xref: /openbmc/linux/arch/s390/net/bpf_jit_comp.c (revision 44ad3baf1cca483e418b6aadf2d3994f69e0f16a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include "bpf_jit.h"
35 
36 struct bpf_jit {
37 	u32 seen;		/* Flags to remember seen eBPF instructions */
38 	u32 seen_reg[16];	/* Array to remember which registers are used */
39 	u32 *addrs;		/* Array with relative instruction addresses */
40 	u8 *prg_buf;		/* Start of program */
41 	int size;		/* Size of program and literal pool */
42 	int size_prg;		/* Size of program */
43 	int prg;		/* Current position in program */
44 	int lit32_start;	/* Start of 32-bit literal pool */
45 	int lit32;		/* Current position in 32-bit literal pool */
46 	int lit64_start;	/* Start of 64-bit literal pool */
47 	int lit64;		/* Current position in 64-bit literal pool */
48 	int base_ip;		/* Base address for literal pool */
49 	int exit_ip;		/* Address of exit */
50 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
51 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
52 	int tail_call_start;	/* Tail call start offset */
53 	int excnt;		/* Number of exception table entries */
54 	int prologue_plt_ret;	/* Return address for prologue hotpatch PLT */
55 	int prologue_plt;	/* Start of prologue hotpatch PLT */
56 };
57 
58 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
59 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
60 #define SEEN_FUNC	BIT(2)		/* calls C functions */
61 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
62 
63 /*
64  * s390 registers
65  */
66 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
67 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
68 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
69 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
70 #define REG_0		REG_W0			/* Register 0 */
71 #define REG_1		REG_W1			/* Register 1 */
72 #define REG_2		BPF_REG_1		/* Register 2 */
73 #define REG_3		BPF_REG_2		/* Register 3 */
74 #define REG_4		BPF_REG_3		/* Register 4 */
75 #define REG_7		BPF_REG_6		/* Register 7 */
76 #define REG_8		BPF_REG_7		/* Register 8 */
77 #define REG_14		BPF_REG_0		/* Register 14 */
78 
79 /*
80  * Mapping of BPF registers to s390 registers
81  */
82 static const int reg2hex[] = {
83 	/* Return code */
84 	[BPF_REG_0]	= 14,
85 	/* Function parameters */
86 	[BPF_REG_1]	= 2,
87 	[BPF_REG_2]	= 3,
88 	[BPF_REG_3]	= 4,
89 	[BPF_REG_4]	= 5,
90 	[BPF_REG_5]	= 6,
91 	/* Call saved registers */
92 	[BPF_REG_6]	= 7,
93 	[BPF_REG_7]	= 8,
94 	[BPF_REG_8]	= 9,
95 	[BPF_REG_9]	= 10,
96 	/* BPF stack pointer */
97 	[BPF_REG_FP]	= 13,
98 	/* Register for blinding */
99 	[BPF_REG_AX]	= 12,
100 	/* Work registers for s390x backend */
101 	[REG_W0]	= 0,
102 	[REG_W1]	= 1,
103 	[REG_L]		= 11,
104 	[REG_15]	= 15,
105 };
106 
reg(u32 dst_reg,u32 src_reg)107 static inline u32 reg(u32 dst_reg, u32 src_reg)
108 {
109 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
110 }
111 
reg_high(u32 reg)112 static inline u32 reg_high(u32 reg)
113 {
114 	return reg2hex[reg] << 4;
115 }
116 
reg_set_seen(struct bpf_jit * jit,u32 b1)117 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
118 {
119 	u32 r1 = reg2hex[b1];
120 
121 	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
122 		jit->seen_reg[r1] = 1;
123 }
124 
125 #define REG_SET_SEEN(b1)					\
126 ({								\
127 	reg_set_seen(jit, b1);					\
128 })
129 
130 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
131 
132 /*
133  * EMIT macros for code generation
134  */
135 
136 #define _EMIT2(op)						\
137 ({								\
138 	if (jit->prg_buf)					\
139 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
140 	jit->prg += 2;						\
141 })
142 
143 #define EMIT2(op, b1, b2)					\
144 ({								\
145 	_EMIT2((op) | reg(b1, b2));				\
146 	REG_SET_SEEN(b1);					\
147 	REG_SET_SEEN(b2);					\
148 })
149 
150 #define _EMIT4(op)						\
151 ({								\
152 	if (jit->prg_buf)					\
153 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
154 	jit->prg += 4;						\
155 })
156 
157 #define EMIT4(op, b1, b2)					\
158 ({								\
159 	_EMIT4((op) | reg(b1, b2));				\
160 	REG_SET_SEEN(b1);					\
161 	REG_SET_SEEN(b2);					\
162 })
163 
164 #define EMIT4_RRF(op, b1, b2, b3)				\
165 ({								\
166 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
167 	REG_SET_SEEN(b1);					\
168 	REG_SET_SEEN(b2);					\
169 	REG_SET_SEEN(b3);					\
170 })
171 
172 #define _EMIT4_DISP(op, disp)					\
173 ({								\
174 	unsigned int __disp = (disp) & 0xfff;			\
175 	_EMIT4((op) | __disp);					\
176 })
177 
178 #define EMIT4_DISP(op, b1, b2, disp)				\
179 ({								\
180 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
181 		    reg_high(b2) << 8, (disp));			\
182 	REG_SET_SEEN(b1);					\
183 	REG_SET_SEEN(b2);					\
184 })
185 
186 #define EMIT4_IMM(op, b1, imm)					\
187 ({								\
188 	unsigned int __imm = (imm) & 0xffff;			\
189 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
190 	REG_SET_SEEN(b1);					\
191 })
192 
193 #define EMIT4_PCREL(op, pcrel)					\
194 ({								\
195 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
196 	_EMIT4((op) | __pcrel);					\
197 })
198 
199 #define EMIT4_PCREL_RIC(op, mask, target)			\
200 ({								\
201 	int __rel = ((target) - jit->prg) / 2;			\
202 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
203 })
204 
205 #define _EMIT6(op1, op2)					\
206 ({								\
207 	if (jit->prg_buf) {					\
208 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
209 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
210 	}							\
211 	jit->prg += 6;						\
212 })
213 
214 #define _EMIT6_DISP(op1, op2, disp)				\
215 ({								\
216 	unsigned int __disp = (disp) & 0xfff;			\
217 	_EMIT6((op1) | __disp, op2);				\
218 })
219 
220 #define _EMIT6_DISP_LH(op1, op2, disp)				\
221 ({								\
222 	u32 _disp = (u32) (disp);				\
223 	unsigned int __disp_h = _disp & 0xff000;		\
224 	unsigned int __disp_l = _disp & 0x00fff;		\
225 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
226 })
227 
228 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
229 ({								\
230 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
231 		       reg_high(b3) << 8, op2, disp);		\
232 	REG_SET_SEEN(b1);					\
233 	REG_SET_SEEN(b2);					\
234 	REG_SET_SEEN(b3);					\
235 })
236 
237 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
238 ({								\
239 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
240 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
241 	       (op2) | (mask) << 12);				\
242 	REG_SET_SEEN(b1);					\
243 	REG_SET_SEEN(b2);					\
244 })
245 
246 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
247 ({								\
248 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
249 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
250 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
251 	REG_SET_SEEN(b1);					\
252 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
253 })
254 
255 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
256 ({								\
257 	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
258 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
259 	REG_SET_SEEN(b1);					\
260 	REG_SET_SEEN(b2);					\
261 })
262 
263 #define EMIT6_PCREL_RILB(op, b, target)				\
264 ({								\
265 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
266 	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
267 	REG_SET_SEEN(b);					\
268 })
269 
270 #define EMIT6_PCREL_RIL(op, target)				\
271 ({								\
272 	unsigned int rel = (int)((target) - jit->prg) / 2;	\
273 	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
274 })
275 
276 #define EMIT6_PCREL_RILC(op, mask, target)			\
277 ({								\
278 	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
279 })
280 
281 #define _EMIT6_IMM(op, imm)					\
282 ({								\
283 	unsigned int __imm = (imm);				\
284 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
285 })
286 
287 #define EMIT6_IMM(op, b1, imm)					\
288 ({								\
289 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
290 	REG_SET_SEEN(b1);					\
291 })
292 
293 #define _EMIT_CONST_U32(val)					\
294 ({								\
295 	unsigned int ret;					\
296 	ret = jit->lit32;					\
297 	if (jit->prg_buf)					\
298 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
299 	jit->lit32 += 4;					\
300 	ret;							\
301 })
302 
303 #define EMIT_CONST_U32(val)					\
304 ({								\
305 	jit->seen |= SEEN_LITERAL;				\
306 	_EMIT_CONST_U32(val) - jit->base_ip;			\
307 })
308 
309 #define _EMIT_CONST_U64(val)					\
310 ({								\
311 	unsigned int ret;					\
312 	ret = jit->lit64;					\
313 	if (jit->prg_buf)					\
314 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
315 	jit->lit64 += 8;					\
316 	ret;							\
317 })
318 
319 #define EMIT_CONST_U64(val)					\
320 ({								\
321 	jit->seen |= SEEN_LITERAL;				\
322 	_EMIT_CONST_U64(val) - jit->base_ip;			\
323 })
324 
325 #define EMIT_ZERO(b1)						\
326 ({								\
327 	if (!fp->aux->verifier_zext) {				\
328 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
329 		EMIT4(0xb9160000, b1, b1);			\
330 		REG_SET_SEEN(b1);				\
331 	}							\
332 })
333 
334 /*
335  * Return whether this is the first pass. The first pass is special, since we
336  * don't know any sizes yet, and thus must be conservative.
337  */
is_first_pass(struct bpf_jit * jit)338 static bool is_first_pass(struct bpf_jit *jit)
339 {
340 	return jit->size == 0;
341 }
342 
343 /*
344  * Return whether this is the code generation pass. The code generation pass is
345  * special, since we should change as little as possible.
346  */
is_codegen_pass(struct bpf_jit * jit)347 static bool is_codegen_pass(struct bpf_jit *jit)
348 {
349 	return jit->prg_buf;
350 }
351 
352 /*
353  * Return whether "rel" can be encoded as a short PC-relative offset
354  */
is_valid_rel(int rel)355 static bool is_valid_rel(int rel)
356 {
357 	return rel >= -65536 && rel <= 65534;
358 }
359 
360 /*
361  * Return whether "off" can be reached using a short PC-relative offset
362  */
can_use_rel(struct bpf_jit * jit,int off)363 static bool can_use_rel(struct bpf_jit *jit, int off)
364 {
365 	return is_valid_rel(off - jit->prg);
366 }
367 
368 /*
369  * Return whether given displacement can be encoded using
370  * Long-Displacement Facility
371  */
is_valid_ldisp(int disp)372 static bool is_valid_ldisp(int disp)
373 {
374 	return disp >= -524288 && disp <= 524287;
375 }
376 
377 /*
378  * Return whether the next 32-bit literal pool entry can be referenced using
379  * Long-Displacement Facility
380  */
can_use_ldisp_for_lit32(struct bpf_jit * jit)381 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
382 {
383 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
384 }
385 
386 /*
387  * Return whether the next 64-bit literal pool entry can be referenced using
388  * Long-Displacement Facility
389  */
can_use_ldisp_for_lit64(struct bpf_jit * jit)390 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
391 {
392 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
393 }
394 
395 /*
396  * Fill whole space with illegal instructions
397  */
jit_fill_hole(void * area,unsigned int size)398 static void jit_fill_hole(void *area, unsigned int size)
399 {
400 	memset(area, 0, size);
401 }
402 
403 /*
404  * Save registers from "rs" (register start) to "re" (register end) on stack
405  */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)406 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
407 {
408 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
409 
410 	if (rs == re)
411 		/* stg %rs,off(%r15) */
412 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
413 	else
414 		/* stmg %rs,%re,off(%r15) */
415 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
416 }
417 
418 /*
419  * Restore registers from "rs" (register start) to "re" (register end) on stack
420  */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)421 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
422 {
423 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
424 
425 	if (jit->seen & SEEN_STACK)
426 		off += STK_OFF + stack_depth;
427 
428 	if (rs == re)
429 		/* lg %rs,off(%r15) */
430 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
431 	else
432 		/* lmg %rs,%re,off(%r15) */
433 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
434 }
435 
436 /*
437  * Return first seen register (from start)
438  */
get_start(struct bpf_jit * jit,int start)439 static int get_start(struct bpf_jit *jit, int start)
440 {
441 	int i;
442 
443 	for (i = start; i <= 15; i++) {
444 		if (jit->seen_reg[i])
445 			return i;
446 	}
447 	return 0;
448 }
449 
450 /*
451  * Return last seen register (from start) (gap >= 2)
452  */
get_end(struct bpf_jit * jit,int start)453 static int get_end(struct bpf_jit *jit, int start)
454 {
455 	int i;
456 
457 	for (i = start; i < 15; i++) {
458 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
459 			return i - 1;
460 	}
461 	return jit->seen_reg[15] ? 15 : 14;
462 }
463 
464 #define REGS_SAVE	1
465 #define REGS_RESTORE	0
466 /*
467  * Save and restore clobbered registers (6-15) on stack.
468  * We save/restore registers in chunks with gap >= 2 registers.
469  */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth)470 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
471 {
472 	const int last = 15, save_restore_size = 6;
473 	int re = 6, rs;
474 
475 	if (is_first_pass(jit)) {
476 		/*
477 		 * We don't know yet which registers are used. Reserve space
478 		 * conservatively.
479 		 */
480 		jit->prg += (last - re + 1) * save_restore_size;
481 		return;
482 	}
483 
484 	do {
485 		rs = get_start(jit, re);
486 		if (!rs)
487 			break;
488 		re = get_end(jit, rs + 1);
489 		if (op == REGS_SAVE)
490 			save_regs(jit, rs, re);
491 		else
492 			restore_regs(jit, rs, re, stack_depth);
493 		re++;
494 	} while (re <= last);
495 }
496 
bpf_skip(struct bpf_jit * jit,int size)497 static void bpf_skip(struct bpf_jit *jit, int size)
498 {
499 	if (size >= 6 && !is_valid_rel(size)) {
500 		/* brcl 0xf,size */
501 		EMIT6_PCREL_RIL(0xc0f4000000, size);
502 		size -= 6;
503 	} else if (size >= 4 && is_valid_rel(size)) {
504 		/* brc 0xf,size */
505 		EMIT4_PCREL(0xa7f40000, size);
506 		size -= 4;
507 	}
508 	while (size >= 2) {
509 		/* bcr 0,%0 */
510 		_EMIT2(0x0700);
511 		size -= 2;
512 	}
513 }
514 
515 /*
516  * PLT for hotpatchable calls. The calling convention is the same as for the
517  * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
518  */
519 struct bpf_plt {
520 	char code[16];
521 	void *ret;
522 	void *target;
523 } __packed;
524 extern const struct bpf_plt bpf_plt;
525 asm(
526 	".pushsection .rodata\n"
527 	"	.balign 8\n"
528 	"bpf_plt:\n"
529 	"	lgrl %r0,bpf_plt_ret\n"
530 	"	lgrl %r1,bpf_plt_target\n"
531 	"	br %r1\n"
532 	"	.balign 8\n"
533 	"bpf_plt_ret: .quad 0\n"
534 	"bpf_plt_target: .quad 0\n"
535 	"	.popsection\n"
536 );
537 
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)538 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
539 {
540 	memcpy(plt, &bpf_plt, sizeof(*plt));
541 	plt->ret = ret;
542 	plt->target = target;
543 }
544 
545 /*
546  * Emit function prologue
547  *
548  * Save registers and create stack frame if necessary.
549  * See stack frame layout description in "bpf_jit.h"!
550  */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp,u32 stack_depth)551 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
552 			     u32 stack_depth)
553 {
554 	/* No-op for hotpatching */
555 	/* brcl 0,prologue_plt */
556 	EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
557 	jit->prologue_plt_ret = jit->prg;
558 
559 	if (fp->aux->func_idx == 0) {
560 		/* Initialize the tail call counter in the main program. */
561 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
562 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
563 	} else {
564 		/*
565 		 * Skip the tail call counter initialization in subprograms.
566 		 * Insert nops in order to have tail_call_start at a
567 		 * predictable offset.
568 		 */
569 		bpf_skip(jit, 6);
570 	}
571 	/* Tail calls have to skip above initialization */
572 	jit->tail_call_start = jit->prg;
573 	/* Save registers */
574 	save_restore_regs(jit, REGS_SAVE, stack_depth);
575 	/* Setup literal pool */
576 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
577 		if (!is_first_pass(jit) &&
578 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
579 			/* basr %l,0 */
580 			EMIT2(0x0d00, REG_L, REG_0);
581 			jit->base_ip = jit->prg;
582 		} else {
583 			/* larl %l,lit32_start */
584 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
585 			jit->base_ip = jit->lit32_start;
586 		}
587 	}
588 	/* Setup stack and backchain */
589 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
590 		/* lgr %w1,%r15 (backchain) */
591 		EMIT4(0xb9040000, REG_W1, REG_15);
592 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
593 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
594 		/* aghi %r15,-STK_OFF */
595 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
596 		/* stg %w1,152(%r15) (backchain) */
597 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
598 			      REG_15, 152);
599 	}
600 }
601 
602 /*
603  * Emit an expoline for a jump that follows
604  */
emit_expoline(struct bpf_jit * jit)605 static void emit_expoline(struct bpf_jit *jit)
606 {
607 	/* exrl %r0,.+10 */
608 	EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
609 	/* j . */
610 	EMIT4_PCREL(0xa7f40000, 0);
611 }
612 
613 /*
614  * Emit __s390_indirect_jump_r1 thunk if necessary
615  */
emit_r1_thunk(struct bpf_jit * jit)616 static void emit_r1_thunk(struct bpf_jit *jit)
617 {
618 	if (nospec_uses_trampoline()) {
619 		jit->r1_thunk_ip = jit->prg;
620 		emit_expoline(jit);
621 		/* br %r1 */
622 		_EMIT2(0x07f1);
623 	}
624 }
625 
626 /*
627  * Call r1 either directly or via __s390_indirect_jump_r1 thunk
628  */
call_r1(struct bpf_jit * jit)629 static void call_r1(struct bpf_jit *jit)
630 {
631 	if (nospec_uses_trampoline())
632 		/* brasl %r14,__s390_indirect_jump_r1 */
633 		EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
634 	else
635 		/* basr %r14,%r1 */
636 		EMIT2(0x0d00, REG_14, REG_1);
637 }
638 
639 /*
640  * Function epilogue
641  */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)642 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
643 {
644 	jit->exit_ip = jit->prg;
645 	/* Load exit code: lgr %r2,%b0 */
646 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
647 	/* Restore registers */
648 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
649 	if (nospec_uses_trampoline()) {
650 		jit->r14_thunk_ip = jit->prg;
651 		/* Generate __s390_indirect_jump_r14 thunk */
652 		emit_expoline(jit);
653 	}
654 	/* br %r14 */
655 	_EMIT2(0x07fe);
656 
657 	if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
658 		emit_r1_thunk(jit);
659 
660 	jit->prg = ALIGN(jit->prg, 8);
661 	jit->prologue_plt = jit->prg;
662 	if (jit->prg_buf)
663 		bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
664 			    jit->prg_buf + jit->prologue_plt_ret, NULL);
665 	jit->prg += sizeof(struct bpf_plt);
666 }
667 
get_probe_mem_regno(const u8 * insn)668 static int get_probe_mem_regno(const u8 *insn)
669 {
670 	/*
671 	 * insn must point to llgc, llgh, llgf or lg, which have destination
672 	 * register at the same position.
673 	 */
674 	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
675 		return -1;
676 	if (insn[5] != 0x90 && /* llgc */
677 	    insn[5] != 0x91 && /* llgh */
678 	    insn[5] != 0x16 && /* llgf */
679 	    insn[5] != 0x04) /* lg */
680 		return -1;
681 	return insn[1] >> 4;
682 }
683 
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)684 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
685 {
686 	regs->psw.addr = extable_fixup(x);
687 	regs->gprs[x->data] = 0;
688 	return true;
689 }
690 
bpf_jit_probe_mem(struct bpf_jit * jit,struct bpf_prog * fp,int probe_prg,int nop_prg)691 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
692 			     int probe_prg, int nop_prg)
693 {
694 	struct exception_table_entry *ex;
695 	int reg, prg;
696 	s64 delta;
697 	u8 *insn;
698 	int i;
699 
700 	if (!fp->aux->extable)
701 		/* Do nothing during early JIT passes. */
702 		return 0;
703 	insn = jit->prg_buf + probe_prg;
704 	reg = get_probe_mem_regno(insn);
705 	if (WARN_ON_ONCE(reg < 0))
706 		/* JIT bug - unexpected probe instruction. */
707 		return -1;
708 	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
709 		/* JIT bug - gap between probe and nop instructions. */
710 		return -1;
711 	for (i = 0; i < 2; i++) {
712 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
713 			/* Verifier bug - not enough entries. */
714 			return -1;
715 		ex = &fp->aux->extable[jit->excnt];
716 		/* Add extable entries for probe and nop instructions. */
717 		prg = i == 0 ? probe_prg : nop_prg;
718 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
719 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
720 			/* JIT bug - code and extable must be close. */
721 			return -1;
722 		ex->insn = delta;
723 		/*
724 		 * Always land on the nop. Note that extable infrastructure
725 		 * ignores fixup field, it is handled by ex_handler_bpf().
726 		 */
727 		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
728 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
729 			/* JIT bug - landing pad and extable must be close. */
730 			return -1;
731 		ex->fixup = delta;
732 		ex->type = EX_TYPE_BPF;
733 		ex->data = reg;
734 		jit->excnt++;
735 	}
736 	return 0;
737 }
738 
739 /*
740  * Sign-extend the register if necessary
741  */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)742 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
743 {
744 	if (!(flags & BTF_FMODEL_SIGNED_ARG))
745 		return 0;
746 
747 	switch (size) {
748 	case 1:
749 		/* lgbr %r,%r */
750 		EMIT4(0xb9060000, r, r);
751 		return 0;
752 	case 2:
753 		/* lghr %r,%r */
754 		EMIT4(0xb9070000, r, r);
755 		return 0;
756 	case 4:
757 		/* lgfr %r,%r */
758 		EMIT4(0xb9140000, r, r);
759 		return 0;
760 	case 8:
761 		return 0;
762 	default:
763 		return -1;
764 	}
765 }
766 
767 /*
768  * Compile one eBPF instruction into s390x code
769  *
770  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
771  * stack space for the large switch statement.
772  */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass,u32 stack_depth)773 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
774 				 int i, bool extra_pass, u32 stack_depth)
775 {
776 	struct bpf_insn *insn = &fp->insnsi[i];
777 	u32 dst_reg = insn->dst_reg;
778 	u32 src_reg = insn->src_reg;
779 	int last, insn_count = 1;
780 	u32 *addrs = jit->addrs;
781 	s32 imm = insn->imm;
782 	s16 off = insn->off;
783 	int probe_prg = -1;
784 	unsigned int mask;
785 	int nop_prg;
786 	int err;
787 
788 	if (BPF_CLASS(insn->code) == BPF_LDX &&
789 	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
790 		probe_prg = jit->prg;
791 
792 	switch (insn->code) {
793 	/*
794 	 * BPF_MOV
795 	 */
796 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
797 		/* llgfr %dst,%src */
798 		EMIT4(0xb9160000, dst_reg, src_reg);
799 		if (insn_is_zext(&insn[1]))
800 			insn_count = 2;
801 		break;
802 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
803 		/* lgr %dst,%src */
804 		EMIT4(0xb9040000, dst_reg, src_reg);
805 		break;
806 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
807 		/* llilf %dst,imm */
808 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
809 		if (insn_is_zext(&insn[1]))
810 			insn_count = 2;
811 		break;
812 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
813 		/* lgfi %dst,imm */
814 		EMIT6_IMM(0xc0010000, dst_reg, imm);
815 		break;
816 	/*
817 	 * BPF_LD 64
818 	 */
819 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
820 	{
821 		/* 16 byte instruction that uses two 'struct bpf_insn' */
822 		u64 imm64;
823 
824 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
825 		/* lgrl %dst,imm */
826 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
827 		insn_count = 2;
828 		break;
829 	}
830 	/*
831 	 * BPF_ADD
832 	 */
833 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
834 		/* ar %dst,%src */
835 		EMIT2(0x1a00, dst_reg, src_reg);
836 		EMIT_ZERO(dst_reg);
837 		break;
838 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
839 		/* agr %dst,%src */
840 		EMIT4(0xb9080000, dst_reg, src_reg);
841 		break;
842 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
843 		if (imm != 0) {
844 			/* alfi %dst,imm */
845 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
846 		}
847 		EMIT_ZERO(dst_reg);
848 		break;
849 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
850 		if (!imm)
851 			break;
852 		/* agfi %dst,imm */
853 		EMIT6_IMM(0xc2080000, dst_reg, imm);
854 		break;
855 	/*
856 	 * BPF_SUB
857 	 */
858 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
859 		/* sr %dst,%src */
860 		EMIT2(0x1b00, dst_reg, src_reg);
861 		EMIT_ZERO(dst_reg);
862 		break;
863 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
864 		/* sgr %dst,%src */
865 		EMIT4(0xb9090000, dst_reg, src_reg);
866 		break;
867 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
868 		if (imm != 0) {
869 			/* alfi %dst,-imm */
870 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
871 		}
872 		EMIT_ZERO(dst_reg);
873 		break;
874 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
875 		if (!imm)
876 			break;
877 		if (imm == -0x80000000) {
878 			/* algfi %dst,0x80000000 */
879 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
880 		} else {
881 			/* agfi %dst,-imm */
882 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
883 		}
884 		break;
885 	/*
886 	 * BPF_MUL
887 	 */
888 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
889 		/* msr %dst,%src */
890 		EMIT4(0xb2520000, dst_reg, src_reg);
891 		EMIT_ZERO(dst_reg);
892 		break;
893 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
894 		/* msgr %dst,%src */
895 		EMIT4(0xb90c0000, dst_reg, src_reg);
896 		break;
897 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
898 		if (imm != 1) {
899 			/* msfi %r5,imm */
900 			EMIT6_IMM(0xc2010000, dst_reg, imm);
901 		}
902 		EMIT_ZERO(dst_reg);
903 		break;
904 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
905 		if (imm == 1)
906 			break;
907 		/* msgfi %dst,imm */
908 		EMIT6_IMM(0xc2000000, dst_reg, imm);
909 		break;
910 	/*
911 	 * BPF_DIV / BPF_MOD
912 	 */
913 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
914 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
915 	{
916 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
917 
918 		/* lhi %w0,0 */
919 		EMIT4_IMM(0xa7080000, REG_W0, 0);
920 		/* lr %w1,%dst */
921 		EMIT2(0x1800, REG_W1, dst_reg);
922 		/* dlr %w0,%src */
923 		EMIT4(0xb9970000, REG_W0, src_reg);
924 		/* llgfr %dst,%rc */
925 		EMIT4(0xb9160000, dst_reg, rc_reg);
926 		if (insn_is_zext(&insn[1]))
927 			insn_count = 2;
928 		break;
929 	}
930 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
931 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
932 	{
933 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
934 
935 		/* lghi %w0,0 */
936 		EMIT4_IMM(0xa7090000, REG_W0, 0);
937 		/* lgr %w1,%dst */
938 		EMIT4(0xb9040000, REG_W1, dst_reg);
939 		/* dlgr %w0,%dst */
940 		EMIT4(0xb9870000, REG_W0, src_reg);
941 		/* lgr %dst,%rc */
942 		EMIT4(0xb9040000, dst_reg, rc_reg);
943 		break;
944 	}
945 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
946 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
947 	{
948 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
949 
950 		if (imm == 1) {
951 			if (BPF_OP(insn->code) == BPF_MOD)
952 				/* lhgi %dst,0 */
953 				EMIT4_IMM(0xa7090000, dst_reg, 0);
954 			else
955 				EMIT_ZERO(dst_reg);
956 			break;
957 		}
958 		/* lhi %w0,0 */
959 		EMIT4_IMM(0xa7080000, REG_W0, 0);
960 		/* lr %w1,%dst */
961 		EMIT2(0x1800, REG_W1, dst_reg);
962 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
963 			/* dl %w0,<d(imm)>(%l) */
964 			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
965 				      EMIT_CONST_U32(imm));
966 		} else {
967 			/* lgfrl %dst,imm */
968 			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
969 					 _EMIT_CONST_U32(imm));
970 			jit->seen |= SEEN_LITERAL;
971 			/* dlr %w0,%dst */
972 			EMIT4(0xb9970000, REG_W0, dst_reg);
973 		}
974 		/* llgfr %dst,%rc */
975 		EMIT4(0xb9160000, dst_reg, rc_reg);
976 		if (insn_is_zext(&insn[1]))
977 			insn_count = 2;
978 		break;
979 	}
980 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
981 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
982 	{
983 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
984 
985 		if (imm == 1) {
986 			if (BPF_OP(insn->code) == BPF_MOD)
987 				/* lhgi %dst,0 */
988 				EMIT4_IMM(0xa7090000, dst_reg, 0);
989 			break;
990 		}
991 		/* lghi %w0,0 */
992 		EMIT4_IMM(0xa7090000, REG_W0, 0);
993 		/* lgr %w1,%dst */
994 		EMIT4(0xb9040000, REG_W1, dst_reg);
995 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
996 			/* dlg %w0,<d(imm)>(%l) */
997 			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
998 				      EMIT_CONST_U64(imm));
999 		} else {
1000 			/* lgrl %dst,imm */
1001 			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1002 					 _EMIT_CONST_U64(imm));
1003 			jit->seen |= SEEN_LITERAL;
1004 			/* dlgr %w0,%dst */
1005 			EMIT4(0xb9870000, REG_W0, dst_reg);
1006 		}
1007 		/* lgr %dst,%rc */
1008 		EMIT4(0xb9040000, dst_reg, rc_reg);
1009 		break;
1010 	}
1011 	/*
1012 	 * BPF_AND
1013 	 */
1014 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1015 		/* nr %dst,%src */
1016 		EMIT2(0x1400, dst_reg, src_reg);
1017 		EMIT_ZERO(dst_reg);
1018 		break;
1019 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1020 		/* ngr %dst,%src */
1021 		EMIT4(0xb9800000, dst_reg, src_reg);
1022 		break;
1023 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1024 		/* nilf %dst,imm */
1025 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
1026 		EMIT_ZERO(dst_reg);
1027 		break;
1028 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1029 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1030 			/* ng %dst,<d(imm)>(%l) */
1031 			EMIT6_DISP_LH(0xe3000000, 0x0080,
1032 				      dst_reg, REG_0, REG_L,
1033 				      EMIT_CONST_U64(imm));
1034 		} else {
1035 			/* lgrl %w0,imm */
1036 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1037 					 _EMIT_CONST_U64(imm));
1038 			jit->seen |= SEEN_LITERAL;
1039 			/* ngr %dst,%w0 */
1040 			EMIT4(0xb9800000, dst_reg, REG_W0);
1041 		}
1042 		break;
1043 	/*
1044 	 * BPF_OR
1045 	 */
1046 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1047 		/* or %dst,%src */
1048 		EMIT2(0x1600, dst_reg, src_reg);
1049 		EMIT_ZERO(dst_reg);
1050 		break;
1051 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1052 		/* ogr %dst,%src */
1053 		EMIT4(0xb9810000, dst_reg, src_reg);
1054 		break;
1055 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1056 		/* oilf %dst,imm */
1057 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
1058 		EMIT_ZERO(dst_reg);
1059 		break;
1060 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1061 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1062 			/* og %dst,<d(imm)>(%l) */
1063 			EMIT6_DISP_LH(0xe3000000, 0x0081,
1064 				      dst_reg, REG_0, REG_L,
1065 				      EMIT_CONST_U64(imm));
1066 		} else {
1067 			/* lgrl %w0,imm */
1068 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1069 					 _EMIT_CONST_U64(imm));
1070 			jit->seen |= SEEN_LITERAL;
1071 			/* ogr %dst,%w0 */
1072 			EMIT4(0xb9810000, dst_reg, REG_W0);
1073 		}
1074 		break;
1075 	/*
1076 	 * BPF_XOR
1077 	 */
1078 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1079 		/* xr %dst,%src */
1080 		EMIT2(0x1700, dst_reg, src_reg);
1081 		EMIT_ZERO(dst_reg);
1082 		break;
1083 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1084 		/* xgr %dst,%src */
1085 		EMIT4(0xb9820000, dst_reg, src_reg);
1086 		break;
1087 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1088 		if (imm != 0) {
1089 			/* xilf %dst,imm */
1090 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1091 		}
1092 		EMIT_ZERO(dst_reg);
1093 		break;
1094 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1095 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1096 			/* xg %dst,<d(imm)>(%l) */
1097 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1098 				      dst_reg, REG_0, REG_L,
1099 				      EMIT_CONST_U64(imm));
1100 		} else {
1101 			/* lgrl %w0,imm */
1102 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1103 					 _EMIT_CONST_U64(imm));
1104 			jit->seen |= SEEN_LITERAL;
1105 			/* xgr %dst,%w0 */
1106 			EMIT4(0xb9820000, dst_reg, REG_W0);
1107 		}
1108 		break;
1109 	/*
1110 	 * BPF_LSH
1111 	 */
1112 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1113 		/* sll %dst,0(%src) */
1114 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1115 		EMIT_ZERO(dst_reg);
1116 		break;
1117 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1118 		/* sllg %dst,%dst,0(%src) */
1119 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1120 		break;
1121 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1122 		if (imm != 0) {
1123 			/* sll %dst,imm(%r0) */
1124 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1125 		}
1126 		EMIT_ZERO(dst_reg);
1127 		break;
1128 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1129 		if (imm == 0)
1130 			break;
1131 		/* sllg %dst,%dst,imm(%r0) */
1132 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1133 		break;
1134 	/*
1135 	 * BPF_RSH
1136 	 */
1137 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1138 		/* srl %dst,0(%src) */
1139 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1140 		EMIT_ZERO(dst_reg);
1141 		break;
1142 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1143 		/* srlg %dst,%dst,0(%src) */
1144 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1145 		break;
1146 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1147 		if (imm != 0) {
1148 			/* srl %dst,imm(%r0) */
1149 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1150 		}
1151 		EMIT_ZERO(dst_reg);
1152 		break;
1153 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1154 		if (imm == 0)
1155 			break;
1156 		/* srlg %dst,%dst,imm(%r0) */
1157 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1158 		break;
1159 	/*
1160 	 * BPF_ARSH
1161 	 */
1162 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1163 		/* sra %dst,%dst,0(%src) */
1164 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1165 		EMIT_ZERO(dst_reg);
1166 		break;
1167 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1168 		/* srag %dst,%dst,0(%src) */
1169 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1170 		break;
1171 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1172 		if (imm != 0) {
1173 			/* sra %dst,imm(%r0) */
1174 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1175 		}
1176 		EMIT_ZERO(dst_reg);
1177 		break;
1178 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1179 		if (imm == 0)
1180 			break;
1181 		/* srag %dst,%dst,imm(%r0) */
1182 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1183 		break;
1184 	/*
1185 	 * BPF_NEG
1186 	 */
1187 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1188 		/* lcr %dst,%dst */
1189 		EMIT2(0x1300, dst_reg, dst_reg);
1190 		EMIT_ZERO(dst_reg);
1191 		break;
1192 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1193 		/* lcgr %dst,%dst */
1194 		EMIT4(0xb9030000, dst_reg, dst_reg);
1195 		break;
1196 	/*
1197 	 * BPF_FROM_BE/LE
1198 	 */
1199 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1200 		/* s390 is big endian, therefore only clear high order bytes */
1201 		switch (imm) {
1202 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1203 			/* llghr %dst,%dst */
1204 			EMIT4(0xb9850000, dst_reg, dst_reg);
1205 			if (insn_is_zext(&insn[1]))
1206 				insn_count = 2;
1207 			break;
1208 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1209 			if (!fp->aux->verifier_zext)
1210 				/* llgfr %dst,%dst */
1211 				EMIT4(0xb9160000, dst_reg, dst_reg);
1212 			break;
1213 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1214 			break;
1215 		}
1216 		break;
1217 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1218 		switch (imm) {
1219 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1220 			/* lrvr %dst,%dst */
1221 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1222 			/* srl %dst,16(%r0) */
1223 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1224 			/* llghr %dst,%dst */
1225 			EMIT4(0xb9850000, dst_reg, dst_reg);
1226 			if (insn_is_zext(&insn[1]))
1227 				insn_count = 2;
1228 			break;
1229 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1230 			/* lrvr %dst,%dst */
1231 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1232 			if (!fp->aux->verifier_zext)
1233 				/* llgfr %dst,%dst */
1234 				EMIT4(0xb9160000, dst_reg, dst_reg);
1235 			break;
1236 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1237 			/* lrvgr %dst,%dst */
1238 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1239 			break;
1240 		}
1241 		break;
1242 	/*
1243 	 * BPF_NOSPEC (speculation barrier)
1244 	 */
1245 	case BPF_ST | BPF_NOSPEC:
1246 		break;
1247 	/*
1248 	 * BPF_ST(X)
1249 	 */
1250 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1251 		/* stcy %src,off(%dst) */
1252 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1253 		jit->seen |= SEEN_MEM;
1254 		break;
1255 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1256 		/* sthy %src,off(%dst) */
1257 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1258 		jit->seen |= SEEN_MEM;
1259 		break;
1260 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1261 		/* sty %src,off(%dst) */
1262 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1263 		jit->seen |= SEEN_MEM;
1264 		break;
1265 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1266 		/* stg %src,off(%dst) */
1267 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1268 		jit->seen |= SEEN_MEM;
1269 		break;
1270 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1271 		/* lhi %w0,imm */
1272 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1273 		/* stcy %w0,off(dst) */
1274 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1275 		jit->seen |= SEEN_MEM;
1276 		break;
1277 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1278 		/* lhi %w0,imm */
1279 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1280 		/* sthy %w0,off(dst) */
1281 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1282 		jit->seen |= SEEN_MEM;
1283 		break;
1284 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1285 		/* llilf %w0,imm  */
1286 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1287 		/* sty %w0,off(%dst) */
1288 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1289 		jit->seen |= SEEN_MEM;
1290 		break;
1291 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1292 		/* lgfi %w0,imm */
1293 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1294 		/* stg %w0,off(%dst) */
1295 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1296 		jit->seen |= SEEN_MEM;
1297 		break;
1298 	/*
1299 	 * BPF_ATOMIC
1300 	 */
1301 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1302 	case BPF_STX | BPF_ATOMIC | BPF_W:
1303 	{
1304 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1305 
1306 		switch (insn->imm) {
1307 /* {op32|op64} {%w0|%src},%src,off(%dst) */
1308 #define EMIT_ATOMIC(op32, op64) do {					\
1309 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1310 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1311 		      src_reg, dst_reg, off);				\
1312 	if (insn->imm & BPF_FETCH) {					\
1313 		/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */	\
1314 		_EMIT2(0x07e0);						\
1315 		if (is32)                                               \
1316 			EMIT_ZERO(src_reg);				\
1317 	}								\
1318 } while (0)
1319 		case BPF_ADD:
1320 		case BPF_ADD | BPF_FETCH:
1321 			/* {laal|laalg} */
1322 			EMIT_ATOMIC(0x00fa, 0x00ea);
1323 			break;
1324 		case BPF_AND:
1325 		case BPF_AND | BPF_FETCH:
1326 			/* {lan|lang} */
1327 			EMIT_ATOMIC(0x00f4, 0x00e4);
1328 			break;
1329 		case BPF_OR:
1330 		case BPF_OR | BPF_FETCH:
1331 			/* {lao|laog} */
1332 			EMIT_ATOMIC(0x00f6, 0x00e6);
1333 			break;
1334 		case BPF_XOR:
1335 		case BPF_XOR | BPF_FETCH:
1336 			/* {lax|laxg} */
1337 			EMIT_ATOMIC(0x00f7, 0x00e7);
1338 			break;
1339 #undef EMIT_ATOMIC
1340 		case BPF_XCHG:
1341 			/* {ly|lg} %w0,off(%dst) */
1342 			EMIT6_DISP_LH(0xe3000000,
1343 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1344 				      dst_reg, off);
1345 			/* 0: {csy|csg} %w0,%src,off(%dst) */
1346 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1347 				      REG_W0, src_reg, dst_reg, off);
1348 			/* brc 4,0b */
1349 			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1350 			/* {llgfr|lgr} %src,%w0 */
1351 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1352 			if (is32 && insn_is_zext(&insn[1]))
1353 				insn_count = 2;
1354 			break;
1355 		case BPF_CMPXCHG:
1356 			/* 0: {csy|csg} %b0,%src,off(%dst) */
1357 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1358 				      BPF_REG_0, src_reg, dst_reg, off);
1359 			break;
1360 		default:
1361 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1362 			return -1;
1363 		}
1364 
1365 		jit->seen |= SEEN_MEM;
1366 		break;
1367 	}
1368 	/*
1369 	 * BPF_LDX
1370 	 */
1371 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1372 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1373 		/* llgc %dst,0(off,%src) */
1374 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1375 		jit->seen |= SEEN_MEM;
1376 		if (insn_is_zext(&insn[1]))
1377 			insn_count = 2;
1378 		break;
1379 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1380 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1381 		/* llgh %dst,0(off,%src) */
1382 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1383 		jit->seen |= SEEN_MEM;
1384 		if (insn_is_zext(&insn[1]))
1385 			insn_count = 2;
1386 		break;
1387 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1388 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1389 		/* llgf %dst,off(%src) */
1390 		jit->seen |= SEEN_MEM;
1391 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1392 		if (insn_is_zext(&insn[1]))
1393 			insn_count = 2;
1394 		break;
1395 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1396 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1397 		/* lg %dst,0(off,%src) */
1398 		jit->seen |= SEEN_MEM;
1399 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1400 		break;
1401 	/*
1402 	 * BPF_JMP / CALL
1403 	 */
1404 	case BPF_JMP | BPF_CALL:
1405 	{
1406 		const struct btf_func_model *m;
1407 		bool func_addr_fixed;
1408 		int j, ret;
1409 		u64 func;
1410 
1411 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1412 					    &func, &func_addr_fixed);
1413 		if (ret < 0)
1414 			return -1;
1415 
1416 		REG_SET_SEEN(BPF_REG_5);
1417 		jit->seen |= SEEN_FUNC;
1418 		/*
1419 		 * Copy the tail call counter to where the callee expects it.
1420 		 *
1421 		 * Note 1: The callee can increment the tail call counter, but
1422 		 * we do not load it back, since the x86 JIT does not do this
1423 		 * either.
1424 		 *
1425 		 * Note 2: We assume that the verifier does not let us call the
1426 		 * main program, which clears the tail call counter on entry.
1427 		 */
1428 		/* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1429 		_EMIT6(0xd203f000 | STK_OFF_TCCNT,
1430 		       0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1431 
1432 		/* Sign-extend the kfunc arguments. */
1433 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1434 			m = bpf_jit_find_kfunc_model(fp, insn);
1435 			if (!m)
1436 				return -1;
1437 
1438 			for (j = 0; j < m->nr_args; j++) {
1439 				if (sign_extend(jit, BPF_REG_1 + j,
1440 						m->arg_size[j],
1441 						m->arg_flags[j]))
1442 					return -1;
1443 			}
1444 		}
1445 
1446 		/* lgrl %w1,func */
1447 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1448 		/* %r1() */
1449 		call_r1(jit);
1450 		/* lgr %b0,%r2: load return value into %b0 */
1451 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1452 		break;
1453 	}
1454 	case BPF_JMP | BPF_TAIL_CALL: {
1455 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1456 
1457 		/*
1458 		 * Implicit input:
1459 		 *  B1: pointer to ctx
1460 		 *  B2: pointer to bpf_array
1461 		 *  B3: index in bpf_array
1462 		 *
1463 		 * if (index >= array->map.max_entries)
1464 		 *         goto out;
1465 		 */
1466 
1467 		/* llgf %w1,map.max_entries(%b2) */
1468 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1469 			      offsetof(struct bpf_array, map.max_entries));
1470 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1471 		/* clrj %b3,%w1,0xa,out */
1472 		patch_1_clrj = jit->prg;
1473 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1474 				 jit->prg);
1475 
1476 		/*
1477 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1478 		 *         goto out;
1479 		 */
1480 
1481 		if (jit->seen & SEEN_STACK)
1482 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1483 		else
1484 			off = STK_OFF_TCCNT;
1485 		/* lhi %w0,1 */
1486 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1487 		/* laal %w1,%w0,off(%r15) */
1488 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1489 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1490 		patch_2_clij = jit->prg;
1491 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1492 				 2, jit->prg);
1493 
1494 		/*
1495 		 * prog = array->ptrs[index];
1496 		 * if (prog == NULL)
1497 		 *         goto out;
1498 		 */
1499 
1500 		/* llgfr %r1,%b3: %r1 = (u32) index */
1501 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1502 		/* sllg %r1,%r1,3: %r1 *= 8 */
1503 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1504 		/* ltg %r1,prog(%b2,%r1) */
1505 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1506 			      REG_1, offsetof(struct bpf_array, ptrs));
1507 		/* brc 0x8,out */
1508 		patch_3_brc = jit->prg;
1509 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1510 
1511 		/*
1512 		 * Restore registers before calling function
1513 		 */
1514 		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1515 
1516 		/*
1517 		 * goto *(prog->bpf_func + tail_call_start);
1518 		 */
1519 
1520 		/* lg %r1,bpf_func(%r1) */
1521 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1522 			      offsetof(struct bpf_prog, bpf_func));
1523 		if (nospec_uses_trampoline()) {
1524 			jit->seen |= SEEN_FUNC;
1525 			/* aghi %r1,tail_call_start */
1526 			EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1527 			/* brcl 0xf,__s390_indirect_jump_r1 */
1528 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->r1_thunk_ip);
1529 		} else {
1530 			/* bc 0xf,tail_call_start(%r1) */
1531 			_EMIT4(0x47f01000 + jit->tail_call_start);
1532 		}
1533 		/* out: */
1534 		if (jit->prg_buf) {
1535 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1536 				(jit->prg - patch_1_clrj) >> 1;
1537 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1538 				(jit->prg - patch_2_clij) >> 1;
1539 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1540 				(jit->prg - patch_3_brc) >> 1;
1541 		}
1542 		break;
1543 	}
1544 	case BPF_JMP | BPF_EXIT: /* return b0 */
1545 		last = (i == fp->len - 1) ? 1 : 0;
1546 		if (last)
1547 			break;
1548 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1549 			/* brc 0xf, <exit> */
1550 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1551 		else
1552 			/* brcl 0xf, <exit> */
1553 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1554 		break;
1555 	/*
1556 	 * Branch relative (number of skipped instructions) to offset on
1557 	 * condition.
1558 	 *
1559 	 * Condition code to mask mapping:
1560 	 *
1561 	 * CC | Description	   | Mask
1562 	 * ------------------------------
1563 	 * 0  | Operands equal	   |	8
1564 	 * 1  | First operand low  |	4
1565 	 * 2  | First operand high |	2
1566 	 * 3  | Unused		   |	1
1567 	 *
1568 	 * For s390x relative branches: ip = ip + off_bytes
1569 	 * For BPF relative branches:	insn = insn + off_insns + 1
1570 	 *
1571 	 * For example for s390x with offset 0 we jump to the branch
1572 	 * instruction itself (loop) and for BPF with offset 0 we
1573 	 * branch to the instruction behind the branch.
1574 	 */
1575 	case BPF_JMP | BPF_JA: /* if (true) */
1576 		mask = 0xf000; /* j */
1577 		goto branch_oc;
1578 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1579 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1580 		mask = 0x2000; /* jh */
1581 		goto branch_ks;
1582 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1583 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1584 		mask = 0x4000; /* jl */
1585 		goto branch_ks;
1586 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1587 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1588 		mask = 0xa000; /* jhe */
1589 		goto branch_ks;
1590 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1591 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1592 		mask = 0xc000; /* jle */
1593 		goto branch_ks;
1594 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1595 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1596 		mask = 0x2000; /* jh */
1597 		goto branch_ku;
1598 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1599 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1600 		mask = 0x4000; /* jl */
1601 		goto branch_ku;
1602 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1603 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1604 		mask = 0xa000; /* jhe */
1605 		goto branch_ku;
1606 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1607 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1608 		mask = 0xc000; /* jle */
1609 		goto branch_ku;
1610 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1611 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1612 		mask = 0x7000; /* jne */
1613 		goto branch_ku;
1614 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1615 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1616 		mask = 0x8000; /* je */
1617 		goto branch_ku;
1618 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1619 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1620 		mask = 0x7000; /* jnz */
1621 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1622 			/* llilf %w1,imm (load zero extend imm) */
1623 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1624 			/* nr %w1,%dst */
1625 			EMIT2(0x1400, REG_W1, dst_reg);
1626 		} else {
1627 			/* lgfi %w1,imm (load sign extend imm) */
1628 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1629 			/* ngr %w1,%dst */
1630 			EMIT4(0xb9800000, REG_W1, dst_reg);
1631 		}
1632 		goto branch_oc;
1633 
1634 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1635 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1636 		mask = 0x2000; /* jh */
1637 		goto branch_xs;
1638 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1639 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1640 		mask = 0x4000; /* jl */
1641 		goto branch_xs;
1642 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1643 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1644 		mask = 0xa000; /* jhe */
1645 		goto branch_xs;
1646 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1647 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1648 		mask = 0xc000; /* jle */
1649 		goto branch_xs;
1650 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1651 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1652 		mask = 0x2000; /* jh */
1653 		goto branch_xu;
1654 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1655 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1656 		mask = 0x4000; /* jl */
1657 		goto branch_xu;
1658 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1659 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1660 		mask = 0xa000; /* jhe */
1661 		goto branch_xu;
1662 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1663 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1664 		mask = 0xc000; /* jle */
1665 		goto branch_xu;
1666 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1667 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1668 		mask = 0x7000; /* jne */
1669 		goto branch_xu;
1670 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1671 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1672 		mask = 0x8000; /* je */
1673 		goto branch_xu;
1674 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1675 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1676 	{
1677 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1678 
1679 		mask = 0x7000; /* jnz */
1680 		/* nrk or ngrk %w1,%dst,%src */
1681 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1682 			  REG_W1, dst_reg, src_reg);
1683 		goto branch_oc;
1684 branch_ks:
1685 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1686 		/* cfi or cgfi %dst,imm */
1687 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1688 			  dst_reg, imm);
1689 		if (!is_first_pass(jit) &&
1690 		    can_use_rel(jit, addrs[i + off + 1])) {
1691 			/* brc mask,off */
1692 			EMIT4_PCREL_RIC(0xa7040000,
1693 					mask >> 12, addrs[i + off + 1]);
1694 		} else {
1695 			/* brcl mask,off */
1696 			EMIT6_PCREL_RILC(0xc0040000,
1697 					 mask >> 12, addrs[i + off + 1]);
1698 		}
1699 		break;
1700 branch_ku:
1701 		/* lgfi %w1,imm (load sign extend imm) */
1702 		src_reg = REG_1;
1703 		EMIT6_IMM(0xc0010000, src_reg, imm);
1704 		goto branch_xu;
1705 branch_xs:
1706 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1707 		if (!is_first_pass(jit) &&
1708 		    can_use_rel(jit, addrs[i + off + 1])) {
1709 			/* crj or cgrj %dst,%src,mask,off */
1710 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1711 				    dst_reg, src_reg, i, off, mask);
1712 		} else {
1713 			/* cr or cgr %dst,%src */
1714 			if (is_jmp32)
1715 				EMIT2(0x1900, dst_reg, src_reg);
1716 			else
1717 				EMIT4(0xb9200000, dst_reg, src_reg);
1718 			/* brcl mask,off */
1719 			EMIT6_PCREL_RILC(0xc0040000,
1720 					 mask >> 12, addrs[i + off + 1]);
1721 		}
1722 		break;
1723 branch_xu:
1724 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1725 		if (!is_first_pass(jit) &&
1726 		    can_use_rel(jit, addrs[i + off + 1])) {
1727 			/* clrj or clgrj %dst,%src,mask,off */
1728 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1729 				    dst_reg, src_reg, i, off, mask);
1730 		} else {
1731 			/* clr or clgr %dst,%src */
1732 			if (is_jmp32)
1733 				EMIT2(0x1500, dst_reg, src_reg);
1734 			else
1735 				EMIT4(0xb9210000, dst_reg, src_reg);
1736 			/* brcl mask,off */
1737 			EMIT6_PCREL_RILC(0xc0040000,
1738 					 mask >> 12, addrs[i + off + 1]);
1739 		}
1740 		break;
1741 branch_oc:
1742 		if (!is_first_pass(jit) &&
1743 		    can_use_rel(jit, addrs[i + off + 1])) {
1744 			/* brc mask,off */
1745 			EMIT4_PCREL_RIC(0xa7040000,
1746 					mask >> 12, addrs[i + off + 1]);
1747 		} else {
1748 			/* brcl mask,off */
1749 			EMIT6_PCREL_RILC(0xc0040000,
1750 					 mask >> 12, addrs[i + off + 1]);
1751 		}
1752 		break;
1753 	}
1754 	default: /* too complex, give up */
1755 		pr_err("Unknown opcode %02x\n", insn->code);
1756 		return -1;
1757 	}
1758 
1759 	if (probe_prg != -1) {
1760 		/*
1761 		 * Handlers of certain exceptions leave psw.addr pointing to
1762 		 * the instruction directly after the failing one. Therefore,
1763 		 * create two exception table entries and also add a nop in
1764 		 * case two probing instructions come directly after each
1765 		 * other.
1766 		 */
1767 		nop_prg = jit->prg;
1768 		/* bcr 0,%0 */
1769 		_EMIT2(0x0700);
1770 		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1771 		if (err < 0)
1772 			return err;
1773 	}
1774 
1775 	return insn_count;
1776 }
1777 
1778 /*
1779  * Return whether new i-th instruction address does not violate any invariant
1780  */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)1781 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1782 {
1783 	/* On the first pass anything goes */
1784 	if (is_first_pass(jit))
1785 		return true;
1786 
1787 	/* The codegen pass must not change anything */
1788 	if (is_codegen_pass(jit))
1789 		return jit->addrs[i] == jit->prg;
1790 
1791 	/* Passes in between must not increase code size */
1792 	return jit->addrs[i] >= jit->prg;
1793 }
1794 
1795 /*
1796  * Update the address of i-th instruction
1797  */
bpf_set_addr(struct bpf_jit * jit,int i)1798 static int bpf_set_addr(struct bpf_jit *jit, int i)
1799 {
1800 	int delta;
1801 
1802 	if (is_codegen_pass(jit)) {
1803 		delta = jit->prg - jit->addrs[i];
1804 		if (delta < 0)
1805 			bpf_skip(jit, -delta);
1806 	}
1807 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1808 		return -1;
1809 	jit->addrs[i] = jit->prg;
1810 	return 0;
1811 }
1812 
1813 /*
1814  * Compile eBPF program into s390x code
1815  */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass,u32 stack_depth)1816 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1817 			bool extra_pass, u32 stack_depth)
1818 {
1819 	int i, insn_count, lit32_size, lit64_size;
1820 
1821 	jit->lit32 = jit->lit32_start;
1822 	jit->lit64 = jit->lit64_start;
1823 	jit->prg = 0;
1824 	jit->excnt = 0;
1825 
1826 	bpf_jit_prologue(jit, fp, stack_depth);
1827 	if (bpf_set_addr(jit, 0) < 0)
1828 		return -1;
1829 	for (i = 0; i < fp->len; i += insn_count) {
1830 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1831 		if (insn_count < 0)
1832 			return -1;
1833 		/* Next instruction address */
1834 		if (bpf_set_addr(jit, i + insn_count) < 0)
1835 			return -1;
1836 	}
1837 	bpf_jit_epilogue(jit, stack_depth);
1838 
1839 	lit32_size = jit->lit32 - jit->lit32_start;
1840 	lit64_size = jit->lit64 - jit->lit64_start;
1841 	jit->lit32_start = jit->prg;
1842 	if (lit32_size)
1843 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1844 	jit->lit64_start = jit->lit32_start + lit32_size;
1845 	if (lit64_size)
1846 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1847 	jit->size = jit->lit64_start + lit64_size;
1848 	jit->size_prg = jit->prg;
1849 
1850 	if (WARN_ON_ONCE(fp->aux->extable &&
1851 			 jit->excnt != fp->aux->num_exentries))
1852 		/* Verifier bug - too many entries. */
1853 		return -1;
1854 
1855 	return 0;
1856 }
1857 
bpf_jit_needs_zext(void)1858 bool bpf_jit_needs_zext(void)
1859 {
1860 	return true;
1861 }
1862 
1863 struct s390_jit_data {
1864 	struct bpf_binary_header *header;
1865 	struct bpf_jit ctx;
1866 	int pass;
1867 };
1868 
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)1869 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1870 					       struct bpf_prog *fp)
1871 {
1872 	struct bpf_binary_header *header;
1873 	u32 extable_size;
1874 	u32 code_size;
1875 
1876 	/* We need two entries per insn. */
1877 	fp->aux->num_exentries *= 2;
1878 
1879 	code_size = roundup(jit->size,
1880 			    __alignof__(struct exception_table_entry));
1881 	extable_size = fp->aux->num_exentries *
1882 		sizeof(struct exception_table_entry);
1883 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1884 				      8, jit_fill_hole);
1885 	if (!header)
1886 		return NULL;
1887 	fp->aux->extable = (struct exception_table_entry *)
1888 		(jit->prg_buf + code_size);
1889 	return header;
1890 }
1891 
1892 /*
1893  * Compile eBPF program "fp"
1894  */
bpf_int_jit_compile(struct bpf_prog * fp)1895 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1896 {
1897 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1898 	struct bpf_prog *tmp, *orig_fp = fp;
1899 	struct bpf_binary_header *header;
1900 	struct s390_jit_data *jit_data;
1901 	bool tmp_blinded = false;
1902 	bool extra_pass = false;
1903 	struct bpf_jit jit;
1904 	int pass;
1905 
1906 	if (!fp->jit_requested)
1907 		return orig_fp;
1908 
1909 	tmp = bpf_jit_blind_constants(fp);
1910 	/*
1911 	 * If blinding was requested and we failed during blinding,
1912 	 * we must fall back to the interpreter.
1913 	 */
1914 	if (IS_ERR(tmp))
1915 		return orig_fp;
1916 	if (tmp != fp) {
1917 		tmp_blinded = true;
1918 		fp = tmp;
1919 	}
1920 
1921 	jit_data = fp->aux->jit_data;
1922 	if (!jit_data) {
1923 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1924 		if (!jit_data) {
1925 			fp = orig_fp;
1926 			goto out;
1927 		}
1928 		fp->aux->jit_data = jit_data;
1929 	}
1930 	if (jit_data->ctx.addrs) {
1931 		jit = jit_data->ctx;
1932 		header = jit_data->header;
1933 		extra_pass = true;
1934 		pass = jit_data->pass + 1;
1935 		goto skip_init_ctx;
1936 	}
1937 
1938 	memset(&jit, 0, sizeof(jit));
1939 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1940 	if (jit.addrs == NULL) {
1941 		fp = orig_fp;
1942 		goto free_addrs;
1943 	}
1944 	/*
1945 	 * Three initial passes:
1946 	 *   - 1/2: Determine clobbered registers
1947 	 *   - 3:   Calculate program size and addrs array
1948 	 */
1949 	for (pass = 1; pass <= 3; pass++) {
1950 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1951 			fp = orig_fp;
1952 			goto free_addrs;
1953 		}
1954 	}
1955 	/*
1956 	 * Final pass: Allocate and generate program
1957 	 */
1958 	header = bpf_jit_alloc(&jit, fp);
1959 	if (!header) {
1960 		fp = orig_fp;
1961 		goto free_addrs;
1962 	}
1963 skip_init_ctx:
1964 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1965 		bpf_jit_binary_free(header);
1966 		fp = orig_fp;
1967 		goto free_addrs;
1968 	}
1969 	if (bpf_jit_enable > 1) {
1970 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1971 		print_fn_code(jit.prg_buf, jit.size_prg);
1972 	}
1973 	if (!fp->is_func || extra_pass) {
1974 		bpf_jit_binary_lock_ro(header);
1975 	} else {
1976 		jit_data->header = header;
1977 		jit_data->ctx = jit;
1978 		jit_data->pass = pass;
1979 	}
1980 	fp->bpf_func = (void *) jit.prg_buf;
1981 	fp->jited = 1;
1982 	fp->jited_len = jit.size;
1983 
1984 	if (!fp->is_func || extra_pass) {
1985 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1986 free_addrs:
1987 		kvfree(jit.addrs);
1988 		kfree(jit_data);
1989 		fp->aux->jit_data = NULL;
1990 	}
1991 out:
1992 	if (tmp_blinded)
1993 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1994 					   tmp : orig_fp);
1995 	return fp;
1996 }
1997 
bpf_jit_supports_kfunc_call(void)1998 bool bpf_jit_supports_kfunc_call(void)
1999 {
2000 	return true;
2001 }
2002 
bpf_jit_supports_far_kfunc_call(void)2003 bool bpf_jit_supports_far_kfunc_call(void)
2004 {
2005 	return true;
2006 }
2007 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2008 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2009 		       void *old_addr, void *new_addr)
2010 {
2011 	struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2012 	struct {
2013 		u16 opc;
2014 		s32 disp;
2015 	} __packed insn;
2016 	char *ret;
2017 	int err;
2018 
2019 	/* Verify the branch to be patched. */
2020 	err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2021 	if (err < 0)
2022 		return err;
2023 	if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2024 		return -EINVAL;
2025 
2026 	if (t == BPF_MOD_JUMP &&
2027 	    insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2028 		/*
2029 		 * The branch already points to the destination,
2030 		 * there is no PLT.
2031 		 */
2032 	} else {
2033 		/* Verify the PLT. */
2034 		plt = ip + (insn.disp << 1);
2035 		err = copy_from_kernel_nofault(&current_plt, plt,
2036 					       sizeof(current_plt));
2037 		if (err < 0)
2038 			return err;
2039 		ret = (char *)ip + 6;
2040 		bpf_jit_plt(&expected_plt, ret, old_addr);
2041 		if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2042 			return -EINVAL;
2043 		/* Adjust the call address. */
2044 		bpf_jit_plt(&new_plt, ret, new_addr);
2045 		s390_kernel_write(&plt->target, &new_plt.target,
2046 				  sizeof(void *));
2047 	}
2048 
2049 	/* Adjust the mask of the branch. */
2050 	insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2051 	s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2052 
2053 	/* Make the new code visible to the other CPUs. */
2054 	text_poke_sync_lock();
2055 
2056 	return 0;
2057 }
2058 
2059 struct bpf_tramp_jit {
2060 	struct bpf_jit common;
2061 	int orig_stack_args_off;/* Offset of arguments placed on stack by the
2062 				 * func_addr's original caller
2063 				 */
2064 	int stack_size;		/* Trampoline stack size */
2065 	int backchain_off;	/* Offset of backchain */
2066 	int stack_args_off;	/* Offset of stack arguments for calling
2067 				 * func_addr, has to be at the top
2068 				 */
2069 	int reg_args_off;	/* Offset of register arguments for calling
2070 				 * func_addr
2071 				 */
2072 	int ip_off;		/* For bpf_get_func_ip(), has to be at
2073 				 * (ctx - 16)
2074 				 */
2075 	int arg_cnt_off;	/* For bpf_get_func_arg_cnt(), has to be at
2076 				 * (ctx - 8)
2077 				 */
2078 	int bpf_args_off;	/* Offset of BPF_PROG context, which consists
2079 				 * of BPF arguments followed by return value
2080 				 */
2081 	int retval_off;		/* Offset of return value (see above) */
2082 	int r7_r8_off;		/* Offset of saved %r7 and %r8, which are used
2083 				 * for __bpf_prog_enter() return value and
2084 				 * func_addr respectively
2085 				 */
2086 	int run_ctx_off;	/* Offset of struct bpf_tramp_run_ctx */
2087 	int tccnt_off;		/* Offset of saved tailcall counter */
2088 	int r14_off;		/* Offset of saved %r14, has to be at the
2089 				 * bottom */
2090 	int do_fexit;		/* do_fexit: label */
2091 };
2092 
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2093 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2094 {
2095 	/* llihf %dst_reg,val_hi */
2096 	EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2097 	/* oilf %rdst_reg,val_lo */
2098 	EMIT6_IMM(0xc00d0000, dst_reg, val);
2099 }
2100 
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2101 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2102 			   const struct btf_func_model *m,
2103 			   struct bpf_tramp_link *tlink, bool save_ret)
2104 {
2105 	struct bpf_jit *jit = &tjit->common;
2106 	int cookie_off = tjit->run_ctx_off +
2107 			 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2108 	struct bpf_prog *p = tlink->link.prog;
2109 	int patch;
2110 
2111 	/*
2112 	 * run_ctx.cookie = tlink->cookie;
2113 	 */
2114 
2115 	/* %r0 = tlink->cookie */
2116 	load_imm64(jit, REG_W0, tlink->cookie);
2117 	/* stg %r0,cookie_off(%r15) */
2118 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2119 
2120 	/*
2121 	 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2122 	 *         goto skip;
2123 	 */
2124 
2125 	/* %r1 = __bpf_prog_enter */
2126 	load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2127 	/* %r2 = p */
2128 	load_imm64(jit, REG_2, (u64)p);
2129 	/* la %r3,run_ctx_off(%r15) */
2130 	EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2131 	/* %r1() */
2132 	call_r1(jit);
2133 	/* ltgr %r7,%r2 */
2134 	EMIT4(0xb9020000, REG_7, REG_2);
2135 	/* brcl 8,skip */
2136 	patch = jit->prg;
2137 	EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2138 
2139 	/*
2140 	 * retval = bpf_func(args, p->insnsi);
2141 	 */
2142 
2143 	/* %r1 = p->bpf_func */
2144 	load_imm64(jit, REG_1, (u64)p->bpf_func);
2145 	/* la %r2,bpf_args_off(%r15) */
2146 	EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2147 	/* %r3 = p->insnsi */
2148 	if (!p->jited)
2149 		load_imm64(jit, REG_3, (u64)p->insnsi);
2150 	/* %r1() */
2151 	call_r1(jit);
2152 	/* stg %r2,retval_off(%r15) */
2153 	if (save_ret) {
2154 		if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2155 			return -1;
2156 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2157 			      tjit->retval_off);
2158 	}
2159 
2160 	/* skip: */
2161 	if (jit->prg_buf)
2162 		*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2163 
2164 	/*
2165 	 * __bpf_prog_exit(p, start, &run_ctx);
2166 	 */
2167 
2168 	/* %r1 = __bpf_prog_exit */
2169 	load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2170 	/* %r2 = p */
2171 	load_imm64(jit, REG_2, (u64)p);
2172 	/* lgr %r3,%r7 */
2173 	EMIT4(0xb9040000, REG_3, REG_7);
2174 	/* la %r4,run_ctx_off(%r15) */
2175 	EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2176 	/* %r1() */
2177 	call_r1(jit);
2178 
2179 	return 0;
2180 }
2181 
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2182 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2183 {
2184 	int stack_offset = tjit->stack_size;
2185 
2186 	tjit->stack_size += size;
2187 	return stack_offset;
2188 }
2189 
2190 /* ABI uses %r2 - %r6 for parameter passing. */
2191 #define MAX_NR_REG_ARGS 5
2192 
2193 /* The "L" field of the "mvc" instruction is 8 bits. */
2194 #define MAX_MVC_SIZE 256
2195 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2196 
2197 /* -mfentry generates a 6-byte nop on s390x. */
2198 #define S390X_PATCH_SIZE 6
2199 
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2200 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2201 					 struct bpf_tramp_jit *tjit,
2202 					 const struct btf_func_model *m,
2203 					 u32 flags,
2204 					 struct bpf_tramp_links *tlinks,
2205 					 void *func_addr)
2206 {
2207 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2208 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2209 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2210 	int nr_bpf_args, nr_reg_args, nr_stack_args;
2211 	struct bpf_jit *jit = &tjit->common;
2212 	int arg, bpf_arg_off;
2213 	int i, j;
2214 
2215 	/* Support as many stack arguments as "mvc" instruction can handle. */
2216 	nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2217 	nr_stack_args = m->nr_args - nr_reg_args;
2218 	if (nr_stack_args > MAX_NR_STACK_ARGS)
2219 		return -ENOTSUPP;
2220 
2221 	/* Return to %r14, since func_addr and %r0 are not available. */
2222 	if (!func_addr && !(flags & BPF_TRAMP_F_ORIG_STACK))
2223 		flags |= BPF_TRAMP_F_SKIP_FRAME;
2224 
2225 	/*
2226 	 * Compute how many arguments we need to pass to BPF programs.
2227 	 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2228 	 * smaller are packed into 1 or 2 registers; larger arguments are
2229 	 * passed via pointers.
2230 	 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2231 	 * a register; larger arguments are passed via pointers.
2232 	 * We need to deal with this difference.
2233 	 */
2234 	nr_bpf_args = 0;
2235 	for (i = 0; i < m->nr_args; i++) {
2236 		if (m->arg_size[i] <= 8)
2237 			nr_bpf_args += 1;
2238 		else if (m->arg_size[i] <= 16)
2239 			nr_bpf_args += 2;
2240 		else
2241 			return -ENOTSUPP;
2242 	}
2243 
2244 	/*
2245 	 * Calculate the stack layout.
2246 	 */
2247 
2248 	/*
2249 	 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2250 	 * ABI requires, put our backchain at the end of the allocated memory.
2251 	 */
2252 	tjit->stack_size = STACK_FRAME_OVERHEAD;
2253 	tjit->backchain_off = tjit->stack_size - sizeof(u64);
2254 	tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2255 	tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2256 	tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2257 	tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2258 	tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2259 	tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2260 	tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2261 	tjit->run_ctx_off = alloc_stack(tjit,
2262 					sizeof(struct bpf_tramp_run_ctx));
2263 	tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2264 	tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2265 	/*
2266 	 * In accordance with the s390x ABI, the caller has allocated
2267 	 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2268 	 * backchain, and the rest we can use.
2269 	 */
2270 	tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2271 	tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2272 
2273 	/* lgr %r1,%r15 */
2274 	EMIT4(0xb9040000, REG_1, REG_15);
2275 	/* aghi %r15,-stack_size */
2276 	EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2277 	/* stg %r1,backchain_off(%r15) */
2278 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2279 		      tjit->backchain_off);
2280 	/* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2281 	_EMIT6(0xd203f000 | tjit->tccnt_off,
2282 	       0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2283 	/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2284 	if (nr_reg_args)
2285 		EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2286 			      REG_2 + (nr_reg_args - 1), REG_15,
2287 			      tjit->reg_args_off);
2288 	for (i = 0, j = 0; i < m->nr_args; i++) {
2289 		if (i < MAX_NR_REG_ARGS)
2290 			arg = REG_2 + i;
2291 		else
2292 			arg = tjit->orig_stack_args_off +
2293 			      (i - MAX_NR_REG_ARGS) * sizeof(u64);
2294 		bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2295 		if (m->arg_size[i] <= 8) {
2296 			if (i < MAX_NR_REG_ARGS)
2297 				/* stg %arg,bpf_arg_off(%r15) */
2298 				EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2299 					      REG_0, REG_15, bpf_arg_off);
2300 			else
2301 				/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2302 				_EMIT6(0xd207f000 | bpf_arg_off,
2303 				       0xf000 | arg);
2304 			j += 1;
2305 		} else {
2306 			if (i < MAX_NR_REG_ARGS) {
2307 				/* mvc bpf_arg_off(16,%r15),0(%arg) */
2308 				_EMIT6(0xd20ff000 | bpf_arg_off,
2309 				       reg2hex[arg] << 12);
2310 			} else {
2311 				/* lg %r1,arg(%r15) */
2312 				EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2313 					      REG_15, arg);
2314 				/* mvc bpf_arg_off(16,%r15),0(%r1) */
2315 				_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2316 			}
2317 			j += 2;
2318 		}
2319 	}
2320 	/* stmg %r7,%r8,r7_r8_off(%r15) */
2321 	EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2322 		      tjit->r7_r8_off);
2323 	/* stg %r14,r14_off(%r15) */
2324 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2325 
2326 	if (flags & BPF_TRAMP_F_ORIG_STACK) {
2327 		/*
2328 		 * The ftrace trampoline puts the return address (which is the
2329 		 * address of the original function + S390X_PATCH_SIZE) into
2330 		 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2331 		 * ftrace_init_nop() for details.
2332 		 */
2333 
2334 		/* lgr %r8,%r0 */
2335 		EMIT4(0xb9040000, REG_8, REG_0);
2336 	} else {
2337 		/* %r8 = func_addr + S390X_PATCH_SIZE */
2338 		load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2339 	}
2340 
2341 	/*
2342 	 * ip = func_addr;
2343 	 * arg_cnt = m->nr_args;
2344 	 */
2345 
2346 	if (flags & BPF_TRAMP_F_IP_ARG) {
2347 		/* %r0 = func_addr */
2348 		load_imm64(jit, REG_0, (u64)func_addr);
2349 		/* stg %r0,ip_off(%r15) */
2350 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2351 			      tjit->ip_off);
2352 	}
2353 	/* lghi %r0,nr_bpf_args */
2354 	EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2355 	/* stg %r0,arg_cnt_off(%r15) */
2356 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2357 		      tjit->arg_cnt_off);
2358 
2359 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2360 		/*
2361 		 * __bpf_tramp_enter(im);
2362 		 */
2363 
2364 		/* %r1 = __bpf_tramp_enter */
2365 		load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2366 		/* %r2 = im */
2367 		load_imm64(jit, REG_2, (u64)im);
2368 		/* %r1() */
2369 		call_r1(jit);
2370 	}
2371 
2372 	for (i = 0; i < fentry->nr_links; i++)
2373 		if (invoke_bpf_prog(tjit, m, fentry->links[i],
2374 				    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2375 			return -EINVAL;
2376 
2377 	if (fmod_ret->nr_links) {
2378 		/*
2379 		 * retval = 0;
2380 		 */
2381 
2382 		/* xc retval_off(8,%r15),retval_off(%r15) */
2383 		_EMIT6(0xd707f000 | tjit->retval_off,
2384 		       0xf000 | tjit->retval_off);
2385 
2386 		for (i = 0; i < fmod_ret->nr_links; i++) {
2387 			if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2388 				return -EINVAL;
2389 
2390 			/*
2391 			 * if (retval)
2392 			 *         goto do_fexit;
2393 			 */
2394 
2395 			/* ltg %r0,retval_off(%r15) */
2396 			EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2397 				      tjit->retval_off);
2398 			/* brcl 7,do_fexit */
2399 			EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2400 		}
2401 	}
2402 
2403 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2404 		/*
2405 		 * retval = func_addr(args);
2406 		 */
2407 
2408 		/* lmg %r2,%rN,reg_args_off(%r15) */
2409 		if (nr_reg_args)
2410 			EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2411 				      REG_2 + (nr_reg_args - 1), REG_15,
2412 				      tjit->reg_args_off);
2413 		/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2414 		if (nr_stack_args)
2415 			_EMIT6(0xd200f000 |
2416 				       (nr_stack_args * sizeof(u64) - 1) << 16 |
2417 				       tjit->stack_args_off,
2418 			       0xf000 | tjit->orig_stack_args_off);
2419 		/* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2420 		_EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2421 		/* lgr %r1,%r8 */
2422 		EMIT4(0xb9040000, REG_1, REG_8);
2423 		/* %r1() */
2424 		call_r1(jit);
2425 		/* stg %r2,retval_off(%r15) */
2426 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2427 			      tjit->retval_off);
2428 
2429 		im->ip_after_call = jit->prg_buf + jit->prg;
2430 
2431 		/*
2432 		 * The following nop will be patched by bpf_tramp_image_put().
2433 		 */
2434 
2435 		/* brcl 0,im->ip_epilogue */
2436 		EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2437 	}
2438 
2439 	/* do_fexit: */
2440 	tjit->do_fexit = jit->prg;
2441 	for (i = 0; i < fexit->nr_links; i++)
2442 		if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2443 			return -EINVAL;
2444 
2445 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2446 		im->ip_epilogue = jit->prg_buf + jit->prg;
2447 
2448 		/*
2449 		 * __bpf_tramp_exit(im);
2450 		 */
2451 
2452 		/* %r1 = __bpf_tramp_exit */
2453 		load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2454 		/* %r2 = im */
2455 		load_imm64(jit, REG_2, (u64)im);
2456 		/* %r1() */
2457 		call_r1(jit);
2458 	}
2459 
2460 	/* lmg %r2,%rN,reg_args_off(%r15) */
2461 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2462 		EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2463 			      REG_2 + (nr_reg_args - 1), REG_15,
2464 			      tjit->reg_args_off);
2465 	/* lgr %r1,%r8 */
2466 	if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2467 		EMIT4(0xb9040000, REG_1, REG_8);
2468 	/* lmg %r7,%r8,r7_r8_off(%r15) */
2469 	EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2470 		      tjit->r7_r8_off);
2471 	/* lg %r14,r14_off(%r15) */
2472 	EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2473 	/* lg %r2,retval_off(%r15) */
2474 	if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2475 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2476 			      tjit->retval_off);
2477 	/* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2478 	_EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2479 	       0xf000 | tjit->tccnt_off);
2480 	/* aghi %r15,stack_size */
2481 	EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2482 	/* Emit an expoline for the following indirect jump. */
2483 	if (nospec_uses_trampoline())
2484 		emit_expoline(jit);
2485 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2486 		/* br %r14 */
2487 		_EMIT2(0x07fe);
2488 	else
2489 		/* br %r1 */
2490 		_EMIT2(0x07f1);
2491 
2492 	emit_r1_thunk(jit);
2493 
2494 	return 0;
2495 }
2496 
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2497 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2498 				void *image_end, const struct btf_func_model *m,
2499 				u32 flags, struct bpf_tramp_links *tlinks,
2500 				void *func_addr)
2501 {
2502 	struct bpf_tramp_jit tjit;
2503 	int ret;
2504 	int i;
2505 
2506 	for (i = 0; i < 2; i++) {
2507 		if (i == 0) {
2508 			/* Compute offsets, check whether the code fits. */
2509 			memset(&tjit, 0, sizeof(tjit));
2510 		} else {
2511 			/* Generate the code. */
2512 			tjit.common.prg = 0;
2513 			tjit.common.prg_buf = image;
2514 		}
2515 		ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2516 						    tlinks, func_addr);
2517 		if (ret < 0)
2518 			return ret;
2519 		if (tjit.common.prg > (char *)image_end - (char *)image)
2520 			/*
2521 			 * Use the same error code as for exceeding
2522 			 * BPF_MAX_TRAMP_LINKS.
2523 			 */
2524 			return -E2BIG;
2525 	}
2526 
2527 	return tjit.common.prg;
2528 }
2529 
bpf_jit_supports_subprog_tailcalls(void)2530 bool bpf_jit_supports_subprog_tailcalls(void)
2531 {
2532 	return true;
2533 }
2534