, type);
9347 break;
9348 default:
9349 break;
9350 }
9351
9352 if (!atomic_read(&nr_bpf_events))
9353 return;
9354
9355 bpf_event = (struct perf_bpf_event){
9356 .prog = prog,
9357 .event_id = {
9358 .header = {
9359 .type = PERF_RECORD_BPF_EVENT,
9360 .size = sizeof(bpf_event.event_id),
9361 },
9362 .type = type,
9363 .flags = flags,
9364 .id = prog->aux->id,
9365 },
9366 };
9367
9368 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9369
9370 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9371 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9372 }
9373
9374 struct perf_text_poke_event {
9375 const void *old_bytes;
9376 const void *new_bytes;
9377 size_t pad;
9378 u16 old_len;
9379 u16 new_len;
9380
9381 struct {
9382 struct perf_event_header header;
9383
9384 u64 addr;
9385 } event_id;
9386 };
9387
perf_event_text_poke_match(struct perf_event * event)9388 static int perf_event_text_poke_match(struct perf_event *event)
9389 {
9390 return event->attr.text_poke;
9391 }
9392
perf_event_text_poke_output(struct perf_event * event,void * data)9393 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9394 {
9395 struct perf_text_poke_event *text_poke_event = data;
9396 struct perf_output_handle handle;
9397 struct perf_sample_data sample;
9398 u64 padding = 0;
9399 int ret;
9400
9401 if (!perf_event_text_poke_match(event))
9402 return;
9403
9404 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9405
9406 ret = perf_output_begin(&handle, &sample, event,
9407 text_poke_event->event_id.header.size);
9408 if (ret)
9409 return;
9410
9411 perf_output_put(&handle, text_poke_event->event_id);
9412 perf_output_put(&handle, text_poke_event->old_len);
9413 perf_output_put(&handle, text_poke_event->new_len);
9414
9415 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9416 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9417
9418 if (text_poke_event->pad)
9419 __output_copy(&handle, &padding, text_poke_event->pad);
9420
9421 perf_event__output_id_sample(event, &handle, &sample);
9422
9423 perf_output_end(&handle);
9424 }
9425
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9426 void perf_event_text_poke(const void *addr, const void *old_bytes,
9427 size_t old_len, const void *new_bytes, size_t new_len)
9428 {
9429 struct perf_text_poke_event text_poke_event;
9430 size_t tot, pad;
9431
9432 if (!atomic_read(&nr_text_poke_events))
9433 return;
9434
9435 tot = sizeof(text_poke_event.old_len) + old_len;
9436 tot += sizeof(text_poke_event.new_len) + new_len;
9437 pad = ALIGN(tot, sizeof(u64)) - tot;
9438
9439 text_poke_event = (struct perf_text_poke_event){
9440 .old_bytes = old_bytes,
9441 .new_bytes = new_bytes,
9442 .pad = pad,
9443 .old_len = old_len,
9444 .new_len = new_len,
9445 .event_id = {
9446 .header = {
9447 .type = PERF_RECORD_TEXT_POKE,
9448 .misc = PERF_RECORD_MISC_KERNEL,
9449 .size = sizeof(text_poke_event.event_id) + tot + pad,
9450 },
9451 .addr = (unsigned long)addr,
9452 },
9453 };
9454
9455 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9456 }
9457
perf_event_itrace_started(struct perf_event * event)9458 void perf_event_itrace_started(struct perf_event *event)
9459 {
9460 event->attach_state |= PERF_ATTACH_ITRACE;
9461 }
9462
perf_log_itrace_start(struct perf_event * event)9463 static void perf_log_itrace_start(struct perf_event *event)
9464 {
9465 struct perf_output_handle handle;
9466 struct perf_sample_data sample;
9467 struct perf_aux_event {
9468 struct perf_event_header header;
9469 u32 pid;
9470 u32 tid;
9471 } rec;
9472 int ret;
9473
9474 if (event->parent)
9475 event = event->parent;
9476
9477 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9478 event->attach_state & PERF_ATTACH_ITRACE)
9479 return;
9480
9481 rec.header.type = PERF_RECORD_ITRACE_START;
9482 rec.header.misc = 0;
9483 rec.header.size = sizeof(rec);
9484 rec.pid = perf_event_pid(event, current);
9485 rec.tid = perf_event_tid(event, current);
9486
9487 perf_event_header__init_id(&rec.header, &sample, event);
9488 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9489
9490 if (ret)
9491 return;
9492
9493 perf_output_put(&handle, rec);
9494 perf_event__output_id_sample(event, &handle, &sample);
9495
9496 perf_output_end(&handle);
9497 }
9498
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9499 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9500 {
9501 struct perf_output_handle handle;
9502 struct perf_sample_data sample;
9503 struct perf_aux_event {
9504 struct perf_event_header header;
9505 u64 hw_id;
9506 } rec;
9507 int ret;
9508
9509 if (event->parent)
9510 event = event->parent;
9511
9512 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9513 rec.header.misc = 0;
9514 rec.header.size = sizeof(rec);
9515 rec.hw_id = hw_id;
9516
9517 perf_event_header__init_id(&rec.header, &sample, event);
9518 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9519
9520 if (ret)
9521 return;
9522
9523 perf_output_put(&handle, rec);
9524 perf_event__output_id_sample(event, &handle, &sample);
9525
9526 perf_output_end(&handle);
9527 }
9528 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9529
9530 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9531 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9532 {
9533 struct hw_perf_event *hwc = &event->hw;
9534 int ret = 0;
9535 u64 seq;
9536
9537 seq = __this_cpu_read(perf_throttled_seq);
9538 if (seq != hwc->interrupts_seq) {
9539 hwc->interrupts_seq = seq;
9540 hwc->interrupts = 1;
9541 } else {
9542 hwc->interrupts++;
9543 if (unlikely(throttle &&
9544 hwc->interrupts > max_samples_per_tick)) {
9545 __this_cpu_inc(perf_throttled_count);
9546 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9547 hwc->interrupts = MAX_INTERRUPTS;
9548 perf_log_throttle(event, 0);
9549 ret = 1;
9550 }
9551 }
9552
9553 if (event->attr.freq) {
9554 u64 now = perf_clock();
9555 s64 delta = now - hwc->freq_time_stamp;
9556
9557 hwc->freq_time_stamp = now;
9558
9559 if (delta > 0 && delta < 2*TICK_NSEC)
9560 perf_adjust_period(event, delta, hwc->last_period, true);
9561 }
9562
9563 return ret;
9564 }
9565
perf_event_account_interrupt(struct perf_event * event)9566 int perf_event_account_interrupt(struct perf_event *event)
9567 {
9568 return __perf_event_account_interrupt(event, 1);
9569 }
9570
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9571 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9572 {
9573 /*
9574 * Due to interrupt latency (AKA "skid"), we may enter the
9575 * kernel before taking an overflow, even if the PMU is only
9576 * counting user events.
9577 */
9578 if (event->attr.exclude_kernel && !user_mode(regs))
9579 return false;
9580
9581 return true;
9582 }
9583
9584 /*
9585 * Generic event overflow handling, sampling.
9586 */
9587
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9588 static int __perf_event_overflow(struct perf_event *event,
9589 int throttle, struct perf_sample_data *data,
9590 struct pt_regs *regs)
9591 {
9592 int events = atomic_read(&event->event_limit);
9593 int ret = 0;
9594
9595 /*
9596 * Non-sampling counters might still use the PMI to fold short
9597 * hardware counters, ignore those.
9598 */
9599 if (unlikely(!is_sampling_event(event)))
9600 return 0;
9601
9602 ret = __perf_event_account_interrupt(event, throttle);
9603
9604 /*
9605 * XXX event_limit might not quite work as expected on inherited
9606 * events
9607 */
9608
9609 event->pending_kill = POLL_IN;
9610 if (events && atomic_dec_and_test(&event->event_limit)) {
9611 ret = 1;
9612 event->pending_kill = POLL_HUP;
9613 perf_event_disable_inatomic(event);
9614 }
9615
9616 if (event->attr.sigtrap) {
9617 /*
9618 * The desired behaviour of sigtrap vs invalid samples is a bit
9619 * tricky; on the one hand, one should not loose the SIGTRAP if
9620 * it is the first event, on the other hand, we should also not
9621 * trigger the WARN or override the data address.
9622 */
9623 bool valid_sample = sample_is_allowed(event, regs);
9624 unsigned int pending_id = 1;
9625
9626 if (regs)
9627 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9628 if (!event->pending_sigtrap) {
9629 event->pending_sigtrap = pending_id;
9630 local_inc(&event->ctx->nr_pending);
9631 } else if (event->attr.exclude_kernel && valid_sample) {
9632 /*
9633 * Should not be able to return to user space without
9634 * consuming pending_sigtrap; with exceptions:
9635 *
9636 * 1. Where !exclude_kernel, events can overflow again
9637 * in the kernel without returning to user space.
9638 *
9639 * 2. Events that can overflow again before the IRQ-
9640 * work without user space progress (e.g. hrtimer).
9641 * To approximate progress (with false negatives),
9642 * check 32-bit hash of the current IP.
9643 */
9644 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9645 }
9646
9647 event->pending_addr = 0;
9648 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9649 event->pending_addr = data->addr;
9650 irq_work_queue(&event->pending_irq);
9651 }
9652
9653 READ_ONCE(event->overflow_handler)(event, data, regs);
9654
9655 if (*perf_event_fasync(event) && event->pending_kill) {
9656 event->pending_wakeup = 1;
9657 irq_work_queue(&event->pending_irq);
9658 }
9659
9660 return ret;
9661 }
9662
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9663 int perf_event_overflow(struct perf_event *event,
9664 struct perf_sample_data *data,
9665 struct pt_regs *regs)
9666 {
9667 return __perf_event_overflow(event, 1, data, regs);
9668 }
9669
9670 /*
9671 * Generic software event infrastructure
9672 */
9673
9674 struct swevent_htable {
9675 struct swevent_hlist *swevent_hlist;
9676 struct mutex hlist_mutex;
9677 int hlist_refcount;
9678
9679 /* Recursion avoidance in each contexts */
9680 int recursion[PERF_NR_CONTEXTS];
9681 };
9682
9683 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9684
9685 /*
9686 * We directly increment event->count and keep a second value in
9687 * event->hw.period_left to count intervals. This period event
9688 * is kept in the range [-sample_period, 0] so that we can use the
9689 * sign as trigger.
9690 */
9691
perf_swevent_set_period(struct perf_event * event)9692 u64 perf_swevent_set_period(struct perf_event *event)
9693 {
9694 struct hw_perf_event *hwc = &event->hw;
9695 u64 period = hwc->last_period;
9696 u64 nr, offset;
9697 s64 old, val;
9698
9699 hwc->last_period = hwc->sample_period;
9700
9701 old = local64_read(&hwc->period_left);
9702 do {
9703 val = old;
9704 if (val < 0)
9705 return 0;
9706
9707 nr = div64_u64(period + val, period);
9708 offset = nr * period;
9709 val -= offset;
9710 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9711
9712 return nr;
9713 }
9714
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9715 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9716 struct perf_sample_data *data,
9717 struct pt_regs *regs)
9718 {
9719 struct hw_perf_event *hwc = &event->hw;
9720 int throttle = 0;
9721
9722 if (!overflow)
9723 overflow = perf_swevent_set_period(event);
9724
9725 if (hwc->interrupts == MAX_INTERRUPTS)
9726 return;
9727
9728 for (; overflow; overflow--) {
9729 if (__perf_event_overflow(event, throttle,
9730 data, regs)) {
9731 /*
9732 * We inhibit the overflow from happening when
9733 * hwc->interrupts == MAX_INTERRUPTS.
9734 */
9735 break;
9736 }
9737 throttle = 1;
9738 }
9739 }
9740
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9741 static void perf_swevent_event(struct perf_event *event, u64 nr,
9742 struct perf_sample_data *data,
9743 struct pt_regs *regs)
9744 {
9745 struct hw_perf_event *hwc = &event->hw;
9746
9747 local64_add(nr, &event->count);
9748
9749 if (!regs)
9750 return;
9751
9752 if (!is_sampling_event(event))
9753 return;
9754
9755 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9756 data->period = nr;
9757 return perf_swevent_overflow(event, 1, data, regs);
9758 } else
9759 data->period = event->hw.last_period;
9760
9761 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9762 return perf_swevent_overflow(event, 1, data, regs);
9763
9764 if (local64_add_negative(nr, &hwc->period_left))
9765 return;
9766
9767 perf_swevent_overflow(event, 0, data, regs);
9768 }
9769
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9770 static int perf_exclude_event(struct perf_event *event,
9771 struct pt_regs *regs)
9772 {
9773 if (event->hw.state & PERF_HES_STOPPED)
9774 return 1;
9775
9776 if (regs) {
9777 if (event->attr.exclude_user && user_mode(regs))
9778 return 1;
9779
9780 if (event->attr.exclude_kernel && !user_mode(regs))
9781 return 1;
9782 }
9783
9784 return 0;
9785 }
9786
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9787 static int perf_swevent_match(struct perf_event *event,
9788 enum perf_type_id type,
9789 u32 event_id,
9790 struct perf_sample_data *data,
9791 struct pt_regs *regs)
9792 {
9793 if (event->attr.type != type)
9794 return 0;
9795
9796 if (event->attr.config != event_id)
9797 return 0;
9798
9799 if (perf_exclude_event(event, regs))
9800 return 0;
9801
9802 return 1;
9803 }
9804
swevent_hash(u64 type,u32 event_id)9805 static inline u64 swevent_hash(u64 type, u32 event_id)
9806 {
9807 u64 val = event_id | (type << 32);
9808
9809 return hash_64(val, SWEVENT_HLIST_BITS);
9810 }
9811
9812 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9813 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9814 {
9815 u64 hash = swevent_hash(type, event_id);
9816
9817 return &hlist->heads[hash];
9818 }
9819
9820 /* For the read side: events when they trigger */
9821 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9822 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9823 {
9824 struct swevent_hlist *hlist;
9825
9826 hlist = rcu_dereference(swhash->swevent_hlist);
9827 if (!hlist)
9828 return NULL;
9829
9830 return __find_swevent_head(hlist, type, event_id);
9831 }
9832
9833 /* For the event head insertion and removal in the hlist */
9834 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9835 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9836 {
9837 struct swevent_hlist *hlist;
9838 u32 event_id = event->attr.config;
9839 u64 type = event->attr.type;
9840
9841 /*
9842 * Event scheduling is always serialized against hlist allocation
9843 * and release. Which makes the protected version suitable here.
9844 * The context lock guarantees that.
9845 */
9846 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9847 lockdep_is_held(&event->ctx->lock));
9848 if (!hlist)
9849 return NULL;
9850
9851 return __find_swevent_head(hlist, type, event_id);
9852 }
9853
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9854 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9855 u64 nr,
9856 struct perf_sample_data *data,
9857 struct pt_regs *regs)
9858 {
9859 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9860 struct perf_event *event;
9861 struct hlist_head *head;
9862
9863 rcu_read_lock();
9864 head = find_swevent_head_rcu(swhash, type, event_id);
9865 if (!head)
9866 goto end;
9867
9868 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9869 if (perf_swevent_match(event, type, event_id, data, regs))
9870 perf_swevent_event(event, nr, data, regs);
9871 }
9872 end:
9873 rcu_read_unlock();
9874 }
9875
9876 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9877
perf_swevent_get_recursion_context(void)9878 int perf_swevent_get_recursion_context(void)
9879 {
9880 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9881
9882 return get_recursion_context(swhash->recursion);
9883 }
9884 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9885
perf_swevent_put_recursion_context(int rctx)9886 void perf_swevent_put_recursion_context(int rctx)
9887 {
9888 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9889
9890 put_recursion_context(swhash->recursion, rctx);
9891 }
9892
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9893 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9894 {
9895 struct perf_sample_data data;
9896
9897 if (WARN_ON_ONCE(!regs))
9898 return;
9899
9900 perf_sample_data_init(&data, addr, 0);
9901 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9902 }
9903
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9904 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9905 {
9906 int rctx;
9907
9908 preempt_disable_notrace();
9909 rctx = perf_swevent_get_recursion_context();
9910 if (unlikely(rctx < 0))
9911 goto fail;
9912
9913 ___perf_sw_event(event_id, nr, regs, addr);
9914
9915 perf_swevent_put_recursion_context(rctx);
9916 fail:
9917 preempt_enable_notrace();
9918 }
9919
perf_swevent_read(struct perf_event * event)9920 static void perf_swevent_read(struct perf_event *event)
9921 {
9922 }
9923
perf_swevent_add(struct perf_event * event,int flags)9924 static int perf_swevent_add(struct perf_event *event, int flags)
9925 {
9926 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9927 struct hw_perf_event *hwc = &event->hw;
9928 struct hlist_head *head;
9929
9930 if (is_sampling_event(event)) {
9931 hwc->last_period = hwc->sample_period;
9932 perf_swevent_set_period(event);
9933 }
9934
9935 hwc->state = !(flags & PERF_EF_START);
9936
9937 head = find_swevent_head(swhash, event);
9938 if (WARN_ON_ONCE(!head))
9939 return -EINVAL;
9940
9941 hlist_add_head_rcu(&event->hlist_entry, head);
9942 perf_event_update_userpage(event);
9943
9944 return 0;
9945 }
9946
perf_swevent_del(struct perf_event * event,int flags)9947 static void perf_swevent_del(struct perf_event *event, int flags)
9948 {
9949 hlist_del_rcu(&event->hlist_entry);
9950 }
9951
perf_swevent_start(struct perf_event * event,int flags)9952 static void perf_swevent_start(struct perf_event *event, int flags)
9953 {
9954 event->hw.state = 0;
9955 }
9956
perf_swevent_stop(struct perf_event * event,int flags)9957 static void perf_swevent_stop(struct perf_event *event, int flags)
9958 {
9959 event->hw.state = PERF_HES_STOPPED;
9960 }
9961
9962 /* Deref the hlist from the update side */
9963 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9964 swevent_hlist_deref(struct swevent_htable *swhash)
9965 {
9966 return rcu_dereference_protected(swhash->swevent_hlist,
9967 lockdep_is_held(&swhash->hlist_mutex));
9968 }
9969
swevent_hlist_release(struct swevent_htable * swhash)9970 static void swevent_hlist_release(struct swevent_htable *swhash)
9971 {
9972 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9973
9974 if (!hlist)
9975 return;
9976
9977 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9978 kfree_rcu(hlist, rcu_head);
9979 }
9980
swevent_hlist_put_cpu(int cpu)9981 static void swevent_hlist_put_cpu(int cpu)
9982 {
9983 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9984
9985 mutex_lock(&swhash->hlist_mutex);
9986
9987 if (!--swhash->hlist_refcount)
9988 swevent_hlist_release(swhash);
9989
9990 mutex_unlock(&swhash->hlist_mutex);
9991 }
9992
swevent_hlist_put(void)9993 static void swevent_hlist_put(void)
9994 {
9995 int cpu;
9996
9997 for_each_possible_cpu(cpu)
9998 swevent_hlist_put_cpu(cpu);
9999 }
10000
swevent_hlist_get_cpu(int cpu)10001 static int swevent_hlist_get_cpu(int cpu)
10002 {
10003 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10004 int err = 0;
10005
10006 mutex_lock(&swhash->hlist_mutex);
10007 if (!swevent_hlist_deref(swhash) &&
10008 cpumask_test_cpu(cpu, perf_online_mask)) {
10009 struct swevent_hlist *hlist;
10010
10011 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10012 if (!hlist) {
10013 err = -ENOMEM;
10014 goto exit;
10015 }
10016 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10017 }
10018 swhash->hlist_refcount++;
10019 exit:
10020 mutex_unlock(&swhash->hlist_mutex);
10021
10022 return err;
10023 }
10024
swevent_hlist_get(void)10025 static int swevent_hlist_get(void)
10026 {
10027 int err, cpu, failed_cpu;
10028
10029 mutex_lock(&pmus_lock);
10030 for_each_possible_cpu(cpu) {
10031 err = swevent_hlist_get_cpu(cpu);
10032 if (err) {
10033 failed_cpu = cpu;
10034 goto fail;
10035 }
10036 }
10037 mutex_unlock(&pmus_lock);
10038 return 0;
10039 fail:
10040 for_each_possible_cpu(cpu) {
10041 if (cpu == failed_cpu)
10042 break;
10043 swevent_hlist_put_cpu(cpu);
10044 }
10045 mutex_unlock(&pmus_lock);
10046 return err;
10047 }
10048
10049 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10050
sw_perf_event_destroy(struct perf_event * event)10051 static void sw_perf_event_destroy(struct perf_event *event)
10052 {
10053 u64 event_id = event->attr.config;
10054
10055 WARN_ON(event->parent);
10056
10057 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10058 swevent_hlist_put();
10059 }
10060
10061 static struct pmu perf_cpu_clock; /* fwd declaration */
10062 static struct pmu perf_task_clock;
10063
perf_swevent_init(struct perf_event * event)10064 static int perf_swevent_init(struct perf_event *event)
10065 {
10066 u64 event_id = event->attr.config;
10067
10068 if (event->attr.type != PERF_TYPE_SOFTWARE)
10069 return -ENOENT;
10070
10071 /*
10072 * no branch sampling for software events
10073 */
10074 if (has_branch_stack(event))
10075 return -EOPNOTSUPP;
10076
10077 switch (event_id) {
10078 case PERF_COUNT_SW_CPU_CLOCK:
10079 event->attr.type = perf_cpu_clock.type;
10080 return -ENOENT;
10081 case PERF_COUNT_SW_TASK_CLOCK:
10082 event->attr.type = perf_task_clock.type;
10083 return -ENOENT;
10084
10085 default:
10086 break;
10087 }
10088
10089 if (event_id >= PERF_COUNT_SW_MAX)
10090 return -ENOENT;
10091
10092 if (!event->parent) {
10093 int err;
10094
10095 err = swevent_hlist_get();
10096 if (err)
10097 return err;
10098
10099 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10100 event->destroy = sw_perf_event_destroy;
10101 }
10102
10103 return 0;
10104 }
10105
10106 static struct pmu perf_swevent = {
10107 .task_ctx_nr = perf_sw_context,
10108
10109 .capabilities = PERF_PMU_CAP_NO_NMI,
10110
10111 .event_init = perf_swevent_init,
10112 .add = perf_swevent_add,
10113 .del = perf_swevent_del,
10114 .start = perf_swevent_start,
10115 .stop = perf_swevent_stop,
10116 .read = perf_swevent_read,
10117 };
10118
10119 #ifdef CONFIG_EVENT_TRACING
10120
tp_perf_event_destroy(struct perf_event * event)10121 static void tp_perf_event_destroy(struct perf_event *event)
10122 {
10123 perf_trace_destroy(event);
10124 }
10125
perf_tp_event_init(struct perf_event * event)10126 static int perf_tp_event_init(struct perf_event *event)
10127 {
10128 int err;
10129
10130 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10131 return -ENOENT;
10132
10133 /*
10134 * no branch sampling for tracepoint events
10135 */
10136 if (has_branch_stack(event))
10137 return -EOPNOTSUPP;
10138
10139 err = perf_trace_init(event);
10140 if (err)
10141 return err;
10142
10143 event->destroy = tp_perf_event_destroy;
10144
10145 return 0;
10146 }
10147
10148 static struct pmu perf_tracepoint = {
10149 .task_ctx_nr = perf_sw_context,
10150
10151 .event_init = perf_tp_event_init,
10152 .add = perf_trace_add,
10153 .del = perf_trace_del,
10154 .start = perf_swevent_start,
10155 .stop = perf_swevent_stop,
10156 .read = perf_swevent_read,
10157 };
10158
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)10159 static int perf_tp_filter_match(struct perf_event *event,
10160 struct perf_sample_data *data)
10161 {
10162 void *record = data->raw->frag.data;
10163
10164 /* only top level events have filters set */
10165 if (event->parent)
10166 event = event->parent;
10167
10168 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10169 return 1;
10170 return 0;
10171 }
10172
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10173 static int perf_tp_event_match(struct perf_event *event,
10174 struct perf_sample_data *data,
10175 struct pt_regs *regs)
10176 {
10177 if (event->hw.state & PERF_HES_STOPPED)
10178 return 0;
10179 /*
10180 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10181 */
10182 if (event->attr.exclude_kernel && !user_mode(regs))
10183 return 0;
10184
10185 if (!perf_tp_filter_match(event, data))
10186 return 0;
10187
10188 return 1;
10189 }
10190
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10191 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10192 struct trace_event_call *call, u64 count,
10193 struct pt_regs *regs, struct hlist_head *head,
10194 struct task_struct *task)
10195 {
10196 if (bpf_prog_array_valid(call)) {
10197 *(struct pt_regs **)raw_data = regs;
10198 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10199 perf_swevent_put_recursion_context(rctx);
10200 return;
10201 }
10202 }
10203 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10204 rctx, task);
10205 }
10206 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10207
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_event * event)10208 static void __perf_tp_event_target_task(u64 count, void *record,
10209 struct pt_regs *regs,
10210 struct perf_sample_data *data,
10211 struct perf_event *event)
10212 {
10213 struct trace_entry *entry = record;
10214
10215 if (event->attr.config != entry->type)
10216 return;
10217 /* Cannot deliver synchronous signal to other task. */
10218 if (event->attr.sigtrap)
10219 return;
10220 if (perf_tp_event_match(event, data, regs))
10221 perf_swevent_event(event, count, data, regs);
10222 }
10223
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_event_context * ctx)10224 static void perf_tp_event_target_task(u64 count, void *record,
10225 struct pt_regs *regs,
10226 struct perf_sample_data *data,
10227 struct perf_event_context *ctx)
10228 {
10229 unsigned int cpu = smp_processor_id();
10230 struct pmu *pmu = &perf_tracepoint;
10231 struct perf_event *event, *sibling;
10232
10233 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10234 __perf_tp_event_target_task(count, record, regs, data, event);
10235 for_each_sibling_event(sibling, event)
10236 __perf_tp_event_target_task(count, record, regs, data, sibling);
10237 }
10238
10239 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10240 __perf_tp_event_target_task(count, record, regs, data, event);
10241 for_each_sibling_event(sibling, event)
10242 __perf_tp_event_target_task(count, record, regs, data, sibling);
10243 }
10244 }
10245
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10246 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10247 struct pt_regs *regs, struct hlist_head *head, int rctx,
10248 struct task_struct *task)
10249 {
10250 struct perf_sample_data data;
10251 struct perf_event *event;
10252
10253 struct perf_raw_record raw = {
10254 .frag = {
10255 .size = entry_size,
10256 .data = record,
10257 },
10258 };
10259
10260 perf_sample_data_init(&data, 0, 0);
10261 perf_sample_save_raw_data(&data, &raw);
10262
10263 perf_trace_buf_update(record, event_type);
10264
10265 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10266 if (perf_tp_event_match(event, &data, regs)) {
10267 perf_swevent_event(event, count, &data, regs);
10268
10269 /*
10270 * Here use the same on-stack perf_sample_data,
10271 * some members in data are event-specific and
10272 * need to be re-computed for different sweveents.
10273 * Re-initialize data->sample_flags safely to avoid
10274 * the problem that next event skips preparing data
10275 * because data->sample_flags is set.
10276 */
10277 perf_sample_data_init(&data, 0, 0);
10278 perf_sample_save_raw_data(&data, &raw);
10279 }
10280 }
10281
10282 /*
10283 * If we got specified a target task, also iterate its context and
10284 * deliver this event there too.
10285 */
10286 if (task && task != current) {
10287 struct perf_event_context *ctx;
10288
10289 rcu_read_lock();
10290 ctx = rcu_dereference(task->perf_event_ctxp);
10291 if (!ctx)
10292 goto unlock;
10293
10294 raw_spin_lock(&ctx->lock);
10295 perf_tp_event_target_task(count, record, regs, &data, ctx);
10296 raw_spin_unlock(&ctx->lock);
10297 unlock:
10298 rcu_read_unlock();
10299 }
10300
10301 perf_swevent_put_recursion_context(rctx);
10302 }
10303 EXPORT_SYMBOL_GPL(perf_tp_event);
10304
10305 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10306 /*
10307 * Flags in config, used by dynamic PMU kprobe and uprobe
10308 * The flags should match following PMU_FORMAT_ATTR().
10309 *
10310 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10311 * if not set, create kprobe/uprobe
10312 *
10313 * The following values specify a reference counter (or semaphore in the
10314 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10315 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10316 *
10317 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10318 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10319 */
10320 enum perf_probe_config {
10321 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10322 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10323 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10324 };
10325
10326 PMU_FORMAT_ATTR(retprobe, "config:0");
10327 #endif
10328
10329 #ifdef CONFIG_KPROBE_EVENTS
10330 static struct attribute *kprobe_attrs[] = {
10331 &format_attr_retprobe.attr,
10332 NULL,
10333 };
10334
10335 static struct attribute_group kprobe_format_group = {
10336 .name = "format",
10337 .attrs = kprobe_attrs,
10338 };
10339
10340 static const struct attribute_group *kprobe_attr_groups[] = {
10341 &kprobe_format_group,
10342 NULL,
10343 };
10344
10345 static int perf_kprobe_event_init(struct perf_event *event);
10346 static struct pmu perf_kprobe = {
10347 .task_ctx_nr = perf_sw_context,
10348 .event_init = perf_kprobe_event_init,
10349 .add = perf_trace_add,
10350 .del = perf_trace_del,
10351 .start = perf_swevent_start,
10352 .stop = perf_swevent_stop,
10353 .read = perf_swevent_read,
10354 .attr_groups = kprobe_attr_groups,
10355 };
10356
perf_kprobe_event_init(struct perf_event * event)10357 static int perf_kprobe_event_init(struct perf_event *event)
10358 {
10359 int err;
10360 bool is_retprobe;
10361
10362 if (event->attr.type != perf_kprobe.type)
10363 return -ENOENT;
10364
10365 if (!perfmon_capable())
10366 return -EACCES;
10367
10368 /*
10369 * no branch sampling for probe events
10370 */
10371 if (has_branch_stack(event))
10372 return -EOPNOTSUPP;
10373
10374 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10375 err = perf_kprobe_init(event, is_retprobe);
10376 if (err)
10377 return err;
10378
10379 event->destroy = perf_kprobe_destroy;
10380
10381 return 0;
10382 }
10383 #endif /* CONFIG_KPROBE_EVENTS */
10384
10385 #ifdef CONFIG_UPROBE_EVENTS
10386 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10387
10388 static struct attribute *uprobe_attrs[] = {
10389 &format_attr_retprobe.attr,
10390 &format_attr_ref_ctr_offset.attr,
10391 NULL,
10392 };
10393
10394 static struct attribute_group uprobe_format_group = {
10395 .name = "format",
10396 .attrs = uprobe_attrs,
10397 };
10398
10399 static const struct attribute_group *uprobe_attr_groups[] = {
10400 &uprobe_format_group,
10401 NULL,
10402 };
10403
10404 static int perf_uprobe_event_init(struct perf_event *event);
10405 static struct pmu perf_uprobe = {
10406 .task_ctx_nr = perf_sw_context,
10407 .event_init = perf_uprobe_event_init,
10408 .add = perf_trace_add,
10409 .del = perf_trace_del,
10410 .start = perf_swevent_start,
10411 .stop = perf_swevent_stop,
10412 .read = perf_swevent_read,
10413 .attr_groups = uprobe_attr_groups,
10414 };
10415
perf_uprobe_event_init(struct perf_event * event)10416 static int perf_uprobe_event_init(struct perf_event *event)
10417 {
10418 int err;
10419 unsigned long ref_ctr_offset;
10420 bool is_retprobe;
10421
10422 if (event->attr.type != perf_uprobe.type)
10423 return -ENOENT;
10424
10425 if (!perfmon_capable())
10426 return -EACCES;
10427
10428 /*
10429 * no branch sampling for probe events
10430 */
10431 if (has_branch_stack(event))
10432 return -EOPNOTSUPP;
10433
10434 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10435 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10436 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10437 if (err)
10438 return err;
10439
10440 event->destroy = perf_uprobe_destroy;
10441
10442 return 0;
10443 }
10444 #endif /* CONFIG_UPROBE_EVENTS */
10445
perf_tp_register(void)10446 static inline void perf_tp_register(void)
10447 {
10448 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10449 #ifdef CONFIG_KPROBE_EVENTS
10450 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10451 #endif
10452 #ifdef CONFIG_UPROBE_EVENTS
10453 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10454 #endif
10455 }
10456
perf_event_free_filter(struct perf_event * event)10457 static void perf_event_free_filter(struct perf_event *event)
10458 {
10459 ftrace_profile_free_filter(event);
10460 }
10461
10462 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10463 static void bpf_overflow_handler(struct perf_event *event,
10464 struct perf_sample_data *data,
10465 struct pt_regs *regs)
10466 {
10467 struct bpf_perf_event_data_kern ctx = {
10468 .data = data,
10469 .event = event,
10470 };
10471 struct bpf_prog *prog;
10472 int ret = 0;
10473
10474 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10475 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10476 goto out;
10477 rcu_read_lock();
10478 prog = READ_ONCE(event->prog);
10479 if (prog) {
10480 perf_prepare_sample(data, event, regs);
10481 ret = bpf_prog_run(prog, &ctx);
10482 }
10483 rcu_read_unlock();
10484 out:
10485 __this_cpu_dec(bpf_prog_active);
10486 if (!ret)
10487 return;
10488
10489 event->orig_overflow_handler(event, data, regs);
10490 }
10491
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10492 static int perf_event_set_bpf_handler(struct perf_event *event,
10493 struct bpf_prog *prog,
10494 u64 bpf_cookie)
10495 {
10496 if (event->overflow_handler_context)
10497 /* hw breakpoint or kernel counter */
10498 return -EINVAL;
10499
10500 if (event->prog)
10501 return -EEXIST;
10502
10503 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10504 return -EINVAL;
10505
10506 if (event->attr.precise_ip &&
10507 prog->call_get_stack &&
10508 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10509 event->attr.exclude_callchain_kernel ||
10510 event->attr.exclude_callchain_user)) {
10511 /*
10512 * On perf_event with precise_ip, calling bpf_get_stack()
10513 * may trigger unwinder warnings and occasional crashes.
10514 * bpf_get_[stack|stackid] works around this issue by using
10515 * callchain attached to perf_sample_data. If the
10516 * perf_event does not full (kernel and user) callchain
10517 * attached to perf_sample_data, do not allow attaching BPF
10518 * program that calls bpf_get_[stack|stackid].
10519 */
10520 return -EPROTO;
10521 }
10522
10523 event->prog = prog;
10524 event->bpf_cookie = bpf_cookie;
10525 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10526 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10527 return 0;
10528 }
10529
perf_event_free_bpf_handler(struct perf_event * event)10530 static void perf_event_free_bpf_handler(struct perf_event *event)
10531 {
10532 struct bpf_prog *prog = event->prog;
10533
10534 if (!prog)
10535 return;
10536
10537 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10538 event->prog = NULL;
10539 bpf_prog_put(prog);
10540 }
10541 #else
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10542 static int perf_event_set_bpf_handler(struct perf_event *event,
10543 struct bpf_prog *prog,
10544 u64 bpf_cookie)
10545 {
10546 return -EOPNOTSUPP;
10547 }
perf_event_free_bpf_handler(struct perf_event * event)10548 static void perf_event_free_bpf_handler(struct perf_event *event)
10549 {
10550 }
10551 #endif
10552
10553 /*
10554 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10555 * with perf_event_open()
10556 */
perf_event_is_tracing(struct perf_event * event)10557 static inline bool perf_event_is_tracing(struct perf_event *event)
10558 {
10559 if (event->pmu == &perf_tracepoint)
10560 return true;
10561 #ifdef CONFIG_KPROBE_EVENTS
10562 if (event->pmu == &perf_kprobe)
10563 return true;
10564 #endif
10565 #ifdef CONFIG_UPROBE_EVENTS
10566 if (event->pmu == &perf_uprobe)
10567 return true;
10568 #endif
10569 return false;
10570 }
10571
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10572 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10573 u64 bpf_cookie)
10574 {
10575 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10576
10577 if (!perf_event_is_tracing(event))
10578 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10579
10580 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10581 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10582 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10583 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10584 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10585 /* bpf programs can only be attached to u/kprobe or tracepoint */
10586 return -EINVAL;
10587
10588 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10589 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10590 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10591 return -EINVAL;
10592
10593 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10594 /* only uprobe programs are allowed to be sleepable */
10595 return -EINVAL;
10596
10597 /* Kprobe override only works for kprobes, not uprobes. */
10598 if (prog->kprobe_override && !is_kprobe)
10599 return -EINVAL;
10600
10601 if (is_tracepoint || is_syscall_tp) {
10602 int off = trace_event_get_offsets(event->tp_event);
10603
10604 if (prog->aux->max_ctx_offset > off)
10605 return -EACCES;
10606 }
10607
10608 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10609 }
10610
perf_event_free_bpf_prog(struct perf_event * event)10611 void perf_event_free_bpf_prog(struct perf_event *event)
10612 {
10613 if (!perf_event_is_tracing(event)) {
10614 perf_event_free_bpf_handler(event);
10615 return;
10616 }
10617 perf_event_detach_bpf_prog(event);
10618 }
10619
10620 #else
10621
perf_tp_register(void)10622 static inline void perf_tp_register(void)
10623 {
10624 }
10625
perf_event_free_filter(struct perf_event * event)10626 static void perf_event_free_filter(struct perf_event *event)
10627 {
10628 }
10629
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10630 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10631 u64 bpf_cookie)
10632 {
10633 return -ENOENT;
10634 }
10635
perf_event_free_bpf_prog(struct perf_event * event)10636 void perf_event_free_bpf_prog(struct perf_event *event)
10637 {
10638 }
10639 #endif /* CONFIG_EVENT_TRACING */
10640
10641 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10642 void perf_bp_event(struct perf_event *bp, void *data)
10643 {
10644 struct perf_sample_data sample;
10645 struct pt_regs *regs = data;
10646
10647 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10648
10649 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10650 perf_swevent_event(bp, 1, &sample, regs);
10651 }
10652 #endif
10653
10654 /*
10655 * Allocate a new address filter
10656 */
10657 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10658 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10659 {
10660 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10661 struct perf_addr_filter *filter;
10662
10663 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10664 if (!filter)
10665 return NULL;
10666
10667 INIT_LIST_HEAD(&filter->entry);
10668 list_add_tail(&filter->entry, filters);
10669
10670 return filter;
10671 }
10672
free_filters_list(struct list_head * filters)10673 static void free_filters_list(struct list_head *filters)
10674 {
10675 struct perf_addr_filter *filter, *iter;
10676
10677 list_for_each_entry_safe(filter, iter, filters, entry) {
10678 path_put(&filter->path);
10679 list_del(&filter->entry);
10680 kfree(filter);
10681 }
10682 }
10683
10684 /*
10685 * Free existing address filters and optionally install new ones
10686 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10687 static void perf_addr_filters_splice(struct perf_event *event,
10688 struct list_head *head)
10689 {
10690 unsigned long flags;
10691 LIST_HEAD(list);
10692
10693 if (!has_addr_filter(event))
10694 return;
10695
10696 /* don't bother with children, they don't have their own filters */
10697 if (event->parent)
10698 return;
10699
10700 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10701
10702 list_splice_init(&event->addr_filters.list, &list);
10703 if (head)
10704 list_splice(head, &event->addr_filters.list);
10705
10706 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10707
10708 free_filters_list(&list);
10709 }
10710
10711 /*
10712 * Scan through mm's vmas and see if one of them matches the
10713 * @filter; if so, adjust filter's address range.
10714 * Called with mm::mmap_lock down for reading.
10715 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10716 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10717 struct mm_struct *mm,
10718 struct perf_addr_filter_range *fr)
10719 {
10720 struct vm_area_struct *vma;
10721 VMA_ITERATOR(vmi, mm, 0);
10722
10723 for_each_vma(vmi, vma) {
10724 if (!vma->vm_file)
10725 continue;
10726
10727 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10728 return;
10729 }
10730 }
10731
10732 /*
10733 * Update event's address range filters based on the
10734 * task's existing mappings, if any.
10735 */
perf_event_addr_filters_apply(struct perf_event * event)10736 static void perf_event_addr_filters_apply(struct perf_event *event)
10737 {
10738 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10739 struct task_struct *task = READ_ONCE(event->ctx->task);
10740 struct perf_addr_filter *filter;
10741 struct mm_struct *mm = NULL;
10742 unsigned int count = 0;
10743 unsigned long flags;
10744
10745 /*
10746 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10747 * will stop on the parent's child_mutex that our caller is also holding
10748 */
10749 if (task == TASK_TOMBSTONE)
10750 return;
10751
10752 if (ifh->nr_file_filters) {
10753 mm = get_task_mm(task);
10754 if (!mm)
10755 goto restart;
10756
10757 mmap_read_lock(mm);
10758 }
10759
10760 raw_spin_lock_irqsave(&ifh->lock, flags);
10761 list_for_each_entry(filter, &ifh->list, entry) {
10762 if (filter->path.dentry) {
10763 /*
10764 * Adjust base offset if the filter is associated to a
10765 * binary that needs to be mapped:
10766 */
10767 event->addr_filter_ranges[count].start = 0;
10768 event->addr_filter_ranges[count].size = 0;
10769
10770 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10771 } else {
10772 event->addr_filter_ranges[count].start = filter->offset;
10773 event->addr_filter_ranges[count].size = filter->size;
10774 }
10775
10776 count++;
10777 }
10778
10779 event->addr_filters_gen++;
10780 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10781
10782 if (ifh->nr_file_filters) {
10783 mmap_read_unlock(mm);
10784
10785 mmput(mm);
10786 }
10787
10788 restart:
10789 perf_event_stop(event, 1);
10790 }
10791
10792 /*
10793 * Address range filtering: limiting the data to certain
10794 * instruction address ranges. Filters are ioctl()ed to us from
10795 * userspace as ascii strings.
10796 *
10797 * Filter string format:
10798 *
10799 * ACTION RANGE_SPEC
10800 * where ACTION is one of the
10801 * * "filter": limit the trace to this region
10802 * * "start": start tracing from this address
10803 * * "stop": stop tracing at this address/region;
10804 * RANGE_SPEC is
10805 * * for kernel addresses: <start address>[/<size>]
10806 * * for object files: <start address>[/<size>]@</path/to/object/file>
10807 *
10808 * if <size> is not specified or is zero, the range is treated as a single
10809 * address; not valid for ACTION=="filter".
10810 */
10811 enum {
10812 IF_ACT_NONE = -1,
10813 IF_ACT_FILTER,
10814 IF_ACT_START,
10815 IF_ACT_STOP,
10816 IF_SRC_FILE,
10817 IF_SRC_KERNEL,
10818 IF_SRC_FILEADDR,
10819 IF_SRC_KERNELADDR,
10820 };
10821
10822 enum {
10823 IF_STATE_ACTION = 0,
10824 IF_STATE_SOURCE,
10825 IF_STATE_END,
10826 };
10827
10828 static const match_table_t if_tokens = {
10829 { IF_ACT_FILTER, "filter" },
10830 { IF_ACT_START, "start" },
10831 { IF_ACT_STOP, "stop" },
10832 { IF_SRC_FILE, "%u/%u@%s" },
10833 { IF_SRC_KERNEL, "%u/%u" },
10834 { IF_SRC_FILEADDR, "%u@%s" },
10835 { IF_SRC_KERNELADDR, "%u" },
10836 { IF_ACT_NONE, NULL },
10837 };
10838
10839 /*
10840 * Address filter string parser
10841 */
10842 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10843 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10844 struct list_head *filters)
10845 {
10846 struct perf_addr_filter *filter = NULL;
10847 char *start, *orig, *filename = NULL;
10848 substring_t args[MAX_OPT_ARGS];
10849 int state = IF_STATE_ACTION, token;
10850 unsigned int kernel = 0;
10851 int ret = -EINVAL;
10852
10853 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10854 if (!fstr)
10855 return -ENOMEM;
10856
10857 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10858 static const enum perf_addr_filter_action_t actions[] = {
10859 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10860 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10861 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10862 };
10863 ret = -EINVAL;
10864
10865 if (!*start)
10866 continue;
10867
10868 /* filter definition begins */
10869 if (state == IF_STATE_ACTION) {
10870 filter = perf_addr_filter_new(event, filters);
10871 if (!filter)
10872 goto fail;
10873 }
10874
10875 token = match_token(start, if_tokens, args);
10876 switch (token) {
10877 case IF_ACT_FILTER:
10878 case IF_ACT_START:
10879 case IF_ACT_STOP:
10880 if (state != IF_STATE_ACTION)
10881 goto fail;
10882
10883 filter->action = actions[token];
10884 state = IF_STATE_SOURCE;
10885 break;
10886
10887 case IF_SRC_KERNELADDR:
10888 case IF_SRC_KERNEL:
10889 kernel = 1;
10890 fallthrough;
10891
10892 case IF_SRC_FILEADDR:
10893 case IF_SRC_FILE:
10894 if (state != IF_STATE_SOURCE)
10895 goto fail;
10896
10897 *args[0].to = 0;
10898 ret = kstrtoul(args[0].from, 0, &filter->offset);
10899 if (ret)
10900 goto fail;
10901
10902 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10903 *args[1].to = 0;
10904 ret = kstrtoul(args[1].from, 0, &filter->size);
10905 if (ret)
10906 goto fail;
10907 }
10908
10909 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10910 int fpos = token == IF_SRC_FILE ? 2 : 1;
10911
10912 kfree(filename);
10913 filename = match_strdup(&args[fpos]);
10914 if (!filename) {
10915 ret = -ENOMEM;
10916 goto fail;
10917 }
10918 }
10919
10920 state = IF_STATE_END;
10921 break;
10922
10923 default:
10924 goto fail;
10925 }
10926
10927 /*
10928 * Filter definition is fully parsed, validate and install it.
10929 * Make sure that it doesn't contradict itself or the event's
10930 * attribute.
10931 */
10932 if (state == IF_STATE_END) {
10933 ret = -EINVAL;
10934
10935 /*
10936 * ACTION "filter" must have a non-zero length region
10937 * specified.
10938 */
10939 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10940 !filter->size)
10941 goto fail;
10942
10943 if (!kernel) {
10944 if (!filename)
10945 goto fail;
10946
10947 /*
10948 * For now, we only support file-based filters
10949 * in per-task events; doing so for CPU-wide
10950 * events requires additional context switching
10951 * trickery, since same object code will be
10952 * mapped at different virtual addresses in
10953 * different processes.
10954 */
10955 ret = -EOPNOTSUPP;
10956 if (!event->ctx->task)
10957 goto fail;
10958
10959 /* look up the path and grab its inode */
10960 ret = kern_path(filename, LOOKUP_FOLLOW,
10961 &filter->path);
10962 if (ret)
10963 goto fail;
10964
10965 ret = -EINVAL;
10966 if (!filter->path.dentry ||
10967 !S_ISREG(d_inode(filter->path.dentry)
10968 ->i_mode))
10969 goto fail;
10970
10971 event->addr_filters.nr_file_filters++;
10972 }
10973
10974 /* ready to consume more filters */
10975 kfree(filename);
10976 filename = NULL;
10977 state = IF_STATE_ACTION;
10978 filter = NULL;
10979 kernel = 0;
10980 }
10981 }
10982
10983 if (state != IF_STATE_ACTION)
10984 goto fail;
10985
10986 kfree(filename);
10987 kfree(orig);
10988
10989 return 0;
10990
10991 fail:
10992 kfree(filename);
10993 free_filters_list(filters);
10994 kfree(orig);
10995
10996 return ret;
10997 }
10998
10999 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11000 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11001 {
11002 LIST_HEAD(filters);
11003 int ret;
11004
11005 /*
11006 * Since this is called in perf_ioctl() path, we're already holding
11007 * ctx::mutex.
11008 */
11009 lockdep_assert_held(&event->ctx->mutex);
11010
11011 if (WARN_ON_ONCE(event->parent))
11012 return -EINVAL;
11013
11014 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11015 if (ret)
11016 goto fail_clear_files;
11017
11018 ret = event->pmu->addr_filters_validate(&filters);
11019 if (ret)
11020 goto fail_free_filters;
11021
11022 /* remove existing filters, if any */
11023 perf_addr_filters_splice(event, &filters);
11024
11025 /* install new filters */
11026 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11027
11028 return ret;
11029
11030 fail_free_filters:
11031 free_filters_list(&filters);
11032
11033 fail_clear_files:
11034 event->addr_filters.nr_file_filters = 0;
11035
11036 return ret;
11037 }
11038
perf_event_set_filter(struct perf_event * event,void __user * arg)11039 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11040 {
11041 int ret = -EINVAL;
11042 char *filter_str;
11043
11044 filter_str = strndup_user(arg, PAGE_SIZE);
11045 if (IS_ERR(filter_str))
11046 return PTR_ERR(filter_str);
11047
11048 #ifdef CONFIG_EVENT_TRACING
11049 if (perf_event_is_tracing(event)) {
11050 struct perf_event_context *ctx = event->ctx;
11051
11052 /*
11053 * Beware, here be dragons!!
11054 *
11055 * the tracepoint muck will deadlock against ctx->mutex, but
11056 * the tracepoint stuff does not actually need it. So
11057 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11058 * already have a reference on ctx.
11059 *
11060 * This can result in event getting moved to a different ctx,
11061 * but that does not affect the tracepoint state.
11062 */
11063 mutex_unlock(&ctx->mutex);
11064 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11065 mutex_lock(&ctx->mutex);
11066 } else
11067 #endif
11068 if (has_addr_filter(event))
11069 ret = perf_event_set_addr_filter(event, filter_str);
11070
11071 kfree(filter_str);
11072 return ret;
11073 }
11074
11075 /*
11076 * hrtimer based swevent callback
11077 */
11078
perf_swevent_hrtimer(struct hrtimer * hrtimer)11079 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11080 {
11081 enum hrtimer_restart ret = HRTIMER_RESTART;
11082 struct perf_sample_data data;
11083 struct pt_regs *regs;
11084 struct perf_event *event;
11085 u64 period;
11086
11087 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11088
11089 if (event->state != PERF_EVENT_STATE_ACTIVE)
11090 return HRTIMER_NORESTART;
11091
11092 event->pmu->read(event);
11093
11094 perf_sample_data_init(&data, 0, event->hw.last_period);
11095 regs = get_irq_regs();
11096
11097 if (regs && !perf_exclude_event(event, regs)) {
11098 if (!(event->attr.exclude_idle && is_idle_task(current)))
11099 if (__perf_event_overflow(event, 1, &data, regs))
11100 ret = HRTIMER_NORESTART;
11101 }
11102
11103 period = max_t(u64, 10000, event->hw.sample_period);
11104 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11105
11106 return ret;
11107 }
11108
perf_swevent_start_hrtimer(struct perf_event * event)11109 static void perf_swevent_start_hrtimer(struct perf_event *event)
11110 {
11111 struct hw_perf_event *hwc = &event->hw;
11112 s64 period;
11113
11114 if (!is_sampling_event(event))
11115 return;
11116
11117 period = local64_read(&hwc->period_left);
11118 if (period) {
11119 if (period < 0)
11120 period = 10000;
11121
11122 local64_set(&hwc->period_left, 0);
11123 } else {
11124 period = max_t(u64, 10000, hwc->sample_period);
11125 }
11126 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11127 HRTIMER_MODE_REL_PINNED_HARD);
11128 }
11129
perf_swevent_cancel_hrtimer(struct perf_event * event)11130 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11131 {
11132 struct hw_perf_event *hwc = &event->hw;
11133
11134 if (is_sampling_event(event)) {
11135 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11136 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11137
11138 hrtimer_cancel(&hwc->hrtimer);
11139 }
11140 }
11141
perf_swevent_init_hrtimer(struct perf_event * event)11142 static void perf_swevent_init_hrtimer(struct perf_event *event)
11143 {
11144 struct hw_perf_event *hwc = &event->hw;
11145
11146 if (!is_sampling_event(event))
11147 return;
11148
11149 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11150 hwc->hrtimer.function = perf_swevent_hrtimer;
11151
11152 /*
11153 * Since hrtimers have a fixed rate, we can do a static freq->period
11154 * mapping and avoid the whole period adjust feedback stuff.
11155 */
11156 if (event->attr.freq) {
11157 long freq = event->attr.sample_freq;
11158
11159 event->attr.sample_period = NSEC_PER_SEC / freq;
11160 hwc->sample_period = event->attr.sample_period;
11161 local64_set(&hwc->period_left, hwc->sample_period);
11162 hwc->last_period = hwc->sample_period;
11163 event->attr.freq = 0;
11164 }
11165 }
11166
11167 /*
11168 * Software event: cpu wall time clock
11169 */
11170
cpu_clock_event_update(struct perf_event * event)11171 static void cpu_clock_event_update(struct perf_event *event)
11172 {
11173 s64 prev;
11174 u64 now;
11175
11176 now = local_clock();
11177 prev = local64_xchg(&event->hw.prev_count, now);
11178 local64_add(now - prev, &event->count);
11179 }
11180
cpu_clock_event_start(struct perf_event * event,int flags)11181 static void cpu_clock_event_start(struct perf_event *event, int flags)
11182 {
11183 local64_set(&event->hw.prev_count, local_clock());
11184 perf_swevent_start_hrtimer(event);
11185 }
11186
cpu_clock_event_stop(struct perf_event * event,int flags)11187 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11188 {
11189 perf_swevent_cancel_hrtimer(event);
11190 cpu_clock_event_update(event);
11191 }
11192
cpu_clock_event_add(struct perf_event * event,int flags)11193 static int cpu_clock_event_add(struct perf_event *event, int flags)
11194 {
11195 if (flags & PERF_EF_START)
11196 cpu_clock_event_start(event, flags);
11197 perf_event_update_userpage(event);
11198
11199 return 0;
11200 }
11201
cpu_clock_event_del(struct perf_event * event,int flags)11202 static void cpu_clock_event_del(struct perf_event *event, int flags)
11203 {
11204 cpu_clock_event_stop(event, flags);
11205 }
11206
cpu_clock_event_read(struct perf_event * event)11207 static void cpu_clock_event_read(struct perf_event *event)
11208 {
11209 cpu_clock_event_update(event);
11210 }
11211
cpu_clock_event_init(struct perf_event * event)11212 static int cpu_clock_event_init(struct perf_event *event)
11213 {
11214 if (event->attr.type != perf_cpu_clock.type)
11215 return -ENOENT;
11216
11217 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11218 return -ENOENT;
11219
11220 /*
11221 * no branch sampling for software events
11222 */
11223 if (has_branch_stack(event))
11224 return -EOPNOTSUPP;
11225
11226 perf_swevent_init_hrtimer(event);
11227
11228 return 0;
11229 }
11230
11231 static struct pmu perf_cpu_clock = {
11232 .task_ctx_nr = perf_sw_context,
11233
11234 .capabilities = PERF_PMU_CAP_NO_NMI,
11235 .dev = PMU_NULL_DEV,
11236
11237 .event_init = cpu_clock_event_init,
11238 .add = cpu_clock_event_add,
11239 .del = cpu_clock_event_del,
11240 .start = cpu_clock_event_start,
11241 .stop = cpu_clock_event_stop,
11242 .read = cpu_clock_event_read,
11243 };
11244
11245 /*
11246 * Software event: task time clock
11247 */
11248
task_clock_event_update(struct perf_event * event,u64 now)11249 static void task_clock_event_update(struct perf_event *event, u64 now)
11250 {
11251 u64 prev;
11252 s64 delta;
11253
11254 prev = local64_xchg(&event->hw.prev_count, now);
11255 delta = now - prev;
11256 local64_add(delta, &event->count);
11257 }
11258
task_clock_event_start(struct perf_event * event,int flags)11259 static void task_clock_event_start(struct perf_event *event, int flags)
11260 {
11261 local64_set(&event->hw.prev_count, event->ctx->time);
11262 perf_swevent_start_hrtimer(event);
11263 }
11264
task_clock_event_stop(struct perf_event * event,int flags)11265 static void task_clock_event_stop(struct perf_event *event, int flags)
11266 {
11267 perf_swevent_cancel_hrtimer(event);
11268 task_clock_event_update(event, event->ctx->time);
11269 }
11270
task_clock_event_add(struct perf_event * event,int flags)11271 static int task_clock_event_add(struct perf_event *event, int flags)
11272 {
11273 if (flags & PERF_EF_START)
11274 task_clock_event_start(event, flags);
11275 perf_event_update_userpage(event);
11276
11277 return 0;
11278 }
11279
task_clock_event_del(struct perf_event * event,int flags)11280 static void task_clock_event_del(struct perf_event *event, int flags)
11281 {
11282 task_clock_event_stop(event, PERF_EF_UPDATE);
11283 }
11284
task_clock_event_read(struct perf_event * event)11285 static void task_clock_event_read(struct perf_event *event)
11286 {
11287 u64 now = perf_clock();
11288 u64 delta = now - event->ctx->timestamp;
11289 u64 time = event->ctx->time + delta;
11290
11291 task_clock_event_update(event, time);
11292 }
11293
task_clock_event_init(struct perf_event * event)11294 static int task_clock_event_init(struct perf_event *event)
11295 {
11296 if (event->attr.type != perf_task_clock.type)
11297 return -ENOENT;
11298
11299 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11300 return -ENOENT;
11301
11302 /*
11303 * no branch sampling for software events
11304 */
11305 if (has_branch_stack(event))
11306 return -EOPNOTSUPP;
11307
11308 perf_swevent_init_hrtimer(event);
11309
11310 return 0;
11311 }
11312
11313 static struct pmu perf_task_clock = {
11314 .task_ctx_nr = perf_sw_context,
11315
11316 .capabilities = PERF_PMU_CAP_NO_NMI,
11317 .dev = PMU_NULL_DEV,
11318
11319 .event_init = task_clock_event_init,
11320 .add = task_clock_event_add,
11321 .del = task_clock_event_del,
11322 .start = task_clock_event_start,
11323 .stop = task_clock_event_stop,
11324 .read = task_clock_event_read,
11325 };
11326
perf_pmu_nop_void(struct pmu * pmu)11327 static void perf_pmu_nop_void(struct pmu *pmu)
11328 {
11329 }
11330
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11331 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11332 {
11333 }
11334
perf_pmu_nop_int(struct pmu * pmu)11335 static int perf_pmu_nop_int(struct pmu *pmu)
11336 {
11337 return 0;
11338 }
11339
perf_event_nop_int(struct perf_event * event,u64 value)11340 static int perf_event_nop_int(struct perf_event *event, u64 value)
11341 {
11342 return 0;
11343 }
11344
11345 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11346
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11347 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11348 {
11349 __this_cpu_write(nop_txn_flags, flags);
11350
11351 if (flags & ~PERF_PMU_TXN_ADD)
11352 return;
11353
11354 perf_pmu_disable(pmu);
11355 }
11356
perf_pmu_commit_txn(struct pmu * pmu)11357 static int perf_pmu_commit_txn(struct pmu *pmu)
11358 {
11359 unsigned int flags = __this_cpu_read(nop_txn_flags);
11360
11361 __this_cpu_write(nop_txn_flags, 0);
11362
11363 if (flags & ~PERF_PMU_TXN_ADD)
11364 return 0;
11365
11366 perf_pmu_enable(pmu);
11367 return 0;
11368 }
11369
perf_pmu_cancel_txn(struct pmu * pmu)11370 static void perf_pmu_cancel_txn(struct pmu *pmu)
11371 {
11372 unsigned int flags = __this_cpu_read(nop_txn_flags);
11373
11374 __this_cpu_write(nop_txn_flags, 0);
11375
11376 if (flags & ~PERF_PMU_TXN_ADD)
11377 return;
11378
11379 perf_pmu_enable(pmu);
11380 }
11381
perf_event_idx_default(struct perf_event * event)11382 static int perf_event_idx_default(struct perf_event *event)
11383 {
11384 return 0;
11385 }
11386
free_pmu_context(struct pmu * pmu)11387 static void free_pmu_context(struct pmu *pmu)
11388 {
11389 free_percpu(pmu->cpu_pmu_context);
11390 }
11391
11392 /*
11393 * Let userspace know that this PMU supports address range filtering:
11394 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11395 static ssize_t nr_addr_filters_show(struct device *dev,
11396 struct device_attribute *attr,
11397 char *page)
11398 {
11399 struct pmu *pmu = dev_get_drvdata(dev);
11400
11401 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11402 }
11403 DEVICE_ATTR_RO(nr_addr_filters);
11404
11405 static struct idr pmu_idr;
11406
11407 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11408 type_show(struct device *dev, struct device_attribute *attr, char *page)
11409 {
11410 struct pmu *pmu = dev_get_drvdata(dev);
11411
11412 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11413 }
11414 static DEVICE_ATTR_RO(type);
11415
11416 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11417 perf_event_mux_interval_ms_show(struct device *dev,
11418 struct device_attribute *attr,
11419 char *page)
11420 {
11421 struct pmu *pmu = dev_get_drvdata(dev);
11422
11423 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11424 }
11425
11426 static DEFINE_MUTEX(mux_interval_mutex);
11427
11428 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11429 perf_event_mux_interval_ms_store(struct device *dev,
11430 struct device_attribute *attr,
11431 const char *buf, size_t count)
11432 {
11433 struct pmu *pmu = dev_get_drvdata(dev);
11434 int timer, cpu, ret;
11435
11436 ret = kstrtoint(buf, 0, &timer);
11437 if (ret)
11438 return ret;
11439
11440 if (timer < 1)
11441 return -EINVAL;
11442
11443 /* same value, noting to do */
11444 if (timer == pmu->hrtimer_interval_ms)
11445 return count;
11446
11447 mutex_lock(&mux_interval_mutex);
11448 pmu->hrtimer_interval_ms = timer;
11449
11450 /* update all cpuctx for this PMU */
11451 cpus_read_lock();
11452 for_each_online_cpu(cpu) {
11453 struct perf_cpu_pmu_context *cpc;
11454 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11455 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11456
11457 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11458 }
11459 cpus_read_unlock();
11460 mutex_unlock(&mux_interval_mutex);
11461
11462 return count;
11463 }
11464 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11465
11466 static struct attribute *pmu_dev_attrs[] = {
11467 &dev_attr_type.attr,
11468 &dev_attr_perf_event_mux_interval_ms.attr,
11469 &dev_attr_nr_addr_filters.attr,
11470 NULL,
11471 };
11472
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11473 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11474 {
11475 struct device *dev = kobj_to_dev(kobj);
11476 struct pmu *pmu = dev_get_drvdata(dev);
11477
11478 if (n == 2 && !pmu->nr_addr_filters)
11479 return 0;
11480
11481 return a->mode;
11482 }
11483
11484 static struct attribute_group pmu_dev_attr_group = {
11485 .is_visible = pmu_dev_is_visible,
11486 .attrs = pmu_dev_attrs,
11487 };
11488
11489 static const struct attribute_group *pmu_dev_groups[] = {
11490 &pmu_dev_attr_group,
11491 NULL,
11492 };
11493
11494 static int pmu_bus_running;
11495 static struct bus_type pmu_bus = {
11496 .name = "event_source",
11497 .dev_groups = pmu_dev_groups,
11498 };
11499
pmu_dev_release(struct device * dev)11500 static void pmu_dev_release(struct device *dev)
11501 {
11502 kfree(dev);
11503 }
11504
pmu_dev_alloc(struct pmu * pmu)11505 static int pmu_dev_alloc(struct pmu *pmu)
11506 {
11507 int ret = -ENOMEM;
11508
11509 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11510 if (!pmu->dev)
11511 goto out;
11512
11513 pmu->dev->groups = pmu->attr_groups;
11514 device_initialize(pmu->dev);
11515
11516 dev_set_drvdata(pmu->dev, pmu);
11517 pmu->dev->bus = &pmu_bus;
11518 pmu->dev->parent = pmu->parent;
11519 pmu->dev->release = pmu_dev_release;
11520
11521 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11522 if (ret)
11523 goto free_dev;
11524
11525 ret = device_add(pmu->dev);
11526 if (ret)
11527 goto free_dev;
11528
11529 if (pmu->attr_update) {
11530 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11531 if (ret)
11532 goto del_dev;
11533 }
11534
11535 out:
11536 return ret;
11537
11538 del_dev:
11539 device_del(pmu->dev);
11540
11541 free_dev:
11542 put_device(pmu->dev);
11543 goto out;
11544 }
11545
11546 static struct lock_class_key cpuctx_mutex;
11547 static struct lock_class_key cpuctx_lock;
11548
perf_pmu_register(struct pmu * pmu,const char * name,int type)11549 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11550 {
11551 int cpu, ret, max = PERF_TYPE_MAX;
11552
11553 mutex_lock(&pmus_lock);
11554 ret = -ENOMEM;
11555 pmu->pmu_disable_count = alloc_percpu(int);
11556 if (!pmu->pmu_disable_count)
11557 goto unlock;
11558
11559 pmu->type = -1;
11560 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11561 ret = -EINVAL;
11562 goto free_pdc;
11563 }
11564
11565 pmu->name = name;
11566
11567 if (type >= 0)
11568 max = type;
11569
11570 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11571 if (ret < 0)
11572 goto free_pdc;
11573
11574 WARN_ON(type >= 0 && ret != type);
11575
11576 type = ret;
11577 pmu->type = type;
11578
11579 if (pmu_bus_running && !pmu->dev) {
11580 ret = pmu_dev_alloc(pmu);
11581 if (ret)
11582 goto free_idr;
11583 }
11584
11585 ret = -ENOMEM;
11586 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11587 if (!pmu->cpu_pmu_context)
11588 goto free_dev;
11589
11590 for_each_possible_cpu(cpu) {
11591 struct perf_cpu_pmu_context *cpc;
11592
11593 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11594 __perf_init_event_pmu_context(&cpc->epc, pmu);
11595 __perf_mux_hrtimer_init(cpc, cpu);
11596 }
11597
11598 if (!pmu->start_txn) {
11599 if (pmu->pmu_enable) {
11600 /*
11601 * If we have pmu_enable/pmu_disable calls, install
11602 * transaction stubs that use that to try and batch
11603 * hardware accesses.
11604 */
11605 pmu->start_txn = perf_pmu_start_txn;
11606 pmu->commit_txn = perf_pmu_commit_txn;
11607 pmu->cancel_txn = perf_pmu_cancel_txn;
11608 } else {
11609 pmu->start_txn = perf_pmu_nop_txn;
11610 pmu->commit_txn = perf_pmu_nop_int;
11611 pmu->cancel_txn = perf_pmu_nop_void;
11612 }
11613 }
11614
11615 if (!pmu->pmu_enable) {
11616 pmu->pmu_enable = perf_pmu_nop_void;
11617 pmu->pmu_disable = perf_pmu_nop_void;
11618 }
11619
11620 if (!pmu->check_period)
11621 pmu->check_period = perf_event_nop_int;
11622
11623 if (!pmu->event_idx)
11624 pmu->event_idx = perf_event_idx_default;
11625
11626 list_add_rcu(&pmu->entry, &pmus);
11627 atomic_set(&pmu->exclusive_cnt, 0);
11628 ret = 0;
11629 unlock:
11630 mutex_unlock(&pmus_lock);
11631
11632 return ret;
11633
11634 free_dev:
11635 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11636 device_del(pmu->dev);
11637 put_device(pmu->dev);
11638 }
11639
11640 free_idr:
11641 idr_remove(&pmu_idr, pmu->type);
11642
11643 free_pdc:
11644 free_percpu(pmu->pmu_disable_count);
11645 goto unlock;
11646 }
11647 EXPORT_SYMBOL_GPL(perf_pmu_register);
11648
perf_pmu_unregister(struct pmu * pmu)11649 void perf_pmu_unregister(struct pmu *pmu)
11650 {
11651 mutex_lock(&pmus_lock);
11652 list_del_rcu(&pmu->entry);
11653
11654 /*
11655 * We dereference the pmu list under both SRCU and regular RCU, so
11656 * synchronize against both of those.
11657 */
11658 synchronize_srcu(&pmus_srcu);
11659 synchronize_rcu();
11660
11661 free_percpu(pmu->pmu_disable_count);
11662 idr_remove(&pmu_idr, pmu->type);
11663 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11664 if (pmu->nr_addr_filters)
11665 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11666 device_del(pmu->dev);
11667 put_device(pmu->dev);
11668 }
11669 free_pmu_context(pmu);
11670 mutex_unlock(&pmus_lock);
11671 }
11672 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11673
has_extended_regs(struct perf_event * event)11674 static inline bool has_extended_regs(struct perf_event *event)
11675 {
11676 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11677 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11678 }
11679
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11680 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11681 {
11682 struct perf_event_context *ctx = NULL;
11683 int ret;
11684
11685 if (!try_module_get(pmu->module))
11686 return -ENODEV;
11687
11688 /*
11689 * A number of pmu->event_init() methods iterate the sibling_list to,
11690 * for example, validate if the group fits on the PMU. Therefore,
11691 * if this is a sibling event, acquire the ctx->mutex to protect
11692 * the sibling_list.
11693 */
11694 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11695 /*
11696 * This ctx->mutex can nest when we're called through
11697 * inheritance. See the perf_event_ctx_lock_nested() comment.
11698 */
11699 ctx = perf_event_ctx_lock_nested(event->group_leader,
11700 SINGLE_DEPTH_NESTING);
11701 BUG_ON(!ctx);
11702 }
11703
11704 event->pmu = pmu;
11705 ret = pmu->event_init(event);
11706
11707 if (ctx)
11708 perf_event_ctx_unlock(event->group_leader, ctx);
11709
11710 if (!ret) {
11711 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11712 has_extended_regs(event))
11713 ret = -EOPNOTSUPP;
11714
11715 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11716 event_has_any_exclude_flag(event))
11717 ret = -EINVAL;
11718
11719 if (ret && event->destroy)
11720 event->destroy(event);
11721 }
11722
11723 if (ret)
11724 module_put(pmu->module);
11725
11726 return ret;
11727 }
11728
perf_init_event(struct perf_event * event)11729 static struct pmu *perf_init_event(struct perf_event *event)
11730 {
11731 bool extended_type = false;
11732 int idx, type, ret;
11733 struct pmu *pmu;
11734
11735 idx = srcu_read_lock(&pmus_srcu);
11736
11737 /*
11738 * Save original type before calling pmu->event_init() since certain
11739 * pmus overwrites event->attr.type to forward event to another pmu.
11740 */
11741 event->orig_type = event->attr.type;
11742
11743 /* Try parent's PMU first: */
11744 if (event->parent && event->parent->pmu) {
11745 pmu = event->parent->pmu;
11746 ret = perf_try_init_event(pmu, event);
11747 if (!ret)
11748 goto unlock;
11749 }
11750
11751 /*
11752 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11753 * are often aliases for PERF_TYPE_RAW.
11754 */
11755 type = event->attr.type;
11756 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11757 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11758 if (!type) {
11759 type = PERF_TYPE_RAW;
11760 } else {
11761 extended_type = true;
11762 event->attr.config &= PERF_HW_EVENT_MASK;
11763 }
11764 }
11765
11766 again:
11767 rcu_read_lock();
11768 pmu = idr_find(&pmu_idr, type);
11769 rcu_read_unlock();
11770 if (pmu) {
11771 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11772 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11773 goto fail;
11774
11775 ret = perf_try_init_event(pmu, event);
11776 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11777 type = event->attr.type;
11778 goto again;
11779 }
11780
11781 if (ret)
11782 pmu = ERR_PTR(ret);
11783
11784 goto unlock;
11785 }
11786
11787 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11788 ret = perf_try_init_event(pmu, event);
11789 if (!ret)
11790 goto unlock;
11791
11792 if (ret != -ENOENT) {
11793 pmu = ERR_PTR(ret);
11794 goto unlock;
11795 }
11796 }
11797 fail:
11798 pmu = ERR_PTR(-ENOENT);
11799 unlock:
11800 srcu_read_unlock(&pmus_srcu, idx);
11801
11802 return pmu;
11803 }
11804
attach_sb_event(struct perf_event * event)11805 static void attach_sb_event(struct perf_event *event)
11806 {
11807 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11808
11809 raw_spin_lock(&pel->lock);
11810 list_add_rcu(&event->sb_list, &pel->list);
11811 raw_spin_unlock(&pel->lock);
11812 }
11813
11814 /*
11815 * We keep a list of all !task (and therefore per-cpu) events
11816 * that need to receive side-band records.
11817 *
11818 * This avoids having to scan all the various PMU per-cpu contexts
11819 * looking for them.
11820 */
account_pmu_sb_event(struct perf_event * event)11821 static void account_pmu_sb_event(struct perf_event *event)
11822 {
11823 if (is_sb_event(event))
11824 attach_sb_event(event);
11825 }
11826
11827 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11828 static void account_freq_event_nohz(void)
11829 {
11830 #ifdef CONFIG_NO_HZ_FULL
11831 /* Lock so we don't race with concurrent unaccount */
11832 spin_lock(&nr_freq_lock);
11833 if (atomic_inc_return(&nr_freq_events) == 1)
11834 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11835 spin_unlock(&nr_freq_lock);
11836 #endif
11837 }
11838
account_freq_event(void)11839 static void account_freq_event(void)
11840 {
11841 if (tick_nohz_full_enabled())
11842 account_freq_event_nohz();
11843 else
11844 atomic_inc(&nr_freq_events);
11845 }
11846
11847
account_event(struct perf_event * event)11848 static void account_event(struct perf_event *event)
11849 {
11850 bool inc = false;
11851
11852 if (event->parent)
11853 return;
11854
11855 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11856 inc = true;
11857 if (event->attr.mmap || event->attr.mmap_data)
11858 atomic_inc(&nr_mmap_events);
11859 if (event->attr.build_id)
11860 atomic_inc(&nr_build_id_events);
11861 if (event->attr.comm)
11862 atomic_inc(&nr_comm_events);
11863 if (event->attr.namespaces)
11864 atomic_inc(&nr_namespaces_events);
11865 if (event->attr.cgroup)
11866 atomic_inc(&nr_cgroup_events);
11867 if (event->attr.task)
11868 atomic_inc(&nr_task_events);
11869 if (event->attr.freq)
11870 account_freq_event();
11871 if (event->attr.context_switch) {
11872 atomic_inc(&nr_switch_events);
11873 inc = true;
11874 }
11875 if (has_branch_stack(event))
11876 inc = true;
11877 if (is_cgroup_event(event))
11878 inc = true;
11879 if (event->attr.ksymbol)
11880 atomic_inc(&nr_ksymbol_events);
11881 if (event->attr.bpf_event)
11882 atomic_inc(&nr_bpf_events);
11883 if (event->attr.text_poke)
11884 atomic_inc(&nr_text_poke_events);
11885
11886 if (inc) {
11887 /*
11888 * We need the mutex here because static_branch_enable()
11889 * must complete *before* the perf_sched_count increment
11890 * becomes visible.
11891 */
11892 if (atomic_inc_not_zero(&perf_sched_count))
11893 goto enabled;
11894
11895 mutex_lock(&perf_sched_mutex);
11896 if (!atomic_read(&perf_sched_count)) {
11897 static_branch_enable(&perf_sched_events);
11898 /*
11899 * Guarantee that all CPUs observe they key change and
11900 * call the perf scheduling hooks before proceeding to
11901 * install events that need them.
11902 */
11903 synchronize_rcu();
11904 }
11905 /*
11906 * Now that we have waited for the sync_sched(), allow further
11907 * increments to by-pass the mutex.
11908 */
11909 atomic_inc(&perf_sched_count);
11910 mutex_unlock(&perf_sched_mutex);
11911 }
11912 enabled:
11913
11914 account_pmu_sb_event(event);
11915 }
11916
11917 /*
11918 * Allocate and initialize an event structure
11919 */
11920 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11921 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11922 struct task_struct *task,
11923 struct perf_event *group_leader,
11924 struct perf_event *parent_event,
11925 perf_overflow_handler_t overflow_handler,
11926 void *context, int cgroup_fd)
11927 {
11928 struct pmu *pmu;
11929 struct perf_event *event;
11930 struct hw_perf_event *hwc;
11931 long err = -EINVAL;
11932 int node;
11933
11934 if ((unsigned)cpu >= nr_cpu_ids) {
11935 if (!task || cpu != -1)
11936 return ERR_PTR(-EINVAL);
11937 }
11938 if (attr->sigtrap && !task) {
11939 /* Requires a task: avoid signalling random tasks. */
11940 return ERR_PTR(-EINVAL);
11941 }
11942
11943 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11944 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11945 node);
11946 if (!event)
11947 return ERR_PTR(-ENOMEM);
11948
11949 /*
11950 * Single events are their own group leaders, with an
11951 * empty sibling list:
11952 */
11953 if (!group_leader)
11954 group_leader = event;
11955
11956 mutex_init(&event->child_mutex);
11957 INIT_LIST_HEAD(&event->child_list);
11958
11959 INIT_LIST_HEAD(&event->event_entry);
11960 INIT_LIST_HEAD(&event->sibling_list);
11961 INIT_LIST_HEAD(&event->active_list);
11962 init_event_group(event);
11963 INIT_LIST_HEAD(&event->rb_entry);
11964 INIT_LIST_HEAD(&event->active_entry);
11965 INIT_LIST_HEAD(&event->addr_filters.list);
11966 INIT_HLIST_NODE(&event->hlist_entry);
11967
11968
11969 init_waitqueue_head(&event->waitq);
11970 init_irq_work(&event->pending_irq, perf_pending_irq);
11971 init_task_work(&event->pending_task, perf_pending_task);
11972 rcuwait_init(&event->pending_work_wait);
11973
11974 mutex_init(&event->mmap_mutex);
11975 raw_spin_lock_init(&event->addr_filters.lock);
11976
11977 atomic_long_set(&event->refcount, 1);
11978 event->cpu = cpu;
11979 event->attr = *attr;
11980 event->group_leader = group_leader;
11981 event->pmu = NULL;
11982 event->oncpu = -1;
11983
11984 event->parent = parent_event;
11985
11986 event->ns = get_pid_ns(task_active_pid_ns(current));
11987 event->id = atomic64_inc_return(&perf_event_id);
11988
11989 event->state = PERF_EVENT_STATE_INACTIVE;
11990
11991 if (parent_event)
11992 event->event_caps = parent_event->event_caps;
11993
11994 if (task) {
11995 event->attach_state = PERF_ATTACH_TASK;
11996 /*
11997 * XXX pmu::event_init needs to know what task to account to
11998 * and we cannot use the ctx information because we need the
11999 * pmu before we get a ctx.
12000 */
12001 event->hw.target = get_task_struct(task);
12002 }
12003
12004 event->clock = &local_clock;
12005 if (parent_event)
12006 event->clock = parent_event->clock;
12007
12008 if (!overflow_handler && parent_event) {
12009 overflow_handler = parent_event->overflow_handler;
12010 context = parent_event->overflow_handler_context;
12011 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12012 if (overflow_handler == bpf_overflow_handler) {
12013 struct bpf_prog *prog = parent_event->prog;
12014
12015 bpf_prog_inc(prog);
12016 event->prog = prog;
12017 event->orig_overflow_handler =
12018 parent_event->orig_overflow_handler;
12019 }
12020 #endif
12021 }
12022
12023 if (overflow_handler) {
12024 event->overflow_handler = overflow_handler;
12025 event->overflow_handler_context = context;
12026 } else if (is_write_backward(event)){
12027 event->overflow_handler = perf_event_output_backward;
12028 event->overflow_handler_context = NULL;
12029 } else {
12030 event->overflow_handler = perf_event_output_forward;
12031 event->overflow_handler_context = NULL;
12032 }
12033
12034 perf_event__state_init(event);
12035
12036 pmu = NULL;
12037
12038 hwc = &event->hw;
12039 hwc->sample_period = attr->sample_period;
12040 if (attr->freq && attr->sample_freq)
12041 hwc->sample_period = 1;
12042 hwc->last_period = hwc->sample_period;
12043
12044 local64_set(&hwc->period_left, hwc->sample_period);
12045
12046 /*
12047 * We currently do not support PERF_SAMPLE_READ on inherited events.
12048 * See perf_output_read().
12049 */
12050 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12051 goto err_ns;
12052
12053 if (!has_branch_stack(event))
12054 event->attr.branch_sample_type = 0;
12055
12056 pmu = perf_init_event(event);
12057 if (IS_ERR(pmu)) {
12058 err = PTR_ERR(pmu);
12059 goto err_ns;
12060 }
12061
12062 /*
12063 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12064 * events (they don't make sense as the cgroup will be different
12065 * on other CPUs in the uncore mask).
12066 */
12067 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12068 err = -EINVAL;
12069 goto err_pmu;
12070 }
12071
12072 if (event->attr.aux_output &&
12073 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12074 err = -EOPNOTSUPP;
12075 goto err_pmu;
12076 }
12077
12078 if (cgroup_fd != -1) {
12079 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12080 if (err)
12081 goto err_pmu;
12082 }
12083
12084 err = exclusive_event_init(event);
12085 if (err)
12086 goto err_pmu;
12087
12088 if (has_addr_filter(event)) {
12089 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12090 sizeof(struct perf_addr_filter_range),
12091 GFP_KERNEL);
12092 if (!event->addr_filter_ranges) {
12093 err = -ENOMEM;
12094 goto err_per_task;
12095 }
12096
12097 /*
12098 * Clone the parent's vma offsets: they are valid until exec()
12099 * even if the mm is not shared with the parent.
12100 */
12101 if (event->parent) {
12102 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12103
12104 raw_spin_lock_irq(&ifh->lock);
12105 memcpy(event->addr_filter_ranges,
12106 event->parent->addr_filter_ranges,
12107 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12108 raw_spin_unlock_irq(&ifh->lock);
12109 }
12110
12111 /* force hw sync on the address filters */
12112 event->addr_filters_gen = 1;
12113 }
12114
12115 if (!event->parent) {
12116 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12117 err = get_callchain_buffers(attr->sample_max_stack);
12118 if (err)
12119 goto err_addr_filters;
12120 }
12121 }
12122
12123 err = security_perf_event_alloc(event);
12124 if (err)
12125 goto err_callchain_buffer;
12126
12127 /* symmetric to unaccount_event() in _free_event() */
12128 account_event(event);
12129
12130 return event;
12131
12132 err_callchain_buffer:
12133 if (!event->parent) {
12134 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12135 put_callchain_buffers();
12136 }
12137 err_addr_filters:
12138 kfree(event->addr_filter_ranges);
12139
12140 err_per_task:
12141 exclusive_event_destroy(event);
12142
12143 err_pmu:
12144 if (is_cgroup_event(event))
12145 perf_detach_cgroup(event);
12146 if (event->destroy)
12147 event->destroy(event);
12148 module_put(pmu->module);
12149 err_ns:
12150 if (event->hw.target)
12151 put_task_struct(event->hw.target);
12152 call_rcu(&event->rcu_head, free_event_rcu);
12153
12154 return ERR_PTR(err);
12155 }
12156
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12157 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12158 struct perf_event_attr *attr)
12159 {
12160 u32 size;
12161 int ret;
12162
12163 /* Zero the full structure, so that a short copy will be nice. */
12164 memset(attr, 0, sizeof(*attr));
12165
12166 ret = get_user(size, &uattr->size);
12167 if (ret)
12168 return ret;
12169
12170 /* ABI compatibility quirk: */
12171 if (!size)
12172 size = PERF_ATTR_SIZE_VER0;
12173 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12174 goto err_size;
12175
12176 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12177 if (ret) {
12178 if (ret == -E2BIG)
12179 goto err_size;
12180 return ret;
12181 }
12182
12183 attr->size = size;
12184
12185 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12186 return -EINVAL;
12187
12188 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12189 return -EINVAL;
12190
12191 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12192 return -EINVAL;
12193
12194 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12195 u64 mask = attr->branch_sample_type;
12196
12197 /* only using defined bits */
12198 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12199 return -EINVAL;
12200
12201 /* at least one branch bit must be set */
12202 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12203 return -EINVAL;
12204
12205 /* propagate priv level, when not set for branch */
12206 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12207
12208 /* exclude_kernel checked on syscall entry */
12209 if (!attr->exclude_kernel)
12210 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12211
12212 if (!attr->exclude_user)
12213 mask |= PERF_SAMPLE_BRANCH_USER;
12214
12215 if (!attr->exclude_hv)
12216 mask |= PERF_SAMPLE_BRANCH_HV;
12217 /*
12218 * adjust user setting (for HW filter setup)
12219 */
12220 attr->branch_sample_type = mask;
12221 }
12222 /* privileged levels capture (kernel, hv): check permissions */
12223 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12224 ret = perf_allow_kernel(attr);
12225 if (ret)
12226 return ret;
12227 }
12228 }
12229
12230 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12231 ret = perf_reg_validate(attr->sample_regs_user);
12232 if (ret)
12233 return ret;
12234 }
12235
12236 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12237 if (!arch_perf_have_user_stack_dump())
12238 return -ENOSYS;
12239
12240 /*
12241 * We have __u32 type for the size, but so far
12242 * we can only use __u16 as maximum due to the
12243 * __u16 sample size limit.
12244 */
12245 if (attr->sample_stack_user >= USHRT_MAX)
12246 return -EINVAL;
12247 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12248 return -EINVAL;
12249 }
12250
12251 if (!attr->sample_max_stack)
12252 attr->sample_max_stack = sysctl_perf_event_max_stack;
12253
12254 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12255 ret = perf_reg_validate(attr->sample_regs_intr);
12256
12257 #ifndef CONFIG_CGROUP_PERF
12258 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12259 return -EINVAL;
12260 #endif
12261 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12262 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12263 return -EINVAL;
12264
12265 if (!attr->inherit && attr->inherit_thread)
12266 return -EINVAL;
12267
12268 if (attr->remove_on_exec && attr->enable_on_exec)
12269 return -EINVAL;
12270
12271 if (attr->sigtrap && !attr->remove_on_exec)
12272 return -EINVAL;
12273
12274 out:
12275 return ret;
12276
12277 err_size:
12278 put_user(sizeof(*attr), &uattr->size);
12279 ret = -E2BIG;
12280 goto out;
12281 }
12282
mutex_lock_double(struct mutex * a,struct mutex * b)12283 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12284 {
12285 if (b < a)
12286 swap(a, b);
12287
12288 mutex_lock(a);
12289 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12290 }
12291
12292 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12293 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12294 {
12295 struct perf_buffer *rb = NULL;
12296 int ret = -EINVAL;
12297
12298 if (!output_event) {
12299 mutex_lock(&event->mmap_mutex);
12300 goto set;
12301 }
12302
12303 /* don't allow circular references */
12304 if (event == output_event)
12305 goto out;
12306
12307 /*
12308 * Don't allow cross-cpu buffers
12309 */
12310 if (output_event->cpu != event->cpu)
12311 goto out;
12312
12313 /*
12314 * If its not a per-cpu rb, it must be the same task.
12315 */
12316 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12317 goto out;
12318
12319 /*
12320 * Mixing clocks in the same buffer is trouble you don't need.
12321 */
12322 if (output_event->clock != event->clock)
12323 goto out;
12324
12325 /*
12326 * Either writing ring buffer from beginning or from end.
12327 * Mixing is not allowed.
12328 */
12329 if (is_write_backward(output_event) != is_write_backward(event))
12330 goto out;
12331
12332 /*
12333 * If both events generate aux data, they must be on the same PMU
12334 */
12335 if (has_aux(event) && has_aux(output_event) &&
12336 event->pmu != output_event->pmu)
12337 goto out;
12338
12339 /*
12340 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12341 * output_event is already on rb->event_list, and the list iteration
12342 * restarts after every removal, it is guaranteed this new event is
12343 * observed *OR* if output_event is already removed, it's guaranteed we
12344 * observe !rb->mmap_count.
12345 */
12346 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12347 set:
12348 /* Can't redirect output if we've got an active mmap() */
12349 if (atomic_read(&event->mmap_count))
12350 goto unlock;
12351
12352 if (output_event) {
12353 /* get the rb we want to redirect to */
12354 rb = ring_buffer_get(output_event);
12355 if (!rb)
12356 goto unlock;
12357
12358 /* did we race against perf_mmap_close() */
12359 if (!atomic_read(&rb->mmap_count)) {
12360 ring_buffer_put(rb);
12361 goto unlock;
12362 }
12363 }
12364
12365 ring_buffer_attach(event, rb);
12366
12367 ret = 0;
12368 unlock:
12369 mutex_unlock(&event->mmap_mutex);
12370 if (output_event)
12371 mutex_unlock(&output_event->mmap_mutex);
12372
12373 out:
12374 return ret;
12375 }
12376
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12377 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12378 {
12379 bool nmi_safe = false;
12380
12381 switch (clk_id) {
12382 case CLOCK_MONOTONIC:
12383 event->clock = &ktime_get_mono_fast_ns;
12384 nmi_safe = true;
12385 break;
12386
12387 case CLOCK_MONOTONIC_RAW:
12388 event->clock = &ktime_get_raw_fast_ns;
12389 nmi_safe = true;
12390 break;
12391
12392 case CLOCK_REALTIME:
12393 event->clock = &ktime_get_real_ns;
12394 break;
12395
12396 case CLOCK_BOOTTIME:
12397 event->clock = &ktime_get_boottime_ns;
12398 break;
12399
12400 case CLOCK_TAI:
12401 event->clock = &ktime_get_clocktai_ns;
12402 break;
12403
12404 default:
12405 return -EINVAL;
12406 }
12407
12408 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12409 return -EINVAL;
12410
12411 return 0;
12412 }
12413
12414 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12415 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12416 {
12417 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12418 bool is_capable = perfmon_capable();
12419
12420 if (attr->sigtrap) {
12421 /*
12422 * perf_event_attr::sigtrap sends signals to the other task.
12423 * Require the current task to also have CAP_KILL.
12424 */
12425 rcu_read_lock();
12426 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12427 rcu_read_unlock();
12428
12429 /*
12430 * If the required capabilities aren't available, checks for
12431 * ptrace permissions: upgrade to ATTACH, since sending signals
12432 * can effectively change the target task.
12433 */
12434 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12435 }
12436
12437 /*
12438 * Preserve ptrace permission check for backwards compatibility. The
12439 * ptrace check also includes checks that the current task and other
12440 * task have matching uids, and is therefore not done here explicitly.
12441 */
12442 return is_capable || ptrace_may_access(task, ptrace_mode);
12443 }
12444
12445 /**
12446 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12447 *
12448 * @attr_uptr: event_id type attributes for monitoring/sampling
12449 * @pid: target pid
12450 * @cpu: target cpu
12451 * @group_fd: group leader event fd
12452 * @flags: perf event open flags
12453 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12454 SYSCALL_DEFINE5(perf_event_open,
12455 struct perf_event_attr __user *, attr_uptr,
12456 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12457 {
12458 struct perf_event *group_leader = NULL, *output_event = NULL;
12459 struct perf_event_pmu_context *pmu_ctx;
12460 struct perf_event *event, *sibling;
12461 struct perf_event_attr attr;
12462 struct perf_event_context *ctx;
12463 struct file *event_file = NULL;
12464 struct fd group = {NULL, 0};
12465 struct task_struct *task = NULL;
12466 struct pmu *pmu;
12467 int event_fd;
12468 int move_group = 0;
12469 int err;
12470 int f_flags = O_RDWR;
12471 int cgroup_fd = -1;
12472
12473 /* for future expandability... */
12474 if (flags & ~PERF_FLAG_ALL)
12475 return -EINVAL;
12476
12477 err = perf_copy_attr(attr_uptr, &attr);
12478 if (err)
12479 return err;
12480
12481 /* Do we allow access to perf_event_open(2) ? */
12482 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12483 if (err)
12484 return err;
12485
12486 if (!attr.exclude_kernel) {
12487 err = perf_allow_kernel(&attr);
12488 if (err)
12489 return err;
12490 }
12491
12492 if (attr.namespaces) {
12493 if (!perfmon_capable())
12494 return -EACCES;
12495 }
12496
12497 if (attr.freq) {
12498 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12499 return -EINVAL;
12500 } else {
12501 if (attr.sample_period & (1ULL << 63))
12502 return -EINVAL;
12503 }
12504
12505 /* Only privileged users can get physical addresses */
12506 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12507 err = perf_allow_kernel(&attr);
12508 if (err)
12509 return err;
12510 }
12511
12512 /* REGS_INTR can leak data, lockdown must prevent this */
12513 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12514 err = security_locked_down(LOCKDOWN_PERF);
12515 if (err)
12516 return err;
12517 }
12518
12519 /*
12520 * In cgroup mode, the pid argument is used to pass the fd
12521 * opened to the cgroup directory in cgroupfs. The cpu argument
12522 * designates the cpu on which to monitor threads from that
12523 * cgroup.
12524 */
12525 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12526 return -EINVAL;
12527
12528 if (flags & PERF_FLAG_FD_CLOEXEC)
12529 f_flags |= O_CLOEXEC;
12530
12531 event_fd = get_unused_fd_flags(f_flags);
12532 if (event_fd < 0)
12533 return event_fd;
12534
12535 if (group_fd != -1) {
12536 err = perf_fget_light(group_fd, &group);
12537 if (err)
12538 goto err_fd;
12539 group_leader = group.file->private_data;
12540 if (flags & PERF_FLAG_FD_OUTPUT)
12541 output_event = group_leader;
12542 if (flags & PERF_FLAG_FD_NO_GROUP)
12543 group_leader = NULL;
12544 }
12545
12546 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12547 task = find_lively_task_by_vpid(pid);
12548 if (IS_ERR(task)) {
12549 err = PTR_ERR(task);
12550 goto err_group_fd;
12551 }
12552 }
12553
12554 if (task && group_leader &&
12555 group_leader->attr.inherit != attr.inherit) {
12556 err = -EINVAL;
12557 goto err_task;
12558 }
12559
12560 if (flags & PERF_FLAG_PID_CGROUP)
12561 cgroup_fd = pid;
12562
12563 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12564 NULL, NULL, cgroup_fd);
12565 if (IS_ERR(event)) {
12566 err = PTR_ERR(event);
12567 goto err_task;
12568 }
12569
12570 if (is_sampling_event(event)) {
12571 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12572 err = -EOPNOTSUPP;
12573 goto err_alloc;
12574 }
12575 }
12576
12577 /*
12578 * Special case software events and allow them to be part of
12579 * any hardware group.
12580 */
12581 pmu = event->pmu;
12582
12583 if (attr.use_clockid) {
12584 err = perf_event_set_clock(event, attr.clockid);
12585 if (err)
12586 goto err_alloc;
12587 }
12588
12589 if (pmu->task_ctx_nr == perf_sw_context)
12590 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12591
12592 if (task) {
12593 err = down_read_interruptible(&task->signal->exec_update_lock);
12594 if (err)
12595 goto err_alloc;
12596
12597 /*
12598 * We must hold exec_update_lock across this and any potential
12599 * perf_install_in_context() call for this new event to
12600 * serialize against exec() altering our credentials (and the
12601 * perf_event_exit_task() that could imply).
12602 */
12603 err = -EACCES;
12604 if (!perf_check_permission(&attr, task))
12605 goto err_cred;
12606 }
12607
12608 /*
12609 * Get the target context (task or percpu):
12610 */
12611 ctx = find_get_context(task, event);
12612 if (IS_ERR(ctx)) {
12613 err = PTR_ERR(ctx);
12614 goto err_cred;
12615 }
12616
12617 mutex_lock(&ctx->mutex);
12618
12619 if (ctx->task == TASK_TOMBSTONE) {
12620 err = -ESRCH;
12621 goto err_locked;
12622 }
12623
12624 if (!task) {
12625 /*
12626 * Check if the @cpu we're creating an event for is online.
12627 *
12628 * We use the perf_cpu_context::ctx::mutex to serialize against
12629 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12630 */
12631 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12632
12633 if (!cpuctx->online) {
12634 err = -ENODEV;
12635 goto err_locked;
12636 }
12637 }
12638
12639 if (group_leader) {
12640 err = -EINVAL;
12641
12642 /*
12643 * Do not allow a recursive hierarchy (this new sibling
12644 * becoming part of another group-sibling):
12645 */
12646 if (group_leader->group_leader != group_leader)
12647 goto err_locked;
12648
12649 /* All events in a group should have the same clock */
12650 if (group_leader->clock != event->clock)
12651 goto err_locked;
12652
12653 /*
12654 * Make sure we're both events for the same CPU;
12655 * grouping events for different CPUs is broken; since
12656 * you can never concurrently schedule them anyhow.
12657 */
12658 if (group_leader->cpu != event->cpu)
12659 goto err_locked;
12660
12661 /*
12662 * Make sure we're both on the same context; either task or cpu.
12663 */
12664 if (group_leader->ctx != ctx)
12665 goto err_locked;
12666
12667 /*
12668 * Only a group leader can be exclusive or pinned
12669 */
12670 if (attr.exclusive || attr.pinned)
12671 goto err_locked;
12672
12673 if (is_software_event(event) &&
12674 !in_software_context(group_leader)) {
12675 /*
12676 * If the event is a sw event, but the group_leader
12677 * is on hw context.
12678 *
12679 * Allow the addition of software events to hw
12680 * groups, this is safe because software events
12681 * never fail to schedule.
12682 *
12683 * Note the comment that goes with struct
12684 * perf_event_pmu_context.
12685 */
12686 pmu = group_leader->pmu_ctx->pmu;
12687 } else if (!is_software_event(event)) {
12688 if (is_software_event(group_leader) &&
12689 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12690 /*
12691 * In case the group is a pure software group, and we
12692 * try to add a hardware event, move the whole group to
12693 * the hardware context.
12694 */
12695 move_group = 1;
12696 }
12697
12698 /* Don't allow group of multiple hw events from different pmus */
12699 if (!in_software_context(group_leader) &&
12700 group_leader->pmu_ctx->pmu != pmu)
12701 goto err_locked;
12702 }
12703 }
12704
12705 /*
12706 * Now that we're certain of the pmu; find the pmu_ctx.
12707 */
12708 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12709 if (IS_ERR(pmu_ctx)) {
12710 err = PTR_ERR(pmu_ctx);
12711 goto err_locked;
12712 }
12713 event->pmu_ctx = pmu_ctx;
12714
12715 if (output_event) {
12716 err = perf_event_set_output(event, output_event);
12717 if (err)
12718 goto err_context;
12719 }
12720
12721 if (!perf_event_validate_size(event)) {
12722 err = -E2BIG;
12723 goto err_context;
12724 }
12725
12726 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12727 err = -EINVAL;
12728 goto err_context;
12729 }
12730
12731 /*
12732 * Must be under the same ctx::mutex as perf_install_in_context(),
12733 * because we need to serialize with concurrent event creation.
12734 */
12735 if (!exclusive_event_installable(event, ctx)) {
12736 err = -EBUSY;
12737 goto err_context;
12738 }
12739
12740 WARN_ON_ONCE(ctx->parent_ctx);
12741
12742 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12743 if (IS_ERR(event_file)) {
12744 err = PTR_ERR(event_file);
12745 event_file = NULL;
12746 goto err_context;
12747 }
12748
12749 /*
12750 * This is the point on no return; we cannot fail hereafter. This is
12751 * where we start modifying current state.
12752 */
12753
12754 if (move_group) {
12755 perf_remove_from_context(group_leader, 0);
12756 put_pmu_ctx(group_leader->pmu_ctx);
12757
12758 for_each_sibling_event(sibling, group_leader) {
12759 perf_remove_from_context(sibling, 0);
12760 put_pmu_ctx(sibling->pmu_ctx);
12761 }
12762
12763 /*
12764 * Install the group siblings before the group leader.
12765 *
12766 * Because a group leader will try and install the entire group
12767 * (through the sibling list, which is still in-tact), we can
12768 * end up with siblings installed in the wrong context.
12769 *
12770 * By installing siblings first we NO-OP because they're not
12771 * reachable through the group lists.
12772 */
12773 for_each_sibling_event(sibling, group_leader) {
12774 sibling->pmu_ctx = pmu_ctx;
12775 get_pmu_ctx(pmu_ctx);
12776 perf_event__state_init(sibling);
12777 perf_install_in_context(ctx, sibling, sibling->cpu);
12778 }
12779
12780 /*
12781 * Removing from the context ends up with disabled
12782 * event. What we want here is event in the initial
12783 * startup state, ready to be add into new context.
12784 */
12785 group_leader->pmu_ctx = pmu_ctx;
12786 get_pmu_ctx(pmu_ctx);
12787 perf_event__state_init(group_leader);
12788 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12789 }
12790
12791 /*
12792 * Precalculate sample_data sizes; do while holding ctx::mutex such
12793 * that we're serialized against further additions and before
12794 * perf_install_in_context() which is the point the event is active and
12795 * can use these values.
12796 */
12797 perf_event__header_size(event);
12798 perf_event__id_header_size(event);
12799
12800 event->owner = current;
12801
12802 perf_install_in_context(ctx, event, event->cpu);
12803 perf_unpin_context(ctx);
12804
12805 mutex_unlock(&ctx->mutex);
12806
12807 if (task) {
12808 up_read(&task->signal->exec_update_lock);
12809 put_task_struct(task);
12810 }
12811
12812 mutex_lock(¤t->perf_event_mutex);
12813 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12814 mutex_unlock(¤t->perf_event_mutex);
12815
12816 /*
12817 * Drop the reference on the group_event after placing the
12818 * new event on the sibling_list. This ensures destruction
12819 * of the group leader will find the pointer to itself in
12820 * perf_group_detach().
12821 */
12822 fdput(group);
12823 fd_install(event_fd, event_file);
12824 return event_fd;
12825
12826 err_context:
12827 put_pmu_ctx(event->pmu_ctx);
12828 event->pmu_ctx = NULL; /* _free_event() */
12829 err_locked:
12830 mutex_unlock(&ctx->mutex);
12831 perf_unpin_context(ctx);
12832 put_ctx(ctx);
12833 err_cred:
12834 if (task)
12835 up_read(&task->signal->exec_update_lock);
12836 err_alloc:
12837 free_event(event);
12838 err_task:
12839 if (task)
12840 put_task_struct(task);
12841 err_group_fd:
12842 fdput(group);
12843 err_fd:
12844 put_unused_fd(event_fd);
12845 return err;
12846 }
12847
12848 /**
12849 * perf_event_create_kernel_counter
12850 *
12851 * @attr: attributes of the counter to create
12852 * @cpu: cpu in which the counter is bound
12853 * @task: task to profile (NULL for percpu)
12854 * @overflow_handler: callback to trigger when we hit the event
12855 * @context: context data could be used in overflow_handler callback
12856 */
12857 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12858 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12859 struct task_struct *task,
12860 perf_overflow_handler_t overflow_handler,
12861 void *context)
12862 {
12863 struct perf_event_pmu_context *pmu_ctx;
12864 struct perf_event_context *ctx;
12865 struct perf_event *event;
12866 struct pmu *pmu;
12867 int err;
12868
12869 /*
12870 * Grouping is not supported for kernel events, neither is 'AUX',
12871 * make sure the caller's intentions are adjusted.
12872 */
12873 if (attr->aux_output)
12874 return ERR_PTR(-EINVAL);
12875
12876 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12877 overflow_handler, context, -1);
12878 if (IS_ERR(event)) {
12879 err = PTR_ERR(event);
12880 goto err;
12881 }
12882
12883 /* Mark owner so we could distinguish it from user events. */
12884 event->owner = TASK_TOMBSTONE;
12885 pmu = event->pmu;
12886
12887 if (pmu->task_ctx_nr == perf_sw_context)
12888 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12889
12890 /*
12891 * Get the target context (task or percpu):
12892 */
12893 ctx = find_get_context(task, event);
12894 if (IS_ERR(ctx)) {
12895 err = PTR_ERR(ctx);
12896 goto err_alloc;
12897 }
12898
12899 WARN_ON_ONCE(ctx->parent_ctx);
12900 mutex_lock(&ctx->mutex);
12901 if (ctx->task == TASK_TOMBSTONE) {
12902 err = -ESRCH;
12903 goto err_unlock;
12904 }
12905
12906 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12907 if (IS_ERR(pmu_ctx)) {
12908 err = PTR_ERR(pmu_ctx);
12909 goto err_unlock;
12910 }
12911 event->pmu_ctx = pmu_ctx;
12912
12913 if (!task) {
12914 /*
12915 * Check if the @cpu we're creating an event for is online.
12916 *
12917 * We use the perf_cpu_context::ctx::mutex to serialize against
12918 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12919 */
12920 struct perf_cpu_context *cpuctx =
12921 container_of(ctx, struct perf_cpu_context, ctx);
12922 if (!cpuctx->online) {
12923 err = -ENODEV;
12924 goto err_pmu_ctx;
12925 }
12926 }
12927
12928 if (!exclusive_event_installable(event, ctx)) {
12929 err = -EBUSY;
12930 goto err_pmu_ctx;
12931 }
12932
12933 perf_install_in_context(ctx, event, event->cpu);
12934 perf_unpin_context(ctx);
12935 mutex_unlock(&ctx->mutex);
12936
12937 return event;
12938
12939 err_pmu_ctx:
12940 put_pmu_ctx(pmu_ctx);
12941 event->pmu_ctx = NULL; /* _free_event() */
12942 err_unlock:
12943 mutex_unlock(&ctx->mutex);
12944 perf_unpin_context(ctx);
12945 put_ctx(ctx);
12946 err_alloc:
12947 free_event(event);
12948 err:
12949 return ERR_PTR(err);
12950 }
12951 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12952
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)12953 static void __perf_pmu_remove(struct perf_event_context *ctx,
12954 int cpu, struct pmu *pmu,
12955 struct perf_event_groups *groups,
12956 struct list_head *events)
12957 {
12958 struct perf_event *event, *sibling;
12959
12960 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12961 perf_remove_from_context(event, 0);
12962 put_pmu_ctx(event->pmu_ctx);
12963 list_add(&event->migrate_entry, events);
12964
12965 for_each_sibling_event(sibling, event) {
12966 perf_remove_from_context(sibling, 0);
12967 put_pmu_ctx(sibling->pmu_ctx);
12968 list_add(&sibling->migrate_entry, events);
12969 }
12970 }
12971 }
12972
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)12973 static void __perf_pmu_install_event(struct pmu *pmu,
12974 struct perf_event_context *ctx,
12975 int cpu, struct perf_event *event)
12976 {
12977 struct perf_event_pmu_context *epc;
12978 struct perf_event_context *old_ctx = event->ctx;
12979
12980 get_ctx(ctx); /* normally find_get_context() */
12981
12982 event->cpu = cpu;
12983 epc = find_get_pmu_context(pmu, ctx, event);
12984 event->pmu_ctx = epc;
12985
12986 if (event->state >= PERF_EVENT_STATE_OFF)
12987 event->state = PERF_EVENT_STATE_INACTIVE;
12988 perf_install_in_context(ctx, event, cpu);
12989
12990 /*
12991 * Now that event->ctx is updated and visible, put the old ctx.
12992 */
12993 put_ctx(old_ctx);
12994 }
12995
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)12996 static void __perf_pmu_install(struct perf_event_context *ctx,
12997 int cpu, struct pmu *pmu, struct list_head *events)
12998 {
12999 struct perf_event *event, *tmp;
13000
13001 /*
13002 * Re-instate events in 2 passes.
13003 *
13004 * Skip over group leaders and only install siblings on this first
13005 * pass, siblings will not get enabled without a leader, however a
13006 * leader will enable its siblings, even if those are still on the old
13007 * context.
13008 */
13009 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13010 if (event->group_leader == event)
13011 continue;
13012
13013 list_del(&event->migrate_entry);
13014 __perf_pmu_install_event(pmu, ctx, cpu, event);
13015 }
13016
13017 /*
13018 * Once all the siblings are setup properly, install the group leaders
13019 * to make it go.
13020 */
13021 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13022 list_del(&event->migrate_entry);
13023 __perf_pmu_install_event(pmu, ctx, cpu, event);
13024 }
13025 }
13026
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13027 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13028 {
13029 struct perf_event_context *src_ctx, *dst_ctx;
13030 LIST_HEAD(events);
13031
13032 /*
13033 * Since per-cpu context is persistent, no need to grab an extra
13034 * reference.
13035 */
13036 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13037 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13038
13039 /*
13040 * See perf_event_ctx_lock() for comments on the details
13041 * of swizzling perf_event::ctx.
13042 */
13043 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13044
13045 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13046 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13047
13048 if (!list_empty(&events)) {
13049 /*
13050 * Wait for the events to quiesce before re-instating them.
13051 */
13052 synchronize_rcu();
13053
13054 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13055 }
13056
13057 mutex_unlock(&dst_ctx->mutex);
13058 mutex_unlock(&src_ctx->mutex);
13059 }
13060 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13061
sync_child_event(struct perf_event * child_event)13062 static void sync_child_event(struct perf_event *child_event)
13063 {
13064 struct perf_event *parent_event = child_event->parent;
13065 u64 child_val;
13066
13067 if (child_event->attr.inherit_stat) {
13068 struct task_struct *task = child_event->ctx->task;
13069
13070 if (task && task != TASK_TOMBSTONE)
13071 perf_event_read_event(child_event, task);
13072 }
13073
13074 child_val = perf_event_count(child_event);
13075
13076 /*
13077 * Add back the child's count to the parent's count:
13078 */
13079 atomic64_add(child_val, &parent_event->child_count);
13080 atomic64_add(child_event->total_time_enabled,
13081 &parent_event->child_total_time_enabled);
13082 atomic64_add(child_event->total_time_running,
13083 &parent_event->child_total_time_running);
13084 }
13085
13086 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13087 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13088 {
13089 struct perf_event *parent_event = event->parent;
13090 unsigned long detach_flags = 0;
13091
13092 if (parent_event) {
13093 /*
13094 * Do not destroy the 'original' grouping; because of the
13095 * context switch optimization the original events could've
13096 * ended up in a random child task.
13097 *
13098 * If we were to destroy the original group, all group related
13099 * operations would cease to function properly after this
13100 * random child dies.
13101 *
13102 * Do destroy all inherited groups, we don't care about those
13103 * and being thorough is better.
13104 */
13105 detach_flags = DETACH_GROUP | DETACH_CHILD;
13106 mutex_lock(&parent_event->child_mutex);
13107 }
13108
13109 perf_remove_from_context(event, detach_flags);
13110
13111 raw_spin_lock_irq(&ctx->lock);
13112 if (event->state > PERF_EVENT_STATE_EXIT)
13113 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13114 raw_spin_unlock_irq(&ctx->lock);
13115
13116 /*
13117 * Child events can be freed.
13118 */
13119 if (parent_event) {
13120 mutex_unlock(&parent_event->child_mutex);
13121 /*
13122 * Kick perf_poll() for is_event_hup();
13123 */
13124 perf_event_wakeup(parent_event);
13125 free_event(event);
13126 put_event(parent_event);
13127 return;
13128 }
13129
13130 /*
13131 * Parent events are governed by their filedesc, retain them.
13132 */
13133 perf_event_wakeup(event);
13134 }
13135
perf_event_exit_task_context(struct task_struct * child)13136 static void perf_event_exit_task_context(struct task_struct *child)
13137 {
13138 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13139 struct perf_event *child_event, *next;
13140
13141 WARN_ON_ONCE(child != current);
13142
13143 child_ctx = perf_pin_task_context(child);
13144 if (!child_ctx)
13145 return;
13146
13147 /*
13148 * In order to reduce the amount of tricky in ctx tear-down, we hold
13149 * ctx::mutex over the entire thing. This serializes against almost
13150 * everything that wants to access the ctx.
13151 *
13152 * The exception is sys_perf_event_open() /
13153 * perf_event_create_kernel_count() which does find_get_context()
13154 * without ctx::mutex (it cannot because of the move_group double mutex
13155 * lock thing). See the comments in perf_install_in_context().
13156 */
13157 mutex_lock(&child_ctx->mutex);
13158
13159 /*
13160 * In a single ctx::lock section, de-schedule the events and detach the
13161 * context from the task such that we cannot ever get it scheduled back
13162 * in.
13163 */
13164 raw_spin_lock_irq(&child_ctx->lock);
13165 task_ctx_sched_out(child_ctx, EVENT_ALL);
13166
13167 /*
13168 * Now that the context is inactive, destroy the task <-> ctx relation
13169 * and mark the context dead.
13170 */
13171 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13172 put_ctx(child_ctx); /* cannot be last */
13173 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13174 put_task_struct(current); /* cannot be last */
13175
13176 clone_ctx = unclone_ctx(child_ctx);
13177 raw_spin_unlock_irq(&child_ctx->lock);
13178
13179 if (clone_ctx)
13180 put_ctx(clone_ctx);
13181
13182 /*
13183 * Report the task dead after unscheduling the events so that we
13184 * won't get any samples after PERF_RECORD_EXIT. We can however still
13185 * get a few PERF_RECORD_READ events.
13186 */
13187 perf_event_task(child, child_ctx, 0);
13188
13189 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13190 perf_event_exit_event(child_event, child_ctx);
13191
13192 mutex_unlock(&child_ctx->mutex);
13193
13194 put_ctx(child_ctx);
13195 }
13196
13197 /*
13198 * When a child task exits, feed back event values to parent events.
13199 *
13200 * Can be called with exec_update_lock held when called from
13201 * setup_new_exec().
13202 */
perf_event_exit_task(struct task_struct * child)13203 void perf_event_exit_task(struct task_struct *child)
13204 {
13205 struct perf_event *event, *tmp;
13206
13207 mutex_lock(&child->perf_event_mutex);
13208 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13209 owner_entry) {
13210 list_del_init(&event->owner_entry);
13211
13212 /*
13213 * Ensure the list deletion is visible before we clear
13214 * the owner, closes a race against perf_release() where
13215 * we need to serialize on the owner->perf_event_mutex.
13216 */
13217 smp_store_release(&event->owner, NULL);
13218 }
13219 mutex_unlock(&child->perf_event_mutex);
13220
13221 perf_event_exit_task_context(child);
13222
13223 /*
13224 * The perf_event_exit_task_context calls perf_event_task
13225 * with child's task_ctx, which generates EXIT events for
13226 * child contexts and sets child->perf_event_ctxp[] to NULL.
13227 * At this point we need to send EXIT events to cpu contexts.
13228 */
13229 perf_event_task(child, NULL, 0);
13230 }
13231
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13232 static void perf_free_event(struct perf_event *event,
13233 struct perf_event_context *ctx)
13234 {
13235 struct perf_event *parent = event->parent;
13236
13237 if (WARN_ON_ONCE(!parent))
13238 return;
13239
13240 mutex_lock(&parent->child_mutex);
13241 list_del_init(&event->child_list);
13242 mutex_unlock(&parent->child_mutex);
13243
13244 put_event(parent);
13245
13246 raw_spin_lock_irq(&ctx->lock);
13247 perf_group_detach(event);
13248 list_del_event(event, ctx);
13249 raw_spin_unlock_irq(&ctx->lock);
13250 free_event(event);
13251 }
13252
13253 /*
13254 * Free a context as created by inheritance by perf_event_init_task() below,
13255 * used by fork() in case of fail.
13256 *
13257 * Even though the task has never lived, the context and events have been
13258 * exposed through the child_list, so we must take care tearing it all down.
13259 */
perf_event_free_task(struct task_struct * task)13260 void perf_event_free_task(struct task_struct *task)
13261 {
13262 struct perf_event_context *ctx;
13263 struct perf_event *event, *tmp;
13264
13265 ctx = rcu_access_pointer(task->perf_event_ctxp);
13266 if (!ctx)
13267 return;
13268
13269 mutex_lock(&ctx->mutex);
13270 raw_spin_lock_irq(&ctx->lock);
13271 /*
13272 * Destroy the task <-> ctx relation and mark the context dead.
13273 *
13274 * This is important because even though the task hasn't been
13275 * exposed yet the context has been (through child_list).
13276 */
13277 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13278 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13279 put_task_struct(task); /* cannot be last */
13280 raw_spin_unlock_irq(&ctx->lock);
13281
13282
13283 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13284 perf_free_event(event, ctx);
13285
13286 mutex_unlock(&ctx->mutex);
13287
13288 /*
13289 * perf_event_release_kernel() could've stolen some of our
13290 * child events and still have them on its free_list. In that
13291 * case we must wait for these events to have been freed (in
13292 * particular all their references to this task must've been
13293 * dropped).
13294 *
13295 * Without this copy_process() will unconditionally free this
13296 * task (irrespective of its reference count) and
13297 * _free_event()'s put_task_struct(event->hw.target) will be a
13298 * use-after-free.
13299 *
13300 * Wait for all events to drop their context reference.
13301 */
13302 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13303 put_ctx(ctx); /* must be last */
13304 }
13305
perf_event_delayed_put(struct task_struct * task)13306 void perf_event_delayed_put(struct task_struct *task)
13307 {
13308 WARN_ON_ONCE(task->perf_event_ctxp);
13309 }
13310
perf_event_get(unsigned int fd)13311 struct file *perf_event_get(unsigned int fd)
13312 {
13313 struct file *file = fget(fd);
13314 if (!file)
13315 return ERR_PTR(-EBADF);
13316
13317 if (file->f_op != &perf_fops) {
13318 fput(file);
13319 return ERR_PTR(-EBADF);
13320 }
13321
13322 return file;
13323 }
13324
perf_get_event(struct file * file)13325 const struct perf_event *perf_get_event(struct file *file)
13326 {
13327 if (file->f_op != &perf_fops)
13328 return ERR_PTR(-EINVAL);
13329
13330 return file->private_data;
13331 }
13332
perf_event_attrs(struct perf_event * event)13333 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13334 {
13335 if (!event)
13336 return ERR_PTR(-EINVAL);
13337
13338 return &event->attr;
13339 }
13340
perf_allow_kernel(struct perf_event_attr * attr)13341 int perf_allow_kernel(struct perf_event_attr *attr)
13342 {
13343 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13344 return -EACCES;
13345
13346 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13347 }
13348 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13349
13350 /*
13351 * Inherit an event from parent task to child task.
13352 *
13353 * Returns:
13354 * - valid pointer on success
13355 * - NULL for orphaned events
13356 * - IS_ERR() on error
13357 */
13358 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13359 inherit_event(struct perf_event *parent_event,
13360 struct task_struct *parent,
13361 struct perf_event_context *parent_ctx,
13362 struct task_struct *child,
13363 struct perf_event *group_leader,
13364 struct perf_event_context *child_ctx)
13365 {
13366 enum perf_event_state parent_state = parent_event->state;
13367 struct perf_event_pmu_context *pmu_ctx;
13368 struct perf_event *child_event;
13369 unsigned long flags;
13370
13371 /*
13372 * Instead of creating recursive hierarchies of events,
13373 * we link inherited events back to the original parent,
13374 * which has a filp for sure, which we use as the reference
13375 * count:
13376 */
13377 if (parent_event->parent)
13378 parent_event = parent_event->parent;
13379
13380 child_event = perf_event_alloc(&parent_event->attr,
13381 parent_event->cpu,
13382 child,
13383 group_leader, parent_event,
13384 NULL, NULL, -1);
13385 if (IS_ERR(child_event))
13386 return child_event;
13387
13388 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13389 if (IS_ERR(pmu_ctx)) {
13390 free_event(child_event);
13391 return ERR_CAST(pmu_ctx);
13392 }
13393 child_event->pmu_ctx = pmu_ctx;
13394
13395 /*
13396 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13397 * must be under the same lock in order to serialize against
13398 * perf_event_release_kernel(), such that either we must observe
13399 * is_orphaned_event() or they will observe us on the child_list.
13400 */
13401 mutex_lock(&parent_event->child_mutex);
13402 if (is_orphaned_event(parent_event) ||
13403 !atomic_long_inc_not_zero(&parent_event->refcount)) {
13404 mutex_unlock(&parent_event->child_mutex);
13405 /* task_ctx_data is freed with child_ctx */
13406 free_event(child_event);
13407 return NULL;
13408 }
13409
13410 get_ctx(child_ctx);
13411
13412 /*
13413 * Make the child state follow the state of the parent event,
13414 * not its attr.disabled bit. We hold the parent's mutex,
13415 * so we won't race with perf_event_{en, dis}able_family.
13416 */
13417 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13418 child_event->state = PERF_EVENT_STATE_INACTIVE;
13419 else
13420 child_event->state = PERF_EVENT_STATE_OFF;
13421
13422 if (parent_event->attr.freq) {
13423 u64 sample_period = parent_event->hw.sample_period;
13424 struct hw_perf_event *hwc = &child_event->hw;
13425
13426 hwc->sample_period = sample_period;
13427 hwc->last_period = sample_period;
13428
13429 local64_set(&hwc->period_left, sample_period);
13430 }
13431
13432 child_event->ctx = child_ctx;
13433 child_event->overflow_handler = parent_event->overflow_handler;
13434 child_event->overflow_handler_context
13435 = parent_event->overflow_handler_context;
13436
13437 /*
13438 * Precalculate sample_data sizes
13439 */
13440 perf_event__header_size(child_event);
13441 perf_event__id_header_size(child_event);
13442
13443 /*
13444 * Link it up in the child's context:
13445 */
13446 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13447 add_event_to_ctx(child_event, child_ctx);
13448 child_event->attach_state |= PERF_ATTACH_CHILD;
13449 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13450
13451 /*
13452 * Link this into the parent event's child list
13453 */
13454 list_add_tail(&child_event->child_list, &parent_event->child_list);
13455 mutex_unlock(&parent_event->child_mutex);
13456
13457 return child_event;
13458 }
13459
13460 /*
13461 * Inherits an event group.
13462 *
13463 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13464 * This matches with perf_event_release_kernel() removing all child events.
13465 *
13466 * Returns:
13467 * - 0 on success
13468 * - <0 on error
13469 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13470 static int inherit_group(struct perf_event *parent_event,
13471 struct task_struct *parent,
13472 struct perf_event_context *parent_ctx,
13473 struct task_struct *child,
13474 struct perf_event_context *child_ctx)
13475 {
13476 struct perf_event *leader;
13477 struct perf_event *sub;
13478 struct perf_event *child_ctr;
13479
13480 leader = inherit_event(parent_event, parent, parent_ctx,
13481 child, NULL, child_ctx);
13482 if (IS_ERR(leader))
13483 return PTR_ERR(leader);
13484 /*
13485 * @leader can be NULL here because of is_orphaned_event(). In this
13486 * case inherit_event() will create individual events, similar to what
13487 * perf_group_detach() would do anyway.
13488 */
13489 for_each_sibling_event(sub, parent_event) {
13490 child_ctr = inherit_event(sub, parent, parent_ctx,
13491 child, leader, child_ctx);
13492 if (IS_ERR(child_ctr))
13493 return PTR_ERR(child_ctr);
13494
13495 if (sub->aux_event == parent_event && child_ctr &&
13496 !perf_get_aux_event(child_ctr, leader))
13497 return -EINVAL;
13498 }
13499 if (leader)
13500 leader->group_generation = parent_event->group_generation;
13501 return 0;
13502 }
13503
13504 /*
13505 * Creates the child task context and tries to inherit the event-group.
13506 *
13507 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13508 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13509 * consistent with perf_event_release_kernel() removing all child events.
13510 *
13511 * Returns:
13512 * - 0 on success
13513 * - <0 on error
13514 */
13515 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13516 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13517 struct perf_event_context *parent_ctx,
13518 struct task_struct *child,
13519 u64 clone_flags, int *inherited_all)
13520 {
13521 struct perf_event_context *child_ctx;
13522 int ret;
13523
13524 if (!event->attr.inherit ||
13525 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13526 /* Do not inherit if sigtrap and signal handlers were cleared. */
13527 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13528 *inherited_all = 0;
13529 return 0;
13530 }
13531
13532 child_ctx = child->perf_event_ctxp;
13533 if (!child_ctx) {
13534 /*
13535 * This is executed from the parent task context, so
13536 * inherit events that have been marked for cloning.
13537 * First allocate and initialize a context for the
13538 * child.
13539 */
13540 child_ctx = alloc_perf_context(child);
13541 if (!child_ctx)
13542 return -ENOMEM;
13543
13544 child->perf_event_ctxp = child_ctx;
13545 }
13546
13547 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13548 if (ret)
13549 *inherited_all = 0;
13550
13551 return ret;
13552 }
13553
13554 /*
13555 * Initialize the perf_event context in task_struct
13556 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13557 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13558 {
13559 struct perf_event_context *child_ctx, *parent_ctx;
13560 struct perf_event_context *cloned_ctx;
13561 struct perf_event *event;
13562 struct task_struct *parent = current;
13563 int inherited_all = 1;
13564 unsigned long flags;
13565 int ret = 0;
13566
13567 if (likely(!parent->perf_event_ctxp))
13568 return 0;
13569
13570 /*
13571 * If the parent's context is a clone, pin it so it won't get
13572 * swapped under us.
13573 */
13574 parent_ctx = perf_pin_task_context(parent);
13575 if (!parent_ctx)
13576 return 0;
13577
13578 /*
13579 * No need to check if parent_ctx != NULL here; since we saw
13580 * it non-NULL earlier, the only reason for it to become NULL
13581 * is if we exit, and since we're currently in the middle of
13582 * a fork we can't be exiting at the same time.
13583 */
13584
13585 /*
13586 * Lock the parent list. No need to lock the child - not PID
13587 * hashed yet and not running, so nobody can access it.
13588 */
13589 mutex_lock(&parent_ctx->mutex);
13590
13591 /*
13592 * We dont have to disable NMIs - we are only looking at
13593 * the list, not manipulating it:
13594 */
13595 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13596 ret = inherit_task_group(event, parent, parent_ctx,
13597 child, clone_flags, &inherited_all);
13598 if (ret)
13599 goto out_unlock;
13600 }
13601
13602 /*
13603 * We can't hold ctx->lock when iterating the ->flexible_group list due
13604 * to allocations, but we need to prevent rotation because
13605 * rotate_ctx() will change the list from interrupt context.
13606 */
13607 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13608 parent_ctx->rotate_disable = 1;
13609 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13610
13611 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13612 ret = inherit_task_group(event, parent, parent_ctx,
13613 child, clone_flags, &inherited_all);
13614 if (ret)
13615 goto out_unlock;
13616 }
13617
13618 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13619 parent_ctx->rotate_disable = 0;
13620
13621 child_ctx = child->perf_event_ctxp;
13622
13623 if (child_ctx && inherited_all) {
13624 /*
13625 * Mark the child context as a clone of the parent
13626 * context, or of whatever the parent is a clone of.
13627 *
13628 * Note that if the parent is a clone, the holding of
13629 * parent_ctx->lock avoids it from being uncloned.
13630 */
13631 cloned_ctx = parent_ctx->parent_ctx;
13632 if (cloned_ctx) {
13633 child_ctx->parent_ctx = cloned_ctx;
13634 child_ctx->parent_gen = parent_ctx->parent_gen;
13635 } else {
13636 child_ctx->parent_ctx = parent_ctx;
13637 child_ctx->parent_gen = parent_ctx->generation;
13638 }
13639 get_ctx(child_ctx->parent_ctx);
13640 }
13641
13642 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13643 out_unlock:
13644 mutex_unlock(&parent_ctx->mutex);
13645
13646 perf_unpin_context(parent_ctx);
13647 put_ctx(parent_ctx);
13648
13649 return ret;
13650 }
13651
13652 /*
13653 * Initialize the perf_event context in task_struct
13654 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13655 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13656 {
13657 int ret;
13658
13659 child->perf_event_ctxp = NULL;
13660 mutex_init(&child->perf_event_mutex);
13661 INIT_LIST_HEAD(&child->perf_event_list);
13662
13663 ret = perf_event_init_context(child, clone_flags);
13664 if (ret) {
13665 perf_event_free_task(child);
13666 return ret;
13667 }
13668
13669 return 0;
13670 }
13671
perf_event_init_all_cpus(void)13672 static void __init perf_event_init_all_cpus(void)
13673 {
13674 struct swevent_htable *swhash;
13675 struct perf_cpu_context *cpuctx;
13676 int cpu;
13677
13678 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13679
13680 for_each_possible_cpu(cpu) {
13681 swhash = &per_cpu(swevent_htable, cpu);
13682 mutex_init(&swhash->hlist_mutex);
13683
13684 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13685 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13686
13687 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13688
13689 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13690 __perf_event_init_context(&cpuctx->ctx);
13691 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13692 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13693 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13694 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13695 cpuctx->heap = cpuctx->heap_default;
13696 }
13697 }
13698
perf_swevent_init_cpu(unsigned int cpu)13699 static void perf_swevent_init_cpu(unsigned int cpu)
13700 {
13701 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13702
13703 mutex_lock(&swhash->hlist_mutex);
13704 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13705 struct swevent_hlist *hlist;
13706
13707 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13708 WARN_ON(!hlist);
13709 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13710 }
13711 mutex_unlock(&swhash->hlist_mutex);
13712 }
13713
13714 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13715 static void __perf_event_exit_context(void *__info)
13716 {
13717 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13718 struct perf_event_context *ctx = __info;
13719 struct perf_event *event;
13720
13721 raw_spin_lock(&ctx->lock);
13722 ctx_sched_out(ctx, EVENT_TIME);
13723 list_for_each_entry(event, &ctx->event_list, event_entry)
13724 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13725 raw_spin_unlock(&ctx->lock);
13726 }
13727
perf_event_exit_cpu_context(int cpu)13728 static void perf_event_exit_cpu_context(int cpu)
13729 {
13730 struct perf_cpu_context *cpuctx;
13731 struct perf_event_context *ctx;
13732
13733 // XXX simplify cpuctx->online
13734 mutex_lock(&pmus_lock);
13735 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13736 ctx = &cpuctx->ctx;
13737
13738 mutex_lock(&ctx->mutex);
13739 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13740 cpuctx->online = 0;
13741 mutex_unlock(&ctx->mutex);
13742 cpumask_clear_cpu(cpu, perf_online_mask);
13743 mutex_unlock(&pmus_lock);
13744 }
13745 #else
13746
perf_event_exit_cpu_context(int cpu)13747 static void perf_event_exit_cpu_context(int cpu) { }
13748
13749 #endif
13750
perf_event_init_cpu(unsigned int cpu)13751 int perf_event_init_cpu(unsigned int cpu)
13752 {
13753 struct perf_cpu_context *cpuctx;
13754 struct perf_event_context *ctx;
13755
13756 perf_swevent_init_cpu(cpu);
13757
13758 mutex_lock(&pmus_lock);
13759 cpumask_set_cpu(cpu, perf_online_mask);
13760 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13761 ctx = &cpuctx->ctx;
13762
13763 mutex_lock(&ctx->mutex);
13764 cpuctx->online = 1;
13765 mutex_unlock(&ctx->mutex);
13766 mutex_unlock(&pmus_lock);
13767
13768 return 0;
13769 }
13770
perf_event_exit_cpu(unsigned int cpu)13771 int perf_event_exit_cpu(unsigned int cpu)
13772 {
13773 perf_event_exit_cpu_context(cpu);
13774 return 0;
13775 }
13776
13777 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13778 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13779 {
13780 int cpu;
13781
13782 for_each_online_cpu(cpu)
13783 perf_event_exit_cpu(cpu);
13784
13785 return NOTIFY_OK;
13786 }
13787
13788 /*
13789 * Run the perf reboot notifier at the very last possible moment so that
13790 * the generic watchdog code runs as long as possible.
13791 */
13792 static struct notifier_block perf_reboot_notifier = {
13793 .notifier_call = perf_reboot,
13794 .priority = INT_MIN,
13795 };
13796
perf_event_init(void)13797 void __init perf_event_init(void)
13798 {
13799 int ret;
13800
13801 idr_init(&pmu_idr);
13802
13803 perf_event_init_all_cpus();
13804 init_srcu_struct(&pmus_srcu);
13805 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13806 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13807 perf_pmu_register(&perf_task_clock, "task_clock", -1);
13808 perf_tp_register();
13809 perf_event_init_cpu(smp_processor_id());
13810 register_reboot_notifier(&perf_reboot_notifier);
13811
13812 ret = init_hw_breakpoint();
13813 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13814
13815 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13816
13817 /*
13818 * Build time assertion that we keep the data_head at the intended
13819 * location. IOW, validation we got the __reserved[] size right.
13820 */
13821 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13822 != 1024);
13823 }
13824
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13825 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13826 char *page)
13827 {
13828 struct perf_pmu_events_attr *pmu_attr =
13829 container_of(attr, struct perf_pmu_events_attr, attr);
13830
13831 if (pmu_attr->event_str)
13832 return sprintf(page, "%s\n", pmu_attr->event_str);
13833
13834 return 0;
13835 }
13836 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13837
perf_event_sysfs_init(void)13838 static int __init perf_event_sysfs_init(void)
13839 {
13840 struct pmu *pmu;
13841 int ret;
13842
13843 mutex_lock(&pmus_lock);
13844
13845 ret = bus_register(&pmu_bus);
13846 if (ret)
13847 goto unlock;
13848
13849 list_for_each_entry(pmu, &pmus, entry) {
13850 if (pmu->dev)
13851 continue;
13852
13853 ret = pmu_dev_alloc(pmu);
13854 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13855 }
13856 pmu_bus_running = 1;
13857 ret = 0;
13858
13859 unlock:
13860 mutex_unlock(&pmus_lock);
13861
13862 return ret;
13863 }
13864 device_initcall(perf_event_sysfs_init);
13865
13866 #ifdef CONFIG_CGROUP_PERF
13867 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13868 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13869 {
13870 struct perf_cgroup *jc;
13871
13872 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13873 if (!jc)
13874 return ERR_PTR(-ENOMEM);
13875
13876 jc->info = alloc_percpu(struct perf_cgroup_info);
13877 if (!jc->info) {
13878 kfree(jc);
13879 return ERR_PTR(-ENOMEM);
13880 }
13881
13882 return &jc->css;
13883 }
13884
perf_cgroup_css_free(struct cgroup_subsys_state * css)13885 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13886 {
13887 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13888
13889 free_percpu(jc->info);
13890 kfree(jc);
13891 }
13892
perf_cgroup_css_online(struct cgroup_subsys_state * css)13893 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13894 {
13895 perf_event_cgroup(css->cgroup);
13896 return 0;
13897 }
13898
__perf_cgroup_move(void * info)13899 static int __perf_cgroup_move(void *info)
13900 {
13901 struct task_struct *task = info;
13902
13903 preempt_disable();
13904 perf_cgroup_switch(task);
13905 preempt_enable();
13906
13907 return 0;
13908 }
13909
perf_cgroup_attach(struct cgroup_taskset * tset)13910 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13911 {
13912 struct task_struct *task;
13913 struct cgroup_subsys_state *css;
13914
13915 cgroup_taskset_for_each(task, css, tset)
13916 task_function_call(task, __perf_cgroup_move, task);
13917 }
13918
13919 struct cgroup_subsys perf_event_cgrp_subsys = {
13920 .css_alloc = perf_cgroup_css_alloc,
13921 .css_free = perf_cgroup_css_free,
13922 .css_online = perf_cgroup_css_online,
13923 .attach = perf_cgroup_attach,
13924 /*
13925 * Implicitly enable on dfl hierarchy so that perf events can
13926 * always be filtered by cgroup2 path as long as perf_event
13927 * controller is not mounted on a legacy hierarchy.
13928 */
13929 .implicit_on_dfl = true,
13930 .threaded = true,
13931 };
13932 #endif /* CONFIG_CGROUP_PERF */
13933
13934 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13935