xref: /openbmc/linux/arch/x86/kernel/alternative.c (revision 6f6249a599e52e1a5f0b632f8edff733cfa76450)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <linux/moduleloader.h>
22 #include <linux/cleanup.h>
23 #include <asm/text-patching.h>
24 #include <asm/alternative.h>
25 #include <asm/sections.h>
26 #include <asm/mce.h>
27 #include <asm/nmi.h>
28 #include <asm/cacheflush.h>
29 #include <asm/tlbflush.h>
30 #include <asm/insn.h>
31 #include <asm/io.h>
32 #include <asm/fixmap.h>
33 #include <asm/paravirt.h>
34 #include <asm/asm-prototypes.h>
35 #include <asm/cfi.h>
36 #include <asm/set_memory.h>
37 
38 int __read_mostly alternatives_patched;
39 
40 EXPORT_SYMBOL_GPL(alternatives_patched);
41 
42 #define MAX_PATCH_LEN (255-1)
43 
44 #define DA_ALL		(~0)
45 #define DA_ALT		0x01
46 #define DA_RET		0x02
47 #define DA_RETPOLINE	0x04
48 #define DA_ENDBR	0x08
49 #define DA_SMP		0x10
50 
51 static unsigned int __initdata_or_module debug_alternative;
52 
debug_alt(char * str)53 static int __init debug_alt(char *str)
54 {
55 	if (str && *str == '=')
56 		str++;
57 
58 	if (!str || kstrtouint(str, 0, &debug_alternative))
59 		debug_alternative = DA_ALL;
60 
61 	return 1;
62 }
63 __setup("debug-alternative", debug_alt);
64 
65 static int noreplace_smp;
66 
setup_noreplace_smp(char * str)67 static int __init setup_noreplace_smp(char *str)
68 {
69 	noreplace_smp = 1;
70 	return 1;
71 }
72 __setup("noreplace-smp", setup_noreplace_smp);
73 
74 #define DPRINTK(type, fmt, args...)					\
75 do {									\
76 	if (debug_alternative & DA_##type)				\
77 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
78 } while (0)
79 
80 #define DUMP_BYTES(type, buf, len, fmt, args...)			\
81 do {									\
82 	if (unlikely(debug_alternative & DA_##type)) {			\
83 		int j;							\
84 									\
85 		if (!(len))						\
86 			break;						\
87 									\
88 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
89 		for (j = 0; j < (len) - 1; j++)				\
90 			printk(KERN_CONT "%02hhx ", buf[j]);		\
91 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
92 	}								\
93 } while (0)
94 
95 static const unsigned char x86nops[] =
96 {
97 	BYTES_NOP1,
98 	BYTES_NOP2,
99 	BYTES_NOP3,
100 	BYTES_NOP4,
101 	BYTES_NOP5,
102 	BYTES_NOP6,
103 	BYTES_NOP7,
104 	BYTES_NOP8,
105 #ifdef CONFIG_64BIT
106 	BYTES_NOP9,
107 	BYTES_NOP10,
108 	BYTES_NOP11,
109 #endif
110 };
111 
112 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
113 {
114 	NULL,
115 	x86nops,
116 	x86nops + 1,
117 	x86nops + 1 + 2,
118 	x86nops + 1 + 2 + 3,
119 	x86nops + 1 + 2 + 3 + 4,
120 	x86nops + 1 + 2 + 3 + 4 + 5,
121 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
122 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
123 #ifdef CONFIG_64BIT
124 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
125 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
126 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
127 #endif
128 };
129 
130 #ifdef CONFIG_MITIGATION_ITS
131 
132 #ifdef CONFIG_MODULES
133 static struct module *its_mod;
134 static void *its_page;
135 static unsigned int its_offset;
136 
137 /* Initialize a thunk with the "jmp *reg; int3" instructions. */
its_init_thunk(void * thunk,int reg)138 static void *its_init_thunk(void *thunk, int reg)
139 {
140 	u8 *bytes = thunk;
141 	int i = 0;
142 
143 	if (reg >= 8) {
144 		bytes[i++] = 0x41; /* REX.B prefix */
145 		reg -= 8;
146 	}
147 	bytes[i++] = 0xff;
148 	bytes[i++] = 0xe0 + reg; /* jmp *reg */
149 	bytes[i++] = 0xcc;
150 
151 	return thunk;
152 }
153 
its_init_mod(struct module * mod)154 void its_init_mod(struct module *mod)
155 {
156 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
157 		return;
158 
159 	mutex_lock(&text_mutex);
160 	its_mod = mod;
161 	its_page = NULL;
162 }
163 
its_fini_mod(struct module * mod)164 void its_fini_mod(struct module *mod)
165 {
166 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
167 		return;
168 
169 	WARN_ON_ONCE(its_mod != mod);
170 
171 	its_mod = NULL;
172 	its_page = NULL;
173 	mutex_unlock(&text_mutex);
174 
175 	for (int i = 0; i < mod->its_num_pages; i++) {
176 		void *page = mod->its_page_array[i];
177 		set_memory_rox((unsigned long)page, 1);
178 	}
179 }
180 
its_free_mod(struct module * mod)181 void its_free_mod(struct module *mod)
182 {
183 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
184 		return;
185 
186 	for (int i = 0; i < mod->its_num_pages; i++) {
187 		void *page = mod->its_page_array[i];
188 		module_memfree(page);
189 	}
190 	kfree(mod->its_page_array);
191 }
192 
193 DEFINE_FREE(its_execmem, void *, if (_T) module_memfree(_T));
194 
its_alloc(void)195 static void *its_alloc(void)
196 {
197 	void *page __free(its_execmem) = module_alloc(PAGE_SIZE);
198 
199 	if (!page)
200 		return NULL;
201 
202 	if (its_mod) {
203 		void *tmp = krealloc(its_mod->its_page_array,
204 				     (its_mod->its_num_pages+1) * sizeof(void *),
205 				     GFP_KERNEL);
206 		if (!tmp)
207 			return NULL;
208 
209 		its_mod->its_page_array = tmp;
210 		its_mod->its_page_array[its_mod->its_num_pages++] = page;
211 	}
212 
213 	return no_free_ptr(page);
214 }
215 
its_allocate_thunk(int reg)216 static void *its_allocate_thunk(int reg)
217 {
218 	int size = 3 + (reg / 8);
219 	void *thunk;
220 
221 	if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) {
222 		its_page = its_alloc();
223 		if (!its_page) {
224 			pr_err("ITS page allocation failed\n");
225 			return NULL;
226 		}
227 		memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE);
228 		its_offset = 32;
229 	}
230 
231 	/*
232 	 * If the indirect branch instruction will be in the lower half
233 	 * of a cacheline, then update the offset to reach the upper half.
234 	 */
235 	if ((its_offset + size - 1) % 64 < 32)
236 		its_offset = ((its_offset - 1) | 0x3F) + 33;
237 
238 	thunk = its_page + its_offset;
239 	its_offset += size;
240 
241 	set_memory_rw((unsigned long)its_page, 1);
242 	thunk = its_init_thunk(thunk, reg);
243 	set_memory_rox((unsigned long)its_page, 1);
244 
245 	return thunk;
246 }
247 
248 #else /* CONFIG_MODULES */
249 
its_allocate_thunk(int reg)250 static void *its_allocate_thunk(int reg)
251 {
252 	return NULL;
253 }
254 
255 #endif /* CONFIG_MODULES */
256 
257 #endif /* CONFIG_MITIGATION_ITS */
258 
259 /*
260  * Fill the buffer with a single effective instruction of size @len.
261  *
262  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
263  * for every single-byte NOP, try to generate the maximally available NOP of
264  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
265  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
266  * *jump* over instead of executing long and daft NOPs.
267  */
add_nop(u8 * instr,unsigned int len)268 static void __init_or_module add_nop(u8 *instr, unsigned int len)
269 {
270 	u8 *target = instr + len;
271 
272 	if (!len)
273 		return;
274 
275 	if (len <= ASM_NOP_MAX) {
276 		memcpy(instr, x86_nops[len], len);
277 		return;
278 	}
279 
280 	if (len < 128) {
281 		__text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE);
282 		instr += JMP8_INSN_SIZE;
283 	} else {
284 		__text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE);
285 		instr += JMP32_INSN_SIZE;
286 	}
287 
288 	for (;instr < target; instr++)
289 		*instr = INT3_INSN_OPCODE;
290 }
291 
292 extern s32 __retpoline_sites[], __retpoline_sites_end[];
293 extern s32 __return_sites[], __return_sites_end[];
294 extern s32 __cfi_sites[], __cfi_sites_end[];
295 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
296 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
297 extern s32 __smp_locks[], __smp_locks_end[];
298 void text_poke_early(void *addr, const void *opcode, size_t len);
299 
300 /*
301  * Matches NOP and NOPL, not any of the other possible NOPs.
302  */
insn_is_nop(struct insn * insn)303 static bool insn_is_nop(struct insn *insn)
304 {
305 	/* Anything NOP, but no REP NOP */
306 	if (insn->opcode.bytes[0] == 0x90 &&
307 	    (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
308 		return true;
309 
310 	/* NOPL */
311 	if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
312 		return true;
313 
314 	/* TODO: more nops */
315 
316 	return false;
317 }
318 
319 /*
320  * Find the offset of the first non-NOP instruction starting at @offset
321  * but no further than @len.
322  */
skip_nops(u8 * instr,int offset,int len)323 static int skip_nops(u8 *instr, int offset, int len)
324 {
325 	struct insn insn;
326 
327 	for (; offset < len; offset += insn.length) {
328 		if (insn_decode_kernel(&insn, &instr[offset]))
329 			break;
330 
331 		if (!insn_is_nop(&insn))
332 			break;
333 	}
334 
335 	return offset;
336 }
337 
338 /*
339  * Optimize a sequence of NOPs, possibly preceded by an unconditional jump
340  * to the end of the NOP sequence into a single NOP.
341  */
342 static bool __init_or_module
__optimize_nops(u8 * instr,size_t len,struct insn * insn,int * next,int * prev,int * target)343 __optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target)
344 {
345 	int i = *next - insn->length;
346 
347 	switch (insn->opcode.bytes[0]) {
348 	case JMP8_INSN_OPCODE:
349 	case JMP32_INSN_OPCODE:
350 		*prev = i;
351 		*target = *next + insn->immediate.value;
352 		return false;
353 	}
354 
355 	if (insn_is_nop(insn)) {
356 		int nop = i;
357 
358 		*next = skip_nops(instr, *next, len);
359 		if (*target && *next == *target)
360 			nop = *prev;
361 
362 		add_nop(instr + nop, *next - nop);
363 		DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next);
364 		return true;
365 	}
366 
367 	*target = 0;
368 	return false;
369 }
370 
371 /*
372  * "noinline" to cause control flow change and thus invalidate I$ and
373  * cause refetch after modification.
374  */
optimize_nops(u8 * instr,size_t len)375 static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
376 {
377 	int prev, target = 0;
378 
379 	for (int next, i = 0; i < len; i = next) {
380 		struct insn insn;
381 
382 		if (insn_decode_kernel(&insn, &instr[i]))
383 			return;
384 
385 		next = i + insn.length;
386 
387 		__optimize_nops(instr, len, &insn, &next, &prev, &target);
388 	}
389 }
390 
optimize_nops_inplace(u8 * instr,size_t len)391 static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len)
392 {
393 	unsigned long flags;
394 
395 	local_irq_save(flags);
396 	optimize_nops(instr, len);
397 	sync_core();
398 	local_irq_restore(flags);
399 }
400 
401 /*
402  * In this context, "source" is where the instructions are placed in the
403  * section .altinstr_replacement, for example during kernel build by the
404  * toolchain.
405  * "Destination" is where the instructions are being patched in by this
406  * machinery.
407  *
408  * The source offset is:
409  *
410  *   src_imm = target - src_next_ip                  (1)
411  *
412  * and the target offset is:
413  *
414  *   dst_imm = target - dst_next_ip                  (2)
415  *
416  * so rework (1) as an expression for target like:
417  *
418  *   target = src_imm + src_next_ip                  (1a)
419  *
420  * and substitute in (2) to get:
421  *
422  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
423  *
424  * Now, since the instruction stream is 'identical' at src and dst (it
425  * is being copied after all) it can be stated that:
426  *
427  *   src_next_ip = src + ip_offset
428  *   dst_next_ip = dst + ip_offset                   (4)
429  *
430  * Substitute (4) in (3) and observe ip_offset being cancelled out to
431  * obtain:
432  *
433  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
434  *           = src_imm + src - dst + ip_offset - ip_offset
435  *           = src_imm + src - dst                   (5)
436  *
437  * IOW, only the relative displacement of the code block matters.
438  */
439 
440 #define apply_reloc_n(n_, p_, d_)				\
441 	do {							\
442 		s32 v = *(s##n_ *)(p_);				\
443 		v += (d_);					\
444 		BUG_ON((v >> 31) != (v >> (n_-1)));		\
445 		*(s##n_ *)(p_) = (s##n_)v;			\
446 	} while (0)
447 
448 
449 static __always_inline
apply_reloc(int n,void * ptr,uintptr_t diff)450 void apply_reloc(int n, void *ptr, uintptr_t diff)
451 {
452 	switch (n) {
453 	case 1: apply_reloc_n(8, ptr, diff); break;
454 	case 2: apply_reloc_n(16, ptr, diff); break;
455 	case 4: apply_reloc_n(32, ptr, diff); break;
456 	default: BUG();
457 	}
458 }
459 
460 static __always_inline
need_reloc(unsigned long offset,u8 * src,size_t src_len)461 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
462 {
463 	u8 *target = src + offset;
464 	/*
465 	 * If the target is inside the patched block, it's relative to the
466 	 * block itself and does not need relocation.
467 	 */
468 	return (target < src || target > src + src_len);
469 }
470 
471 static void __init_or_module noinline
apply_relocation(u8 * buf,size_t len,u8 * dest,u8 * src,size_t src_len)472 apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len)
473 {
474 	int prev, target = 0;
475 
476 	for (int next, i = 0; i < len; i = next) {
477 		struct insn insn;
478 
479 		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
480 			return;
481 
482 		next = i + insn.length;
483 
484 		if (__optimize_nops(buf, len, &insn, &next, &prev, &target))
485 			continue;
486 
487 		switch (insn.opcode.bytes[0]) {
488 		case 0x0f:
489 			if (insn.opcode.bytes[1] < 0x80 ||
490 			    insn.opcode.bytes[1] > 0x8f)
491 				break;
492 
493 			fallthrough;	/* Jcc.d32 */
494 		case 0x70 ... 0x7f:	/* Jcc.d8 */
495 		case JMP8_INSN_OPCODE:
496 		case JMP32_INSN_OPCODE:
497 		case CALL_INSN_OPCODE:
498 			if (need_reloc(next + insn.immediate.value, src, src_len)) {
499 				apply_reloc(insn.immediate.nbytes,
500 					    buf + i + insn_offset_immediate(&insn),
501 					    src - dest);
502 			}
503 
504 			/*
505 			 * Where possible, convert JMP.d32 into JMP.d8.
506 			 */
507 			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
508 				s32 imm = insn.immediate.value;
509 				imm += src - dest;
510 				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
511 				if ((imm >> 31) == (imm >> 7)) {
512 					buf[i+0] = JMP8_INSN_OPCODE;
513 					buf[i+1] = (s8)imm;
514 
515 					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
516 				}
517 			}
518 			break;
519 		}
520 
521 		if (insn_rip_relative(&insn)) {
522 			if (need_reloc(next + insn.displacement.value, src, src_len)) {
523 				apply_reloc(insn.displacement.nbytes,
524 					    buf + i + insn_offset_displacement(&insn),
525 					    src - dest);
526 			}
527 		}
528 	}
529 }
530 
531 /*
532  * Replace instructions with better alternatives for this CPU type. This runs
533  * before SMP is initialized to avoid SMP problems with self modifying code.
534  * This implies that asymmetric systems where APs have less capabilities than
535  * the boot processor are not handled. Tough. Make sure you disable such
536  * features by hand.
537  *
538  * Marked "noinline" to cause control flow change and thus insn cache
539  * to refetch changed I$ lines.
540  */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)541 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
542 						  struct alt_instr *end)
543 {
544 	struct alt_instr *a;
545 	u8 *instr, *replacement;
546 	u8 insn_buff[MAX_PATCH_LEN];
547 
548 	DPRINTK(ALT, "alt table %px, -> %px", start, end);
549 
550 	/*
551 	 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
552 	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
553 	 * During the process, KASAN becomes confused seeing partial LA57
554 	 * conversion and triggers a false-positive out-of-bound report.
555 	 *
556 	 * Disable KASAN until the patching is complete.
557 	 */
558 	kasan_disable_current();
559 
560 	/*
561 	 * The scan order should be from start to end. A later scanned
562 	 * alternative code can overwrite previously scanned alternative code.
563 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
564 	 * patch code.
565 	 *
566 	 * So be careful if you want to change the scan order to any other
567 	 * order.
568 	 */
569 	for (a = start; a < end; a++) {
570 		int insn_buff_sz = 0;
571 
572 		instr = (u8 *)&a->instr_offset + a->instr_offset;
573 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
574 		BUG_ON(a->instrlen > sizeof(insn_buff));
575 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
576 
577 		/*
578 		 * Patch if either:
579 		 * - feature is present
580 		 * - feature not present but ALT_FLAG_NOT is set to mean,
581 		 *   patch if feature is *NOT* present.
582 		 */
583 		if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
584 			optimize_nops_inplace(instr, a->instrlen);
585 			continue;
586 		}
587 
588 		DPRINTK(ALT, "feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
589 			(a->flags & ALT_FLAG_NOT) ? "!" : "",
590 			a->cpuid >> 5,
591 			a->cpuid & 0x1f,
592 			instr, instr, a->instrlen,
593 			replacement, a->replacementlen);
594 
595 		memcpy(insn_buff, replacement, a->replacementlen);
596 		insn_buff_sz = a->replacementlen;
597 
598 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
599 			insn_buff[insn_buff_sz] = 0x90;
600 
601 		apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen);
602 
603 		DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
604 		DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
605 		DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
606 
607 		text_poke_early(instr, insn_buff, insn_buff_sz);
608 	}
609 
610 	kasan_enable_current();
611 }
612 
is_jcc32(struct insn * insn)613 static inline bool is_jcc32(struct insn *insn)
614 {
615 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
616 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
617 }
618 
619 #if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
620 
621 /*
622  * CALL/JMP *%\reg
623  */
emit_indirect(int op,int reg,u8 * bytes)624 static int emit_indirect(int op, int reg, u8 *bytes)
625 {
626 	int i = 0;
627 	u8 modrm;
628 
629 	switch (op) {
630 	case CALL_INSN_OPCODE:
631 		modrm = 0x10; /* Reg = 2; CALL r/m */
632 		break;
633 
634 	case JMP32_INSN_OPCODE:
635 		modrm = 0x20; /* Reg = 4; JMP r/m */
636 		break;
637 
638 	default:
639 		WARN_ON_ONCE(1);
640 		return -1;
641 	}
642 
643 	if (reg >= 8) {
644 		bytes[i++] = 0x41; /* REX.B prefix */
645 		reg -= 8;
646 	}
647 
648 	modrm |= 0xc0; /* Mod = 3 */
649 	modrm += reg;
650 
651 	bytes[i++] = 0xff; /* opcode */
652 	bytes[i++] = modrm;
653 
654 	return i;
655 }
656 
__emit_trampoline(void * addr,struct insn * insn,u8 * bytes,void * call_dest,void * jmp_dest)657 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes,
658 			     void *call_dest, void *jmp_dest)
659 {
660 	u8 op = insn->opcode.bytes[0];
661 	int i = 0;
662 
663 	/*
664 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
665 	 * tail-calls. Deal with them.
666 	 */
667 	if (is_jcc32(insn)) {
668 		bytes[i++] = op;
669 		op = insn->opcode.bytes[1];
670 		goto clang_jcc;
671 	}
672 
673 	if (insn->length == 6)
674 		bytes[i++] = 0x2e; /* CS-prefix */
675 
676 	switch (op) {
677 	case CALL_INSN_OPCODE:
678 		__text_gen_insn(bytes+i, op, addr+i,
679 				call_dest,
680 				CALL_INSN_SIZE);
681 		i += CALL_INSN_SIZE;
682 		break;
683 
684 	case JMP32_INSN_OPCODE:
685 clang_jcc:
686 		__text_gen_insn(bytes+i, op, addr+i,
687 				jmp_dest,
688 				JMP32_INSN_SIZE);
689 		i += JMP32_INSN_SIZE;
690 		break;
691 
692 	default:
693 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
694 		return -1;
695 	}
696 
697 	WARN_ON_ONCE(i != insn->length);
698 
699 	return i;
700 }
701 
emit_call_track_retpoline(void * addr,struct insn * insn,int reg,u8 * bytes)702 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
703 {
704 	return __emit_trampoline(addr, insn, bytes,
705 				 __x86_indirect_call_thunk_array[reg],
706 				 __x86_indirect_jump_thunk_array[reg]);
707 }
708 
709 #ifdef CONFIG_MITIGATION_ITS
emit_its_trampoline(void * addr,struct insn * insn,int reg,u8 * bytes)710 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
711 {
712 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
713 	u8 *tmp = its_allocate_thunk(reg);
714 
715 	if (tmp)
716 		thunk = tmp;
717 
718 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
719 }
720 
721 /* Check if an indirect branch is at ITS-unsafe address */
cpu_wants_indirect_its_thunk_at(unsigned long addr,int reg)722 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
723 {
724 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
725 		return false;
726 
727 	/* Indirect branch opcode is 2 or 3 bytes depending on reg */
728 	addr += 1 + reg / 8;
729 
730 	/* Lower-half of the cacheline? */
731 	return !(addr & 0x20);
732 }
733 
its_static_thunk(int reg)734 u8 *its_static_thunk(int reg)
735 {
736 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
737 
738 	return thunk;
739 }
740 
741 #endif /* CONFIG_MITIGATION_ITS */
742 
743 /*
744  * Rewrite the compiler generated retpoline thunk calls.
745  *
746  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
747  * indirect instructions, avoiding the extra indirection.
748  *
749  * For example, convert:
750  *
751  *   CALL __x86_indirect_thunk_\reg
752  *
753  * into:
754  *
755  *   CALL *%\reg
756  *
757  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
758  */
patch_retpoline(void * addr,struct insn * insn,u8 * bytes)759 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
760 {
761 	retpoline_thunk_t *target;
762 	int reg, ret, i = 0;
763 	u8 op, cc;
764 
765 	target = addr + insn->length + insn->immediate.value;
766 	reg = target - __x86_indirect_thunk_array;
767 
768 	if (WARN_ON_ONCE(reg & ~0xf))
769 		return -1;
770 
771 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
772 	BUG_ON(reg == 4);
773 
774 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
775 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
776 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
777 			return emit_call_track_retpoline(addr, insn, reg, bytes);
778 
779 		return -1;
780 	}
781 
782 	op = insn->opcode.bytes[0];
783 
784 	/*
785 	 * Convert:
786 	 *
787 	 *   Jcc.d32 __x86_indirect_thunk_\reg
788 	 *
789 	 * into:
790 	 *
791 	 *   Jncc.d8 1f
792 	 *   [ LFENCE ]
793 	 *   JMP *%\reg
794 	 *   [ NOP ]
795 	 * 1:
796 	 */
797 	if (is_jcc32(insn)) {
798 		cc = insn->opcode.bytes[1] & 0xf;
799 		cc ^= 1; /* invert condition */
800 
801 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
802 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
803 
804 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
805 		op = JMP32_INSN_OPCODE;
806 	}
807 
808 	/*
809 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
810 	 */
811 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
812 		bytes[i++] = 0x0f;
813 		bytes[i++] = 0xae;
814 		bytes[i++] = 0xe8; /* LFENCE */
815 	}
816 
817 #ifdef CONFIG_MITIGATION_ITS
818 	/*
819 	 * Check if the address of last byte of emitted-indirect is in
820 	 * lower-half of the cacheline. Such branches need ITS mitigation.
821 	 */
822 	if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg))
823 		return emit_its_trampoline(addr, insn, reg, bytes);
824 #endif
825 
826 	ret = emit_indirect(op, reg, bytes + i);
827 	if (ret < 0)
828 		return ret;
829 	i += ret;
830 
831 	/*
832 	 * The compiler is supposed to EMIT an INT3 after every unconditional
833 	 * JMP instruction due to AMD BTC. However, if the compiler is too old
834 	 * or SLS isn't enabled, we still need an INT3 after indirect JMPs
835 	 * even on Intel.
836 	 */
837 	if (op == JMP32_INSN_OPCODE && i < insn->length)
838 		bytes[i++] = INT3_INSN_OPCODE;
839 
840 	for (; i < insn->length;)
841 		bytes[i++] = BYTES_NOP1;
842 
843 	return i;
844 }
845 
846 /*
847  * Generated by 'objtool --retpoline'.
848  */
apply_retpolines(s32 * start,s32 * end)849 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
850 {
851 	s32 *s;
852 
853 	for (s = start; s < end; s++) {
854 		void *addr = (void *)s + *s;
855 		struct insn insn;
856 		int len, ret;
857 		u8 bytes[16];
858 		u8 op1, op2;
859 
860 		ret = insn_decode_kernel(&insn, addr);
861 		if (WARN_ON_ONCE(ret < 0))
862 			continue;
863 
864 		op1 = insn.opcode.bytes[0];
865 		op2 = insn.opcode.bytes[1];
866 
867 		switch (op1) {
868 		case CALL_INSN_OPCODE:
869 		case JMP32_INSN_OPCODE:
870 			break;
871 
872 		case 0x0f: /* escape */
873 			if (op2 >= 0x80 && op2 <= 0x8f)
874 				break;
875 			fallthrough;
876 		default:
877 			WARN_ON_ONCE(1);
878 			continue;
879 		}
880 
881 		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
882 			addr, addr, insn.length,
883 			addr + insn.length + insn.immediate.value);
884 
885 		len = patch_retpoline(addr, &insn, bytes);
886 		if (len == insn.length) {
887 			optimize_nops(bytes, len);
888 			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
889 			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
890 			text_poke_early(addr, bytes, len);
891 		}
892 	}
893 }
894 
895 #ifdef CONFIG_RETHUNK
896 
cpu_wants_rethunk(void)897 bool cpu_wants_rethunk(void)
898 {
899 	return cpu_feature_enabled(X86_FEATURE_RETHUNK);
900 }
901 
cpu_wants_rethunk_at(void * addr)902 bool cpu_wants_rethunk_at(void *addr)
903 {
904 	if (!cpu_feature_enabled(X86_FEATURE_RETHUNK))
905 		return false;
906 	if (x86_return_thunk != its_return_thunk)
907 		return true;
908 
909 	return !((unsigned long)addr & 0x20);
910 }
911 
912 /*
913  * Rewrite the compiler generated return thunk tail-calls.
914  *
915  * For example, convert:
916  *
917  *   JMP __x86_return_thunk
918  *
919  * into:
920  *
921  *   RET
922  */
patch_return(void * addr,struct insn * insn,u8 * bytes)923 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
924 {
925 	int i = 0;
926 
927 	/* Patch the custom return thunks... */
928 	if (cpu_wants_rethunk_at(addr)) {
929 		i = JMP32_INSN_SIZE;
930 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
931 	} else {
932 		/* ... or patch them out if not needed. */
933 		bytes[i++] = RET_INSN_OPCODE;
934 	}
935 
936 	for (; i < insn->length;)
937 		bytes[i++] = INT3_INSN_OPCODE;
938 	return i;
939 }
940 
apply_returns(s32 * start,s32 * end)941 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
942 {
943 	s32 *s;
944 
945 	if (cpu_wants_rethunk())
946 		static_call_force_reinit();
947 
948 	for (s = start; s < end; s++) {
949 		void *dest = NULL, *addr = (void *)s + *s;
950 		struct insn insn;
951 		int len, ret;
952 		u8 bytes[16];
953 		u8 op;
954 
955 		ret = insn_decode_kernel(&insn, addr);
956 		if (WARN_ON_ONCE(ret < 0))
957 			continue;
958 
959 		op = insn.opcode.bytes[0];
960 		if (op == JMP32_INSN_OPCODE)
961 			dest = addr + insn.length + insn.immediate.value;
962 
963 		if (__static_call_fixup(addr, op, dest) ||
964 		    WARN_ONCE(dest != &__x86_return_thunk,
965 			      "missing return thunk: %pS-%pS: %*ph",
966 			      addr, dest, 5, addr))
967 			continue;
968 
969 		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
970 			addr, addr, insn.length,
971 			addr + insn.length + insn.immediate.value);
972 
973 		len = patch_return(addr, &insn, bytes);
974 		if (len == insn.length) {
975 			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
976 			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
977 			text_poke_early(addr, bytes, len);
978 		}
979 	}
980 }
981 #else
apply_returns(s32 * start,s32 * end)982 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
983 #endif /* CONFIG_RETHUNK */
984 
985 #else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
986 
apply_retpolines(s32 * start,s32 * end)987 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
apply_returns(s32 * start,s32 * end)988 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
989 
990 #endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
991 
992 #ifdef CONFIG_X86_KERNEL_IBT
993 
994 static void poison_cfi(void *addr);
995 
poison_endbr(void * addr,bool warn)996 static void __init_or_module poison_endbr(void *addr, bool warn)
997 {
998 	u32 endbr, poison = gen_endbr_poison();
999 
1000 	if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
1001 		return;
1002 
1003 	if (!is_endbr(endbr)) {
1004 		WARN_ON_ONCE(warn);
1005 		return;
1006 	}
1007 
1008 	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
1009 
1010 	/*
1011 	 * When we have IBT, the lack of ENDBR will trigger #CP
1012 	 */
1013 	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
1014 	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
1015 	text_poke_early(addr, &poison, 4);
1016 }
1017 
1018 /*
1019  * Generated by: objtool --ibt
1020  *
1021  * Seal the functions for indirect calls by clobbering the ENDBR instructions
1022  * and the kCFI hash value.
1023  */
apply_seal_endbr(s32 * start,s32 * end)1024 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
1025 {
1026 	s32 *s;
1027 
1028 	for (s = start; s < end; s++) {
1029 		void *addr = (void *)s + *s;
1030 
1031 		poison_endbr(addr, true);
1032 		if (IS_ENABLED(CONFIG_FINEIBT))
1033 			poison_cfi(addr - 16);
1034 	}
1035 }
1036 
1037 #else
1038 
apply_seal_endbr(s32 * start,s32 * end)1039 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
1040 
1041 #endif /* CONFIG_X86_KERNEL_IBT */
1042 
1043 #ifdef CONFIG_FINEIBT
1044 
1045 enum cfi_mode {
1046 	CFI_DEFAULT,
1047 	CFI_OFF,
1048 	CFI_KCFI,
1049 	CFI_FINEIBT,
1050 };
1051 
1052 static enum cfi_mode cfi_mode __ro_after_init = CFI_DEFAULT;
1053 static bool cfi_rand __ro_after_init = true;
1054 static u32  cfi_seed __ro_after_init;
1055 
1056 /*
1057  * Re-hash the CFI hash with a boot-time seed while making sure the result is
1058  * not a valid ENDBR instruction.
1059  */
cfi_rehash(u32 hash)1060 static u32 cfi_rehash(u32 hash)
1061 {
1062 	hash ^= cfi_seed;
1063 	while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
1064 		bool lsb = hash & 1;
1065 		hash >>= 1;
1066 		if (lsb)
1067 			hash ^= 0x80200003;
1068 	}
1069 	return hash;
1070 }
1071 
cfi_parse_cmdline(char * str)1072 static __init int cfi_parse_cmdline(char *str)
1073 {
1074 	if (!str)
1075 		return -EINVAL;
1076 
1077 	while (str) {
1078 		char *next = strchr(str, ',');
1079 		if (next) {
1080 			*next = 0;
1081 			next++;
1082 		}
1083 
1084 		if (!strcmp(str, "auto")) {
1085 			cfi_mode = CFI_DEFAULT;
1086 		} else if (!strcmp(str, "off")) {
1087 			cfi_mode = CFI_OFF;
1088 			cfi_rand = false;
1089 		} else if (!strcmp(str, "kcfi")) {
1090 			cfi_mode = CFI_KCFI;
1091 		} else if (!strcmp(str, "fineibt")) {
1092 			cfi_mode = CFI_FINEIBT;
1093 		} else if (!strcmp(str, "norand")) {
1094 			cfi_rand = false;
1095 		} else {
1096 			pr_err("Ignoring unknown cfi option (%s).", str);
1097 		}
1098 
1099 		str = next;
1100 	}
1101 
1102 	return 0;
1103 }
1104 early_param("cfi", cfi_parse_cmdline);
1105 
1106 /*
1107  * kCFI						FineIBT
1108  *
1109  * __cfi_\func:					__cfi_\func:
1110  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
1111  *	nop					     subl   $0x12345678,%r10d   // 7
1112  *	nop					     jz     1f			// 2
1113  *	nop					     ud2			// 2
1114  *	nop					1:   nop			// 1
1115  *	nop
1116  *	nop
1117  *	nop
1118  *	nop
1119  *	nop
1120  *	nop
1121  *	nop
1122  *
1123  *
1124  * caller:					caller:
1125  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
1126  *	addl	$-15(%r11),%r10d	 // 4	     sub    $16,%r11		// 4
1127  *	je	1f			 // 2	     nop4			// 4
1128  *	ud2				 // 2
1129  * 1:	call	__x86_indirect_thunk_r11 // 5	     call   *%r11; nop2;	// 5
1130  *
1131  */
1132 
1133 asm(	".pushsection .rodata			\n"
1134 	"fineibt_preamble_start:		\n"
1135 	"	endbr64				\n"
1136 	"	subl	$0x12345678, %r10d	\n"
1137 	"	je	fineibt_preamble_end	\n"
1138 	"	ud2				\n"
1139 	"	nop				\n"
1140 	"fineibt_preamble_end:			\n"
1141 	".popsection\n"
1142 );
1143 
1144 extern u8 fineibt_preamble_start[];
1145 extern u8 fineibt_preamble_end[];
1146 
1147 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1148 #define fineibt_preamble_hash 7
1149 
1150 asm(	".pushsection .rodata			\n"
1151 	"fineibt_caller_start:			\n"
1152 	"	movl	$0x12345678, %r10d	\n"
1153 	"	sub	$16, %r11		\n"
1154 	ASM_NOP4
1155 	"fineibt_caller_end:			\n"
1156 	".popsection				\n"
1157 );
1158 
1159 extern u8 fineibt_caller_start[];
1160 extern u8 fineibt_caller_end[];
1161 
1162 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1163 #define fineibt_caller_hash 2
1164 
1165 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1166 
decode_preamble_hash(void * addr)1167 static u32 decode_preamble_hash(void *addr)
1168 {
1169 	u8 *p = addr;
1170 
1171 	/* b8 78 56 34 12          mov    $0x12345678,%eax */
1172 	if (p[0] == 0xb8)
1173 		return *(u32 *)(addr + 1);
1174 
1175 	return 0; /* invalid hash value */
1176 }
1177 
decode_caller_hash(void * addr)1178 static u32 decode_caller_hash(void *addr)
1179 {
1180 	u8 *p = addr;
1181 
1182 	/* 41 ba 78 56 34 12       mov    $0x12345678,%r10d */
1183 	if (p[0] == 0x41 && p[1] == 0xba)
1184 		return -*(u32 *)(addr + 2);
1185 
1186 	/* e8 0c 78 56 34 12	   jmp.d8  +12 */
1187 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1188 		return -*(u32 *)(addr + 2);
1189 
1190 	return 0; /* invalid hash value */
1191 }
1192 
1193 /* .retpoline_sites */
cfi_disable_callers(s32 * start,s32 * end)1194 static int cfi_disable_callers(s32 *start, s32 *end)
1195 {
1196 	/*
1197 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1198 	 * in tact for later usage. Also see decode_caller_hash() and
1199 	 * cfi_rewrite_callers().
1200 	 */
1201 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1202 	s32 *s;
1203 
1204 	for (s = start; s < end; s++) {
1205 		void *addr = (void *)s + *s;
1206 		u32 hash;
1207 
1208 		addr -= fineibt_caller_size;
1209 		hash = decode_caller_hash(addr);
1210 		if (!hash) /* nocfi callers */
1211 			continue;
1212 
1213 		text_poke_early(addr, jmp, 2);
1214 	}
1215 
1216 	return 0;
1217 }
1218 
cfi_enable_callers(s32 * start,s32 * end)1219 static int cfi_enable_callers(s32 *start, s32 *end)
1220 {
1221 	/*
1222 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1223 	 */
1224 	const u8 mov[] = { 0x41, 0xba };
1225 	s32 *s;
1226 
1227 	for (s = start; s < end; s++) {
1228 		void *addr = (void *)s + *s;
1229 		u32 hash;
1230 
1231 		addr -= fineibt_caller_size;
1232 		hash = decode_caller_hash(addr);
1233 		if (!hash) /* nocfi callers */
1234 			continue;
1235 
1236 		text_poke_early(addr, mov, 2);
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 /* .cfi_sites */
cfi_rand_preamble(s32 * start,s32 * end)1243 static int cfi_rand_preamble(s32 *start, s32 *end)
1244 {
1245 	s32 *s;
1246 
1247 	for (s = start; s < end; s++) {
1248 		void *addr = (void *)s + *s;
1249 		u32 hash;
1250 
1251 		hash = decode_preamble_hash(addr);
1252 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1253 			 addr, addr, 5, addr))
1254 			return -EINVAL;
1255 
1256 		hash = cfi_rehash(hash);
1257 		text_poke_early(addr + 1, &hash, 4);
1258 	}
1259 
1260 	return 0;
1261 }
1262 
cfi_rewrite_preamble(s32 * start,s32 * end)1263 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1264 {
1265 	s32 *s;
1266 
1267 	for (s = start; s < end; s++) {
1268 		void *addr = (void *)s + *s;
1269 		u32 hash;
1270 
1271 		hash = decode_preamble_hash(addr);
1272 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1273 			 addr, addr, 5, addr))
1274 			return -EINVAL;
1275 
1276 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1277 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1278 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1279 	}
1280 
1281 	return 0;
1282 }
1283 
cfi_rewrite_endbr(s32 * start,s32 * end)1284 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1285 {
1286 	s32 *s;
1287 
1288 	for (s = start; s < end; s++) {
1289 		void *addr = (void *)s + *s;
1290 
1291 		poison_endbr(addr+16, false);
1292 	}
1293 }
1294 
1295 /* .retpoline_sites */
cfi_rand_callers(s32 * start,s32 * end)1296 static int cfi_rand_callers(s32 *start, s32 *end)
1297 {
1298 	s32 *s;
1299 
1300 	for (s = start; s < end; s++) {
1301 		void *addr = (void *)s + *s;
1302 		u32 hash;
1303 
1304 		addr -= fineibt_caller_size;
1305 		hash = decode_caller_hash(addr);
1306 		if (hash) {
1307 			hash = -cfi_rehash(hash);
1308 			text_poke_early(addr + 2, &hash, 4);
1309 		}
1310 	}
1311 
1312 	return 0;
1313 }
1314 
cfi_rewrite_callers(s32 * start,s32 * end)1315 static int cfi_rewrite_callers(s32 *start, s32 *end)
1316 {
1317 	s32 *s;
1318 
1319 	for (s = start; s < end; s++) {
1320 		void *addr = (void *)s + *s;
1321 		u32 hash;
1322 
1323 		addr -= fineibt_caller_size;
1324 		hash = decode_caller_hash(addr);
1325 		if (hash) {
1326 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1327 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1328 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1329 		}
1330 		/* rely on apply_retpolines() */
1331 	}
1332 
1333 	return 0;
1334 }
1335 
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)1336 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1337 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1338 {
1339 	int ret;
1340 
1341 	if (WARN_ONCE(fineibt_preamble_size != 16,
1342 		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1343 		return;
1344 
1345 	if (cfi_mode == CFI_DEFAULT) {
1346 		cfi_mode = CFI_KCFI;
1347 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1348 			cfi_mode = CFI_FINEIBT;
1349 	}
1350 
1351 	/*
1352 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1353 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1354 	 * later stages fails, we're without CFI.
1355 	 */
1356 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1357 	if (ret)
1358 		goto err;
1359 
1360 	if (cfi_rand) {
1361 		if (builtin)
1362 			cfi_seed = get_random_u32();
1363 
1364 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1365 		if (ret)
1366 			goto err;
1367 
1368 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1369 		if (ret)
1370 			goto err;
1371 	}
1372 
1373 	switch (cfi_mode) {
1374 	case CFI_OFF:
1375 		if (builtin)
1376 			pr_info("Disabling CFI\n");
1377 		return;
1378 
1379 	case CFI_KCFI:
1380 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1381 		if (ret)
1382 			goto err;
1383 
1384 		if (builtin)
1385 			pr_info("Using kCFI\n");
1386 		return;
1387 
1388 	case CFI_FINEIBT:
1389 		/* place the FineIBT preamble at func()-16 */
1390 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1391 		if (ret)
1392 			goto err;
1393 
1394 		/* rewrite the callers to target func()-16 */
1395 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1396 		if (ret)
1397 			goto err;
1398 
1399 		/* now that nobody targets func()+0, remove ENDBR there */
1400 		cfi_rewrite_endbr(start_cfi, end_cfi);
1401 
1402 		if (builtin)
1403 			pr_info("Using FineIBT CFI\n");
1404 		return;
1405 
1406 	default:
1407 		break;
1408 	}
1409 
1410 err:
1411 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1412 }
1413 
poison_hash(void * addr)1414 static inline void poison_hash(void *addr)
1415 {
1416 	*(u32 *)addr = 0;
1417 }
1418 
poison_cfi(void * addr)1419 static void poison_cfi(void *addr)
1420 {
1421 	switch (cfi_mode) {
1422 	case CFI_FINEIBT:
1423 		/*
1424 		 * __cfi_\func:
1425 		 *	osp nopl (%rax)
1426 		 *	subl	$0, %r10d
1427 		 *	jz	1f
1428 		 *	ud2
1429 		 * 1:	nop
1430 		 */
1431 		poison_endbr(addr, false);
1432 		poison_hash(addr + fineibt_preamble_hash);
1433 		break;
1434 
1435 	case CFI_KCFI:
1436 		/*
1437 		 * __cfi_\func:
1438 		 *	movl	$0, %eax
1439 		 *	.skip	11, 0x90
1440 		 */
1441 		poison_hash(addr + 1);
1442 		break;
1443 
1444 	default:
1445 		break;
1446 	}
1447 }
1448 
1449 #else
1450 
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)1451 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1452 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1453 {
1454 }
1455 
1456 #ifdef CONFIG_X86_KERNEL_IBT
poison_cfi(void * addr)1457 static void poison_cfi(void *addr) { }
1458 #endif
1459 
1460 #endif
1461 
apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi)1462 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1463 		   s32 *start_cfi, s32 *end_cfi)
1464 {
1465 	return __apply_fineibt(start_retpoline, end_retpoline,
1466 			       start_cfi, end_cfi,
1467 			       /* .builtin = */ false);
1468 }
1469 
1470 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)1471 static void alternatives_smp_lock(const s32 *start, const s32 *end,
1472 				  u8 *text, u8 *text_end)
1473 {
1474 	const s32 *poff;
1475 
1476 	for (poff = start; poff < end; poff++) {
1477 		u8 *ptr = (u8 *)poff + *poff;
1478 
1479 		if (!*poff || ptr < text || ptr >= text_end)
1480 			continue;
1481 		/* turn DS segment override prefix into lock prefix */
1482 		if (*ptr == 0x3e)
1483 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
1484 	}
1485 }
1486 
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)1487 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1488 				    u8 *text, u8 *text_end)
1489 {
1490 	const s32 *poff;
1491 
1492 	for (poff = start; poff < end; poff++) {
1493 		u8 *ptr = (u8 *)poff + *poff;
1494 
1495 		if (!*poff || ptr < text || ptr >= text_end)
1496 			continue;
1497 		/* turn lock prefix into DS segment override prefix */
1498 		if (*ptr == 0xf0)
1499 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
1500 	}
1501 }
1502 
1503 struct smp_alt_module {
1504 	/* what is this ??? */
1505 	struct module	*mod;
1506 	char		*name;
1507 
1508 	/* ptrs to lock prefixes */
1509 	const s32	*locks;
1510 	const s32	*locks_end;
1511 
1512 	/* .text segment, needed to avoid patching init code ;) */
1513 	u8		*text;
1514 	u8		*text_end;
1515 
1516 	struct list_head next;
1517 };
1518 static LIST_HEAD(smp_alt_modules);
1519 static bool uniproc_patched = false;	/* protected by text_mutex */
1520 
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)1521 void __init_or_module alternatives_smp_module_add(struct module *mod,
1522 						  char *name,
1523 						  void *locks, void *locks_end,
1524 						  void *text,  void *text_end)
1525 {
1526 	struct smp_alt_module *smp;
1527 
1528 	mutex_lock(&text_mutex);
1529 	if (!uniproc_patched)
1530 		goto unlock;
1531 
1532 	if (num_possible_cpus() == 1)
1533 		/* Don't bother remembering, we'll never have to undo it. */
1534 		goto smp_unlock;
1535 
1536 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1537 	if (NULL == smp)
1538 		/* we'll run the (safe but slow) SMP code then ... */
1539 		goto unlock;
1540 
1541 	smp->mod	= mod;
1542 	smp->name	= name;
1543 	smp->locks	= locks;
1544 	smp->locks_end	= locks_end;
1545 	smp->text	= text;
1546 	smp->text_end	= text_end;
1547 	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1548 		smp->locks, smp->locks_end,
1549 		smp->text, smp->text_end, smp->name);
1550 
1551 	list_add_tail(&smp->next, &smp_alt_modules);
1552 smp_unlock:
1553 	alternatives_smp_unlock(locks, locks_end, text, text_end);
1554 unlock:
1555 	mutex_unlock(&text_mutex);
1556 }
1557 
alternatives_smp_module_del(struct module * mod)1558 void __init_or_module alternatives_smp_module_del(struct module *mod)
1559 {
1560 	struct smp_alt_module *item;
1561 
1562 	mutex_lock(&text_mutex);
1563 	list_for_each_entry(item, &smp_alt_modules, next) {
1564 		if (mod != item->mod)
1565 			continue;
1566 		list_del(&item->next);
1567 		kfree(item);
1568 		break;
1569 	}
1570 	mutex_unlock(&text_mutex);
1571 }
1572 
alternatives_enable_smp(void)1573 void alternatives_enable_smp(void)
1574 {
1575 	struct smp_alt_module *mod;
1576 
1577 	/* Why bother if there are no other CPUs? */
1578 	BUG_ON(num_possible_cpus() == 1);
1579 
1580 	mutex_lock(&text_mutex);
1581 
1582 	if (uniproc_patched) {
1583 		pr_info("switching to SMP code\n");
1584 		BUG_ON(num_online_cpus() != 1);
1585 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1586 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1587 		list_for_each_entry(mod, &smp_alt_modules, next)
1588 			alternatives_smp_lock(mod->locks, mod->locks_end,
1589 					      mod->text, mod->text_end);
1590 		uniproc_patched = false;
1591 	}
1592 	mutex_unlock(&text_mutex);
1593 }
1594 
1595 /*
1596  * Return 1 if the address range is reserved for SMP-alternatives.
1597  * Must hold text_mutex.
1598  */
alternatives_text_reserved(void * start,void * end)1599 int alternatives_text_reserved(void *start, void *end)
1600 {
1601 	struct smp_alt_module *mod;
1602 	const s32 *poff;
1603 	u8 *text_start = start;
1604 	u8 *text_end = end;
1605 
1606 	lockdep_assert_held(&text_mutex);
1607 
1608 	list_for_each_entry(mod, &smp_alt_modules, next) {
1609 		if (mod->text > text_end || mod->text_end < text_start)
1610 			continue;
1611 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
1612 			const u8 *ptr = (const u8 *)poff + *poff;
1613 
1614 			if (text_start <= ptr && text_end > ptr)
1615 				return 1;
1616 		}
1617 	}
1618 
1619 	return 0;
1620 }
1621 #endif /* CONFIG_SMP */
1622 
1623 #ifdef CONFIG_PARAVIRT
1624 
1625 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
add_nops(void * insns,unsigned int len)1626 static void __init_or_module add_nops(void *insns, unsigned int len)
1627 {
1628 	while (len > 0) {
1629 		unsigned int noplen = len;
1630 		if (noplen > ASM_NOP_MAX)
1631 			noplen = ASM_NOP_MAX;
1632 		memcpy(insns, x86_nops[noplen], noplen);
1633 		insns += noplen;
1634 		len -= noplen;
1635 	}
1636 }
1637 
apply_paravirt(struct paravirt_patch_site * start,struct paravirt_patch_site * end)1638 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
1639 				     struct paravirt_patch_site *end)
1640 {
1641 	struct paravirt_patch_site *p;
1642 	char insn_buff[MAX_PATCH_LEN];
1643 
1644 	for (p = start; p < end; p++) {
1645 		unsigned int used;
1646 
1647 		BUG_ON(p->len > MAX_PATCH_LEN);
1648 		/* prep the buffer with the original instructions */
1649 		memcpy(insn_buff, p->instr, p->len);
1650 		used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
1651 
1652 		BUG_ON(used > p->len);
1653 
1654 		/* Pad the rest with nops */
1655 		add_nops(insn_buff + used, p->len - used);
1656 		text_poke_early(p->instr, insn_buff, p->len);
1657 	}
1658 }
1659 extern struct paravirt_patch_site __start_parainstructions[],
1660 	__stop_parainstructions[];
1661 #endif	/* CONFIG_PARAVIRT */
1662 
1663 /*
1664  * Self-test for the INT3 based CALL emulation code.
1665  *
1666  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1667  * properly and that there is a stack gap between the INT3 frame and the
1668  * previous context. Without this gap doing a virtual PUSH on the interrupted
1669  * stack would corrupt the INT3 IRET frame.
1670  *
1671  * See entry_{32,64}.S for more details.
1672  */
1673 
1674 /*
1675  * We define the int3_magic() function in assembly to control the calling
1676  * convention such that we can 'call' it from assembly.
1677  */
1678 
1679 extern void int3_magic(unsigned int *ptr); /* defined in asm */
1680 
1681 asm (
1682 "	.pushsection	.init.text, \"ax\", @progbits\n"
1683 "	.type		int3_magic, @function\n"
1684 "int3_magic:\n"
1685 	ANNOTATE_NOENDBR
1686 "	movl	$1, (%" _ASM_ARG1 ")\n"
1687 	ASM_RET
1688 "	.size		int3_magic, .-int3_magic\n"
1689 "	.popsection\n"
1690 );
1691 
1692 extern void int3_selftest_ip(void); /* defined in asm below */
1693 
1694 static int __init
int3_exception_notify(struct notifier_block * self,unsigned long val,void * data)1695 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1696 {
1697 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
1698 	struct die_args *args = data;
1699 	struct pt_regs *regs = args->regs;
1700 
1701 	OPTIMIZER_HIDE_VAR(selftest);
1702 
1703 	if (!regs || user_mode(regs))
1704 		return NOTIFY_DONE;
1705 
1706 	if (val != DIE_INT3)
1707 		return NOTIFY_DONE;
1708 
1709 	if (regs->ip - INT3_INSN_SIZE != selftest)
1710 		return NOTIFY_DONE;
1711 
1712 	int3_emulate_call(regs, (unsigned long)&int3_magic);
1713 	return NOTIFY_STOP;
1714 }
1715 
1716 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
int3_selftest(void)1717 static noinline void __init int3_selftest(void)
1718 {
1719 	static __initdata struct notifier_block int3_exception_nb = {
1720 		.notifier_call	= int3_exception_notify,
1721 		.priority	= INT_MAX-1, /* last */
1722 	};
1723 	unsigned int val = 0;
1724 
1725 	BUG_ON(register_die_notifier(&int3_exception_nb));
1726 
1727 	/*
1728 	 * Basically: int3_magic(&val); but really complicated :-)
1729 	 *
1730 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1731 	 * notifier above will emulate CALL for us.
1732 	 */
1733 	asm volatile ("int3_selftest_ip:\n\t"
1734 		      ANNOTATE_NOENDBR
1735 		      "    int3; nop; nop; nop; nop\n\t"
1736 		      : ASM_CALL_CONSTRAINT
1737 		      : __ASM_SEL_RAW(a, D) (&val)
1738 		      : "memory");
1739 
1740 	BUG_ON(val != 1);
1741 
1742 	unregister_die_notifier(&int3_exception_nb);
1743 }
1744 
1745 static __initdata int __alt_reloc_selftest_addr;
1746 
1747 extern void __init __alt_reloc_selftest(void *arg);
__alt_reloc_selftest(void * arg)1748 __visible noinline void __init __alt_reloc_selftest(void *arg)
1749 {
1750 	WARN_ON(arg != &__alt_reloc_selftest_addr);
1751 }
1752 
alt_reloc_selftest(void)1753 static noinline void __init alt_reloc_selftest(void)
1754 {
1755 	/*
1756 	 * Tests apply_relocation().
1757 	 *
1758 	 * This has a relative immediate (CALL) in a place other than the first
1759 	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
1760 	 *
1761 	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
1762 	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
1763 	 *
1764 	 * Getting this wrong will either crash and burn or tickle the WARN
1765 	 * above.
1766 	 */
1767 	asm_inline volatile (
1768 		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
1769 		: /* output */
1770 		: [mem] "m" (__alt_reloc_selftest_addr)
1771 		: _ASM_ARG1
1772 	);
1773 }
1774 
alternative_instructions(void)1775 void __init alternative_instructions(void)
1776 {
1777 	u64 ibt;
1778 
1779 	int3_selftest();
1780 
1781 	/*
1782 	 * The patching is not fully atomic, so try to avoid local
1783 	 * interruptions that might execute the to be patched code.
1784 	 * Other CPUs are not running.
1785 	 */
1786 	stop_nmi();
1787 
1788 	/*
1789 	 * Don't stop machine check exceptions while patching.
1790 	 * MCEs only happen when something got corrupted and in this
1791 	 * case we must do something about the corruption.
1792 	 * Ignoring it is worse than an unlikely patching race.
1793 	 * Also machine checks tend to be broadcast and if one CPU
1794 	 * goes into machine check the others follow quickly, so we don't
1795 	 * expect a machine check to cause undue problems during to code
1796 	 * patching.
1797 	 */
1798 
1799 	/*
1800 	 * Paravirt patching and alternative patching can be combined to
1801 	 * replace a function call with a short direct code sequence (e.g.
1802 	 * by setting a constant return value instead of doing that in an
1803 	 * external function).
1804 	 * In order to make this work the following sequence is required:
1805 	 * 1. set (artificial) features depending on used paravirt
1806 	 *    functions which can later influence alternative patching
1807 	 * 2. apply paravirt patching (generally replacing an indirect
1808 	 *    function call with a direct one)
1809 	 * 3. apply alternative patching (e.g. replacing a direct function
1810 	 *    call with a custom code sequence)
1811 	 * Doing paravirt patching after alternative patching would clobber
1812 	 * the optimization of the custom code with a function call again.
1813 	 */
1814 	paravirt_set_cap();
1815 
1816 	/* Keep CET-IBT disabled until caller/callee are patched */
1817 	ibt = ibt_save(/*disable*/ true);
1818 
1819 	/*
1820 	 * First patch paravirt functions, such that we overwrite the indirect
1821 	 * call with the direct call.
1822 	 */
1823 	apply_paravirt(__parainstructions, __parainstructions_end);
1824 
1825 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1826 			__cfi_sites, __cfi_sites_end, true);
1827 
1828 	/*
1829 	 * Rewrite the retpolines, must be done before alternatives since
1830 	 * those can rewrite the retpoline thunks.
1831 	 */
1832 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1833 	apply_returns(__return_sites, __return_sites_end);
1834 
1835 	/*
1836 	 * Then patch alternatives, such that those paravirt calls that are in
1837 	 * alternatives can be overwritten by their immediate fragments.
1838 	 */
1839 	apply_alternatives(__alt_instructions, __alt_instructions_end);
1840 
1841 	/*
1842 	 * Now all calls are established. Apply the call thunks if
1843 	 * required.
1844 	 */
1845 	callthunks_patch_builtin_calls();
1846 
1847 	/*
1848 	 * Seal all functions that do not have their address taken.
1849 	 */
1850 	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1851 
1852 	ibt_restore(ibt);
1853 
1854 #ifdef CONFIG_SMP
1855 	/* Patch to UP if other cpus not imminent. */
1856 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1857 		uniproc_patched = true;
1858 		alternatives_smp_module_add(NULL, "core kernel",
1859 					    __smp_locks, __smp_locks_end,
1860 					    _text, _etext);
1861 	}
1862 
1863 	if (!uniproc_patched || num_possible_cpus() == 1) {
1864 		free_init_pages("SMP alternatives",
1865 				(unsigned long)__smp_locks,
1866 				(unsigned long)__smp_locks_end);
1867 	}
1868 #endif
1869 
1870 	restart_nmi();
1871 	alternatives_patched = 1;
1872 
1873 	alt_reloc_selftest();
1874 }
1875 
1876 /**
1877  * text_poke_early - Update instructions on a live kernel at boot time
1878  * @addr: address to modify
1879  * @opcode: source of the copy
1880  * @len: length to copy
1881  *
1882  * When you use this code to patch more than one byte of an instruction
1883  * you need to make sure that other CPUs cannot execute this code in parallel.
1884  * Also no thread must be currently preempted in the middle of these
1885  * instructions. And on the local CPU you need to be protected against NMI or
1886  * MCE handlers seeing an inconsistent instruction while you patch.
1887  */
text_poke_early(void * addr,const void * opcode,size_t len)1888 void __init_or_module text_poke_early(void *addr, const void *opcode,
1889 				      size_t len)
1890 {
1891 	unsigned long flags;
1892 
1893 	if (boot_cpu_has(X86_FEATURE_NX) &&
1894 	    is_module_text_address((unsigned long)addr)) {
1895 		/*
1896 		 * Modules text is marked initially as non-executable, so the
1897 		 * code cannot be running and speculative code-fetches are
1898 		 * prevented. Just change the code.
1899 		 */
1900 		memcpy(addr, opcode, len);
1901 	} else {
1902 		local_irq_save(flags);
1903 		memcpy(addr, opcode, len);
1904 		sync_core();
1905 		local_irq_restore(flags);
1906 
1907 		/*
1908 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
1909 		 * that causes hangs on some VIA CPUs.
1910 		 */
1911 	}
1912 }
1913 
1914 typedef struct {
1915 	struct mm_struct *mm;
1916 } temp_mm_state_t;
1917 
1918 /*
1919  * Using a temporary mm allows to set temporary mappings that are not accessible
1920  * by other CPUs. Such mappings are needed to perform sensitive memory writes
1921  * that override the kernel memory protections (e.g., W^X), without exposing the
1922  * temporary page-table mappings that are required for these write operations to
1923  * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1924  * mapping is torn down.
1925  *
1926  * Context: The temporary mm needs to be used exclusively by a single core. To
1927  *          harden security IRQs must be disabled while the temporary mm is
1928  *          loaded, thereby preventing interrupt handler bugs from overriding
1929  *          the kernel memory protection.
1930  */
use_temporary_mm(struct mm_struct * mm)1931 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1932 {
1933 	temp_mm_state_t temp_state;
1934 
1935 	lockdep_assert_irqs_disabled();
1936 
1937 	/*
1938 	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1939 	 * with a stale address space WITHOUT being in lazy mode after
1940 	 * restoring the previous mm.
1941 	 */
1942 	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1943 		leave_mm(smp_processor_id());
1944 
1945 	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1946 	switch_mm_irqs_off(NULL, mm, current);
1947 
1948 	/*
1949 	 * If breakpoints are enabled, disable them while the temporary mm is
1950 	 * used. Userspace might set up watchpoints on addresses that are used
1951 	 * in the temporary mm, which would lead to wrong signals being sent or
1952 	 * crashes.
1953 	 *
1954 	 * Note that breakpoints are not disabled selectively, which also causes
1955 	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1956 	 * undesirable, but still seems reasonable as the code that runs in the
1957 	 * temporary mm should be short.
1958 	 */
1959 	if (hw_breakpoint_active())
1960 		hw_breakpoint_disable();
1961 
1962 	return temp_state;
1963 }
1964 
unuse_temporary_mm(temp_mm_state_t prev_state)1965 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1966 {
1967 	lockdep_assert_irqs_disabled();
1968 	switch_mm_irqs_off(NULL, prev_state.mm, current);
1969 
1970 	/*
1971 	 * Restore the breakpoints if they were disabled before the temporary mm
1972 	 * was loaded.
1973 	 */
1974 	if (hw_breakpoint_active())
1975 		hw_breakpoint_restore();
1976 }
1977 
1978 __ro_after_init struct mm_struct *poking_mm;
1979 __ro_after_init unsigned long poking_addr;
1980 
text_poke_memcpy(void * dst,const void * src,size_t len)1981 static void text_poke_memcpy(void *dst, const void *src, size_t len)
1982 {
1983 	memcpy(dst, src, len);
1984 }
1985 
text_poke_memset(void * dst,const void * src,size_t len)1986 static void text_poke_memset(void *dst, const void *src, size_t len)
1987 {
1988 	int c = *(const int *)src;
1989 
1990 	memset(dst, c, len);
1991 }
1992 
1993 typedef void text_poke_f(void *dst, const void *src, size_t len);
1994 
__text_poke(text_poke_f func,void * addr,const void * src,size_t len)1995 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1996 {
1997 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1998 	struct page *pages[2] = {NULL};
1999 	temp_mm_state_t prev;
2000 	unsigned long flags;
2001 	pte_t pte, *ptep;
2002 	spinlock_t *ptl;
2003 	pgprot_t pgprot;
2004 
2005 	/*
2006 	 * While boot memory allocator is running we cannot use struct pages as
2007 	 * they are not yet initialized. There is no way to recover.
2008 	 */
2009 	BUG_ON(!after_bootmem);
2010 
2011 	if (!core_kernel_text((unsigned long)addr)) {
2012 		pages[0] = vmalloc_to_page(addr);
2013 		if (cross_page_boundary)
2014 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
2015 	} else {
2016 		pages[0] = virt_to_page(addr);
2017 		WARN_ON(!PageReserved(pages[0]));
2018 		if (cross_page_boundary)
2019 			pages[1] = virt_to_page(addr + PAGE_SIZE);
2020 	}
2021 	/*
2022 	 * If something went wrong, crash and burn since recovery paths are not
2023 	 * implemented.
2024 	 */
2025 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
2026 
2027 	/*
2028 	 * Map the page without the global bit, as TLB flushing is done with
2029 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
2030 	 */
2031 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
2032 
2033 	/*
2034 	 * The lock is not really needed, but this allows to avoid open-coding.
2035 	 */
2036 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
2037 
2038 	/*
2039 	 * This must not fail; preallocated in poking_init().
2040 	 */
2041 	VM_BUG_ON(!ptep);
2042 
2043 	local_irq_save(flags);
2044 
2045 	pte = mk_pte(pages[0], pgprot);
2046 	set_pte_at(poking_mm, poking_addr, ptep, pte);
2047 
2048 	if (cross_page_boundary) {
2049 		pte = mk_pte(pages[1], pgprot);
2050 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
2051 	}
2052 
2053 	/*
2054 	 * Loading the temporary mm behaves as a compiler barrier, which
2055 	 * guarantees that the PTE will be set at the time memcpy() is done.
2056 	 */
2057 	prev = use_temporary_mm(poking_mm);
2058 
2059 	kasan_disable_current();
2060 	func((u8 *)poking_addr + offset_in_page(addr), src, len);
2061 	kasan_enable_current();
2062 
2063 	/*
2064 	 * Ensure that the PTE is only cleared after the instructions of memcpy
2065 	 * were issued by using a compiler barrier.
2066 	 */
2067 	barrier();
2068 
2069 	pte_clear(poking_mm, poking_addr, ptep);
2070 	if (cross_page_boundary)
2071 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
2072 
2073 	/*
2074 	 * Loading the previous page-table hierarchy requires a serializing
2075 	 * instruction that already allows the core to see the updated version.
2076 	 * Xen-PV is assumed to serialize execution in a similar manner.
2077 	 */
2078 	unuse_temporary_mm(prev);
2079 
2080 	/*
2081 	 * Flushing the TLB might involve IPIs, which would require enabled
2082 	 * IRQs, but not if the mm is not used, as it is in this point.
2083 	 */
2084 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
2085 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
2086 			   PAGE_SHIFT, false);
2087 
2088 	if (func == text_poke_memcpy) {
2089 		/*
2090 		 * If the text does not match what we just wrote then something is
2091 		 * fundamentally screwy; there's nothing we can really do about that.
2092 		 */
2093 		BUG_ON(memcmp(addr, src, len));
2094 	}
2095 
2096 	local_irq_restore(flags);
2097 	pte_unmap_unlock(ptep, ptl);
2098 	return addr;
2099 }
2100 
2101 /**
2102  * text_poke - Update instructions on a live kernel
2103  * @addr: address to modify
2104  * @opcode: source of the copy
2105  * @len: length to copy
2106  *
2107  * Only atomic text poke/set should be allowed when not doing early patching.
2108  * It means the size must be writable atomically and the address must be aligned
2109  * in a way that permits an atomic write. It also makes sure we fit on a single
2110  * page.
2111  *
2112  * Note that the caller must ensure that if the modified code is part of a
2113  * module, the module would not be removed during poking. This can be achieved
2114  * by registering a module notifier, and ordering module removal and patching
2115  * trough a mutex.
2116  */
text_poke(void * addr,const void * opcode,size_t len)2117 void *text_poke(void *addr, const void *opcode, size_t len)
2118 {
2119 	lockdep_assert_held(&text_mutex);
2120 
2121 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2122 }
2123 
2124 /**
2125  * text_poke_kgdb - Update instructions on a live kernel by kgdb
2126  * @addr: address to modify
2127  * @opcode: source of the copy
2128  * @len: length to copy
2129  *
2130  * Only atomic text poke/set should be allowed when not doing early patching.
2131  * It means the size must be writable atomically and the address must be aligned
2132  * in a way that permits an atomic write. It also makes sure we fit on a single
2133  * page.
2134  *
2135  * Context: should only be used by kgdb, which ensures no other core is running,
2136  *	    despite the fact it does not hold the text_mutex.
2137  */
text_poke_kgdb(void * addr,const void * opcode,size_t len)2138 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2139 {
2140 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2141 }
2142 
text_poke_copy_locked(void * addr,const void * opcode,size_t len,bool core_ok)2143 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2144 			    bool core_ok)
2145 {
2146 	unsigned long start = (unsigned long)addr;
2147 	size_t patched = 0;
2148 
2149 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2150 		return NULL;
2151 
2152 	while (patched < len) {
2153 		unsigned long ptr = start + patched;
2154 		size_t s;
2155 
2156 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2157 
2158 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2159 		patched += s;
2160 	}
2161 	return addr;
2162 }
2163 
2164 /**
2165  * text_poke_copy - Copy instructions into (an unused part of) RX memory
2166  * @addr: address to modify
2167  * @opcode: source of the copy
2168  * @len: length to copy, could be more than 2x PAGE_SIZE
2169  *
2170  * Not safe against concurrent execution; useful for JITs to dump
2171  * new code blocks into unused regions of RX memory. Can be used in
2172  * conjunction with synchronize_rcu_tasks() to wait for existing
2173  * execution to quiesce after having made sure no existing functions
2174  * pointers are live.
2175  */
text_poke_copy(void * addr,const void * opcode,size_t len)2176 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2177 {
2178 	mutex_lock(&text_mutex);
2179 	addr = text_poke_copy_locked(addr, opcode, len, false);
2180 	mutex_unlock(&text_mutex);
2181 	return addr;
2182 }
2183 
2184 /**
2185  * text_poke_set - memset into (an unused part of) RX memory
2186  * @addr: address to modify
2187  * @c: the byte to fill the area with
2188  * @len: length to copy, could be more than 2x PAGE_SIZE
2189  *
2190  * This is useful to overwrite unused regions of RX memory with illegal
2191  * instructions.
2192  */
text_poke_set(void * addr,int c,size_t len)2193 void *text_poke_set(void *addr, int c, size_t len)
2194 {
2195 	unsigned long start = (unsigned long)addr;
2196 	size_t patched = 0;
2197 
2198 	if (WARN_ON_ONCE(core_kernel_text(start)))
2199 		return NULL;
2200 
2201 	mutex_lock(&text_mutex);
2202 	while (patched < len) {
2203 		unsigned long ptr = start + patched;
2204 		size_t s;
2205 
2206 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2207 
2208 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2209 		patched += s;
2210 	}
2211 	mutex_unlock(&text_mutex);
2212 	return addr;
2213 }
2214 
do_sync_core(void * info)2215 static void do_sync_core(void *info)
2216 {
2217 	sync_core();
2218 }
2219 
text_poke_sync(void)2220 void text_poke_sync(void)
2221 {
2222 	on_each_cpu(do_sync_core, NULL, 1);
2223 }
2224 
2225 /*
2226  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2227  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2228  * opcode to Jcc.d8, using len to distinguish.
2229  */
2230 struct text_poke_loc {
2231 	/* addr := _stext + rel_addr */
2232 	s32 rel_addr;
2233 	s32 disp;
2234 	u8 len;
2235 	u8 opcode;
2236 	const u8 text[POKE_MAX_OPCODE_SIZE];
2237 	/* see text_poke_bp_batch() */
2238 	u8 old;
2239 };
2240 
2241 struct bp_patching_desc {
2242 	struct text_poke_loc *vec;
2243 	int nr_entries;
2244 	atomic_t refs;
2245 };
2246 
2247 static struct bp_patching_desc bp_desc;
2248 
2249 static __always_inline
try_get_desc(void)2250 struct bp_patching_desc *try_get_desc(void)
2251 {
2252 	struct bp_patching_desc *desc = &bp_desc;
2253 
2254 	if (!raw_atomic_inc_not_zero(&desc->refs))
2255 		return NULL;
2256 
2257 	return desc;
2258 }
2259 
put_desc(void)2260 static __always_inline void put_desc(void)
2261 {
2262 	struct bp_patching_desc *desc = &bp_desc;
2263 
2264 	smp_mb__before_atomic();
2265 	raw_atomic_dec(&desc->refs);
2266 }
2267 
text_poke_addr(struct text_poke_loc * tp)2268 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2269 {
2270 	return _stext + tp->rel_addr;
2271 }
2272 
patch_cmp(const void * key,const void * elt)2273 static __always_inline int patch_cmp(const void *key, const void *elt)
2274 {
2275 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2276 
2277 	if (key < text_poke_addr(tp))
2278 		return -1;
2279 	if (key > text_poke_addr(tp))
2280 		return 1;
2281 	return 0;
2282 }
2283 
poke_int3_handler(struct pt_regs * regs)2284 noinstr int poke_int3_handler(struct pt_regs *regs)
2285 {
2286 	struct bp_patching_desc *desc;
2287 	struct text_poke_loc *tp;
2288 	int ret = 0;
2289 	void *ip;
2290 
2291 	if (user_mode(regs))
2292 		return 0;
2293 
2294 	/*
2295 	 * Having observed our INT3 instruction, we now must observe
2296 	 * bp_desc with non-zero refcount:
2297 	 *
2298 	 *	bp_desc.refs = 1		INT3
2299 	 *	WMB				RMB
2300 	 *	write INT3			if (bp_desc.refs != 0)
2301 	 */
2302 	smp_rmb();
2303 
2304 	desc = try_get_desc();
2305 	if (!desc)
2306 		return 0;
2307 
2308 	/*
2309 	 * Discount the INT3. See text_poke_bp_batch().
2310 	 */
2311 	ip = (void *) regs->ip - INT3_INSN_SIZE;
2312 
2313 	/*
2314 	 * Skip the binary search if there is a single member in the vector.
2315 	 */
2316 	if (unlikely(desc->nr_entries > 1)) {
2317 		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2318 				      sizeof(struct text_poke_loc),
2319 				      patch_cmp);
2320 		if (!tp)
2321 			goto out_put;
2322 	} else {
2323 		tp = desc->vec;
2324 		if (text_poke_addr(tp) != ip)
2325 			goto out_put;
2326 	}
2327 
2328 	ip += tp->len;
2329 
2330 	switch (tp->opcode) {
2331 	case INT3_INSN_OPCODE:
2332 		/*
2333 		 * Someone poked an explicit INT3, they'll want to handle it,
2334 		 * do not consume.
2335 		 */
2336 		goto out_put;
2337 
2338 	case RET_INSN_OPCODE:
2339 		int3_emulate_ret(regs);
2340 		break;
2341 
2342 	case CALL_INSN_OPCODE:
2343 		int3_emulate_call(regs, (long)ip + tp->disp);
2344 		break;
2345 
2346 	case JMP32_INSN_OPCODE:
2347 	case JMP8_INSN_OPCODE:
2348 		int3_emulate_jmp(regs, (long)ip + tp->disp);
2349 		break;
2350 
2351 	case 0x70 ... 0x7f: /* Jcc */
2352 		int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2353 		break;
2354 
2355 	default:
2356 		BUG();
2357 	}
2358 
2359 	ret = 1;
2360 
2361 out_put:
2362 	put_desc();
2363 	return ret;
2364 }
2365 
2366 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2367 static struct text_poke_loc tp_vec[TP_VEC_MAX];
2368 static int tp_vec_nr;
2369 
2370 /**
2371  * text_poke_bp_batch() -- update instructions on live kernel on SMP
2372  * @tp:			vector of instructions to patch
2373  * @nr_entries:		number of entries in the vector
2374  *
2375  * Modify multi-byte instruction by using int3 breakpoint on SMP.
2376  * We completely avoid stop_machine() here, and achieve the
2377  * synchronization using int3 breakpoint.
2378  *
2379  * The way it is done:
2380  *	- For each entry in the vector:
2381  *		- add a int3 trap to the address that will be patched
2382  *	- sync cores
2383  *	- For each entry in the vector:
2384  *		- update all but the first byte of the patched range
2385  *	- sync cores
2386  *	- For each entry in the vector:
2387  *		- replace the first byte (int3) by the first byte of
2388  *		  replacing opcode
2389  *	- sync cores
2390  */
text_poke_bp_batch(struct text_poke_loc * tp,unsigned int nr_entries)2391 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2392 {
2393 	unsigned char int3 = INT3_INSN_OPCODE;
2394 	unsigned int i;
2395 	int do_sync;
2396 
2397 	lockdep_assert_held(&text_mutex);
2398 
2399 	bp_desc.vec = tp;
2400 	bp_desc.nr_entries = nr_entries;
2401 
2402 	/*
2403 	 * Corresponds to the implicit memory barrier in try_get_desc() to
2404 	 * ensure reading a non-zero refcount provides up to date bp_desc data.
2405 	 */
2406 	atomic_set_release(&bp_desc.refs, 1);
2407 
2408 	/*
2409 	 * Function tracing can enable thousands of places that need to be
2410 	 * updated. This can take quite some time, and with full kernel debugging
2411 	 * enabled, this could cause the softlockup watchdog to trigger.
2412 	 * This function gets called every 256 entries added to be patched.
2413 	 * Call cond_resched() here to make sure that other tasks can get scheduled
2414 	 * while processing all the functions being patched.
2415 	 */
2416 	cond_resched();
2417 
2418 	/*
2419 	 * Corresponding read barrier in int3 notifier for making sure the
2420 	 * nr_entries and handler are correctly ordered wrt. patching.
2421 	 */
2422 	smp_wmb();
2423 
2424 	/*
2425 	 * First step: add a int3 trap to the address that will be patched.
2426 	 */
2427 	for (i = 0; i < nr_entries; i++) {
2428 		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2429 		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2430 	}
2431 
2432 	text_poke_sync();
2433 
2434 	/*
2435 	 * Second step: update all but the first byte of the patched range.
2436 	 */
2437 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2438 		u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2439 		u8 _new[POKE_MAX_OPCODE_SIZE+1];
2440 		const u8 *new = tp[i].text;
2441 		int len = tp[i].len;
2442 
2443 		if (len - INT3_INSN_SIZE > 0) {
2444 			memcpy(old + INT3_INSN_SIZE,
2445 			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2446 			       len - INT3_INSN_SIZE);
2447 
2448 			if (len == 6) {
2449 				_new[0] = 0x0f;
2450 				memcpy(_new + 1, new, 5);
2451 				new = _new;
2452 			}
2453 
2454 			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2455 				  new + INT3_INSN_SIZE,
2456 				  len - INT3_INSN_SIZE);
2457 
2458 			do_sync++;
2459 		}
2460 
2461 		/*
2462 		 * Emit a perf event to record the text poke, primarily to
2463 		 * support Intel PT decoding which must walk the executable code
2464 		 * to reconstruct the trace. The flow up to here is:
2465 		 *   - write INT3 byte
2466 		 *   - IPI-SYNC
2467 		 *   - write instruction tail
2468 		 * At this point the actual control flow will be through the
2469 		 * INT3 and handler and not hit the old or new instruction.
2470 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2471 		 * can still be decoded. Subsequently:
2472 		 *   - emit RECORD_TEXT_POKE with the new instruction
2473 		 *   - IPI-SYNC
2474 		 *   - write first byte
2475 		 *   - IPI-SYNC
2476 		 * So before the text poke event timestamp, the decoder will see
2477 		 * either the old instruction flow or FUP/TIP of INT3. After the
2478 		 * text poke event timestamp, the decoder will see either the
2479 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2480 		 * use the timestamp as the point at which to modify the
2481 		 * executable code.
2482 		 * The old instruction is recorded so that the event can be
2483 		 * processed forwards or backwards.
2484 		 */
2485 		perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
2486 	}
2487 
2488 	if (do_sync) {
2489 		/*
2490 		 * According to Intel, this core syncing is very likely
2491 		 * not necessary and we'd be safe even without it. But
2492 		 * better safe than sorry (plus there's not only Intel).
2493 		 */
2494 		text_poke_sync();
2495 	}
2496 
2497 	/*
2498 	 * Third step: replace the first byte (int3) by the first byte of
2499 	 * replacing opcode.
2500 	 */
2501 	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2502 		u8 byte = tp[i].text[0];
2503 
2504 		if (tp[i].len == 6)
2505 			byte = 0x0f;
2506 
2507 		if (byte == INT3_INSN_OPCODE)
2508 			continue;
2509 
2510 		text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2511 		do_sync++;
2512 	}
2513 
2514 	if (do_sync)
2515 		text_poke_sync();
2516 
2517 	/*
2518 	 * Remove and wait for refs to be zero.
2519 	 */
2520 	if (!atomic_dec_and_test(&bp_desc.refs))
2521 		atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2522 }
2523 
text_poke_loc_init(struct text_poke_loc * tp,void * addr,const void * opcode,size_t len,const void * emulate)2524 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2525 			       const void *opcode, size_t len, const void *emulate)
2526 {
2527 	struct insn insn;
2528 	int ret, i = 0;
2529 
2530 	if (len == 6)
2531 		i = 1;
2532 	memcpy((void *)tp->text, opcode+i, len-i);
2533 	if (!emulate)
2534 		emulate = opcode;
2535 
2536 	ret = insn_decode_kernel(&insn, emulate);
2537 	BUG_ON(ret < 0);
2538 
2539 	tp->rel_addr = addr - (void *)_stext;
2540 	tp->len = len;
2541 	tp->opcode = insn.opcode.bytes[0];
2542 
2543 	if (is_jcc32(&insn)) {
2544 		/*
2545 		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2546 		 */
2547 		tp->opcode = insn.opcode.bytes[1] - 0x10;
2548 	}
2549 
2550 	switch (tp->opcode) {
2551 	case RET_INSN_OPCODE:
2552 	case JMP32_INSN_OPCODE:
2553 	case JMP8_INSN_OPCODE:
2554 		/*
2555 		 * Control flow instructions without implied execution of the
2556 		 * next instruction can be padded with INT3.
2557 		 */
2558 		for (i = insn.length; i < len; i++)
2559 			BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2560 		break;
2561 
2562 	default:
2563 		BUG_ON(len != insn.length);
2564 	}
2565 
2566 	switch (tp->opcode) {
2567 	case INT3_INSN_OPCODE:
2568 	case RET_INSN_OPCODE:
2569 		break;
2570 
2571 	case CALL_INSN_OPCODE:
2572 	case JMP32_INSN_OPCODE:
2573 	case JMP8_INSN_OPCODE:
2574 	case 0x70 ... 0x7f: /* Jcc */
2575 		tp->disp = insn.immediate.value;
2576 		break;
2577 
2578 	default: /* assume NOP */
2579 		switch (len) {
2580 		case 2: /* NOP2 -- emulate as JMP8+0 */
2581 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2582 			tp->opcode = JMP8_INSN_OPCODE;
2583 			tp->disp = 0;
2584 			break;
2585 
2586 		case 5: /* NOP5 -- emulate as JMP32+0 */
2587 			BUG_ON(memcmp(emulate, x86_nops[len], len));
2588 			tp->opcode = JMP32_INSN_OPCODE;
2589 			tp->disp = 0;
2590 			break;
2591 
2592 		default: /* unknown instruction */
2593 			BUG();
2594 		}
2595 		break;
2596 	}
2597 }
2598 
2599 /*
2600  * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2601  * early if needed.
2602  */
tp_order_fail(void * addr)2603 static bool tp_order_fail(void *addr)
2604 {
2605 	struct text_poke_loc *tp;
2606 
2607 	if (!tp_vec_nr)
2608 		return false;
2609 
2610 	if (!addr) /* force */
2611 		return true;
2612 
2613 	tp = &tp_vec[tp_vec_nr - 1];
2614 	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2615 		return true;
2616 
2617 	return false;
2618 }
2619 
text_poke_flush(void * addr)2620 static void text_poke_flush(void *addr)
2621 {
2622 	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2623 		text_poke_bp_batch(tp_vec, tp_vec_nr);
2624 		tp_vec_nr = 0;
2625 	}
2626 }
2627 
text_poke_finish(void)2628 void text_poke_finish(void)
2629 {
2630 	text_poke_flush(NULL);
2631 }
2632 
text_poke_queue(void * addr,const void * opcode,size_t len,const void * emulate)2633 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2634 {
2635 	struct text_poke_loc *tp;
2636 
2637 	text_poke_flush(addr);
2638 
2639 	tp = &tp_vec[tp_vec_nr++];
2640 	text_poke_loc_init(tp, addr, opcode, len, emulate);
2641 }
2642 
2643 /**
2644  * text_poke_bp() -- update instructions on live kernel on SMP
2645  * @addr:	address to patch
2646  * @opcode:	opcode of new instruction
2647  * @len:	length to copy
2648  * @emulate:	instruction to be emulated
2649  *
2650  * Update a single instruction with the vector in the stack, avoiding
2651  * dynamically allocated memory. This function should be used when it is
2652  * not possible to allocate memory.
2653  */
text_poke_bp(void * addr,const void * opcode,size_t len,const void * emulate)2654 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2655 {
2656 	struct text_poke_loc tp;
2657 
2658 	text_poke_loc_init(&tp, addr, opcode, len, emulate);
2659 	text_poke_bp_batch(&tp, 1);
2660 }
2661