xref: /openbmc/linux/tools/perf/util/header.c (revision 35bcf6bf)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28 
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include "asm/bug.h"
48 #include "tool.h"
49 #include "time-utils.h"
50 #include "units.h"
51 #include "util/util.h" // perf_exe()
52 #include "cputopo.h"
53 #include "bpf-event.h"
54 #include "bpf-utils.h"
55 #include "clockid.h"
56 
57 #include <linux/ctype.h>
58 #include <internal/lib.h>
59 
60 #ifdef HAVE_LIBTRACEEVENT
61 #include <traceevent/event-parse.h>
62 #endif
63 
64 /*
65  * magic2 = "PERFILE2"
66  * must be a numerical value to let the endianness
67  * determine the memory layout. That way we are able
68  * to detect endianness when reading the perf.data file
69  * back.
70  *
71  * we check for legacy (PERFFILE) format.
72  */
73 static const char *__perf_magic1 = "PERFFILE";
74 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
75 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76 
77 #define PERF_MAGIC	__perf_magic2
78 
79 const char perf_version_string[] = PERF_VERSION;
80 
81 struct perf_file_attr {
82 	struct perf_event_attr	attr;
83 	struct perf_file_section	ids;
84 };
85 
perf_header__set_feat(struct perf_header * header,int feat)86 void perf_header__set_feat(struct perf_header *header, int feat)
87 {
88 	__set_bit(feat, header->adds_features);
89 }
90 
perf_header__clear_feat(struct perf_header * header,int feat)91 void perf_header__clear_feat(struct perf_header *header, int feat)
92 {
93 	__clear_bit(feat, header->adds_features);
94 }
95 
perf_header__has_feat(const struct perf_header * header,int feat)96 bool perf_header__has_feat(const struct perf_header *header, int feat)
97 {
98 	return test_bit(feat, header->adds_features);
99 }
100 
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)101 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102 {
103 	ssize_t ret = writen(ff->fd, buf, size);
104 
105 	if (ret != (ssize_t)size)
106 		return ret < 0 ? (int)ret : -1;
107 	return 0;
108 }
109 
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)110 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111 {
112 	/* struct perf_event_header::size is u16 */
113 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114 	size_t new_size = ff->size;
115 	void *addr;
116 
117 	if (size + ff->offset > max_size)
118 		return -E2BIG;
119 
120 	while (size > (new_size - ff->offset))
121 		new_size <<= 1;
122 	new_size = min(max_size, new_size);
123 
124 	if (ff->size < new_size) {
125 		addr = realloc(ff->buf, new_size);
126 		if (!addr)
127 			return -ENOMEM;
128 		ff->buf = addr;
129 		ff->size = new_size;
130 	}
131 
132 	memcpy(ff->buf + ff->offset, buf, size);
133 	ff->offset += size;
134 
135 	return 0;
136 }
137 
138 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)139 int do_write(struct feat_fd *ff, const void *buf, size_t size)
140 {
141 	if (!ff->buf)
142 		return __do_write_fd(ff, buf, size);
143 	return __do_write_buf(ff, buf, size);
144 }
145 
146 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)147 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148 {
149 	u64 *p = (u64 *) set;
150 	int i, ret;
151 
152 	ret = do_write(ff, &size, sizeof(size));
153 	if (ret < 0)
154 		return ret;
155 
156 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157 		ret = do_write(ff, p + i, sizeof(*p));
158 		if (ret < 0)
159 			return ret;
160 	}
161 
162 	return 0;
163 }
164 
165 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)166 int write_padded(struct feat_fd *ff, const void *bf,
167 		 size_t count, size_t count_aligned)
168 {
169 	static const char zero_buf[NAME_ALIGN];
170 	int err = do_write(ff, bf, count);
171 
172 	if (!err)
173 		err = do_write(ff, zero_buf, count_aligned - count);
174 
175 	return err;
176 }
177 
178 #define string_size(str)						\
179 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180 
181 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)182 static int do_write_string(struct feat_fd *ff, const char *str)
183 {
184 	u32 len, olen;
185 	int ret;
186 
187 	olen = strlen(str) + 1;
188 	len = PERF_ALIGN(olen, NAME_ALIGN);
189 
190 	/* write len, incl. \0 */
191 	ret = do_write(ff, &len, sizeof(len));
192 	if (ret < 0)
193 		return ret;
194 
195 	return write_padded(ff, str, olen, len);
196 }
197 
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)198 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199 {
200 	ssize_t ret = readn(ff->fd, addr, size);
201 
202 	if (ret != size)
203 		return ret < 0 ? (int)ret : -1;
204 	return 0;
205 }
206 
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)207 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208 {
209 	if (size > (ssize_t)ff->size - ff->offset)
210 		return -1;
211 
212 	memcpy(addr, ff->buf + ff->offset, size);
213 	ff->offset += size;
214 
215 	return 0;
216 
217 }
218 
__do_read(struct feat_fd * ff,void * addr,ssize_t size)219 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220 {
221 	if (!ff->buf)
222 		return __do_read_fd(ff, addr, size);
223 	return __do_read_buf(ff, addr, size);
224 }
225 
do_read_u32(struct feat_fd * ff,u32 * addr)226 static int do_read_u32(struct feat_fd *ff, u32 *addr)
227 {
228 	int ret;
229 
230 	ret = __do_read(ff, addr, sizeof(*addr));
231 	if (ret)
232 		return ret;
233 
234 	if (ff->ph->needs_swap)
235 		*addr = bswap_32(*addr);
236 	return 0;
237 }
238 
do_read_u64(struct feat_fd * ff,u64 * addr)239 static int do_read_u64(struct feat_fd *ff, u64 *addr)
240 {
241 	int ret;
242 
243 	ret = __do_read(ff, addr, sizeof(*addr));
244 	if (ret)
245 		return ret;
246 
247 	if (ff->ph->needs_swap)
248 		*addr = bswap_64(*addr);
249 	return 0;
250 }
251 
do_read_string(struct feat_fd * ff)252 static char *do_read_string(struct feat_fd *ff)
253 {
254 	u32 len;
255 	char *buf;
256 
257 	if (do_read_u32(ff, &len))
258 		return NULL;
259 
260 	buf = malloc(len);
261 	if (!buf)
262 		return NULL;
263 
264 	if (!__do_read(ff, buf, len)) {
265 		/*
266 		 * strings are padded by zeroes
267 		 * thus the actual strlen of buf
268 		 * may be less than len
269 		 */
270 		return buf;
271 	}
272 
273 	free(buf);
274 	return NULL;
275 }
276 
277 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)278 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279 {
280 	unsigned long *set;
281 	u64 size, *p;
282 	int i, ret;
283 
284 	ret = do_read_u64(ff, &size);
285 	if (ret)
286 		return ret;
287 
288 	set = bitmap_zalloc(size);
289 	if (!set)
290 		return -ENOMEM;
291 
292 	p = (u64 *) set;
293 
294 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295 		ret = do_read_u64(ff, p + i);
296 		if (ret < 0) {
297 			free(set);
298 			return ret;
299 		}
300 	}
301 
302 	*pset  = set;
303 	*psize = size;
304 	return 0;
305 }
306 
307 #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)308 static int write_tracing_data(struct feat_fd *ff,
309 			      struct evlist *evlist)
310 {
311 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312 		return -1;
313 
314 	return read_tracing_data(ff->fd, &evlist->core.entries);
315 }
316 #endif
317 
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)318 static int write_build_id(struct feat_fd *ff,
319 			  struct evlist *evlist __maybe_unused)
320 {
321 	struct perf_session *session;
322 	int err;
323 
324 	session = container_of(ff->ph, struct perf_session, header);
325 
326 	if (!perf_session__read_build_ids(session, true))
327 		return -1;
328 
329 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330 		return -1;
331 
332 	err = perf_session__write_buildid_table(session, ff);
333 	if (err < 0) {
334 		pr_debug("failed to write buildid table\n");
335 		return err;
336 	}
337 	perf_session__cache_build_ids(session);
338 
339 	return 0;
340 }
341 
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)342 static int write_hostname(struct feat_fd *ff,
343 			  struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.nodename);
353 }
354 
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)355 static int write_osrelease(struct feat_fd *ff,
356 			   struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.release);
366 }
367 
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)368 static int write_arch(struct feat_fd *ff,
369 		      struct evlist *evlist __maybe_unused)
370 {
371 	struct utsname uts;
372 	int ret;
373 
374 	ret = uname(&uts);
375 	if (ret < 0)
376 		return -1;
377 
378 	return do_write_string(ff, uts.machine);
379 }
380 
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)381 static int write_version(struct feat_fd *ff,
382 			 struct evlist *evlist __maybe_unused)
383 {
384 	return do_write_string(ff, perf_version_string);
385 }
386 
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)387 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388 {
389 	FILE *file;
390 	char *buf = NULL;
391 	char *s, *p;
392 	const char *search = cpuinfo_proc;
393 	size_t len = 0;
394 	int ret = -1;
395 
396 	if (!search)
397 		return -1;
398 
399 	file = fopen("/proc/cpuinfo", "r");
400 	if (!file)
401 		return -1;
402 
403 	while (getline(&buf, &len, file) > 0) {
404 		ret = strncmp(buf, search, strlen(search));
405 		if (!ret)
406 			break;
407 	}
408 
409 	if (ret) {
410 		ret = -1;
411 		goto done;
412 	}
413 
414 	s = buf;
415 
416 	p = strchr(buf, ':');
417 	if (p && *(p+1) == ' ' && *(p+2))
418 		s = p + 2;
419 	p = strchr(s, '\n');
420 	if (p)
421 		*p = '\0';
422 
423 	/* squash extra space characters (branding string) */
424 	p = s;
425 	while (*p) {
426 		if (isspace(*p)) {
427 			char *r = p + 1;
428 			char *q = skip_spaces(r);
429 			*p = ' ';
430 			if (q != (p+1))
431 				while ((*r++ = *q++));
432 		}
433 		p++;
434 	}
435 	ret = do_write_string(ff, s);
436 done:
437 	free(buf);
438 	fclose(file);
439 	return ret;
440 }
441 
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)442 static int write_cpudesc(struct feat_fd *ff,
443 		       struct evlist *evlist __maybe_unused)
444 {
445 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446 #define CPUINFO_PROC	{ "cpu", }
447 #elif defined(__s390__)
448 #define CPUINFO_PROC	{ "vendor_id", }
449 #elif defined(__sh__)
450 #define CPUINFO_PROC	{ "cpu type", }
451 #elif defined(__alpha__) || defined(__mips__)
452 #define CPUINFO_PROC	{ "cpu model", }
453 #elif defined(__arm__)
454 #define CPUINFO_PROC	{ "model name", "Processor", }
455 #elif defined(__arc__)
456 #define CPUINFO_PROC	{ "Processor", }
457 #elif defined(__xtensa__)
458 #define CPUINFO_PROC	{ "core ID", }
459 #elif defined(__loongarch__)
460 #define CPUINFO_PROC	{ "Model Name", }
461 #else
462 #define CPUINFO_PROC	{ "model name", }
463 #endif
464 	const char *cpuinfo_procs[] = CPUINFO_PROC;
465 #undef CPUINFO_PROC
466 	unsigned int i;
467 
468 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469 		int ret;
470 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471 		if (ret >= 0)
472 			return ret;
473 	}
474 	return -1;
475 }
476 
477 
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)478 static int write_nrcpus(struct feat_fd *ff,
479 			struct evlist *evlist __maybe_unused)
480 {
481 	long nr;
482 	u32 nrc, nra;
483 	int ret;
484 
485 	nrc = cpu__max_present_cpu().cpu;
486 
487 	nr = sysconf(_SC_NPROCESSORS_ONLN);
488 	if (nr < 0)
489 		return -1;
490 
491 	nra = (u32)(nr & UINT_MAX);
492 
493 	ret = do_write(ff, &nrc, sizeof(nrc));
494 	if (ret < 0)
495 		return ret;
496 
497 	return do_write(ff, &nra, sizeof(nra));
498 }
499 
write_event_desc(struct feat_fd * ff,struct evlist * evlist)500 static int write_event_desc(struct feat_fd *ff,
501 			    struct evlist *evlist)
502 {
503 	struct evsel *evsel;
504 	u32 nre, nri, sz;
505 	int ret;
506 
507 	nre = evlist->core.nr_entries;
508 
509 	/*
510 	 * write number of events
511 	 */
512 	ret = do_write(ff, &nre, sizeof(nre));
513 	if (ret < 0)
514 		return ret;
515 
516 	/*
517 	 * size of perf_event_attr struct
518 	 */
519 	sz = (u32)sizeof(evsel->core.attr);
520 	ret = do_write(ff, &sz, sizeof(sz));
521 	if (ret < 0)
522 		return ret;
523 
524 	evlist__for_each_entry(evlist, evsel) {
525 		ret = do_write(ff, &evsel->core.attr, sz);
526 		if (ret < 0)
527 			return ret;
528 		/*
529 		 * write number of unique id per event
530 		 * there is one id per instance of an event
531 		 *
532 		 * copy into an nri to be independent of the
533 		 * type of ids,
534 		 */
535 		nri = evsel->core.ids;
536 		ret = do_write(ff, &nri, sizeof(nri));
537 		if (ret < 0)
538 			return ret;
539 
540 		/*
541 		 * write event string as passed on cmdline
542 		 */
543 		ret = do_write_string(ff, evsel__name(evsel));
544 		if (ret < 0)
545 			return ret;
546 		/*
547 		 * write unique ids for this event
548 		 */
549 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550 		if (ret < 0)
551 			return ret;
552 	}
553 	return 0;
554 }
555 
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)556 static int write_cmdline(struct feat_fd *ff,
557 			 struct evlist *evlist __maybe_unused)
558 {
559 	char pbuf[MAXPATHLEN], *buf;
560 	int i, ret, n;
561 
562 	/* actual path to perf binary */
563 	buf = perf_exe(pbuf, MAXPATHLEN);
564 
565 	/* account for binary path */
566 	n = perf_env.nr_cmdline + 1;
567 
568 	ret = do_write(ff, &n, sizeof(n));
569 	if (ret < 0)
570 		return ret;
571 
572 	ret = do_write_string(ff, buf);
573 	if (ret < 0)
574 		return ret;
575 
576 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578 		if (ret < 0)
579 			return ret;
580 	}
581 	return 0;
582 }
583 
584 
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)585 static int write_cpu_topology(struct feat_fd *ff,
586 			      struct evlist *evlist __maybe_unused)
587 {
588 	struct cpu_topology *tp;
589 	u32 i;
590 	int ret, j;
591 
592 	tp = cpu_topology__new();
593 	if (!tp)
594 		return -1;
595 
596 	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597 	if (ret < 0)
598 		goto done;
599 
600 	for (i = 0; i < tp->package_cpus_lists; i++) {
601 		ret = do_write_string(ff, tp->package_cpus_list[i]);
602 		if (ret < 0)
603 			goto done;
604 	}
605 	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606 	if (ret < 0)
607 		goto done;
608 
609 	for (i = 0; i < tp->core_cpus_lists; i++) {
610 		ret = do_write_string(ff, tp->core_cpus_list[i]);
611 		if (ret < 0)
612 			break;
613 	}
614 
615 	ret = perf_env__read_cpu_topology_map(&perf_env);
616 	if (ret < 0)
617 		goto done;
618 
619 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620 		ret = do_write(ff, &perf_env.cpu[j].core_id,
621 			       sizeof(perf_env.cpu[j].core_id));
622 		if (ret < 0)
623 			return ret;
624 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
625 			       sizeof(perf_env.cpu[j].socket_id));
626 		if (ret < 0)
627 			return ret;
628 	}
629 
630 	if (!tp->die_cpus_lists)
631 		goto done;
632 
633 	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634 	if (ret < 0)
635 		goto done;
636 
637 	for (i = 0; i < tp->die_cpus_lists; i++) {
638 		ret = do_write_string(ff, tp->die_cpus_list[i]);
639 		if (ret < 0)
640 			goto done;
641 	}
642 
643 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644 		ret = do_write(ff, &perf_env.cpu[j].die_id,
645 			       sizeof(perf_env.cpu[j].die_id));
646 		if (ret < 0)
647 			return ret;
648 	}
649 
650 done:
651 	cpu_topology__delete(tp);
652 	return ret;
653 }
654 
655 
656 
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)657 static int write_total_mem(struct feat_fd *ff,
658 			   struct evlist *evlist __maybe_unused)
659 {
660 	char *buf = NULL;
661 	FILE *fp;
662 	size_t len = 0;
663 	int ret = -1, n;
664 	uint64_t mem;
665 
666 	fp = fopen("/proc/meminfo", "r");
667 	if (!fp)
668 		return -1;
669 
670 	while (getline(&buf, &len, fp) > 0) {
671 		ret = strncmp(buf, "MemTotal:", 9);
672 		if (!ret)
673 			break;
674 	}
675 	if (!ret) {
676 		n = sscanf(buf, "%*s %"PRIu64, &mem);
677 		if (n == 1)
678 			ret = do_write(ff, &mem, sizeof(mem));
679 	} else
680 		ret = -1;
681 	free(buf);
682 	fclose(fp);
683 	return ret;
684 }
685 
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)686 static int write_numa_topology(struct feat_fd *ff,
687 			       struct evlist *evlist __maybe_unused)
688 {
689 	struct numa_topology *tp;
690 	int ret = -1;
691 	u32 i;
692 
693 	tp = numa_topology__new();
694 	if (!tp)
695 		return -ENOMEM;
696 
697 	ret = do_write(ff, &tp->nr, sizeof(u32));
698 	if (ret < 0)
699 		goto err;
700 
701 	for (i = 0; i < tp->nr; i++) {
702 		struct numa_topology_node *n = &tp->nodes[i];
703 
704 		ret = do_write(ff, &n->node, sizeof(u32));
705 		if (ret < 0)
706 			goto err;
707 
708 		ret = do_write(ff, &n->mem_total, sizeof(u64));
709 		if (ret)
710 			goto err;
711 
712 		ret = do_write(ff, &n->mem_free, sizeof(u64));
713 		if (ret)
714 			goto err;
715 
716 		ret = do_write_string(ff, n->cpus);
717 		if (ret < 0)
718 			goto err;
719 	}
720 
721 	ret = 0;
722 
723 err:
724 	numa_topology__delete(tp);
725 	return ret;
726 }
727 
728 /*
729  * File format:
730  *
731  * struct pmu_mappings {
732  *	u32	pmu_num;
733  *	struct pmu_map {
734  *		u32	type;
735  *		char	name[];
736  *	}[pmu_num];
737  * };
738  */
739 
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)740 static int write_pmu_mappings(struct feat_fd *ff,
741 			      struct evlist *evlist __maybe_unused)
742 {
743 	struct perf_pmu *pmu = NULL;
744 	u32 pmu_num = 0;
745 	int ret;
746 
747 	/*
748 	 * Do a first pass to count number of pmu to avoid lseek so this
749 	 * works in pipe mode as well.
750 	 */
751 	while ((pmu = perf_pmus__scan(pmu)))
752 		pmu_num++;
753 
754 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755 	if (ret < 0)
756 		return ret;
757 
758 	while ((pmu = perf_pmus__scan(pmu))) {
759 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760 		if (ret < 0)
761 			return ret;
762 
763 		ret = do_write_string(ff, pmu->name);
764 		if (ret < 0)
765 			return ret;
766 	}
767 
768 	return 0;
769 }
770 
771 /*
772  * File format:
773  *
774  * struct group_descs {
775  *	u32	nr_groups;
776  *	struct group_desc {
777  *		char	name[];
778  *		u32	leader_idx;
779  *		u32	nr_members;
780  *	}[nr_groups];
781  * };
782  */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)783 static int write_group_desc(struct feat_fd *ff,
784 			    struct evlist *evlist)
785 {
786 	u32 nr_groups = evlist__nr_groups(evlist);
787 	struct evsel *evsel;
788 	int ret;
789 
790 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791 	if (ret < 0)
792 		return ret;
793 
794 	evlist__for_each_entry(evlist, evsel) {
795 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796 			const char *name = evsel->group_name ?: "{anon_group}";
797 			u32 leader_idx = evsel->core.idx;
798 			u32 nr_members = evsel->core.nr_members;
799 
800 			ret = do_write_string(ff, name);
801 			if (ret < 0)
802 				return ret;
803 
804 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805 			if (ret < 0)
806 				return ret;
807 
808 			ret = do_write(ff, &nr_members, sizeof(nr_members));
809 			if (ret < 0)
810 				return ret;
811 		}
812 	}
813 	return 0;
814 }
815 
816 /*
817  * Return the CPU id as a raw string.
818  *
819  * Each architecture should provide a more precise id string that
820  * can be use to match the architecture's "mapfile".
821  */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)822 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823 {
824 	return NULL;
825 }
826 
827 /* Return zero when the cpuid from the mapfile.csv matches the
828  * cpuid string generated on this platform.
829  * Otherwise return non-zero.
830  */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)831 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
832 {
833 	regex_t re;
834 	regmatch_t pmatch[1];
835 	int match;
836 
837 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
838 		/* Warn unable to generate match particular string. */
839 		pr_info("Invalid regular expression %s\n", mapcpuid);
840 		return 1;
841 	}
842 
843 	match = !regexec(&re, cpuid, 1, pmatch, 0);
844 	regfree(&re);
845 	if (match) {
846 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
847 
848 		/* Verify the entire string matched. */
849 		if (match_len == strlen(cpuid))
850 			return 0;
851 	}
852 	return 1;
853 }
854 
855 /*
856  * default get_cpuid(): nothing gets recorded
857  * actual implementation must be in arch/$(SRCARCH)/util/header.c
858  */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)859 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
860 {
861 	return ENOSYS; /* Not implemented */
862 }
863 
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)864 static int write_cpuid(struct feat_fd *ff,
865 		       struct evlist *evlist __maybe_unused)
866 {
867 	char buffer[64];
868 	int ret;
869 
870 	ret = get_cpuid(buffer, sizeof(buffer));
871 	if (ret)
872 		return -1;
873 
874 	return do_write_string(ff, buffer);
875 }
876 
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)877 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
878 			      struct evlist *evlist __maybe_unused)
879 {
880 	return 0;
881 }
882 
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)883 static int write_auxtrace(struct feat_fd *ff,
884 			  struct evlist *evlist __maybe_unused)
885 {
886 	struct perf_session *session;
887 	int err;
888 
889 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
890 		return -1;
891 
892 	session = container_of(ff->ph, struct perf_session, header);
893 
894 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
895 	if (err < 0)
896 		pr_err("Failed to write auxtrace index\n");
897 	return err;
898 }
899 
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)900 static int write_clockid(struct feat_fd *ff,
901 			 struct evlist *evlist __maybe_unused)
902 {
903 	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
904 			sizeof(ff->ph->env.clock.clockid_res_ns));
905 }
906 
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)907 static int write_clock_data(struct feat_fd *ff,
908 			    struct evlist *evlist __maybe_unused)
909 {
910 	u64 *data64;
911 	u32 data32;
912 	int ret;
913 
914 	/* version */
915 	data32 = 1;
916 
917 	ret = do_write(ff, &data32, sizeof(data32));
918 	if (ret < 0)
919 		return ret;
920 
921 	/* clockid */
922 	data32 = ff->ph->env.clock.clockid;
923 
924 	ret = do_write(ff, &data32, sizeof(data32));
925 	if (ret < 0)
926 		return ret;
927 
928 	/* TOD ref time */
929 	data64 = &ff->ph->env.clock.tod_ns;
930 
931 	ret = do_write(ff, data64, sizeof(*data64));
932 	if (ret < 0)
933 		return ret;
934 
935 	/* clockid ref time */
936 	data64 = &ff->ph->env.clock.clockid_ns;
937 
938 	return do_write(ff, data64, sizeof(*data64));
939 }
940 
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)941 static int write_hybrid_topology(struct feat_fd *ff,
942 				 struct evlist *evlist __maybe_unused)
943 {
944 	struct hybrid_topology *tp;
945 	int ret;
946 	u32 i;
947 
948 	tp = hybrid_topology__new();
949 	if (!tp)
950 		return -ENOENT;
951 
952 	ret = do_write(ff, &tp->nr, sizeof(u32));
953 	if (ret < 0)
954 		goto err;
955 
956 	for (i = 0; i < tp->nr; i++) {
957 		struct hybrid_topology_node *n = &tp->nodes[i];
958 
959 		ret = do_write_string(ff, n->pmu_name);
960 		if (ret < 0)
961 			goto err;
962 
963 		ret = do_write_string(ff, n->cpus);
964 		if (ret < 0)
965 			goto err;
966 	}
967 
968 	ret = 0;
969 
970 err:
971 	hybrid_topology__delete(tp);
972 	return ret;
973 }
974 
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)975 static int write_dir_format(struct feat_fd *ff,
976 			    struct evlist *evlist __maybe_unused)
977 {
978 	struct perf_session *session;
979 	struct perf_data *data;
980 
981 	session = container_of(ff->ph, struct perf_session, header);
982 	data = session->data;
983 
984 	if (WARN_ON(!perf_data__is_dir(data)))
985 		return -1;
986 
987 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
988 }
989 
990 /*
991  * Check whether a CPU is online
992  *
993  * Returns:
994  *     1 -> if CPU is online
995  *     0 -> if CPU is offline
996  *    -1 -> error case
997  */
is_cpu_online(unsigned int cpu)998 int is_cpu_online(unsigned int cpu)
999 {
1000 	char *str;
1001 	size_t strlen;
1002 	char buf[256];
1003 	int status = -1;
1004 	struct stat statbuf;
1005 
1006 	snprintf(buf, sizeof(buf),
1007 		"/sys/devices/system/cpu/cpu%d", cpu);
1008 	if (stat(buf, &statbuf) != 0)
1009 		return 0;
1010 
1011 	/*
1012 	 * Check if /sys/devices/system/cpu/cpux/online file
1013 	 * exists. Some cases cpu0 won't have online file since
1014 	 * it is not expected to be turned off generally.
1015 	 * In kernels without CONFIG_HOTPLUG_CPU, this
1016 	 * file won't exist
1017 	 */
1018 	snprintf(buf, sizeof(buf),
1019 		"/sys/devices/system/cpu/cpu%d/online", cpu);
1020 	if (stat(buf, &statbuf) != 0)
1021 		return 1;
1022 
1023 	/*
1024 	 * Read online file using sysfs__read_str.
1025 	 * If read or open fails, return -1.
1026 	 * If read succeeds, return value from file
1027 	 * which gets stored in "str"
1028 	 */
1029 	snprintf(buf, sizeof(buf),
1030 		"devices/system/cpu/cpu%d/online", cpu);
1031 
1032 	if (sysfs__read_str(buf, &str, &strlen) < 0)
1033 		return status;
1034 
1035 	status = atoi(str);
1036 
1037 	free(str);
1038 	return status;
1039 }
1040 
1041 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1042 static int write_bpf_prog_info(struct feat_fd *ff,
1043 			       struct evlist *evlist __maybe_unused)
1044 {
1045 	struct perf_env *env = &ff->ph->env;
1046 	struct rb_root *root;
1047 	struct rb_node *next;
1048 	int ret;
1049 
1050 	down_read(&env->bpf_progs.lock);
1051 
1052 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1053 		       sizeof(env->bpf_progs.infos_cnt));
1054 	if (ret < 0)
1055 		goto out;
1056 
1057 	root = &env->bpf_progs.infos;
1058 	next = rb_first(root);
1059 	while (next) {
1060 		struct bpf_prog_info_node *node;
1061 		size_t len;
1062 
1063 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1064 		next = rb_next(&node->rb_node);
1065 		len = sizeof(struct perf_bpil) +
1066 			node->info_linear->data_len;
1067 
1068 		/* before writing to file, translate address to offset */
1069 		bpil_addr_to_offs(node->info_linear);
1070 		ret = do_write(ff, node->info_linear, len);
1071 		/*
1072 		 * translate back to address even when do_write() fails,
1073 		 * so that this function never changes the data.
1074 		 */
1075 		bpil_offs_to_addr(node->info_linear);
1076 		if (ret < 0)
1077 			goto out;
1078 	}
1079 out:
1080 	up_read(&env->bpf_progs.lock);
1081 	return ret;
1082 }
1083 
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1084 static int write_bpf_btf(struct feat_fd *ff,
1085 			 struct evlist *evlist __maybe_unused)
1086 {
1087 	struct perf_env *env = &ff->ph->env;
1088 	struct rb_root *root;
1089 	struct rb_node *next;
1090 	int ret;
1091 
1092 	down_read(&env->bpf_progs.lock);
1093 
1094 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1095 		       sizeof(env->bpf_progs.btfs_cnt));
1096 
1097 	if (ret < 0)
1098 		goto out;
1099 
1100 	root = &env->bpf_progs.btfs;
1101 	next = rb_first(root);
1102 	while (next) {
1103 		struct btf_node *node;
1104 
1105 		node = rb_entry(next, struct btf_node, rb_node);
1106 		next = rb_next(&node->rb_node);
1107 		ret = do_write(ff, &node->id,
1108 			       sizeof(u32) * 2 + node->data_size);
1109 		if (ret < 0)
1110 			goto out;
1111 	}
1112 out:
1113 	up_read(&env->bpf_progs.lock);
1114 	return ret;
1115 }
1116 #endif // HAVE_LIBBPF_SUPPORT
1117 
cpu_cache_level__sort(const void * a,const void * b)1118 static int cpu_cache_level__sort(const void *a, const void *b)
1119 {
1120 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1121 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1122 
1123 	return cache_a->level - cache_b->level;
1124 }
1125 
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1126 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1127 {
1128 	if (a->level != b->level)
1129 		return false;
1130 
1131 	if (a->line_size != b->line_size)
1132 		return false;
1133 
1134 	if (a->sets != b->sets)
1135 		return false;
1136 
1137 	if (a->ways != b->ways)
1138 		return false;
1139 
1140 	if (strcmp(a->type, b->type))
1141 		return false;
1142 
1143 	if (strcmp(a->size, b->size))
1144 		return false;
1145 
1146 	if (strcmp(a->map, b->map))
1147 		return false;
1148 
1149 	return true;
1150 }
1151 
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1152 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1153 {
1154 	char path[PATH_MAX], file[PATH_MAX];
1155 	struct stat st;
1156 	size_t len;
1157 
1158 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1159 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1160 
1161 	if (stat(file, &st))
1162 		return 1;
1163 
1164 	scnprintf(file, PATH_MAX, "%s/level", path);
1165 	if (sysfs__read_int(file, (int *) &cache->level))
1166 		return -1;
1167 
1168 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1169 	if (sysfs__read_int(file, (int *) &cache->line_size))
1170 		return -1;
1171 
1172 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1173 	if (sysfs__read_int(file, (int *) &cache->sets))
1174 		return -1;
1175 
1176 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1177 	if (sysfs__read_int(file, (int *) &cache->ways))
1178 		return -1;
1179 
1180 	scnprintf(file, PATH_MAX, "%s/type", path);
1181 	if (sysfs__read_str(file, &cache->type, &len))
1182 		return -1;
1183 
1184 	cache->type[len] = 0;
1185 	cache->type = strim(cache->type);
1186 
1187 	scnprintf(file, PATH_MAX, "%s/size", path);
1188 	if (sysfs__read_str(file, &cache->size, &len)) {
1189 		zfree(&cache->type);
1190 		return -1;
1191 	}
1192 
1193 	cache->size[len] = 0;
1194 	cache->size = strim(cache->size);
1195 
1196 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1197 	if (sysfs__read_str(file, &cache->map, &len)) {
1198 		zfree(&cache->size);
1199 		zfree(&cache->type);
1200 		return -1;
1201 	}
1202 
1203 	cache->map[len] = 0;
1204 	cache->map = strim(cache->map);
1205 	return 0;
1206 }
1207 
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1208 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1209 {
1210 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1211 }
1212 
1213 /*
1214  * Build caches levels for a particular CPU from the data in
1215  * /sys/devices/system/cpu/cpu<cpu>/cache/
1216  * The cache level data is stored in caches[] from index at
1217  * *cntp.
1218  */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1219 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1220 {
1221 	u16 level;
1222 
1223 	for (level = 0; level < MAX_CACHE_LVL; level++) {
1224 		struct cpu_cache_level c;
1225 		int err;
1226 		u32 i;
1227 
1228 		err = cpu_cache_level__read(&c, cpu, level);
1229 		if (err < 0)
1230 			return err;
1231 
1232 		if (err == 1)
1233 			break;
1234 
1235 		for (i = 0; i < *cntp; i++) {
1236 			if (cpu_cache_level__cmp(&c, &caches[i]))
1237 				break;
1238 		}
1239 
1240 		if (i == *cntp) {
1241 			caches[*cntp] = c;
1242 			*cntp = *cntp + 1;
1243 		} else
1244 			cpu_cache_level__free(&c);
1245 	}
1246 
1247 	return 0;
1248 }
1249 
build_caches(struct cpu_cache_level caches[],u32 * cntp)1250 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1251 {
1252 	u32 nr, cpu, cnt = 0;
1253 
1254 	nr = cpu__max_cpu().cpu;
1255 
1256 	for (cpu = 0; cpu < nr; cpu++) {
1257 		int ret = build_caches_for_cpu(cpu, caches, &cnt);
1258 
1259 		if (ret)
1260 			return ret;
1261 	}
1262 	*cntp = cnt;
1263 	return 0;
1264 }
1265 
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1266 static int write_cache(struct feat_fd *ff,
1267 		       struct evlist *evlist __maybe_unused)
1268 {
1269 	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1270 	struct cpu_cache_level caches[max_caches];
1271 	u32 cnt = 0, i, version = 1;
1272 	int ret;
1273 
1274 	ret = build_caches(caches, &cnt);
1275 	if (ret)
1276 		goto out;
1277 
1278 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1279 
1280 	ret = do_write(ff, &version, sizeof(u32));
1281 	if (ret < 0)
1282 		goto out;
1283 
1284 	ret = do_write(ff, &cnt, sizeof(u32));
1285 	if (ret < 0)
1286 		goto out;
1287 
1288 	for (i = 0; i < cnt; i++) {
1289 		struct cpu_cache_level *c = &caches[i];
1290 
1291 		#define _W(v)					\
1292 			ret = do_write(ff, &c->v, sizeof(u32));	\
1293 			if (ret < 0)				\
1294 				goto out;
1295 
1296 		_W(level)
1297 		_W(line_size)
1298 		_W(sets)
1299 		_W(ways)
1300 		#undef _W
1301 
1302 		#define _W(v)						\
1303 			ret = do_write_string(ff, (const char *) c->v);	\
1304 			if (ret < 0)					\
1305 				goto out;
1306 
1307 		_W(type)
1308 		_W(size)
1309 		_W(map)
1310 		#undef _W
1311 	}
1312 
1313 out:
1314 	for (i = 0; i < cnt; i++)
1315 		cpu_cache_level__free(&caches[i]);
1316 	return ret;
1317 }
1318 
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1319 static int write_stat(struct feat_fd *ff __maybe_unused,
1320 		      struct evlist *evlist __maybe_unused)
1321 {
1322 	return 0;
1323 }
1324 
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1325 static int write_sample_time(struct feat_fd *ff,
1326 			     struct evlist *evlist)
1327 {
1328 	int ret;
1329 
1330 	ret = do_write(ff, &evlist->first_sample_time,
1331 		       sizeof(evlist->first_sample_time));
1332 	if (ret < 0)
1333 		return ret;
1334 
1335 	return do_write(ff, &evlist->last_sample_time,
1336 			sizeof(evlist->last_sample_time));
1337 }
1338 
1339 
memory_node__read(struct memory_node * n,unsigned long idx)1340 static int memory_node__read(struct memory_node *n, unsigned long idx)
1341 {
1342 	unsigned int phys, size = 0;
1343 	char path[PATH_MAX];
1344 	struct dirent *ent;
1345 	DIR *dir;
1346 
1347 #define for_each_memory(mem, dir)					\
1348 	while ((ent = readdir(dir)))					\
1349 		if (strcmp(ent->d_name, ".") &&				\
1350 		    strcmp(ent->d_name, "..") &&			\
1351 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1352 
1353 	scnprintf(path, PATH_MAX,
1354 		  "%s/devices/system/node/node%lu",
1355 		  sysfs__mountpoint(), idx);
1356 
1357 	dir = opendir(path);
1358 	if (!dir) {
1359 		pr_warning("failed: can't open memory sysfs data\n");
1360 		return -1;
1361 	}
1362 
1363 	for_each_memory(phys, dir) {
1364 		size = max(phys, size);
1365 	}
1366 
1367 	size++;
1368 
1369 	n->set = bitmap_zalloc(size);
1370 	if (!n->set) {
1371 		closedir(dir);
1372 		return -ENOMEM;
1373 	}
1374 
1375 	n->node = idx;
1376 	n->size = size;
1377 
1378 	rewinddir(dir);
1379 
1380 	for_each_memory(phys, dir) {
1381 		__set_bit(phys, n->set);
1382 	}
1383 
1384 	closedir(dir);
1385 	return 0;
1386 }
1387 
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1388 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1389 {
1390 	for (u64 i = 0; i < cnt; i++)
1391 		bitmap_free(nodesp[i].set);
1392 
1393 	free(nodesp);
1394 }
1395 
memory_node__sort(const void * a,const void * b)1396 static int memory_node__sort(const void *a, const void *b)
1397 {
1398 	const struct memory_node *na = a;
1399 	const struct memory_node *nb = b;
1400 
1401 	return na->node - nb->node;
1402 }
1403 
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1404 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1405 {
1406 	char path[PATH_MAX];
1407 	struct dirent *ent;
1408 	DIR *dir;
1409 	int ret = 0;
1410 	size_t cnt = 0, size = 0;
1411 	struct memory_node *nodes = NULL;
1412 
1413 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1414 		  sysfs__mountpoint());
1415 
1416 	dir = opendir(path);
1417 	if (!dir) {
1418 		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1419 			  __func__, path);
1420 		return -1;
1421 	}
1422 
1423 	while (!ret && (ent = readdir(dir))) {
1424 		unsigned int idx;
1425 		int r;
1426 
1427 		if (!strcmp(ent->d_name, ".") ||
1428 		    !strcmp(ent->d_name, ".."))
1429 			continue;
1430 
1431 		r = sscanf(ent->d_name, "node%u", &idx);
1432 		if (r != 1)
1433 			continue;
1434 
1435 		if (cnt >= size) {
1436 			struct memory_node *new_nodes =
1437 				reallocarray(nodes, cnt + 4, sizeof(*nodes));
1438 
1439 			if (!new_nodes) {
1440 				pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1441 				ret = -ENOMEM;
1442 				goto out;
1443 			}
1444 			nodes = new_nodes;
1445 			size += 4;
1446 		}
1447 		ret = memory_node__read(&nodes[cnt], idx);
1448 		if (!ret)
1449 			cnt += 1;
1450 	}
1451 out:
1452 	closedir(dir);
1453 	if (!ret) {
1454 		*cntp = cnt;
1455 		*nodesp = nodes;
1456 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1457 	} else
1458 		memory_node__delete_nodes(nodes, cnt);
1459 
1460 	return ret;
1461 }
1462 
1463 /*
1464  * The MEM_TOPOLOGY holds physical memory map for every
1465  * node in system. The format of data is as follows:
1466  *
1467  *  0 - version          | for future changes
1468  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1469  * 16 - count            | number of nodes
1470  *
1471  * For each node we store map of physical indexes for
1472  * each node:
1473  *
1474  * 32 - node id          | node index
1475  * 40 - size             | size of bitmap
1476  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1477  */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1478 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1479 			      struct evlist *evlist __maybe_unused)
1480 {
1481 	struct memory_node *nodes = NULL;
1482 	u64 bsize, version = 1, i, nr = 0;
1483 	int ret;
1484 
1485 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1486 			      (unsigned long long *) &bsize);
1487 	if (ret)
1488 		return ret;
1489 
1490 	ret = build_mem_topology(&nodes, &nr);
1491 	if (ret)
1492 		return ret;
1493 
1494 	ret = do_write(ff, &version, sizeof(version));
1495 	if (ret < 0)
1496 		goto out;
1497 
1498 	ret = do_write(ff, &bsize, sizeof(bsize));
1499 	if (ret < 0)
1500 		goto out;
1501 
1502 	ret = do_write(ff, &nr, sizeof(nr));
1503 	if (ret < 0)
1504 		goto out;
1505 
1506 	for (i = 0; i < nr; i++) {
1507 		struct memory_node *n = &nodes[i];
1508 
1509 		#define _W(v)						\
1510 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1511 			if (ret < 0)					\
1512 				goto out;
1513 
1514 		_W(node)
1515 		_W(size)
1516 
1517 		#undef _W
1518 
1519 		ret = do_write_bitmap(ff, n->set, n->size);
1520 		if (ret < 0)
1521 			goto out;
1522 	}
1523 
1524 out:
1525 	memory_node__delete_nodes(nodes, nr);
1526 	return ret;
1527 }
1528 
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1529 static int write_compressed(struct feat_fd *ff __maybe_unused,
1530 			    struct evlist *evlist __maybe_unused)
1531 {
1532 	int ret;
1533 
1534 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1535 	if (ret)
1536 		return ret;
1537 
1538 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1539 	if (ret)
1540 		return ret;
1541 
1542 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1543 	if (ret)
1544 		return ret;
1545 
1546 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1547 	if (ret)
1548 		return ret;
1549 
1550 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1551 }
1552 
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1553 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1554 			    bool write_pmu)
1555 {
1556 	struct perf_pmu_caps *caps = NULL;
1557 	int ret;
1558 
1559 	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1560 	if (ret < 0)
1561 		return ret;
1562 
1563 	list_for_each_entry(caps, &pmu->caps, list) {
1564 		ret = do_write_string(ff, caps->name);
1565 		if (ret < 0)
1566 			return ret;
1567 
1568 		ret = do_write_string(ff, caps->value);
1569 		if (ret < 0)
1570 			return ret;
1571 	}
1572 
1573 	if (write_pmu) {
1574 		ret = do_write_string(ff, pmu->name);
1575 		if (ret < 0)
1576 			return ret;
1577 	}
1578 
1579 	return ret;
1580 }
1581 
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1582 static int write_cpu_pmu_caps(struct feat_fd *ff,
1583 			      struct evlist *evlist __maybe_unused)
1584 {
1585 	struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1586 	int ret;
1587 
1588 	if (!cpu_pmu)
1589 		return -ENOENT;
1590 
1591 	ret = perf_pmu__caps_parse(cpu_pmu);
1592 	if (ret < 0)
1593 		return ret;
1594 
1595 	return __write_pmu_caps(ff, cpu_pmu, false);
1596 }
1597 
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1598 static int write_pmu_caps(struct feat_fd *ff,
1599 			  struct evlist *evlist __maybe_unused)
1600 {
1601 	struct perf_pmu *pmu = NULL;
1602 	int nr_pmu = 0;
1603 	int ret;
1604 
1605 	while ((pmu = perf_pmus__scan(pmu))) {
1606 		if (!strcmp(pmu->name, "cpu")) {
1607 			/*
1608 			 * The "cpu" PMU is special and covered by
1609 			 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1610 			 * counted/written here for ARM, s390 and Intel hybrid.
1611 			 */
1612 			continue;
1613 		}
1614 		if (perf_pmu__caps_parse(pmu) <= 0)
1615 			continue;
1616 		nr_pmu++;
1617 	}
1618 
1619 	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1620 	if (ret < 0)
1621 		return ret;
1622 
1623 	if (!nr_pmu)
1624 		return 0;
1625 
1626 	/*
1627 	 * Note older perf tools assume core PMUs come first, this is a property
1628 	 * of perf_pmus__scan.
1629 	 */
1630 	pmu = NULL;
1631 	while ((pmu = perf_pmus__scan(pmu))) {
1632 		if (!strcmp(pmu->name, "cpu")) {
1633 			/* Skip as above. */
1634 			continue;
1635 		}
1636 		if (perf_pmu__caps_parse(pmu) <= 0)
1637 			continue;
1638 		ret = __write_pmu_caps(ff, pmu, true);
1639 		if (ret < 0)
1640 			return ret;
1641 	}
1642 	return 0;
1643 }
1644 
print_hostname(struct feat_fd * ff,FILE * fp)1645 static void print_hostname(struct feat_fd *ff, FILE *fp)
1646 {
1647 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1648 }
1649 
print_osrelease(struct feat_fd * ff,FILE * fp)1650 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1651 {
1652 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1653 }
1654 
print_arch(struct feat_fd * ff,FILE * fp)1655 static void print_arch(struct feat_fd *ff, FILE *fp)
1656 {
1657 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1658 }
1659 
print_cpudesc(struct feat_fd * ff,FILE * fp)1660 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1661 {
1662 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1663 }
1664 
print_nrcpus(struct feat_fd * ff,FILE * fp)1665 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1666 {
1667 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1668 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1669 }
1670 
print_version(struct feat_fd * ff,FILE * fp)1671 static void print_version(struct feat_fd *ff, FILE *fp)
1672 {
1673 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1674 }
1675 
print_cmdline(struct feat_fd * ff,FILE * fp)1676 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1677 {
1678 	int nr, i;
1679 
1680 	nr = ff->ph->env.nr_cmdline;
1681 
1682 	fprintf(fp, "# cmdline : ");
1683 
1684 	for (i = 0; i < nr; i++) {
1685 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1686 		if (!argv_i) {
1687 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1688 		} else {
1689 			char *mem = argv_i;
1690 			do {
1691 				char *quote = strchr(argv_i, '\'');
1692 				if (!quote)
1693 					break;
1694 				*quote++ = '\0';
1695 				fprintf(fp, "%s\\\'", argv_i);
1696 				argv_i = quote;
1697 			} while (1);
1698 			fprintf(fp, "%s ", argv_i);
1699 			free(mem);
1700 		}
1701 	}
1702 	fputc('\n', fp);
1703 }
1704 
print_cpu_topology(struct feat_fd * ff,FILE * fp)1705 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1706 {
1707 	struct perf_header *ph = ff->ph;
1708 	int cpu_nr = ph->env.nr_cpus_avail;
1709 	int nr, i;
1710 	char *str;
1711 
1712 	nr = ph->env.nr_sibling_cores;
1713 	str = ph->env.sibling_cores;
1714 
1715 	for (i = 0; i < nr; i++) {
1716 		fprintf(fp, "# sibling sockets : %s\n", str);
1717 		str += strlen(str) + 1;
1718 	}
1719 
1720 	if (ph->env.nr_sibling_dies) {
1721 		nr = ph->env.nr_sibling_dies;
1722 		str = ph->env.sibling_dies;
1723 
1724 		for (i = 0; i < nr; i++) {
1725 			fprintf(fp, "# sibling dies    : %s\n", str);
1726 			str += strlen(str) + 1;
1727 		}
1728 	}
1729 
1730 	nr = ph->env.nr_sibling_threads;
1731 	str = ph->env.sibling_threads;
1732 
1733 	for (i = 0; i < nr; i++) {
1734 		fprintf(fp, "# sibling threads : %s\n", str);
1735 		str += strlen(str) + 1;
1736 	}
1737 
1738 	if (ph->env.nr_sibling_dies) {
1739 		if (ph->env.cpu != NULL) {
1740 			for (i = 0; i < cpu_nr; i++)
1741 				fprintf(fp, "# CPU %d: Core ID %d, "
1742 					    "Die ID %d, Socket ID %d\n",
1743 					    i, ph->env.cpu[i].core_id,
1744 					    ph->env.cpu[i].die_id,
1745 					    ph->env.cpu[i].socket_id);
1746 		} else
1747 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1748 				    "information is not available\n");
1749 	} else {
1750 		if (ph->env.cpu != NULL) {
1751 			for (i = 0; i < cpu_nr; i++)
1752 				fprintf(fp, "# CPU %d: Core ID %d, "
1753 					    "Socket ID %d\n",
1754 					    i, ph->env.cpu[i].core_id,
1755 					    ph->env.cpu[i].socket_id);
1756 		} else
1757 			fprintf(fp, "# Core ID and Socket ID "
1758 				    "information is not available\n");
1759 	}
1760 }
1761 
print_clockid(struct feat_fd * ff,FILE * fp)1762 static void print_clockid(struct feat_fd *ff, FILE *fp)
1763 {
1764 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1765 		ff->ph->env.clock.clockid_res_ns * 1000);
1766 }
1767 
print_clock_data(struct feat_fd * ff,FILE * fp)1768 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1769 {
1770 	struct timespec clockid_ns;
1771 	char tstr[64], date[64];
1772 	struct timeval tod_ns;
1773 	clockid_t clockid;
1774 	struct tm ltime;
1775 	u64 ref;
1776 
1777 	if (!ff->ph->env.clock.enabled) {
1778 		fprintf(fp, "# reference time disabled\n");
1779 		return;
1780 	}
1781 
1782 	/* Compute TOD time. */
1783 	ref = ff->ph->env.clock.tod_ns;
1784 	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1785 	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1786 	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1787 
1788 	/* Compute clockid time. */
1789 	ref = ff->ph->env.clock.clockid_ns;
1790 	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1791 	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1792 	clockid_ns.tv_nsec = ref;
1793 
1794 	clockid = ff->ph->env.clock.clockid;
1795 
1796 	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1797 		snprintf(tstr, sizeof(tstr), "<error>");
1798 	else {
1799 		strftime(date, sizeof(date), "%F %T", &ltime);
1800 		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1801 			  date, (int) tod_ns.tv_usec);
1802 	}
1803 
1804 	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1805 	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1806 		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1807 		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1808 		    clockid_name(clockid));
1809 }
1810 
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1811 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1812 {
1813 	int i;
1814 	struct hybrid_node *n;
1815 
1816 	fprintf(fp, "# hybrid cpu system:\n");
1817 	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1818 		n = &ff->ph->env.hybrid_nodes[i];
1819 		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1820 	}
1821 }
1822 
print_dir_format(struct feat_fd * ff,FILE * fp)1823 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1824 {
1825 	struct perf_session *session;
1826 	struct perf_data *data;
1827 
1828 	session = container_of(ff->ph, struct perf_session, header);
1829 	data = session->data;
1830 
1831 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1832 }
1833 
1834 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1835 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1836 {
1837 	struct perf_env *env = &ff->ph->env;
1838 	struct rb_root *root;
1839 	struct rb_node *next;
1840 
1841 	down_read(&env->bpf_progs.lock);
1842 
1843 	root = &env->bpf_progs.infos;
1844 	next = rb_first(root);
1845 
1846 	while (next) {
1847 		struct bpf_prog_info_node *node;
1848 
1849 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1850 		next = rb_next(&node->rb_node);
1851 
1852 		__bpf_event__print_bpf_prog_info(&node->info_linear->info,
1853 						 env, fp);
1854 	}
1855 
1856 	up_read(&env->bpf_progs.lock);
1857 }
1858 
print_bpf_btf(struct feat_fd * ff,FILE * fp)1859 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1860 {
1861 	struct perf_env *env = &ff->ph->env;
1862 	struct rb_root *root;
1863 	struct rb_node *next;
1864 
1865 	down_read(&env->bpf_progs.lock);
1866 
1867 	root = &env->bpf_progs.btfs;
1868 	next = rb_first(root);
1869 
1870 	while (next) {
1871 		struct btf_node *node;
1872 
1873 		node = rb_entry(next, struct btf_node, rb_node);
1874 		next = rb_next(&node->rb_node);
1875 		fprintf(fp, "# btf info of id %u\n", node->id);
1876 	}
1877 
1878 	up_read(&env->bpf_progs.lock);
1879 }
1880 #endif // HAVE_LIBBPF_SUPPORT
1881 
free_event_desc(struct evsel * events)1882 static void free_event_desc(struct evsel *events)
1883 {
1884 	struct evsel *evsel;
1885 
1886 	if (!events)
1887 		return;
1888 
1889 	for (evsel = events; evsel->core.attr.size; evsel++) {
1890 		zfree(&evsel->name);
1891 		zfree(&evsel->core.id);
1892 	}
1893 
1894 	free(events);
1895 }
1896 
perf_attr_check(struct perf_event_attr * attr)1897 static bool perf_attr_check(struct perf_event_attr *attr)
1898 {
1899 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1900 		pr_warning("Reserved bits are set unexpectedly. "
1901 			   "Please update perf tool.\n");
1902 		return false;
1903 	}
1904 
1905 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1906 		pr_warning("Unknown sample type (0x%llx) is detected. "
1907 			   "Please update perf tool.\n",
1908 			   attr->sample_type);
1909 		return false;
1910 	}
1911 
1912 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1913 		pr_warning("Unknown read format (0x%llx) is detected. "
1914 			   "Please update perf tool.\n",
1915 			   attr->read_format);
1916 		return false;
1917 	}
1918 
1919 	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1920 	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1921 		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1922 			   "Please update perf tool.\n",
1923 			   attr->branch_sample_type);
1924 
1925 		return false;
1926 	}
1927 
1928 	return true;
1929 }
1930 
read_event_desc(struct feat_fd * ff)1931 static struct evsel *read_event_desc(struct feat_fd *ff)
1932 {
1933 	struct evsel *evsel, *events = NULL;
1934 	u64 *id;
1935 	void *buf = NULL;
1936 	u32 nre, sz, nr, i, j;
1937 	size_t msz;
1938 
1939 	/* number of events */
1940 	if (do_read_u32(ff, &nre))
1941 		goto error;
1942 
1943 	if (do_read_u32(ff, &sz))
1944 		goto error;
1945 
1946 	/* buffer to hold on file attr struct */
1947 	buf = malloc(sz);
1948 	if (!buf)
1949 		goto error;
1950 
1951 	/* the last event terminates with evsel->core.attr.size == 0: */
1952 	events = calloc(nre + 1, sizeof(*events));
1953 	if (!events)
1954 		goto error;
1955 
1956 	msz = sizeof(evsel->core.attr);
1957 	if (sz < msz)
1958 		msz = sz;
1959 
1960 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1961 		evsel->core.idx = i;
1962 
1963 		/*
1964 		 * must read entire on-file attr struct to
1965 		 * sync up with layout.
1966 		 */
1967 		if (__do_read(ff, buf, sz))
1968 			goto error;
1969 
1970 		if (ff->ph->needs_swap)
1971 			perf_event__attr_swap(buf);
1972 
1973 		memcpy(&evsel->core.attr, buf, msz);
1974 
1975 		if (!perf_attr_check(&evsel->core.attr))
1976 			goto error;
1977 
1978 		if (do_read_u32(ff, &nr))
1979 			goto error;
1980 
1981 		if (ff->ph->needs_swap)
1982 			evsel->needs_swap = true;
1983 
1984 		evsel->name = do_read_string(ff);
1985 		if (!evsel->name)
1986 			goto error;
1987 
1988 		if (!nr)
1989 			continue;
1990 
1991 		id = calloc(nr, sizeof(*id));
1992 		if (!id)
1993 			goto error;
1994 		evsel->core.ids = nr;
1995 		evsel->core.id = id;
1996 
1997 		for (j = 0 ; j < nr; j++) {
1998 			if (do_read_u64(ff, id))
1999 				goto error;
2000 			id++;
2001 		}
2002 	}
2003 out:
2004 	free(buf);
2005 	return events;
2006 error:
2007 	free_event_desc(events);
2008 	events = NULL;
2009 	goto out;
2010 }
2011 
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)2012 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2013 				void *priv __maybe_unused)
2014 {
2015 	return fprintf(fp, ", %s = %s", name, val);
2016 }
2017 
print_event_desc(struct feat_fd * ff,FILE * fp)2018 static void print_event_desc(struct feat_fd *ff, FILE *fp)
2019 {
2020 	struct evsel *evsel, *events;
2021 	u32 j;
2022 	u64 *id;
2023 
2024 	if (ff->events)
2025 		events = ff->events;
2026 	else
2027 		events = read_event_desc(ff);
2028 
2029 	if (!events) {
2030 		fprintf(fp, "# event desc: not available or unable to read\n");
2031 		return;
2032 	}
2033 
2034 	for (evsel = events; evsel->core.attr.size; evsel++) {
2035 		fprintf(fp, "# event : name = %s, ", evsel->name);
2036 
2037 		if (evsel->core.ids) {
2038 			fprintf(fp, ", id = {");
2039 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2040 				if (j)
2041 					fputc(',', fp);
2042 				fprintf(fp, " %"PRIu64, *id);
2043 			}
2044 			fprintf(fp, " }");
2045 		}
2046 
2047 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2048 
2049 		fputc('\n', fp);
2050 	}
2051 
2052 	free_event_desc(events);
2053 	ff->events = NULL;
2054 }
2055 
print_total_mem(struct feat_fd * ff,FILE * fp)2056 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2057 {
2058 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2059 }
2060 
print_numa_topology(struct feat_fd * ff,FILE * fp)2061 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2062 {
2063 	int i;
2064 	struct numa_node *n;
2065 
2066 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2067 		n = &ff->ph->env.numa_nodes[i];
2068 
2069 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2070 			    " free = %"PRIu64" kB\n",
2071 			n->node, n->mem_total, n->mem_free);
2072 
2073 		fprintf(fp, "# node%u cpu list : ", n->node);
2074 		cpu_map__fprintf(n->map, fp);
2075 	}
2076 }
2077 
print_cpuid(struct feat_fd * ff,FILE * fp)2078 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2079 {
2080 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2081 }
2082 
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2083 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2084 {
2085 	fprintf(fp, "# contains samples with branch stack\n");
2086 }
2087 
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2088 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2089 {
2090 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2091 }
2092 
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2093 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2094 {
2095 	fprintf(fp, "# contains stat data\n");
2096 }
2097 
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2098 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2099 {
2100 	int i;
2101 
2102 	fprintf(fp, "# CPU cache info:\n");
2103 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2104 		fprintf(fp, "#  ");
2105 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2106 	}
2107 }
2108 
print_compressed(struct feat_fd * ff,FILE * fp)2109 static void print_compressed(struct feat_fd *ff, FILE *fp)
2110 {
2111 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2112 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2113 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2114 }
2115 
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2116 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2117 {
2118 	const char *delimiter = "";
2119 	int i;
2120 
2121 	if (!nr_caps) {
2122 		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2123 		return;
2124 	}
2125 
2126 	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2127 	for (i = 0; i < nr_caps; i++) {
2128 		fprintf(fp, "%s%s", delimiter, caps[i]);
2129 		delimiter = ", ";
2130 	}
2131 
2132 	fprintf(fp, "\n");
2133 }
2134 
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2135 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2136 {
2137 	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2138 			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2139 }
2140 
print_pmu_caps(struct feat_fd * ff,FILE * fp)2141 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2142 {
2143 	struct pmu_caps *pmu_caps;
2144 
2145 	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2146 		pmu_caps = &ff->ph->env.pmu_caps[i];
2147 		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2148 				 pmu_caps->pmu_name);
2149 	}
2150 }
2151 
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2152 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2153 {
2154 	const char *delimiter = "# pmu mappings: ";
2155 	char *str, *tmp;
2156 	u32 pmu_num;
2157 	u32 type;
2158 
2159 	pmu_num = ff->ph->env.nr_pmu_mappings;
2160 	if (!pmu_num) {
2161 		fprintf(fp, "# pmu mappings: not available\n");
2162 		return;
2163 	}
2164 
2165 	str = ff->ph->env.pmu_mappings;
2166 
2167 	while (pmu_num) {
2168 		type = strtoul(str, &tmp, 0);
2169 		if (*tmp != ':')
2170 			goto error;
2171 
2172 		str = tmp + 1;
2173 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2174 
2175 		delimiter = ", ";
2176 		str += strlen(str) + 1;
2177 		pmu_num--;
2178 	}
2179 
2180 	fprintf(fp, "\n");
2181 
2182 	if (!pmu_num)
2183 		return;
2184 error:
2185 	fprintf(fp, "# pmu mappings: unable to read\n");
2186 }
2187 
print_group_desc(struct feat_fd * ff,FILE * fp)2188 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2189 {
2190 	struct perf_session *session;
2191 	struct evsel *evsel;
2192 	u32 nr = 0;
2193 
2194 	session = container_of(ff->ph, struct perf_session, header);
2195 
2196 	evlist__for_each_entry(session->evlist, evsel) {
2197 		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2198 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2199 
2200 			nr = evsel->core.nr_members - 1;
2201 		} else if (nr) {
2202 			fprintf(fp, ",%s", evsel__name(evsel));
2203 
2204 			if (--nr == 0)
2205 				fprintf(fp, "}\n");
2206 		}
2207 	}
2208 }
2209 
print_sample_time(struct feat_fd * ff,FILE * fp)2210 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2211 {
2212 	struct perf_session *session;
2213 	char time_buf[32];
2214 	double d;
2215 
2216 	session = container_of(ff->ph, struct perf_session, header);
2217 
2218 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2219 				  time_buf, sizeof(time_buf));
2220 	fprintf(fp, "# time of first sample : %s\n", time_buf);
2221 
2222 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2223 				  time_buf, sizeof(time_buf));
2224 	fprintf(fp, "# time of last sample : %s\n", time_buf);
2225 
2226 	d = (double)(session->evlist->last_sample_time -
2227 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2228 
2229 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2230 }
2231 
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2232 static void memory_node__fprintf(struct memory_node *n,
2233 				 unsigned long long bsize, FILE *fp)
2234 {
2235 	char buf_map[100], buf_size[50];
2236 	unsigned long long size;
2237 
2238 	size = bsize * bitmap_weight(n->set, n->size);
2239 	unit_number__scnprintf(buf_size, 50, size);
2240 
2241 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2242 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2243 }
2244 
print_mem_topology(struct feat_fd * ff,FILE * fp)2245 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2246 {
2247 	struct memory_node *nodes;
2248 	int i, nr;
2249 
2250 	nodes = ff->ph->env.memory_nodes;
2251 	nr    = ff->ph->env.nr_memory_nodes;
2252 
2253 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2254 		nr, ff->ph->env.memory_bsize);
2255 
2256 	for (i = 0; i < nr; i++) {
2257 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2258 	}
2259 }
2260 
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2261 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2262 				    char *filename,
2263 				    struct perf_session *session)
2264 {
2265 	int err = -1;
2266 	struct machine *machine;
2267 	u16 cpumode;
2268 	struct dso *dso;
2269 	enum dso_space_type dso_space;
2270 
2271 	machine = perf_session__findnew_machine(session, bev->pid);
2272 	if (!machine)
2273 		goto out;
2274 
2275 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2276 
2277 	switch (cpumode) {
2278 	case PERF_RECORD_MISC_KERNEL:
2279 		dso_space = DSO_SPACE__KERNEL;
2280 		break;
2281 	case PERF_RECORD_MISC_GUEST_KERNEL:
2282 		dso_space = DSO_SPACE__KERNEL_GUEST;
2283 		break;
2284 	case PERF_RECORD_MISC_USER:
2285 	case PERF_RECORD_MISC_GUEST_USER:
2286 		dso_space = DSO_SPACE__USER;
2287 		break;
2288 	default:
2289 		goto out;
2290 	}
2291 
2292 	dso = machine__findnew_dso(machine, filename);
2293 	if (dso != NULL) {
2294 		char sbuild_id[SBUILD_ID_SIZE];
2295 		struct build_id bid;
2296 		size_t size = BUILD_ID_SIZE;
2297 
2298 		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2299 			size = bev->size;
2300 
2301 		build_id__init(&bid, bev->data, size);
2302 		dso__set_build_id(dso, &bid);
2303 		dso->header_build_id = 1;
2304 
2305 		if (dso_space != DSO_SPACE__USER) {
2306 			struct kmod_path m = { .name = NULL, };
2307 
2308 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2309 				dso__set_module_info(dso, &m, machine);
2310 
2311 			dso->kernel = dso_space;
2312 			free(m.name);
2313 		}
2314 
2315 		build_id__sprintf(&dso->bid, sbuild_id);
2316 		pr_debug("build id event received for %s: %s [%zu]\n",
2317 			 dso->long_name, sbuild_id, size);
2318 		dso__put(dso);
2319 	}
2320 
2321 	err = 0;
2322 out:
2323 	return err;
2324 }
2325 
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2326 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2327 						 int input, u64 offset, u64 size)
2328 {
2329 	struct perf_session *session = container_of(header, struct perf_session, header);
2330 	struct {
2331 		struct perf_event_header   header;
2332 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2333 		char			   filename[0];
2334 	} old_bev;
2335 	struct perf_record_header_build_id bev;
2336 	char filename[PATH_MAX];
2337 	u64 limit = offset + size;
2338 
2339 	while (offset < limit) {
2340 		ssize_t len;
2341 
2342 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2343 			return -1;
2344 
2345 		if (header->needs_swap)
2346 			perf_event_header__bswap(&old_bev.header);
2347 
2348 		len = old_bev.header.size - sizeof(old_bev);
2349 		if (readn(input, filename, len) != len)
2350 			return -1;
2351 
2352 		bev.header = old_bev.header;
2353 
2354 		/*
2355 		 * As the pid is the missing value, we need to fill
2356 		 * it properly. The header.misc value give us nice hint.
2357 		 */
2358 		bev.pid	= HOST_KERNEL_ID;
2359 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2360 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2361 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2362 
2363 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2364 		__event_process_build_id(&bev, filename, session);
2365 
2366 		offset += bev.header.size;
2367 	}
2368 
2369 	return 0;
2370 }
2371 
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2372 static int perf_header__read_build_ids(struct perf_header *header,
2373 				       int input, u64 offset, u64 size)
2374 {
2375 	struct perf_session *session = container_of(header, struct perf_session, header);
2376 	struct perf_record_header_build_id bev;
2377 	char filename[PATH_MAX];
2378 	u64 limit = offset + size, orig_offset = offset;
2379 	int err = -1;
2380 
2381 	while (offset < limit) {
2382 		ssize_t len;
2383 
2384 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2385 			goto out;
2386 
2387 		if (header->needs_swap)
2388 			perf_event_header__bswap(&bev.header);
2389 
2390 		len = bev.header.size - sizeof(bev);
2391 		if (readn(input, filename, len) != len)
2392 			goto out;
2393 		/*
2394 		 * The a1645ce1 changeset:
2395 		 *
2396 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2397 		 *
2398 		 * Added a field to struct perf_record_header_build_id that broke the file
2399 		 * format.
2400 		 *
2401 		 * Since the kernel build-id is the first entry, process the
2402 		 * table using the old format if the well known
2403 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2404 		 * first 4 characters chopped off (where the pid_t sits).
2405 		 */
2406 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2407 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2408 				return -1;
2409 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2410 		}
2411 
2412 		__event_process_build_id(&bev, filename, session);
2413 
2414 		offset += bev.header.size;
2415 	}
2416 	err = 0;
2417 out:
2418 	return err;
2419 }
2420 
2421 /* Macro for features that simply need to read and store a string. */
2422 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2423 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2424 {\
2425 	free(ff->ph->env.__feat_env);		     \
2426 	ff->ph->env.__feat_env = do_read_string(ff); \
2427 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2428 }
2429 
2430 FEAT_PROCESS_STR_FUN(hostname, hostname);
2431 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2432 FEAT_PROCESS_STR_FUN(version, version);
2433 FEAT_PROCESS_STR_FUN(arch, arch);
2434 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2435 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2436 
2437 #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2438 static int process_tracing_data(struct feat_fd *ff, void *data)
2439 {
2440 	ssize_t ret = trace_report(ff->fd, data, false);
2441 
2442 	return ret < 0 ? -1 : 0;
2443 }
2444 #endif
2445 
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2446 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2447 {
2448 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2449 		pr_debug("Failed to read buildids, continuing...\n");
2450 	return 0;
2451 }
2452 
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2453 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2454 {
2455 	int ret;
2456 	u32 nr_cpus_avail, nr_cpus_online;
2457 
2458 	ret = do_read_u32(ff, &nr_cpus_avail);
2459 	if (ret)
2460 		return ret;
2461 
2462 	ret = do_read_u32(ff, &nr_cpus_online);
2463 	if (ret)
2464 		return ret;
2465 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2466 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2467 	return 0;
2468 }
2469 
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2470 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2471 {
2472 	u64 total_mem;
2473 	int ret;
2474 
2475 	ret = do_read_u64(ff, &total_mem);
2476 	if (ret)
2477 		return -1;
2478 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2479 	return 0;
2480 }
2481 
evlist__find_by_index(struct evlist * evlist,int idx)2482 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2483 {
2484 	struct evsel *evsel;
2485 
2486 	evlist__for_each_entry(evlist, evsel) {
2487 		if (evsel->core.idx == idx)
2488 			return evsel;
2489 	}
2490 
2491 	return NULL;
2492 }
2493 
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2494 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2495 {
2496 	struct evsel *evsel;
2497 
2498 	if (!event->name)
2499 		return;
2500 
2501 	evsel = evlist__find_by_index(evlist, event->core.idx);
2502 	if (!evsel)
2503 		return;
2504 
2505 	if (evsel->name)
2506 		return;
2507 
2508 	evsel->name = strdup(event->name);
2509 }
2510 
2511 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2512 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2513 {
2514 	struct perf_session *session;
2515 	struct evsel *evsel, *events = read_event_desc(ff);
2516 
2517 	if (!events)
2518 		return 0;
2519 
2520 	session = container_of(ff->ph, struct perf_session, header);
2521 
2522 	if (session->data->is_pipe) {
2523 		/* Save events for reading later by print_event_desc,
2524 		 * since they can't be read again in pipe mode. */
2525 		ff->events = events;
2526 	}
2527 
2528 	for (evsel = events; evsel->core.attr.size; evsel++)
2529 		evlist__set_event_name(session->evlist, evsel);
2530 
2531 	if (!session->data->is_pipe)
2532 		free_event_desc(events);
2533 
2534 	return 0;
2535 }
2536 
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2537 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2538 {
2539 	char *str, *cmdline = NULL, **argv = NULL;
2540 	u32 nr, i, len = 0;
2541 
2542 	if (do_read_u32(ff, &nr))
2543 		return -1;
2544 
2545 	ff->ph->env.nr_cmdline = nr;
2546 
2547 	cmdline = zalloc(ff->size + nr + 1);
2548 	if (!cmdline)
2549 		return -1;
2550 
2551 	argv = zalloc(sizeof(char *) * (nr + 1));
2552 	if (!argv)
2553 		goto error;
2554 
2555 	for (i = 0; i < nr; i++) {
2556 		str = do_read_string(ff);
2557 		if (!str)
2558 			goto error;
2559 
2560 		argv[i] = cmdline + len;
2561 		memcpy(argv[i], str, strlen(str) + 1);
2562 		len += strlen(str) + 1;
2563 		free(str);
2564 	}
2565 	ff->ph->env.cmdline = cmdline;
2566 	ff->ph->env.cmdline_argv = (const char **) argv;
2567 	return 0;
2568 
2569 error:
2570 	free(argv);
2571 	free(cmdline);
2572 	return -1;
2573 }
2574 
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2575 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2576 {
2577 	u32 nr, i;
2578 	char *str;
2579 	struct strbuf sb;
2580 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2581 	u64 size = 0;
2582 	struct perf_header *ph = ff->ph;
2583 	bool do_core_id_test = true;
2584 
2585 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2586 	if (!ph->env.cpu)
2587 		return -1;
2588 
2589 	if (do_read_u32(ff, &nr))
2590 		goto free_cpu;
2591 
2592 	ph->env.nr_sibling_cores = nr;
2593 	size += sizeof(u32);
2594 	if (strbuf_init(&sb, 128) < 0)
2595 		goto free_cpu;
2596 
2597 	for (i = 0; i < nr; i++) {
2598 		str = do_read_string(ff);
2599 		if (!str)
2600 			goto error;
2601 
2602 		/* include a NULL character at the end */
2603 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2604 			goto error;
2605 		size += string_size(str);
2606 		free(str);
2607 	}
2608 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2609 
2610 	if (do_read_u32(ff, &nr))
2611 		return -1;
2612 
2613 	ph->env.nr_sibling_threads = nr;
2614 	size += sizeof(u32);
2615 
2616 	for (i = 0; i < nr; i++) {
2617 		str = do_read_string(ff);
2618 		if (!str)
2619 			goto error;
2620 
2621 		/* include a NULL character at the end */
2622 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2623 			goto error;
2624 		size += string_size(str);
2625 		free(str);
2626 	}
2627 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2628 
2629 	/*
2630 	 * The header may be from old perf,
2631 	 * which doesn't include core id and socket id information.
2632 	 */
2633 	if (ff->size <= size) {
2634 		zfree(&ph->env.cpu);
2635 		return 0;
2636 	}
2637 
2638 	/* On s390 the socket_id number is not related to the numbers of cpus.
2639 	 * The socket_id number might be higher than the numbers of cpus.
2640 	 * This depends on the configuration.
2641 	 * AArch64 is the same.
2642 	 */
2643 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2644 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2645 		do_core_id_test = false;
2646 
2647 	for (i = 0; i < (u32)cpu_nr; i++) {
2648 		if (do_read_u32(ff, &nr))
2649 			goto free_cpu;
2650 
2651 		ph->env.cpu[i].core_id = nr;
2652 		size += sizeof(u32);
2653 
2654 		if (do_read_u32(ff, &nr))
2655 			goto free_cpu;
2656 
2657 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2658 			pr_debug("socket_id number is too big."
2659 				 "You may need to upgrade the perf tool.\n");
2660 			goto free_cpu;
2661 		}
2662 
2663 		ph->env.cpu[i].socket_id = nr;
2664 		size += sizeof(u32);
2665 	}
2666 
2667 	/*
2668 	 * The header may be from old perf,
2669 	 * which doesn't include die information.
2670 	 */
2671 	if (ff->size <= size)
2672 		return 0;
2673 
2674 	if (do_read_u32(ff, &nr))
2675 		return -1;
2676 
2677 	ph->env.nr_sibling_dies = nr;
2678 	size += sizeof(u32);
2679 
2680 	for (i = 0; i < nr; i++) {
2681 		str = do_read_string(ff);
2682 		if (!str)
2683 			goto error;
2684 
2685 		/* include a NULL character at the end */
2686 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2687 			goto error;
2688 		size += string_size(str);
2689 		free(str);
2690 	}
2691 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2692 
2693 	for (i = 0; i < (u32)cpu_nr; i++) {
2694 		if (do_read_u32(ff, &nr))
2695 			goto free_cpu;
2696 
2697 		ph->env.cpu[i].die_id = nr;
2698 	}
2699 
2700 	return 0;
2701 
2702 error:
2703 	strbuf_release(&sb);
2704 free_cpu:
2705 	zfree(&ph->env.cpu);
2706 	return -1;
2707 }
2708 
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2709 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2710 {
2711 	struct numa_node *nodes, *n;
2712 	u32 nr, i;
2713 	char *str;
2714 
2715 	/* nr nodes */
2716 	if (do_read_u32(ff, &nr))
2717 		return -1;
2718 
2719 	nodes = zalloc(sizeof(*nodes) * nr);
2720 	if (!nodes)
2721 		return -ENOMEM;
2722 
2723 	for (i = 0; i < nr; i++) {
2724 		n = &nodes[i];
2725 
2726 		/* node number */
2727 		if (do_read_u32(ff, &n->node))
2728 			goto error;
2729 
2730 		if (do_read_u64(ff, &n->mem_total))
2731 			goto error;
2732 
2733 		if (do_read_u64(ff, &n->mem_free))
2734 			goto error;
2735 
2736 		str = do_read_string(ff);
2737 		if (!str)
2738 			goto error;
2739 
2740 		n->map = perf_cpu_map__new(str);
2741 		if (!n->map)
2742 			goto error;
2743 
2744 		free(str);
2745 	}
2746 	ff->ph->env.nr_numa_nodes = nr;
2747 	ff->ph->env.numa_nodes = nodes;
2748 	return 0;
2749 
2750 error:
2751 	free(nodes);
2752 	return -1;
2753 }
2754 
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2755 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2756 {
2757 	char *name;
2758 	u32 pmu_num;
2759 	u32 type;
2760 	struct strbuf sb;
2761 
2762 	if (do_read_u32(ff, &pmu_num))
2763 		return -1;
2764 
2765 	if (!pmu_num) {
2766 		pr_debug("pmu mappings not available\n");
2767 		return 0;
2768 	}
2769 
2770 	ff->ph->env.nr_pmu_mappings = pmu_num;
2771 	if (strbuf_init(&sb, 128) < 0)
2772 		return -1;
2773 
2774 	while (pmu_num) {
2775 		if (do_read_u32(ff, &type))
2776 			goto error;
2777 
2778 		name = do_read_string(ff);
2779 		if (!name)
2780 			goto error;
2781 
2782 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2783 			goto error;
2784 		/* include a NULL character at the end */
2785 		if (strbuf_add(&sb, "", 1) < 0)
2786 			goto error;
2787 
2788 		if (!strcmp(name, "msr"))
2789 			ff->ph->env.msr_pmu_type = type;
2790 
2791 		free(name);
2792 		pmu_num--;
2793 	}
2794 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2795 	return 0;
2796 
2797 error:
2798 	strbuf_release(&sb);
2799 	return -1;
2800 }
2801 
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2802 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2803 {
2804 	size_t ret = -1;
2805 	u32 i, nr, nr_groups;
2806 	struct perf_session *session;
2807 	struct evsel *evsel, *leader = NULL;
2808 	struct group_desc {
2809 		char *name;
2810 		u32 leader_idx;
2811 		u32 nr_members;
2812 	} *desc;
2813 
2814 	if (do_read_u32(ff, &nr_groups))
2815 		return -1;
2816 
2817 	ff->ph->env.nr_groups = nr_groups;
2818 	if (!nr_groups) {
2819 		pr_debug("group desc not available\n");
2820 		return 0;
2821 	}
2822 
2823 	desc = calloc(nr_groups, sizeof(*desc));
2824 	if (!desc)
2825 		return -1;
2826 
2827 	for (i = 0; i < nr_groups; i++) {
2828 		desc[i].name = do_read_string(ff);
2829 		if (!desc[i].name)
2830 			goto out_free;
2831 
2832 		if (do_read_u32(ff, &desc[i].leader_idx))
2833 			goto out_free;
2834 
2835 		if (do_read_u32(ff, &desc[i].nr_members))
2836 			goto out_free;
2837 	}
2838 
2839 	/*
2840 	 * Rebuild group relationship based on the group_desc
2841 	 */
2842 	session = container_of(ff->ph, struct perf_session, header);
2843 
2844 	i = nr = 0;
2845 	evlist__for_each_entry(session->evlist, evsel) {
2846 		if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2847 			evsel__set_leader(evsel, evsel);
2848 			/* {anon_group} is a dummy name */
2849 			if (strcmp(desc[i].name, "{anon_group}")) {
2850 				evsel->group_name = desc[i].name;
2851 				desc[i].name = NULL;
2852 			}
2853 			evsel->core.nr_members = desc[i].nr_members;
2854 
2855 			if (i >= nr_groups || nr > 0) {
2856 				pr_debug("invalid group desc\n");
2857 				goto out_free;
2858 			}
2859 
2860 			leader = evsel;
2861 			nr = evsel->core.nr_members - 1;
2862 			i++;
2863 		} else if (nr) {
2864 			/* This is a group member */
2865 			evsel__set_leader(evsel, leader);
2866 
2867 			nr--;
2868 		}
2869 	}
2870 
2871 	if (i != nr_groups || nr != 0) {
2872 		pr_debug("invalid group desc\n");
2873 		goto out_free;
2874 	}
2875 
2876 	ret = 0;
2877 out_free:
2878 	for (i = 0; i < nr_groups; i++)
2879 		zfree(&desc[i].name);
2880 	free(desc);
2881 
2882 	return ret;
2883 }
2884 
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2885 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2886 {
2887 	struct perf_session *session;
2888 	int err;
2889 
2890 	session = container_of(ff->ph, struct perf_session, header);
2891 
2892 	err = auxtrace_index__process(ff->fd, ff->size, session,
2893 				      ff->ph->needs_swap);
2894 	if (err < 0)
2895 		pr_err("Failed to process auxtrace index\n");
2896 	return err;
2897 }
2898 
process_cache(struct feat_fd * ff,void * data __maybe_unused)2899 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2900 {
2901 	struct cpu_cache_level *caches;
2902 	u32 cnt, i, version;
2903 
2904 	if (do_read_u32(ff, &version))
2905 		return -1;
2906 
2907 	if (version != 1)
2908 		return -1;
2909 
2910 	if (do_read_u32(ff, &cnt))
2911 		return -1;
2912 
2913 	caches = zalloc(sizeof(*caches) * cnt);
2914 	if (!caches)
2915 		return -1;
2916 
2917 	for (i = 0; i < cnt; i++) {
2918 		struct cpu_cache_level c;
2919 
2920 		#define _R(v)						\
2921 			if (do_read_u32(ff, &c.v))\
2922 				goto out_free_caches;			\
2923 
2924 		_R(level)
2925 		_R(line_size)
2926 		_R(sets)
2927 		_R(ways)
2928 		#undef _R
2929 
2930 		#define _R(v)					\
2931 			c.v = do_read_string(ff);		\
2932 			if (!c.v)				\
2933 				goto out_free_caches;
2934 
2935 		_R(type)
2936 		_R(size)
2937 		_R(map)
2938 		#undef _R
2939 
2940 		caches[i] = c;
2941 	}
2942 
2943 	ff->ph->env.caches = caches;
2944 	ff->ph->env.caches_cnt = cnt;
2945 	return 0;
2946 out_free_caches:
2947 	free(caches);
2948 	return -1;
2949 }
2950 
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2951 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2952 {
2953 	struct perf_session *session;
2954 	u64 first_sample_time, last_sample_time;
2955 	int ret;
2956 
2957 	session = container_of(ff->ph, struct perf_session, header);
2958 
2959 	ret = do_read_u64(ff, &first_sample_time);
2960 	if (ret)
2961 		return -1;
2962 
2963 	ret = do_read_u64(ff, &last_sample_time);
2964 	if (ret)
2965 		return -1;
2966 
2967 	session->evlist->first_sample_time = first_sample_time;
2968 	session->evlist->last_sample_time = last_sample_time;
2969 	return 0;
2970 }
2971 
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2972 static int process_mem_topology(struct feat_fd *ff,
2973 				void *data __maybe_unused)
2974 {
2975 	struct memory_node *nodes;
2976 	u64 version, i, nr, bsize;
2977 	int ret = -1;
2978 
2979 	if (do_read_u64(ff, &version))
2980 		return -1;
2981 
2982 	if (version != 1)
2983 		return -1;
2984 
2985 	if (do_read_u64(ff, &bsize))
2986 		return -1;
2987 
2988 	if (do_read_u64(ff, &nr))
2989 		return -1;
2990 
2991 	nodes = zalloc(sizeof(*nodes) * nr);
2992 	if (!nodes)
2993 		return -1;
2994 
2995 	for (i = 0; i < nr; i++) {
2996 		struct memory_node n;
2997 
2998 		#define _R(v)				\
2999 			if (do_read_u64(ff, &n.v))	\
3000 				goto out;		\
3001 
3002 		_R(node)
3003 		_R(size)
3004 
3005 		#undef _R
3006 
3007 		if (do_read_bitmap(ff, &n.set, &n.size))
3008 			goto out;
3009 
3010 		nodes[i] = n;
3011 	}
3012 
3013 	ff->ph->env.memory_bsize    = bsize;
3014 	ff->ph->env.memory_nodes    = nodes;
3015 	ff->ph->env.nr_memory_nodes = nr;
3016 	ret = 0;
3017 
3018 out:
3019 	if (ret)
3020 		free(nodes);
3021 	return ret;
3022 }
3023 
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3024 static int process_clockid(struct feat_fd *ff,
3025 			   void *data __maybe_unused)
3026 {
3027 	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3028 		return -1;
3029 
3030 	return 0;
3031 }
3032 
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3033 static int process_clock_data(struct feat_fd *ff,
3034 			      void *_data __maybe_unused)
3035 {
3036 	u32 data32;
3037 	u64 data64;
3038 
3039 	/* version */
3040 	if (do_read_u32(ff, &data32))
3041 		return -1;
3042 
3043 	if (data32 != 1)
3044 		return -1;
3045 
3046 	/* clockid */
3047 	if (do_read_u32(ff, &data32))
3048 		return -1;
3049 
3050 	ff->ph->env.clock.clockid = data32;
3051 
3052 	/* TOD ref time */
3053 	if (do_read_u64(ff, &data64))
3054 		return -1;
3055 
3056 	ff->ph->env.clock.tod_ns = data64;
3057 
3058 	/* clockid ref time */
3059 	if (do_read_u64(ff, &data64))
3060 		return -1;
3061 
3062 	ff->ph->env.clock.clockid_ns = data64;
3063 	ff->ph->env.clock.enabled = true;
3064 	return 0;
3065 }
3066 
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3067 static int process_hybrid_topology(struct feat_fd *ff,
3068 				   void *data __maybe_unused)
3069 {
3070 	struct hybrid_node *nodes, *n;
3071 	u32 nr, i;
3072 
3073 	/* nr nodes */
3074 	if (do_read_u32(ff, &nr))
3075 		return -1;
3076 
3077 	nodes = zalloc(sizeof(*nodes) * nr);
3078 	if (!nodes)
3079 		return -ENOMEM;
3080 
3081 	for (i = 0; i < nr; i++) {
3082 		n = &nodes[i];
3083 
3084 		n->pmu_name = do_read_string(ff);
3085 		if (!n->pmu_name)
3086 			goto error;
3087 
3088 		n->cpus = do_read_string(ff);
3089 		if (!n->cpus)
3090 			goto error;
3091 	}
3092 
3093 	ff->ph->env.nr_hybrid_nodes = nr;
3094 	ff->ph->env.hybrid_nodes = nodes;
3095 	return 0;
3096 
3097 error:
3098 	for (i = 0; i < nr; i++) {
3099 		free(nodes[i].pmu_name);
3100 		free(nodes[i].cpus);
3101 	}
3102 
3103 	free(nodes);
3104 	return -1;
3105 }
3106 
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3107 static int process_dir_format(struct feat_fd *ff,
3108 			      void *_data __maybe_unused)
3109 {
3110 	struct perf_session *session;
3111 	struct perf_data *data;
3112 
3113 	session = container_of(ff->ph, struct perf_session, header);
3114 	data = session->data;
3115 
3116 	if (WARN_ON(!perf_data__is_dir(data)))
3117 		return -1;
3118 
3119 	return do_read_u64(ff, &data->dir.version);
3120 }
3121 
3122 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3123 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3124 {
3125 	struct bpf_prog_info_node *info_node;
3126 	struct perf_env *env = &ff->ph->env;
3127 	struct perf_bpil *info_linear;
3128 	u32 count, i;
3129 	int err = -1;
3130 
3131 	if (ff->ph->needs_swap) {
3132 		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3133 		return 0;
3134 	}
3135 
3136 	if (do_read_u32(ff, &count))
3137 		return -1;
3138 
3139 	down_write(&env->bpf_progs.lock);
3140 
3141 	for (i = 0; i < count; ++i) {
3142 		u32 info_len, data_len;
3143 
3144 		info_linear = NULL;
3145 		info_node = NULL;
3146 		if (do_read_u32(ff, &info_len))
3147 			goto out;
3148 		if (do_read_u32(ff, &data_len))
3149 			goto out;
3150 
3151 		if (info_len > sizeof(struct bpf_prog_info)) {
3152 			pr_warning("detected invalid bpf_prog_info\n");
3153 			goto out;
3154 		}
3155 
3156 		info_linear = malloc(sizeof(struct perf_bpil) +
3157 				     data_len);
3158 		if (!info_linear)
3159 			goto out;
3160 		info_linear->info_len = sizeof(struct bpf_prog_info);
3161 		info_linear->data_len = data_len;
3162 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3163 			goto out;
3164 		if (__do_read(ff, &info_linear->info, info_len))
3165 			goto out;
3166 		if (info_len < sizeof(struct bpf_prog_info))
3167 			memset(((void *)(&info_linear->info)) + info_len, 0,
3168 			       sizeof(struct bpf_prog_info) - info_len);
3169 
3170 		if (__do_read(ff, info_linear->data, data_len))
3171 			goto out;
3172 
3173 		info_node = malloc(sizeof(struct bpf_prog_info_node));
3174 		if (!info_node)
3175 			goto out;
3176 
3177 		/* after reading from file, translate offset to address */
3178 		bpil_offs_to_addr(info_linear);
3179 		info_node->info_linear = info_linear;
3180 		__perf_env__insert_bpf_prog_info(env, info_node);
3181 	}
3182 
3183 	up_write(&env->bpf_progs.lock);
3184 	return 0;
3185 out:
3186 	free(info_linear);
3187 	free(info_node);
3188 	up_write(&env->bpf_progs.lock);
3189 	return err;
3190 }
3191 
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3192 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3193 {
3194 	struct perf_env *env = &ff->ph->env;
3195 	struct btf_node *node = NULL;
3196 	u32 count, i;
3197 	int err = -1;
3198 
3199 	if (ff->ph->needs_swap) {
3200 		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3201 		return 0;
3202 	}
3203 
3204 	if (do_read_u32(ff, &count))
3205 		return -1;
3206 
3207 	down_write(&env->bpf_progs.lock);
3208 
3209 	for (i = 0; i < count; ++i) {
3210 		u32 id, data_size;
3211 
3212 		if (do_read_u32(ff, &id))
3213 			goto out;
3214 		if (do_read_u32(ff, &data_size))
3215 			goto out;
3216 
3217 		node = malloc(sizeof(struct btf_node) + data_size);
3218 		if (!node)
3219 			goto out;
3220 
3221 		node->id = id;
3222 		node->data_size = data_size;
3223 
3224 		if (__do_read(ff, node->data, data_size))
3225 			goto out;
3226 
3227 		__perf_env__insert_btf(env, node);
3228 		node = NULL;
3229 	}
3230 
3231 	err = 0;
3232 out:
3233 	up_write(&env->bpf_progs.lock);
3234 	free(node);
3235 	return err;
3236 }
3237 #endif // HAVE_LIBBPF_SUPPORT
3238 
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3239 static int process_compressed(struct feat_fd *ff,
3240 			      void *data __maybe_unused)
3241 {
3242 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3243 		return -1;
3244 
3245 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3246 		return -1;
3247 
3248 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3249 		return -1;
3250 
3251 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3252 		return -1;
3253 
3254 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3255 		return -1;
3256 
3257 	return 0;
3258 }
3259 
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches)3260 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3261 			      char ***caps, unsigned int *max_branches)
3262 {
3263 	char *name, *value, *ptr;
3264 	u32 nr_pmu_caps, i;
3265 
3266 	*nr_caps = 0;
3267 	*caps = NULL;
3268 
3269 	if (do_read_u32(ff, &nr_pmu_caps))
3270 		return -1;
3271 
3272 	if (!nr_pmu_caps)
3273 		return 0;
3274 
3275 	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3276 	if (!*caps)
3277 		return -1;
3278 
3279 	for (i = 0; i < nr_pmu_caps; i++) {
3280 		name = do_read_string(ff);
3281 		if (!name)
3282 			goto error;
3283 
3284 		value = do_read_string(ff);
3285 		if (!value)
3286 			goto free_name;
3287 
3288 		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3289 			goto free_value;
3290 
3291 		(*caps)[i] = ptr;
3292 
3293 		if (!strcmp(name, "branches"))
3294 			*max_branches = atoi(value);
3295 
3296 		free(value);
3297 		free(name);
3298 	}
3299 	*nr_caps = nr_pmu_caps;
3300 	return 0;
3301 
3302 free_value:
3303 	free(value);
3304 free_name:
3305 	free(name);
3306 error:
3307 	for (; i > 0; i--)
3308 		free((*caps)[i - 1]);
3309 	free(*caps);
3310 	*caps = NULL;
3311 	*nr_caps = 0;
3312 	return -1;
3313 }
3314 
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3315 static int process_cpu_pmu_caps(struct feat_fd *ff,
3316 				void *data __maybe_unused)
3317 {
3318 	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3319 				     &ff->ph->env.cpu_pmu_caps,
3320 				     &ff->ph->env.max_branches);
3321 
3322 	if (!ret && !ff->ph->env.cpu_pmu_caps)
3323 		pr_debug("cpu pmu capabilities not available\n");
3324 	return ret;
3325 }
3326 
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3327 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3328 {
3329 	struct pmu_caps *pmu_caps;
3330 	u32 nr_pmu, i;
3331 	int ret;
3332 	int j;
3333 
3334 	if (do_read_u32(ff, &nr_pmu))
3335 		return -1;
3336 
3337 	if (!nr_pmu) {
3338 		pr_debug("pmu capabilities not available\n");
3339 		return 0;
3340 	}
3341 
3342 	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3343 	if (!pmu_caps)
3344 		return -ENOMEM;
3345 
3346 	for (i = 0; i < nr_pmu; i++) {
3347 		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3348 					 &pmu_caps[i].caps,
3349 					 &pmu_caps[i].max_branches);
3350 		if (ret)
3351 			goto err;
3352 
3353 		pmu_caps[i].pmu_name = do_read_string(ff);
3354 		if (!pmu_caps[i].pmu_name) {
3355 			ret = -1;
3356 			goto err;
3357 		}
3358 		if (!pmu_caps[i].nr_caps) {
3359 			pr_debug("%s pmu capabilities not available\n",
3360 				 pmu_caps[i].pmu_name);
3361 		}
3362 	}
3363 
3364 	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3365 	ff->ph->env.pmu_caps = pmu_caps;
3366 	return 0;
3367 
3368 err:
3369 	for (i = 0; i < nr_pmu; i++) {
3370 		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3371 			free(pmu_caps[i].caps[j]);
3372 		free(pmu_caps[i].caps);
3373 		free(pmu_caps[i].pmu_name);
3374 	}
3375 
3376 	free(pmu_caps);
3377 	return ret;
3378 }
3379 
3380 #define FEAT_OPR(n, func, __full_only) \
3381 	[HEADER_##n] = {					\
3382 		.name	    = __stringify(n),			\
3383 		.write	    = write_##func,			\
3384 		.print	    = print_##func,			\
3385 		.full_only  = __full_only,			\
3386 		.process    = process_##func,			\
3387 		.synthesize = true				\
3388 	}
3389 
3390 #define FEAT_OPN(n, func, __full_only) \
3391 	[HEADER_##n] = {					\
3392 		.name	    = __stringify(n),			\
3393 		.write	    = write_##func,			\
3394 		.print	    = print_##func,			\
3395 		.full_only  = __full_only,			\
3396 		.process    = process_##func			\
3397 	}
3398 
3399 /* feature_ops not implemented: */
3400 #define print_tracing_data	NULL
3401 #define print_build_id		NULL
3402 
3403 #define process_branch_stack	NULL
3404 #define process_stat		NULL
3405 
3406 // Only used in util/synthetic-events.c
3407 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3408 
3409 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3410 #ifdef HAVE_LIBTRACEEVENT
3411 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3412 #endif
3413 	FEAT_OPN(BUILD_ID,	build_id,	false),
3414 	FEAT_OPR(HOSTNAME,	hostname,	false),
3415 	FEAT_OPR(OSRELEASE,	osrelease,	false),
3416 	FEAT_OPR(VERSION,	version,	false),
3417 	FEAT_OPR(ARCH,		arch,		false),
3418 	FEAT_OPR(NRCPUS,	nrcpus,		false),
3419 	FEAT_OPR(CPUDESC,	cpudesc,	false),
3420 	FEAT_OPR(CPUID,		cpuid,		false),
3421 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3422 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3423 	FEAT_OPR(CMDLINE,	cmdline,	false),
3424 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3425 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3426 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3427 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3428 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3429 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3430 	FEAT_OPN(STAT,		stat,		false),
3431 	FEAT_OPN(CACHE,		cache,		true),
3432 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3433 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3434 	FEAT_OPR(CLOCKID,	clockid,	false),
3435 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3436 #ifdef HAVE_LIBBPF_SUPPORT
3437 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3438 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3439 #endif
3440 	FEAT_OPR(COMPRESSED,	compressed,	false),
3441 	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3442 	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3443 	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3444 	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3445 };
3446 
3447 struct header_print_data {
3448 	FILE *fp;
3449 	bool full; /* extended list of headers */
3450 };
3451 
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3452 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3453 					   struct perf_header *ph,
3454 					   int feat, int fd, void *data)
3455 {
3456 	struct header_print_data *hd = data;
3457 	struct feat_fd ff;
3458 
3459 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3460 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3461 				"%d, continuing...\n", section->offset, feat);
3462 		return 0;
3463 	}
3464 	if (feat >= HEADER_LAST_FEATURE) {
3465 		pr_warning("unknown feature %d\n", feat);
3466 		return 0;
3467 	}
3468 	if (!feat_ops[feat].print)
3469 		return 0;
3470 
3471 	ff = (struct  feat_fd) {
3472 		.fd = fd,
3473 		.ph = ph,
3474 	};
3475 
3476 	if (!feat_ops[feat].full_only || hd->full)
3477 		feat_ops[feat].print(&ff, hd->fp);
3478 	else
3479 		fprintf(hd->fp, "# %s info available, use -I to display\n",
3480 			feat_ops[feat].name);
3481 
3482 	return 0;
3483 }
3484 
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3485 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3486 {
3487 	struct header_print_data hd;
3488 	struct perf_header *header = &session->header;
3489 	int fd = perf_data__fd(session->data);
3490 	struct stat st;
3491 	time_t stctime;
3492 	int ret, bit;
3493 
3494 	hd.fp = fp;
3495 	hd.full = full;
3496 
3497 	ret = fstat(fd, &st);
3498 	if (ret == -1)
3499 		return -1;
3500 
3501 	stctime = st.st_mtime;
3502 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3503 
3504 	fprintf(fp, "# header version : %u\n", header->version);
3505 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3506 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3507 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3508 
3509 	perf_header__process_sections(header, fd, &hd,
3510 				      perf_file_section__fprintf_info);
3511 
3512 	if (session->data->is_pipe)
3513 		return 0;
3514 
3515 	fprintf(fp, "# missing features: ");
3516 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3517 		if (bit)
3518 			fprintf(fp, "%s ", feat_ops[bit].name);
3519 	}
3520 
3521 	fprintf(fp, "\n");
3522 	return 0;
3523 }
3524 
3525 struct header_fw {
3526 	struct feat_writer	fw;
3527 	struct feat_fd		*ff;
3528 };
3529 
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3530 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3531 {
3532 	struct header_fw *h = container_of(fw, struct header_fw, fw);
3533 
3534 	return do_write(h->ff, buf, sz);
3535 }
3536 
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3537 static int do_write_feat(struct feat_fd *ff, int type,
3538 			 struct perf_file_section **p,
3539 			 struct evlist *evlist,
3540 			 struct feat_copier *fc)
3541 {
3542 	int err;
3543 	int ret = 0;
3544 
3545 	if (perf_header__has_feat(ff->ph, type)) {
3546 		if (!feat_ops[type].write)
3547 			return -1;
3548 
3549 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3550 			return -1;
3551 
3552 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3553 
3554 		/*
3555 		 * Hook to let perf inject copy features sections from the input
3556 		 * file.
3557 		 */
3558 		if (fc && fc->copy) {
3559 			struct header_fw h = {
3560 				.fw.write = feat_writer_cb,
3561 				.ff = ff,
3562 			};
3563 
3564 			/* ->copy() returns 0 if the feature was not copied */
3565 			err = fc->copy(fc, type, &h.fw);
3566 		} else {
3567 			err = 0;
3568 		}
3569 		if (!err)
3570 			err = feat_ops[type].write(ff, evlist);
3571 		if (err < 0) {
3572 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3573 
3574 			/* undo anything written */
3575 			lseek(ff->fd, (*p)->offset, SEEK_SET);
3576 
3577 			return -1;
3578 		}
3579 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3580 		(*p)++;
3581 	}
3582 	return ret;
3583 }
3584 
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3585 static int perf_header__adds_write(struct perf_header *header,
3586 				   struct evlist *evlist, int fd,
3587 				   struct feat_copier *fc)
3588 {
3589 	int nr_sections;
3590 	struct feat_fd ff;
3591 	struct perf_file_section *feat_sec, *p;
3592 	int sec_size;
3593 	u64 sec_start;
3594 	int feat;
3595 	int err;
3596 
3597 	ff = (struct feat_fd){
3598 		.fd  = fd,
3599 		.ph = header,
3600 	};
3601 
3602 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3603 	if (!nr_sections)
3604 		return 0;
3605 
3606 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3607 	if (feat_sec == NULL)
3608 		return -ENOMEM;
3609 
3610 	sec_size = sizeof(*feat_sec) * nr_sections;
3611 
3612 	sec_start = header->feat_offset;
3613 	lseek(fd, sec_start + sec_size, SEEK_SET);
3614 
3615 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3616 		if (do_write_feat(&ff, feat, &p, evlist, fc))
3617 			perf_header__clear_feat(header, feat);
3618 	}
3619 
3620 	lseek(fd, sec_start, SEEK_SET);
3621 	/*
3622 	 * may write more than needed due to dropped feature, but
3623 	 * this is okay, reader will skip the missing entries
3624 	 */
3625 	err = do_write(&ff, feat_sec, sec_size);
3626 	if (err < 0)
3627 		pr_debug("failed to write feature section\n");
3628 	free(feat_sec);
3629 	return err;
3630 }
3631 
perf_header__write_pipe(int fd)3632 int perf_header__write_pipe(int fd)
3633 {
3634 	struct perf_pipe_file_header f_header;
3635 	struct feat_fd ff;
3636 	int err;
3637 
3638 	ff = (struct feat_fd){ .fd = fd };
3639 
3640 	f_header = (struct perf_pipe_file_header){
3641 		.magic	   = PERF_MAGIC,
3642 		.size	   = sizeof(f_header),
3643 	};
3644 
3645 	err = do_write(&ff, &f_header, sizeof(f_header));
3646 	if (err < 0) {
3647 		pr_debug("failed to write perf pipe header\n");
3648 		return err;
3649 	}
3650 
3651 	return 0;
3652 }
3653 
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc)3654 static int perf_session__do_write_header(struct perf_session *session,
3655 					 struct evlist *evlist,
3656 					 int fd, bool at_exit,
3657 					 struct feat_copier *fc)
3658 {
3659 	struct perf_file_header f_header;
3660 	struct perf_file_attr   f_attr;
3661 	struct perf_header *header = &session->header;
3662 	struct evsel *evsel;
3663 	struct feat_fd ff;
3664 	u64 attr_offset;
3665 	int err;
3666 
3667 	ff = (struct feat_fd){ .fd = fd};
3668 	lseek(fd, sizeof(f_header), SEEK_SET);
3669 
3670 	evlist__for_each_entry(session->evlist, evsel) {
3671 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3672 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3673 		if (err < 0) {
3674 			pr_debug("failed to write perf header\n");
3675 			return err;
3676 		}
3677 	}
3678 
3679 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3680 
3681 	evlist__for_each_entry(evlist, evsel) {
3682 		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3683 			/*
3684 			 * We are likely in "perf inject" and have read
3685 			 * from an older file. Update attr size so that
3686 			 * reader gets the right offset to the ids.
3687 			 */
3688 			evsel->core.attr.size = sizeof(evsel->core.attr);
3689 		}
3690 		f_attr = (struct perf_file_attr){
3691 			.attr = evsel->core.attr,
3692 			.ids  = {
3693 				.offset = evsel->id_offset,
3694 				.size   = evsel->core.ids * sizeof(u64),
3695 			}
3696 		};
3697 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3698 		if (err < 0) {
3699 			pr_debug("failed to write perf header attribute\n");
3700 			return err;
3701 		}
3702 	}
3703 
3704 	if (!header->data_offset)
3705 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3706 	header->feat_offset = header->data_offset + header->data_size;
3707 
3708 	if (at_exit) {
3709 		err = perf_header__adds_write(header, evlist, fd, fc);
3710 		if (err < 0)
3711 			return err;
3712 	}
3713 
3714 	f_header = (struct perf_file_header){
3715 		.magic	   = PERF_MAGIC,
3716 		.size	   = sizeof(f_header),
3717 		.attr_size = sizeof(f_attr),
3718 		.attrs = {
3719 			.offset = attr_offset,
3720 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3721 		},
3722 		.data = {
3723 			.offset = header->data_offset,
3724 			.size	= header->data_size,
3725 		},
3726 		/* event_types is ignored, store zeros */
3727 	};
3728 
3729 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3730 
3731 	lseek(fd, 0, SEEK_SET);
3732 	err = do_write(&ff, &f_header, sizeof(f_header));
3733 	if (err < 0) {
3734 		pr_debug("failed to write perf header\n");
3735 		return err;
3736 	}
3737 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3738 
3739 	return 0;
3740 }
3741 
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3742 int perf_session__write_header(struct perf_session *session,
3743 			       struct evlist *evlist,
3744 			       int fd, bool at_exit)
3745 {
3746 	return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3747 }
3748 
perf_session__data_offset(const struct evlist * evlist)3749 size_t perf_session__data_offset(const struct evlist *evlist)
3750 {
3751 	struct evsel *evsel;
3752 	size_t data_offset;
3753 
3754 	data_offset = sizeof(struct perf_file_header);
3755 	evlist__for_each_entry(evlist, evsel) {
3756 		data_offset += evsel->core.ids * sizeof(u64);
3757 	}
3758 	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3759 
3760 	return data_offset;
3761 }
3762 
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc)3763 int perf_session__inject_header(struct perf_session *session,
3764 				struct evlist *evlist,
3765 				int fd,
3766 				struct feat_copier *fc)
3767 {
3768 	return perf_session__do_write_header(session, evlist, fd, true, fc);
3769 }
3770 
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3771 static int perf_header__getbuffer64(struct perf_header *header,
3772 				    int fd, void *buf, size_t size)
3773 {
3774 	if (readn(fd, buf, size) <= 0)
3775 		return -1;
3776 
3777 	if (header->needs_swap)
3778 		mem_bswap_64(buf, size);
3779 
3780 	return 0;
3781 }
3782 
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3783 int perf_header__process_sections(struct perf_header *header, int fd,
3784 				  void *data,
3785 				  int (*process)(struct perf_file_section *section,
3786 						 struct perf_header *ph,
3787 						 int feat, int fd, void *data))
3788 {
3789 	struct perf_file_section *feat_sec, *sec;
3790 	int nr_sections;
3791 	int sec_size;
3792 	int feat;
3793 	int err;
3794 
3795 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3796 	if (!nr_sections)
3797 		return 0;
3798 
3799 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3800 	if (!feat_sec)
3801 		return -1;
3802 
3803 	sec_size = sizeof(*feat_sec) * nr_sections;
3804 
3805 	lseek(fd, header->feat_offset, SEEK_SET);
3806 
3807 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3808 	if (err < 0)
3809 		goto out_free;
3810 
3811 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3812 		err = process(sec++, header, feat, fd, data);
3813 		if (err < 0)
3814 			goto out_free;
3815 	}
3816 	err = 0;
3817 out_free:
3818 	free(feat_sec);
3819 	return err;
3820 }
3821 
3822 static const int attr_file_abi_sizes[] = {
3823 	[0] = PERF_ATTR_SIZE_VER0,
3824 	[1] = PERF_ATTR_SIZE_VER1,
3825 	[2] = PERF_ATTR_SIZE_VER2,
3826 	[3] = PERF_ATTR_SIZE_VER3,
3827 	[4] = PERF_ATTR_SIZE_VER4,
3828 	0,
3829 };
3830 
3831 /*
3832  * In the legacy file format, the magic number is not used to encode endianness.
3833  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3834  * on ABI revisions, we need to try all combinations for all endianness to
3835  * detect the endianness.
3836  */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3837 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3838 {
3839 	uint64_t ref_size, attr_size;
3840 	int i;
3841 
3842 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3843 		ref_size = attr_file_abi_sizes[i]
3844 			 + sizeof(struct perf_file_section);
3845 		if (hdr_sz != ref_size) {
3846 			attr_size = bswap_64(hdr_sz);
3847 			if (attr_size != ref_size)
3848 				continue;
3849 
3850 			ph->needs_swap = true;
3851 		}
3852 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3853 			 i,
3854 			 ph->needs_swap);
3855 		return 0;
3856 	}
3857 	/* could not determine endianness */
3858 	return -1;
3859 }
3860 
3861 #define PERF_PIPE_HDR_VER0	16
3862 
3863 static const size_t attr_pipe_abi_sizes[] = {
3864 	[0] = PERF_PIPE_HDR_VER0,
3865 	0,
3866 };
3867 
3868 /*
3869  * In the legacy pipe format, there is an implicit assumption that endianness
3870  * between host recording the samples, and host parsing the samples is the
3871  * same. This is not always the case given that the pipe output may always be
3872  * redirected into a file and analyzed on a different machine with possibly a
3873  * different endianness and perf_event ABI revisions in the perf tool itself.
3874  */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3875 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3876 {
3877 	u64 attr_size;
3878 	int i;
3879 
3880 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3881 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3882 			attr_size = bswap_64(hdr_sz);
3883 			if (attr_size != hdr_sz)
3884 				continue;
3885 
3886 			ph->needs_swap = true;
3887 		}
3888 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3889 		return 0;
3890 	}
3891 	return -1;
3892 }
3893 
is_perf_magic(u64 magic)3894 bool is_perf_magic(u64 magic)
3895 {
3896 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3897 		|| magic == __perf_magic2
3898 		|| magic == __perf_magic2_sw)
3899 		return true;
3900 
3901 	return false;
3902 }
3903 
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3904 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3905 			      bool is_pipe, struct perf_header *ph)
3906 {
3907 	int ret;
3908 
3909 	/* check for legacy format */
3910 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3911 	if (ret == 0) {
3912 		ph->version = PERF_HEADER_VERSION_1;
3913 		pr_debug("legacy perf.data format\n");
3914 		if (is_pipe)
3915 			return try_all_pipe_abis(hdr_sz, ph);
3916 
3917 		return try_all_file_abis(hdr_sz, ph);
3918 	}
3919 	/*
3920 	 * the new magic number serves two purposes:
3921 	 * - unique number to identify actual perf.data files
3922 	 * - encode endianness of file
3923 	 */
3924 	ph->version = PERF_HEADER_VERSION_2;
3925 
3926 	/* check magic number with one endianness */
3927 	if (magic == __perf_magic2)
3928 		return 0;
3929 
3930 	/* check magic number with opposite endianness */
3931 	if (magic != __perf_magic2_sw)
3932 		return -1;
3933 
3934 	ph->needs_swap = true;
3935 
3936 	return 0;
3937 }
3938 
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3939 int perf_file_header__read(struct perf_file_header *header,
3940 			   struct perf_header *ph, int fd)
3941 {
3942 	ssize_t ret;
3943 
3944 	lseek(fd, 0, SEEK_SET);
3945 
3946 	ret = readn(fd, header, sizeof(*header));
3947 	if (ret <= 0)
3948 		return -1;
3949 
3950 	if (check_magic_endian(header->magic,
3951 			       header->attr_size, false, ph) < 0) {
3952 		pr_debug("magic/endian check failed\n");
3953 		return -1;
3954 	}
3955 
3956 	if (ph->needs_swap) {
3957 		mem_bswap_64(header, offsetof(struct perf_file_header,
3958 			     adds_features));
3959 	}
3960 
3961 	if (header->size != sizeof(*header)) {
3962 		/* Support the previous format */
3963 		if (header->size == offsetof(typeof(*header), adds_features))
3964 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3965 		else
3966 			return -1;
3967 	} else if (ph->needs_swap) {
3968 		/*
3969 		 * feature bitmap is declared as an array of unsigned longs --
3970 		 * not good since its size can differ between the host that
3971 		 * generated the data file and the host analyzing the file.
3972 		 *
3973 		 * We need to handle endianness, but we don't know the size of
3974 		 * the unsigned long where the file was generated. Take a best
3975 		 * guess at determining it: try 64-bit swap first (ie., file
3976 		 * created on a 64-bit host), and check if the hostname feature
3977 		 * bit is set (this feature bit is forced on as of fbe96f2).
3978 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3979 		 * swap. If the hostname bit is still not set (e.g., older data
3980 		 * file), punt and fallback to the original behavior --
3981 		 * clearing all feature bits and setting buildid.
3982 		 */
3983 		mem_bswap_64(&header->adds_features,
3984 			    BITS_TO_U64(HEADER_FEAT_BITS));
3985 
3986 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3987 			/* unswap as u64 */
3988 			mem_bswap_64(&header->adds_features,
3989 				    BITS_TO_U64(HEADER_FEAT_BITS));
3990 
3991 			/* unswap as u32 */
3992 			mem_bswap_32(&header->adds_features,
3993 				    BITS_TO_U32(HEADER_FEAT_BITS));
3994 		}
3995 
3996 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3997 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3998 			__set_bit(HEADER_BUILD_ID, header->adds_features);
3999 		}
4000 	}
4001 
4002 	memcpy(&ph->adds_features, &header->adds_features,
4003 	       sizeof(ph->adds_features));
4004 
4005 	ph->data_offset  = header->data.offset;
4006 	ph->data_size	 = header->data.size;
4007 	ph->feat_offset  = header->data.offset + header->data.size;
4008 	return 0;
4009 }
4010 
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4011 static int perf_file_section__process(struct perf_file_section *section,
4012 				      struct perf_header *ph,
4013 				      int feat, int fd, void *data)
4014 {
4015 	struct feat_fd fdd = {
4016 		.fd	= fd,
4017 		.ph	= ph,
4018 		.size	= section->size,
4019 		.offset	= section->offset,
4020 	};
4021 
4022 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4023 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4024 			  "%d, continuing...\n", section->offset, feat);
4025 		return 0;
4026 	}
4027 
4028 	if (feat >= HEADER_LAST_FEATURE) {
4029 		pr_debug("unknown feature %d, continuing...\n", feat);
4030 		return 0;
4031 	}
4032 
4033 	if (!feat_ops[feat].process)
4034 		return 0;
4035 
4036 	return feat_ops[feat].process(&fdd, data);
4037 }
4038 
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data,bool repipe,int repipe_fd)4039 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4040 				       struct perf_header *ph,
4041 				       struct perf_data* data,
4042 				       bool repipe, int repipe_fd)
4043 {
4044 	struct feat_fd ff = {
4045 		.fd = repipe_fd,
4046 		.ph = ph,
4047 	};
4048 	ssize_t ret;
4049 
4050 	ret = perf_data__read(data, header, sizeof(*header));
4051 	if (ret <= 0)
4052 		return -1;
4053 
4054 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4055 		pr_debug("endian/magic failed\n");
4056 		return -1;
4057 	}
4058 
4059 	if (ph->needs_swap)
4060 		header->size = bswap_64(header->size);
4061 
4062 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4063 		return -1;
4064 
4065 	return 0;
4066 }
4067 
perf_header__read_pipe(struct perf_session * session,int repipe_fd)4068 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4069 {
4070 	struct perf_header *header = &session->header;
4071 	struct perf_pipe_file_header f_header;
4072 
4073 	if (perf_file_header__read_pipe(&f_header, header, session->data,
4074 					session->repipe, repipe_fd) < 0) {
4075 		pr_debug("incompatible file format\n");
4076 		return -EINVAL;
4077 	}
4078 
4079 	return f_header.size == sizeof(f_header) ? 0 : -1;
4080 }
4081 
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4082 static int read_attr(int fd, struct perf_header *ph,
4083 		     struct perf_file_attr *f_attr)
4084 {
4085 	struct perf_event_attr *attr = &f_attr->attr;
4086 	size_t sz, left;
4087 	size_t our_sz = sizeof(f_attr->attr);
4088 	ssize_t ret;
4089 
4090 	memset(f_attr, 0, sizeof(*f_attr));
4091 
4092 	/* read minimal guaranteed structure */
4093 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4094 	if (ret <= 0) {
4095 		pr_debug("cannot read %d bytes of header attr\n",
4096 			 PERF_ATTR_SIZE_VER0);
4097 		return -1;
4098 	}
4099 
4100 	/* on file perf_event_attr size */
4101 	sz = attr->size;
4102 
4103 	if (ph->needs_swap)
4104 		sz = bswap_32(sz);
4105 
4106 	if (sz == 0) {
4107 		/* assume ABI0 */
4108 		sz =  PERF_ATTR_SIZE_VER0;
4109 	} else if (sz > our_sz) {
4110 		pr_debug("file uses a more recent and unsupported ABI"
4111 			 " (%zu bytes extra)\n", sz - our_sz);
4112 		return -1;
4113 	}
4114 	/* what we have not yet read and that we know about */
4115 	left = sz - PERF_ATTR_SIZE_VER0;
4116 	if (left) {
4117 		void *ptr = attr;
4118 		ptr += PERF_ATTR_SIZE_VER0;
4119 
4120 		ret = readn(fd, ptr, left);
4121 	}
4122 	/* read perf_file_section, ids are read in caller */
4123 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4124 
4125 	return ret <= 0 ? -1 : 0;
4126 }
4127 
4128 #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4129 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4130 {
4131 	struct tep_event *event;
4132 	char bf[128];
4133 
4134 	/* already prepared */
4135 	if (evsel->tp_format)
4136 		return 0;
4137 
4138 	if (pevent == NULL) {
4139 		pr_debug("broken or missing trace data\n");
4140 		return -1;
4141 	}
4142 
4143 	event = tep_find_event(pevent, evsel->core.attr.config);
4144 	if (event == NULL) {
4145 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4146 		return -1;
4147 	}
4148 
4149 	if (!evsel->name) {
4150 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4151 		evsel->name = strdup(bf);
4152 		if (evsel->name == NULL)
4153 			return -1;
4154 	}
4155 
4156 	evsel->tp_format = event;
4157 	return 0;
4158 }
4159 
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4160 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4161 {
4162 	struct evsel *pos;
4163 
4164 	evlist__for_each_entry(evlist, pos) {
4165 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4166 		    evsel__prepare_tracepoint_event(pos, pevent))
4167 			return -1;
4168 	}
4169 
4170 	return 0;
4171 }
4172 #endif
4173 
perf_session__read_header(struct perf_session * session,int repipe_fd)4174 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4175 {
4176 	struct perf_data *data = session->data;
4177 	struct perf_header *header = &session->header;
4178 	struct perf_file_header	f_header;
4179 	struct perf_file_attr	f_attr;
4180 	u64			f_id;
4181 	int nr_attrs, nr_ids, i, j, err;
4182 	int fd = perf_data__fd(data);
4183 
4184 	session->evlist = evlist__new();
4185 	if (session->evlist == NULL)
4186 		return -ENOMEM;
4187 
4188 	session->evlist->env = &header->env;
4189 	session->machines.host.env = &header->env;
4190 
4191 	/*
4192 	 * We can read 'pipe' data event from regular file,
4193 	 * check for the pipe header regardless of source.
4194 	 */
4195 	err = perf_header__read_pipe(session, repipe_fd);
4196 	if (!err || perf_data__is_pipe(data)) {
4197 		data->is_pipe = true;
4198 		return err;
4199 	}
4200 
4201 	if (perf_file_header__read(&f_header, header, fd) < 0)
4202 		return -EINVAL;
4203 
4204 	if (header->needs_swap && data->in_place_update) {
4205 		pr_err("In-place update not supported when byte-swapping is required\n");
4206 		return -EINVAL;
4207 	}
4208 
4209 	/*
4210 	 * Sanity check that perf.data was written cleanly; data size is
4211 	 * initialized to 0 and updated only if the on_exit function is run.
4212 	 * If data size is still 0 then the file contains only partial
4213 	 * information.  Just warn user and process it as much as it can.
4214 	 */
4215 	if (f_header.data.size == 0) {
4216 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4217 			   "Was the 'perf record' command properly terminated?\n",
4218 			   data->file.path);
4219 	}
4220 
4221 	if (f_header.attr_size == 0) {
4222 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4223 		       "Was the 'perf record' command properly terminated?\n",
4224 		       data->file.path);
4225 		return -EINVAL;
4226 	}
4227 
4228 	nr_attrs = f_header.attrs.size / f_header.attr_size;
4229 	lseek(fd, f_header.attrs.offset, SEEK_SET);
4230 
4231 	for (i = 0; i < nr_attrs; i++) {
4232 		struct evsel *evsel;
4233 		off_t tmp;
4234 
4235 		if (read_attr(fd, header, &f_attr) < 0)
4236 			goto out_errno;
4237 
4238 		if (header->needs_swap) {
4239 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4240 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4241 			perf_event__attr_swap(&f_attr.attr);
4242 		}
4243 
4244 		tmp = lseek(fd, 0, SEEK_CUR);
4245 		evsel = evsel__new(&f_attr.attr);
4246 
4247 		if (evsel == NULL)
4248 			goto out_delete_evlist;
4249 
4250 		evsel->needs_swap = header->needs_swap;
4251 		/*
4252 		 * Do it before so that if perf_evsel__alloc_id fails, this
4253 		 * entry gets purged too at evlist__delete().
4254 		 */
4255 		evlist__add(session->evlist, evsel);
4256 
4257 		nr_ids = f_attr.ids.size / sizeof(u64);
4258 		/*
4259 		 * We don't have the cpu and thread maps on the header, so
4260 		 * for allocating the perf_sample_id table we fake 1 cpu and
4261 		 * hattr->ids threads.
4262 		 */
4263 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4264 			goto out_delete_evlist;
4265 
4266 		lseek(fd, f_attr.ids.offset, SEEK_SET);
4267 
4268 		for (j = 0; j < nr_ids; j++) {
4269 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4270 				goto out_errno;
4271 
4272 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4273 		}
4274 
4275 		lseek(fd, tmp, SEEK_SET);
4276 	}
4277 
4278 #ifdef HAVE_LIBTRACEEVENT
4279 	perf_header__process_sections(header, fd, &session->tevent,
4280 				      perf_file_section__process);
4281 
4282 	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4283 		goto out_delete_evlist;
4284 #else
4285 	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4286 #endif
4287 
4288 	return 0;
4289 out_errno:
4290 	return -errno;
4291 
4292 out_delete_evlist:
4293 	evlist__delete(session->evlist);
4294 	session->evlist = NULL;
4295 	return -ENOMEM;
4296 }
4297 
perf_event__process_feature(struct perf_session * session,union perf_event * event)4298 int perf_event__process_feature(struct perf_session *session,
4299 				union perf_event *event)
4300 {
4301 	struct perf_tool *tool = session->tool;
4302 	struct feat_fd ff = { .fd = 0 };
4303 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4304 	int type = fe->header.type;
4305 	u64 feat = fe->feat_id;
4306 	int ret = 0;
4307 
4308 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4309 		pr_warning("invalid record type %d in pipe-mode\n", type);
4310 		return 0;
4311 	}
4312 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4313 		pr_warning("invalid record type %d in pipe-mode\n", type);
4314 		return -1;
4315 	}
4316 
4317 	if (!feat_ops[feat].process)
4318 		return 0;
4319 
4320 	ff.buf  = (void *)fe->data;
4321 	ff.size = event->header.size - sizeof(*fe);
4322 	ff.ph = &session->header;
4323 
4324 	if (feat_ops[feat].process(&ff, NULL)) {
4325 		ret = -1;
4326 		goto out;
4327 	}
4328 
4329 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4330 		goto out;
4331 
4332 	if (!feat_ops[feat].full_only ||
4333 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4334 		feat_ops[feat].print(&ff, stdout);
4335 	} else {
4336 		fprintf(stdout, "# %s info available, use -I to display\n",
4337 			feat_ops[feat].name);
4338 	}
4339 out:
4340 	free_event_desc(ff.events);
4341 	return ret;
4342 }
4343 
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4344 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4345 {
4346 	struct perf_record_event_update *ev = &event->event_update;
4347 	struct perf_cpu_map *map;
4348 	size_t ret;
4349 
4350 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4351 
4352 	switch (ev->type) {
4353 	case PERF_EVENT_UPDATE__SCALE:
4354 		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4355 		break;
4356 	case PERF_EVENT_UPDATE__UNIT:
4357 		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4358 		break;
4359 	case PERF_EVENT_UPDATE__NAME:
4360 		ret += fprintf(fp, "... name:  %s\n", ev->name);
4361 		break;
4362 	case PERF_EVENT_UPDATE__CPUS:
4363 		ret += fprintf(fp, "... ");
4364 
4365 		map = cpu_map__new_data(&ev->cpus.cpus);
4366 		if (map) {
4367 			ret += cpu_map__fprintf(map, fp);
4368 			perf_cpu_map__put(map);
4369 		} else
4370 			ret += fprintf(fp, "failed to get cpus\n");
4371 		break;
4372 	default:
4373 		ret += fprintf(fp, "... unknown type\n");
4374 		break;
4375 	}
4376 
4377 	return ret;
4378 }
4379 
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4380 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4381 			     union perf_event *event,
4382 			     struct evlist **pevlist)
4383 {
4384 	u32 i, n_ids;
4385 	u64 *ids;
4386 	struct evsel *evsel;
4387 	struct evlist *evlist = *pevlist;
4388 
4389 	if (evlist == NULL) {
4390 		*pevlist = evlist = evlist__new();
4391 		if (evlist == NULL)
4392 			return -ENOMEM;
4393 	}
4394 
4395 	evsel = evsel__new(&event->attr.attr);
4396 	if (evsel == NULL)
4397 		return -ENOMEM;
4398 
4399 	evlist__add(evlist, evsel);
4400 
4401 	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4402 	n_ids = n_ids / sizeof(u64);
4403 	/*
4404 	 * We don't have the cpu and thread maps on the header, so
4405 	 * for allocating the perf_sample_id table we fake 1 cpu and
4406 	 * hattr->ids threads.
4407 	 */
4408 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4409 		return -ENOMEM;
4410 
4411 	ids = perf_record_header_attr_id(event);
4412 	for (i = 0; i < n_ids; i++) {
4413 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4414 	}
4415 
4416 	return 0;
4417 }
4418 
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4419 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4420 				     union perf_event *event,
4421 				     struct evlist **pevlist)
4422 {
4423 	struct perf_record_event_update *ev = &event->event_update;
4424 	struct evlist *evlist;
4425 	struct evsel *evsel;
4426 	struct perf_cpu_map *map;
4427 
4428 	if (dump_trace)
4429 		perf_event__fprintf_event_update(event, stdout);
4430 
4431 	if (!pevlist || *pevlist == NULL)
4432 		return -EINVAL;
4433 
4434 	evlist = *pevlist;
4435 
4436 	evsel = evlist__id2evsel(evlist, ev->id);
4437 	if (evsel == NULL)
4438 		return -EINVAL;
4439 
4440 	switch (ev->type) {
4441 	case PERF_EVENT_UPDATE__UNIT:
4442 		free((char *)evsel->unit);
4443 		evsel->unit = strdup(ev->unit);
4444 		break;
4445 	case PERF_EVENT_UPDATE__NAME:
4446 		free(evsel->name);
4447 		evsel->name = strdup(ev->name);
4448 		break;
4449 	case PERF_EVENT_UPDATE__SCALE:
4450 		evsel->scale = ev->scale.scale;
4451 		break;
4452 	case PERF_EVENT_UPDATE__CPUS:
4453 		map = cpu_map__new_data(&ev->cpus.cpus);
4454 		if (map) {
4455 			perf_cpu_map__put(evsel->core.own_cpus);
4456 			evsel->core.own_cpus = map;
4457 		} else
4458 			pr_err("failed to get event_update cpus\n");
4459 	default:
4460 		break;
4461 	}
4462 
4463 	return 0;
4464 }
4465 
4466 #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4467 int perf_event__process_tracing_data(struct perf_session *session,
4468 				     union perf_event *event)
4469 {
4470 	ssize_t size_read, padding, size = event->tracing_data.size;
4471 	int fd = perf_data__fd(session->data);
4472 	char buf[BUFSIZ];
4473 
4474 	/*
4475 	 * The pipe fd is already in proper place and in any case
4476 	 * we can't move it, and we'd screw the case where we read
4477 	 * 'pipe' data from regular file. The trace_report reads
4478 	 * data from 'fd' so we need to set it directly behind the
4479 	 * event, where the tracing data starts.
4480 	 */
4481 	if (!perf_data__is_pipe(session->data)) {
4482 		off_t offset = lseek(fd, 0, SEEK_CUR);
4483 
4484 		/* setup for reading amidst mmap */
4485 		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4486 		      SEEK_SET);
4487 	}
4488 
4489 	size_read = trace_report(fd, &session->tevent,
4490 				 session->repipe);
4491 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4492 
4493 	if (readn(fd, buf, padding) < 0) {
4494 		pr_err("%s: reading input file", __func__);
4495 		return -1;
4496 	}
4497 	if (session->repipe) {
4498 		int retw = write(STDOUT_FILENO, buf, padding);
4499 		if (retw <= 0 || retw != padding) {
4500 			pr_err("%s: repiping tracing data padding", __func__);
4501 			return -1;
4502 		}
4503 	}
4504 
4505 	if (size_read + padding != size) {
4506 		pr_err("%s: tracing data size mismatch", __func__);
4507 		return -1;
4508 	}
4509 
4510 	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4511 
4512 	return size_read + padding;
4513 }
4514 #endif
4515 
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4516 int perf_event__process_build_id(struct perf_session *session,
4517 				 union perf_event *event)
4518 {
4519 	__event_process_build_id(&event->build_id,
4520 				 event->build_id.filename,
4521 				 session);
4522 	return 0;
4523 }
4524