xref: /openbmc/linux/kernel/events/ring_buffer.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events ring-buffer code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
17 
18 #include "internal.h"
19 
perf_output_wakeup(struct perf_output_handle * handle)20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, EPOLLIN | EPOLLRDNORM);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending_irq);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
perf_output_get_handle(struct perf_output_handle * handle)36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct perf_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 
42 	/*
43 	 * Avoid an explicit LOAD/STORE such that architectures with memops
44 	 * can use them.
45 	 */
46 	(*(volatile unsigned int *)&rb->nest)++;
47 	handle->wakeup = local_read(&rb->wakeup);
48 }
49 
perf_output_put_handle(struct perf_output_handle * handle)50 static void perf_output_put_handle(struct perf_output_handle *handle)
51 {
52 	struct perf_buffer *rb = handle->rb;
53 	unsigned long head;
54 	unsigned int nest;
55 
56 	/*
57 	 * If this isn't the outermost nesting, we don't have to update
58 	 * @rb->user_page->data_head.
59 	 */
60 	nest = READ_ONCE(rb->nest);
61 	if (nest > 1) {
62 		WRITE_ONCE(rb->nest, nest - 1);
63 		goto out;
64 	}
65 
66 again:
67 	/*
68 	 * In order to avoid publishing a head value that goes backwards,
69 	 * we must ensure the load of @rb->head happens after we've
70 	 * incremented @rb->nest.
71 	 *
72 	 * Otherwise we can observe a @rb->head value before one published
73 	 * by an IRQ/NMI happening between the load and the increment.
74 	 */
75 	barrier();
76 	head = local_read(&rb->head);
77 
78 	/*
79 	 * IRQ/NMI can happen here and advance @rb->head, causing our
80 	 * load above to be stale.
81 	 */
82 
83 	/*
84 	 * Since the mmap() consumer (userspace) can run on a different CPU:
85 	 *
86 	 *   kernel				user
87 	 *
88 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
89 	 *			(A)		smp_rmb()	(C)
90 	 *	STORE $data			LOAD $data
91 	 *	smp_wmb()	(B)		smp_mb()	(D)
92 	 *	STORE ->data_head		STORE ->data_tail
93 	 *   }
94 	 *
95 	 * Where A pairs with D, and B pairs with C.
96 	 *
97 	 * In our case (A) is a control dependency that separates the load of
98 	 * the ->data_tail and the stores of $data. In case ->data_tail
99 	 * indicates there is no room in the buffer to store $data we do not.
100 	 *
101 	 * D needs to be a full barrier since it separates the data READ
102 	 * from the tail WRITE.
103 	 *
104 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
105 	 * an RMB is sufficient since it separates two READs.
106 	 *
107 	 * See perf_output_begin().
108 	 */
109 	smp_wmb(); /* B, matches C */
110 	WRITE_ONCE(rb->user_page->data_head, head);
111 
112 	/*
113 	 * We must publish the head before decrementing the nest count,
114 	 * otherwise an IRQ/NMI can publish a more recent head value and our
115 	 * write will (temporarily) publish a stale value.
116 	 */
117 	barrier();
118 	WRITE_ONCE(rb->nest, 0);
119 
120 	/*
121 	 * Ensure we decrement @rb->nest before we validate the @rb->head.
122 	 * Otherwise we cannot be sure we caught the 'last' nested update.
123 	 */
124 	barrier();
125 	if (unlikely(head != local_read(&rb->head))) {
126 		WRITE_ONCE(rb->nest, 1);
127 		goto again;
128 	}
129 
130 	if (handle->wakeup != local_read(&rb->wakeup))
131 		perf_output_wakeup(handle);
132 
133 out:
134 	preempt_enable();
135 }
136 
137 static __always_inline bool
ring_buffer_has_space(unsigned long head,unsigned long tail,unsigned long data_size,unsigned int size,bool backward)138 ring_buffer_has_space(unsigned long head, unsigned long tail,
139 		      unsigned long data_size, unsigned int size,
140 		      bool backward)
141 {
142 	if (!backward)
143 		return CIRC_SPACE(head, tail, data_size) >= size;
144 	else
145 		return CIRC_SPACE(tail, head, data_size) >= size;
146 }
147 
148 static __always_inline int
__perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size,bool backward)149 __perf_output_begin(struct perf_output_handle *handle,
150 		    struct perf_sample_data *data,
151 		    struct perf_event *event, unsigned int size,
152 		    bool backward)
153 {
154 	struct perf_buffer *rb;
155 	unsigned long tail, offset, head;
156 	int have_lost, page_shift;
157 	struct {
158 		struct perf_event_header header;
159 		u64			 id;
160 		u64			 lost;
161 	} lost_event;
162 
163 	rcu_read_lock();
164 	/*
165 	 * For inherited events we send all the output towards the parent.
166 	 */
167 	if (event->parent)
168 		event = event->parent;
169 
170 	rb = rcu_dereference(event->rb);
171 	if (unlikely(!rb))
172 		goto out;
173 
174 	if (unlikely(rb->paused)) {
175 		if (rb->nr_pages) {
176 			local_inc(&rb->lost);
177 			atomic64_inc(&event->lost_samples);
178 		}
179 		goto out;
180 	}
181 
182 	handle->rb    = rb;
183 	handle->event = event;
184 	handle->flags = 0;
185 
186 	have_lost = local_read(&rb->lost);
187 	if (unlikely(have_lost)) {
188 		size += sizeof(lost_event);
189 		if (event->attr.sample_id_all)
190 			size += event->id_header_size;
191 	}
192 
193 	perf_output_get_handle(handle);
194 
195 	offset = local_read(&rb->head);
196 	do {
197 		head = offset;
198 		tail = READ_ONCE(rb->user_page->data_tail);
199 		if (!rb->overwrite) {
200 			if (unlikely(!ring_buffer_has_space(head, tail,
201 							    perf_data_size(rb),
202 							    size, backward)))
203 				goto fail;
204 		}
205 
206 		/*
207 		 * The above forms a control dependency barrier separating the
208 		 * @tail load above from the data stores below. Since the @tail
209 		 * load is required to compute the branch to fail below.
210 		 *
211 		 * A, matches D; the full memory barrier userspace SHOULD issue
212 		 * after reading the data and before storing the new tail
213 		 * position.
214 		 *
215 		 * See perf_output_put_handle().
216 		 */
217 
218 		if (!backward)
219 			head += size;
220 		else
221 			head -= size;
222 	} while (!local_try_cmpxchg(&rb->head, &offset, head));
223 
224 	if (backward) {
225 		offset = head;
226 		head = (u64)(-head);
227 	}
228 
229 	/*
230 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
231 	 * none of the data stores below can be lifted up by the compiler.
232 	 */
233 
234 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
235 		local_add(rb->watermark, &rb->wakeup);
236 
237 	page_shift = PAGE_SHIFT + page_order(rb);
238 
239 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
240 	offset &= (1UL << page_shift) - 1;
241 	handle->addr = rb->data_pages[handle->page] + offset;
242 	handle->size = (1UL << page_shift) - offset;
243 
244 	if (unlikely(have_lost)) {
245 		lost_event.header.size = sizeof(lost_event);
246 		lost_event.header.type = PERF_RECORD_LOST;
247 		lost_event.header.misc = 0;
248 		lost_event.id          = event->id;
249 		lost_event.lost        = local_xchg(&rb->lost, 0);
250 
251 		/* XXX mostly redundant; @data is already fully initializes */
252 		perf_event_header__init_id(&lost_event.header, data, event);
253 		perf_output_put(handle, lost_event);
254 		perf_event__output_id_sample(event, handle, data);
255 	}
256 
257 	return 0;
258 
259 fail:
260 	local_inc(&rb->lost);
261 	atomic64_inc(&event->lost_samples);
262 	perf_output_put_handle(handle);
263 out:
264 	rcu_read_unlock();
265 
266 	return -ENOSPC;
267 }
268 
perf_output_begin_forward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)269 int perf_output_begin_forward(struct perf_output_handle *handle,
270 			      struct perf_sample_data *data,
271 			      struct perf_event *event, unsigned int size)
272 {
273 	return __perf_output_begin(handle, data, event, size, false);
274 }
275 
perf_output_begin_backward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)276 int perf_output_begin_backward(struct perf_output_handle *handle,
277 			       struct perf_sample_data *data,
278 			       struct perf_event *event, unsigned int size)
279 {
280 	return __perf_output_begin(handle, data, event, size, true);
281 }
282 
perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)283 int perf_output_begin(struct perf_output_handle *handle,
284 		      struct perf_sample_data *data,
285 		      struct perf_event *event, unsigned int size)
286 {
287 
288 	return __perf_output_begin(handle, data, event, size,
289 				   unlikely(is_write_backward(event)));
290 }
291 
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)292 unsigned int perf_output_copy(struct perf_output_handle *handle,
293 		      const void *buf, unsigned int len)
294 {
295 	return __output_copy(handle, buf, len);
296 }
297 
perf_output_skip(struct perf_output_handle * handle,unsigned int len)298 unsigned int perf_output_skip(struct perf_output_handle *handle,
299 			      unsigned int len)
300 {
301 	return __output_skip(handle, NULL, len);
302 }
303 
perf_output_end(struct perf_output_handle * handle)304 void perf_output_end(struct perf_output_handle *handle)
305 {
306 	perf_output_put_handle(handle);
307 	rcu_read_unlock();
308 }
309 
310 static void
ring_buffer_init(struct perf_buffer * rb,long watermark,int flags)311 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
312 {
313 	long max_size = perf_data_size(rb);
314 
315 	if (watermark)
316 		rb->watermark = min(max_size, watermark);
317 
318 	if (!rb->watermark)
319 		rb->watermark = max_size / 2;
320 
321 	if (flags & RING_BUFFER_WRITABLE)
322 		rb->overwrite = 0;
323 	else
324 		rb->overwrite = 1;
325 
326 	refcount_set(&rb->refcount, 1);
327 
328 	INIT_LIST_HEAD(&rb->event_list);
329 	spin_lock_init(&rb->event_lock);
330 
331 	/*
332 	 * perf_output_begin() only checks rb->paused, therefore
333 	 * rb->paused must be true if we have no pages for output.
334 	 */
335 	if (!rb->nr_pages)
336 		rb->paused = 1;
337 
338 	mutex_init(&rb->aux_mutex);
339 }
340 
perf_aux_output_flag(struct perf_output_handle * handle,u64 flags)341 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
342 {
343 	/*
344 	 * OVERWRITE is determined by perf_aux_output_end() and can't
345 	 * be passed in directly.
346 	 */
347 	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
348 		return;
349 
350 	handle->aux_flags |= flags;
351 }
352 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
353 
354 /*
355  * This is called before hardware starts writing to the AUX area to
356  * obtain an output handle and make sure there's room in the buffer.
357  * When the capture completes, call perf_aux_output_end() to commit
358  * the recorded data to the buffer.
359  *
360  * The ordering is similar to that of perf_output_{begin,end}, with
361  * the exception of (B), which should be taken care of by the pmu
362  * driver, since ordering rules will differ depending on hardware.
363  *
364  * Call this from pmu::start(); see the comment in perf_aux_output_end()
365  * about its use in pmu callbacks. Both can also be called from the PMI
366  * handler if needed.
367  */
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)368 void *perf_aux_output_begin(struct perf_output_handle *handle,
369 			    struct perf_event *event)
370 {
371 	struct perf_event *output_event = event;
372 	unsigned long aux_head, aux_tail;
373 	struct perf_buffer *rb;
374 	unsigned int nest;
375 
376 	if (output_event->parent)
377 		output_event = output_event->parent;
378 
379 	/*
380 	 * Since this will typically be open across pmu::add/pmu::del, we
381 	 * grab ring_buffer's refcount instead of holding rcu read lock
382 	 * to make sure it doesn't disappear under us.
383 	 */
384 	rb = ring_buffer_get(output_event);
385 	if (!rb)
386 		return NULL;
387 
388 	if (!rb_has_aux(rb))
389 		goto err;
390 
391 	/*
392 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
393 	 * about to get freed, so we leave immediately.
394 	 *
395 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
396 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
397 	 * aux pages in this path, which is a bug, because in_atomic().
398 	 */
399 	if (!atomic_read(&rb->aux_mmap_count))
400 		goto err;
401 
402 	if (!refcount_inc_not_zero(&rb->aux_refcount))
403 		goto err;
404 
405 	nest = READ_ONCE(rb->aux_nest);
406 	/*
407 	 * Nesting is not supported for AUX area, make sure nested
408 	 * writers are caught early
409 	 */
410 	if (WARN_ON_ONCE(nest))
411 		goto err_put;
412 
413 	WRITE_ONCE(rb->aux_nest, nest + 1);
414 
415 	aux_head = rb->aux_head;
416 
417 	handle->rb = rb;
418 	handle->event = event;
419 	handle->head = aux_head;
420 	handle->size = 0;
421 	handle->aux_flags = 0;
422 
423 	/*
424 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
425 	 * therefore (A) control dependency barrier does not exist. The
426 	 * (B) <-> (C) ordering is still observed by the pmu driver.
427 	 */
428 	if (!rb->aux_overwrite) {
429 		aux_tail = READ_ONCE(rb->user_page->aux_tail);
430 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
431 		if (aux_head - aux_tail < perf_aux_size(rb))
432 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
433 
434 		/*
435 		 * handle->size computation depends on aux_tail load; this forms a
436 		 * control dependency barrier separating aux_tail load from aux data
437 		 * store that will be enabled on successful return
438 		 */
439 		if (!handle->size) { /* A, matches D */
440 			event->pending_disable = smp_processor_id();
441 			perf_output_wakeup(handle);
442 			WRITE_ONCE(rb->aux_nest, 0);
443 			goto err_put;
444 		}
445 	}
446 
447 	return handle->rb->aux_priv;
448 
449 err_put:
450 	/* can't be last */
451 	rb_free_aux(rb);
452 
453 err:
454 	ring_buffer_put(rb);
455 	handle->event = NULL;
456 
457 	return NULL;
458 }
459 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
460 
rb_need_aux_wakeup(struct perf_buffer * rb)461 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
462 {
463 	if (rb->aux_overwrite)
464 		return false;
465 
466 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
467 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
468 		return true;
469 	}
470 
471 	return false;
472 }
473 
474 /*
475  * Commit the data written by hardware into the ring buffer by adjusting
476  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
477  * pmu driver's responsibility to observe ordering rules of the hardware,
478  * so that all the data is externally visible before this is called.
479  *
480  * Note: this has to be called from pmu::stop() callback, as the assumption
481  * of the AUX buffer management code is that after pmu::stop(), the AUX
482  * transaction must be stopped and therefore drop the AUX reference count.
483  */
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)484 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
485 {
486 	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
487 	struct perf_buffer *rb = handle->rb;
488 	unsigned long aux_head;
489 
490 	/* in overwrite mode, driver provides aux_head via handle */
491 	if (rb->aux_overwrite) {
492 		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
493 
494 		aux_head = handle->head;
495 		rb->aux_head = aux_head;
496 	} else {
497 		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
498 
499 		aux_head = rb->aux_head;
500 		rb->aux_head += size;
501 	}
502 
503 	/*
504 	 * Only send RECORD_AUX if we have something useful to communicate
505 	 *
506 	 * Note: the OVERWRITE records by themselves are not considered
507 	 * useful, as they don't communicate any *new* information,
508 	 * aside from the short-lived offset, that becomes history at
509 	 * the next event sched-in and therefore isn't useful.
510 	 * The userspace that needs to copy out AUX data in overwrite
511 	 * mode should know to use user_page::aux_head for the actual
512 	 * offset. So, from now on we don't output AUX records that
513 	 * have *only* OVERWRITE flag set.
514 	 */
515 	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
516 		perf_event_aux_event(handle->event, aux_head, size,
517 				     handle->aux_flags);
518 
519 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
520 	if (rb_need_aux_wakeup(rb))
521 		wakeup = true;
522 
523 	if (wakeup) {
524 		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
525 			handle->event->pending_disable = smp_processor_id();
526 		perf_output_wakeup(handle);
527 	}
528 
529 	handle->event = NULL;
530 
531 	WRITE_ONCE(rb->aux_nest, 0);
532 	/* can't be last */
533 	rb_free_aux(rb);
534 	ring_buffer_put(rb);
535 }
536 EXPORT_SYMBOL_GPL(perf_aux_output_end);
537 
538 /*
539  * Skip over a given number of bytes in the AUX buffer, due to, for example,
540  * hardware's alignment constraints.
541  */
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)542 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
543 {
544 	struct perf_buffer *rb = handle->rb;
545 
546 	if (size > handle->size)
547 		return -ENOSPC;
548 
549 	rb->aux_head += size;
550 
551 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
552 	if (rb_need_aux_wakeup(rb)) {
553 		perf_output_wakeup(handle);
554 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
555 	}
556 
557 	handle->head = rb->aux_head;
558 	handle->size -= size;
559 
560 	return 0;
561 }
562 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
563 
perf_get_aux(struct perf_output_handle * handle)564 void *perf_get_aux(struct perf_output_handle *handle)
565 {
566 	/* this is only valid between perf_aux_output_begin and *_end */
567 	if (!handle->event)
568 		return NULL;
569 
570 	return handle->rb->aux_priv;
571 }
572 EXPORT_SYMBOL_GPL(perf_get_aux);
573 
574 /*
575  * Copy out AUX data from an AUX handle.
576  */
perf_output_copy_aux(struct perf_output_handle * aux_handle,struct perf_output_handle * handle,unsigned long from,unsigned long to)577 long perf_output_copy_aux(struct perf_output_handle *aux_handle,
578 			  struct perf_output_handle *handle,
579 			  unsigned long from, unsigned long to)
580 {
581 	struct perf_buffer *rb = aux_handle->rb;
582 	unsigned long tocopy, remainder, len = 0;
583 	void *addr;
584 
585 	from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
586 	to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
587 
588 	do {
589 		tocopy = PAGE_SIZE - offset_in_page(from);
590 		if (to > from)
591 			tocopy = min(tocopy, to - from);
592 		if (!tocopy)
593 			break;
594 
595 		addr = rb->aux_pages[from >> PAGE_SHIFT];
596 		addr += offset_in_page(from);
597 
598 		remainder = perf_output_copy(handle, addr, tocopy);
599 		if (remainder)
600 			return -EFAULT;
601 
602 		len += tocopy;
603 		from += tocopy;
604 		from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
605 	} while (to != from);
606 
607 	return len;
608 }
609 
610 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
611 
rb_alloc_aux_page(int node,int order)612 static struct page *rb_alloc_aux_page(int node, int order)
613 {
614 	struct page *page;
615 
616 	if (order > MAX_ORDER)
617 		order = MAX_ORDER;
618 
619 	do {
620 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
621 	} while (!page && order--);
622 
623 	if (page && order) {
624 		/*
625 		 * Communicate the allocation size to the driver:
626 		 * if we managed to secure a high-order allocation,
627 		 * set its first page's private to this order;
628 		 * !PagePrivate(page) means it's just a normal page.
629 		 */
630 		split_page(page, order);
631 		SetPagePrivate(page);
632 		set_page_private(page, order);
633 	}
634 
635 	return page;
636 }
637 
rb_free_aux_page(struct perf_buffer * rb,int idx)638 static void rb_free_aux_page(struct perf_buffer *rb, int idx)
639 {
640 	struct page *page = virt_to_page(rb->aux_pages[idx]);
641 
642 	ClearPagePrivate(page);
643 	page->mapping = NULL;
644 	__free_page(page);
645 }
646 
__rb_free_aux(struct perf_buffer * rb)647 static void __rb_free_aux(struct perf_buffer *rb)
648 {
649 	int pg;
650 
651 	/*
652 	 * Should never happen, the last reference should be dropped from
653 	 * perf_mmap_close() path, which first stops aux transactions (which
654 	 * in turn are the atomic holders of aux_refcount) and then does the
655 	 * last rb_free_aux().
656 	 */
657 	WARN_ON_ONCE(in_atomic());
658 
659 	if (rb->aux_priv) {
660 		rb->free_aux(rb->aux_priv);
661 		rb->free_aux = NULL;
662 		rb->aux_priv = NULL;
663 	}
664 
665 	if (rb->aux_nr_pages) {
666 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
667 			rb_free_aux_page(rb, pg);
668 
669 		kfree(rb->aux_pages);
670 		rb->aux_nr_pages = 0;
671 	}
672 }
673 
rb_alloc_aux(struct perf_buffer * rb,struct perf_event * event,pgoff_t pgoff,int nr_pages,long watermark,int flags)674 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
675 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
676 {
677 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
678 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
679 	int ret = -ENOMEM, max_order;
680 
681 	if (!has_aux(event))
682 		return -EOPNOTSUPP;
683 
684 	if (!overwrite) {
685 		/*
686 		 * Watermark defaults to half the buffer, and so does the
687 		 * max_order, to aid PMU drivers in double buffering.
688 		 */
689 		if (!watermark)
690 			watermark = min_t(unsigned long,
691 					  U32_MAX,
692 					  (unsigned long)nr_pages << (PAGE_SHIFT - 1));
693 
694 		/*
695 		 * Use aux_watermark as the basis for chunking to
696 		 * help PMU drivers honor the watermark.
697 		 */
698 		max_order = get_order(watermark);
699 	} else {
700 		/*
701 		 * We need to start with the max_order that fits in nr_pages,
702 		 * not the other way around, hence ilog2() and not get_order.
703 		 */
704 		max_order = ilog2(nr_pages);
705 		watermark = 0;
706 	}
707 
708 	/*
709 	 * kcalloc_node() is unable to allocate buffer if the size is larger
710 	 * than: PAGE_SIZE << MAX_ORDER; directly bail out in this case.
711 	 */
712 	if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_ORDER)
713 		return -ENOMEM;
714 	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
715 				     node);
716 	if (!rb->aux_pages)
717 		return -ENOMEM;
718 
719 	rb->free_aux = event->pmu->free_aux;
720 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
721 		struct page *page;
722 		int last, order;
723 
724 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
725 		page = rb_alloc_aux_page(node, order);
726 		if (!page)
727 			goto out;
728 
729 		for (last = rb->aux_nr_pages + (1 << page_private(page));
730 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
731 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
732 	}
733 
734 	/*
735 	 * In overwrite mode, PMUs that don't support SG may not handle more
736 	 * than one contiguous allocation, since they rely on PMI to do double
737 	 * buffering. In this case, the entire buffer has to be one contiguous
738 	 * chunk.
739 	 */
740 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
741 	    overwrite) {
742 		struct page *page = virt_to_page(rb->aux_pages[0]);
743 
744 		if (page_private(page) != max_order)
745 			goto out;
746 	}
747 
748 	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
749 					     overwrite);
750 	if (!rb->aux_priv)
751 		goto out;
752 
753 	ret = 0;
754 
755 	/*
756 	 * aux_pages (and pmu driver's private data, aux_priv) will be
757 	 * referenced in both producer's and consumer's contexts, thus
758 	 * we keep a refcount here to make sure either of the two can
759 	 * reference them safely.
760 	 */
761 	refcount_set(&rb->aux_refcount, 1);
762 
763 	rb->aux_overwrite = overwrite;
764 	rb->aux_watermark = watermark;
765 
766 out:
767 	if (!ret)
768 		rb->aux_pgoff = pgoff;
769 	else
770 		__rb_free_aux(rb);
771 
772 	return ret;
773 }
774 
rb_free_aux(struct perf_buffer * rb)775 void rb_free_aux(struct perf_buffer *rb)
776 {
777 	if (refcount_dec_and_test(&rb->aux_refcount))
778 		__rb_free_aux(rb);
779 }
780 
781 #ifndef CONFIG_PERF_USE_VMALLOC
782 
783 /*
784  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
785  */
786 
787 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)788 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
789 {
790 	if (pgoff > rb->nr_pages)
791 		return NULL;
792 
793 	if (pgoff == 0)
794 		return virt_to_page(rb->user_page);
795 
796 	return virt_to_page(rb->data_pages[pgoff - 1]);
797 }
798 
perf_mmap_alloc_page(int cpu)799 static void *perf_mmap_alloc_page(int cpu)
800 {
801 	struct page *page;
802 	int node;
803 
804 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
805 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
806 	if (!page)
807 		return NULL;
808 
809 	return page_address(page);
810 }
811 
perf_mmap_free_page(void * addr)812 static void perf_mmap_free_page(void *addr)
813 {
814 	struct page *page = virt_to_page(addr);
815 
816 	page->mapping = NULL;
817 	__free_page(page);
818 }
819 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)820 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
821 {
822 	struct perf_buffer *rb;
823 	unsigned long size;
824 	int i, node;
825 
826 	size = sizeof(struct perf_buffer);
827 	size += nr_pages * sizeof(void *);
828 
829 	if (order_base_2(size) > PAGE_SHIFT+MAX_ORDER)
830 		goto fail;
831 
832 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
833 	rb = kzalloc_node(size, GFP_KERNEL, node);
834 	if (!rb)
835 		goto fail;
836 
837 	rb->user_page = perf_mmap_alloc_page(cpu);
838 	if (!rb->user_page)
839 		goto fail_user_page;
840 
841 	for (i = 0; i < nr_pages; i++) {
842 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
843 		if (!rb->data_pages[i])
844 			goto fail_data_pages;
845 	}
846 
847 	rb->nr_pages = nr_pages;
848 
849 	ring_buffer_init(rb, watermark, flags);
850 
851 	return rb;
852 
853 fail_data_pages:
854 	for (i--; i >= 0; i--)
855 		perf_mmap_free_page(rb->data_pages[i]);
856 
857 	perf_mmap_free_page(rb->user_page);
858 
859 fail_user_page:
860 	kfree(rb);
861 
862 fail:
863 	return NULL;
864 }
865 
rb_free(struct perf_buffer * rb)866 void rb_free(struct perf_buffer *rb)
867 {
868 	int i;
869 
870 	perf_mmap_free_page(rb->user_page);
871 	for (i = 0; i < rb->nr_pages; i++)
872 		perf_mmap_free_page(rb->data_pages[i]);
873 	kfree(rb);
874 }
875 
876 #else
877 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)878 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
879 {
880 	/* The '>' counts in the user page. */
881 	if (pgoff > data_page_nr(rb))
882 		return NULL;
883 
884 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
885 }
886 
perf_mmap_unmark_page(void * addr)887 static void perf_mmap_unmark_page(void *addr)
888 {
889 	struct page *page = vmalloc_to_page(addr);
890 
891 	page->mapping = NULL;
892 }
893 
rb_free_work(struct work_struct * work)894 static void rb_free_work(struct work_struct *work)
895 {
896 	struct perf_buffer *rb;
897 	void *base;
898 	int i, nr;
899 
900 	rb = container_of(work, struct perf_buffer, work);
901 	nr = data_page_nr(rb);
902 
903 	base = rb->user_page;
904 	/* The '<=' counts in the user page. */
905 	for (i = 0; i <= nr; i++)
906 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
907 
908 	vfree(base);
909 	kfree(rb);
910 }
911 
rb_free(struct perf_buffer * rb)912 void rb_free(struct perf_buffer *rb)
913 {
914 	schedule_work(&rb->work);
915 }
916 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)917 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
918 {
919 	struct perf_buffer *rb;
920 	unsigned long size;
921 	void *all_buf;
922 	int node;
923 
924 	size = sizeof(struct perf_buffer);
925 	size += sizeof(void *);
926 
927 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
928 	rb = kzalloc_node(size, GFP_KERNEL, node);
929 	if (!rb)
930 		goto fail;
931 
932 	INIT_WORK(&rb->work, rb_free_work);
933 
934 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
935 	if (!all_buf)
936 		goto fail_all_buf;
937 
938 	rb->user_page = all_buf;
939 	rb->data_pages[0] = all_buf + PAGE_SIZE;
940 	if (nr_pages) {
941 		rb->nr_pages = 1;
942 		rb->page_order = ilog2(nr_pages);
943 	}
944 
945 	ring_buffer_init(rb, watermark, flags);
946 
947 	return rb;
948 
949 fail_all_buf:
950 	kfree(rb);
951 
952 fail:
953 	return NULL;
954 }
955 
956 #endif
957 
958 struct page *
perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)959 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
960 {
961 	if (rb->aux_nr_pages) {
962 		/* above AUX space */
963 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
964 			return NULL;
965 
966 		/* AUX space */
967 		if (pgoff >= rb->aux_pgoff) {
968 			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
969 			return virt_to_page(rb->aux_pages[aux_pgoff]);
970 		}
971 	}
972 
973 	return __perf_mmap_to_page(rb, pgoff);
974 }
975