1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36
37 DEFINE_MUTEX(pci_slot_mutex);
38
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51
52 unsigned int pci_pm_d3hot_delay;
53
54 static void pci_pme_list_scan(struct work_struct *work);
55
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60 struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63 };
64
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66
67 /*
68 * Following exit from Conventional Reset, devices must be ready within 1 sec
69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
70 * Reset (PCIe r6.0 sec 5.8).
71 */
72 #define PCI_RESET_WAIT 1000 /* msec */
73
74 /*
75 * Devices may extend the 1 sec period through Request Retry Status
76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
77 * limit, but 60 sec ought to be enough for any device to become
78 * responsive.
79 */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81
pci_dev_d3_sleep(struct pci_dev * dev)82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 unsigned int upper;
86
87 if (delay_ms) {
88 /* Use a 20% upper bound, 1ms minimum */
89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 usleep_range(delay_ms * USEC_PER_MSEC,
91 (delay_ms + upper) * USEC_PER_MSEC);
92 }
93 }
94
pci_reset_supported(struct pci_dev * dev)95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 return dev->reset_methods[0] != 0;
98 }
99
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103
104 #define DEFAULT_CARDBUS_IO_SIZE (256)
105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109
110 #define DEFAULT_HOTPLUG_IO_SIZE (256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118 * pci=hpmemsize=nnM overrides both
119 */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122
123 #define DEFAULT_HOTPLUG_BUS_SIZE 1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125
126
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139
140 /*
141 * The default CLS is used if arch didn't set CLS explicitly and not
142 * all pci devices agree on the same value. Arch can override either
143 * the dfl or actual value as it sees fit. Don't forget this is
144 * measured in 32-bit words, not bytes.
145 */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148
149 /*
150 * If we set up a device for bus mastering, we need to check the latency
151 * timer as certain BIOSes forget to set it properly.
152 */
153 unsigned int pcibios_max_latency = 255;
154
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163
pci_ats_disabled(void)164 bool pci_ats_disabled(void)
165 {
166 return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174
pcie_port_pm_setup(char * str)175 static int __init pcie_port_pm_setup(char *str)
176 {
177 if (!strcmp(str, "off"))
178 pci_bridge_d3_disable = true;
179 else if (!strcmp(str, "force"))
180 pci_bridge_d3_force = true;
181 return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184
185 /**
186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187 * @bus: pointer to PCI bus structure to search
188 *
189 * Given a PCI bus, returns the highest PCI bus number present in the set
190 * including the given PCI bus and its list of child PCI buses.
191 */
pci_bus_max_busnr(struct pci_bus * bus)192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 struct pci_bus *tmp;
195 unsigned char max, n;
196
197 max = bus->busn_res.end;
198 list_for_each_entry(tmp, &bus->children, node) {
199 n = pci_bus_max_busnr(tmp);
200 if (n > max)
201 max = n;
202 }
203 return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206
207 /**
208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209 * @pdev: the PCI device
210 *
211 * Returns error bits set in PCI_STATUS and clears them.
212 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 u16 status;
216 int ret;
217
218 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 if (ret != PCIBIOS_SUCCESSFUL)
220 return -EIO;
221
222 status &= PCI_STATUS_ERROR_BITS;
223 if (status)
224 pci_write_config_word(pdev, PCI_STATUS, status);
225
226 return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229
230 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 bool write_combine)
233 {
234 struct resource *res = &pdev->resource[bar];
235 resource_size_t start = res->start;
236 resource_size_t size = resource_size(res);
237
238 /*
239 * Make sure the BAR is actually a memory resource, not an IO resource
240 */
241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 return NULL;
244 }
245
246 if (write_combine)
247 return ioremap_wc(start, size);
248
249 return ioremap(start, size);
250 }
251
pci_ioremap_bar(struct pci_dev * pdev,int bar)252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264
265 /**
266 * pci_dev_str_match_path - test if a path string matches a device
267 * @dev: the PCI device to test
268 * @path: string to match the device against
269 * @endptr: pointer to the string after the match
270 *
271 * Test if a string (typically from a kernel parameter) formatted as a
272 * path of device/function addresses matches a PCI device. The string must
273 * be of the form:
274 *
275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276 *
277 * A path for a device can be obtained using 'lspci -t'. Using a path
278 * is more robust against bus renumbering than using only a single bus,
279 * device and function address.
280 *
281 * Returns 1 if the string matches the device, 0 if it does not and
282 * a negative error code if it fails to parse the string.
283 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 const char **endptr)
286 {
287 int ret;
288 unsigned int seg, bus, slot, func;
289 char *wpath, *p;
290 char end;
291
292 *endptr = strchrnul(path, ';');
293
294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 if (!wpath)
296 return -ENOMEM;
297
298 while (1) {
299 p = strrchr(wpath, '/');
300 if (!p)
301 break;
302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 if (ret != 2) {
304 ret = -EINVAL;
305 goto free_and_exit;
306 }
307
308 if (dev->devfn != PCI_DEVFN(slot, func)) {
309 ret = 0;
310 goto free_and_exit;
311 }
312
313 /*
314 * Note: we don't need to get a reference to the upstream
315 * bridge because we hold a reference to the top level
316 * device which should hold a reference to the bridge,
317 * and so on.
318 */
319 dev = pci_upstream_bridge(dev);
320 if (!dev) {
321 ret = 0;
322 goto free_and_exit;
323 }
324
325 *p = 0;
326 }
327
328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 &func, &end);
330 if (ret != 4) {
331 seg = 0;
332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 if (ret != 3) {
334 ret = -EINVAL;
335 goto free_and_exit;
336 }
337 }
338
339 ret = (seg == pci_domain_nr(dev->bus) &&
340 bus == dev->bus->number &&
341 dev->devfn == PCI_DEVFN(slot, func));
342
343 free_and_exit:
344 kfree(wpath);
345 return ret;
346 }
347
348 /**
349 * pci_dev_str_match - test if a string matches a device
350 * @dev: the PCI device to test
351 * @p: string to match the device against
352 * @endptr: pointer to the string after the match
353 *
354 * Test if a string (typically from a kernel parameter) matches a specified
355 * PCI device. The string may be of one of the following formats:
356 *
357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359 *
360 * The first format specifies a PCI bus/device/function address which
361 * may change if new hardware is inserted, if motherboard firmware changes,
362 * or due to changes caused in kernel parameters. If the domain is
363 * left unspecified, it is taken to be 0. In order to be robust against
364 * bus renumbering issues, a path of PCI device/function numbers may be used
365 * to address the specific device. The path for a device can be determined
366 * through the use of 'lspci -t'.
367 *
368 * The second format matches devices using IDs in the configuration
369 * space which may match multiple devices in the system. A value of 0
370 * for any field will match all devices. (Note: this differs from
371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372 * legacy reasons and convenience so users don't have to specify
373 * FFFFFFFFs on the command line.)
374 *
375 * Returns 1 if the string matches the device, 0 if it does not and
376 * a negative error code if the string cannot be parsed.
377 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 const char **endptr)
380 {
381 int ret;
382 int count;
383 unsigned short vendor, device, subsystem_vendor, subsystem_device;
384
385 if (strncmp(p, "pci:", 4) == 0) {
386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 p += 4;
388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 &subsystem_vendor, &subsystem_device, &count);
390 if (ret != 4) {
391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 if (ret != 2)
393 return -EINVAL;
394
395 subsystem_vendor = 0;
396 subsystem_device = 0;
397 }
398
399 p += count;
400
401 if ((!vendor || vendor == dev->vendor) &&
402 (!device || device == dev->device) &&
403 (!subsystem_vendor ||
404 subsystem_vendor == dev->subsystem_vendor) &&
405 (!subsystem_device ||
406 subsystem_device == dev->subsystem_device))
407 goto found;
408 } else {
409 /*
410 * PCI Bus, Device, Function IDs are specified
411 * (optionally, may include a path of devfns following it)
412 */
413 ret = pci_dev_str_match_path(dev, p, &p);
414 if (ret < 0)
415 return ret;
416 else if (ret)
417 goto found;
418 }
419
420 *endptr = p;
421 return 0;
422
423 found:
424 *endptr = p;
425 return 1;
426 }
427
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 u8 pos, int cap, int *ttl)
430 {
431 u8 id;
432 u16 ent;
433
434 pci_bus_read_config_byte(bus, devfn, pos, &pos);
435
436 while ((*ttl)--) {
437 if (pos < 0x40)
438 break;
439 pos &= ~3;
440 pci_bus_read_config_word(bus, devfn, pos, &ent);
441
442 id = ent & 0xff;
443 if (id == 0xff)
444 break;
445 if (id == cap)
446 return pos;
447 pos = (ent >> 8);
448 }
449 return 0;
450 }
451
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 u8 pos, int cap)
454 {
455 int ttl = PCI_FIND_CAP_TTL;
456
457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 return __pci_find_next_cap(dev->bus, dev->devfn,
463 pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 unsigned int devfn, u8 hdr_type)
469 {
470 u16 status;
471
472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 if (!(status & PCI_STATUS_CAP_LIST))
474 return 0;
475
476 switch (hdr_type) {
477 case PCI_HEADER_TYPE_NORMAL:
478 case PCI_HEADER_TYPE_BRIDGE:
479 return PCI_CAPABILITY_LIST;
480 case PCI_HEADER_TYPE_CARDBUS:
481 return PCI_CB_CAPABILITY_LIST;
482 }
483
484 return 0;
485 }
486
487 /**
488 * pci_find_capability - query for devices' capabilities
489 * @dev: PCI device to query
490 * @cap: capability code
491 *
492 * Tell if a device supports a given PCI capability.
493 * Returns the address of the requested capability structure within the
494 * device's PCI configuration space or 0 in case the device does not
495 * support it. Possible values for @cap include:
496 *
497 * %PCI_CAP_ID_PM Power Management
498 * %PCI_CAP_ID_AGP Accelerated Graphics Port
499 * %PCI_CAP_ID_VPD Vital Product Data
500 * %PCI_CAP_ID_SLOTID Slot Identification
501 * %PCI_CAP_ID_MSI Message Signalled Interrupts
502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
503 * %PCI_CAP_ID_PCIX PCI-X
504 * %PCI_CAP_ID_EXP PCI Express
505 */
pci_find_capability(struct pci_dev * dev,int cap)506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 u8 pos;
509
510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 if (pos)
512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513
514 return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517
518 /**
519 * pci_bus_find_capability - query for devices' capabilities
520 * @bus: the PCI bus to query
521 * @devfn: PCI device to query
522 * @cap: capability code
523 *
524 * Like pci_find_capability() but works for PCI devices that do not have a
525 * pci_dev structure set up yet.
526 *
527 * Returns the address of the requested capability structure within the
528 * device's PCI configuration space or 0 in case the device does not
529 * support it.
530 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 u8 hdr_type, pos;
534
535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536
537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 if (pos)
539 pos = __pci_find_next_cap(bus, devfn, pos, cap);
540
541 return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544
545 /**
546 * pci_find_next_ext_capability - Find an extended capability
547 * @dev: PCI device to query
548 * @start: address at which to start looking (0 to start at beginning of list)
549 * @cap: capability code
550 *
551 * Returns the address of the next matching extended capability structure
552 * within the device's PCI configuration space or 0 if the device does
553 * not support it. Some capabilities can occur several times, e.g., the
554 * vendor-specific capability, and this provides a way to find them all.
555 */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 u32 header;
559 int ttl;
560 u16 pos = PCI_CFG_SPACE_SIZE;
561
562 /* minimum 8 bytes per capability */
563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564
565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 return 0;
567
568 if (start)
569 pos = start;
570
571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 return 0;
573
574 /*
575 * If we have no capabilities, this is indicated by cap ID,
576 * cap version and next pointer all being 0.
577 */
578 if (header == 0)
579 return 0;
580
581 while (ttl-- > 0) {
582 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 return pos;
584
585 pos = PCI_EXT_CAP_NEXT(header);
586 if (pos < PCI_CFG_SPACE_SIZE)
587 break;
588
589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 break;
591 }
592
593 return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596
597 /**
598 * pci_find_ext_capability - Find an extended capability
599 * @dev: PCI device to query
600 * @cap: capability code
601 *
602 * Returns the address of the requested extended capability structure
603 * within the device's PCI configuration space or 0 if the device does
604 * not support it. Possible values for @cap include:
605 *
606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
607 * %PCI_EXT_CAP_ID_VC Virtual Channel
608 * %PCI_EXT_CAP_ID_DSN Device Serial Number
609 * %PCI_EXT_CAP_ID_PWR Power Budgeting
610 */
pci_find_ext_capability(struct pci_dev * dev,int cap)611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616
617 /**
618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
619 * @dev: PCI device to query
620 *
621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622 * Number.
623 *
624 * Returns the DSN, or zero if the capability does not exist.
625 */
pci_get_dsn(struct pci_dev * dev)626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 u32 dword;
629 u64 dsn;
630 int pos;
631
632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 if (!pos)
634 return 0;
635
636 /*
637 * The Device Serial Number is two dwords offset 4 bytes from the
638 * capability position. The specification says that the first dword is
639 * the lower half, and the second dword is the upper half.
640 */
641 pos += 4;
642 pci_read_config_dword(dev, pos, &dword);
643 dsn = (u64)dword;
644 pci_read_config_dword(dev, pos + 4, &dword);
645 dsn |= ((u64)dword) << 32;
646
647 return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 int rc, ttl = PCI_FIND_CAP_TTL;
654 u8 cap, mask;
655
656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 mask = HT_3BIT_CAP_MASK;
658 else
659 mask = HT_5BIT_CAP_MASK;
660
661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 PCI_CAP_ID_HT, &ttl);
663 while (pos) {
664 rc = pci_read_config_byte(dev, pos + 3, &cap);
665 if (rc != PCIBIOS_SUCCESSFUL)
666 return 0;
667
668 if ((cap & mask) == ht_cap)
669 return pos;
670
671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 pos + PCI_CAP_LIST_NEXT,
673 PCI_CAP_ID_HT, &ttl);
674 }
675
676 return 0;
677 }
678
679 /**
680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 * @dev: PCI device to query
682 * @pos: Position from which to continue searching
683 * @ht_cap: HyperTransport capability code
684 *
685 * To be used in conjunction with pci_find_ht_capability() to search for
686 * all capabilities matching @ht_cap. @pos should always be a value returned
687 * from pci_find_ht_capability().
688 *
689 * NB. To be 100% safe against broken PCI devices, the caller should take
690 * steps to avoid an infinite loop.
691 */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697
698 /**
699 * pci_find_ht_capability - query a device's HyperTransport capabilities
700 * @dev: PCI device to query
701 * @ht_cap: HyperTransport capability code
702 *
703 * Tell if a device supports a given HyperTransport capability.
704 * Returns an address within the device's PCI configuration space
705 * or 0 in case the device does not support the request capability.
706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707 * which has a HyperTransport capability matching @ht_cap.
708 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 u8 pos;
712
713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 if (pos)
715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716
717 return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720
721 /**
722 * pci_find_vsec_capability - Find a vendor-specific extended capability
723 * @dev: PCI device to query
724 * @vendor: Vendor ID for which capability is defined
725 * @cap: Vendor-specific capability ID
726 *
727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
728 * VSEC ID @cap. If found, return the capability offset in
729 * config space; otherwise return 0.
730 */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 u16 vsec = 0;
734 u32 header;
735 int ret;
736
737 if (vendor != dev->vendor)
738 return 0;
739
740 while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 PCI_EXT_CAP_ID_VNDR))) {
742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 if (ret != PCIBIOS_SUCCESSFUL)
744 continue;
745
746 if (PCI_VNDR_HEADER_ID(header) == cap)
747 return vsec;
748 }
749
750 return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753
754 /**
755 * pci_find_dvsec_capability - Find DVSEC for vendor
756 * @dev: PCI device to query
757 * @vendor: Vendor ID to match for the DVSEC
758 * @dvsec: Designated Vendor-specific capability ID
759 *
760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761 * offset in config space; otherwise return 0.
762 */
pci_find_dvsec_capability(struct pci_dev * dev,u16 vendor,u16 dvsec)763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 int pos;
766
767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 if (!pos)
769 return 0;
770
771 while (pos) {
772 u16 v, id;
773
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 if (vendor == v && dvsec == id)
777 return pos;
778
779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 }
781
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785
786 /**
787 * pci_find_parent_resource - return resource region of parent bus of given
788 * region
789 * @dev: PCI device structure contains resources to be searched
790 * @res: child resource record for which parent is sought
791 *
792 * For given resource region of given device, return the resource region of
793 * parent bus the given region is contained in.
794 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 struct resource *res)
797 {
798 const struct pci_bus *bus = dev->bus;
799 struct resource *r;
800
801 pci_bus_for_each_resource(bus, r) {
802 if (!r)
803 continue;
804 if (resource_contains(r, res)) {
805
806 /*
807 * If the window is prefetchable but the BAR is
808 * not, the allocator made a mistake.
809 */
810 if (r->flags & IORESOURCE_PREFETCH &&
811 !(res->flags & IORESOURCE_PREFETCH))
812 return NULL;
813
814 /*
815 * If we're below a transparent bridge, there may
816 * be both a positively-decoded aperture and a
817 * subtractively-decoded region that contain the BAR.
818 * We want the positively-decoded one, so this depends
819 * on pci_bus_for_each_resource() giving us those
820 * first.
821 */
822 return r;
823 }
824 }
825 return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828
829 /**
830 * pci_find_resource - Return matching PCI device resource
831 * @dev: PCI device to query
832 * @res: Resource to look for
833 *
834 * Goes over standard PCI resources (BARs) and checks if the given resource
835 * is partially or fully contained in any of them. In that case the
836 * matching resource is returned, %NULL otherwise.
837 */
pci_find_resource(struct pci_dev * dev,struct resource * res)838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 int i;
841
842 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 struct resource *r = &dev->resource[i];
844
845 if (r->start && resource_contains(r, res))
846 return r;
847 }
848
849 return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852
853 /**
854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855 * @dev: the PCI device to operate on
856 * @pos: config space offset of status word
857 * @mask: mask of bit(s) to care about in status word
858 *
859 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 {
863 int i;
864
865 /* Wait for Transaction Pending bit clean */
866 for (i = 0; i < 4; i++) {
867 u16 status;
868 if (i)
869 msleep((1 << (i - 1)) * 100);
870
871 pci_read_config_word(dev, pos, &status);
872 if (!(status & mask))
873 return 1;
874 }
875
876 return 0;
877 }
878
879 static int pci_acs_enable;
880
881 /**
882 * pci_request_acs - ask for ACS to be enabled if supported
883 */
pci_request_acs(void)884 void pci_request_acs(void)
885 {
886 pci_acs_enable = 1;
887 }
888
889 static const char *disable_acs_redir_param;
890
891 /**
892 * pci_disable_acs_redir - disable ACS redirect capabilities
893 * @dev: the PCI device
894 *
895 * For only devices specified in the disable_acs_redir parameter.
896 */
pci_disable_acs_redir(struct pci_dev * dev)897 static void pci_disable_acs_redir(struct pci_dev *dev)
898 {
899 int ret = 0;
900 const char *p;
901 int pos;
902 u16 ctrl;
903
904 if (!disable_acs_redir_param)
905 return;
906
907 p = disable_acs_redir_param;
908 while (*p) {
909 ret = pci_dev_str_match(dev, p, &p);
910 if (ret < 0) {
911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 disable_acs_redir_param);
913
914 break;
915 } else if (ret == 1) {
916 /* Found a match */
917 break;
918 }
919
920 if (*p != ';' && *p != ',') {
921 /* End of param or invalid format */
922 break;
923 }
924 p++;
925 }
926
927 if (ret != 1)
928 return;
929
930 if (!pci_dev_specific_disable_acs_redir(dev))
931 return;
932
933 pos = dev->acs_cap;
934 if (!pos) {
935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 return;
937 }
938
939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
940
941 /* P2P Request & Completion Redirect */
942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943
944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
945
946 pci_info(dev, "disabled ACS redirect\n");
947 }
948
949 /**
950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951 * @dev: the PCI device
952 */
pci_std_enable_acs(struct pci_dev * dev)953 static void pci_std_enable_acs(struct pci_dev *dev)
954 {
955 int pos;
956 u16 cap;
957 u16 ctrl;
958
959 pos = dev->acs_cap;
960 if (!pos)
961 return;
962
963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
965
966 /* Source Validation */
967 ctrl |= (cap & PCI_ACS_SV);
968
969 /* P2P Request Redirect */
970 ctrl |= (cap & PCI_ACS_RR);
971
972 /* P2P Completion Redirect */
973 ctrl |= (cap & PCI_ACS_CR);
974
975 /* Upstream Forwarding */
976 ctrl |= (cap & PCI_ACS_UF);
977
978 /* Enable Translation Blocking for external devices and noats */
979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 ctrl |= (cap & PCI_ACS_TB);
981
982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 }
984
985 /**
986 * pci_enable_acs - enable ACS if hardware support it
987 * @dev: the PCI device
988 */
pci_enable_acs(struct pci_dev * dev)989 static void pci_enable_acs(struct pci_dev *dev)
990 {
991 if (!pci_acs_enable)
992 goto disable_acs_redir;
993
994 if (!pci_dev_specific_enable_acs(dev))
995 goto disable_acs_redir;
996
997 pci_std_enable_acs(dev);
998
999 disable_acs_redir:
1000 /*
1001 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 * enabled by the kernel because it may have been enabled by
1003 * platform firmware. So if we are told to disable it, we should
1004 * always disable it after setting the kernel's default
1005 * preferences.
1006 */
1007 pci_disable_acs_redir(dev);
1008 }
1009
1010 /**
1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012 * @dev: PCI device to have its BARs restored
1013 *
1014 * Restore the BAR values for a given device, so as to make it
1015 * accessible by its driver.
1016 */
pci_restore_bars(struct pci_dev * dev)1017 static void pci_restore_bars(struct pci_dev *dev)
1018 {
1019 int i;
1020
1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 pci_update_resource(dev, i);
1023 }
1024
platform_pci_power_manageable(struct pci_dev * dev)1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026 {
1027 if (pci_use_mid_pm())
1028 return true;
1029
1030 return acpi_pci_power_manageable(dev);
1031 }
1032
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)1033 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034 pci_power_t t)
1035 {
1036 if (pci_use_mid_pm())
1037 return mid_pci_set_power_state(dev, t);
1038
1039 return acpi_pci_set_power_state(dev, t);
1040 }
1041
platform_pci_get_power_state(struct pci_dev * dev)1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043 {
1044 if (pci_use_mid_pm())
1045 return mid_pci_get_power_state(dev);
1046
1047 return acpi_pci_get_power_state(dev);
1048 }
1049
platform_pci_refresh_power_state(struct pci_dev * dev)1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051 {
1052 if (!pci_use_mid_pm())
1053 acpi_pci_refresh_power_state(dev);
1054 }
1055
platform_pci_choose_state(struct pci_dev * dev)1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057 {
1058 if (pci_use_mid_pm())
1059 return PCI_POWER_ERROR;
1060
1061 return acpi_pci_choose_state(dev);
1062 }
1063
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065 {
1066 if (pci_use_mid_pm())
1067 return PCI_POWER_ERROR;
1068
1069 return acpi_pci_wakeup(dev, enable);
1070 }
1071
platform_pci_need_resume(struct pci_dev * dev)1072 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073 {
1074 if (pci_use_mid_pm())
1075 return false;
1076
1077 return acpi_pci_need_resume(dev);
1078 }
1079
platform_pci_bridge_d3(struct pci_dev * dev)1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081 {
1082 if (pci_use_mid_pm())
1083 return false;
1084
1085 return acpi_pci_bridge_d3(dev);
1086 }
1087
1088 /**
1089 * pci_update_current_state - Read power state of given device and cache it
1090 * @dev: PCI device to handle.
1091 * @state: State to cache in case the device doesn't have the PM capability
1092 *
1093 * The power state is read from the PMCSR register, which however is
1094 * inaccessible in D3cold. The platform firmware is therefore queried first
1095 * to detect accessibility of the register. In case the platform firmware
1096 * reports an incorrect state or the device isn't power manageable by the
1097 * platform at all, we try to detect D3cold by testing accessibility of the
1098 * vendor ID in config space.
1099 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101 {
1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 dev->current_state = PCI_D3cold;
1104 } else if (dev->pm_cap) {
1105 u16 pmcsr;
1106
1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 dev->current_state = PCI_D3cold;
1110 return;
1111 }
1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113 } else {
1114 dev->current_state = state;
1115 }
1116 }
1117
1118 /**
1119 * pci_refresh_power_state - Refresh the given device's power state data
1120 * @dev: Target PCI device.
1121 *
1122 * Ask the platform to refresh the devices power state information and invoke
1123 * pci_update_current_state() to update its current PCI power state.
1124 */
pci_refresh_power_state(struct pci_dev * dev)1125 void pci_refresh_power_state(struct pci_dev *dev)
1126 {
1127 platform_pci_refresh_power_state(dev);
1128 pci_update_current_state(dev, dev->current_state);
1129 }
1130
1131 /**
1132 * pci_platform_power_transition - Use platform to change device power state
1133 * @dev: PCI device to handle.
1134 * @state: State to put the device into.
1135 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 {
1138 int error;
1139
1140 error = platform_pci_set_power_state(dev, state);
1141 if (!error)
1142 pci_update_current_state(dev, state);
1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 dev->current_state = PCI_D0;
1145
1146 return error;
1147 }
1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149
pci_resume_one(struct pci_dev * pci_dev,void * ign)1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151 {
1152 pm_request_resume(&pci_dev->dev);
1153 return 0;
1154 }
1155
1156 /**
1157 * pci_resume_bus - Walk given bus and runtime resume devices on it
1158 * @bus: Top bus of the subtree to walk.
1159 */
pci_resume_bus(struct pci_bus * bus)1160 void pci_resume_bus(struct pci_bus *bus)
1161 {
1162 if (bus)
1163 pci_walk_bus(bus, pci_resume_one, NULL);
1164 }
1165
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167 {
1168 int delay = 1;
1169 bool retrain = false;
1170 struct pci_dev *bridge;
1171
1172 if (pci_is_pcie(dev)) {
1173 bridge = pci_upstream_bridge(dev);
1174 if (bridge)
1175 retrain = true;
1176 }
1177
1178 /*
1179 * After reset, the device should not silently discard config
1180 * requests, but it may still indicate that it needs more time by
1181 * responding to them with CRS completions. The Root Port will
1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 * the read (except when CRS SV is enabled and the read was for the
1184 * Vendor ID; in that case it synthesizes 0x0001 data).
1185 *
1186 * Wait for the device to return a non-CRS completion. Read the
1187 * Command register instead of Vendor ID so we don't have to
1188 * contend with the CRS SV value.
1189 */
1190 for (;;) {
1191 u32 id;
1192
1193 if (pci_dev_is_disconnected(dev)) {
1194 pci_dbg(dev, "disconnected; not waiting\n");
1195 return -ENOTTY;
1196 }
1197
1198 pci_read_config_dword(dev, PCI_COMMAND, &id);
1199 if (!PCI_POSSIBLE_ERROR(id))
1200 break;
1201
1202 if (delay > timeout) {
1203 pci_warn(dev, "not ready %dms after %s; giving up\n",
1204 delay - 1, reset_type);
1205 return -ENOTTY;
1206 }
1207
1208 if (delay > PCI_RESET_WAIT) {
1209 if (retrain) {
1210 retrain = false;
1211 if (pcie_failed_link_retrain(bridge) == 0) {
1212 delay = 1;
1213 continue;
1214 }
1215 }
1216 pci_info(dev, "not ready %dms after %s; waiting\n",
1217 delay - 1, reset_type);
1218 }
1219
1220 msleep(delay);
1221 delay *= 2;
1222 }
1223
1224 if (delay > PCI_RESET_WAIT)
1225 pci_info(dev, "ready %dms after %s\n", delay - 1,
1226 reset_type);
1227
1228 return 0;
1229 }
1230
1231 /**
1232 * pci_power_up - Put the given device into D0
1233 * @dev: PCI device to power up
1234 *
1235 * On success, return 0 or 1, depending on whether or not it is necessary to
1236 * restore the device's BARs subsequently (1 is returned in that case).
1237 *
1238 * On failure, return a negative error code. Always return failure if @dev
1239 * lacks a Power Management Capability, even if the platform was able to
1240 * put the device in D0 via non-PCI means.
1241 */
pci_power_up(struct pci_dev * dev)1242 int pci_power_up(struct pci_dev *dev)
1243 {
1244 bool need_restore;
1245 pci_power_t state;
1246 u16 pmcsr;
1247
1248 platform_pci_set_power_state(dev, PCI_D0);
1249
1250 if (!dev->pm_cap) {
1251 state = platform_pci_get_power_state(dev);
1252 if (state == PCI_UNKNOWN)
1253 dev->current_state = PCI_D0;
1254 else
1255 dev->current_state = state;
1256
1257 return -EIO;
1258 }
1259
1260 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1261 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1262 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1263 pci_power_name(dev->current_state));
1264 dev->current_state = PCI_D3cold;
1265 return -EIO;
1266 }
1267
1268 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1269
1270 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1271 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1272
1273 if (state == PCI_D0)
1274 goto end;
1275
1276 /*
1277 * Force the entire word to 0. This doesn't affect PME_Status, disables
1278 * PME_En, and sets PowerState to 0.
1279 */
1280 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1281
1282 /* Mandatory transition delays; see PCI PM 1.2. */
1283 if (state == PCI_D3hot)
1284 pci_dev_d3_sleep(dev);
1285 else if (state == PCI_D2)
1286 udelay(PCI_PM_D2_DELAY);
1287
1288 end:
1289 dev->current_state = PCI_D0;
1290 if (need_restore)
1291 return 1;
1292
1293 return 0;
1294 }
1295
1296 /**
1297 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1298 * @dev: PCI device to power up
1299 * @locked: whether pci_bus_sem is held
1300 *
1301 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1302 * to confirm the state change, restore its BARs if they might be lost and
1303 * reconfigure ASPM in accordance with the new power state.
1304 *
1305 * If pci_restore_state() is going to be called right after a power state change
1306 * to D0, it is more efficient to use pci_power_up() directly instead of this
1307 * function.
1308 */
pci_set_full_power_state(struct pci_dev * dev,bool locked)1309 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1310 {
1311 u16 pmcsr;
1312 int ret;
1313
1314 ret = pci_power_up(dev);
1315 if (ret < 0) {
1316 if (dev->current_state == PCI_D0)
1317 return 0;
1318
1319 return ret;
1320 }
1321
1322 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1323 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1324 if (dev->current_state != PCI_D0) {
1325 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1326 pci_power_name(dev->current_state));
1327 } else if (ret > 0) {
1328 /*
1329 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1330 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1331 * from D3hot to D0 _may_ perform an internal reset, thereby
1332 * going to "D0 Uninitialized" rather than "D0 Initialized".
1333 * For example, at least some versions of the 3c905B and the
1334 * 3c556B exhibit this behaviour.
1335 *
1336 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1337 * devices in a D3hot state at boot. Consequently, we need to
1338 * restore at least the BARs so that the device will be
1339 * accessible to its driver.
1340 */
1341 pci_restore_bars(dev);
1342 }
1343
1344 if (dev->bus->self)
1345 pcie_aspm_pm_state_change(dev->bus->self, locked);
1346
1347 return 0;
1348 }
1349
1350 /**
1351 * __pci_dev_set_current_state - Set current state of a PCI device
1352 * @dev: Device to handle
1353 * @data: pointer to state to be set
1354 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1355 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1356 {
1357 pci_power_t state = *(pci_power_t *)data;
1358
1359 dev->current_state = state;
1360 return 0;
1361 }
1362
1363 /**
1364 * pci_bus_set_current_state - Walk given bus and set current state of devices
1365 * @bus: Top bus of the subtree to walk.
1366 * @state: state to be set
1367 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1368 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1369 {
1370 if (bus)
1371 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1372 }
1373
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state,bool locked)1374 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1375 {
1376 if (!bus)
1377 return;
1378
1379 if (locked)
1380 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1381 else
1382 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1383 }
1384
1385 /**
1386 * pci_set_low_power_state - Put a PCI device into a low-power state.
1387 * @dev: PCI device to handle.
1388 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1389 * @locked: whether pci_bus_sem is held
1390 *
1391 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1392 *
1393 * RETURN VALUE:
1394 * -EINVAL if the requested state is invalid.
1395 * -EIO if device does not support PCI PM or its PM capabilities register has a
1396 * wrong version, or device doesn't support the requested state.
1397 * 0 if device already is in the requested state.
1398 * 0 if device's power state has been successfully changed.
1399 */
pci_set_low_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1400 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1401 {
1402 u16 pmcsr;
1403
1404 if (!dev->pm_cap)
1405 return -EIO;
1406
1407 /*
1408 * Validate transition: We can enter D0 from any state, but if
1409 * we're already in a low-power state, we can only go deeper. E.g.,
1410 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1411 * we'd have to go from D3 to D0, then to D1.
1412 */
1413 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1414 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1415 pci_power_name(dev->current_state),
1416 pci_power_name(state));
1417 return -EINVAL;
1418 }
1419
1420 /* Check if this device supports the desired state */
1421 if ((state == PCI_D1 && !dev->d1_support)
1422 || (state == PCI_D2 && !dev->d2_support))
1423 return -EIO;
1424
1425 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1426 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1427 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1428 pci_power_name(dev->current_state),
1429 pci_power_name(state));
1430 dev->current_state = PCI_D3cold;
1431 return -EIO;
1432 }
1433
1434 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1435 pmcsr |= state;
1436
1437 /* Enter specified state */
1438 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1439
1440 /* Mandatory power management transition delays; see PCI PM 1.2. */
1441 if (state == PCI_D3hot)
1442 pci_dev_d3_sleep(dev);
1443 else if (state == PCI_D2)
1444 udelay(PCI_PM_D2_DELAY);
1445
1446 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1447 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1448 if (dev->current_state != state)
1449 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1450 pci_power_name(dev->current_state),
1451 pci_power_name(state));
1452
1453 if (dev->bus->self)
1454 pcie_aspm_pm_state_change(dev->bus->self, locked);
1455
1456 return 0;
1457 }
1458
__pci_set_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1459 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1460 {
1461 int error;
1462
1463 /* Bound the state we're entering */
1464 if (state > PCI_D3cold)
1465 state = PCI_D3cold;
1466 else if (state < PCI_D0)
1467 state = PCI_D0;
1468 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1469
1470 /*
1471 * If the device or the parent bridge do not support PCI
1472 * PM, ignore the request if we're doing anything other
1473 * than putting it into D0 (which would only happen on
1474 * boot).
1475 */
1476 return 0;
1477
1478 /* Check if we're already there */
1479 if (dev->current_state == state)
1480 return 0;
1481
1482 if (state == PCI_D0)
1483 return pci_set_full_power_state(dev, locked);
1484
1485 /*
1486 * This device is quirked not to be put into D3, so don't put it in
1487 * D3
1488 */
1489 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1490 return 0;
1491
1492 if (state == PCI_D3cold) {
1493 /*
1494 * To put the device in D3cold, put it into D3hot in the native
1495 * way, then put it into D3cold using platform ops.
1496 */
1497 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1498
1499 if (pci_platform_power_transition(dev, PCI_D3cold))
1500 return error;
1501
1502 /* Powering off a bridge may power off the whole hierarchy */
1503 if (dev->current_state == PCI_D3cold)
1504 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1505 } else {
1506 error = pci_set_low_power_state(dev, state, locked);
1507
1508 if (pci_platform_power_transition(dev, state))
1509 return error;
1510 }
1511
1512 return 0;
1513 }
1514
1515 /**
1516 * pci_set_power_state - Set the power state of a PCI device
1517 * @dev: PCI device to handle.
1518 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1519 *
1520 * Transition a device to a new power state, using the platform firmware and/or
1521 * the device's PCI PM registers.
1522 *
1523 * RETURN VALUE:
1524 * -EINVAL if the requested state is invalid.
1525 * -EIO if device does not support PCI PM or its PM capabilities register has a
1526 * wrong version, or device doesn't support the requested state.
1527 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1528 * 0 if device already is in the requested state.
1529 * 0 if the transition is to D3 but D3 is not supported.
1530 * 0 if device's power state has been successfully changed.
1531 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1532 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1533 {
1534 return __pci_set_power_state(dev, state, false);
1535 }
1536 EXPORT_SYMBOL(pci_set_power_state);
1537
pci_set_power_state_locked(struct pci_dev * dev,pci_power_t state)1538 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1539 {
1540 lockdep_assert_held(&pci_bus_sem);
1541
1542 return __pci_set_power_state(dev, state, true);
1543 }
1544 EXPORT_SYMBOL(pci_set_power_state_locked);
1545
1546 #define PCI_EXP_SAVE_REGS 7
1547
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1548 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1549 u16 cap, bool extended)
1550 {
1551 struct pci_cap_saved_state *tmp;
1552
1553 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1554 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1555 return tmp;
1556 }
1557 return NULL;
1558 }
1559
pci_find_saved_cap(struct pci_dev * dev,char cap)1560 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1561 {
1562 return _pci_find_saved_cap(dev, cap, false);
1563 }
1564
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1565 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1566 {
1567 return _pci_find_saved_cap(dev, cap, true);
1568 }
1569
pci_save_pcie_state(struct pci_dev * dev)1570 static int pci_save_pcie_state(struct pci_dev *dev)
1571 {
1572 int i = 0;
1573 struct pci_cap_saved_state *save_state;
1574 u16 *cap;
1575
1576 if (!pci_is_pcie(dev))
1577 return 0;
1578
1579 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1580 if (!save_state) {
1581 pci_err(dev, "buffer not found in %s\n", __func__);
1582 return -ENOMEM;
1583 }
1584
1585 cap = (u16 *)&save_state->cap.data[0];
1586 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1587 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1588 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1589 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1590 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1591 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1592 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1593
1594 return 0;
1595 }
1596
pci_bridge_reconfigure_ltr(struct pci_dev * dev)1597 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1598 {
1599 #ifdef CONFIG_PCIEASPM
1600 struct pci_dev *bridge;
1601 u32 ctl;
1602
1603 bridge = pci_upstream_bridge(dev);
1604 if (bridge && bridge->ltr_path) {
1605 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1606 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1607 pci_dbg(bridge, "re-enabling LTR\n");
1608 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1609 PCI_EXP_DEVCTL2_LTR_EN);
1610 }
1611 }
1612 #endif
1613 }
1614
pci_restore_pcie_state(struct pci_dev * dev)1615 static void pci_restore_pcie_state(struct pci_dev *dev)
1616 {
1617 int i = 0;
1618 struct pci_cap_saved_state *save_state;
1619 u16 *cap;
1620
1621 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1622 if (!save_state)
1623 return;
1624
1625 /*
1626 * Downstream ports reset the LTR enable bit when link goes down.
1627 * Check and re-configure the bit here before restoring device.
1628 * PCIe r5.0, sec 7.5.3.16.
1629 */
1630 pci_bridge_reconfigure_ltr(dev);
1631
1632 cap = (u16 *)&save_state->cap.data[0];
1633 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1634 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1635 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1636 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1637 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1638 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1639 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1640 }
1641
pci_save_pcix_state(struct pci_dev * dev)1642 static int pci_save_pcix_state(struct pci_dev *dev)
1643 {
1644 int pos;
1645 struct pci_cap_saved_state *save_state;
1646
1647 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1648 if (!pos)
1649 return 0;
1650
1651 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1652 if (!save_state) {
1653 pci_err(dev, "buffer not found in %s\n", __func__);
1654 return -ENOMEM;
1655 }
1656
1657 pci_read_config_word(dev, pos + PCI_X_CMD,
1658 (u16 *)save_state->cap.data);
1659
1660 return 0;
1661 }
1662
pci_restore_pcix_state(struct pci_dev * dev)1663 static void pci_restore_pcix_state(struct pci_dev *dev)
1664 {
1665 int i = 0, pos;
1666 struct pci_cap_saved_state *save_state;
1667 u16 *cap;
1668
1669 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1670 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1671 if (!save_state || !pos)
1672 return;
1673 cap = (u16 *)&save_state->cap.data[0];
1674
1675 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1676 }
1677
pci_save_ltr_state(struct pci_dev * dev)1678 static void pci_save_ltr_state(struct pci_dev *dev)
1679 {
1680 int ltr;
1681 struct pci_cap_saved_state *save_state;
1682 u32 *cap;
1683
1684 if (!pci_is_pcie(dev))
1685 return;
1686
1687 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1688 if (!ltr)
1689 return;
1690
1691 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1692 if (!save_state) {
1693 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1694 return;
1695 }
1696
1697 /* Some broken devices only support dword access to LTR */
1698 cap = &save_state->cap.data[0];
1699 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1700 }
1701
pci_restore_ltr_state(struct pci_dev * dev)1702 static void pci_restore_ltr_state(struct pci_dev *dev)
1703 {
1704 struct pci_cap_saved_state *save_state;
1705 int ltr;
1706 u32 *cap;
1707
1708 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1709 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1710 if (!save_state || !ltr)
1711 return;
1712
1713 /* Some broken devices only support dword access to LTR */
1714 cap = &save_state->cap.data[0];
1715 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1716 }
1717
1718 /**
1719 * pci_save_state - save the PCI configuration space of a device before
1720 * suspending
1721 * @dev: PCI device that we're dealing with
1722 */
pci_save_state(struct pci_dev * dev)1723 int pci_save_state(struct pci_dev *dev)
1724 {
1725 int i;
1726 /* XXX: 100% dword access ok here? */
1727 for (i = 0; i < 16; i++) {
1728 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1729 pci_dbg(dev, "save config %#04x: %#010x\n",
1730 i * 4, dev->saved_config_space[i]);
1731 }
1732 dev->state_saved = true;
1733
1734 i = pci_save_pcie_state(dev);
1735 if (i != 0)
1736 return i;
1737
1738 i = pci_save_pcix_state(dev);
1739 if (i != 0)
1740 return i;
1741
1742 pci_save_ltr_state(dev);
1743 pci_save_dpc_state(dev);
1744 pci_save_aer_state(dev);
1745 pci_save_ptm_state(dev);
1746 return pci_save_vc_state(dev);
1747 }
1748 EXPORT_SYMBOL(pci_save_state);
1749
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1750 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1751 u32 saved_val, int retry, bool force)
1752 {
1753 u32 val;
1754
1755 pci_read_config_dword(pdev, offset, &val);
1756 if (!force && val == saved_val)
1757 return;
1758
1759 for (;;) {
1760 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1761 offset, val, saved_val);
1762 pci_write_config_dword(pdev, offset, saved_val);
1763 if (retry-- <= 0)
1764 return;
1765
1766 pci_read_config_dword(pdev, offset, &val);
1767 if (val == saved_val)
1768 return;
1769
1770 mdelay(1);
1771 }
1772 }
1773
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1774 static void pci_restore_config_space_range(struct pci_dev *pdev,
1775 int start, int end, int retry,
1776 bool force)
1777 {
1778 int index;
1779
1780 for (index = end; index >= start; index--)
1781 pci_restore_config_dword(pdev, 4 * index,
1782 pdev->saved_config_space[index],
1783 retry, force);
1784 }
1785
pci_restore_config_space(struct pci_dev * pdev)1786 static void pci_restore_config_space(struct pci_dev *pdev)
1787 {
1788 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1789 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1790 /* Restore BARs before the command register. */
1791 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1792 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1793 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1794 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1795
1796 /*
1797 * Force rewriting of prefetch registers to avoid S3 resume
1798 * issues on Intel PCI bridges that occur when these
1799 * registers are not explicitly written.
1800 */
1801 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1802 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1803 } else {
1804 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1805 }
1806 }
1807
pci_restore_rebar_state(struct pci_dev * pdev)1808 static void pci_restore_rebar_state(struct pci_dev *pdev)
1809 {
1810 unsigned int pos, nbars, i;
1811 u32 ctrl;
1812
1813 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1814 if (!pos)
1815 return;
1816
1817 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1818 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1819 PCI_REBAR_CTRL_NBAR_SHIFT;
1820
1821 for (i = 0; i < nbars; i++, pos += 8) {
1822 struct resource *res;
1823 int bar_idx, size;
1824
1825 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1826 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1827 res = pdev->resource + bar_idx;
1828 size = pci_rebar_bytes_to_size(resource_size(res));
1829 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1830 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1831 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1832 }
1833 }
1834
1835 /**
1836 * pci_restore_state - Restore the saved state of a PCI device
1837 * @dev: PCI device that we're dealing with
1838 */
pci_restore_state(struct pci_dev * dev)1839 void pci_restore_state(struct pci_dev *dev)
1840 {
1841 if (!dev->state_saved)
1842 return;
1843
1844 /*
1845 * Restore max latencies (in the LTR capability) before enabling
1846 * LTR itself (in the PCIe capability).
1847 */
1848 pci_restore_ltr_state(dev);
1849
1850 pci_restore_pcie_state(dev);
1851 pci_restore_pasid_state(dev);
1852 pci_restore_pri_state(dev);
1853 pci_restore_ats_state(dev);
1854 pci_restore_vc_state(dev);
1855 pci_restore_rebar_state(dev);
1856 pci_restore_dpc_state(dev);
1857 pci_restore_ptm_state(dev);
1858
1859 pci_aer_clear_status(dev);
1860 pci_restore_aer_state(dev);
1861
1862 pci_restore_config_space(dev);
1863
1864 pci_restore_pcix_state(dev);
1865 pci_restore_msi_state(dev);
1866
1867 /* Restore ACS and IOV configuration state */
1868 pci_enable_acs(dev);
1869 pci_restore_iov_state(dev);
1870
1871 dev->state_saved = false;
1872 }
1873 EXPORT_SYMBOL(pci_restore_state);
1874
1875 struct pci_saved_state {
1876 u32 config_space[16];
1877 struct pci_cap_saved_data cap[];
1878 };
1879
1880 /**
1881 * pci_store_saved_state - Allocate and return an opaque struct containing
1882 * the device saved state.
1883 * @dev: PCI device that we're dealing with
1884 *
1885 * Return NULL if no state or error.
1886 */
pci_store_saved_state(struct pci_dev * dev)1887 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1888 {
1889 struct pci_saved_state *state;
1890 struct pci_cap_saved_state *tmp;
1891 struct pci_cap_saved_data *cap;
1892 size_t size;
1893
1894 if (!dev->state_saved)
1895 return NULL;
1896
1897 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1898
1899 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1900 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1901
1902 state = kzalloc(size, GFP_KERNEL);
1903 if (!state)
1904 return NULL;
1905
1906 memcpy(state->config_space, dev->saved_config_space,
1907 sizeof(state->config_space));
1908
1909 cap = state->cap;
1910 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1911 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1912 memcpy(cap, &tmp->cap, len);
1913 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1914 }
1915 /* Empty cap_save terminates list */
1916
1917 return state;
1918 }
1919 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1920
1921 /**
1922 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1923 * @dev: PCI device that we're dealing with
1924 * @state: Saved state returned from pci_store_saved_state()
1925 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1926 int pci_load_saved_state(struct pci_dev *dev,
1927 struct pci_saved_state *state)
1928 {
1929 struct pci_cap_saved_data *cap;
1930
1931 dev->state_saved = false;
1932
1933 if (!state)
1934 return 0;
1935
1936 memcpy(dev->saved_config_space, state->config_space,
1937 sizeof(state->config_space));
1938
1939 cap = state->cap;
1940 while (cap->size) {
1941 struct pci_cap_saved_state *tmp;
1942
1943 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1944 if (!tmp || tmp->cap.size != cap->size)
1945 return -EINVAL;
1946
1947 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1948 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1949 sizeof(struct pci_cap_saved_data) + cap->size);
1950 }
1951
1952 dev->state_saved = true;
1953 return 0;
1954 }
1955 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1956
1957 /**
1958 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1959 * and free the memory allocated for it.
1960 * @dev: PCI device that we're dealing with
1961 * @state: Pointer to saved state returned from pci_store_saved_state()
1962 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1963 int pci_load_and_free_saved_state(struct pci_dev *dev,
1964 struct pci_saved_state **state)
1965 {
1966 int ret = pci_load_saved_state(dev, *state);
1967 kfree(*state);
1968 *state = NULL;
1969 return ret;
1970 }
1971 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1972
pcibios_enable_device(struct pci_dev * dev,int bars)1973 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1974 {
1975 return pci_enable_resources(dev, bars);
1976 }
1977
do_pci_enable_device(struct pci_dev * dev,int bars)1978 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1979 {
1980 int err;
1981 struct pci_dev *bridge;
1982 u16 cmd;
1983 u8 pin;
1984
1985 err = pci_set_power_state(dev, PCI_D0);
1986 if (err < 0 && err != -EIO)
1987 return err;
1988
1989 bridge = pci_upstream_bridge(dev);
1990 if (bridge)
1991 pcie_aspm_powersave_config_link(bridge);
1992
1993 err = pcibios_enable_device(dev, bars);
1994 if (err < 0)
1995 return err;
1996 pci_fixup_device(pci_fixup_enable, dev);
1997
1998 if (dev->msi_enabled || dev->msix_enabled)
1999 return 0;
2000
2001 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2002 if (pin) {
2003 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2004 if (cmd & PCI_COMMAND_INTX_DISABLE)
2005 pci_write_config_word(dev, PCI_COMMAND,
2006 cmd & ~PCI_COMMAND_INTX_DISABLE);
2007 }
2008
2009 return 0;
2010 }
2011
2012 /**
2013 * pci_reenable_device - Resume abandoned device
2014 * @dev: PCI device to be resumed
2015 *
2016 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2017 * to be called by normal code, write proper resume handler and use it instead.
2018 */
pci_reenable_device(struct pci_dev * dev)2019 int pci_reenable_device(struct pci_dev *dev)
2020 {
2021 if (pci_is_enabled(dev))
2022 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2023 return 0;
2024 }
2025 EXPORT_SYMBOL(pci_reenable_device);
2026
pci_enable_bridge(struct pci_dev * dev)2027 static void pci_enable_bridge(struct pci_dev *dev)
2028 {
2029 struct pci_dev *bridge;
2030 int retval;
2031
2032 bridge = pci_upstream_bridge(dev);
2033 if (bridge)
2034 pci_enable_bridge(bridge);
2035
2036 if (pci_is_enabled(dev)) {
2037 if (!dev->is_busmaster)
2038 pci_set_master(dev);
2039 return;
2040 }
2041
2042 retval = pci_enable_device(dev);
2043 if (retval)
2044 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2045 retval);
2046 pci_set_master(dev);
2047 }
2048
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)2049 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2050 {
2051 struct pci_dev *bridge;
2052 int err;
2053 int i, bars = 0;
2054
2055 /*
2056 * Power state could be unknown at this point, either due to a fresh
2057 * boot or a device removal call. So get the current power state
2058 * so that things like MSI message writing will behave as expected
2059 * (e.g. if the device really is in D0 at enable time).
2060 */
2061 pci_update_current_state(dev, dev->current_state);
2062
2063 if (atomic_inc_return(&dev->enable_cnt) > 1)
2064 return 0; /* already enabled */
2065
2066 bridge = pci_upstream_bridge(dev);
2067 if (bridge)
2068 pci_enable_bridge(bridge);
2069
2070 /* only skip sriov related */
2071 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2072 if (dev->resource[i].flags & flags)
2073 bars |= (1 << i);
2074 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2075 if (dev->resource[i].flags & flags)
2076 bars |= (1 << i);
2077
2078 err = do_pci_enable_device(dev, bars);
2079 if (err < 0)
2080 atomic_dec(&dev->enable_cnt);
2081 return err;
2082 }
2083
2084 /**
2085 * pci_enable_device_io - Initialize a device for use with IO space
2086 * @dev: PCI device to be initialized
2087 *
2088 * Initialize device before it's used by a driver. Ask low-level code
2089 * to enable I/O resources. Wake up the device if it was suspended.
2090 * Beware, this function can fail.
2091 */
pci_enable_device_io(struct pci_dev * dev)2092 int pci_enable_device_io(struct pci_dev *dev)
2093 {
2094 return pci_enable_device_flags(dev, IORESOURCE_IO);
2095 }
2096 EXPORT_SYMBOL(pci_enable_device_io);
2097
2098 /**
2099 * pci_enable_device_mem - Initialize a device for use with Memory space
2100 * @dev: PCI device to be initialized
2101 *
2102 * Initialize device before it's used by a driver. Ask low-level code
2103 * to enable Memory resources. Wake up the device if it was suspended.
2104 * Beware, this function can fail.
2105 */
pci_enable_device_mem(struct pci_dev * dev)2106 int pci_enable_device_mem(struct pci_dev *dev)
2107 {
2108 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2109 }
2110 EXPORT_SYMBOL(pci_enable_device_mem);
2111
2112 /**
2113 * pci_enable_device - Initialize device before it's used by a driver.
2114 * @dev: PCI device to be initialized
2115 *
2116 * Initialize device before it's used by a driver. Ask low-level code
2117 * to enable I/O and memory. Wake up the device if it was suspended.
2118 * Beware, this function can fail.
2119 *
2120 * Note we don't actually enable the device many times if we call
2121 * this function repeatedly (we just increment the count).
2122 */
pci_enable_device(struct pci_dev * dev)2123 int pci_enable_device(struct pci_dev *dev)
2124 {
2125 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2126 }
2127 EXPORT_SYMBOL(pci_enable_device);
2128
2129 /*
2130 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2131 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2132 * there's no need to track it separately. pci_devres is initialized
2133 * when a device is enabled using managed PCI device enable interface.
2134 */
2135 struct pci_devres {
2136 unsigned int enabled:1;
2137 unsigned int pinned:1;
2138 unsigned int orig_intx:1;
2139 unsigned int restore_intx:1;
2140 unsigned int mwi:1;
2141 u32 region_mask;
2142 };
2143
pcim_release(struct device * gendev,void * res)2144 static void pcim_release(struct device *gendev, void *res)
2145 {
2146 struct pci_dev *dev = to_pci_dev(gendev);
2147 struct pci_devres *this = res;
2148 int i;
2149
2150 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2151 if (this->region_mask & (1 << i))
2152 pci_release_region(dev, i);
2153
2154 if (this->mwi)
2155 pci_clear_mwi(dev);
2156
2157 if (this->restore_intx)
2158 pci_intx(dev, this->orig_intx);
2159
2160 if (this->enabled && !this->pinned)
2161 pci_disable_device(dev);
2162 }
2163
get_pci_dr(struct pci_dev * pdev)2164 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2165 {
2166 struct pci_devres *dr, *new_dr;
2167
2168 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2169 if (dr)
2170 return dr;
2171
2172 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2173 if (!new_dr)
2174 return NULL;
2175 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2176 }
2177
find_pci_dr(struct pci_dev * pdev)2178 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2179 {
2180 if (pci_is_managed(pdev))
2181 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2182 return NULL;
2183 }
2184
2185 /**
2186 * pcim_enable_device - Managed pci_enable_device()
2187 * @pdev: PCI device to be initialized
2188 *
2189 * Managed pci_enable_device().
2190 */
pcim_enable_device(struct pci_dev * pdev)2191 int pcim_enable_device(struct pci_dev *pdev)
2192 {
2193 struct pci_devres *dr;
2194 int rc;
2195
2196 dr = get_pci_dr(pdev);
2197 if (unlikely(!dr))
2198 return -ENOMEM;
2199 if (dr->enabled)
2200 return 0;
2201
2202 rc = pci_enable_device(pdev);
2203 if (!rc) {
2204 pdev->is_managed = 1;
2205 dr->enabled = 1;
2206 }
2207 return rc;
2208 }
2209 EXPORT_SYMBOL(pcim_enable_device);
2210
2211 /**
2212 * pcim_pin_device - Pin managed PCI device
2213 * @pdev: PCI device to pin
2214 *
2215 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2216 * driver detach. @pdev must have been enabled with
2217 * pcim_enable_device().
2218 */
pcim_pin_device(struct pci_dev * pdev)2219 void pcim_pin_device(struct pci_dev *pdev)
2220 {
2221 struct pci_devres *dr;
2222
2223 dr = find_pci_dr(pdev);
2224 WARN_ON(!dr || !dr->enabled);
2225 if (dr)
2226 dr->pinned = 1;
2227 }
2228 EXPORT_SYMBOL(pcim_pin_device);
2229
2230 /*
2231 * pcibios_device_add - provide arch specific hooks when adding device dev
2232 * @dev: the PCI device being added
2233 *
2234 * Permits the platform to provide architecture specific functionality when
2235 * devices are added. This is the default implementation. Architecture
2236 * implementations can override this.
2237 */
pcibios_device_add(struct pci_dev * dev)2238 int __weak pcibios_device_add(struct pci_dev *dev)
2239 {
2240 return 0;
2241 }
2242
2243 /**
2244 * pcibios_release_device - provide arch specific hooks when releasing
2245 * device dev
2246 * @dev: the PCI device being released
2247 *
2248 * Permits the platform to provide architecture specific functionality when
2249 * devices are released. This is the default implementation. Architecture
2250 * implementations can override this.
2251 */
pcibios_release_device(struct pci_dev * dev)2252 void __weak pcibios_release_device(struct pci_dev *dev) {}
2253
2254 /**
2255 * pcibios_disable_device - disable arch specific PCI resources for device dev
2256 * @dev: the PCI device to disable
2257 *
2258 * Disables architecture specific PCI resources for the device. This
2259 * is the default implementation. Architecture implementations can
2260 * override this.
2261 */
pcibios_disable_device(struct pci_dev * dev)2262 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2263
2264 /**
2265 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2266 * @irq: ISA IRQ to penalize
2267 * @active: IRQ active or not
2268 *
2269 * Permits the platform to provide architecture-specific functionality when
2270 * penalizing ISA IRQs. This is the default implementation. Architecture
2271 * implementations can override this.
2272 */
pcibios_penalize_isa_irq(int irq,int active)2273 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2274
do_pci_disable_device(struct pci_dev * dev)2275 static void do_pci_disable_device(struct pci_dev *dev)
2276 {
2277 u16 pci_command;
2278
2279 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2280 if (pci_command & PCI_COMMAND_MASTER) {
2281 pci_command &= ~PCI_COMMAND_MASTER;
2282 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2283 }
2284
2285 pcibios_disable_device(dev);
2286 }
2287
2288 /**
2289 * pci_disable_enabled_device - Disable device without updating enable_cnt
2290 * @dev: PCI device to disable
2291 *
2292 * NOTE: This function is a backend of PCI power management routines and is
2293 * not supposed to be called drivers.
2294 */
pci_disable_enabled_device(struct pci_dev * dev)2295 void pci_disable_enabled_device(struct pci_dev *dev)
2296 {
2297 if (pci_is_enabled(dev))
2298 do_pci_disable_device(dev);
2299 }
2300
2301 /**
2302 * pci_disable_device - Disable PCI device after use
2303 * @dev: PCI device to be disabled
2304 *
2305 * Signal to the system that the PCI device is not in use by the system
2306 * anymore. This only involves disabling PCI bus-mastering, if active.
2307 *
2308 * Note we don't actually disable the device until all callers of
2309 * pci_enable_device() have called pci_disable_device().
2310 */
pci_disable_device(struct pci_dev * dev)2311 void pci_disable_device(struct pci_dev *dev)
2312 {
2313 struct pci_devres *dr;
2314
2315 dr = find_pci_dr(dev);
2316 if (dr)
2317 dr->enabled = 0;
2318
2319 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2320 "disabling already-disabled device");
2321
2322 if (atomic_dec_return(&dev->enable_cnt) != 0)
2323 return;
2324
2325 do_pci_disable_device(dev);
2326
2327 dev->is_busmaster = 0;
2328 }
2329 EXPORT_SYMBOL(pci_disable_device);
2330
2331 /**
2332 * pcibios_set_pcie_reset_state - set reset state for device dev
2333 * @dev: the PCIe device reset
2334 * @state: Reset state to enter into
2335 *
2336 * Set the PCIe reset state for the device. This is the default
2337 * implementation. Architecture implementations can override this.
2338 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2339 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2340 enum pcie_reset_state state)
2341 {
2342 return -EINVAL;
2343 }
2344
2345 /**
2346 * pci_set_pcie_reset_state - set reset state for device dev
2347 * @dev: the PCIe device reset
2348 * @state: Reset state to enter into
2349 *
2350 * Sets the PCI reset state for the device.
2351 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2352 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2353 {
2354 return pcibios_set_pcie_reset_state(dev, state);
2355 }
2356 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2357
2358 #ifdef CONFIG_PCIEAER
pcie_clear_device_status(struct pci_dev * dev)2359 void pcie_clear_device_status(struct pci_dev *dev)
2360 {
2361 u16 sta;
2362
2363 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2364 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2365 }
2366 #endif
2367
2368 /**
2369 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2370 * @dev: PCIe root port or event collector.
2371 */
pcie_clear_root_pme_status(struct pci_dev * dev)2372 void pcie_clear_root_pme_status(struct pci_dev *dev)
2373 {
2374 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2375 }
2376
2377 /**
2378 * pci_check_pme_status - Check if given device has generated PME.
2379 * @dev: Device to check.
2380 *
2381 * Check the PME status of the device and if set, clear it and clear PME enable
2382 * (if set). Return 'true' if PME status and PME enable were both set or
2383 * 'false' otherwise.
2384 */
pci_check_pme_status(struct pci_dev * dev)2385 bool pci_check_pme_status(struct pci_dev *dev)
2386 {
2387 int pmcsr_pos;
2388 u16 pmcsr;
2389 bool ret = false;
2390
2391 if (!dev->pm_cap)
2392 return false;
2393
2394 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2395 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2396 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2397 return false;
2398
2399 /* Clear PME status. */
2400 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2401 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2402 /* Disable PME to avoid interrupt flood. */
2403 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2404 ret = true;
2405 }
2406
2407 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2408
2409 return ret;
2410 }
2411
2412 /**
2413 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2414 * @dev: Device to handle.
2415 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2416 *
2417 * Check if @dev has generated PME and queue a resume request for it in that
2418 * case.
2419 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2420 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2421 {
2422 if (pme_poll_reset && dev->pme_poll)
2423 dev->pme_poll = false;
2424
2425 if (pci_check_pme_status(dev)) {
2426 pci_wakeup_event(dev);
2427 pm_request_resume(&dev->dev);
2428 }
2429 return 0;
2430 }
2431
2432 /**
2433 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2434 * @bus: Top bus of the subtree to walk.
2435 */
pci_pme_wakeup_bus(struct pci_bus * bus)2436 void pci_pme_wakeup_bus(struct pci_bus *bus)
2437 {
2438 if (bus)
2439 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2440 }
2441
2442
2443 /**
2444 * pci_pme_capable - check the capability of PCI device to generate PME#
2445 * @dev: PCI device to handle.
2446 * @state: PCI state from which device will issue PME#.
2447 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2448 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2449 {
2450 if (!dev->pm_cap)
2451 return false;
2452
2453 return !!(dev->pme_support & (1 << state));
2454 }
2455 EXPORT_SYMBOL(pci_pme_capable);
2456
pci_pme_list_scan(struct work_struct * work)2457 static void pci_pme_list_scan(struct work_struct *work)
2458 {
2459 struct pci_pme_device *pme_dev, *n;
2460
2461 mutex_lock(&pci_pme_list_mutex);
2462 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2463 struct pci_dev *pdev = pme_dev->dev;
2464
2465 if (pdev->pme_poll) {
2466 struct pci_dev *bridge = pdev->bus->self;
2467 struct device *dev = &pdev->dev;
2468 struct device *bdev = bridge ? &bridge->dev : NULL;
2469 int bref = 0;
2470
2471 /*
2472 * If we have a bridge, it should be in an active/D0
2473 * state or the configuration space of subordinate
2474 * devices may not be accessible or stable over the
2475 * course of the call.
2476 */
2477 if (bdev) {
2478 bref = pm_runtime_get_if_active(bdev, true);
2479 if (!bref)
2480 continue;
2481
2482 if (bridge->current_state != PCI_D0)
2483 goto put_bridge;
2484 }
2485
2486 /*
2487 * The device itself should be suspended but config
2488 * space must be accessible, therefore it cannot be in
2489 * D3cold.
2490 */
2491 if (pm_runtime_suspended(dev) &&
2492 pdev->current_state != PCI_D3cold)
2493 pci_pme_wakeup(pdev, NULL);
2494
2495 put_bridge:
2496 if (bref > 0)
2497 pm_runtime_put(bdev);
2498 } else {
2499 list_del(&pme_dev->list);
2500 kfree(pme_dev);
2501 }
2502 }
2503 if (!list_empty(&pci_pme_list))
2504 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2505 msecs_to_jiffies(PME_TIMEOUT));
2506 mutex_unlock(&pci_pme_list_mutex);
2507 }
2508
__pci_pme_active(struct pci_dev * dev,bool enable)2509 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2510 {
2511 u16 pmcsr;
2512
2513 if (!dev->pme_support)
2514 return;
2515
2516 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2517 /* Clear PME_Status by writing 1 to it and enable PME# */
2518 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2519 if (!enable)
2520 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2521
2522 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2523 }
2524
2525 /**
2526 * pci_pme_restore - Restore PME configuration after config space restore.
2527 * @dev: PCI device to update.
2528 */
pci_pme_restore(struct pci_dev * dev)2529 void pci_pme_restore(struct pci_dev *dev)
2530 {
2531 u16 pmcsr;
2532
2533 if (!dev->pme_support)
2534 return;
2535
2536 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2537 if (dev->wakeup_prepared) {
2538 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2539 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2540 } else {
2541 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2542 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2543 }
2544 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2545 }
2546
2547 /**
2548 * pci_pme_active - enable or disable PCI device's PME# function
2549 * @dev: PCI device to handle.
2550 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2551 *
2552 * The caller must verify that the device is capable of generating PME# before
2553 * calling this function with @enable equal to 'true'.
2554 */
pci_pme_active(struct pci_dev * dev,bool enable)2555 void pci_pme_active(struct pci_dev *dev, bool enable)
2556 {
2557 __pci_pme_active(dev, enable);
2558
2559 /*
2560 * PCI (as opposed to PCIe) PME requires that the device have
2561 * its PME# line hooked up correctly. Not all hardware vendors
2562 * do this, so the PME never gets delivered and the device
2563 * remains asleep. The easiest way around this is to
2564 * periodically walk the list of suspended devices and check
2565 * whether any have their PME flag set. The assumption is that
2566 * we'll wake up often enough anyway that this won't be a huge
2567 * hit, and the power savings from the devices will still be a
2568 * win.
2569 *
2570 * Although PCIe uses in-band PME message instead of PME# line
2571 * to report PME, PME does not work for some PCIe devices in
2572 * reality. For example, there are devices that set their PME
2573 * status bits, but don't really bother to send a PME message;
2574 * there are PCI Express Root Ports that don't bother to
2575 * trigger interrupts when they receive PME messages from the
2576 * devices below. So PME poll is used for PCIe devices too.
2577 */
2578
2579 if (dev->pme_poll) {
2580 struct pci_pme_device *pme_dev;
2581 if (enable) {
2582 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2583 GFP_KERNEL);
2584 if (!pme_dev) {
2585 pci_warn(dev, "can't enable PME#\n");
2586 return;
2587 }
2588 pme_dev->dev = dev;
2589 mutex_lock(&pci_pme_list_mutex);
2590 list_add(&pme_dev->list, &pci_pme_list);
2591 if (list_is_singular(&pci_pme_list))
2592 queue_delayed_work(system_freezable_wq,
2593 &pci_pme_work,
2594 msecs_to_jiffies(PME_TIMEOUT));
2595 mutex_unlock(&pci_pme_list_mutex);
2596 } else {
2597 mutex_lock(&pci_pme_list_mutex);
2598 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2599 if (pme_dev->dev == dev) {
2600 list_del(&pme_dev->list);
2601 kfree(pme_dev);
2602 break;
2603 }
2604 }
2605 mutex_unlock(&pci_pme_list_mutex);
2606 }
2607 }
2608
2609 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2610 }
2611 EXPORT_SYMBOL(pci_pme_active);
2612
2613 /**
2614 * __pci_enable_wake - enable PCI device as wakeup event source
2615 * @dev: PCI device affected
2616 * @state: PCI state from which device will issue wakeup events
2617 * @enable: True to enable event generation; false to disable
2618 *
2619 * This enables the device as a wakeup event source, or disables it.
2620 * When such events involves platform-specific hooks, those hooks are
2621 * called automatically by this routine.
2622 *
2623 * Devices with legacy power management (no standard PCI PM capabilities)
2624 * always require such platform hooks.
2625 *
2626 * RETURN VALUE:
2627 * 0 is returned on success
2628 * -EINVAL is returned if device is not supposed to wake up the system
2629 * Error code depending on the platform is returned if both the platform and
2630 * the native mechanism fail to enable the generation of wake-up events
2631 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2632 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2633 {
2634 int ret = 0;
2635
2636 /*
2637 * Bridges that are not power-manageable directly only signal
2638 * wakeup on behalf of subordinate devices which is set up
2639 * elsewhere, so skip them. However, bridges that are
2640 * power-manageable may signal wakeup for themselves (for example,
2641 * on a hotplug event) and they need to be covered here.
2642 */
2643 if (!pci_power_manageable(dev))
2644 return 0;
2645
2646 /* Don't do the same thing twice in a row for one device. */
2647 if (!!enable == !!dev->wakeup_prepared)
2648 return 0;
2649
2650 /*
2651 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2652 * Anderson we should be doing PME# wake enable followed by ACPI wake
2653 * enable. To disable wake-up we call the platform first, for symmetry.
2654 */
2655
2656 if (enable) {
2657 int error;
2658
2659 /*
2660 * Enable PME signaling if the device can signal PME from
2661 * D3cold regardless of whether or not it can signal PME from
2662 * the current target state, because that will allow it to
2663 * signal PME when the hierarchy above it goes into D3cold and
2664 * the device itself ends up in D3cold as a result of that.
2665 */
2666 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2667 pci_pme_active(dev, true);
2668 else
2669 ret = 1;
2670 error = platform_pci_set_wakeup(dev, true);
2671 if (ret)
2672 ret = error;
2673 if (!ret)
2674 dev->wakeup_prepared = true;
2675 } else {
2676 platform_pci_set_wakeup(dev, false);
2677 pci_pme_active(dev, false);
2678 dev->wakeup_prepared = false;
2679 }
2680
2681 return ret;
2682 }
2683
2684 /**
2685 * pci_enable_wake - change wakeup settings for a PCI device
2686 * @pci_dev: Target device
2687 * @state: PCI state from which device will issue wakeup events
2688 * @enable: Whether or not to enable event generation
2689 *
2690 * If @enable is set, check device_may_wakeup() for the device before calling
2691 * __pci_enable_wake() for it.
2692 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2693 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2694 {
2695 if (enable && !device_may_wakeup(&pci_dev->dev))
2696 return -EINVAL;
2697
2698 return __pci_enable_wake(pci_dev, state, enable);
2699 }
2700 EXPORT_SYMBOL(pci_enable_wake);
2701
2702 /**
2703 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2704 * @dev: PCI device to prepare
2705 * @enable: True to enable wake-up event generation; false to disable
2706 *
2707 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2708 * and this function allows them to set that up cleanly - pci_enable_wake()
2709 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2710 * ordering constraints.
2711 *
2712 * This function only returns error code if the device is not allowed to wake
2713 * up the system from sleep or it is not capable of generating PME# from both
2714 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2715 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2716 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2717 {
2718 return pci_pme_capable(dev, PCI_D3cold) ?
2719 pci_enable_wake(dev, PCI_D3cold, enable) :
2720 pci_enable_wake(dev, PCI_D3hot, enable);
2721 }
2722 EXPORT_SYMBOL(pci_wake_from_d3);
2723
2724 /**
2725 * pci_target_state - find an appropriate low power state for a given PCI dev
2726 * @dev: PCI device
2727 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2728 *
2729 * Use underlying platform code to find a supported low power state for @dev.
2730 * If the platform can't manage @dev, return the deepest state from which it
2731 * can generate wake events, based on any available PME info.
2732 */
pci_target_state(struct pci_dev * dev,bool wakeup)2733 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2734 {
2735 if (platform_pci_power_manageable(dev)) {
2736 /*
2737 * Call the platform to find the target state for the device.
2738 */
2739 pci_power_t state = platform_pci_choose_state(dev);
2740
2741 switch (state) {
2742 case PCI_POWER_ERROR:
2743 case PCI_UNKNOWN:
2744 return PCI_D3hot;
2745
2746 case PCI_D1:
2747 case PCI_D2:
2748 if (pci_no_d1d2(dev))
2749 return PCI_D3hot;
2750 }
2751
2752 return state;
2753 }
2754
2755 /*
2756 * If the device is in D3cold even though it's not power-manageable by
2757 * the platform, it may have been powered down by non-standard means.
2758 * Best to let it slumber.
2759 */
2760 if (dev->current_state == PCI_D3cold)
2761 return PCI_D3cold;
2762 else if (!dev->pm_cap)
2763 return PCI_D0;
2764
2765 if (wakeup && dev->pme_support) {
2766 pci_power_t state = PCI_D3hot;
2767
2768 /*
2769 * Find the deepest state from which the device can generate
2770 * PME#.
2771 */
2772 while (state && !(dev->pme_support & (1 << state)))
2773 state--;
2774
2775 if (state)
2776 return state;
2777 else if (dev->pme_support & 1)
2778 return PCI_D0;
2779 }
2780
2781 return PCI_D3hot;
2782 }
2783
2784 /**
2785 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2786 * into a sleep state
2787 * @dev: Device to handle.
2788 *
2789 * Choose the power state appropriate for the device depending on whether
2790 * it can wake up the system and/or is power manageable by the platform
2791 * (PCI_D3hot is the default) and put the device into that state.
2792 */
pci_prepare_to_sleep(struct pci_dev * dev)2793 int pci_prepare_to_sleep(struct pci_dev *dev)
2794 {
2795 bool wakeup = device_may_wakeup(&dev->dev);
2796 pci_power_t target_state = pci_target_state(dev, wakeup);
2797 int error;
2798
2799 if (target_state == PCI_POWER_ERROR)
2800 return -EIO;
2801
2802 pci_enable_wake(dev, target_state, wakeup);
2803
2804 error = pci_set_power_state(dev, target_state);
2805
2806 if (error)
2807 pci_enable_wake(dev, target_state, false);
2808
2809 return error;
2810 }
2811 EXPORT_SYMBOL(pci_prepare_to_sleep);
2812
2813 /**
2814 * pci_back_from_sleep - turn PCI device on during system-wide transition
2815 * into working state
2816 * @dev: Device to handle.
2817 *
2818 * Disable device's system wake-up capability and put it into D0.
2819 */
pci_back_from_sleep(struct pci_dev * dev)2820 int pci_back_from_sleep(struct pci_dev *dev)
2821 {
2822 int ret = pci_set_power_state(dev, PCI_D0);
2823
2824 if (ret)
2825 return ret;
2826
2827 pci_enable_wake(dev, PCI_D0, false);
2828 return 0;
2829 }
2830 EXPORT_SYMBOL(pci_back_from_sleep);
2831
2832 /**
2833 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2834 * @dev: PCI device being suspended.
2835 *
2836 * Prepare @dev to generate wake-up events at run time and put it into a low
2837 * power state.
2838 */
pci_finish_runtime_suspend(struct pci_dev * dev)2839 int pci_finish_runtime_suspend(struct pci_dev *dev)
2840 {
2841 pci_power_t target_state;
2842 int error;
2843
2844 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2845 if (target_state == PCI_POWER_ERROR)
2846 return -EIO;
2847
2848 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2849
2850 error = pci_set_power_state(dev, target_state);
2851
2852 if (error)
2853 pci_enable_wake(dev, target_state, false);
2854
2855 return error;
2856 }
2857
2858 /**
2859 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2860 * @dev: Device to check.
2861 *
2862 * Return true if the device itself is capable of generating wake-up events
2863 * (through the platform or using the native PCIe PME) or if the device supports
2864 * PME and one of its upstream bridges can generate wake-up events.
2865 */
pci_dev_run_wake(struct pci_dev * dev)2866 bool pci_dev_run_wake(struct pci_dev *dev)
2867 {
2868 struct pci_bus *bus = dev->bus;
2869
2870 if (!dev->pme_support)
2871 return false;
2872
2873 /* PME-capable in principle, but not from the target power state */
2874 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2875 return false;
2876
2877 if (device_can_wakeup(&dev->dev))
2878 return true;
2879
2880 while (bus->parent) {
2881 struct pci_dev *bridge = bus->self;
2882
2883 if (device_can_wakeup(&bridge->dev))
2884 return true;
2885
2886 bus = bus->parent;
2887 }
2888
2889 /* We have reached the root bus. */
2890 if (bus->bridge)
2891 return device_can_wakeup(bus->bridge);
2892
2893 return false;
2894 }
2895 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2896
2897 /**
2898 * pci_dev_need_resume - Check if it is necessary to resume the device.
2899 * @pci_dev: Device to check.
2900 *
2901 * Return 'true' if the device is not runtime-suspended or it has to be
2902 * reconfigured due to wakeup settings difference between system and runtime
2903 * suspend, or the current power state of it is not suitable for the upcoming
2904 * (system-wide) transition.
2905 */
pci_dev_need_resume(struct pci_dev * pci_dev)2906 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2907 {
2908 struct device *dev = &pci_dev->dev;
2909 pci_power_t target_state;
2910
2911 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2912 return true;
2913
2914 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2915
2916 /*
2917 * If the earlier platform check has not triggered, D3cold is just power
2918 * removal on top of D3hot, so no need to resume the device in that
2919 * case.
2920 */
2921 return target_state != pci_dev->current_state &&
2922 target_state != PCI_D3cold &&
2923 pci_dev->current_state != PCI_D3hot;
2924 }
2925
2926 /**
2927 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2928 * @pci_dev: Device to check.
2929 *
2930 * If the device is suspended and it is not configured for system wakeup,
2931 * disable PME for it to prevent it from waking up the system unnecessarily.
2932 *
2933 * Note that if the device's power state is D3cold and the platform check in
2934 * pci_dev_need_resume() has not triggered, the device's configuration need not
2935 * be changed.
2936 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2937 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2938 {
2939 struct device *dev = &pci_dev->dev;
2940
2941 spin_lock_irq(&dev->power.lock);
2942
2943 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2944 pci_dev->current_state < PCI_D3cold)
2945 __pci_pme_active(pci_dev, false);
2946
2947 spin_unlock_irq(&dev->power.lock);
2948 }
2949
2950 /**
2951 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2952 * @pci_dev: Device to handle.
2953 *
2954 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2955 * it might have been disabled during the prepare phase of system suspend if
2956 * the device was not configured for system wakeup.
2957 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2958 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2959 {
2960 struct device *dev = &pci_dev->dev;
2961
2962 if (!pci_dev_run_wake(pci_dev))
2963 return;
2964
2965 spin_lock_irq(&dev->power.lock);
2966
2967 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2968 __pci_pme_active(pci_dev, true);
2969
2970 spin_unlock_irq(&dev->power.lock);
2971 }
2972
2973 /**
2974 * pci_choose_state - Choose the power state of a PCI device.
2975 * @dev: Target PCI device.
2976 * @state: Target state for the whole system.
2977 *
2978 * Returns PCI power state suitable for @dev and @state.
2979 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)2980 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2981 {
2982 if (state.event == PM_EVENT_ON)
2983 return PCI_D0;
2984
2985 return pci_target_state(dev, false);
2986 }
2987 EXPORT_SYMBOL(pci_choose_state);
2988
pci_config_pm_runtime_get(struct pci_dev * pdev)2989 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2990 {
2991 struct device *dev = &pdev->dev;
2992 struct device *parent = dev->parent;
2993
2994 if (parent)
2995 pm_runtime_get_sync(parent);
2996 pm_runtime_get_noresume(dev);
2997 /*
2998 * pdev->current_state is set to PCI_D3cold during suspending,
2999 * so wait until suspending completes
3000 */
3001 pm_runtime_barrier(dev);
3002 /*
3003 * Only need to resume devices in D3cold, because config
3004 * registers are still accessible for devices suspended but
3005 * not in D3cold.
3006 */
3007 if (pdev->current_state == PCI_D3cold)
3008 pm_runtime_resume(dev);
3009 }
3010
pci_config_pm_runtime_put(struct pci_dev * pdev)3011 void pci_config_pm_runtime_put(struct pci_dev *pdev)
3012 {
3013 struct device *dev = &pdev->dev;
3014 struct device *parent = dev->parent;
3015
3016 pm_runtime_put(dev);
3017 if (parent)
3018 pm_runtime_put_sync(parent);
3019 }
3020
3021 static const struct dmi_system_id bridge_d3_blacklist[] = {
3022 #ifdef CONFIG_X86
3023 {
3024 /*
3025 * Gigabyte X299 root port is not marked as hotplug capable
3026 * which allows Linux to power manage it. However, this
3027 * confuses the BIOS SMI handler so don't power manage root
3028 * ports on that system.
3029 */
3030 .ident = "X299 DESIGNARE EX-CF",
3031 .matches = {
3032 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3033 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3034 },
3035 },
3036 {
3037 /*
3038 * Downstream device is not accessible after putting a root port
3039 * into D3cold and back into D0 on Elo Continental Z2 board
3040 */
3041 .ident = "Elo Continental Z2",
3042 .matches = {
3043 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3044 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3045 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3046 },
3047 },
3048 {
3049 /*
3050 * Changing power state of root port dGPU is connected fails
3051 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3052 */
3053 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3054 .matches = {
3055 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3056 DMI_MATCH(DMI_BOARD_NAME, "1972"),
3057 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3058 },
3059 },
3060 #endif
3061 { }
3062 };
3063
3064 /**
3065 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3066 * @bridge: Bridge to check
3067 *
3068 * This function checks if it is possible to move the bridge to D3.
3069 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3070 */
pci_bridge_d3_possible(struct pci_dev * bridge)3071 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3072 {
3073 if (!pci_is_pcie(bridge))
3074 return false;
3075
3076 switch (pci_pcie_type(bridge)) {
3077 case PCI_EXP_TYPE_ROOT_PORT:
3078 case PCI_EXP_TYPE_UPSTREAM:
3079 case PCI_EXP_TYPE_DOWNSTREAM:
3080 if (pci_bridge_d3_disable)
3081 return false;
3082
3083 /*
3084 * Hotplug ports handled by firmware in System Management Mode
3085 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3086 */
3087 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3088 return false;
3089
3090 if (pci_bridge_d3_force)
3091 return true;
3092
3093 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3094 if (bridge->is_thunderbolt)
3095 return true;
3096
3097 /* Platform might know better if the bridge supports D3 */
3098 if (platform_pci_bridge_d3(bridge))
3099 return true;
3100
3101 /*
3102 * Hotplug ports handled natively by the OS were not validated
3103 * by vendors for runtime D3 at least until 2018 because there
3104 * was no OS support.
3105 */
3106 if (bridge->is_hotplug_bridge)
3107 return false;
3108
3109 if (dmi_check_system(bridge_d3_blacklist))
3110 return false;
3111
3112 /*
3113 * It should be safe to put PCIe ports from 2015 or newer
3114 * to D3.
3115 */
3116 if (dmi_get_bios_year() >= 2015)
3117 return true;
3118 break;
3119 }
3120
3121 return false;
3122 }
3123
pci_dev_check_d3cold(struct pci_dev * dev,void * data)3124 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3125 {
3126 bool *d3cold_ok = data;
3127
3128 if (/* The device needs to be allowed to go D3cold ... */
3129 dev->no_d3cold || !dev->d3cold_allowed ||
3130
3131 /* ... and if it is wakeup capable to do so from D3cold. */
3132 (device_may_wakeup(&dev->dev) &&
3133 !pci_pme_capable(dev, PCI_D3cold)) ||
3134
3135 /* If it is a bridge it must be allowed to go to D3. */
3136 !pci_power_manageable(dev))
3137
3138 *d3cold_ok = false;
3139
3140 return !*d3cold_ok;
3141 }
3142
3143 /*
3144 * pci_bridge_d3_update - Update bridge D3 capabilities
3145 * @dev: PCI device which is changed
3146 *
3147 * Update upstream bridge PM capabilities accordingly depending on if the
3148 * device PM configuration was changed or the device is being removed. The
3149 * change is also propagated upstream.
3150 */
pci_bridge_d3_update(struct pci_dev * dev)3151 void pci_bridge_d3_update(struct pci_dev *dev)
3152 {
3153 bool remove = !device_is_registered(&dev->dev);
3154 struct pci_dev *bridge;
3155 bool d3cold_ok = true;
3156
3157 bridge = pci_upstream_bridge(dev);
3158 if (!bridge || !pci_bridge_d3_possible(bridge))
3159 return;
3160
3161 /*
3162 * If D3 is currently allowed for the bridge, removing one of its
3163 * children won't change that.
3164 */
3165 if (remove && bridge->bridge_d3)
3166 return;
3167
3168 /*
3169 * If D3 is currently allowed for the bridge and a child is added or
3170 * changed, disallowance of D3 can only be caused by that child, so
3171 * we only need to check that single device, not any of its siblings.
3172 *
3173 * If D3 is currently not allowed for the bridge, checking the device
3174 * first may allow us to skip checking its siblings.
3175 */
3176 if (!remove)
3177 pci_dev_check_d3cold(dev, &d3cold_ok);
3178
3179 /*
3180 * If D3 is currently not allowed for the bridge, this may be caused
3181 * either by the device being changed/removed or any of its siblings,
3182 * so we need to go through all children to find out if one of them
3183 * continues to block D3.
3184 */
3185 if (d3cold_ok && !bridge->bridge_d3)
3186 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3187 &d3cold_ok);
3188
3189 if (bridge->bridge_d3 != d3cold_ok) {
3190 bridge->bridge_d3 = d3cold_ok;
3191 /* Propagate change to upstream bridges */
3192 pci_bridge_d3_update(bridge);
3193 }
3194 }
3195
3196 /**
3197 * pci_d3cold_enable - Enable D3cold for device
3198 * @dev: PCI device to handle
3199 *
3200 * This function can be used in drivers to enable D3cold from the device
3201 * they handle. It also updates upstream PCI bridge PM capabilities
3202 * accordingly.
3203 */
pci_d3cold_enable(struct pci_dev * dev)3204 void pci_d3cold_enable(struct pci_dev *dev)
3205 {
3206 if (dev->no_d3cold) {
3207 dev->no_d3cold = false;
3208 pci_bridge_d3_update(dev);
3209 }
3210 }
3211 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3212
3213 /**
3214 * pci_d3cold_disable - Disable D3cold for device
3215 * @dev: PCI device to handle
3216 *
3217 * This function can be used in drivers to disable D3cold from the device
3218 * they handle. It also updates upstream PCI bridge PM capabilities
3219 * accordingly.
3220 */
pci_d3cold_disable(struct pci_dev * dev)3221 void pci_d3cold_disable(struct pci_dev *dev)
3222 {
3223 if (!dev->no_d3cold) {
3224 dev->no_d3cold = true;
3225 pci_bridge_d3_update(dev);
3226 }
3227 }
3228 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3229
3230 /**
3231 * pci_pm_init - Initialize PM functions of given PCI device
3232 * @dev: PCI device to handle.
3233 */
pci_pm_init(struct pci_dev * dev)3234 void pci_pm_init(struct pci_dev *dev)
3235 {
3236 int pm;
3237 u16 status;
3238 u16 pmc;
3239
3240 pm_runtime_forbid(&dev->dev);
3241 pm_runtime_set_active(&dev->dev);
3242 pm_runtime_enable(&dev->dev);
3243 device_enable_async_suspend(&dev->dev);
3244 dev->wakeup_prepared = false;
3245
3246 dev->pm_cap = 0;
3247 dev->pme_support = 0;
3248
3249 /* find PCI PM capability in list */
3250 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3251 if (!pm)
3252 return;
3253 /* Check device's ability to generate PME# */
3254 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3255
3256 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3257 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3258 pmc & PCI_PM_CAP_VER_MASK);
3259 return;
3260 }
3261
3262 dev->pm_cap = pm;
3263 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3264 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3265 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3266 dev->d3cold_allowed = true;
3267
3268 dev->d1_support = false;
3269 dev->d2_support = false;
3270 if (!pci_no_d1d2(dev)) {
3271 if (pmc & PCI_PM_CAP_D1)
3272 dev->d1_support = true;
3273 if (pmc & PCI_PM_CAP_D2)
3274 dev->d2_support = true;
3275
3276 if (dev->d1_support || dev->d2_support)
3277 pci_info(dev, "supports%s%s\n",
3278 dev->d1_support ? " D1" : "",
3279 dev->d2_support ? " D2" : "");
3280 }
3281
3282 pmc &= PCI_PM_CAP_PME_MASK;
3283 if (pmc) {
3284 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3285 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3286 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3287 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3288 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3289 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3290 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3291 dev->pme_poll = true;
3292 /*
3293 * Make device's PM flags reflect the wake-up capability, but
3294 * let the user space enable it to wake up the system as needed.
3295 */
3296 device_set_wakeup_capable(&dev->dev, true);
3297 /* Disable the PME# generation functionality */
3298 pci_pme_active(dev, false);
3299 }
3300
3301 pci_read_config_word(dev, PCI_STATUS, &status);
3302 if (status & PCI_STATUS_IMM_READY)
3303 dev->imm_ready = 1;
3304 }
3305
pci_ea_flags(struct pci_dev * dev,u8 prop)3306 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3307 {
3308 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3309
3310 switch (prop) {
3311 case PCI_EA_P_MEM:
3312 case PCI_EA_P_VF_MEM:
3313 flags |= IORESOURCE_MEM;
3314 break;
3315 case PCI_EA_P_MEM_PREFETCH:
3316 case PCI_EA_P_VF_MEM_PREFETCH:
3317 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3318 break;
3319 case PCI_EA_P_IO:
3320 flags |= IORESOURCE_IO;
3321 break;
3322 default:
3323 return 0;
3324 }
3325
3326 return flags;
3327 }
3328
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3329 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3330 u8 prop)
3331 {
3332 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3333 return &dev->resource[bei];
3334 #ifdef CONFIG_PCI_IOV
3335 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3336 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3337 return &dev->resource[PCI_IOV_RESOURCES +
3338 bei - PCI_EA_BEI_VF_BAR0];
3339 #endif
3340 else if (bei == PCI_EA_BEI_ROM)
3341 return &dev->resource[PCI_ROM_RESOURCE];
3342 else
3343 return NULL;
3344 }
3345
3346 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3347 static int pci_ea_read(struct pci_dev *dev, int offset)
3348 {
3349 struct resource *res;
3350 int ent_size, ent_offset = offset;
3351 resource_size_t start, end;
3352 unsigned long flags;
3353 u32 dw0, bei, base, max_offset;
3354 u8 prop;
3355 bool support_64 = (sizeof(resource_size_t) >= 8);
3356
3357 pci_read_config_dword(dev, ent_offset, &dw0);
3358 ent_offset += 4;
3359
3360 /* Entry size field indicates DWORDs after 1st */
3361 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3362
3363 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3364 goto out;
3365
3366 bei = (dw0 & PCI_EA_BEI) >> 4;
3367 prop = (dw0 & PCI_EA_PP) >> 8;
3368
3369 /*
3370 * If the Property is in the reserved range, try the Secondary
3371 * Property instead.
3372 */
3373 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3374 prop = (dw0 & PCI_EA_SP) >> 16;
3375 if (prop > PCI_EA_P_BRIDGE_IO)
3376 goto out;
3377
3378 res = pci_ea_get_resource(dev, bei, prop);
3379 if (!res) {
3380 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3381 goto out;
3382 }
3383
3384 flags = pci_ea_flags(dev, prop);
3385 if (!flags) {
3386 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3387 goto out;
3388 }
3389
3390 /* Read Base */
3391 pci_read_config_dword(dev, ent_offset, &base);
3392 start = (base & PCI_EA_FIELD_MASK);
3393 ent_offset += 4;
3394
3395 /* Read MaxOffset */
3396 pci_read_config_dword(dev, ent_offset, &max_offset);
3397 ent_offset += 4;
3398
3399 /* Read Base MSBs (if 64-bit entry) */
3400 if (base & PCI_EA_IS_64) {
3401 u32 base_upper;
3402
3403 pci_read_config_dword(dev, ent_offset, &base_upper);
3404 ent_offset += 4;
3405
3406 flags |= IORESOURCE_MEM_64;
3407
3408 /* entry starts above 32-bit boundary, can't use */
3409 if (!support_64 && base_upper)
3410 goto out;
3411
3412 if (support_64)
3413 start |= ((u64)base_upper << 32);
3414 }
3415
3416 end = start + (max_offset | 0x03);
3417
3418 /* Read MaxOffset MSBs (if 64-bit entry) */
3419 if (max_offset & PCI_EA_IS_64) {
3420 u32 max_offset_upper;
3421
3422 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3423 ent_offset += 4;
3424
3425 flags |= IORESOURCE_MEM_64;
3426
3427 /* entry too big, can't use */
3428 if (!support_64 && max_offset_upper)
3429 goto out;
3430
3431 if (support_64)
3432 end += ((u64)max_offset_upper << 32);
3433 }
3434
3435 if (end < start) {
3436 pci_err(dev, "EA Entry crosses address boundary\n");
3437 goto out;
3438 }
3439
3440 if (ent_size != ent_offset - offset) {
3441 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3442 ent_size, ent_offset - offset);
3443 goto out;
3444 }
3445
3446 res->name = pci_name(dev);
3447 res->start = start;
3448 res->end = end;
3449 res->flags = flags;
3450
3451 if (bei <= PCI_EA_BEI_BAR5)
3452 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3453 bei, res, prop);
3454 else if (bei == PCI_EA_BEI_ROM)
3455 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3456 res, prop);
3457 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3458 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3459 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3460 else
3461 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3462 bei, res, prop);
3463
3464 out:
3465 return offset + ent_size;
3466 }
3467
3468 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3469 void pci_ea_init(struct pci_dev *dev)
3470 {
3471 int ea;
3472 u8 num_ent;
3473 int offset;
3474 int i;
3475
3476 /* find PCI EA capability in list */
3477 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3478 if (!ea)
3479 return;
3480
3481 /* determine the number of entries */
3482 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3483 &num_ent);
3484 num_ent &= PCI_EA_NUM_ENT_MASK;
3485
3486 offset = ea + PCI_EA_FIRST_ENT;
3487
3488 /* Skip DWORD 2 for type 1 functions */
3489 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3490 offset += 4;
3491
3492 /* parse each EA entry */
3493 for (i = 0; i < num_ent; ++i)
3494 offset = pci_ea_read(dev, offset);
3495 }
3496
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3497 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3498 struct pci_cap_saved_state *new_cap)
3499 {
3500 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3501 }
3502
3503 /**
3504 * _pci_add_cap_save_buffer - allocate buffer for saving given
3505 * capability registers
3506 * @dev: the PCI device
3507 * @cap: the capability to allocate the buffer for
3508 * @extended: Standard or Extended capability ID
3509 * @size: requested size of the buffer
3510 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3511 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3512 bool extended, unsigned int size)
3513 {
3514 int pos;
3515 struct pci_cap_saved_state *save_state;
3516
3517 if (extended)
3518 pos = pci_find_ext_capability(dev, cap);
3519 else
3520 pos = pci_find_capability(dev, cap);
3521
3522 if (!pos)
3523 return 0;
3524
3525 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3526 if (!save_state)
3527 return -ENOMEM;
3528
3529 save_state->cap.cap_nr = cap;
3530 save_state->cap.cap_extended = extended;
3531 save_state->cap.size = size;
3532 pci_add_saved_cap(dev, save_state);
3533
3534 return 0;
3535 }
3536
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3537 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3538 {
3539 return _pci_add_cap_save_buffer(dev, cap, false, size);
3540 }
3541
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3542 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3543 {
3544 return _pci_add_cap_save_buffer(dev, cap, true, size);
3545 }
3546
3547 /**
3548 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3549 * @dev: the PCI device
3550 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3551 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3552 {
3553 int error;
3554
3555 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3556 PCI_EXP_SAVE_REGS * sizeof(u16));
3557 if (error)
3558 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3559
3560 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3561 if (error)
3562 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3563
3564 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3565 2 * sizeof(u16));
3566 if (error)
3567 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3568
3569 pci_allocate_vc_save_buffers(dev);
3570 }
3571
pci_free_cap_save_buffers(struct pci_dev * dev)3572 void pci_free_cap_save_buffers(struct pci_dev *dev)
3573 {
3574 struct pci_cap_saved_state *tmp;
3575 struct hlist_node *n;
3576
3577 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3578 kfree(tmp);
3579 }
3580
3581 /**
3582 * pci_configure_ari - enable or disable ARI forwarding
3583 * @dev: the PCI device
3584 *
3585 * If @dev and its upstream bridge both support ARI, enable ARI in the
3586 * bridge. Otherwise, disable ARI in the bridge.
3587 */
pci_configure_ari(struct pci_dev * dev)3588 void pci_configure_ari(struct pci_dev *dev)
3589 {
3590 u32 cap;
3591 struct pci_dev *bridge;
3592
3593 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3594 return;
3595
3596 bridge = dev->bus->self;
3597 if (!bridge)
3598 return;
3599
3600 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3601 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3602 return;
3603
3604 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3605 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3606 PCI_EXP_DEVCTL2_ARI);
3607 bridge->ari_enabled = 1;
3608 } else {
3609 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3610 PCI_EXP_DEVCTL2_ARI);
3611 bridge->ari_enabled = 0;
3612 }
3613 }
3614
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3615 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3616 {
3617 int pos;
3618 u16 cap, ctrl;
3619
3620 pos = pdev->acs_cap;
3621 if (!pos)
3622 return false;
3623
3624 /*
3625 * Except for egress control, capabilities are either required
3626 * or only required if controllable. Features missing from the
3627 * capability field can therefore be assumed as hard-wired enabled.
3628 */
3629 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3630 acs_flags &= (cap | PCI_ACS_EC);
3631
3632 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3633 return (ctrl & acs_flags) == acs_flags;
3634 }
3635
3636 /**
3637 * pci_acs_enabled - test ACS against required flags for a given device
3638 * @pdev: device to test
3639 * @acs_flags: required PCI ACS flags
3640 *
3641 * Return true if the device supports the provided flags. Automatically
3642 * filters out flags that are not implemented on multifunction devices.
3643 *
3644 * Note that this interface checks the effective ACS capabilities of the
3645 * device rather than the actual capabilities. For instance, most single
3646 * function endpoints are not required to support ACS because they have no
3647 * opportunity for peer-to-peer access. We therefore return 'true'
3648 * regardless of whether the device exposes an ACS capability. This makes
3649 * it much easier for callers of this function to ignore the actual type
3650 * or topology of the device when testing ACS support.
3651 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3652 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3653 {
3654 int ret;
3655
3656 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3657 if (ret >= 0)
3658 return ret > 0;
3659
3660 /*
3661 * Conventional PCI and PCI-X devices never support ACS, either
3662 * effectively or actually. The shared bus topology implies that
3663 * any device on the bus can receive or snoop DMA.
3664 */
3665 if (!pci_is_pcie(pdev))
3666 return false;
3667
3668 switch (pci_pcie_type(pdev)) {
3669 /*
3670 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3671 * but since their primary interface is PCI/X, we conservatively
3672 * handle them as we would a non-PCIe device.
3673 */
3674 case PCI_EXP_TYPE_PCIE_BRIDGE:
3675 /*
3676 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3677 * applicable... must never implement an ACS Extended Capability...".
3678 * This seems arbitrary, but we take a conservative interpretation
3679 * of this statement.
3680 */
3681 case PCI_EXP_TYPE_PCI_BRIDGE:
3682 case PCI_EXP_TYPE_RC_EC:
3683 return false;
3684 /*
3685 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3686 * implement ACS in order to indicate their peer-to-peer capabilities,
3687 * regardless of whether they are single- or multi-function devices.
3688 */
3689 case PCI_EXP_TYPE_DOWNSTREAM:
3690 case PCI_EXP_TYPE_ROOT_PORT:
3691 return pci_acs_flags_enabled(pdev, acs_flags);
3692 /*
3693 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3694 * implemented by the remaining PCIe types to indicate peer-to-peer
3695 * capabilities, but only when they are part of a multifunction
3696 * device. The footnote for section 6.12 indicates the specific
3697 * PCIe types included here.
3698 */
3699 case PCI_EXP_TYPE_ENDPOINT:
3700 case PCI_EXP_TYPE_UPSTREAM:
3701 case PCI_EXP_TYPE_LEG_END:
3702 case PCI_EXP_TYPE_RC_END:
3703 if (!pdev->multifunction)
3704 break;
3705
3706 return pci_acs_flags_enabled(pdev, acs_flags);
3707 }
3708
3709 /*
3710 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3711 * to single function devices with the exception of downstream ports.
3712 */
3713 return true;
3714 }
3715
3716 /**
3717 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3718 * @start: starting downstream device
3719 * @end: ending upstream device or NULL to search to the root bus
3720 * @acs_flags: required flags
3721 *
3722 * Walk up a device tree from start to end testing PCI ACS support. If
3723 * any step along the way does not support the required flags, return false.
3724 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3725 bool pci_acs_path_enabled(struct pci_dev *start,
3726 struct pci_dev *end, u16 acs_flags)
3727 {
3728 struct pci_dev *pdev, *parent = start;
3729
3730 do {
3731 pdev = parent;
3732
3733 if (!pci_acs_enabled(pdev, acs_flags))
3734 return false;
3735
3736 if (pci_is_root_bus(pdev->bus))
3737 return (end == NULL);
3738
3739 parent = pdev->bus->self;
3740 } while (pdev != end);
3741
3742 return true;
3743 }
3744
3745 /**
3746 * pci_acs_init - Initialize ACS if hardware supports it
3747 * @dev: the PCI device
3748 */
pci_acs_init(struct pci_dev * dev)3749 void pci_acs_init(struct pci_dev *dev)
3750 {
3751 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3752
3753 /*
3754 * Attempt to enable ACS regardless of capability because some Root
3755 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3756 * the standard ACS capability but still support ACS via those
3757 * quirks.
3758 */
3759 pci_enable_acs(dev);
3760 }
3761
3762 /**
3763 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3764 * @pdev: PCI device
3765 * @bar: BAR to find
3766 *
3767 * Helper to find the position of the ctrl register for a BAR.
3768 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3769 * Returns -ENOENT if no ctrl register for the BAR could be found.
3770 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3771 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3772 {
3773 unsigned int pos, nbars, i;
3774 u32 ctrl;
3775
3776 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3777 if (!pos)
3778 return -ENOTSUPP;
3779
3780 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3781 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3782 PCI_REBAR_CTRL_NBAR_SHIFT;
3783
3784 for (i = 0; i < nbars; i++, pos += 8) {
3785 int bar_idx;
3786
3787 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3788 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3789 if (bar_idx == bar)
3790 return pos;
3791 }
3792
3793 return -ENOENT;
3794 }
3795
3796 /**
3797 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3798 * @pdev: PCI device
3799 * @bar: BAR to query
3800 *
3801 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3802 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3803 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3804 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3805 {
3806 int pos;
3807 u32 cap;
3808
3809 pos = pci_rebar_find_pos(pdev, bar);
3810 if (pos < 0)
3811 return 0;
3812
3813 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3814 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3815
3816 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3817 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3818 bar == 0 && cap == 0x700)
3819 return 0x3f00;
3820
3821 return cap;
3822 }
3823 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3824
3825 /**
3826 * pci_rebar_get_current_size - get the current size of a BAR
3827 * @pdev: PCI device
3828 * @bar: BAR to set size to
3829 *
3830 * Read the size of a BAR from the resizable BAR config.
3831 * Returns size if found or negative error code.
3832 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3833 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3834 {
3835 int pos;
3836 u32 ctrl;
3837
3838 pos = pci_rebar_find_pos(pdev, bar);
3839 if (pos < 0)
3840 return pos;
3841
3842 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3843 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3844 }
3845
3846 /**
3847 * pci_rebar_set_size - set a new size for a BAR
3848 * @pdev: PCI device
3849 * @bar: BAR to set size to
3850 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3851 *
3852 * Set the new size of a BAR as defined in the spec.
3853 * Returns zero if resizing was successful, error code otherwise.
3854 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3855 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3856 {
3857 int pos;
3858 u32 ctrl;
3859
3860 pos = pci_rebar_find_pos(pdev, bar);
3861 if (pos < 0)
3862 return pos;
3863
3864 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3865 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3866 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3867 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3868 return 0;
3869 }
3870
3871 /**
3872 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3873 * @dev: the PCI device
3874 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3875 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3876 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3877 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3878 *
3879 * Return 0 if all upstream bridges support AtomicOp routing, egress
3880 * blocking is disabled on all upstream ports, and the root port supports
3881 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3882 * AtomicOp completion), or negative otherwise.
3883 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3884 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3885 {
3886 struct pci_bus *bus = dev->bus;
3887 struct pci_dev *bridge;
3888 u32 cap, ctl2;
3889
3890 /*
3891 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3892 * in Device Control 2 is reserved in VFs and the PF value applies
3893 * to all associated VFs.
3894 */
3895 if (dev->is_virtfn)
3896 return -EINVAL;
3897
3898 if (!pci_is_pcie(dev))
3899 return -EINVAL;
3900
3901 /*
3902 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3903 * AtomicOp requesters. For now, we only support endpoints as
3904 * requesters and root ports as completers. No endpoints as
3905 * completers, and no peer-to-peer.
3906 */
3907
3908 switch (pci_pcie_type(dev)) {
3909 case PCI_EXP_TYPE_ENDPOINT:
3910 case PCI_EXP_TYPE_LEG_END:
3911 case PCI_EXP_TYPE_RC_END:
3912 break;
3913 default:
3914 return -EINVAL;
3915 }
3916
3917 while (bus->parent) {
3918 bridge = bus->self;
3919
3920 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3921
3922 switch (pci_pcie_type(bridge)) {
3923 /* Ensure switch ports support AtomicOp routing */
3924 case PCI_EXP_TYPE_UPSTREAM:
3925 case PCI_EXP_TYPE_DOWNSTREAM:
3926 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3927 return -EINVAL;
3928 break;
3929
3930 /* Ensure root port supports all the sizes we care about */
3931 case PCI_EXP_TYPE_ROOT_PORT:
3932 if ((cap & cap_mask) != cap_mask)
3933 return -EINVAL;
3934 break;
3935 }
3936
3937 /* Ensure upstream ports don't block AtomicOps on egress */
3938 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3939 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3940 &ctl2);
3941 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3942 return -EINVAL;
3943 }
3944
3945 bus = bus->parent;
3946 }
3947
3948 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3949 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3950 return 0;
3951 }
3952 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3953
3954 /**
3955 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3956 * @dev: the PCI device
3957 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3958 *
3959 * Perform INTx swizzling for a device behind one level of bridge. This is
3960 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3961 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3962 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3963 * the PCI Express Base Specification, Revision 2.1)
3964 */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3965 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3966 {
3967 int slot;
3968
3969 if (pci_ari_enabled(dev->bus))
3970 slot = 0;
3971 else
3972 slot = PCI_SLOT(dev->devfn);
3973
3974 return (((pin - 1) + slot) % 4) + 1;
3975 }
3976
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3977 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3978 {
3979 u8 pin;
3980
3981 pin = dev->pin;
3982 if (!pin)
3983 return -1;
3984
3985 while (!pci_is_root_bus(dev->bus)) {
3986 pin = pci_swizzle_interrupt_pin(dev, pin);
3987 dev = dev->bus->self;
3988 }
3989 *bridge = dev;
3990 return pin;
3991 }
3992
3993 /**
3994 * pci_common_swizzle - swizzle INTx all the way to root bridge
3995 * @dev: the PCI device
3996 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3997 *
3998 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3999 * bridges all the way up to a PCI root bus.
4000 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)4001 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
4002 {
4003 u8 pin = *pinp;
4004
4005 while (!pci_is_root_bus(dev->bus)) {
4006 pin = pci_swizzle_interrupt_pin(dev, pin);
4007 dev = dev->bus->self;
4008 }
4009 *pinp = pin;
4010 return PCI_SLOT(dev->devfn);
4011 }
4012 EXPORT_SYMBOL_GPL(pci_common_swizzle);
4013
4014 /**
4015 * pci_release_region - Release a PCI bar
4016 * @pdev: PCI device whose resources were previously reserved by
4017 * pci_request_region()
4018 * @bar: BAR to release
4019 *
4020 * Releases the PCI I/O and memory resources previously reserved by a
4021 * successful call to pci_request_region(). Call this function only
4022 * after all use of the PCI regions has ceased.
4023 */
pci_release_region(struct pci_dev * pdev,int bar)4024 void pci_release_region(struct pci_dev *pdev, int bar)
4025 {
4026 struct pci_devres *dr;
4027
4028 if (pci_resource_len(pdev, bar) == 0)
4029 return;
4030 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
4031 release_region(pci_resource_start(pdev, bar),
4032 pci_resource_len(pdev, bar));
4033 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
4034 release_mem_region(pci_resource_start(pdev, bar),
4035 pci_resource_len(pdev, bar));
4036
4037 dr = find_pci_dr(pdev);
4038 if (dr)
4039 dr->region_mask &= ~(1 << bar);
4040 }
4041 EXPORT_SYMBOL(pci_release_region);
4042
4043 /**
4044 * __pci_request_region - Reserved PCI I/O and memory resource
4045 * @pdev: PCI device whose resources are to be reserved
4046 * @bar: BAR to be reserved
4047 * @res_name: Name to be associated with resource.
4048 * @exclusive: whether the region access is exclusive or not
4049 *
4050 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4051 * being reserved by owner @res_name. Do not access any
4052 * address inside the PCI regions unless this call returns
4053 * successfully.
4054 *
4055 * If @exclusive is set, then the region is marked so that userspace
4056 * is explicitly not allowed to map the resource via /dev/mem or
4057 * sysfs MMIO access.
4058 *
4059 * Returns 0 on success, or %EBUSY on error. A warning
4060 * message is also printed on failure.
4061 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)4062 static int __pci_request_region(struct pci_dev *pdev, int bar,
4063 const char *res_name, int exclusive)
4064 {
4065 struct pci_devres *dr;
4066
4067 if (pci_resource_len(pdev, bar) == 0)
4068 return 0;
4069
4070 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4071 if (!request_region(pci_resource_start(pdev, bar),
4072 pci_resource_len(pdev, bar), res_name))
4073 goto err_out;
4074 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4075 if (!__request_mem_region(pci_resource_start(pdev, bar),
4076 pci_resource_len(pdev, bar), res_name,
4077 exclusive))
4078 goto err_out;
4079 }
4080
4081 dr = find_pci_dr(pdev);
4082 if (dr)
4083 dr->region_mask |= 1 << bar;
4084
4085 return 0;
4086
4087 err_out:
4088 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4089 &pdev->resource[bar]);
4090 return -EBUSY;
4091 }
4092
4093 /**
4094 * pci_request_region - Reserve PCI I/O and memory resource
4095 * @pdev: PCI device whose resources are to be reserved
4096 * @bar: BAR to be reserved
4097 * @res_name: Name to be associated with resource
4098 *
4099 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4100 * being reserved by owner @res_name. Do not access any
4101 * address inside the PCI regions unless this call returns
4102 * successfully.
4103 *
4104 * Returns 0 on success, or %EBUSY on error. A warning
4105 * message is also printed on failure.
4106 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)4107 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4108 {
4109 return __pci_request_region(pdev, bar, res_name, 0);
4110 }
4111 EXPORT_SYMBOL(pci_request_region);
4112
4113 /**
4114 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4115 * @pdev: PCI device whose resources were previously reserved
4116 * @bars: Bitmask of BARs to be released
4117 *
4118 * Release selected PCI I/O and memory resources previously reserved.
4119 * Call this function only after all use of the PCI regions has ceased.
4120 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)4121 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4122 {
4123 int i;
4124
4125 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4126 if (bars & (1 << i))
4127 pci_release_region(pdev, i);
4128 }
4129 EXPORT_SYMBOL(pci_release_selected_regions);
4130
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)4131 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4132 const char *res_name, int excl)
4133 {
4134 int i;
4135
4136 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4137 if (bars & (1 << i))
4138 if (__pci_request_region(pdev, i, res_name, excl))
4139 goto err_out;
4140 return 0;
4141
4142 err_out:
4143 while (--i >= 0)
4144 if (bars & (1 << i))
4145 pci_release_region(pdev, i);
4146
4147 return -EBUSY;
4148 }
4149
4150
4151 /**
4152 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4153 * @pdev: PCI device whose resources are to be reserved
4154 * @bars: Bitmask of BARs to be requested
4155 * @res_name: Name to be associated with resource
4156 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4157 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4158 const char *res_name)
4159 {
4160 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4161 }
4162 EXPORT_SYMBOL(pci_request_selected_regions);
4163
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4164 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4165 const char *res_name)
4166 {
4167 return __pci_request_selected_regions(pdev, bars, res_name,
4168 IORESOURCE_EXCLUSIVE);
4169 }
4170 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4171
4172 /**
4173 * pci_release_regions - Release reserved PCI I/O and memory resources
4174 * @pdev: PCI device whose resources were previously reserved by
4175 * pci_request_regions()
4176 *
4177 * Releases all PCI I/O and memory resources previously reserved by a
4178 * successful call to pci_request_regions(). Call this function only
4179 * after all use of the PCI regions has ceased.
4180 */
4181
pci_release_regions(struct pci_dev * pdev)4182 void pci_release_regions(struct pci_dev *pdev)
4183 {
4184 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4185 }
4186 EXPORT_SYMBOL(pci_release_regions);
4187
4188 /**
4189 * pci_request_regions - Reserve PCI I/O and memory resources
4190 * @pdev: PCI device whose resources are to be reserved
4191 * @res_name: Name to be associated with resource.
4192 *
4193 * Mark all PCI regions associated with PCI device @pdev as
4194 * being reserved by owner @res_name. Do not access any
4195 * address inside the PCI regions unless this call returns
4196 * successfully.
4197 *
4198 * Returns 0 on success, or %EBUSY on error. A warning
4199 * message is also printed on failure.
4200 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4201 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4202 {
4203 return pci_request_selected_regions(pdev,
4204 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4205 }
4206 EXPORT_SYMBOL(pci_request_regions);
4207
4208 /**
4209 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4210 * @pdev: PCI device whose resources are to be reserved
4211 * @res_name: Name to be associated with resource.
4212 *
4213 * Mark all PCI regions associated with PCI device @pdev as being reserved
4214 * by owner @res_name. Do not access any address inside the PCI regions
4215 * unless this call returns successfully.
4216 *
4217 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4218 * and the sysfs MMIO access will not be allowed.
4219 *
4220 * Returns 0 on success, or %EBUSY on error. A warning message is also
4221 * printed on failure.
4222 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4223 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4224 {
4225 return pci_request_selected_regions_exclusive(pdev,
4226 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4227 }
4228 EXPORT_SYMBOL(pci_request_regions_exclusive);
4229
4230 /*
4231 * Record the PCI IO range (expressed as CPU physical address + size).
4232 * Return a negative value if an error has occurred, zero otherwise
4233 */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4234 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4235 resource_size_t size)
4236 {
4237 int ret = 0;
4238 #ifdef PCI_IOBASE
4239 struct logic_pio_hwaddr *range;
4240
4241 if (!size || addr + size < addr)
4242 return -EINVAL;
4243
4244 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4245 if (!range)
4246 return -ENOMEM;
4247
4248 range->fwnode = fwnode;
4249 range->size = size;
4250 range->hw_start = addr;
4251 range->flags = LOGIC_PIO_CPU_MMIO;
4252
4253 ret = logic_pio_register_range(range);
4254 if (ret)
4255 kfree(range);
4256
4257 /* Ignore duplicates due to deferred probing */
4258 if (ret == -EEXIST)
4259 ret = 0;
4260 #endif
4261
4262 return ret;
4263 }
4264
pci_pio_to_address(unsigned long pio)4265 phys_addr_t pci_pio_to_address(unsigned long pio)
4266 {
4267 #ifdef PCI_IOBASE
4268 if (pio < MMIO_UPPER_LIMIT)
4269 return logic_pio_to_hwaddr(pio);
4270 #endif
4271
4272 return (phys_addr_t) OF_BAD_ADDR;
4273 }
4274 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4275
pci_address_to_pio(phys_addr_t address)4276 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4277 {
4278 #ifdef PCI_IOBASE
4279 return logic_pio_trans_cpuaddr(address);
4280 #else
4281 if (address > IO_SPACE_LIMIT)
4282 return (unsigned long)-1;
4283
4284 return (unsigned long) address;
4285 #endif
4286 }
4287
4288 /**
4289 * pci_remap_iospace - Remap the memory mapped I/O space
4290 * @res: Resource describing the I/O space
4291 * @phys_addr: physical address of range to be mapped
4292 *
4293 * Remap the memory mapped I/O space described by the @res and the CPU
4294 * physical address @phys_addr into virtual address space. Only
4295 * architectures that have memory mapped IO functions defined (and the
4296 * PCI_IOBASE value defined) should call this function.
4297 */
4298 #ifndef pci_remap_iospace
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4299 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4300 {
4301 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4302 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4303
4304 if (!(res->flags & IORESOURCE_IO))
4305 return -EINVAL;
4306
4307 if (res->end > IO_SPACE_LIMIT)
4308 return -EINVAL;
4309
4310 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4311 pgprot_device(PAGE_KERNEL));
4312 #else
4313 /*
4314 * This architecture does not have memory mapped I/O space,
4315 * so this function should never be called
4316 */
4317 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4318 return -ENODEV;
4319 #endif
4320 }
4321 EXPORT_SYMBOL(pci_remap_iospace);
4322 #endif
4323
4324 /**
4325 * pci_unmap_iospace - Unmap the memory mapped I/O space
4326 * @res: resource to be unmapped
4327 *
4328 * Unmap the CPU virtual address @res from virtual address space. Only
4329 * architectures that have memory mapped IO functions defined (and the
4330 * PCI_IOBASE value defined) should call this function.
4331 */
pci_unmap_iospace(struct resource * res)4332 void pci_unmap_iospace(struct resource *res)
4333 {
4334 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4335 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4336
4337 vunmap_range(vaddr, vaddr + resource_size(res));
4338 #endif
4339 }
4340 EXPORT_SYMBOL(pci_unmap_iospace);
4341
devm_pci_unmap_iospace(struct device * dev,void * ptr)4342 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4343 {
4344 struct resource **res = ptr;
4345
4346 pci_unmap_iospace(*res);
4347 }
4348
4349 /**
4350 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4351 * @dev: Generic device to remap IO address for
4352 * @res: Resource describing the I/O space
4353 * @phys_addr: physical address of range to be mapped
4354 *
4355 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4356 * detach.
4357 */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4358 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4359 phys_addr_t phys_addr)
4360 {
4361 const struct resource **ptr;
4362 int error;
4363
4364 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4365 if (!ptr)
4366 return -ENOMEM;
4367
4368 error = pci_remap_iospace(res, phys_addr);
4369 if (error) {
4370 devres_free(ptr);
4371 } else {
4372 *ptr = res;
4373 devres_add(dev, ptr);
4374 }
4375
4376 return error;
4377 }
4378 EXPORT_SYMBOL(devm_pci_remap_iospace);
4379
4380 /**
4381 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4382 * @dev: Generic device to remap IO address for
4383 * @offset: Resource address to map
4384 * @size: Size of map
4385 *
4386 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4387 * detach.
4388 */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4389 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4390 resource_size_t offset,
4391 resource_size_t size)
4392 {
4393 void __iomem **ptr, *addr;
4394
4395 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4396 if (!ptr)
4397 return NULL;
4398
4399 addr = pci_remap_cfgspace(offset, size);
4400 if (addr) {
4401 *ptr = addr;
4402 devres_add(dev, ptr);
4403 } else
4404 devres_free(ptr);
4405
4406 return addr;
4407 }
4408 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4409
4410 /**
4411 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4412 * @dev: generic device to handle the resource for
4413 * @res: configuration space resource to be handled
4414 *
4415 * Checks that a resource is a valid memory region, requests the memory
4416 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4417 * proper PCI configuration space memory attributes are guaranteed.
4418 *
4419 * All operations are managed and will be undone on driver detach.
4420 *
4421 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4422 * on failure. Usage example::
4423 *
4424 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4425 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4426 * if (IS_ERR(base))
4427 * return PTR_ERR(base);
4428 */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4429 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4430 struct resource *res)
4431 {
4432 resource_size_t size;
4433 const char *name;
4434 void __iomem *dest_ptr;
4435
4436 BUG_ON(!dev);
4437
4438 if (!res || resource_type(res) != IORESOURCE_MEM) {
4439 dev_err(dev, "invalid resource\n");
4440 return IOMEM_ERR_PTR(-EINVAL);
4441 }
4442
4443 size = resource_size(res);
4444
4445 if (res->name)
4446 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4447 res->name);
4448 else
4449 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4450 if (!name)
4451 return IOMEM_ERR_PTR(-ENOMEM);
4452
4453 if (!devm_request_mem_region(dev, res->start, size, name)) {
4454 dev_err(dev, "can't request region for resource %pR\n", res);
4455 return IOMEM_ERR_PTR(-EBUSY);
4456 }
4457
4458 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4459 if (!dest_ptr) {
4460 dev_err(dev, "ioremap failed for resource %pR\n", res);
4461 devm_release_mem_region(dev, res->start, size);
4462 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4463 }
4464
4465 return dest_ptr;
4466 }
4467 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4468
__pci_set_master(struct pci_dev * dev,bool enable)4469 static void __pci_set_master(struct pci_dev *dev, bool enable)
4470 {
4471 u16 old_cmd, cmd;
4472
4473 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4474 if (enable)
4475 cmd = old_cmd | PCI_COMMAND_MASTER;
4476 else
4477 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4478 if (cmd != old_cmd) {
4479 pci_dbg(dev, "%s bus mastering\n",
4480 enable ? "enabling" : "disabling");
4481 pci_write_config_word(dev, PCI_COMMAND, cmd);
4482 }
4483 dev->is_busmaster = enable;
4484 }
4485
4486 /**
4487 * pcibios_setup - process "pci=" kernel boot arguments
4488 * @str: string used to pass in "pci=" kernel boot arguments
4489 *
4490 * Process kernel boot arguments. This is the default implementation.
4491 * Architecture specific implementations can override this as necessary.
4492 */
pcibios_setup(char * str)4493 char * __weak __init pcibios_setup(char *str)
4494 {
4495 return str;
4496 }
4497
4498 /**
4499 * pcibios_set_master - enable PCI bus-mastering for device dev
4500 * @dev: the PCI device to enable
4501 *
4502 * Enables PCI bus-mastering for the device. This is the default
4503 * implementation. Architecture specific implementations can override
4504 * this if necessary.
4505 */
pcibios_set_master(struct pci_dev * dev)4506 void __weak pcibios_set_master(struct pci_dev *dev)
4507 {
4508 u8 lat;
4509
4510 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4511 if (pci_is_pcie(dev))
4512 return;
4513
4514 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4515 if (lat < 16)
4516 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4517 else if (lat > pcibios_max_latency)
4518 lat = pcibios_max_latency;
4519 else
4520 return;
4521
4522 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4523 }
4524
4525 /**
4526 * pci_set_master - enables bus-mastering for device dev
4527 * @dev: the PCI device to enable
4528 *
4529 * Enables bus-mastering on the device and calls pcibios_set_master()
4530 * to do the needed arch specific settings.
4531 */
pci_set_master(struct pci_dev * dev)4532 void pci_set_master(struct pci_dev *dev)
4533 {
4534 __pci_set_master(dev, true);
4535 pcibios_set_master(dev);
4536 }
4537 EXPORT_SYMBOL(pci_set_master);
4538
4539 /**
4540 * pci_clear_master - disables bus-mastering for device dev
4541 * @dev: the PCI device to disable
4542 */
pci_clear_master(struct pci_dev * dev)4543 void pci_clear_master(struct pci_dev *dev)
4544 {
4545 __pci_set_master(dev, false);
4546 }
4547 EXPORT_SYMBOL(pci_clear_master);
4548
4549 /**
4550 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4551 * @dev: the PCI device for which MWI is to be enabled
4552 *
4553 * Helper function for pci_set_mwi.
4554 * Originally copied from drivers/net/acenic.c.
4555 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4556 *
4557 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4558 */
pci_set_cacheline_size(struct pci_dev * dev)4559 int pci_set_cacheline_size(struct pci_dev *dev)
4560 {
4561 u8 cacheline_size;
4562
4563 if (!pci_cache_line_size)
4564 return -EINVAL;
4565
4566 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4567 equal to or multiple of the right value. */
4568 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4569 if (cacheline_size >= pci_cache_line_size &&
4570 (cacheline_size % pci_cache_line_size) == 0)
4571 return 0;
4572
4573 /* Write the correct value. */
4574 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4575 /* Read it back. */
4576 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4577 if (cacheline_size == pci_cache_line_size)
4578 return 0;
4579
4580 pci_dbg(dev, "cache line size of %d is not supported\n",
4581 pci_cache_line_size << 2);
4582
4583 return -EINVAL;
4584 }
4585 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4586
4587 /**
4588 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4589 * @dev: the PCI device for which MWI is enabled
4590 *
4591 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4592 *
4593 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4594 */
pci_set_mwi(struct pci_dev * dev)4595 int pci_set_mwi(struct pci_dev *dev)
4596 {
4597 #ifdef PCI_DISABLE_MWI
4598 return 0;
4599 #else
4600 int rc;
4601 u16 cmd;
4602
4603 rc = pci_set_cacheline_size(dev);
4604 if (rc)
4605 return rc;
4606
4607 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4608 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4609 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4610 cmd |= PCI_COMMAND_INVALIDATE;
4611 pci_write_config_word(dev, PCI_COMMAND, cmd);
4612 }
4613 return 0;
4614 #endif
4615 }
4616 EXPORT_SYMBOL(pci_set_mwi);
4617
4618 /**
4619 * pcim_set_mwi - a device-managed pci_set_mwi()
4620 * @dev: the PCI device for which MWI is enabled
4621 *
4622 * Managed pci_set_mwi().
4623 *
4624 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4625 */
pcim_set_mwi(struct pci_dev * dev)4626 int pcim_set_mwi(struct pci_dev *dev)
4627 {
4628 struct pci_devres *dr;
4629
4630 dr = find_pci_dr(dev);
4631 if (!dr)
4632 return -ENOMEM;
4633
4634 dr->mwi = 1;
4635 return pci_set_mwi(dev);
4636 }
4637 EXPORT_SYMBOL(pcim_set_mwi);
4638
4639 /**
4640 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4641 * @dev: the PCI device for which MWI is enabled
4642 *
4643 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4644 * Callers are not required to check the return value.
4645 *
4646 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4647 */
pci_try_set_mwi(struct pci_dev * dev)4648 int pci_try_set_mwi(struct pci_dev *dev)
4649 {
4650 #ifdef PCI_DISABLE_MWI
4651 return 0;
4652 #else
4653 return pci_set_mwi(dev);
4654 #endif
4655 }
4656 EXPORT_SYMBOL(pci_try_set_mwi);
4657
4658 /**
4659 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4660 * @dev: the PCI device to disable
4661 *
4662 * Disables PCI Memory-Write-Invalidate transaction on the device
4663 */
pci_clear_mwi(struct pci_dev * dev)4664 void pci_clear_mwi(struct pci_dev *dev)
4665 {
4666 #ifndef PCI_DISABLE_MWI
4667 u16 cmd;
4668
4669 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4670 if (cmd & PCI_COMMAND_INVALIDATE) {
4671 cmd &= ~PCI_COMMAND_INVALIDATE;
4672 pci_write_config_word(dev, PCI_COMMAND, cmd);
4673 }
4674 #endif
4675 }
4676 EXPORT_SYMBOL(pci_clear_mwi);
4677
4678 /**
4679 * pci_disable_parity - disable parity checking for device
4680 * @dev: the PCI device to operate on
4681 *
4682 * Disable parity checking for device @dev
4683 */
pci_disable_parity(struct pci_dev * dev)4684 void pci_disable_parity(struct pci_dev *dev)
4685 {
4686 u16 cmd;
4687
4688 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4689 if (cmd & PCI_COMMAND_PARITY) {
4690 cmd &= ~PCI_COMMAND_PARITY;
4691 pci_write_config_word(dev, PCI_COMMAND, cmd);
4692 }
4693 }
4694
4695 /**
4696 * pci_intx - enables/disables PCI INTx for device dev
4697 * @pdev: the PCI device to operate on
4698 * @enable: boolean: whether to enable or disable PCI INTx
4699 *
4700 * Enables/disables PCI INTx for device @pdev
4701 */
pci_intx(struct pci_dev * pdev,int enable)4702 void pci_intx(struct pci_dev *pdev, int enable)
4703 {
4704 u16 pci_command, new;
4705
4706 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4707
4708 if (enable)
4709 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4710 else
4711 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4712
4713 if (new != pci_command) {
4714 struct pci_devres *dr;
4715
4716 pci_write_config_word(pdev, PCI_COMMAND, new);
4717
4718 dr = find_pci_dr(pdev);
4719 if (dr && !dr->restore_intx) {
4720 dr->restore_intx = 1;
4721 dr->orig_intx = !enable;
4722 }
4723 }
4724 }
4725 EXPORT_SYMBOL_GPL(pci_intx);
4726
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4727 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4728 {
4729 struct pci_bus *bus = dev->bus;
4730 bool mask_updated = true;
4731 u32 cmd_status_dword;
4732 u16 origcmd, newcmd;
4733 unsigned long flags;
4734 bool irq_pending;
4735
4736 /*
4737 * We do a single dword read to retrieve both command and status.
4738 * Document assumptions that make this possible.
4739 */
4740 BUILD_BUG_ON(PCI_COMMAND % 4);
4741 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4742
4743 raw_spin_lock_irqsave(&pci_lock, flags);
4744
4745 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4746
4747 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4748
4749 /*
4750 * Check interrupt status register to see whether our device
4751 * triggered the interrupt (when masking) or the next IRQ is
4752 * already pending (when unmasking).
4753 */
4754 if (mask != irq_pending) {
4755 mask_updated = false;
4756 goto done;
4757 }
4758
4759 origcmd = cmd_status_dword;
4760 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4761 if (mask)
4762 newcmd |= PCI_COMMAND_INTX_DISABLE;
4763 if (newcmd != origcmd)
4764 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4765
4766 done:
4767 raw_spin_unlock_irqrestore(&pci_lock, flags);
4768
4769 return mask_updated;
4770 }
4771
4772 /**
4773 * pci_check_and_mask_intx - mask INTx on pending interrupt
4774 * @dev: the PCI device to operate on
4775 *
4776 * Check if the device dev has its INTx line asserted, mask it and return
4777 * true in that case. False is returned if no interrupt was pending.
4778 */
pci_check_and_mask_intx(struct pci_dev * dev)4779 bool pci_check_and_mask_intx(struct pci_dev *dev)
4780 {
4781 return pci_check_and_set_intx_mask(dev, true);
4782 }
4783 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4784
4785 /**
4786 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4787 * @dev: the PCI device to operate on
4788 *
4789 * Check if the device dev has its INTx line asserted, unmask it if not and
4790 * return true. False is returned and the mask remains active if there was
4791 * still an interrupt pending.
4792 */
pci_check_and_unmask_intx(struct pci_dev * dev)4793 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4794 {
4795 return pci_check_and_set_intx_mask(dev, false);
4796 }
4797 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4798
4799 /**
4800 * pci_wait_for_pending_transaction - wait for pending transaction
4801 * @dev: the PCI device to operate on
4802 *
4803 * Return 0 if transaction is pending 1 otherwise.
4804 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4805 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4806 {
4807 if (!pci_is_pcie(dev))
4808 return 1;
4809
4810 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4811 PCI_EXP_DEVSTA_TRPND);
4812 }
4813 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4814
4815 /**
4816 * pcie_flr - initiate a PCIe function level reset
4817 * @dev: device to reset
4818 *
4819 * Initiate a function level reset unconditionally on @dev without
4820 * checking any flags and DEVCAP
4821 */
pcie_flr(struct pci_dev * dev)4822 int pcie_flr(struct pci_dev *dev)
4823 {
4824 if (!pci_wait_for_pending_transaction(dev))
4825 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4826
4827 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4828
4829 if (dev->imm_ready)
4830 return 0;
4831
4832 /*
4833 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4834 * 100ms, but may silently discard requests while the FLR is in
4835 * progress. Wait 100ms before trying to access the device.
4836 */
4837 msleep(100);
4838
4839 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4840 }
4841 EXPORT_SYMBOL_GPL(pcie_flr);
4842
4843 /**
4844 * pcie_reset_flr - initiate a PCIe function level reset
4845 * @dev: device to reset
4846 * @probe: if true, return 0 if device can be reset this way
4847 *
4848 * Initiate a function level reset on @dev.
4849 */
pcie_reset_flr(struct pci_dev * dev,bool probe)4850 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4851 {
4852 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4853 return -ENOTTY;
4854
4855 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4856 return -ENOTTY;
4857
4858 if (probe)
4859 return 0;
4860
4861 return pcie_flr(dev);
4862 }
4863 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4864
pci_af_flr(struct pci_dev * dev,bool probe)4865 static int pci_af_flr(struct pci_dev *dev, bool probe)
4866 {
4867 int pos;
4868 u8 cap;
4869
4870 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4871 if (!pos)
4872 return -ENOTTY;
4873
4874 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4875 return -ENOTTY;
4876
4877 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4878 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4879 return -ENOTTY;
4880
4881 if (probe)
4882 return 0;
4883
4884 /*
4885 * Wait for Transaction Pending bit to clear. A word-aligned test
4886 * is used, so we use the control offset rather than status and shift
4887 * the test bit to match.
4888 */
4889 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4890 PCI_AF_STATUS_TP << 8))
4891 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4892
4893 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4894
4895 if (dev->imm_ready)
4896 return 0;
4897
4898 /*
4899 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4900 * updated 27 July 2006; a device must complete an FLR within
4901 * 100ms, but may silently discard requests while the FLR is in
4902 * progress. Wait 100ms before trying to access the device.
4903 */
4904 msleep(100);
4905
4906 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4907 }
4908
4909 /**
4910 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4911 * @dev: Device to reset.
4912 * @probe: if true, return 0 if the device can be reset this way.
4913 *
4914 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4915 * unset, it will be reinitialized internally when going from PCI_D3hot to
4916 * PCI_D0. If that's the case and the device is not in a low-power state
4917 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4918 *
4919 * NOTE: This causes the caller to sleep for twice the device power transition
4920 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4921 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4922 * Moreover, only devices in D0 can be reset by this function.
4923 */
pci_pm_reset(struct pci_dev * dev,bool probe)4924 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4925 {
4926 u16 csr;
4927
4928 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4929 return -ENOTTY;
4930
4931 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4932 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4933 return -ENOTTY;
4934
4935 if (probe)
4936 return 0;
4937
4938 if (dev->current_state != PCI_D0)
4939 return -EINVAL;
4940
4941 csr &= ~PCI_PM_CTRL_STATE_MASK;
4942 csr |= PCI_D3hot;
4943 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4944 pci_dev_d3_sleep(dev);
4945
4946 csr &= ~PCI_PM_CTRL_STATE_MASK;
4947 csr |= PCI_D0;
4948 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4949 pci_dev_d3_sleep(dev);
4950
4951 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4952 }
4953
4954 /**
4955 * pcie_wait_for_link_status - Wait for link status change
4956 * @pdev: Device whose link to wait for.
4957 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4958 * @active: Waiting for active or inactive?
4959 *
4960 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4961 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4962 */
pcie_wait_for_link_status(struct pci_dev * pdev,bool use_lt,bool active)4963 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4964 bool use_lt, bool active)
4965 {
4966 u16 lnksta_mask, lnksta_match;
4967 unsigned long end_jiffies;
4968 u16 lnksta;
4969
4970 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4971 lnksta_match = active ? lnksta_mask : 0;
4972
4973 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4974 do {
4975 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4976 if ((lnksta & lnksta_mask) == lnksta_match)
4977 return 0;
4978 msleep(1);
4979 } while (time_before(jiffies, end_jiffies));
4980
4981 return -ETIMEDOUT;
4982 }
4983
4984 /**
4985 * pcie_retrain_link - Request a link retrain and wait for it to complete
4986 * @pdev: Device whose link to retrain.
4987 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4988 *
4989 * Retrain completion status is retrieved from the Link Status Register
4990 * according to @use_lt. It is not verified whether the use of the DLLLA
4991 * bit is valid.
4992 *
4993 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4994 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4995 */
pcie_retrain_link(struct pci_dev * pdev,bool use_lt)4996 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4997 {
4998 int rc;
4999
5000 /*
5001 * Ensure the updated LNKCTL parameters are used during link
5002 * training by checking that there is no ongoing link training to
5003 * avoid LTSSM race as recommended in Implementation Note at the
5004 * end of PCIe r6.0.1 sec 7.5.3.7.
5005 */
5006 rc = pcie_wait_for_link_status(pdev, true, false);
5007 if (rc)
5008 return rc;
5009
5010 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5011 if (pdev->clear_retrain_link) {
5012 /*
5013 * Due to an erratum in some devices the Retrain Link bit
5014 * needs to be cleared again manually to allow the link
5015 * training to succeed.
5016 */
5017 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5018 }
5019
5020 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5021
5022 /*
5023 * Clear LBMS after a manual retrain so that the bit can be used
5024 * to track link speed or width changes made by hardware itself
5025 * in attempt to correct unreliable link operation.
5026 */
5027 pcie_capability_write_word(pdev, PCI_EXP_LNKSTA, PCI_EXP_LNKSTA_LBMS);
5028 return rc;
5029 }
5030
5031 /**
5032 * pcie_wait_for_link_delay - Wait until link is active or inactive
5033 * @pdev: Bridge device
5034 * @active: waiting for active or inactive?
5035 * @delay: Delay to wait after link has become active (in ms)
5036 *
5037 * Use this to wait till link becomes active or inactive.
5038 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)5039 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
5040 int delay)
5041 {
5042 int rc;
5043
5044 /*
5045 * Some controllers might not implement link active reporting. In this
5046 * case, we wait for 1000 ms + any delay requested by the caller.
5047 */
5048 if (!pdev->link_active_reporting) {
5049 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
5050 return true;
5051 }
5052
5053 /*
5054 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5055 * after which we should expect an link active if the reset was
5056 * successful. If so, software must wait a minimum 100ms before sending
5057 * configuration requests to devices downstream this port.
5058 *
5059 * If the link fails to activate, either the device was physically
5060 * removed or the link is permanently failed.
5061 */
5062 if (active)
5063 msleep(20);
5064 rc = pcie_wait_for_link_status(pdev, false, active);
5065 if (active) {
5066 if (rc)
5067 rc = pcie_failed_link_retrain(pdev);
5068 if (rc)
5069 return false;
5070
5071 msleep(delay);
5072 return true;
5073 }
5074
5075 if (rc)
5076 return false;
5077
5078 return true;
5079 }
5080
5081 /**
5082 * pcie_wait_for_link - Wait until link is active or inactive
5083 * @pdev: Bridge device
5084 * @active: waiting for active or inactive?
5085 *
5086 * Use this to wait till link becomes active or inactive.
5087 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)5088 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5089 {
5090 return pcie_wait_for_link_delay(pdev, active, 100);
5091 }
5092
5093 /*
5094 * Find maximum D3cold delay required by all the devices on the bus. The
5095 * spec says 100 ms, but firmware can lower it and we allow drivers to
5096 * increase it as well.
5097 *
5098 * Called with @pci_bus_sem locked for reading.
5099 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)5100 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5101 {
5102 const struct pci_dev *pdev;
5103 int min_delay = 100;
5104 int max_delay = 0;
5105
5106 list_for_each_entry(pdev, &bus->devices, bus_list) {
5107 if (pdev->d3cold_delay < min_delay)
5108 min_delay = pdev->d3cold_delay;
5109 if (pdev->d3cold_delay > max_delay)
5110 max_delay = pdev->d3cold_delay;
5111 }
5112
5113 return max(min_delay, max_delay);
5114 }
5115
5116 /**
5117 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5118 * @dev: PCI bridge
5119 * @reset_type: reset type in human-readable form
5120 *
5121 * Handle necessary delays before access to the devices on the secondary
5122 * side of the bridge are permitted after D3cold to D0 transition
5123 * or Conventional Reset.
5124 *
5125 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5126 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5127 * 4.3.2.
5128 *
5129 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5130 * failed to become accessible.
5131 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type)5132 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5133 {
5134 struct pci_dev *child __free(pci_dev_put) = NULL;
5135 int delay;
5136
5137 if (pci_dev_is_disconnected(dev))
5138 return 0;
5139
5140 if (!pci_is_bridge(dev))
5141 return 0;
5142
5143 down_read(&pci_bus_sem);
5144
5145 /*
5146 * We only deal with devices that are present currently on the bus.
5147 * For any hot-added devices the access delay is handled in pciehp
5148 * board_added(). In case of ACPI hotplug the firmware is expected
5149 * to configure the devices before OS is notified.
5150 */
5151 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5152 up_read(&pci_bus_sem);
5153 return 0;
5154 }
5155
5156 /* Take d3cold_delay requirements into account */
5157 delay = pci_bus_max_d3cold_delay(dev->subordinate);
5158 if (!delay) {
5159 up_read(&pci_bus_sem);
5160 return 0;
5161 }
5162
5163 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
5164 struct pci_dev, bus_list));
5165 up_read(&pci_bus_sem);
5166
5167 /*
5168 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5169 * accessing the device after reset (that is 1000 ms + 100 ms).
5170 */
5171 if (!pci_is_pcie(dev)) {
5172 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5173 msleep(1000 + delay);
5174 return 0;
5175 }
5176
5177 /*
5178 * For PCIe downstream and root ports that do not support speeds
5179 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5180 * speeds (gen3) we need to wait first for the data link layer to
5181 * become active.
5182 *
5183 * However, 100 ms is the minimum and the PCIe spec says the
5184 * software must allow at least 1s before it can determine that the
5185 * device that did not respond is a broken device. Also device can
5186 * take longer than that to respond if it indicates so through Request
5187 * Retry Status completions.
5188 *
5189 * Therefore we wait for 100 ms and check for the device presence
5190 * until the timeout expires.
5191 */
5192 if (!pcie_downstream_port(dev))
5193 return 0;
5194
5195 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5196 u16 status;
5197
5198 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5199 msleep(delay);
5200
5201 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5202 return 0;
5203
5204 /*
5205 * If the port supports active link reporting we now check
5206 * whether the link is active and if not bail out early with
5207 * the assumption that the device is not present anymore.
5208 */
5209 if (!dev->link_active_reporting)
5210 return -ENOTTY;
5211
5212 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5213 if (!(status & PCI_EXP_LNKSTA_DLLLA))
5214 return -ENOTTY;
5215
5216 return pci_dev_wait(child, reset_type,
5217 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5218 }
5219
5220 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5221 delay);
5222 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5223 /* Did not train, no need to wait any further */
5224 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5225 return -ENOTTY;
5226 }
5227
5228 return pci_dev_wait(child, reset_type,
5229 PCIE_RESET_READY_POLL_MS - delay);
5230 }
5231
pci_reset_secondary_bus(struct pci_dev * dev)5232 void pci_reset_secondary_bus(struct pci_dev *dev)
5233 {
5234 u16 ctrl;
5235
5236 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5237 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5238 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5239
5240 /*
5241 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5242 * this to 2ms to ensure that we meet the minimum requirement.
5243 */
5244 msleep(2);
5245
5246 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5247 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5248 }
5249
pcibios_reset_secondary_bus(struct pci_dev * dev)5250 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5251 {
5252 pci_reset_secondary_bus(dev);
5253 }
5254
5255 /**
5256 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5257 * @dev: Bridge device
5258 *
5259 * Use the bridge control register to assert reset on the secondary bus.
5260 * Devices on the secondary bus are left in power-on state.
5261 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)5262 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5263 {
5264 pcibios_reset_secondary_bus(dev);
5265
5266 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5267 }
5268 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5269
pci_parent_bus_reset(struct pci_dev * dev,bool probe)5270 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5271 {
5272 struct pci_dev *pdev;
5273
5274 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5275 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5276 return -ENOTTY;
5277
5278 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5279 if (pdev != dev)
5280 return -ENOTTY;
5281
5282 if (probe)
5283 return 0;
5284
5285 return pci_bridge_secondary_bus_reset(dev->bus->self);
5286 }
5287
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5288 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5289 {
5290 int rc = -ENOTTY;
5291
5292 if (!hotplug || !try_module_get(hotplug->owner))
5293 return rc;
5294
5295 if (hotplug->ops->reset_slot)
5296 rc = hotplug->ops->reset_slot(hotplug, probe);
5297
5298 module_put(hotplug->owner);
5299
5300 return rc;
5301 }
5302
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5303 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5304 {
5305 if (dev->multifunction || dev->subordinate || !dev->slot ||
5306 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5307 return -ENOTTY;
5308
5309 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5310 }
5311
pci_reset_bus_function(struct pci_dev * dev,bool probe)5312 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5313 {
5314 int rc;
5315
5316 rc = pci_dev_reset_slot_function(dev, probe);
5317 if (rc != -ENOTTY)
5318 return rc;
5319 return pci_parent_bus_reset(dev, probe);
5320 }
5321
pci_dev_lock(struct pci_dev * dev)5322 void pci_dev_lock(struct pci_dev *dev)
5323 {
5324 /* block PM suspend, driver probe, etc. */
5325 device_lock(&dev->dev);
5326 pci_cfg_access_lock(dev);
5327 }
5328 EXPORT_SYMBOL_GPL(pci_dev_lock);
5329
5330 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5331 int pci_dev_trylock(struct pci_dev *dev)
5332 {
5333 if (device_trylock(&dev->dev)) {
5334 if (pci_cfg_access_trylock(dev))
5335 return 1;
5336 device_unlock(&dev->dev);
5337 }
5338
5339 return 0;
5340 }
5341 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5342
pci_dev_unlock(struct pci_dev * dev)5343 void pci_dev_unlock(struct pci_dev *dev)
5344 {
5345 pci_cfg_access_unlock(dev);
5346 device_unlock(&dev->dev);
5347 }
5348 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5349
pci_dev_save_and_disable(struct pci_dev * dev)5350 static void pci_dev_save_and_disable(struct pci_dev *dev)
5351 {
5352 const struct pci_error_handlers *err_handler =
5353 dev->driver ? dev->driver->err_handler : NULL;
5354
5355 /*
5356 * dev->driver->err_handler->reset_prepare() is protected against
5357 * races with ->remove() by the device lock, which must be held by
5358 * the caller.
5359 */
5360 if (err_handler && err_handler->reset_prepare)
5361 err_handler->reset_prepare(dev);
5362
5363 /*
5364 * Wake-up device prior to save. PM registers default to D0 after
5365 * reset and a simple register restore doesn't reliably return
5366 * to a non-D0 state anyway.
5367 */
5368 pci_set_power_state(dev, PCI_D0);
5369
5370 pci_save_state(dev);
5371 /*
5372 * Disable the device by clearing the Command register, except for
5373 * INTx-disable which is set. This not only disables MMIO and I/O port
5374 * BARs, but also prevents the device from being Bus Master, preventing
5375 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5376 * compliant devices, INTx-disable prevents legacy interrupts.
5377 */
5378 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5379 }
5380
pci_dev_restore(struct pci_dev * dev)5381 static void pci_dev_restore(struct pci_dev *dev)
5382 {
5383 const struct pci_error_handlers *err_handler =
5384 dev->driver ? dev->driver->err_handler : NULL;
5385
5386 pci_restore_state(dev);
5387
5388 /*
5389 * dev->driver->err_handler->reset_done() is protected against
5390 * races with ->remove() by the device lock, which must be held by
5391 * the caller.
5392 */
5393 if (err_handler && err_handler->reset_done)
5394 err_handler->reset_done(dev);
5395 }
5396
5397 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5398 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5399 { },
5400 { pci_dev_specific_reset, .name = "device_specific" },
5401 { pci_dev_acpi_reset, .name = "acpi" },
5402 { pcie_reset_flr, .name = "flr" },
5403 { pci_af_flr, .name = "af_flr" },
5404 { pci_pm_reset, .name = "pm" },
5405 { pci_reset_bus_function, .name = "bus" },
5406 };
5407
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5408 static ssize_t reset_method_show(struct device *dev,
5409 struct device_attribute *attr, char *buf)
5410 {
5411 struct pci_dev *pdev = to_pci_dev(dev);
5412 ssize_t len = 0;
5413 int i, m;
5414
5415 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5416 m = pdev->reset_methods[i];
5417 if (!m)
5418 break;
5419
5420 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5421 pci_reset_fn_methods[m].name);
5422 }
5423
5424 if (len)
5425 len += sysfs_emit_at(buf, len, "\n");
5426
5427 return len;
5428 }
5429
reset_method_lookup(const char * name)5430 static int reset_method_lookup(const char *name)
5431 {
5432 int m;
5433
5434 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5435 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5436 return m;
5437 }
5438
5439 return 0; /* not found */
5440 }
5441
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5442 static ssize_t reset_method_store(struct device *dev,
5443 struct device_attribute *attr,
5444 const char *buf, size_t count)
5445 {
5446 struct pci_dev *pdev = to_pci_dev(dev);
5447 char *options, *name;
5448 int m, n;
5449 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5450
5451 if (sysfs_streq(buf, "")) {
5452 pdev->reset_methods[0] = 0;
5453 pci_warn(pdev, "All device reset methods disabled by user");
5454 return count;
5455 }
5456
5457 if (sysfs_streq(buf, "default")) {
5458 pci_init_reset_methods(pdev);
5459 return count;
5460 }
5461
5462 options = kstrndup(buf, count, GFP_KERNEL);
5463 if (!options)
5464 return -ENOMEM;
5465
5466 n = 0;
5467 while ((name = strsep(&options, " ")) != NULL) {
5468 if (sysfs_streq(name, ""))
5469 continue;
5470
5471 name = strim(name);
5472
5473 m = reset_method_lookup(name);
5474 if (!m) {
5475 pci_err(pdev, "Invalid reset method '%s'", name);
5476 goto error;
5477 }
5478
5479 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5480 pci_err(pdev, "Unsupported reset method '%s'", name);
5481 goto error;
5482 }
5483
5484 if (n == PCI_NUM_RESET_METHODS - 1) {
5485 pci_err(pdev, "Too many reset methods\n");
5486 goto error;
5487 }
5488
5489 reset_methods[n++] = m;
5490 }
5491
5492 reset_methods[n] = 0;
5493
5494 /* Warn if dev-specific supported but not highest priority */
5495 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5496 reset_methods[0] != 1)
5497 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5498 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5499 kfree(options);
5500 return count;
5501
5502 error:
5503 /* Leave previous methods unchanged */
5504 kfree(options);
5505 return -EINVAL;
5506 }
5507 static DEVICE_ATTR_RW(reset_method);
5508
5509 static struct attribute *pci_dev_reset_method_attrs[] = {
5510 &dev_attr_reset_method.attr,
5511 NULL,
5512 };
5513
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5514 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5515 struct attribute *a, int n)
5516 {
5517 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5518
5519 if (!pci_reset_supported(pdev))
5520 return 0;
5521
5522 return a->mode;
5523 }
5524
5525 const struct attribute_group pci_dev_reset_method_attr_group = {
5526 .attrs = pci_dev_reset_method_attrs,
5527 .is_visible = pci_dev_reset_method_attr_is_visible,
5528 };
5529
5530 /**
5531 * __pci_reset_function_locked - reset a PCI device function while holding
5532 * the @dev mutex lock.
5533 * @dev: PCI device to reset
5534 *
5535 * Some devices allow an individual function to be reset without affecting
5536 * other functions in the same device. The PCI device must be responsive
5537 * to PCI config space in order to use this function.
5538 *
5539 * The device function is presumed to be unused and the caller is holding
5540 * the device mutex lock when this function is called.
5541 *
5542 * Resetting the device will make the contents of PCI configuration space
5543 * random, so any caller of this must be prepared to reinitialise the
5544 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5545 * etc.
5546 *
5547 * Returns 0 if the device function was successfully reset or negative if the
5548 * device doesn't support resetting a single function.
5549 */
__pci_reset_function_locked(struct pci_dev * dev)5550 int __pci_reset_function_locked(struct pci_dev *dev)
5551 {
5552 int i, m, rc;
5553
5554 might_sleep();
5555
5556 /*
5557 * A reset method returns -ENOTTY if it doesn't support this device and
5558 * we should try the next method.
5559 *
5560 * If it returns 0 (success), we're finished. If it returns any other
5561 * error, we're also finished: this indicates that further reset
5562 * mechanisms might be broken on the device.
5563 */
5564 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5565 m = dev->reset_methods[i];
5566 if (!m)
5567 return -ENOTTY;
5568
5569 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5570 if (!rc)
5571 return 0;
5572 if (rc != -ENOTTY)
5573 return rc;
5574 }
5575
5576 return -ENOTTY;
5577 }
5578 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5579
5580 /**
5581 * pci_init_reset_methods - check whether device can be safely reset
5582 * and store supported reset mechanisms.
5583 * @dev: PCI device to check for reset mechanisms
5584 *
5585 * Some devices allow an individual function to be reset without affecting
5586 * other functions in the same device. The PCI device must be in D0-D3hot
5587 * state.
5588 *
5589 * Stores reset mechanisms supported by device in reset_methods byte array
5590 * which is a member of struct pci_dev.
5591 */
pci_init_reset_methods(struct pci_dev * dev)5592 void pci_init_reset_methods(struct pci_dev *dev)
5593 {
5594 int m, i, rc;
5595
5596 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5597
5598 might_sleep();
5599
5600 i = 0;
5601 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5602 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5603 if (!rc)
5604 dev->reset_methods[i++] = m;
5605 else if (rc != -ENOTTY)
5606 break;
5607 }
5608
5609 dev->reset_methods[i] = 0;
5610 }
5611
5612 /**
5613 * pci_reset_function - quiesce and reset a PCI device function
5614 * @dev: PCI device to reset
5615 *
5616 * Some devices allow an individual function to be reset without affecting
5617 * other functions in the same device. The PCI device must be responsive
5618 * to PCI config space in order to use this function.
5619 *
5620 * This function does not just reset the PCI portion of a device, but
5621 * clears all the state associated with the device. This function differs
5622 * from __pci_reset_function_locked() in that it saves and restores device state
5623 * over the reset and takes the PCI device lock.
5624 *
5625 * Returns 0 if the device function was successfully reset or negative if the
5626 * device doesn't support resetting a single function.
5627 */
pci_reset_function(struct pci_dev * dev)5628 int pci_reset_function(struct pci_dev *dev)
5629 {
5630 int rc;
5631
5632 if (!pci_reset_supported(dev))
5633 return -ENOTTY;
5634
5635 pci_dev_lock(dev);
5636 pci_dev_save_and_disable(dev);
5637
5638 rc = __pci_reset_function_locked(dev);
5639
5640 pci_dev_restore(dev);
5641 pci_dev_unlock(dev);
5642
5643 return rc;
5644 }
5645 EXPORT_SYMBOL_GPL(pci_reset_function);
5646
5647 /**
5648 * pci_reset_function_locked - quiesce and reset a PCI device function
5649 * @dev: PCI device to reset
5650 *
5651 * Some devices allow an individual function to be reset without affecting
5652 * other functions in the same device. The PCI device must be responsive
5653 * to PCI config space in order to use this function.
5654 *
5655 * This function does not just reset the PCI portion of a device, but
5656 * clears all the state associated with the device. This function differs
5657 * from __pci_reset_function_locked() in that it saves and restores device state
5658 * over the reset. It also differs from pci_reset_function() in that it
5659 * requires the PCI device lock to be held.
5660 *
5661 * Returns 0 if the device function was successfully reset or negative if the
5662 * device doesn't support resetting a single function.
5663 */
pci_reset_function_locked(struct pci_dev * dev)5664 int pci_reset_function_locked(struct pci_dev *dev)
5665 {
5666 int rc;
5667
5668 if (!pci_reset_supported(dev))
5669 return -ENOTTY;
5670
5671 pci_dev_save_and_disable(dev);
5672
5673 rc = __pci_reset_function_locked(dev);
5674
5675 pci_dev_restore(dev);
5676
5677 return rc;
5678 }
5679 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5680
5681 /**
5682 * pci_try_reset_function - quiesce and reset a PCI device function
5683 * @dev: PCI device to reset
5684 *
5685 * Same as above, except return -EAGAIN if unable to lock device.
5686 */
pci_try_reset_function(struct pci_dev * dev)5687 int pci_try_reset_function(struct pci_dev *dev)
5688 {
5689 int rc;
5690
5691 if (!pci_reset_supported(dev))
5692 return -ENOTTY;
5693
5694 if (!pci_dev_trylock(dev))
5695 return -EAGAIN;
5696
5697 pci_dev_save_and_disable(dev);
5698 rc = __pci_reset_function_locked(dev);
5699 pci_dev_restore(dev);
5700 pci_dev_unlock(dev);
5701
5702 return rc;
5703 }
5704 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5705
5706 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resettable(struct pci_bus * bus)5707 static bool pci_bus_resettable(struct pci_bus *bus)
5708 {
5709 struct pci_dev *dev;
5710
5711
5712 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5713 return false;
5714
5715 list_for_each_entry(dev, &bus->devices, bus_list) {
5716 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5717 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5718 return false;
5719 }
5720
5721 return true;
5722 }
5723
5724 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5725 static void pci_bus_lock(struct pci_bus *bus)
5726 {
5727 struct pci_dev *dev;
5728
5729 pci_dev_lock(bus->self);
5730 list_for_each_entry(dev, &bus->devices, bus_list) {
5731 if (dev->subordinate)
5732 pci_bus_lock(dev->subordinate);
5733 else
5734 pci_dev_lock(dev);
5735 }
5736 }
5737
5738 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5739 static void pci_bus_unlock(struct pci_bus *bus)
5740 {
5741 struct pci_dev *dev;
5742
5743 list_for_each_entry(dev, &bus->devices, bus_list) {
5744 if (dev->subordinate)
5745 pci_bus_unlock(dev->subordinate);
5746 else
5747 pci_dev_unlock(dev);
5748 }
5749 pci_dev_unlock(bus->self);
5750 }
5751
5752 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5753 static int pci_bus_trylock(struct pci_bus *bus)
5754 {
5755 struct pci_dev *dev;
5756
5757 if (!pci_dev_trylock(bus->self))
5758 return 0;
5759
5760 list_for_each_entry(dev, &bus->devices, bus_list) {
5761 if (dev->subordinate) {
5762 if (!pci_bus_trylock(dev->subordinate))
5763 goto unlock;
5764 } else if (!pci_dev_trylock(dev))
5765 goto unlock;
5766 }
5767 return 1;
5768
5769 unlock:
5770 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5771 if (dev->subordinate)
5772 pci_bus_unlock(dev->subordinate);
5773 else
5774 pci_dev_unlock(dev);
5775 }
5776 pci_dev_unlock(bus->self);
5777 return 0;
5778 }
5779
5780 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resettable(struct pci_slot * slot)5781 static bool pci_slot_resettable(struct pci_slot *slot)
5782 {
5783 struct pci_dev *dev;
5784
5785 if (slot->bus->self &&
5786 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5787 return false;
5788
5789 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5790 if (!dev->slot || dev->slot != slot)
5791 continue;
5792 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5793 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5794 return false;
5795 }
5796
5797 return true;
5798 }
5799
5800 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5801 static void pci_slot_lock(struct pci_slot *slot)
5802 {
5803 struct pci_dev *dev;
5804
5805 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5806 if (!dev->slot || dev->slot != slot)
5807 continue;
5808 if (dev->subordinate)
5809 pci_bus_lock(dev->subordinate);
5810 else
5811 pci_dev_lock(dev);
5812 }
5813 }
5814
5815 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5816 static void pci_slot_unlock(struct pci_slot *slot)
5817 {
5818 struct pci_dev *dev;
5819
5820 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5821 if (!dev->slot || dev->slot != slot)
5822 continue;
5823 if (dev->subordinate)
5824 pci_bus_unlock(dev->subordinate);
5825 pci_dev_unlock(dev);
5826 }
5827 }
5828
5829 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5830 static int pci_slot_trylock(struct pci_slot *slot)
5831 {
5832 struct pci_dev *dev;
5833
5834 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5835 if (!dev->slot || dev->slot != slot)
5836 continue;
5837 if (dev->subordinate) {
5838 if (!pci_bus_trylock(dev->subordinate)) {
5839 pci_dev_unlock(dev);
5840 goto unlock;
5841 }
5842 } else if (!pci_dev_trylock(dev))
5843 goto unlock;
5844 }
5845 return 1;
5846
5847 unlock:
5848 list_for_each_entry_continue_reverse(dev,
5849 &slot->bus->devices, bus_list) {
5850 if (!dev->slot || dev->slot != slot)
5851 continue;
5852 if (dev->subordinate)
5853 pci_bus_unlock(dev->subordinate);
5854 else
5855 pci_dev_unlock(dev);
5856 }
5857 return 0;
5858 }
5859
5860 /*
5861 * Save and disable devices from the top of the tree down while holding
5862 * the @dev mutex lock for the entire tree.
5863 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5864 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5865 {
5866 struct pci_dev *dev;
5867
5868 list_for_each_entry(dev, &bus->devices, bus_list) {
5869 pci_dev_save_and_disable(dev);
5870 if (dev->subordinate)
5871 pci_bus_save_and_disable_locked(dev->subordinate);
5872 }
5873 }
5874
5875 /*
5876 * Restore devices from top of the tree down while holding @dev mutex lock
5877 * for the entire tree. Parent bridges need to be restored before we can
5878 * get to subordinate devices.
5879 */
pci_bus_restore_locked(struct pci_bus * bus)5880 static void pci_bus_restore_locked(struct pci_bus *bus)
5881 {
5882 struct pci_dev *dev;
5883
5884 list_for_each_entry(dev, &bus->devices, bus_list) {
5885 pci_dev_restore(dev);
5886 if (dev->subordinate) {
5887 pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5888 pci_bus_restore_locked(dev->subordinate);
5889 }
5890 }
5891 }
5892
5893 /*
5894 * Save and disable devices from the top of the tree down while holding
5895 * the @dev mutex lock for the entire tree.
5896 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5897 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5898 {
5899 struct pci_dev *dev;
5900
5901 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5902 if (!dev->slot || dev->slot != slot)
5903 continue;
5904 pci_dev_save_and_disable(dev);
5905 if (dev->subordinate)
5906 pci_bus_save_and_disable_locked(dev->subordinate);
5907 }
5908 }
5909
5910 /*
5911 * Restore devices from top of the tree down while holding @dev mutex lock
5912 * for the entire tree. Parent bridges need to be restored before we can
5913 * get to subordinate devices.
5914 */
pci_slot_restore_locked(struct pci_slot * slot)5915 static void pci_slot_restore_locked(struct pci_slot *slot)
5916 {
5917 struct pci_dev *dev;
5918
5919 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5920 if (!dev->slot || dev->slot != slot)
5921 continue;
5922 pci_dev_restore(dev);
5923 if (dev->subordinate) {
5924 pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5925 pci_bus_restore_locked(dev->subordinate);
5926 }
5927 }
5928 }
5929
pci_slot_reset(struct pci_slot * slot,bool probe)5930 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5931 {
5932 int rc;
5933
5934 if (!slot || !pci_slot_resettable(slot))
5935 return -ENOTTY;
5936
5937 if (!probe)
5938 pci_slot_lock(slot);
5939
5940 might_sleep();
5941
5942 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5943
5944 if (!probe)
5945 pci_slot_unlock(slot);
5946
5947 return rc;
5948 }
5949
5950 /**
5951 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5952 * @slot: PCI slot to probe
5953 *
5954 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5955 */
pci_probe_reset_slot(struct pci_slot * slot)5956 int pci_probe_reset_slot(struct pci_slot *slot)
5957 {
5958 return pci_slot_reset(slot, PCI_RESET_PROBE);
5959 }
5960 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5961
5962 /**
5963 * __pci_reset_slot - Try to reset a PCI slot
5964 * @slot: PCI slot to reset
5965 *
5966 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5967 * independent of other slots. For instance, some slots may support slot power
5968 * control. In the case of a 1:1 bus to slot architecture, this function may
5969 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5970 * Generally a slot reset should be attempted before a bus reset. All of the
5971 * function of the slot and any subordinate buses behind the slot are reset
5972 * through this function. PCI config space of all devices in the slot and
5973 * behind the slot is saved before and restored after reset.
5974 *
5975 * Same as above except return -EAGAIN if the slot cannot be locked
5976 */
__pci_reset_slot(struct pci_slot * slot)5977 static int __pci_reset_slot(struct pci_slot *slot)
5978 {
5979 int rc;
5980
5981 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5982 if (rc)
5983 return rc;
5984
5985 if (pci_slot_trylock(slot)) {
5986 pci_slot_save_and_disable_locked(slot);
5987 might_sleep();
5988 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5989 pci_slot_restore_locked(slot);
5990 pci_slot_unlock(slot);
5991 } else
5992 rc = -EAGAIN;
5993
5994 return rc;
5995 }
5996
pci_bus_reset(struct pci_bus * bus,bool probe)5997 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5998 {
5999 int ret;
6000
6001 if (!bus->self || !pci_bus_resettable(bus))
6002 return -ENOTTY;
6003
6004 if (probe)
6005 return 0;
6006
6007 pci_bus_lock(bus);
6008
6009 might_sleep();
6010
6011 ret = pci_bridge_secondary_bus_reset(bus->self);
6012
6013 pci_bus_unlock(bus);
6014
6015 return ret;
6016 }
6017
6018 /**
6019 * pci_bus_error_reset - reset the bridge's subordinate bus
6020 * @bridge: The parent device that connects to the bus to reset
6021 *
6022 * This function will first try to reset the slots on this bus if the method is
6023 * available. If slot reset fails or is not available, this will fall back to a
6024 * secondary bus reset.
6025 */
pci_bus_error_reset(struct pci_dev * bridge)6026 int pci_bus_error_reset(struct pci_dev *bridge)
6027 {
6028 struct pci_bus *bus = bridge->subordinate;
6029 struct pci_slot *slot;
6030
6031 if (!bus)
6032 return -ENOTTY;
6033
6034 mutex_lock(&pci_slot_mutex);
6035 if (list_empty(&bus->slots))
6036 goto bus_reset;
6037
6038 list_for_each_entry(slot, &bus->slots, list)
6039 if (pci_probe_reset_slot(slot))
6040 goto bus_reset;
6041
6042 list_for_each_entry(slot, &bus->slots, list)
6043 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
6044 goto bus_reset;
6045
6046 mutex_unlock(&pci_slot_mutex);
6047 return 0;
6048 bus_reset:
6049 mutex_unlock(&pci_slot_mutex);
6050 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
6051 }
6052
6053 /**
6054 * pci_probe_reset_bus - probe whether a PCI bus can be reset
6055 * @bus: PCI bus to probe
6056 *
6057 * Return 0 if bus can be reset, negative if a bus reset is not supported.
6058 */
pci_probe_reset_bus(struct pci_bus * bus)6059 int pci_probe_reset_bus(struct pci_bus *bus)
6060 {
6061 return pci_bus_reset(bus, PCI_RESET_PROBE);
6062 }
6063 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6064
6065 /**
6066 * __pci_reset_bus - Try to reset a PCI bus
6067 * @bus: top level PCI bus to reset
6068 *
6069 * Same as above except return -EAGAIN if the bus cannot be locked
6070 */
__pci_reset_bus(struct pci_bus * bus)6071 static int __pci_reset_bus(struct pci_bus *bus)
6072 {
6073 int rc;
6074
6075 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6076 if (rc)
6077 return rc;
6078
6079 if (pci_bus_trylock(bus)) {
6080 pci_bus_save_and_disable_locked(bus);
6081 might_sleep();
6082 rc = pci_bridge_secondary_bus_reset(bus->self);
6083 pci_bus_restore_locked(bus);
6084 pci_bus_unlock(bus);
6085 } else
6086 rc = -EAGAIN;
6087
6088 return rc;
6089 }
6090
6091 /**
6092 * pci_reset_bus - Try to reset a PCI bus
6093 * @pdev: top level PCI device to reset via slot/bus
6094 *
6095 * Same as above except return -EAGAIN if the bus cannot be locked
6096 */
pci_reset_bus(struct pci_dev * pdev)6097 int pci_reset_bus(struct pci_dev *pdev)
6098 {
6099 return (!pci_probe_reset_slot(pdev->slot)) ?
6100 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6101 }
6102 EXPORT_SYMBOL_GPL(pci_reset_bus);
6103
6104 /**
6105 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6106 * @dev: PCI device to query
6107 *
6108 * Returns mmrbc: maximum designed memory read count in bytes or
6109 * appropriate error value.
6110 */
pcix_get_max_mmrbc(struct pci_dev * dev)6111 int pcix_get_max_mmrbc(struct pci_dev *dev)
6112 {
6113 int cap;
6114 u32 stat;
6115
6116 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6117 if (!cap)
6118 return -EINVAL;
6119
6120 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6121 return -EINVAL;
6122
6123 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6124 }
6125 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6126
6127 /**
6128 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6129 * @dev: PCI device to query
6130 *
6131 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6132 * value.
6133 */
pcix_get_mmrbc(struct pci_dev * dev)6134 int pcix_get_mmrbc(struct pci_dev *dev)
6135 {
6136 int cap;
6137 u16 cmd;
6138
6139 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6140 if (!cap)
6141 return -EINVAL;
6142
6143 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6144 return -EINVAL;
6145
6146 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6147 }
6148 EXPORT_SYMBOL(pcix_get_mmrbc);
6149
6150 /**
6151 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6152 * @dev: PCI device to query
6153 * @mmrbc: maximum memory read count in bytes
6154 * valid values are 512, 1024, 2048, 4096
6155 *
6156 * If possible sets maximum memory read byte count, some bridges have errata
6157 * that prevent this.
6158 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)6159 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6160 {
6161 int cap;
6162 u32 stat, v, o;
6163 u16 cmd;
6164
6165 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6166 return -EINVAL;
6167
6168 v = ffs(mmrbc) - 10;
6169
6170 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6171 if (!cap)
6172 return -EINVAL;
6173
6174 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6175 return -EINVAL;
6176
6177 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6178 return -E2BIG;
6179
6180 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6181 return -EINVAL;
6182
6183 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6184 if (o != v) {
6185 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6186 return -EIO;
6187
6188 cmd &= ~PCI_X_CMD_MAX_READ;
6189 cmd |= v << 2;
6190 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6191 return -EIO;
6192 }
6193 return 0;
6194 }
6195 EXPORT_SYMBOL(pcix_set_mmrbc);
6196
6197 /**
6198 * pcie_get_readrq - get PCI Express read request size
6199 * @dev: PCI device to query
6200 *
6201 * Returns maximum memory read request in bytes or appropriate error value.
6202 */
pcie_get_readrq(struct pci_dev * dev)6203 int pcie_get_readrq(struct pci_dev *dev)
6204 {
6205 u16 ctl;
6206
6207 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6208
6209 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6210 }
6211 EXPORT_SYMBOL(pcie_get_readrq);
6212
6213 /**
6214 * pcie_set_readrq - set PCI Express maximum memory read request
6215 * @dev: PCI device to query
6216 * @rq: maximum memory read count in bytes
6217 * valid values are 128, 256, 512, 1024, 2048, 4096
6218 *
6219 * If possible sets maximum memory read request in bytes
6220 */
pcie_set_readrq(struct pci_dev * dev,int rq)6221 int pcie_set_readrq(struct pci_dev *dev, int rq)
6222 {
6223 u16 v;
6224 int ret;
6225 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6226
6227 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6228 return -EINVAL;
6229
6230 /*
6231 * If using the "performance" PCIe config, we clamp the read rq
6232 * size to the max packet size to keep the host bridge from
6233 * generating requests larger than we can cope with.
6234 */
6235 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6236 int mps = pcie_get_mps(dev);
6237
6238 if (mps < rq)
6239 rq = mps;
6240 }
6241
6242 v = (ffs(rq) - 8) << 12;
6243
6244 if (bridge->no_inc_mrrs) {
6245 int max_mrrs = pcie_get_readrq(dev);
6246
6247 if (rq > max_mrrs) {
6248 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6249 return -EINVAL;
6250 }
6251 }
6252
6253 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6254 PCI_EXP_DEVCTL_READRQ, v);
6255
6256 return pcibios_err_to_errno(ret);
6257 }
6258 EXPORT_SYMBOL(pcie_set_readrq);
6259
6260 /**
6261 * pcie_get_mps - get PCI Express maximum payload size
6262 * @dev: PCI device to query
6263 *
6264 * Returns maximum payload size in bytes
6265 */
pcie_get_mps(struct pci_dev * dev)6266 int pcie_get_mps(struct pci_dev *dev)
6267 {
6268 u16 ctl;
6269
6270 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6271
6272 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6273 }
6274 EXPORT_SYMBOL(pcie_get_mps);
6275
6276 /**
6277 * pcie_set_mps - set PCI Express maximum payload size
6278 * @dev: PCI device to query
6279 * @mps: maximum payload size in bytes
6280 * valid values are 128, 256, 512, 1024, 2048, 4096
6281 *
6282 * If possible sets maximum payload size
6283 */
pcie_set_mps(struct pci_dev * dev,int mps)6284 int pcie_set_mps(struct pci_dev *dev, int mps)
6285 {
6286 u16 v;
6287 int ret;
6288
6289 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6290 return -EINVAL;
6291
6292 v = ffs(mps) - 8;
6293 if (v > dev->pcie_mpss)
6294 return -EINVAL;
6295 v <<= 5;
6296
6297 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6298 PCI_EXP_DEVCTL_PAYLOAD, v);
6299
6300 return pcibios_err_to_errno(ret);
6301 }
6302 EXPORT_SYMBOL(pcie_set_mps);
6303
6304 /**
6305 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6306 * device and its bandwidth limitation
6307 * @dev: PCI device to query
6308 * @limiting_dev: storage for device causing the bandwidth limitation
6309 * @speed: storage for speed of limiting device
6310 * @width: storage for width of limiting device
6311 *
6312 * Walk up the PCI device chain and find the point where the minimum
6313 * bandwidth is available. Return the bandwidth available there and (if
6314 * limiting_dev, speed, and width pointers are supplied) information about
6315 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6316 * raw bandwidth.
6317 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6318 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6319 enum pci_bus_speed *speed,
6320 enum pcie_link_width *width)
6321 {
6322 u16 lnksta;
6323 enum pci_bus_speed next_speed;
6324 enum pcie_link_width next_width;
6325 u32 bw, next_bw;
6326
6327 if (speed)
6328 *speed = PCI_SPEED_UNKNOWN;
6329 if (width)
6330 *width = PCIE_LNK_WIDTH_UNKNOWN;
6331
6332 bw = 0;
6333
6334 while (dev) {
6335 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6336
6337 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6338 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6339
6340 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6341
6342 /* Check if current device limits the total bandwidth */
6343 if (!bw || next_bw <= bw) {
6344 bw = next_bw;
6345
6346 if (limiting_dev)
6347 *limiting_dev = dev;
6348 if (speed)
6349 *speed = next_speed;
6350 if (width)
6351 *width = next_width;
6352 }
6353
6354 dev = pci_upstream_bridge(dev);
6355 }
6356
6357 return bw;
6358 }
6359 EXPORT_SYMBOL(pcie_bandwidth_available);
6360
6361 /**
6362 * pcie_get_speed_cap - query for the PCI device's link speed capability
6363 * @dev: PCI device to query
6364 *
6365 * Query the PCI device speed capability. Return the maximum link speed
6366 * supported by the device.
6367 */
pcie_get_speed_cap(struct pci_dev * dev)6368 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6369 {
6370 u32 lnkcap2, lnkcap;
6371
6372 /*
6373 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6374 * implementation note there recommends using the Supported Link
6375 * Speeds Vector in Link Capabilities 2 when supported.
6376 *
6377 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6378 * should use the Supported Link Speeds field in Link Capabilities,
6379 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6380 */
6381 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6382
6383 /* PCIe r3.0-compliant */
6384 if (lnkcap2)
6385 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6386
6387 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6388 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6389 return PCIE_SPEED_5_0GT;
6390 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6391 return PCIE_SPEED_2_5GT;
6392
6393 return PCI_SPEED_UNKNOWN;
6394 }
6395 EXPORT_SYMBOL(pcie_get_speed_cap);
6396
6397 /**
6398 * pcie_get_width_cap - query for the PCI device's link width capability
6399 * @dev: PCI device to query
6400 *
6401 * Query the PCI device width capability. Return the maximum link width
6402 * supported by the device.
6403 */
pcie_get_width_cap(struct pci_dev * dev)6404 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6405 {
6406 u32 lnkcap;
6407
6408 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6409 if (lnkcap)
6410 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6411
6412 return PCIE_LNK_WIDTH_UNKNOWN;
6413 }
6414 EXPORT_SYMBOL(pcie_get_width_cap);
6415
6416 /**
6417 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6418 * @dev: PCI device
6419 * @speed: storage for link speed
6420 * @width: storage for link width
6421 *
6422 * Calculate a PCI device's link bandwidth by querying for its link speed
6423 * and width, multiplying them, and applying encoding overhead. The result
6424 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6425 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6426 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6427 enum pcie_link_width *width)
6428 {
6429 *speed = pcie_get_speed_cap(dev);
6430 *width = pcie_get_width_cap(dev);
6431
6432 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6433 return 0;
6434
6435 return *width * PCIE_SPEED2MBS_ENC(*speed);
6436 }
6437
6438 /**
6439 * __pcie_print_link_status - Report the PCI device's link speed and width
6440 * @dev: PCI device to query
6441 * @verbose: Print info even when enough bandwidth is available
6442 *
6443 * If the available bandwidth at the device is less than the device is
6444 * capable of, report the device's maximum possible bandwidth and the
6445 * upstream link that limits its performance. If @verbose, always print
6446 * the available bandwidth, even if the device isn't constrained.
6447 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6448 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6449 {
6450 enum pcie_link_width width, width_cap;
6451 enum pci_bus_speed speed, speed_cap;
6452 struct pci_dev *limiting_dev = NULL;
6453 u32 bw_avail, bw_cap;
6454
6455 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6456 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6457
6458 if (bw_avail >= bw_cap && verbose)
6459 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6460 bw_cap / 1000, bw_cap % 1000,
6461 pci_speed_string(speed_cap), width_cap);
6462 else if (bw_avail < bw_cap)
6463 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6464 bw_avail / 1000, bw_avail % 1000,
6465 pci_speed_string(speed), width,
6466 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6467 bw_cap / 1000, bw_cap % 1000,
6468 pci_speed_string(speed_cap), width_cap);
6469 }
6470
6471 /**
6472 * pcie_print_link_status - Report the PCI device's link speed and width
6473 * @dev: PCI device to query
6474 *
6475 * Report the available bandwidth at the device.
6476 */
pcie_print_link_status(struct pci_dev * dev)6477 void pcie_print_link_status(struct pci_dev *dev)
6478 {
6479 __pcie_print_link_status(dev, true);
6480 }
6481 EXPORT_SYMBOL(pcie_print_link_status);
6482
6483 /**
6484 * pci_select_bars - Make BAR mask from the type of resource
6485 * @dev: the PCI device for which BAR mask is made
6486 * @flags: resource type mask to be selected
6487 *
6488 * This helper routine makes bar mask from the type of resource.
6489 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6490 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6491 {
6492 int i, bars = 0;
6493 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6494 if (pci_resource_flags(dev, i) & flags)
6495 bars |= (1 << i);
6496 return bars;
6497 }
6498 EXPORT_SYMBOL(pci_select_bars);
6499
6500 /* Some architectures require additional programming to enable VGA */
6501 static arch_set_vga_state_t arch_set_vga_state;
6502
pci_register_set_vga_state(arch_set_vga_state_t func)6503 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6504 {
6505 arch_set_vga_state = func; /* NULL disables */
6506 }
6507
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6508 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6509 unsigned int command_bits, u32 flags)
6510 {
6511 if (arch_set_vga_state)
6512 return arch_set_vga_state(dev, decode, command_bits,
6513 flags);
6514 return 0;
6515 }
6516
6517 /**
6518 * pci_set_vga_state - set VGA decode state on device and parents if requested
6519 * @dev: the PCI device
6520 * @decode: true = enable decoding, false = disable decoding
6521 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6522 * @flags: traverse ancestors and change bridges
6523 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6524 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6525 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6526 unsigned int command_bits, u32 flags)
6527 {
6528 struct pci_bus *bus;
6529 struct pci_dev *bridge;
6530 u16 cmd;
6531 int rc;
6532
6533 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6534
6535 /* ARCH specific VGA enables */
6536 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6537 if (rc)
6538 return rc;
6539
6540 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6541 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6542 if (decode)
6543 cmd |= command_bits;
6544 else
6545 cmd &= ~command_bits;
6546 pci_write_config_word(dev, PCI_COMMAND, cmd);
6547 }
6548
6549 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6550 return 0;
6551
6552 bus = dev->bus;
6553 while (bus) {
6554 bridge = bus->self;
6555 if (bridge) {
6556 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6557 &cmd);
6558 if (decode)
6559 cmd |= PCI_BRIDGE_CTL_VGA;
6560 else
6561 cmd &= ~PCI_BRIDGE_CTL_VGA;
6562 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6563 cmd);
6564 }
6565 bus = bus->parent;
6566 }
6567 return 0;
6568 }
6569
6570 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6571 bool pci_pr3_present(struct pci_dev *pdev)
6572 {
6573 struct acpi_device *adev;
6574
6575 if (acpi_disabled)
6576 return false;
6577
6578 adev = ACPI_COMPANION(&pdev->dev);
6579 if (!adev)
6580 return false;
6581
6582 return adev->power.flags.power_resources &&
6583 acpi_has_method(adev->handle, "_PR3");
6584 }
6585 EXPORT_SYMBOL_GPL(pci_pr3_present);
6586 #endif
6587
6588 /**
6589 * pci_add_dma_alias - Add a DMA devfn alias for a device
6590 * @dev: the PCI device for which alias is added
6591 * @devfn_from: alias slot and function
6592 * @nr_devfns: number of subsequent devfns to alias
6593 *
6594 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6595 * which is used to program permissible bus-devfn source addresses for DMA
6596 * requests in an IOMMU. These aliases factor into IOMMU group creation
6597 * and are useful for devices generating DMA requests beyond or different
6598 * from their logical bus-devfn. Examples include device quirks where the
6599 * device simply uses the wrong devfn, as well as non-transparent bridges
6600 * where the alias may be a proxy for devices in another domain.
6601 *
6602 * IOMMU group creation is performed during device discovery or addition,
6603 * prior to any potential DMA mapping and therefore prior to driver probing
6604 * (especially for userspace assigned devices where IOMMU group definition
6605 * cannot be left as a userspace activity). DMA aliases should therefore
6606 * be configured via quirks, such as the PCI fixup header quirk.
6607 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned int nr_devfns)6608 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6609 unsigned int nr_devfns)
6610 {
6611 int devfn_to;
6612
6613 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6614 devfn_to = devfn_from + nr_devfns - 1;
6615
6616 if (!dev->dma_alias_mask)
6617 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6618 if (!dev->dma_alias_mask) {
6619 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6620 return;
6621 }
6622
6623 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6624
6625 if (nr_devfns == 1)
6626 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6627 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6628 else if (nr_devfns > 1)
6629 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6630 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6631 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6632 }
6633
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6634 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6635 {
6636 return (dev1->dma_alias_mask &&
6637 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6638 (dev2->dma_alias_mask &&
6639 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6640 pci_real_dma_dev(dev1) == dev2 ||
6641 pci_real_dma_dev(dev2) == dev1;
6642 }
6643
pci_device_is_present(struct pci_dev * pdev)6644 bool pci_device_is_present(struct pci_dev *pdev)
6645 {
6646 u32 v;
6647
6648 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6649 pdev = pci_physfn(pdev);
6650 if (pci_dev_is_disconnected(pdev))
6651 return false;
6652 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6653 }
6654 EXPORT_SYMBOL_GPL(pci_device_is_present);
6655
pci_ignore_hotplug(struct pci_dev * dev)6656 void pci_ignore_hotplug(struct pci_dev *dev)
6657 {
6658 struct pci_dev *bridge = dev->bus->self;
6659
6660 dev->ignore_hotplug = 1;
6661 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6662 if (bridge)
6663 bridge->ignore_hotplug = 1;
6664 }
6665 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6666
6667 /**
6668 * pci_real_dma_dev - Get PCI DMA device for PCI device
6669 * @dev: the PCI device that may have a PCI DMA alias
6670 *
6671 * Permits the platform to provide architecture-specific functionality to
6672 * devices needing to alias DMA to another PCI device on another PCI bus. If
6673 * the PCI device is on the same bus, it is recommended to use
6674 * pci_add_dma_alias(). This is the default implementation. Architecture
6675 * implementations can override this.
6676 */
pci_real_dma_dev(struct pci_dev * dev)6677 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6678 {
6679 return dev;
6680 }
6681
pcibios_default_alignment(void)6682 resource_size_t __weak pcibios_default_alignment(void)
6683 {
6684 return 0;
6685 }
6686
6687 /*
6688 * Arches that don't want to expose struct resource to userland as-is in
6689 * sysfs and /proc can implement their own pci_resource_to_user().
6690 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6691 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6692 const struct resource *rsrc,
6693 resource_size_t *start, resource_size_t *end)
6694 {
6695 *start = rsrc->start;
6696 *end = rsrc->end;
6697 }
6698
6699 static char *resource_alignment_param;
6700 static DEFINE_SPINLOCK(resource_alignment_lock);
6701
6702 /**
6703 * pci_specified_resource_alignment - get resource alignment specified by user.
6704 * @dev: the PCI device to get
6705 * @resize: whether or not to change resources' size when reassigning alignment
6706 *
6707 * RETURNS: Resource alignment if it is specified.
6708 * Zero if it is not specified.
6709 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6710 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6711 bool *resize)
6712 {
6713 int align_order, count;
6714 resource_size_t align = pcibios_default_alignment();
6715 const char *p;
6716 int ret;
6717
6718 spin_lock(&resource_alignment_lock);
6719 p = resource_alignment_param;
6720 if (!p || !*p)
6721 goto out;
6722 if (pci_has_flag(PCI_PROBE_ONLY)) {
6723 align = 0;
6724 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6725 goto out;
6726 }
6727
6728 while (*p) {
6729 count = 0;
6730 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6731 p[count] == '@') {
6732 p += count + 1;
6733 if (align_order > 63) {
6734 pr_err("PCI: Invalid requested alignment (order %d)\n",
6735 align_order);
6736 align_order = PAGE_SHIFT;
6737 }
6738 } else {
6739 align_order = PAGE_SHIFT;
6740 }
6741
6742 ret = pci_dev_str_match(dev, p, &p);
6743 if (ret == 1) {
6744 *resize = true;
6745 align = 1ULL << align_order;
6746 break;
6747 } else if (ret < 0) {
6748 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6749 p);
6750 break;
6751 }
6752
6753 if (*p != ';' && *p != ',') {
6754 /* End of param or invalid format */
6755 break;
6756 }
6757 p++;
6758 }
6759 out:
6760 spin_unlock(&resource_alignment_lock);
6761 return align;
6762 }
6763
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6764 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6765 resource_size_t align, bool resize)
6766 {
6767 struct resource *r = &dev->resource[bar];
6768 resource_size_t size;
6769
6770 if (!(r->flags & IORESOURCE_MEM))
6771 return;
6772
6773 if (r->flags & IORESOURCE_PCI_FIXED) {
6774 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6775 bar, r, (unsigned long long)align);
6776 return;
6777 }
6778
6779 size = resource_size(r);
6780 if (size >= align)
6781 return;
6782
6783 /*
6784 * Increase the alignment of the resource. There are two ways we
6785 * can do this:
6786 *
6787 * 1) Increase the size of the resource. BARs are aligned on their
6788 * size, so when we reallocate space for this resource, we'll
6789 * allocate it with the larger alignment. This also prevents
6790 * assignment of any other BARs inside the alignment region, so
6791 * if we're requesting page alignment, this means no other BARs
6792 * will share the page.
6793 *
6794 * The disadvantage is that this makes the resource larger than
6795 * the hardware BAR, which may break drivers that compute things
6796 * based on the resource size, e.g., to find registers at a
6797 * fixed offset before the end of the BAR.
6798 *
6799 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6800 * set r->start to the desired alignment. By itself this
6801 * doesn't prevent other BARs being put inside the alignment
6802 * region, but if we realign *every* resource of every device in
6803 * the system, none of them will share an alignment region.
6804 *
6805 * When the user has requested alignment for only some devices via
6806 * the "pci=resource_alignment" argument, "resize" is true and we
6807 * use the first method. Otherwise we assume we're aligning all
6808 * devices and we use the second.
6809 */
6810
6811 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6812 bar, r, (unsigned long long)align);
6813
6814 if (resize) {
6815 r->start = 0;
6816 r->end = align - 1;
6817 } else {
6818 r->flags &= ~IORESOURCE_SIZEALIGN;
6819 r->flags |= IORESOURCE_STARTALIGN;
6820 r->start = align;
6821 r->end = r->start + size - 1;
6822 }
6823 r->flags |= IORESOURCE_UNSET;
6824 }
6825
6826 /*
6827 * This function disables memory decoding and releases memory resources
6828 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6829 * It also rounds up size to specified alignment.
6830 * Later on, the kernel will assign page-aligned memory resource back
6831 * to the device.
6832 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6833 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6834 {
6835 int i;
6836 struct resource *r;
6837 resource_size_t align;
6838 u16 command;
6839 bool resize = false;
6840
6841 /*
6842 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6843 * 3.4.1.11. Their resources are allocated from the space
6844 * described by the VF BARx register in the PF's SR-IOV capability.
6845 * We can't influence their alignment here.
6846 */
6847 if (dev->is_virtfn)
6848 return;
6849
6850 /* check if specified PCI is target device to reassign */
6851 align = pci_specified_resource_alignment(dev, &resize);
6852 if (!align)
6853 return;
6854
6855 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6856 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6857 pci_warn(dev, "Can't reassign resources to host bridge\n");
6858 return;
6859 }
6860
6861 pci_read_config_word(dev, PCI_COMMAND, &command);
6862 command &= ~PCI_COMMAND_MEMORY;
6863 pci_write_config_word(dev, PCI_COMMAND, command);
6864
6865 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6866 pci_request_resource_alignment(dev, i, align, resize);
6867
6868 /*
6869 * Need to disable bridge's resource window,
6870 * to enable the kernel to reassign new resource
6871 * window later on.
6872 */
6873 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6874 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6875 r = &dev->resource[i];
6876 if (!(r->flags & IORESOURCE_MEM))
6877 continue;
6878 r->flags |= IORESOURCE_UNSET;
6879 r->end = resource_size(r) - 1;
6880 r->start = 0;
6881 }
6882 pci_disable_bridge_window(dev);
6883 }
6884 }
6885
resource_alignment_show(const struct bus_type * bus,char * buf)6886 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6887 {
6888 size_t count = 0;
6889
6890 spin_lock(&resource_alignment_lock);
6891 if (resource_alignment_param)
6892 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6893 spin_unlock(&resource_alignment_lock);
6894
6895 return count;
6896 }
6897
resource_alignment_store(const struct bus_type * bus,const char * buf,size_t count)6898 static ssize_t resource_alignment_store(const struct bus_type *bus,
6899 const char *buf, size_t count)
6900 {
6901 char *param, *old, *end;
6902
6903 if (count >= (PAGE_SIZE - 1))
6904 return -EINVAL;
6905
6906 param = kstrndup(buf, count, GFP_KERNEL);
6907 if (!param)
6908 return -ENOMEM;
6909
6910 end = strchr(param, '\n');
6911 if (end)
6912 *end = '\0';
6913
6914 spin_lock(&resource_alignment_lock);
6915 old = resource_alignment_param;
6916 if (strlen(param)) {
6917 resource_alignment_param = param;
6918 } else {
6919 kfree(param);
6920 resource_alignment_param = NULL;
6921 }
6922 spin_unlock(&resource_alignment_lock);
6923
6924 kfree(old);
6925
6926 return count;
6927 }
6928
6929 static BUS_ATTR_RW(resource_alignment);
6930
pci_resource_alignment_sysfs_init(void)6931 static int __init pci_resource_alignment_sysfs_init(void)
6932 {
6933 return bus_create_file(&pci_bus_type,
6934 &bus_attr_resource_alignment);
6935 }
6936 late_initcall(pci_resource_alignment_sysfs_init);
6937
pci_no_domains(void)6938 static void pci_no_domains(void)
6939 {
6940 #ifdef CONFIG_PCI_DOMAINS
6941 pci_domains_supported = 0;
6942 #endif
6943 }
6944
6945 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6946 static DEFINE_IDA(pci_domain_nr_static_ida);
6947 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6948
of_pci_reserve_static_domain_nr(void)6949 static void of_pci_reserve_static_domain_nr(void)
6950 {
6951 struct device_node *np;
6952 int domain_nr;
6953
6954 for_each_node_by_type(np, "pci") {
6955 domain_nr = of_get_pci_domain_nr(np);
6956 if (domain_nr < 0)
6957 continue;
6958 /*
6959 * Permanently allocate domain_nr in dynamic_ida
6960 * to prevent it from dynamic allocation.
6961 */
6962 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6963 domain_nr, domain_nr, GFP_KERNEL);
6964 }
6965 }
6966
of_pci_bus_find_domain_nr(struct device * parent)6967 static int of_pci_bus_find_domain_nr(struct device *parent)
6968 {
6969 static bool static_domains_reserved = false;
6970 int domain_nr;
6971
6972 /* On the first call scan device tree for static allocations. */
6973 if (!static_domains_reserved) {
6974 of_pci_reserve_static_domain_nr();
6975 static_domains_reserved = true;
6976 }
6977
6978 if (parent) {
6979 /*
6980 * If domain is in DT, allocate it in static IDA. This
6981 * prevents duplicate static allocations in case of errors
6982 * in DT.
6983 */
6984 domain_nr = of_get_pci_domain_nr(parent->of_node);
6985 if (domain_nr >= 0)
6986 return ida_alloc_range(&pci_domain_nr_static_ida,
6987 domain_nr, domain_nr,
6988 GFP_KERNEL);
6989 }
6990
6991 /*
6992 * If domain was not specified in DT, choose a free ID from dynamic
6993 * allocations. All domain numbers from DT are permanently in
6994 * dynamic allocations to prevent assigning them to other DT nodes
6995 * without static domain.
6996 */
6997 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6998 }
6999
of_pci_bus_release_domain_nr(struct pci_bus * bus,struct device * parent)7000 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7001 {
7002 if (bus->domain_nr < 0)
7003 return;
7004
7005 /* Release domain from IDA where it was allocated. */
7006 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
7007 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
7008 else
7009 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
7010 }
7011
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)7012 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
7013 {
7014 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
7015 acpi_pci_bus_find_domain_nr(bus);
7016 }
7017
pci_bus_release_domain_nr(struct pci_bus * bus,struct device * parent)7018 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7019 {
7020 if (!acpi_disabled)
7021 return;
7022 of_pci_bus_release_domain_nr(bus, parent);
7023 }
7024 #endif
7025
7026 /**
7027 * pci_ext_cfg_avail - can we access extended PCI config space?
7028 *
7029 * Returns 1 if we can access PCI extended config space (offsets
7030 * greater than 0xff). This is the default implementation. Architecture
7031 * implementations can override this.
7032 */
pci_ext_cfg_avail(void)7033 int __weak pci_ext_cfg_avail(void)
7034 {
7035 return 1;
7036 }
7037
pci_fixup_cardbus(struct pci_bus * bus)7038 void __weak pci_fixup_cardbus(struct pci_bus *bus)
7039 {
7040 }
7041 EXPORT_SYMBOL(pci_fixup_cardbus);
7042
pci_setup(char * str)7043 static int __init pci_setup(char *str)
7044 {
7045 while (str) {
7046 char *k = strchr(str, ',');
7047 if (k)
7048 *k++ = 0;
7049 if (*str && (str = pcibios_setup(str)) && *str) {
7050 if (!strcmp(str, "nomsi")) {
7051 pci_no_msi();
7052 } else if (!strncmp(str, "noats", 5)) {
7053 pr_info("PCIe: ATS is disabled\n");
7054 pcie_ats_disabled = true;
7055 } else if (!strcmp(str, "noaer")) {
7056 pci_no_aer();
7057 } else if (!strcmp(str, "earlydump")) {
7058 pci_early_dump = true;
7059 } else if (!strncmp(str, "realloc=", 8)) {
7060 pci_realloc_get_opt(str + 8);
7061 } else if (!strncmp(str, "realloc", 7)) {
7062 pci_realloc_get_opt("on");
7063 } else if (!strcmp(str, "nodomains")) {
7064 pci_no_domains();
7065 } else if (!strncmp(str, "noari", 5)) {
7066 pcie_ari_disabled = true;
7067 } else if (!strncmp(str, "cbiosize=", 9)) {
7068 pci_cardbus_io_size = memparse(str + 9, &str);
7069 } else if (!strncmp(str, "cbmemsize=", 10)) {
7070 pci_cardbus_mem_size = memparse(str + 10, &str);
7071 } else if (!strncmp(str, "resource_alignment=", 19)) {
7072 resource_alignment_param = str + 19;
7073 } else if (!strncmp(str, "ecrc=", 5)) {
7074 pcie_ecrc_get_policy(str + 5);
7075 } else if (!strncmp(str, "hpiosize=", 9)) {
7076 pci_hotplug_io_size = memparse(str + 9, &str);
7077 } else if (!strncmp(str, "hpmmiosize=", 11)) {
7078 pci_hotplug_mmio_size = memparse(str + 11, &str);
7079 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7080 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7081 } else if (!strncmp(str, "hpmemsize=", 10)) {
7082 pci_hotplug_mmio_size = memparse(str + 10, &str);
7083 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7084 } else if (!strncmp(str, "hpbussize=", 10)) {
7085 pci_hotplug_bus_size =
7086 simple_strtoul(str + 10, &str, 0);
7087 if (pci_hotplug_bus_size > 0xff)
7088 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7089 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7090 pcie_bus_config = PCIE_BUS_TUNE_OFF;
7091 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
7092 pcie_bus_config = PCIE_BUS_SAFE;
7093 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
7094 pcie_bus_config = PCIE_BUS_PERFORMANCE;
7095 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7096 pcie_bus_config = PCIE_BUS_PEER2PEER;
7097 } else if (!strncmp(str, "pcie_scan_all", 13)) {
7098 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7099 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
7100 disable_acs_redir_param = str + 18;
7101 } else {
7102 pr_err("PCI: Unknown option `%s'\n", str);
7103 }
7104 }
7105 str = k;
7106 }
7107 return 0;
7108 }
7109 early_param("pci", pci_setup);
7110
7111 /*
7112 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7113 * in pci_setup(), above, to point to data in the __initdata section which
7114 * will be freed after the init sequence is complete. We can't allocate memory
7115 * in pci_setup() because some architectures do not have any memory allocation
7116 * service available during an early_param() call. So we allocate memory and
7117 * copy the variable here before the init section is freed.
7118 *
7119 */
pci_realloc_setup_params(void)7120 static int __init pci_realloc_setup_params(void)
7121 {
7122 resource_alignment_param = kstrdup(resource_alignment_param,
7123 GFP_KERNEL);
7124 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7125
7126 return 0;
7127 }
7128 pure_initcall(pci_realloc_setup_params);
7129