xref: /openbmc/qemu/hw/acpi/nvdimm.c (revision b55e4b9c0525560577384adfc6d30eb0daa8d7be)
1  /*
2   * NVDIMM ACPI Implementation
3   *
4   * Copyright(C) 2015 Intel Corporation.
5   *
6   * Author:
7   *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
8   *
9   * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10   * and the DSM specification can be found at:
11   *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12   *
13   * Currently, it only supports PMEM Virtualization.
14   *
15   * This library is free software; you can redistribute it and/or
16   * modify it under the terms of the GNU Lesser General Public
17   * License as published by the Free Software Foundation; either
18   * version 2.1 of the License, or (at your option) any later version.
19   *
20   * This library is distributed in the hope that it will be useful,
21   * but WITHOUT ANY WARRANTY; without even the implied warranty of
22   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23   * Lesser General Public License for more details.
24   *
25   * You should have received a copy of the GNU Lesser General Public
26   * License along with this library; if not, see <http://www.gnu.org/licenses/>
27   */
28  
29  #include "qemu/osdep.h"
30  #include "qemu/uuid.h"
31  #include "qapi/error.h"
32  #include "hw/acpi/acpi.h"
33  #include "hw/acpi/aml-build.h"
34  #include "hw/acpi/bios-linker-loader.h"
35  #include "hw/nvram/fw_cfg.h"
36  #include "hw/mem/nvdimm.h"
37  #include "qemu/nvdimm-utils.h"
38  #include "trace.h"
39  
40  /*
41   * define Byte Addressable Persistent Memory (PM) Region according to
42   * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
43   */
44  static const uint8_t nvdimm_nfit_spa_uuid[] =
45        UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
46                0x18, 0xb7, 0x8c, 0xdb);
47  
48  /*
49   * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
50   * Interface Table (NFIT).
51   */
52  
53  /*
54   * System Physical Address Range Structure
55   *
56   * It describes the system physical address ranges occupied by NVDIMMs and
57   * the types of the regions.
58   */
59  struct NvdimmNfitSpa {
60      uint16_t type;
61      uint16_t length;
62      uint16_t spa_index;
63      uint16_t flags;
64      uint32_t reserved;
65      uint32_t proximity_domain;
66      uint8_t type_guid[16];
67      uint64_t spa_base;
68      uint64_t spa_length;
69      uint64_t mem_attr;
70  } QEMU_PACKED;
71  typedef struct NvdimmNfitSpa NvdimmNfitSpa;
72  
73  /*
74   * Memory Device to System Physical Address Range Mapping Structure
75   *
76   * It enables identifying each NVDIMM region and the corresponding SPA
77   * describing the memory interleave
78   */
79  struct NvdimmNfitMemDev {
80      uint16_t type;
81      uint16_t length;
82      uint32_t nfit_handle;
83      uint16_t phys_id;
84      uint16_t region_id;
85      uint16_t spa_index;
86      uint16_t dcr_index;
87      uint64_t region_len;
88      uint64_t region_offset;
89      uint64_t region_dpa;
90      uint16_t interleave_index;
91      uint16_t interleave_ways;
92      uint16_t flags;
93      uint16_t reserved;
94  } QEMU_PACKED;
95  typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
96  
97  #define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
98  
99  /*
100   * NVDIMM Control Region Structure
101   *
102   * It describes the NVDIMM and if applicable, Block Control Window.
103   */
104  struct NvdimmNfitControlRegion {
105      uint16_t type;
106      uint16_t length;
107      uint16_t dcr_index;
108      uint16_t vendor_id;
109      uint16_t device_id;
110      uint16_t revision_id;
111      uint16_t sub_vendor_id;
112      uint16_t sub_device_id;
113      uint16_t sub_revision_id;
114      uint8_t reserved[6];
115      uint32_t serial_number;
116      uint16_t fic;
117      uint16_t num_bcw;
118      uint64_t bcw_size;
119      uint64_t cmd_offset;
120      uint64_t cmd_size;
121      uint64_t status_offset;
122      uint64_t status_size;
123      uint16_t flags;
124      uint8_t reserved2[6];
125  } QEMU_PACKED;
126  typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
127  
128  /*
129   * NVDIMM Platform Capabilities Structure
130   *
131   * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
132   */
133  struct NvdimmNfitPlatformCaps {
134      uint16_t type;
135      uint16_t length;
136      uint8_t highest_cap;
137      uint8_t reserved[3];
138      uint32_t capabilities;
139      uint8_t reserved2[4];
140  } QEMU_PACKED;
141  typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
142  
143  /*
144   * Module serial number is a unique number for each device. We use the
145   * slot id of NVDIMM device to generate this number so that each device
146   * associates with a different number.
147   *
148   * 0x123456 is a magic number we arbitrarily chose.
149   */
nvdimm_slot_to_sn(int slot)150  static uint32_t nvdimm_slot_to_sn(int slot)
151  {
152      return 0x123456 + slot;
153  }
154  
155  /*
156   * handle is used to uniquely associate nfit_memdev structure with NVDIMM
157   * ACPI device - nfit_memdev.nfit_handle matches with the value returned
158   * by ACPI device _ADR method.
159   *
160   * We generate the handle with the slot id of NVDIMM device and reserve
161   * 0 for NVDIMM root device.
162   */
nvdimm_slot_to_handle(int slot)163  static uint32_t nvdimm_slot_to_handle(int slot)
164  {
165      return slot + 1;
166  }
167  
168  /*
169   * index uniquely identifies the structure, 0 is reserved which indicates
170   * that the structure is not valid or the associated structure is not
171   * present.
172   *
173   * Each NVDIMM device needs two indexes, one for nfit_spa and another for
174   * nfit_dc which are generated by the slot id of NVDIMM device.
175   */
nvdimm_slot_to_spa_index(int slot)176  static uint16_t nvdimm_slot_to_spa_index(int slot)
177  {
178      return (slot + 1) << 1;
179  }
180  
181  /* See the comments of nvdimm_slot_to_spa_index(). */
nvdimm_slot_to_dcr_index(int slot)182  static uint32_t nvdimm_slot_to_dcr_index(int slot)
183  {
184      return nvdimm_slot_to_spa_index(slot) + 1;
185  }
186  
nvdimm_get_device_by_handle(uint32_t handle)187  static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
188  {
189      NVDIMMDevice *nvdimm = NULL;
190      GSList *list, *device_list = nvdimm_get_device_list();
191  
192      for (list = device_list; list; list = list->next) {
193          NVDIMMDevice *nvd = list->data;
194          int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
195                                             NULL);
196  
197          if (nvdimm_slot_to_handle(slot) == handle) {
198              nvdimm = nvd;
199              break;
200          }
201      }
202  
203      g_slist_free(device_list);
204      return nvdimm;
205  }
206  
207  /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
208  static void
nvdimm_build_structure_spa(GArray * structures,DeviceState * dev)209  nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
210  {
211      NvdimmNfitSpa *nfit_spa;
212      uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
213                                               NULL);
214      uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
215                                               NULL);
216      uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
217                                               NULL);
218      int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
219                                         NULL);
220  
221      nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
222  
223      nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
224                                        Structure */);
225      nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
226      nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
227  
228      /*
229       * Control region is strict as all the device info, such as SN, index,
230       * is associated with slot id.
231       */
232      nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
233                                         management during hot add/online
234                                         operation */ |
235                                    2 /* Data in Proximity Domain field is
236                                         valid*/);
237  
238      /* NUMA node. */
239      nfit_spa->proximity_domain = cpu_to_le32(node);
240      /* the region reported as PMEM. */
241      memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
242             sizeof(nvdimm_nfit_spa_uuid));
243  
244      nfit_spa->spa_base = cpu_to_le64(addr);
245      nfit_spa->spa_length = cpu_to_le64(size);
246  
247      /* It is the PMEM and can be cached as writeback. */
248      nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
249                                       0x8000ULL /* EFI_MEMORY_NV */);
250  }
251  
252  /*
253   * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
254   * Structure
255   */
256  static void
nvdimm_build_structure_memdev(GArray * structures,DeviceState * dev)257  nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
258  {
259      NvdimmNfitMemDev *nfit_memdev;
260      NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
261      uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
262                                               NULL);
263      int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
264                                              NULL);
265      uint32_t handle = nvdimm_slot_to_handle(slot);
266  
267      nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
268  
269      nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
270                                           Range Map Structure*/);
271      nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
272      nfit_memdev->nfit_handle = cpu_to_le32(handle);
273  
274      /*
275       * associate memory device with System Physical Address Range
276       * Structure.
277       */
278      nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
279      /* associate memory device with Control Region Structure. */
280      nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
281  
282      /* The memory region on the device. */
283      nfit_memdev->region_len = cpu_to_le64(size);
284      /* The device address starts from 0. */
285      nfit_memdev->region_dpa = cpu_to_le64(0);
286  
287      /* Only one interleave for PMEM. */
288      nfit_memdev->interleave_ways = cpu_to_le16(1);
289  
290      if (nvdimm->unarmed) {
291          nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
292      }
293  }
294  
295  /*
296   * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
297   */
nvdimm_build_structure_dcr(GArray * structures,DeviceState * dev)298  static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
299  {
300      NvdimmNfitControlRegion *nfit_dcr;
301      int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
302                                         NULL);
303      uint32_t sn = nvdimm_slot_to_sn(slot);
304  
305      nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
306  
307      nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
308      nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
309      nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
310  
311      /* vendor: Intel. */
312      nfit_dcr->vendor_id = cpu_to_le16(0x8086);
313      nfit_dcr->device_id = cpu_to_le16(1);
314  
315      /* The _DSM method is following Intel's DSM specification. */
316      nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
317                                               in ACPI 6.0 is 1. */);
318      nfit_dcr->serial_number = cpu_to_le32(sn);
319      nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
320                                           Byte addressable, no energy backed.
321                                           See ACPI 6.2, sect 5.2.25.6 and
322                                           JEDEC Annex L Release 3. */);
323  }
324  
325  /*
326   * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
327   */
328  static void
nvdimm_build_structure_caps(GArray * structures,uint32_t capabilities)329  nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
330  {
331      NvdimmNfitPlatformCaps *nfit_caps;
332  
333      nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
334  
335      nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
336      nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
337      nfit_caps->highest_cap = 31 - clz32(capabilities);
338      nfit_caps->capabilities = cpu_to_le32(capabilities);
339  }
340  
nvdimm_build_device_structure(NVDIMMState * state)341  static GArray *nvdimm_build_device_structure(NVDIMMState *state)
342  {
343      GSList *device_list, *list = nvdimm_get_device_list();
344      GArray *structures = g_array_new(false, true /* clear */, 1);
345  
346      for (device_list = list; device_list; device_list = device_list->next) {
347          DeviceState *dev = device_list->data;
348  
349          /* build System Physical Address Range Structure. */
350          nvdimm_build_structure_spa(structures, dev);
351  
352          /*
353           * build Memory Device to System Physical Address Range Mapping
354           * Structure.
355           */
356          nvdimm_build_structure_memdev(structures, dev);
357  
358          /* build NVDIMM Control Region Structure. */
359          nvdimm_build_structure_dcr(structures, dev);
360      }
361      g_slist_free(list);
362  
363      if (state->persistence) {
364          nvdimm_build_structure_caps(structures, state->persistence);
365      }
366  
367      return structures;
368  }
369  
nvdimm_init_fit_buffer(NvdimmFitBuffer * fit_buf)370  static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
371  {
372      fit_buf->fit = g_array_new(false, true /* clear */, 1);
373  }
374  
nvdimm_build_fit_buffer(NVDIMMState * state)375  static void nvdimm_build_fit_buffer(NVDIMMState *state)
376  {
377      NvdimmFitBuffer *fit_buf = &state->fit_buf;
378  
379      g_array_free(fit_buf->fit, true);
380      fit_buf->fit = nvdimm_build_device_structure(state);
381      fit_buf->dirty = true;
382  }
383  
nvdimm_plug(NVDIMMState * state)384  void nvdimm_plug(NVDIMMState *state)
385  {
386      nvdimm_build_fit_buffer(state);
387  }
388  
389  /*
390   * NVDIMM Firmware Interface Table
391   * @signature: "NFIT"
392   *
393   * It provides information that allows OSPM to enumerate NVDIMM present in
394   * the platform and associate system physical address ranges created by the
395   * NVDIMMs.
396   *
397   * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
398   */
399  
nvdimm_build_nfit(NVDIMMState * state,GArray * table_offsets,GArray * table_data,BIOSLinker * linker,const char * oem_id,const char * oem_table_id)400  static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
401                                GArray *table_data, BIOSLinker *linker,
402                                const char *oem_id, const char *oem_table_id)
403  {
404      NvdimmFitBuffer *fit_buf = &state->fit_buf;
405      AcpiTable table = { .sig = "NFIT", .rev = 1,
406                          .oem_id = oem_id, .oem_table_id = oem_table_id };
407  
408      acpi_add_table(table_offsets, table_data);
409  
410      acpi_table_begin(&table, table_data);
411      /* Reserved */
412      build_append_int_noprefix(table_data, 0, 4);
413      /* NVDIMM device structures. */
414      g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
415      acpi_table_end(linker, &table);
416  }
417  
418  #define NVDIMM_DSM_MEMORY_SIZE      4096
419  
420  struct NvdimmDsmIn {
421      uint32_t handle;
422      uint32_t revision;
423      uint32_t function;
424      /* the remaining size in the page is used by arg3. */
425      union {
426          uint8_t arg3[4084];
427      };
428  } QEMU_PACKED;
429  typedef struct NvdimmDsmIn NvdimmDsmIn;
430  QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
431  
432  struct NvdimmDsmOut {
433      /* the size of buffer filled by QEMU. */
434      uint32_t len;
435      uint8_t data[4092];
436  } QEMU_PACKED;
437  typedef struct NvdimmDsmOut NvdimmDsmOut;
438  QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
439  
440  struct NvdimmDsmFunc0Out {
441      /* the size of buffer filled by QEMU. */
442       uint32_t len;
443       uint32_t supported_func;
444  } QEMU_PACKED;
445  typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
446  
447  struct NvdimmDsmFuncNoPayloadOut {
448      /* the size of buffer filled by QEMU. */
449       uint32_t len;
450       uint32_t func_ret_status;
451  } QEMU_PACKED;
452  typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
453  
454  struct NvdimmFuncGetLabelSizeOut {
455      /* the size of buffer filled by QEMU. */
456      uint32_t len;
457      uint32_t func_ret_status; /* return status code. */
458      uint32_t label_size; /* the size of label data area. */
459      /*
460       * Maximum size of the namespace label data length supported by
461       * the platform in Get/Set Namespace Label Data functions.
462       */
463      uint32_t max_xfer;
464  } QEMU_PACKED;
465  typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
466  QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
467  
468  struct NvdimmFuncGetLabelDataIn {
469      uint32_t offset; /* the offset in the namespace label data area. */
470      uint32_t length; /* the size of data is to be read via the function. */
471  } QEMU_PACKED;
472  typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
473  QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
474                    offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
475  
476  struct NvdimmFuncGetLabelDataOut {
477      /* the size of buffer filled by QEMU. */
478      uint32_t len;
479      uint32_t func_ret_status; /* return status code. */
480      uint8_t out_buf[]; /* the data got via Get Namespace Label function. */
481  } QEMU_PACKED;
482  typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
483  QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
484  
485  struct NvdimmFuncSetLabelDataIn {
486      uint32_t offset; /* the offset in the namespace label data area. */
487      uint32_t length; /* the size of data is to be written via the function. */
488      uint8_t in_buf[]; /* the data written to label data area. */
489  } QEMU_PACKED;
490  typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
491  QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
492                    offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
493  
494  struct NvdimmFuncReadFITIn {
495      uint32_t offset; /* the offset into FIT buffer. */
496  } QEMU_PACKED;
497  typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
498  QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
499                    offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
500  
501  struct NvdimmFuncReadFITOut {
502      /* the size of buffer filled by QEMU. */
503      uint32_t len;
504      uint32_t func_ret_status; /* return status code. */
505      uint8_t fit[]; /* the FIT data. */
506  } QEMU_PACKED;
507  typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
508  QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
509  
510  static void
nvdimm_dsm_function0(uint32_t supported_func,hwaddr dsm_mem_addr)511  nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
512  {
513      NvdimmDsmFunc0Out func0 = {
514          .len = cpu_to_le32(sizeof(func0)),
515          .supported_func = cpu_to_le32(supported_func),
516      };
517      cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
518  }
519  
520  static void
nvdimm_dsm_no_payload(uint32_t func_ret_status,hwaddr dsm_mem_addr)521  nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
522  {
523      NvdimmDsmFuncNoPayloadOut out = {
524          .len = cpu_to_le32(sizeof(out)),
525          .func_ret_status = cpu_to_le32(func_ret_status),
526      };
527      cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
528  }
529  
530  #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
531  #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
532  #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
533  #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
534  #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
535  
536  #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
537  
538  /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
nvdimm_dsm_func_read_fit(NVDIMMState * state,NvdimmDsmIn * in,hwaddr dsm_mem_addr)539  static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
540                                       hwaddr dsm_mem_addr)
541  {
542      NvdimmFitBuffer *fit_buf = &state->fit_buf;
543      NvdimmFuncReadFITIn *read_fit;
544      NvdimmFuncReadFITOut *read_fit_out;
545      GArray *fit;
546      uint32_t read_len = 0, func_ret_status;
547      int size;
548  
549      read_fit = (NvdimmFuncReadFITIn *)in->arg3;
550      read_fit->offset = le32_to_cpu(read_fit->offset);
551  
552      fit = fit_buf->fit;
553  
554      trace_acpi_nvdimm_read_fit(read_fit->offset, fit->len,
555                                 fit_buf->dirty ? "Yes" : "No");
556  
557      if (read_fit->offset > fit->len) {
558          func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
559          goto exit;
560      }
561  
562      /* It is the first time to read FIT. */
563      if (!read_fit->offset) {
564          fit_buf->dirty = false;
565      } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
566          func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
567          goto exit;
568      }
569  
570      func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
571      read_len = MIN(fit->len - read_fit->offset,
572                     NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
573  
574  exit:
575      size = sizeof(NvdimmFuncReadFITOut) + read_len;
576      read_fit_out = g_malloc(size);
577  
578      read_fit_out->len = cpu_to_le32(size);
579      read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
580      memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
581  
582      cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
583  
584      g_free(read_fit_out);
585  }
586  
587  static void
nvdimm_dsm_handle_reserved_root_method(NVDIMMState * state,NvdimmDsmIn * in,hwaddr dsm_mem_addr)588  nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
589                                         NvdimmDsmIn *in, hwaddr dsm_mem_addr)
590  {
591      switch (in->function) {
592      case 0x0:
593          nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
594          return;
595      case 0x1 /* Read FIT */:
596          nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
597          return;
598      }
599  
600      nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
601  }
602  
nvdimm_dsm_root(NvdimmDsmIn * in,hwaddr dsm_mem_addr)603  static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
604  {
605      /*
606       * function 0 is called to inquire which functions are supported by
607       * OSPM
608       */
609      if (!in->function) {
610          nvdimm_dsm_function0(0 /* No function supported other than
611                                    function 0 */, dsm_mem_addr);
612          return;
613      }
614  
615      /* No function except function 0 is supported yet. */
616      nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
617  }
618  
619  /*
620   * the max transfer size is the max size transferred by both a
621   * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
622   * function.
623   */
nvdimm_get_max_xfer_label_size(void)624  static uint32_t nvdimm_get_max_xfer_label_size(void)
625  {
626      uint32_t max_get_size, max_set_size, dsm_memory_size;
627  
628      dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
629  
630      /*
631       * the max data ACPI can read one time which is transferred by
632       * the response of 'Get Namespace Label Data' function.
633       */
634      max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
635  
636      /*
637       * the max data ACPI can write one time which is transferred by
638       * 'Set Namespace Label Data' function.
639       */
640      max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
641                     sizeof(NvdimmFuncSetLabelDataIn);
642  
643      return MIN(max_get_size, max_set_size);
644  }
645  
646  /*
647   * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
648   *
649   * It gets the size of Namespace Label data area and the max data size
650   * that Get/Set Namespace Label Data functions can transfer.
651   */
nvdimm_dsm_label_size(NVDIMMDevice * nvdimm,hwaddr dsm_mem_addr)652  static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
653  {
654      NvdimmFuncGetLabelSizeOut label_size_out = {
655          .len = cpu_to_le32(sizeof(label_size_out)),
656      };
657      uint32_t label_size, mxfer;
658  
659      label_size = nvdimm->label_size;
660      mxfer = nvdimm_get_max_xfer_label_size();
661  
662      trace_acpi_nvdimm_label_info(label_size, mxfer);
663  
664      label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
665      label_size_out.label_size = cpu_to_le32(label_size);
666      label_size_out.max_xfer = cpu_to_le32(mxfer);
667  
668      cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
669                                sizeof(label_size_out));
670  }
671  
nvdimm_rw_label_data_check(NVDIMMDevice * nvdimm,uint32_t offset,uint32_t length,bool is_write)672  static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
673                                             uint32_t offset, uint32_t length,
674                                             bool is_write)
675  {
676      uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
677  
678      if (offset + length < offset) {
679          trace_acpi_nvdimm_label_overflow(offset, length);
680          return ret;
681      }
682  
683      if (nvdimm->label_size < offset + length) {
684          trace_acpi_nvdimm_label_oversize(offset + length, nvdimm->label_size);
685          return ret;
686      }
687  
688      if (length > nvdimm_get_max_xfer_label_size()) {
689          trace_acpi_nvdimm_label_xfer_exceed(length,
690                                              nvdimm_get_max_xfer_label_size());
691          return ret;
692      }
693  
694      if (is_write && nvdimm->readonly) {
695          return NVDIMM_DSM_RET_STATUS_UNSUPPORT;
696      }
697  
698      return NVDIMM_DSM_RET_STATUS_SUCCESS;
699  }
700  
701  /*
702   * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
703   */
nvdimm_dsm_get_label_data(NVDIMMDevice * nvdimm,NvdimmDsmIn * in,hwaddr dsm_mem_addr)704  static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
705                                        hwaddr dsm_mem_addr)
706  {
707      NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
708      NvdimmFuncGetLabelDataIn *get_label_data;
709      NvdimmFuncGetLabelDataOut *get_label_data_out;
710      uint32_t status;
711      int size;
712  
713      get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
714      get_label_data->offset = le32_to_cpu(get_label_data->offset);
715      get_label_data->length = le32_to_cpu(get_label_data->length);
716  
717      trace_acpi_nvdimm_read_label(get_label_data->offset,
718                                   get_label_data->length);
719  
720      status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
721                                          get_label_data->length, false);
722      if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
723          nvdimm_dsm_no_payload(status, dsm_mem_addr);
724          return;
725      }
726  
727      size = sizeof(*get_label_data_out) + get_label_data->length;
728      assert(size <= NVDIMM_DSM_MEMORY_SIZE);
729      get_label_data_out = g_malloc(size);
730  
731      get_label_data_out->len = cpu_to_le32(size);
732      get_label_data_out->func_ret_status =
733                              cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
734      nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
735                           get_label_data->length, get_label_data->offset);
736  
737      cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
738      g_free(get_label_data_out);
739  }
740  
741  /*
742   * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
743   */
nvdimm_dsm_set_label_data(NVDIMMDevice * nvdimm,NvdimmDsmIn * in,hwaddr dsm_mem_addr)744  static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
745                                        hwaddr dsm_mem_addr)
746  {
747      NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
748      NvdimmFuncSetLabelDataIn *set_label_data;
749      uint32_t status;
750  
751      set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
752  
753      set_label_data->offset = le32_to_cpu(set_label_data->offset);
754      set_label_data->length = le32_to_cpu(set_label_data->length);
755  
756      trace_acpi_nvdimm_write_label(set_label_data->offset,
757                                    set_label_data->length);
758  
759      status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
760                                          set_label_data->length, true);
761      if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
762          nvdimm_dsm_no_payload(status, dsm_mem_addr);
763          return;
764      }
765  
766      assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
767                      set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
768  
769      nvc->write_label_data(nvdimm, set_label_data->in_buf,
770                            set_label_data->length, set_label_data->offset);
771      nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
772  }
773  
nvdimm_dsm_device(NvdimmDsmIn * in,hwaddr dsm_mem_addr)774  static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
775  {
776      NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
777  
778      /* See the comments in nvdimm_dsm_root(). */
779      if (!in->function) {
780          uint32_t supported_func = 0;
781  
782          if (nvdimm && nvdimm->label_size) {
783              supported_func |= 0x1 /* Bit 0 indicates whether there is
784                                       support for any functions other
785                                       than function 0. */ |
786                                1 << 4 /* Get Namespace Label Size */ |
787                                1 << 5 /* Get Namespace Label Data */ |
788                                1 << 6 /* Set Namespace Label Data */;
789          }
790          nvdimm_dsm_function0(supported_func, dsm_mem_addr);
791          return;
792      }
793  
794      if (!nvdimm) {
795          nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
796                                dsm_mem_addr);
797          return;
798      }
799  
800      /* Encode DSM function according to DSM Spec Rev1. */
801      switch (in->function) {
802      case 4 /* Get Namespace Label Size */:
803          if (nvdimm->label_size) {
804              nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
805              return;
806          }
807          break;
808      case 5 /* Get Namespace Label Data */:
809          if (nvdimm->label_size) {
810              nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
811              return;
812          }
813          break;
814      case 0x6 /* Set Namespace Label Data */:
815          if (nvdimm->label_size) {
816              nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
817              return;
818          }
819          break;
820      }
821  
822      nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
823  }
824  
825  static uint64_t
nvdimm_dsm_read(void * opaque,hwaddr addr,unsigned size)826  nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
827  {
828      trace_acpi_nvdimm_read_io_port();
829      return 0;
830  }
831  
832  static void
nvdimm_dsm_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)833  nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
834  {
835      NVDIMMState *state = opaque;
836      NvdimmDsmIn *in;
837      hwaddr dsm_mem_addr = val;
838  
839      trace_acpi_nvdimm_dsm_mem_addr(dsm_mem_addr);
840  
841      /*
842       * The DSM memory is mapped to guest address space so an evil guest
843       * can change its content while we are doing DSM emulation. Avoid
844       * this by copying DSM memory to QEMU local memory.
845       */
846      in = g_new(NvdimmDsmIn, 1);
847      cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
848  
849      in->revision = le32_to_cpu(in->revision);
850      in->function = le32_to_cpu(in->function);
851      in->handle = le32_to_cpu(in->handle);
852  
853      trace_acpi_nvdimm_dsm_info(in->revision, in->handle, in->function);
854  
855      if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
856          trace_acpi_nvdimm_invalid_revision(in->revision);
857          nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
858          goto exit;
859      }
860  
861      if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
862          nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
863          goto exit;
864      }
865  
866       /* Handle 0 is reserved for NVDIMM Root Device. */
867      if (!in->handle) {
868          nvdimm_dsm_root(in, dsm_mem_addr);
869          goto exit;
870      }
871  
872      nvdimm_dsm_device(in, dsm_mem_addr);
873  
874  exit:
875      g_free(in);
876  }
877  
878  static const MemoryRegionOps nvdimm_dsm_ops = {
879      .read = nvdimm_dsm_read,
880      .write = nvdimm_dsm_write,
881      .endianness = DEVICE_LITTLE_ENDIAN,
882      .valid = {
883          .min_access_size = 4,
884          .max_access_size = 4,
885      },
886  };
887  
nvdimm_acpi_plug_cb(HotplugHandler * hotplug_dev,DeviceState * dev)888  void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
889  {
890      if (dev->hotplugged) {
891          acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
892      }
893  }
894  
nvdimm_init_acpi_state(NVDIMMState * state,MemoryRegion * io,struct AcpiGenericAddress dsm_io,FWCfgState * fw_cfg,Object * owner)895  void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
896                              struct AcpiGenericAddress dsm_io,
897                              FWCfgState *fw_cfg, Object *owner)
898  {
899      state->dsm_io = dsm_io;
900      memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
901                            "nvdimm-acpi-io", dsm_io.bit_width >> 3);
902      memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
903  
904      state->dsm_mem = g_array_new(false, true /* clear */, 1);
905      acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
906      fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
907                      state->dsm_mem->len);
908  
909      nvdimm_init_fit_buffer(&state->fit_buf);
910  }
911  
912  #define NVDIMM_COMMON_DSM       "NCAL"
913  #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
914  
915  #define NVDIMM_DSM_MEMORY       "NRAM"
916  #define NVDIMM_DSM_IOPORT       "NPIO"
917  
918  #define NVDIMM_DSM_NOTIFY       "NTFI"
919  #define NVDIMM_DSM_HANDLE       "HDLE"
920  #define NVDIMM_DSM_REVISION     "REVS"
921  #define NVDIMM_DSM_FUNCTION     "FUNC"
922  #define NVDIMM_DSM_ARG3         "FARG"
923  
924  #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
925  #define NVDIMM_DSM_OUT_BUF      "ODAT"
926  
927  #define NVDIMM_DSM_RFIT_STATUS  "RSTA"
928  
929  #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
930  #define NVDIMM_DEVICE_DSM_UUID  "4309AC30-0D11-11E4-9191-0800200C9A66"
931  
nvdimm_build_common_dsm(Aml * dev,NVDIMMState * nvdimm_state)932  static void nvdimm_build_common_dsm(Aml *dev,
933                                      NVDIMMState *nvdimm_state)
934  {
935      Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
936      Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
937      Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
938      Aml *whilectx, *offset;
939      uint8_t byte_list[1];
940      AmlRegionSpace rs;
941  
942      method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
943      uuid = aml_arg(0);
944      function = aml_arg(2);
945      handle = aml_arg(4);
946      dsm_mem = aml_local(6);
947      dsm_out_buf = aml_local(7);
948  
949      aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
950  
951      if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
952          rs = AML_SYSTEM_IO;
953      } else {
954          rs = AML_SYSTEM_MEMORY;
955      }
956  
957      /* map DSM memory and IO into ACPI namespace. */
958      aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
959                 aml_int(nvdimm_state->dsm_io.address),
960                 nvdimm_state->dsm_io.bit_width >> 3));
961      aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
962                 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
963  
964      /*
965       * DSM notifier:
966       * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
967       *                    emulate the access.
968       *
969       * It is the IO port so that accessing them will cause VM-exit, the
970       * control will be transferred to QEMU.
971       */
972      field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
973                        AML_PRESERVE);
974      aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
975                 nvdimm_state->dsm_io.bit_width));
976      aml_append(method, field);
977  
978      /*
979       * DSM input:
980       * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
981       *                    happens on NVDIMM Root Device.
982       * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
983       * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
984       * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
985       *                  containing function-specific arguments.
986       *
987       * They are RAM mapping on host so that these accesses never cause
988       * VM-EXIT.
989       */
990      field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
991                        AML_PRESERVE);
992      aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
993                 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
994      aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
995                 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
996      aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
997                 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
998      aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
999           (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
1000      aml_append(method, field);
1001  
1002      /*
1003       * DSM output:
1004       * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1005       * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1006       *
1007       * Since the page is reused by both input and out, the input data
1008       * will be lost after storing new result into ODAT so we should fetch
1009       * all the input data before writing the result.
1010       */
1011      field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1012                        AML_PRESERVE);
1013      aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1014                 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1015      aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1016         (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1017      aml_append(method, field);
1018  
1019      /*
1020       * do not support any method if DSM memory address has not been
1021       * patched.
1022       */
1023      unpatched = aml_equal(dsm_mem, aml_int(0x0));
1024  
1025      expected_uuid = aml_local(0);
1026  
1027      ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1028      aml_append(ifctx, aml_store(
1029                 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1030                 /* UUID for NVDIMM Root Device */, expected_uuid));
1031      aml_append(method, ifctx);
1032      elsectx = aml_else();
1033      ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1034      aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1035                 /* UUID for QEMU internal use */), expected_uuid));
1036      aml_append(elsectx, ifctx);
1037      elsectx2 = aml_else();
1038      aml_append(elsectx2, aml_store(aml_touuid(NVDIMM_DEVICE_DSM_UUID)
1039                 /* UUID for NVDIMM Devices */, expected_uuid));
1040      aml_append(elsectx, elsectx2);
1041      aml_append(method, elsectx);
1042  
1043      uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1044  
1045      unsupport = aml_if(aml_lor(unpatched, uuid_invalid));
1046  
1047      /*
1048       * function 0 is called to inquire what functions are supported by
1049       * OSPM
1050       */
1051      ifctx = aml_if(aml_equal(function, aml_int(0)));
1052      byte_list[0] = 0 /* No function Supported */;
1053      aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1054      aml_append(unsupport, ifctx);
1055  
1056      /* No function is supported yet. */
1057      byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1058      aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1059      aml_append(method, unsupport);
1060  
1061      /*
1062       * The HDLE indicates the DSM function is issued from which device,
1063       * it reserves 0 for root device and is the handle for NVDIMM devices.
1064       * See the comments in nvdimm_slot_to_handle().
1065       */
1066      aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1067      aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1068      aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1069  
1070      /*
1071       * The fourth parameter (Arg3) of _DSM is a package which contains
1072       * a buffer, the layout of the buffer is specified by UUID (Arg0),
1073       * Revision ID (Arg1) and Function Index (Arg2) which are documented
1074       * in the DSM Spec.
1075       */
1076      pckg = aml_arg(3);
1077      ifctx = aml_if(aml_land(aml_equal(aml_object_type(pckg),
1078                     aml_int(4 /* Package */)) /* It is a Package? */,
1079                     aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */));
1080  
1081      pckg_index = aml_local(2);
1082      pckg_buf = aml_local(3);
1083      aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1084      aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1085      aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1086      aml_append(method, ifctx);
1087  
1088      /*
1089       * tell QEMU about the real address of DSM memory, then QEMU
1090       * gets the control and fills the result in DSM memory.
1091       */
1092      aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1093  
1094      dsm_out_buf_size = aml_local(1);
1095      /* RLEN is not included in the payload returned to guest. */
1096      aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1097                 aml_int(4), dsm_out_buf_size));
1098  
1099      /*
1100       * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1101       * the Buffer Field <= to the size of an Integer (in bits), it will
1102       * be treated as an integer. Moreover, the integer size depends on
1103       * DSDT tables revision number. If revision number is < 2, integer
1104       * size is 32 bits, otherwise it is 64 bits.
1105       * Because of this CreateField() cannot be used if RLEN < Integer Size.
1106       *
1107       * Also please note that APCI ASL operator SizeOf() doesn't support
1108       * Integer and there isn't any other way to figure out the Integer
1109       * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1110       * build dsm_out_buf byte by byte.
1111       */
1112      ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1113      offset = aml_local(2);
1114      aml_append(ifctx, aml_store(aml_int(0), offset));
1115      aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1116      aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1117  
1118      whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1119      /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1120      aml_append(whilectx, aml_store(aml_derefof(aml_index(
1121                                     aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1122                                     aml_index(aml_name("TBUF"), aml_int(0))));
1123      aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1124                                           dsm_out_buf));
1125      aml_append(whilectx, aml_increment(offset));
1126      aml_append(ifctx, whilectx);
1127  
1128      aml_append(ifctx, aml_return(dsm_out_buf));
1129      aml_append(method, ifctx);
1130  
1131      /* If RLEN >= Integer size, just use CreateField() operator */
1132      aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1133                                   dsm_out_buf_size));
1134      aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1135                 aml_int(0), dsm_out_buf_size, "OBUF"));
1136      aml_append(method, aml_return(aml_name("OBUF")));
1137  
1138      aml_append(dev, method);
1139  }
1140  
nvdimm_build_device_dsm(Aml * dev,uint32_t handle)1141  static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1142  {
1143      Aml *method;
1144  
1145      method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1146      aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1147                                    aml_arg(1), aml_arg(2), aml_arg(3),
1148                                    aml_int(handle))));
1149      aml_append(dev, method);
1150  }
1151  
nvdimm_build_fit(Aml * dev)1152  static void nvdimm_build_fit(Aml *dev)
1153  {
1154      Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1155      Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1156  
1157      buf = aml_local(0);
1158      buf_size = aml_local(1);
1159      fit = aml_local(2);
1160  
1161      aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1162  
1163      /* build helper function, RFIT. */
1164      method = aml_method("RFIT", 1, AML_SERIALIZED);
1165      aml_append(method, aml_name_decl("OFST", aml_int(0)));
1166  
1167      /* prepare input package. */
1168      pkg = aml_package(1);
1169      aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1170      aml_append(pkg, aml_name("OFST"));
1171  
1172      /* call Read_FIT function. */
1173      call_result = aml_call5(NVDIMM_COMMON_DSM,
1174                              aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1175                              aml_int(1) /* Revision 1 */,
1176                              aml_int(0x1) /* Read FIT */,
1177                              pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1178      aml_append(method, aml_store(call_result, buf));
1179  
1180      /* handle _DSM result. */
1181      aml_append(method, aml_create_dword_field(buf,
1182                 aml_int(0) /* offset at byte 0 */, "STAU"));
1183  
1184      aml_append(method, aml_store(aml_name("STAU"),
1185                                   aml_name(NVDIMM_DSM_RFIT_STATUS)));
1186  
1187       /* if something is wrong during _DSM. */
1188      ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1189                         aml_name("STAU"));
1190      ifctx = aml_if(aml_lnot(ifcond));
1191      aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1192      aml_append(method, ifctx);
1193  
1194      aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1195      aml_append(method, aml_subtract(buf_size,
1196                                      aml_int(4) /* the size of "STAU" */,
1197                                      buf_size));
1198  
1199      /* if we read the end of fit. */
1200      ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1201      aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1202      aml_append(method, ifctx);
1203  
1204      aml_append(method, aml_create_field(buf,
1205                              aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1206                              aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1207      aml_append(method, aml_return(aml_name("BUFF")));
1208      aml_append(dev, method);
1209  
1210      /* build _FIT. */
1211      method = aml_method("_FIT", 0, AML_SERIALIZED);
1212      offset = aml_local(3);
1213  
1214      aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1215      aml_append(method, aml_store(aml_int(0), offset));
1216  
1217      whilectx = aml_while(aml_int(1));
1218      aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1219      aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1220  
1221      /*
1222       * if fit buffer was changed during RFIT, read from the beginning
1223       * again.
1224       */
1225      ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1226                               aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1227      aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1228      aml_append(ifctx, aml_store(aml_int(0), offset));
1229      aml_append(whilectx, ifctx);
1230  
1231      elsectx = aml_else();
1232  
1233      /* finish fit read if no data is read out. */
1234      ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1235      aml_append(ifctx, aml_return(fit));
1236      aml_append(elsectx, ifctx);
1237  
1238      /* update the offset. */
1239      aml_append(elsectx, aml_add(offset, buf_size, offset));
1240      /* append the data we read out to the fit buffer. */
1241      aml_append(elsectx, aml_concatenate(fit, buf, fit));
1242      aml_append(whilectx, elsectx);
1243      aml_append(method, whilectx);
1244  
1245      aml_append(dev, method);
1246  }
1247  
nvdimm_build_nvdimm_devices(Aml * root_dev,uint32_t ram_slots)1248  static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1249  {
1250      uint32_t slot;
1251      Aml *method, *pkg, *field, *com_call;
1252  
1253      for (slot = 0; slot < ram_slots; slot++) {
1254          uint32_t handle = nvdimm_slot_to_handle(slot);
1255          Aml *nvdimm_dev;
1256  
1257          nvdimm_dev = aml_device("NV%02X", slot);
1258  
1259          /*
1260           * ACPI 6.0: 9.20 NVDIMM Devices:
1261           *
1262           * _ADR object that is used to supply OSPM with unique address
1263           * of the NVDIMM device. This is done by returning the NFIT Device
1264           * handle that is used to identify the associated entries in ACPI
1265           * table NFIT or _FIT.
1266           */
1267          aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1268  
1269          /*
1270           * ACPI v6.4: Section 6.5.10 NVDIMM Label Methods
1271           */
1272          /* _LSI */
1273          method = aml_method("_LSI", 0, AML_SERIALIZED);
1274          com_call = aml_call5(NVDIMM_COMMON_DSM,
1275                              aml_touuid(NVDIMM_DEVICE_DSM_UUID),
1276                              aml_int(1), aml_int(4), aml_int(0),
1277                              aml_int(handle));
1278          aml_append(method, aml_store(com_call, aml_local(0)));
1279  
1280          aml_append(method, aml_create_dword_field(aml_local(0),
1281                                                    aml_int(0), "STTS"));
1282          aml_append(method, aml_create_dword_field(aml_local(0), aml_int(4),
1283                                                    "SLSA"));
1284          aml_append(method, aml_create_dword_field(aml_local(0), aml_int(8),
1285                                                    "MAXT"));
1286  
1287          pkg = aml_package(3);
1288          aml_append(pkg, aml_name("STTS"));
1289          aml_append(pkg, aml_name("SLSA"));
1290          aml_append(pkg, aml_name("MAXT"));
1291          aml_append(method, aml_store(pkg, aml_local(1)));
1292          aml_append(method, aml_return(aml_local(1)));
1293  
1294          aml_append(nvdimm_dev, method);
1295  
1296          /* _LSR */
1297          method = aml_method("_LSR", 2, AML_SERIALIZED);
1298          aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL)));
1299  
1300          aml_append(method, aml_create_dword_field(aml_name("INPT"),
1301                                                    aml_int(0), "OFST"));
1302          aml_append(method, aml_create_dword_field(aml_name("INPT"),
1303                                                    aml_int(4), "LEN"));
1304          aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1305          aml_append(method, aml_store(aml_arg(1), aml_name("LEN")));
1306  
1307          pkg = aml_package(1);
1308          aml_append(pkg, aml_name("INPT"));
1309          aml_append(method, aml_store(pkg, aml_local(0)));
1310  
1311          com_call = aml_call5(NVDIMM_COMMON_DSM,
1312                              aml_touuid(NVDIMM_DEVICE_DSM_UUID),
1313                              aml_int(1), aml_int(5), aml_local(0),
1314                              aml_int(handle));
1315          aml_append(method, aml_store(com_call, aml_local(3)));
1316          field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS");
1317          aml_append(method, field);
1318          field = aml_create_field(aml_local(3), aml_int(32),
1319                                   aml_shiftleft(aml_name("LEN"), aml_int(3)),
1320                                   "LDAT");
1321          aml_append(method, field);
1322          aml_append(method, aml_name_decl("LSA", aml_buffer(0, NULL)));
1323          aml_append(method, aml_to_buffer(aml_name("LDAT"), aml_name("LSA")));
1324  
1325          pkg = aml_package(2);
1326          aml_append(pkg, aml_name("STTS"));
1327          aml_append(pkg, aml_name("LSA"));
1328  
1329          aml_append(method, aml_store(pkg, aml_local(1)));
1330          aml_append(method, aml_return(aml_local(1)));
1331  
1332          aml_append(nvdimm_dev, method);
1333  
1334          /* _LSW */
1335          method = aml_method("_LSW", 3, AML_SERIALIZED);
1336          aml_append(method, aml_store(aml_arg(2), aml_local(2)));
1337          aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL)));
1338          field = aml_create_dword_field(aml_name("INPT"),
1339                                                    aml_int(0), "OFST");
1340          aml_append(method, field);
1341          field = aml_create_dword_field(aml_name("INPT"),
1342                                                    aml_int(4), "TLEN");
1343          aml_append(method, field);
1344          aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1345          aml_append(method, aml_store(aml_arg(1), aml_name("TLEN")));
1346  
1347          aml_append(method, aml_concatenate(aml_name("INPT"), aml_local(2),
1348                                              aml_name("INPT")));
1349          pkg = aml_package(1);
1350          aml_append(pkg, aml_name("INPT"));
1351          aml_append(method, aml_store(pkg, aml_local(0)));
1352          com_call = aml_call5(NVDIMM_COMMON_DSM,
1353                              aml_touuid(NVDIMM_DEVICE_DSM_UUID),
1354                              aml_int(1), aml_int(6), aml_local(0),
1355                              aml_int(handle));
1356          aml_append(method, aml_store(com_call, aml_local(3)));
1357          field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS");
1358          aml_append(method, field);
1359          aml_append(method, aml_return(aml_name("STTS")));
1360  
1361          aml_append(nvdimm_dev, method);
1362  
1363          nvdimm_build_device_dsm(nvdimm_dev, handle);
1364          aml_append(root_dev, nvdimm_dev);
1365      }
1366  }
1367  
nvdimm_build_ssdt(GArray * table_offsets,GArray * table_data,BIOSLinker * linker,NVDIMMState * nvdimm_state,uint32_t ram_slots,const char * oem_id)1368  static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1369                                BIOSLinker *linker,
1370                                NVDIMMState *nvdimm_state,
1371                                uint32_t ram_slots, const char *oem_id)
1372  {
1373      int mem_addr_offset;
1374      Aml *ssdt, *sb_scope, *dev;
1375      AcpiTable table = { .sig = "SSDT", .rev = 1,
1376                          .oem_id = oem_id, .oem_table_id = "NVDIMM" };
1377  
1378      acpi_add_table(table_offsets, table_data);
1379  
1380      acpi_table_begin(&table, table_data);
1381      ssdt = init_aml_allocator();
1382      sb_scope = aml_scope("\\_SB");
1383  
1384      dev = aml_device("NVDR");
1385  
1386      /*
1387       * ACPI 6.0: 9.20 NVDIMM Devices:
1388       *
1389       * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1390       * NVDIMM interface device. Platform firmware is required to contain one
1391       * such device in _SB scope if NVDIMMs support is exposed by platform to
1392       * OSPM.
1393       * For each NVDIMM present or intended to be supported by platform,
1394       * platform firmware also exposes an ACPI Namespace Device under the
1395       * root device.
1396       */
1397      aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1398  
1399      nvdimm_build_common_dsm(dev, nvdimm_state);
1400  
1401      /* 0 is reserved for root device. */
1402      nvdimm_build_device_dsm(dev, 0);
1403      nvdimm_build_fit(dev);
1404  
1405      nvdimm_build_nvdimm_devices(dev, ram_slots);
1406  
1407      aml_append(sb_scope, dev);
1408      aml_append(ssdt, sb_scope);
1409  
1410      /* copy AML table into ACPI tables blob and patch header there */
1411      g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1412      mem_addr_offset = build_append_named_dword(table_data,
1413                                                 NVDIMM_ACPI_MEM_ADDR);
1414  
1415      bios_linker_loader_alloc(linker,
1416                               NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1417                               sizeof(NvdimmDsmIn), false /* high memory */);
1418      bios_linker_loader_add_pointer(linker,
1419          ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1420          NVDIMM_DSM_MEM_FILE, 0);
1421      free_aml_allocator();
1422      /*
1423       * must be executed as the last so that pointer patching command above
1424       * would be executed by guest before it recalculated checksum which were
1425       * scheduled by acpi_table_end()
1426       */
1427      acpi_table_end(linker, &table);
1428  }
1429  
nvdimm_build_srat(GArray * table_data)1430  void nvdimm_build_srat(GArray *table_data)
1431  {
1432      GSList *device_list, *list = nvdimm_get_device_list();
1433  
1434      for (device_list = list; device_list; device_list = device_list->next) {
1435          DeviceState *dev = device_list->data;
1436          Object *obj = OBJECT(dev);
1437          uint64_t addr, size;
1438          int node;
1439  
1440          node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
1441          addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
1442          size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
1443  
1444          build_srat_memory(table_data, addr, size, node,
1445                            MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
1446      }
1447      g_slist_free(list);
1448  }
1449  
nvdimm_build_acpi(GArray * table_offsets,GArray * table_data,BIOSLinker * linker,NVDIMMState * state,uint32_t ram_slots,const char * oem_id,const char * oem_table_id)1450  void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1451                         BIOSLinker *linker, NVDIMMState *state,
1452                         uint32_t ram_slots, const char *oem_id,
1453                         const char *oem_table_id)
1454  {
1455      GSList *device_list;
1456  
1457      /* no nvdimm device can be plugged. */
1458      if (!ram_slots) {
1459          return;
1460      }
1461  
1462      nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1463                        ram_slots, oem_id);
1464  
1465      device_list = nvdimm_get_device_list();
1466      /* no NVDIMM device is plugged. */
1467      if (!device_list) {
1468          return;
1469      }
1470  
1471      nvdimm_build_nfit(state, table_offsets, table_data, linker,
1472                        oem_id, oem_table_id);
1473      g_slist_free(device_list);
1474  }
1475