1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - 64BIT
11 *
12 * Copyright IBM Corp. 2012,2015
13 *
14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
16 */
17
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include "bpf_jit.h"
35
36 struct bpf_jit {
37 u32 seen; /* Flags to remember seen eBPF instructions */
38 u32 seen_reg[16]; /* Array to remember which registers are used */
39 u32 *addrs; /* Array with relative instruction addresses */
40 u8 *prg_buf; /* Start of program */
41 int size; /* Size of program and literal pool */
42 int size_prg; /* Size of program */
43 int prg; /* Current position in program */
44 int lit32_start; /* Start of 32-bit literal pool */
45 int lit32; /* Current position in 32-bit literal pool */
46 int lit64_start; /* Start of 64-bit literal pool */
47 int lit64; /* Current position in 64-bit literal pool */
48 int base_ip; /* Base address for literal pool */
49 int exit_ip; /* Address of exit */
50 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
51 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
52 int tail_call_start; /* Tail call start offset */
53 int excnt; /* Number of exception table entries */
54 int prologue_plt_ret; /* Return address for prologue hotpatch PLT */
55 int prologue_plt; /* Start of prologue hotpatch PLT */
56 };
57
58 #define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
59 #define SEEN_LITERAL BIT(1) /* code uses literals */
60 #define SEEN_FUNC BIT(2) /* calls C functions */
61 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
62
63 /*
64 * s390 registers
65 */
66 #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
67 #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
68 #define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
69 #define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
70 #define REG_0 REG_W0 /* Register 0 */
71 #define REG_1 REG_W1 /* Register 1 */
72 #define REG_2 BPF_REG_1 /* Register 2 */
73 #define REG_3 BPF_REG_2 /* Register 3 */
74 #define REG_4 BPF_REG_3 /* Register 4 */
75 #define REG_7 BPF_REG_6 /* Register 7 */
76 #define REG_8 BPF_REG_7 /* Register 8 */
77 #define REG_14 BPF_REG_0 /* Register 14 */
78
79 /*
80 * Mapping of BPF registers to s390 registers
81 */
82 static const int reg2hex[] = {
83 /* Return code */
84 [BPF_REG_0] = 14,
85 /* Function parameters */
86 [BPF_REG_1] = 2,
87 [BPF_REG_2] = 3,
88 [BPF_REG_3] = 4,
89 [BPF_REG_4] = 5,
90 [BPF_REG_5] = 6,
91 /* Call saved registers */
92 [BPF_REG_6] = 7,
93 [BPF_REG_7] = 8,
94 [BPF_REG_8] = 9,
95 [BPF_REG_9] = 10,
96 /* BPF stack pointer */
97 [BPF_REG_FP] = 13,
98 /* Register for blinding */
99 [BPF_REG_AX] = 12,
100 /* Work registers for s390x backend */
101 [REG_W0] = 0,
102 [REG_W1] = 1,
103 [REG_L] = 11,
104 [REG_15] = 15,
105 };
106
reg(u32 dst_reg,u32 src_reg)107 static inline u32 reg(u32 dst_reg, u32 src_reg)
108 {
109 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
110 }
111
reg_high(u32 reg)112 static inline u32 reg_high(u32 reg)
113 {
114 return reg2hex[reg] << 4;
115 }
116
reg_set_seen(struct bpf_jit * jit,u32 b1)117 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
118 {
119 u32 r1 = reg2hex[b1];
120
121 if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
122 jit->seen_reg[r1] = 1;
123 }
124
125 #define REG_SET_SEEN(b1) \
126 ({ \
127 reg_set_seen(jit, b1); \
128 })
129
130 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
131
132 /*
133 * EMIT macros for code generation
134 */
135
136 #define _EMIT2(op) \
137 ({ \
138 if (jit->prg_buf) \
139 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
140 jit->prg += 2; \
141 })
142
143 #define EMIT2(op, b1, b2) \
144 ({ \
145 _EMIT2((op) | reg(b1, b2)); \
146 REG_SET_SEEN(b1); \
147 REG_SET_SEEN(b2); \
148 })
149
150 #define _EMIT4(op) \
151 ({ \
152 if (jit->prg_buf) \
153 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
154 jit->prg += 4; \
155 })
156
157 #define EMIT4(op, b1, b2) \
158 ({ \
159 _EMIT4((op) | reg(b1, b2)); \
160 REG_SET_SEEN(b1); \
161 REG_SET_SEEN(b2); \
162 })
163
164 #define EMIT4_RRF(op, b1, b2, b3) \
165 ({ \
166 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
167 REG_SET_SEEN(b1); \
168 REG_SET_SEEN(b2); \
169 REG_SET_SEEN(b3); \
170 })
171
172 #define _EMIT4_DISP(op, disp) \
173 ({ \
174 unsigned int __disp = (disp) & 0xfff; \
175 _EMIT4((op) | __disp); \
176 })
177
178 #define EMIT4_DISP(op, b1, b2, disp) \
179 ({ \
180 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
181 reg_high(b2) << 8, (disp)); \
182 REG_SET_SEEN(b1); \
183 REG_SET_SEEN(b2); \
184 })
185
186 #define EMIT4_IMM(op, b1, imm) \
187 ({ \
188 unsigned int __imm = (imm) & 0xffff; \
189 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
190 REG_SET_SEEN(b1); \
191 })
192
193 #define EMIT4_PCREL(op, pcrel) \
194 ({ \
195 long __pcrel = ((pcrel) >> 1) & 0xffff; \
196 _EMIT4((op) | __pcrel); \
197 })
198
199 #define EMIT4_PCREL_RIC(op, mask, target) \
200 ({ \
201 int __rel = ((target) - jit->prg) / 2; \
202 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
203 })
204
205 #define _EMIT6(op1, op2) \
206 ({ \
207 if (jit->prg_buf) { \
208 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
209 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
210 } \
211 jit->prg += 6; \
212 })
213
214 #define _EMIT6_DISP(op1, op2, disp) \
215 ({ \
216 unsigned int __disp = (disp) & 0xfff; \
217 _EMIT6((op1) | __disp, op2); \
218 })
219
220 #define _EMIT6_DISP_LH(op1, op2, disp) \
221 ({ \
222 u32 _disp = (u32) (disp); \
223 unsigned int __disp_h = _disp & 0xff000; \
224 unsigned int __disp_l = _disp & 0x00fff; \
225 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
226 })
227
228 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
229 ({ \
230 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
231 reg_high(b3) << 8, op2, disp); \
232 REG_SET_SEEN(b1); \
233 REG_SET_SEEN(b2); \
234 REG_SET_SEEN(b3); \
235 })
236
237 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
238 ({ \
239 unsigned int rel = (int)((target) - jit->prg) / 2; \
240 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
241 (op2) | (mask) << 12); \
242 REG_SET_SEEN(b1); \
243 REG_SET_SEEN(b2); \
244 })
245
246 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
247 ({ \
248 unsigned int rel = (int)((target) - jit->prg) / 2; \
249 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
250 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
251 REG_SET_SEEN(b1); \
252 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
253 })
254
255 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
256 ({ \
257 int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2; \
258 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
259 REG_SET_SEEN(b1); \
260 REG_SET_SEEN(b2); \
261 })
262
263 #define EMIT6_PCREL_RILB(op, b, target) \
264 ({ \
265 unsigned int rel = (int)((target) - jit->prg) / 2; \
266 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
267 REG_SET_SEEN(b); \
268 })
269
270 #define EMIT6_PCREL_RIL(op, target) \
271 ({ \
272 unsigned int rel = (int)((target) - jit->prg) / 2; \
273 _EMIT6((op) | rel >> 16, rel & 0xffff); \
274 })
275
276 #define EMIT6_PCREL_RILC(op, mask, target) \
277 ({ \
278 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
279 })
280
281 #define _EMIT6_IMM(op, imm) \
282 ({ \
283 unsigned int __imm = (imm); \
284 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
285 })
286
287 #define EMIT6_IMM(op, b1, imm) \
288 ({ \
289 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
290 REG_SET_SEEN(b1); \
291 })
292
293 #define _EMIT_CONST_U32(val) \
294 ({ \
295 unsigned int ret; \
296 ret = jit->lit32; \
297 if (jit->prg_buf) \
298 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
299 jit->lit32 += 4; \
300 ret; \
301 })
302
303 #define EMIT_CONST_U32(val) \
304 ({ \
305 jit->seen |= SEEN_LITERAL; \
306 _EMIT_CONST_U32(val) - jit->base_ip; \
307 })
308
309 #define _EMIT_CONST_U64(val) \
310 ({ \
311 unsigned int ret; \
312 ret = jit->lit64; \
313 if (jit->prg_buf) \
314 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
315 jit->lit64 += 8; \
316 ret; \
317 })
318
319 #define EMIT_CONST_U64(val) \
320 ({ \
321 jit->seen |= SEEN_LITERAL; \
322 _EMIT_CONST_U64(val) - jit->base_ip; \
323 })
324
325 #define EMIT_ZERO(b1) \
326 ({ \
327 if (!fp->aux->verifier_zext) { \
328 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
329 EMIT4(0xb9160000, b1, b1); \
330 REG_SET_SEEN(b1); \
331 } \
332 })
333
334 /*
335 * Return whether this is the first pass. The first pass is special, since we
336 * don't know any sizes yet, and thus must be conservative.
337 */
is_first_pass(struct bpf_jit * jit)338 static bool is_first_pass(struct bpf_jit *jit)
339 {
340 return jit->size == 0;
341 }
342
343 /*
344 * Return whether this is the code generation pass. The code generation pass is
345 * special, since we should change as little as possible.
346 */
is_codegen_pass(struct bpf_jit * jit)347 static bool is_codegen_pass(struct bpf_jit *jit)
348 {
349 return jit->prg_buf;
350 }
351
352 /*
353 * Return whether "rel" can be encoded as a short PC-relative offset
354 */
is_valid_rel(int rel)355 static bool is_valid_rel(int rel)
356 {
357 return rel >= -65536 && rel <= 65534;
358 }
359
360 /*
361 * Return whether "off" can be reached using a short PC-relative offset
362 */
can_use_rel(struct bpf_jit * jit,int off)363 static bool can_use_rel(struct bpf_jit *jit, int off)
364 {
365 return is_valid_rel(off - jit->prg);
366 }
367
368 /*
369 * Return whether given displacement can be encoded using
370 * Long-Displacement Facility
371 */
is_valid_ldisp(int disp)372 static bool is_valid_ldisp(int disp)
373 {
374 return disp >= -524288 && disp <= 524287;
375 }
376
377 /*
378 * Return whether the next 32-bit literal pool entry can be referenced using
379 * Long-Displacement Facility
380 */
can_use_ldisp_for_lit32(struct bpf_jit * jit)381 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
382 {
383 return is_valid_ldisp(jit->lit32 - jit->base_ip);
384 }
385
386 /*
387 * Return whether the next 64-bit literal pool entry can be referenced using
388 * Long-Displacement Facility
389 */
can_use_ldisp_for_lit64(struct bpf_jit * jit)390 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
391 {
392 return is_valid_ldisp(jit->lit64 - jit->base_ip);
393 }
394
395 /*
396 * Fill whole space with illegal instructions
397 */
jit_fill_hole(void * area,unsigned int size)398 static void jit_fill_hole(void *area, unsigned int size)
399 {
400 memset(area, 0, size);
401 }
402
403 /*
404 * Save registers from "rs" (register start) to "re" (register end) on stack
405 */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)406 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
407 {
408 u32 off = STK_OFF_R6 + (rs - 6) * 8;
409
410 if (rs == re)
411 /* stg %rs,off(%r15) */
412 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
413 else
414 /* stmg %rs,%re,off(%r15) */
415 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
416 }
417
418 /*
419 * Restore registers from "rs" (register start) to "re" (register end) on stack
420 */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)421 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
422 {
423 u32 off = STK_OFF_R6 + (rs - 6) * 8;
424
425 if (jit->seen & SEEN_STACK)
426 off += STK_OFF + stack_depth;
427
428 if (rs == re)
429 /* lg %rs,off(%r15) */
430 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
431 else
432 /* lmg %rs,%re,off(%r15) */
433 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
434 }
435
436 /*
437 * Return first seen register (from start)
438 */
get_start(struct bpf_jit * jit,int start)439 static int get_start(struct bpf_jit *jit, int start)
440 {
441 int i;
442
443 for (i = start; i <= 15; i++) {
444 if (jit->seen_reg[i])
445 return i;
446 }
447 return 0;
448 }
449
450 /*
451 * Return last seen register (from start) (gap >= 2)
452 */
get_end(struct bpf_jit * jit,int start)453 static int get_end(struct bpf_jit *jit, int start)
454 {
455 int i;
456
457 for (i = start; i < 15; i++) {
458 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
459 return i - 1;
460 }
461 return jit->seen_reg[15] ? 15 : 14;
462 }
463
464 #define REGS_SAVE 1
465 #define REGS_RESTORE 0
466 /*
467 * Save and restore clobbered registers (6-15) on stack.
468 * We save/restore registers in chunks with gap >= 2 registers.
469 */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth)470 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
471 {
472 const int last = 15, save_restore_size = 6;
473 int re = 6, rs;
474
475 if (is_first_pass(jit)) {
476 /*
477 * We don't know yet which registers are used. Reserve space
478 * conservatively.
479 */
480 jit->prg += (last - re + 1) * save_restore_size;
481 return;
482 }
483
484 do {
485 rs = get_start(jit, re);
486 if (!rs)
487 break;
488 re = get_end(jit, rs + 1);
489 if (op == REGS_SAVE)
490 save_regs(jit, rs, re);
491 else
492 restore_regs(jit, rs, re, stack_depth);
493 re++;
494 } while (re <= last);
495 }
496
bpf_skip(struct bpf_jit * jit,int size)497 static void bpf_skip(struct bpf_jit *jit, int size)
498 {
499 if (size >= 6 && !is_valid_rel(size)) {
500 /* brcl 0xf,size */
501 EMIT6_PCREL_RIL(0xc0f4000000, size);
502 size -= 6;
503 } else if (size >= 4 && is_valid_rel(size)) {
504 /* brc 0xf,size */
505 EMIT4_PCREL(0xa7f40000, size);
506 size -= 4;
507 }
508 while (size >= 2) {
509 /* bcr 0,%0 */
510 _EMIT2(0x0700);
511 size -= 2;
512 }
513 }
514
515 /*
516 * PLT for hotpatchable calls. The calling convention is the same as for the
517 * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
518 */
519 struct bpf_plt {
520 char code[16];
521 void *ret;
522 void *target;
523 } __packed;
524 extern const struct bpf_plt bpf_plt;
525 asm(
526 ".pushsection .rodata\n"
527 " .balign 8\n"
528 "bpf_plt:\n"
529 " lgrl %r0,bpf_plt_ret\n"
530 " lgrl %r1,bpf_plt_target\n"
531 " br %r1\n"
532 " .balign 8\n"
533 "bpf_plt_ret: .quad 0\n"
534 "bpf_plt_target: .quad 0\n"
535 " .popsection\n"
536 );
537
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)538 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
539 {
540 memcpy(plt, &bpf_plt, sizeof(*plt));
541 plt->ret = ret;
542 plt->target = target;
543 }
544
545 /*
546 * Emit function prologue
547 *
548 * Save registers and create stack frame if necessary.
549 * See stack frame layout description in "bpf_jit.h"!
550 */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp,u32 stack_depth)551 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
552 u32 stack_depth)
553 {
554 /* No-op for hotpatching */
555 /* brcl 0,prologue_plt */
556 EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
557 jit->prologue_plt_ret = jit->prg;
558
559 if (fp->aux->func_idx == 0) {
560 /* Initialize the tail call counter in the main program. */
561 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
562 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
563 } else {
564 /*
565 * Skip the tail call counter initialization in subprograms.
566 * Insert nops in order to have tail_call_start at a
567 * predictable offset.
568 */
569 bpf_skip(jit, 6);
570 }
571 /* Tail calls have to skip above initialization */
572 jit->tail_call_start = jit->prg;
573 /* Save registers */
574 save_restore_regs(jit, REGS_SAVE, stack_depth);
575 /* Setup literal pool */
576 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
577 if (!is_first_pass(jit) &&
578 is_valid_ldisp(jit->size - (jit->prg + 2))) {
579 /* basr %l,0 */
580 EMIT2(0x0d00, REG_L, REG_0);
581 jit->base_ip = jit->prg;
582 } else {
583 /* larl %l,lit32_start */
584 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
585 jit->base_ip = jit->lit32_start;
586 }
587 }
588 /* Setup stack and backchain */
589 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
590 /* lgr %w1,%r15 (backchain) */
591 EMIT4(0xb9040000, REG_W1, REG_15);
592 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
593 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
594 /* aghi %r15,-STK_OFF */
595 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
596 /* stg %w1,152(%r15) (backchain) */
597 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
598 REG_15, 152);
599 }
600 }
601
602 /*
603 * Emit an expoline for a jump that follows
604 */
emit_expoline(struct bpf_jit * jit)605 static void emit_expoline(struct bpf_jit *jit)
606 {
607 /* exrl %r0,.+10 */
608 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
609 /* j . */
610 EMIT4_PCREL(0xa7f40000, 0);
611 }
612
613 /*
614 * Emit __s390_indirect_jump_r1 thunk if necessary
615 */
emit_r1_thunk(struct bpf_jit * jit)616 static void emit_r1_thunk(struct bpf_jit *jit)
617 {
618 if (nospec_uses_trampoline()) {
619 jit->r1_thunk_ip = jit->prg;
620 emit_expoline(jit);
621 /* br %r1 */
622 _EMIT2(0x07f1);
623 }
624 }
625
626 /*
627 * Call r1 either directly or via __s390_indirect_jump_r1 thunk
628 */
call_r1(struct bpf_jit * jit)629 static void call_r1(struct bpf_jit *jit)
630 {
631 if (nospec_uses_trampoline())
632 /* brasl %r14,__s390_indirect_jump_r1 */
633 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
634 else
635 /* basr %r14,%r1 */
636 EMIT2(0x0d00, REG_14, REG_1);
637 }
638
639 /*
640 * Function epilogue
641 */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)642 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
643 {
644 jit->exit_ip = jit->prg;
645 /* Load exit code: lgr %r2,%b0 */
646 EMIT4(0xb9040000, REG_2, BPF_REG_0);
647 /* Restore registers */
648 save_restore_regs(jit, REGS_RESTORE, stack_depth);
649 if (nospec_uses_trampoline()) {
650 jit->r14_thunk_ip = jit->prg;
651 /* Generate __s390_indirect_jump_r14 thunk */
652 emit_expoline(jit);
653 }
654 /* br %r14 */
655 _EMIT2(0x07fe);
656
657 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
658 emit_r1_thunk(jit);
659
660 jit->prg = ALIGN(jit->prg, 8);
661 jit->prologue_plt = jit->prg;
662 if (jit->prg_buf)
663 bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
664 jit->prg_buf + jit->prologue_plt_ret, NULL);
665 jit->prg += sizeof(struct bpf_plt);
666 }
667
get_probe_mem_regno(const u8 * insn)668 static int get_probe_mem_regno(const u8 *insn)
669 {
670 /*
671 * insn must point to llgc, llgh, llgf or lg, which have destination
672 * register at the same position.
673 */
674 if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
675 return -1;
676 if (insn[5] != 0x90 && /* llgc */
677 insn[5] != 0x91 && /* llgh */
678 insn[5] != 0x16 && /* llgf */
679 insn[5] != 0x04) /* lg */
680 return -1;
681 return insn[1] >> 4;
682 }
683
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)684 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
685 {
686 regs->psw.addr = extable_fixup(x);
687 regs->gprs[x->data] = 0;
688 return true;
689 }
690
bpf_jit_probe_mem(struct bpf_jit * jit,struct bpf_prog * fp,int probe_prg,int nop_prg)691 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
692 int probe_prg, int nop_prg)
693 {
694 struct exception_table_entry *ex;
695 int reg, prg;
696 s64 delta;
697 u8 *insn;
698 int i;
699
700 if (!fp->aux->extable)
701 /* Do nothing during early JIT passes. */
702 return 0;
703 insn = jit->prg_buf + probe_prg;
704 reg = get_probe_mem_regno(insn);
705 if (WARN_ON_ONCE(reg < 0))
706 /* JIT bug - unexpected probe instruction. */
707 return -1;
708 if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
709 /* JIT bug - gap between probe and nop instructions. */
710 return -1;
711 for (i = 0; i < 2; i++) {
712 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
713 /* Verifier bug - not enough entries. */
714 return -1;
715 ex = &fp->aux->extable[jit->excnt];
716 /* Add extable entries for probe and nop instructions. */
717 prg = i == 0 ? probe_prg : nop_prg;
718 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
719 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
720 /* JIT bug - code and extable must be close. */
721 return -1;
722 ex->insn = delta;
723 /*
724 * Always land on the nop. Note that extable infrastructure
725 * ignores fixup field, it is handled by ex_handler_bpf().
726 */
727 delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
728 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
729 /* JIT bug - landing pad and extable must be close. */
730 return -1;
731 ex->fixup = delta;
732 ex->type = EX_TYPE_BPF;
733 ex->data = reg;
734 jit->excnt++;
735 }
736 return 0;
737 }
738
739 /*
740 * Sign-extend the register if necessary
741 */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)742 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
743 {
744 if (!(flags & BTF_FMODEL_SIGNED_ARG))
745 return 0;
746
747 switch (size) {
748 case 1:
749 /* lgbr %r,%r */
750 EMIT4(0xb9060000, r, r);
751 return 0;
752 case 2:
753 /* lghr %r,%r */
754 EMIT4(0xb9070000, r, r);
755 return 0;
756 case 4:
757 /* lgfr %r,%r */
758 EMIT4(0xb9140000, r, r);
759 return 0;
760 case 8:
761 return 0;
762 default:
763 return -1;
764 }
765 }
766
767 /*
768 * Compile one eBPF instruction into s390x code
769 *
770 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
771 * stack space for the large switch statement.
772 */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)773 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
774 int i, bool extra_pass, u32 stack_depth)
775 {
776 struct bpf_insn *insn = &fp->insnsi[i];
777 u32 dst_reg = insn->dst_reg;
778 u32 src_reg = insn->src_reg;
779 int last, insn_count = 1;
780 u32 *addrs = jit->addrs;
781 s32 imm = insn->imm;
782 s16 off = insn->off;
783 int probe_prg = -1;
784 unsigned int mask;
785 int nop_prg;
786 int err;
787
788 if (BPF_CLASS(insn->code) == BPF_LDX &&
789 BPF_MODE(insn->code) == BPF_PROBE_MEM)
790 probe_prg = jit->prg;
791
792 switch (insn->code) {
793 /*
794 * BPF_MOV
795 */
796 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
797 /* llgfr %dst,%src */
798 EMIT4(0xb9160000, dst_reg, src_reg);
799 if (insn_is_zext(&insn[1]))
800 insn_count = 2;
801 break;
802 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
803 /* lgr %dst,%src */
804 EMIT4(0xb9040000, dst_reg, src_reg);
805 break;
806 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
807 /* llilf %dst,imm */
808 EMIT6_IMM(0xc00f0000, dst_reg, imm);
809 if (insn_is_zext(&insn[1]))
810 insn_count = 2;
811 break;
812 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
813 /* lgfi %dst,imm */
814 EMIT6_IMM(0xc0010000, dst_reg, imm);
815 break;
816 /*
817 * BPF_LD 64
818 */
819 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
820 {
821 /* 16 byte instruction that uses two 'struct bpf_insn' */
822 u64 imm64;
823
824 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
825 /* lgrl %dst,imm */
826 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
827 insn_count = 2;
828 break;
829 }
830 /*
831 * BPF_ADD
832 */
833 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
834 /* ar %dst,%src */
835 EMIT2(0x1a00, dst_reg, src_reg);
836 EMIT_ZERO(dst_reg);
837 break;
838 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
839 /* agr %dst,%src */
840 EMIT4(0xb9080000, dst_reg, src_reg);
841 break;
842 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
843 if (imm != 0) {
844 /* alfi %dst,imm */
845 EMIT6_IMM(0xc20b0000, dst_reg, imm);
846 }
847 EMIT_ZERO(dst_reg);
848 break;
849 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
850 if (!imm)
851 break;
852 /* agfi %dst,imm */
853 EMIT6_IMM(0xc2080000, dst_reg, imm);
854 break;
855 /*
856 * BPF_SUB
857 */
858 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
859 /* sr %dst,%src */
860 EMIT2(0x1b00, dst_reg, src_reg);
861 EMIT_ZERO(dst_reg);
862 break;
863 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
864 /* sgr %dst,%src */
865 EMIT4(0xb9090000, dst_reg, src_reg);
866 break;
867 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
868 if (imm != 0) {
869 /* alfi %dst,-imm */
870 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
871 }
872 EMIT_ZERO(dst_reg);
873 break;
874 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
875 if (!imm)
876 break;
877 if (imm == -0x80000000) {
878 /* algfi %dst,0x80000000 */
879 EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
880 } else {
881 /* agfi %dst,-imm */
882 EMIT6_IMM(0xc2080000, dst_reg, -imm);
883 }
884 break;
885 /*
886 * BPF_MUL
887 */
888 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
889 /* msr %dst,%src */
890 EMIT4(0xb2520000, dst_reg, src_reg);
891 EMIT_ZERO(dst_reg);
892 break;
893 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
894 /* msgr %dst,%src */
895 EMIT4(0xb90c0000, dst_reg, src_reg);
896 break;
897 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
898 if (imm != 1) {
899 /* msfi %r5,imm */
900 EMIT6_IMM(0xc2010000, dst_reg, imm);
901 }
902 EMIT_ZERO(dst_reg);
903 break;
904 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
905 if (imm == 1)
906 break;
907 /* msgfi %dst,imm */
908 EMIT6_IMM(0xc2000000, dst_reg, imm);
909 break;
910 /*
911 * BPF_DIV / BPF_MOD
912 */
913 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
914 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
915 {
916 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
917
918 /* lhi %w0,0 */
919 EMIT4_IMM(0xa7080000, REG_W0, 0);
920 /* lr %w1,%dst */
921 EMIT2(0x1800, REG_W1, dst_reg);
922 /* dlr %w0,%src */
923 EMIT4(0xb9970000, REG_W0, src_reg);
924 /* llgfr %dst,%rc */
925 EMIT4(0xb9160000, dst_reg, rc_reg);
926 if (insn_is_zext(&insn[1]))
927 insn_count = 2;
928 break;
929 }
930 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
931 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
932 {
933 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
934
935 /* lghi %w0,0 */
936 EMIT4_IMM(0xa7090000, REG_W0, 0);
937 /* lgr %w1,%dst */
938 EMIT4(0xb9040000, REG_W1, dst_reg);
939 /* dlgr %w0,%dst */
940 EMIT4(0xb9870000, REG_W0, src_reg);
941 /* lgr %dst,%rc */
942 EMIT4(0xb9040000, dst_reg, rc_reg);
943 break;
944 }
945 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
946 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
947 {
948 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
949
950 if (imm == 1) {
951 if (BPF_OP(insn->code) == BPF_MOD)
952 /* lhgi %dst,0 */
953 EMIT4_IMM(0xa7090000, dst_reg, 0);
954 else
955 EMIT_ZERO(dst_reg);
956 break;
957 }
958 /* lhi %w0,0 */
959 EMIT4_IMM(0xa7080000, REG_W0, 0);
960 /* lr %w1,%dst */
961 EMIT2(0x1800, REG_W1, dst_reg);
962 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
963 /* dl %w0,<d(imm)>(%l) */
964 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
965 EMIT_CONST_U32(imm));
966 } else {
967 /* lgfrl %dst,imm */
968 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
969 _EMIT_CONST_U32(imm));
970 jit->seen |= SEEN_LITERAL;
971 /* dlr %w0,%dst */
972 EMIT4(0xb9970000, REG_W0, dst_reg);
973 }
974 /* llgfr %dst,%rc */
975 EMIT4(0xb9160000, dst_reg, rc_reg);
976 if (insn_is_zext(&insn[1]))
977 insn_count = 2;
978 break;
979 }
980 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
981 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
982 {
983 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
984
985 if (imm == 1) {
986 if (BPF_OP(insn->code) == BPF_MOD)
987 /* lhgi %dst,0 */
988 EMIT4_IMM(0xa7090000, dst_reg, 0);
989 break;
990 }
991 /* lghi %w0,0 */
992 EMIT4_IMM(0xa7090000, REG_W0, 0);
993 /* lgr %w1,%dst */
994 EMIT4(0xb9040000, REG_W1, dst_reg);
995 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
996 /* dlg %w0,<d(imm)>(%l) */
997 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
998 EMIT_CONST_U64(imm));
999 } else {
1000 /* lgrl %dst,imm */
1001 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1002 _EMIT_CONST_U64(imm));
1003 jit->seen |= SEEN_LITERAL;
1004 /* dlgr %w0,%dst */
1005 EMIT4(0xb9870000, REG_W0, dst_reg);
1006 }
1007 /* lgr %dst,%rc */
1008 EMIT4(0xb9040000, dst_reg, rc_reg);
1009 break;
1010 }
1011 /*
1012 * BPF_AND
1013 */
1014 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1015 /* nr %dst,%src */
1016 EMIT2(0x1400, dst_reg, src_reg);
1017 EMIT_ZERO(dst_reg);
1018 break;
1019 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1020 /* ngr %dst,%src */
1021 EMIT4(0xb9800000, dst_reg, src_reg);
1022 break;
1023 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1024 /* nilf %dst,imm */
1025 EMIT6_IMM(0xc00b0000, dst_reg, imm);
1026 EMIT_ZERO(dst_reg);
1027 break;
1028 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1029 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1030 /* ng %dst,<d(imm)>(%l) */
1031 EMIT6_DISP_LH(0xe3000000, 0x0080,
1032 dst_reg, REG_0, REG_L,
1033 EMIT_CONST_U64(imm));
1034 } else {
1035 /* lgrl %w0,imm */
1036 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1037 _EMIT_CONST_U64(imm));
1038 jit->seen |= SEEN_LITERAL;
1039 /* ngr %dst,%w0 */
1040 EMIT4(0xb9800000, dst_reg, REG_W0);
1041 }
1042 break;
1043 /*
1044 * BPF_OR
1045 */
1046 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1047 /* or %dst,%src */
1048 EMIT2(0x1600, dst_reg, src_reg);
1049 EMIT_ZERO(dst_reg);
1050 break;
1051 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1052 /* ogr %dst,%src */
1053 EMIT4(0xb9810000, dst_reg, src_reg);
1054 break;
1055 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1056 /* oilf %dst,imm */
1057 EMIT6_IMM(0xc00d0000, dst_reg, imm);
1058 EMIT_ZERO(dst_reg);
1059 break;
1060 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1061 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1062 /* og %dst,<d(imm)>(%l) */
1063 EMIT6_DISP_LH(0xe3000000, 0x0081,
1064 dst_reg, REG_0, REG_L,
1065 EMIT_CONST_U64(imm));
1066 } else {
1067 /* lgrl %w0,imm */
1068 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1069 _EMIT_CONST_U64(imm));
1070 jit->seen |= SEEN_LITERAL;
1071 /* ogr %dst,%w0 */
1072 EMIT4(0xb9810000, dst_reg, REG_W0);
1073 }
1074 break;
1075 /*
1076 * BPF_XOR
1077 */
1078 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1079 /* xr %dst,%src */
1080 EMIT2(0x1700, dst_reg, src_reg);
1081 EMIT_ZERO(dst_reg);
1082 break;
1083 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1084 /* xgr %dst,%src */
1085 EMIT4(0xb9820000, dst_reg, src_reg);
1086 break;
1087 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1088 if (imm != 0) {
1089 /* xilf %dst,imm */
1090 EMIT6_IMM(0xc0070000, dst_reg, imm);
1091 }
1092 EMIT_ZERO(dst_reg);
1093 break;
1094 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1095 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1096 /* xg %dst,<d(imm)>(%l) */
1097 EMIT6_DISP_LH(0xe3000000, 0x0082,
1098 dst_reg, REG_0, REG_L,
1099 EMIT_CONST_U64(imm));
1100 } else {
1101 /* lgrl %w0,imm */
1102 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1103 _EMIT_CONST_U64(imm));
1104 jit->seen |= SEEN_LITERAL;
1105 /* xgr %dst,%w0 */
1106 EMIT4(0xb9820000, dst_reg, REG_W0);
1107 }
1108 break;
1109 /*
1110 * BPF_LSH
1111 */
1112 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1113 /* sll %dst,0(%src) */
1114 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1115 EMIT_ZERO(dst_reg);
1116 break;
1117 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1118 /* sllg %dst,%dst,0(%src) */
1119 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1120 break;
1121 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1122 if (imm != 0) {
1123 /* sll %dst,imm(%r0) */
1124 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1125 }
1126 EMIT_ZERO(dst_reg);
1127 break;
1128 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1129 if (imm == 0)
1130 break;
1131 /* sllg %dst,%dst,imm(%r0) */
1132 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1133 break;
1134 /*
1135 * BPF_RSH
1136 */
1137 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1138 /* srl %dst,0(%src) */
1139 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1140 EMIT_ZERO(dst_reg);
1141 break;
1142 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1143 /* srlg %dst,%dst,0(%src) */
1144 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1145 break;
1146 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1147 if (imm != 0) {
1148 /* srl %dst,imm(%r0) */
1149 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1150 }
1151 EMIT_ZERO(dst_reg);
1152 break;
1153 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1154 if (imm == 0)
1155 break;
1156 /* srlg %dst,%dst,imm(%r0) */
1157 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1158 break;
1159 /*
1160 * BPF_ARSH
1161 */
1162 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1163 /* sra %dst,%dst,0(%src) */
1164 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1165 EMIT_ZERO(dst_reg);
1166 break;
1167 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1168 /* srag %dst,%dst,0(%src) */
1169 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1170 break;
1171 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1172 if (imm != 0) {
1173 /* sra %dst,imm(%r0) */
1174 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1175 }
1176 EMIT_ZERO(dst_reg);
1177 break;
1178 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1179 if (imm == 0)
1180 break;
1181 /* srag %dst,%dst,imm(%r0) */
1182 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1183 break;
1184 /*
1185 * BPF_NEG
1186 */
1187 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1188 /* lcr %dst,%dst */
1189 EMIT2(0x1300, dst_reg, dst_reg);
1190 EMIT_ZERO(dst_reg);
1191 break;
1192 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1193 /* lcgr %dst,%dst */
1194 EMIT4(0xb9030000, dst_reg, dst_reg);
1195 break;
1196 /*
1197 * BPF_FROM_BE/LE
1198 */
1199 case BPF_ALU | BPF_END | BPF_FROM_BE:
1200 /* s390 is big endian, therefore only clear high order bytes */
1201 switch (imm) {
1202 case 16: /* dst = (u16) cpu_to_be16(dst) */
1203 /* llghr %dst,%dst */
1204 EMIT4(0xb9850000, dst_reg, dst_reg);
1205 if (insn_is_zext(&insn[1]))
1206 insn_count = 2;
1207 break;
1208 case 32: /* dst = (u32) cpu_to_be32(dst) */
1209 if (!fp->aux->verifier_zext)
1210 /* llgfr %dst,%dst */
1211 EMIT4(0xb9160000, dst_reg, dst_reg);
1212 break;
1213 case 64: /* dst = (u64) cpu_to_be64(dst) */
1214 break;
1215 }
1216 break;
1217 case BPF_ALU | BPF_END | BPF_FROM_LE:
1218 switch (imm) {
1219 case 16: /* dst = (u16) cpu_to_le16(dst) */
1220 /* lrvr %dst,%dst */
1221 EMIT4(0xb91f0000, dst_reg, dst_reg);
1222 /* srl %dst,16(%r0) */
1223 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1224 /* llghr %dst,%dst */
1225 EMIT4(0xb9850000, dst_reg, dst_reg);
1226 if (insn_is_zext(&insn[1]))
1227 insn_count = 2;
1228 break;
1229 case 32: /* dst = (u32) cpu_to_le32(dst) */
1230 /* lrvr %dst,%dst */
1231 EMIT4(0xb91f0000, dst_reg, dst_reg);
1232 if (!fp->aux->verifier_zext)
1233 /* llgfr %dst,%dst */
1234 EMIT4(0xb9160000, dst_reg, dst_reg);
1235 break;
1236 case 64: /* dst = (u64) cpu_to_le64(dst) */
1237 /* lrvgr %dst,%dst */
1238 EMIT4(0xb90f0000, dst_reg, dst_reg);
1239 break;
1240 }
1241 break;
1242 /*
1243 * BPF_NOSPEC (speculation barrier)
1244 */
1245 case BPF_ST | BPF_NOSPEC:
1246 break;
1247 /*
1248 * BPF_ST(X)
1249 */
1250 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1251 /* stcy %src,off(%dst) */
1252 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1253 jit->seen |= SEEN_MEM;
1254 break;
1255 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1256 /* sthy %src,off(%dst) */
1257 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1258 jit->seen |= SEEN_MEM;
1259 break;
1260 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1261 /* sty %src,off(%dst) */
1262 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1263 jit->seen |= SEEN_MEM;
1264 break;
1265 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1266 /* stg %src,off(%dst) */
1267 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1268 jit->seen |= SEEN_MEM;
1269 break;
1270 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1271 /* lhi %w0,imm */
1272 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1273 /* stcy %w0,off(dst) */
1274 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1275 jit->seen |= SEEN_MEM;
1276 break;
1277 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1278 /* lhi %w0,imm */
1279 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1280 /* sthy %w0,off(dst) */
1281 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1282 jit->seen |= SEEN_MEM;
1283 break;
1284 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1285 /* llilf %w0,imm */
1286 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1287 /* sty %w0,off(%dst) */
1288 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1289 jit->seen |= SEEN_MEM;
1290 break;
1291 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1292 /* lgfi %w0,imm */
1293 EMIT6_IMM(0xc0010000, REG_W0, imm);
1294 /* stg %w0,off(%dst) */
1295 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1296 jit->seen |= SEEN_MEM;
1297 break;
1298 /*
1299 * BPF_ATOMIC
1300 */
1301 case BPF_STX | BPF_ATOMIC | BPF_DW:
1302 case BPF_STX | BPF_ATOMIC | BPF_W:
1303 {
1304 bool is32 = BPF_SIZE(insn->code) == BPF_W;
1305
1306 switch (insn->imm) {
1307 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1308 #define EMIT_ATOMIC(op32, op64) do { \
1309 EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1310 (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1311 src_reg, dst_reg, off); \
1312 if (insn->imm & BPF_FETCH) { \
1313 /* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */ \
1314 _EMIT2(0x07e0); \
1315 if (is32) \
1316 EMIT_ZERO(src_reg); \
1317 } \
1318 } while (0)
1319 case BPF_ADD:
1320 case BPF_ADD | BPF_FETCH:
1321 /* {laal|laalg} */
1322 EMIT_ATOMIC(0x00fa, 0x00ea);
1323 break;
1324 case BPF_AND:
1325 case BPF_AND | BPF_FETCH:
1326 /* {lan|lang} */
1327 EMIT_ATOMIC(0x00f4, 0x00e4);
1328 break;
1329 case BPF_OR:
1330 case BPF_OR | BPF_FETCH:
1331 /* {lao|laog} */
1332 EMIT_ATOMIC(0x00f6, 0x00e6);
1333 break;
1334 case BPF_XOR:
1335 case BPF_XOR | BPF_FETCH:
1336 /* {lax|laxg} */
1337 EMIT_ATOMIC(0x00f7, 0x00e7);
1338 break;
1339 #undef EMIT_ATOMIC
1340 case BPF_XCHG:
1341 /* {ly|lg} %w0,off(%dst) */
1342 EMIT6_DISP_LH(0xe3000000,
1343 is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1344 dst_reg, off);
1345 /* 0: {csy|csg} %w0,%src,off(%dst) */
1346 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1347 REG_W0, src_reg, dst_reg, off);
1348 /* brc 4,0b */
1349 EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1350 /* {llgfr|lgr} %src,%w0 */
1351 EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1352 if (is32 && insn_is_zext(&insn[1]))
1353 insn_count = 2;
1354 break;
1355 case BPF_CMPXCHG:
1356 /* 0: {csy|csg} %b0,%src,off(%dst) */
1357 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1358 BPF_REG_0, src_reg, dst_reg, off);
1359 break;
1360 default:
1361 pr_err("Unknown atomic operation %02x\n", insn->imm);
1362 return -1;
1363 }
1364
1365 jit->seen |= SEEN_MEM;
1366 break;
1367 }
1368 /*
1369 * BPF_LDX
1370 */
1371 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1372 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1373 /* llgc %dst,0(off,%src) */
1374 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1375 jit->seen |= SEEN_MEM;
1376 if (insn_is_zext(&insn[1]))
1377 insn_count = 2;
1378 break;
1379 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1380 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1381 /* llgh %dst,0(off,%src) */
1382 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1383 jit->seen |= SEEN_MEM;
1384 if (insn_is_zext(&insn[1]))
1385 insn_count = 2;
1386 break;
1387 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1388 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1389 /* llgf %dst,off(%src) */
1390 jit->seen |= SEEN_MEM;
1391 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1392 if (insn_is_zext(&insn[1]))
1393 insn_count = 2;
1394 break;
1395 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1396 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1397 /* lg %dst,0(off,%src) */
1398 jit->seen |= SEEN_MEM;
1399 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1400 break;
1401 /*
1402 * BPF_JMP / CALL
1403 */
1404 case BPF_JMP | BPF_CALL:
1405 {
1406 const struct btf_func_model *m;
1407 bool func_addr_fixed;
1408 int j, ret;
1409 u64 func;
1410
1411 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1412 &func, &func_addr_fixed);
1413 if (ret < 0)
1414 return -1;
1415
1416 REG_SET_SEEN(BPF_REG_5);
1417 jit->seen |= SEEN_FUNC;
1418 /*
1419 * Copy the tail call counter to where the callee expects it.
1420 *
1421 * Note 1: The callee can increment the tail call counter, but
1422 * we do not load it back, since the x86 JIT does not do this
1423 * either.
1424 *
1425 * Note 2: We assume that the verifier does not let us call the
1426 * main program, which clears the tail call counter on entry.
1427 */
1428 /* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1429 _EMIT6(0xd203f000 | STK_OFF_TCCNT,
1430 0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1431
1432 /* Sign-extend the kfunc arguments. */
1433 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1434 m = bpf_jit_find_kfunc_model(fp, insn);
1435 if (!m)
1436 return -1;
1437
1438 for (j = 0; j < m->nr_args; j++) {
1439 if (sign_extend(jit, BPF_REG_1 + j,
1440 m->arg_size[j],
1441 m->arg_flags[j]))
1442 return -1;
1443 }
1444 }
1445
1446 /* lgrl %w1,func */
1447 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1448 /* %r1() */
1449 call_r1(jit);
1450 /* lgr %b0,%r2: load return value into %b0 */
1451 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1452 break;
1453 }
1454 case BPF_JMP | BPF_TAIL_CALL: {
1455 int patch_1_clrj, patch_2_clij, patch_3_brc;
1456
1457 /*
1458 * Implicit input:
1459 * B1: pointer to ctx
1460 * B2: pointer to bpf_array
1461 * B3: index in bpf_array
1462 *
1463 * if (index >= array->map.max_entries)
1464 * goto out;
1465 */
1466
1467 /* llgf %w1,map.max_entries(%b2) */
1468 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1469 offsetof(struct bpf_array, map.max_entries));
1470 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1471 /* clrj %b3,%w1,0xa,out */
1472 patch_1_clrj = jit->prg;
1473 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1474 jit->prg);
1475
1476 /*
1477 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1478 * goto out;
1479 */
1480
1481 if (jit->seen & SEEN_STACK)
1482 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1483 else
1484 off = STK_OFF_TCCNT;
1485 /* lhi %w0,1 */
1486 EMIT4_IMM(0xa7080000, REG_W0, 1);
1487 /* laal %w1,%w0,off(%r15) */
1488 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1489 /* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1490 patch_2_clij = jit->prg;
1491 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1492 2, jit->prg);
1493
1494 /*
1495 * prog = array->ptrs[index];
1496 * if (prog == NULL)
1497 * goto out;
1498 */
1499
1500 /* llgfr %r1,%b3: %r1 = (u32) index */
1501 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1502 /* sllg %r1,%r1,3: %r1 *= 8 */
1503 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1504 /* ltg %r1,prog(%b2,%r1) */
1505 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1506 REG_1, offsetof(struct bpf_array, ptrs));
1507 /* brc 0x8,out */
1508 patch_3_brc = jit->prg;
1509 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1510
1511 /*
1512 * Restore registers before calling function
1513 */
1514 save_restore_regs(jit, REGS_RESTORE, stack_depth);
1515
1516 /*
1517 * goto *(prog->bpf_func + tail_call_start);
1518 */
1519
1520 /* lg %r1,bpf_func(%r1) */
1521 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1522 offsetof(struct bpf_prog, bpf_func));
1523 if (nospec_uses_trampoline()) {
1524 jit->seen |= SEEN_FUNC;
1525 /* aghi %r1,tail_call_start */
1526 EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1527 /* brcl 0xf,__s390_indirect_jump_r1 */
1528 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1529 } else {
1530 /* bc 0xf,tail_call_start(%r1) */
1531 _EMIT4(0x47f01000 + jit->tail_call_start);
1532 }
1533 /* out: */
1534 if (jit->prg_buf) {
1535 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1536 (jit->prg - patch_1_clrj) >> 1;
1537 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1538 (jit->prg - patch_2_clij) >> 1;
1539 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1540 (jit->prg - patch_3_brc) >> 1;
1541 }
1542 break;
1543 }
1544 case BPF_JMP | BPF_EXIT: /* return b0 */
1545 last = (i == fp->len - 1) ? 1 : 0;
1546 if (last)
1547 break;
1548 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1549 /* brc 0xf, <exit> */
1550 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1551 else
1552 /* brcl 0xf, <exit> */
1553 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1554 break;
1555 /*
1556 * Branch relative (number of skipped instructions) to offset on
1557 * condition.
1558 *
1559 * Condition code to mask mapping:
1560 *
1561 * CC | Description | Mask
1562 * ------------------------------
1563 * 0 | Operands equal | 8
1564 * 1 | First operand low | 4
1565 * 2 | First operand high | 2
1566 * 3 | Unused | 1
1567 *
1568 * For s390x relative branches: ip = ip + off_bytes
1569 * For BPF relative branches: insn = insn + off_insns + 1
1570 *
1571 * For example for s390x with offset 0 we jump to the branch
1572 * instruction itself (loop) and for BPF with offset 0 we
1573 * branch to the instruction behind the branch.
1574 */
1575 case BPF_JMP | BPF_JA: /* if (true) */
1576 mask = 0xf000; /* j */
1577 goto branch_oc;
1578 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1579 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1580 mask = 0x2000; /* jh */
1581 goto branch_ks;
1582 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1583 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1584 mask = 0x4000; /* jl */
1585 goto branch_ks;
1586 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1587 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1588 mask = 0xa000; /* jhe */
1589 goto branch_ks;
1590 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1591 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1592 mask = 0xc000; /* jle */
1593 goto branch_ks;
1594 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1595 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1596 mask = 0x2000; /* jh */
1597 goto branch_ku;
1598 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1599 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1600 mask = 0x4000; /* jl */
1601 goto branch_ku;
1602 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1603 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1604 mask = 0xa000; /* jhe */
1605 goto branch_ku;
1606 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1607 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1608 mask = 0xc000; /* jle */
1609 goto branch_ku;
1610 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1611 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1612 mask = 0x7000; /* jne */
1613 goto branch_ku;
1614 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1615 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1616 mask = 0x8000; /* je */
1617 goto branch_ku;
1618 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1619 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1620 mask = 0x7000; /* jnz */
1621 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1622 /* llilf %w1,imm (load zero extend imm) */
1623 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1624 /* nr %w1,%dst */
1625 EMIT2(0x1400, REG_W1, dst_reg);
1626 } else {
1627 /* lgfi %w1,imm (load sign extend imm) */
1628 EMIT6_IMM(0xc0010000, REG_W1, imm);
1629 /* ngr %w1,%dst */
1630 EMIT4(0xb9800000, REG_W1, dst_reg);
1631 }
1632 goto branch_oc;
1633
1634 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1635 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1636 mask = 0x2000; /* jh */
1637 goto branch_xs;
1638 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1639 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1640 mask = 0x4000; /* jl */
1641 goto branch_xs;
1642 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1643 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1644 mask = 0xa000; /* jhe */
1645 goto branch_xs;
1646 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1647 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1648 mask = 0xc000; /* jle */
1649 goto branch_xs;
1650 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1651 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1652 mask = 0x2000; /* jh */
1653 goto branch_xu;
1654 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1655 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1656 mask = 0x4000; /* jl */
1657 goto branch_xu;
1658 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1659 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1660 mask = 0xa000; /* jhe */
1661 goto branch_xu;
1662 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1663 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1664 mask = 0xc000; /* jle */
1665 goto branch_xu;
1666 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1667 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1668 mask = 0x7000; /* jne */
1669 goto branch_xu;
1670 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1671 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1672 mask = 0x8000; /* je */
1673 goto branch_xu;
1674 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1675 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1676 {
1677 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1678
1679 mask = 0x7000; /* jnz */
1680 /* nrk or ngrk %w1,%dst,%src */
1681 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1682 REG_W1, dst_reg, src_reg);
1683 goto branch_oc;
1684 branch_ks:
1685 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1686 /* cfi or cgfi %dst,imm */
1687 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1688 dst_reg, imm);
1689 if (!is_first_pass(jit) &&
1690 can_use_rel(jit, addrs[i + off + 1])) {
1691 /* brc mask,off */
1692 EMIT4_PCREL_RIC(0xa7040000,
1693 mask >> 12, addrs[i + off + 1]);
1694 } else {
1695 /* brcl mask,off */
1696 EMIT6_PCREL_RILC(0xc0040000,
1697 mask >> 12, addrs[i + off + 1]);
1698 }
1699 break;
1700 branch_ku:
1701 /* lgfi %w1,imm (load sign extend imm) */
1702 src_reg = REG_1;
1703 EMIT6_IMM(0xc0010000, src_reg, imm);
1704 goto branch_xu;
1705 branch_xs:
1706 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1707 if (!is_first_pass(jit) &&
1708 can_use_rel(jit, addrs[i + off + 1])) {
1709 /* crj or cgrj %dst,%src,mask,off */
1710 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1711 dst_reg, src_reg, i, off, mask);
1712 } else {
1713 /* cr or cgr %dst,%src */
1714 if (is_jmp32)
1715 EMIT2(0x1900, dst_reg, src_reg);
1716 else
1717 EMIT4(0xb9200000, dst_reg, src_reg);
1718 /* brcl mask,off */
1719 EMIT6_PCREL_RILC(0xc0040000,
1720 mask >> 12, addrs[i + off + 1]);
1721 }
1722 break;
1723 branch_xu:
1724 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1725 if (!is_first_pass(jit) &&
1726 can_use_rel(jit, addrs[i + off + 1])) {
1727 /* clrj or clgrj %dst,%src,mask,off */
1728 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1729 dst_reg, src_reg, i, off, mask);
1730 } else {
1731 /* clr or clgr %dst,%src */
1732 if (is_jmp32)
1733 EMIT2(0x1500, dst_reg, src_reg);
1734 else
1735 EMIT4(0xb9210000, dst_reg, src_reg);
1736 /* brcl mask,off */
1737 EMIT6_PCREL_RILC(0xc0040000,
1738 mask >> 12, addrs[i + off + 1]);
1739 }
1740 break;
1741 branch_oc:
1742 if (!is_first_pass(jit) &&
1743 can_use_rel(jit, addrs[i + off + 1])) {
1744 /* brc mask,off */
1745 EMIT4_PCREL_RIC(0xa7040000,
1746 mask >> 12, addrs[i + off + 1]);
1747 } else {
1748 /* brcl mask,off */
1749 EMIT6_PCREL_RILC(0xc0040000,
1750 mask >> 12, addrs[i + off + 1]);
1751 }
1752 break;
1753 }
1754 default: /* too complex, give up */
1755 pr_err("Unknown opcode %02x\n", insn->code);
1756 return -1;
1757 }
1758
1759 if (probe_prg != -1) {
1760 /*
1761 * Handlers of certain exceptions leave psw.addr pointing to
1762 * the instruction directly after the failing one. Therefore,
1763 * create two exception table entries and also add a nop in
1764 * case two probing instructions come directly after each
1765 * other.
1766 */
1767 nop_prg = jit->prg;
1768 /* bcr 0,%0 */
1769 _EMIT2(0x0700);
1770 err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1771 if (err < 0)
1772 return err;
1773 }
1774
1775 return insn_count;
1776 }
1777
1778 /*
1779 * Return whether new i-th instruction address does not violate any invariant
1780 */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)1781 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1782 {
1783 /* On the first pass anything goes */
1784 if (is_first_pass(jit))
1785 return true;
1786
1787 /* The codegen pass must not change anything */
1788 if (is_codegen_pass(jit))
1789 return jit->addrs[i] == jit->prg;
1790
1791 /* Passes in between must not increase code size */
1792 return jit->addrs[i] >= jit->prg;
1793 }
1794
1795 /*
1796 * Update the address of i-th instruction
1797 */
bpf_set_addr(struct bpf_jit * jit,int i)1798 static int bpf_set_addr(struct bpf_jit *jit, int i)
1799 {
1800 int delta;
1801
1802 if (is_codegen_pass(jit)) {
1803 delta = jit->prg - jit->addrs[i];
1804 if (delta < 0)
1805 bpf_skip(jit, -delta);
1806 }
1807 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1808 return -1;
1809 jit->addrs[i] = jit->prg;
1810 return 0;
1811 }
1812
1813 /*
1814 * Compile eBPF program into s390x code
1815 */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)1816 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1817 bool extra_pass, u32 stack_depth)
1818 {
1819 int i, insn_count, lit32_size, lit64_size;
1820
1821 jit->lit32 = jit->lit32_start;
1822 jit->lit64 = jit->lit64_start;
1823 jit->prg = 0;
1824 jit->excnt = 0;
1825
1826 bpf_jit_prologue(jit, fp, stack_depth);
1827 if (bpf_set_addr(jit, 0) < 0)
1828 return -1;
1829 for (i = 0; i < fp->len; i += insn_count) {
1830 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1831 if (insn_count < 0)
1832 return -1;
1833 /* Next instruction address */
1834 if (bpf_set_addr(jit, i + insn_count) < 0)
1835 return -1;
1836 }
1837 bpf_jit_epilogue(jit, stack_depth);
1838
1839 lit32_size = jit->lit32 - jit->lit32_start;
1840 lit64_size = jit->lit64 - jit->lit64_start;
1841 jit->lit32_start = jit->prg;
1842 if (lit32_size)
1843 jit->lit32_start = ALIGN(jit->lit32_start, 4);
1844 jit->lit64_start = jit->lit32_start + lit32_size;
1845 if (lit64_size)
1846 jit->lit64_start = ALIGN(jit->lit64_start, 8);
1847 jit->size = jit->lit64_start + lit64_size;
1848 jit->size_prg = jit->prg;
1849
1850 if (WARN_ON_ONCE(fp->aux->extable &&
1851 jit->excnt != fp->aux->num_exentries))
1852 /* Verifier bug - too many entries. */
1853 return -1;
1854
1855 return 0;
1856 }
1857
bpf_jit_needs_zext(void)1858 bool bpf_jit_needs_zext(void)
1859 {
1860 return true;
1861 }
1862
1863 struct s390_jit_data {
1864 struct bpf_binary_header *header;
1865 struct bpf_jit ctx;
1866 int pass;
1867 };
1868
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)1869 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1870 struct bpf_prog *fp)
1871 {
1872 struct bpf_binary_header *header;
1873 u32 extable_size;
1874 u32 code_size;
1875
1876 /* We need two entries per insn. */
1877 fp->aux->num_exentries *= 2;
1878
1879 code_size = roundup(jit->size,
1880 __alignof__(struct exception_table_entry));
1881 extable_size = fp->aux->num_exentries *
1882 sizeof(struct exception_table_entry);
1883 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1884 8, jit_fill_hole);
1885 if (!header)
1886 return NULL;
1887 fp->aux->extable = (struct exception_table_entry *)
1888 (jit->prg_buf + code_size);
1889 return header;
1890 }
1891
1892 /*
1893 * Compile eBPF program "fp"
1894 */
bpf_int_jit_compile(struct bpf_prog * fp)1895 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1896 {
1897 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1898 struct bpf_prog *tmp, *orig_fp = fp;
1899 struct bpf_binary_header *header;
1900 struct s390_jit_data *jit_data;
1901 bool tmp_blinded = false;
1902 bool extra_pass = false;
1903 struct bpf_jit jit;
1904 int pass;
1905
1906 if (!fp->jit_requested)
1907 return orig_fp;
1908
1909 tmp = bpf_jit_blind_constants(fp);
1910 /*
1911 * If blinding was requested and we failed during blinding,
1912 * we must fall back to the interpreter.
1913 */
1914 if (IS_ERR(tmp))
1915 return orig_fp;
1916 if (tmp != fp) {
1917 tmp_blinded = true;
1918 fp = tmp;
1919 }
1920
1921 jit_data = fp->aux->jit_data;
1922 if (!jit_data) {
1923 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1924 if (!jit_data) {
1925 fp = orig_fp;
1926 goto out;
1927 }
1928 fp->aux->jit_data = jit_data;
1929 }
1930 if (jit_data->ctx.addrs) {
1931 jit = jit_data->ctx;
1932 header = jit_data->header;
1933 extra_pass = true;
1934 pass = jit_data->pass + 1;
1935 goto skip_init_ctx;
1936 }
1937
1938 memset(&jit, 0, sizeof(jit));
1939 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1940 if (jit.addrs == NULL) {
1941 fp = orig_fp;
1942 goto free_addrs;
1943 }
1944 /*
1945 * Three initial passes:
1946 * - 1/2: Determine clobbered registers
1947 * - 3: Calculate program size and addrs array
1948 */
1949 for (pass = 1; pass <= 3; pass++) {
1950 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1951 fp = orig_fp;
1952 goto free_addrs;
1953 }
1954 }
1955 /*
1956 * Final pass: Allocate and generate program
1957 */
1958 header = bpf_jit_alloc(&jit, fp);
1959 if (!header) {
1960 fp = orig_fp;
1961 goto free_addrs;
1962 }
1963 skip_init_ctx:
1964 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1965 bpf_jit_binary_free(header);
1966 fp = orig_fp;
1967 goto free_addrs;
1968 }
1969 if (bpf_jit_enable > 1) {
1970 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1971 print_fn_code(jit.prg_buf, jit.size_prg);
1972 }
1973 if (!fp->is_func || extra_pass) {
1974 bpf_jit_binary_lock_ro(header);
1975 } else {
1976 jit_data->header = header;
1977 jit_data->ctx = jit;
1978 jit_data->pass = pass;
1979 }
1980 fp->bpf_func = (void *) jit.prg_buf;
1981 fp->jited = 1;
1982 fp->jited_len = jit.size;
1983
1984 if (!fp->is_func || extra_pass) {
1985 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1986 free_addrs:
1987 kvfree(jit.addrs);
1988 kfree(jit_data);
1989 fp->aux->jit_data = NULL;
1990 }
1991 out:
1992 if (tmp_blinded)
1993 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1994 tmp : orig_fp);
1995 return fp;
1996 }
1997
bpf_jit_supports_kfunc_call(void)1998 bool bpf_jit_supports_kfunc_call(void)
1999 {
2000 return true;
2001 }
2002
bpf_jit_supports_far_kfunc_call(void)2003 bool bpf_jit_supports_far_kfunc_call(void)
2004 {
2005 return true;
2006 }
2007
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2008 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2009 void *old_addr, void *new_addr)
2010 {
2011 struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2012 struct {
2013 u16 opc;
2014 s32 disp;
2015 } __packed insn;
2016 char *ret;
2017 int err;
2018
2019 /* Verify the branch to be patched. */
2020 err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2021 if (err < 0)
2022 return err;
2023 if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2024 return -EINVAL;
2025
2026 if (t == BPF_MOD_JUMP &&
2027 insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2028 /*
2029 * The branch already points to the destination,
2030 * there is no PLT.
2031 */
2032 } else {
2033 /* Verify the PLT. */
2034 plt = ip + (insn.disp << 1);
2035 err = copy_from_kernel_nofault(¤t_plt, plt,
2036 sizeof(current_plt));
2037 if (err < 0)
2038 return err;
2039 ret = (char *)ip + 6;
2040 bpf_jit_plt(&expected_plt, ret, old_addr);
2041 if (memcmp(¤t_plt, &expected_plt, sizeof(current_plt)))
2042 return -EINVAL;
2043 /* Adjust the call address. */
2044 bpf_jit_plt(&new_plt, ret, new_addr);
2045 s390_kernel_write(&plt->target, &new_plt.target,
2046 sizeof(void *));
2047 }
2048
2049 /* Adjust the mask of the branch. */
2050 insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2051 s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2052
2053 /* Make the new code visible to the other CPUs. */
2054 text_poke_sync_lock();
2055
2056 return 0;
2057 }
2058
2059 struct bpf_tramp_jit {
2060 struct bpf_jit common;
2061 int orig_stack_args_off;/* Offset of arguments placed on stack by the
2062 * func_addr's original caller
2063 */
2064 int stack_size; /* Trampoline stack size */
2065 int backchain_off; /* Offset of backchain */
2066 int stack_args_off; /* Offset of stack arguments for calling
2067 * func_addr, has to be at the top
2068 */
2069 int reg_args_off; /* Offset of register arguments for calling
2070 * func_addr
2071 */
2072 int ip_off; /* For bpf_get_func_ip(), has to be at
2073 * (ctx - 16)
2074 */
2075 int arg_cnt_off; /* For bpf_get_func_arg_cnt(), has to be at
2076 * (ctx - 8)
2077 */
2078 int bpf_args_off; /* Offset of BPF_PROG context, which consists
2079 * of BPF arguments followed by return value
2080 */
2081 int retval_off; /* Offset of return value (see above) */
2082 int r7_r8_off; /* Offset of saved %r7 and %r8, which are used
2083 * for __bpf_prog_enter() return value and
2084 * func_addr respectively
2085 */
2086 int run_ctx_off; /* Offset of struct bpf_tramp_run_ctx */
2087 int tccnt_off; /* Offset of saved tailcall counter */
2088 int r14_off; /* Offset of saved %r14, has to be at the
2089 * bottom */
2090 int do_fexit; /* do_fexit: label */
2091 };
2092
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2093 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2094 {
2095 /* llihf %dst_reg,val_hi */
2096 EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2097 /* oilf %rdst_reg,val_lo */
2098 EMIT6_IMM(0xc00d0000, dst_reg, val);
2099 }
2100
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2101 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2102 const struct btf_func_model *m,
2103 struct bpf_tramp_link *tlink, bool save_ret)
2104 {
2105 struct bpf_jit *jit = &tjit->common;
2106 int cookie_off = tjit->run_ctx_off +
2107 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2108 struct bpf_prog *p = tlink->link.prog;
2109 int patch;
2110
2111 /*
2112 * run_ctx.cookie = tlink->cookie;
2113 */
2114
2115 /* %r0 = tlink->cookie */
2116 load_imm64(jit, REG_W0, tlink->cookie);
2117 /* stg %r0,cookie_off(%r15) */
2118 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2119
2120 /*
2121 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2122 * goto skip;
2123 */
2124
2125 /* %r1 = __bpf_prog_enter */
2126 load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2127 /* %r2 = p */
2128 load_imm64(jit, REG_2, (u64)p);
2129 /* la %r3,run_ctx_off(%r15) */
2130 EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2131 /* %r1() */
2132 call_r1(jit);
2133 /* ltgr %r7,%r2 */
2134 EMIT4(0xb9020000, REG_7, REG_2);
2135 /* brcl 8,skip */
2136 patch = jit->prg;
2137 EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2138
2139 /*
2140 * retval = bpf_func(args, p->insnsi);
2141 */
2142
2143 /* %r1 = p->bpf_func */
2144 load_imm64(jit, REG_1, (u64)p->bpf_func);
2145 /* la %r2,bpf_args_off(%r15) */
2146 EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2147 /* %r3 = p->insnsi */
2148 if (!p->jited)
2149 load_imm64(jit, REG_3, (u64)p->insnsi);
2150 /* %r1() */
2151 call_r1(jit);
2152 /* stg %r2,retval_off(%r15) */
2153 if (save_ret) {
2154 if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2155 return -1;
2156 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2157 tjit->retval_off);
2158 }
2159
2160 /* skip: */
2161 if (jit->prg_buf)
2162 *(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2163
2164 /*
2165 * __bpf_prog_exit(p, start, &run_ctx);
2166 */
2167
2168 /* %r1 = __bpf_prog_exit */
2169 load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2170 /* %r2 = p */
2171 load_imm64(jit, REG_2, (u64)p);
2172 /* lgr %r3,%r7 */
2173 EMIT4(0xb9040000, REG_3, REG_7);
2174 /* la %r4,run_ctx_off(%r15) */
2175 EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2176 /* %r1() */
2177 call_r1(jit);
2178
2179 return 0;
2180 }
2181
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2182 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2183 {
2184 int stack_offset = tjit->stack_size;
2185
2186 tjit->stack_size += size;
2187 return stack_offset;
2188 }
2189
2190 /* ABI uses %r2 - %r6 for parameter passing. */
2191 #define MAX_NR_REG_ARGS 5
2192
2193 /* The "L" field of the "mvc" instruction is 8 bits. */
2194 #define MAX_MVC_SIZE 256
2195 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2196
2197 /* -mfentry generates a 6-byte nop on s390x. */
2198 #define S390X_PATCH_SIZE 6
2199
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2200 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2201 struct bpf_tramp_jit *tjit,
2202 const struct btf_func_model *m,
2203 u32 flags,
2204 struct bpf_tramp_links *tlinks,
2205 void *func_addr)
2206 {
2207 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2208 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2209 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2210 int nr_bpf_args, nr_reg_args, nr_stack_args;
2211 struct bpf_jit *jit = &tjit->common;
2212 int arg, bpf_arg_off;
2213 int i, j;
2214
2215 /* Support as many stack arguments as "mvc" instruction can handle. */
2216 nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2217 nr_stack_args = m->nr_args - nr_reg_args;
2218 if (nr_stack_args > MAX_NR_STACK_ARGS)
2219 return -ENOTSUPP;
2220
2221 /* Return to %r14, since func_addr and %r0 are not available. */
2222 if (!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK))
2223 flags |= BPF_TRAMP_F_SKIP_FRAME;
2224
2225 /*
2226 * Compute how many arguments we need to pass to BPF programs.
2227 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2228 * smaller are packed into 1 or 2 registers; larger arguments are
2229 * passed via pointers.
2230 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2231 * a register; larger arguments are passed via pointers.
2232 * We need to deal with this difference.
2233 */
2234 nr_bpf_args = 0;
2235 for (i = 0; i < m->nr_args; i++) {
2236 if (m->arg_size[i] <= 8)
2237 nr_bpf_args += 1;
2238 else if (m->arg_size[i] <= 16)
2239 nr_bpf_args += 2;
2240 else
2241 return -ENOTSUPP;
2242 }
2243
2244 /*
2245 * Calculate the stack layout.
2246 */
2247
2248 /*
2249 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2250 * ABI requires, put our backchain at the end of the allocated memory.
2251 */
2252 tjit->stack_size = STACK_FRAME_OVERHEAD;
2253 tjit->backchain_off = tjit->stack_size - sizeof(u64);
2254 tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2255 tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2256 tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2257 tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2258 tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2259 tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2260 tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2261 tjit->run_ctx_off = alloc_stack(tjit,
2262 sizeof(struct bpf_tramp_run_ctx));
2263 tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2264 tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2265 /*
2266 * In accordance with the s390x ABI, the caller has allocated
2267 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2268 * backchain, and the rest we can use.
2269 */
2270 tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2271 tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2272
2273 /* lgr %r1,%r15 */
2274 EMIT4(0xb9040000, REG_1, REG_15);
2275 /* aghi %r15,-stack_size */
2276 EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2277 /* stg %r1,backchain_off(%r15) */
2278 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2279 tjit->backchain_off);
2280 /* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2281 _EMIT6(0xd203f000 | tjit->tccnt_off,
2282 0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2283 /* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2284 if (nr_reg_args)
2285 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2286 REG_2 + (nr_reg_args - 1), REG_15,
2287 tjit->reg_args_off);
2288 for (i = 0, j = 0; i < m->nr_args; i++) {
2289 if (i < MAX_NR_REG_ARGS)
2290 arg = REG_2 + i;
2291 else
2292 arg = tjit->orig_stack_args_off +
2293 (i - MAX_NR_REG_ARGS) * sizeof(u64);
2294 bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2295 if (m->arg_size[i] <= 8) {
2296 if (i < MAX_NR_REG_ARGS)
2297 /* stg %arg,bpf_arg_off(%r15) */
2298 EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2299 REG_0, REG_15, bpf_arg_off);
2300 else
2301 /* mvc bpf_arg_off(8,%r15),arg(%r15) */
2302 _EMIT6(0xd207f000 | bpf_arg_off,
2303 0xf000 | arg);
2304 j += 1;
2305 } else {
2306 if (i < MAX_NR_REG_ARGS) {
2307 /* mvc bpf_arg_off(16,%r15),0(%arg) */
2308 _EMIT6(0xd20ff000 | bpf_arg_off,
2309 reg2hex[arg] << 12);
2310 } else {
2311 /* lg %r1,arg(%r15) */
2312 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2313 REG_15, arg);
2314 /* mvc bpf_arg_off(16,%r15),0(%r1) */
2315 _EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2316 }
2317 j += 2;
2318 }
2319 }
2320 /* stmg %r7,%r8,r7_r8_off(%r15) */
2321 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2322 tjit->r7_r8_off);
2323 /* stg %r14,r14_off(%r15) */
2324 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2325
2326 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2327 /*
2328 * The ftrace trampoline puts the return address (which is the
2329 * address of the original function + S390X_PATCH_SIZE) into
2330 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2331 * ftrace_init_nop() for details.
2332 */
2333
2334 /* lgr %r8,%r0 */
2335 EMIT4(0xb9040000, REG_8, REG_0);
2336 } else {
2337 /* %r8 = func_addr + S390X_PATCH_SIZE */
2338 load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2339 }
2340
2341 /*
2342 * ip = func_addr;
2343 * arg_cnt = m->nr_args;
2344 */
2345
2346 if (flags & BPF_TRAMP_F_IP_ARG) {
2347 /* %r0 = func_addr */
2348 load_imm64(jit, REG_0, (u64)func_addr);
2349 /* stg %r0,ip_off(%r15) */
2350 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2351 tjit->ip_off);
2352 }
2353 /* lghi %r0,nr_bpf_args */
2354 EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2355 /* stg %r0,arg_cnt_off(%r15) */
2356 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2357 tjit->arg_cnt_off);
2358
2359 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2360 /*
2361 * __bpf_tramp_enter(im);
2362 */
2363
2364 /* %r1 = __bpf_tramp_enter */
2365 load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2366 /* %r2 = im */
2367 load_imm64(jit, REG_2, (u64)im);
2368 /* %r1() */
2369 call_r1(jit);
2370 }
2371
2372 for (i = 0; i < fentry->nr_links; i++)
2373 if (invoke_bpf_prog(tjit, m, fentry->links[i],
2374 flags & BPF_TRAMP_F_RET_FENTRY_RET))
2375 return -EINVAL;
2376
2377 if (fmod_ret->nr_links) {
2378 /*
2379 * retval = 0;
2380 */
2381
2382 /* xc retval_off(8,%r15),retval_off(%r15) */
2383 _EMIT6(0xd707f000 | tjit->retval_off,
2384 0xf000 | tjit->retval_off);
2385
2386 for (i = 0; i < fmod_ret->nr_links; i++) {
2387 if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2388 return -EINVAL;
2389
2390 /*
2391 * if (retval)
2392 * goto do_fexit;
2393 */
2394
2395 /* ltg %r0,retval_off(%r15) */
2396 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2397 tjit->retval_off);
2398 /* brcl 7,do_fexit */
2399 EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2400 }
2401 }
2402
2403 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2404 /*
2405 * retval = func_addr(args);
2406 */
2407
2408 /* lmg %r2,%rN,reg_args_off(%r15) */
2409 if (nr_reg_args)
2410 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2411 REG_2 + (nr_reg_args - 1), REG_15,
2412 tjit->reg_args_off);
2413 /* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2414 if (nr_stack_args)
2415 _EMIT6(0xd200f000 |
2416 (nr_stack_args * sizeof(u64) - 1) << 16 |
2417 tjit->stack_args_off,
2418 0xf000 | tjit->orig_stack_args_off);
2419 /* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2420 _EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2421 /* lgr %r1,%r8 */
2422 EMIT4(0xb9040000, REG_1, REG_8);
2423 /* %r1() */
2424 call_r1(jit);
2425 /* stg %r2,retval_off(%r15) */
2426 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2427 tjit->retval_off);
2428
2429 im->ip_after_call = jit->prg_buf + jit->prg;
2430
2431 /*
2432 * The following nop will be patched by bpf_tramp_image_put().
2433 */
2434
2435 /* brcl 0,im->ip_epilogue */
2436 EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2437 }
2438
2439 /* do_fexit: */
2440 tjit->do_fexit = jit->prg;
2441 for (i = 0; i < fexit->nr_links; i++)
2442 if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2443 return -EINVAL;
2444
2445 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2446 im->ip_epilogue = jit->prg_buf + jit->prg;
2447
2448 /*
2449 * __bpf_tramp_exit(im);
2450 */
2451
2452 /* %r1 = __bpf_tramp_exit */
2453 load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2454 /* %r2 = im */
2455 load_imm64(jit, REG_2, (u64)im);
2456 /* %r1() */
2457 call_r1(jit);
2458 }
2459
2460 /* lmg %r2,%rN,reg_args_off(%r15) */
2461 if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2462 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2463 REG_2 + (nr_reg_args - 1), REG_15,
2464 tjit->reg_args_off);
2465 /* lgr %r1,%r8 */
2466 if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2467 EMIT4(0xb9040000, REG_1, REG_8);
2468 /* lmg %r7,%r8,r7_r8_off(%r15) */
2469 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2470 tjit->r7_r8_off);
2471 /* lg %r14,r14_off(%r15) */
2472 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2473 /* lg %r2,retval_off(%r15) */
2474 if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2475 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2476 tjit->retval_off);
2477 /* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2478 _EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2479 0xf000 | tjit->tccnt_off);
2480 /* aghi %r15,stack_size */
2481 EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2482 /* Emit an expoline for the following indirect jump. */
2483 if (nospec_uses_trampoline())
2484 emit_expoline(jit);
2485 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2486 /* br %r14 */
2487 _EMIT2(0x07fe);
2488 else
2489 /* br %r1 */
2490 _EMIT2(0x07f1);
2491
2492 emit_r1_thunk(jit);
2493
2494 return 0;
2495 }
2496
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2497 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2498 void *image_end, const struct btf_func_model *m,
2499 u32 flags, struct bpf_tramp_links *tlinks,
2500 void *func_addr)
2501 {
2502 struct bpf_tramp_jit tjit;
2503 int ret;
2504 int i;
2505
2506 for (i = 0; i < 2; i++) {
2507 if (i == 0) {
2508 /* Compute offsets, check whether the code fits. */
2509 memset(&tjit, 0, sizeof(tjit));
2510 } else {
2511 /* Generate the code. */
2512 tjit.common.prg = 0;
2513 tjit.common.prg_buf = image;
2514 }
2515 ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2516 tlinks, func_addr);
2517 if (ret < 0)
2518 return ret;
2519 if (tjit.common.prg > (char *)image_end - (char *)image)
2520 /*
2521 * Use the same error code as for exceeding
2522 * BPF_MAX_TRAMP_LINKS.
2523 */
2524 return -E2BIG;
2525 }
2526
2527 return tjit.common.prg;
2528 }
2529
bpf_jit_supports_subprog_tailcalls(void)2530 bool bpf_jit_supports_subprog_tailcalls(void)
2531 {
2532 return true;
2533 }
2534