xref: /openbmc/qemu/hw/intc/riscv_aplic.c (revision 2a5c4a91)
1 /*
2  * RISC-V APLIC (Advanced Platform Level Interrupt Controller)
3  *
4  * Copyright (c) 2021 Western Digital Corporation or its affiliates.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #include "qemu/log.h"
22 #include "qemu/module.h"
23 #include "qemu/error-report.h"
24 #include "qemu/bswap.h"
25 #include "exec/address-spaces.h"
26 #include "hw/sysbus.h"
27 #include "hw/pci/msi.h"
28 #include "hw/boards.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/intc/riscv_aplic.h"
31 #include "hw/irq.h"
32 #include "target/riscv/cpu.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/kvm.h"
35 #include "kvm/kvm_riscv.h"
36 #include "migration/vmstate.h"
37 
38 #define APLIC_MAX_IDC                  (1UL << 14)
39 #define APLIC_MAX_SOURCE               1024
40 #define APLIC_MIN_IPRIO_BITS           1
41 #define APLIC_MAX_IPRIO_BITS           8
42 #define APLIC_MAX_CHILDREN             1024
43 
44 #define APLIC_DOMAINCFG                0x0000
45 #define APLIC_DOMAINCFG_RDONLY         0x80000000
46 #define APLIC_DOMAINCFG_IE             (1 << 8)
47 #define APLIC_DOMAINCFG_DM             (1 << 2)
48 #define APLIC_DOMAINCFG_BE             (1 << 0)
49 
50 #define APLIC_SOURCECFG_BASE           0x0004
51 #define APLIC_SOURCECFG_D              (1 << 10)
52 #define APLIC_SOURCECFG_CHILDIDX_MASK  0x000003ff
53 #define APLIC_SOURCECFG_SM_MASK        0x00000007
54 #define APLIC_SOURCECFG_SM_INACTIVE    0x0
55 #define APLIC_SOURCECFG_SM_DETACH      0x1
56 #define APLIC_SOURCECFG_SM_EDGE_RISE   0x4
57 #define APLIC_SOURCECFG_SM_EDGE_FALL   0x5
58 #define APLIC_SOURCECFG_SM_LEVEL_HIGH  0x6
59 #define APLIC_SOURCECFG_SM_LEVEL_LOW   0x7
60 
61 #define APLIC_MMSICFGADDR              0x1bc0
62 #define APLIC_MMSICFGADDRH             0x1bc4
63 #define APLIC_SMSICFGADDR              0x1bc8
64 #define APLIC_SMSICFGADDRH             0x1bcc
65 
66 #define APLIC_xMSICFGADDRH_L           (1UL << 31)
67 #define APLIC_xMSICFGADDRH_HHXS_MASK   0x1f
68 #define APLIC_xMSICFGADDRH_HHXS_SHIFT  24
69 #define APLIC_xMSICFGADDRH_LHXS_MASK   0x7
70 #define APLIC_xMSICFGADDRH_LHXS_SHIFT  20
71 #define APLIC_xMSICFGADDRH_HHXW_MASK   0x7
72 #define APLIC_xMSICFGADDRH_HHXW_SHIFT  16
73 #define APLIC_xMSICFGADDRH_LHXW_MASK   0xf
74 #define APLIC_xMSICFGADDRH_LHXW_SHIFT  12
75 #define APLIC_xMSICFGADDRH_BAPPN_MASK  0xfff
76 
77 #define APLIC_xMSICFGADDR_PPN_SHIFT    12
78 
79 #define APLIC_xMSICFGADDR_PPN_HART(__lhxs) \
80     ((1UL << (__lhxs)) - 1)
81 
82 #define APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) \
83     ((1UL << (__lhxw)) - 1)
84 #define APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs) \
85     ((__lhxs))
86 #define APLIC_xMSICFGADDR_PPN_LHX(__lhxw, __lhxs) \
87     (APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) << \
88      APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs))
89 
90 #define APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) \
91     ((1UL << (__hhxw)) - 1)
92 #define APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs) \
93     ((__hhxs) + APLIC_xMSICFGADDR_PPN_SHIFT)
94 #define APLIC_xMSICFGADDR_PPN_HHX(__hhxw, __hhxs) \
95     (APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) << \
96      APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs))
97 
98 #define APLIC_xMSICFGADDRH_VALID_MASK   \
99     (APLIC_xMSICFGADDRH_L | \
100      (APLIC_xMSICFGADDRH_HHXS_MASK << APLIC_xMSICFGADDRH_HHXS_SHIFT) | \
101      (APLIC_xMSICFGADDRH_LHXS_MASK << APLIC_xMSICFGADDRH_LHXS_SHIFT) | \
102      (APLIC_xMSICFGADDRH_HHXW_MASK << APLIC_xMSICFGADDRH_HHXW_SHIFT) | \
103      (APLIC_xMSICFGADDRH_LHXW_MASK << APLIC_xMSICFGADDRH_LHXW_SHIFT) | \
104      APLIC_xMSICFGADDRH_BAPPN_MASK)
105 
106 #define APLIC_SETIP_BASE               0x1c00
107 #define APLIC_SETIPNUM                 0x1cdc
108 
109 #define APLIC_CLRIP_BASE               0x1d00
110 #define APLIC_CLRIPNUM                 0x1ddc
111 
112 #define APLIC_SETIE_BASE               0x1e00
113 #define APLIC_SETIENUM                 0x1edc
114 
115 #define APLIC_CLRIE_BASE               0x1f00
116 #define APLIC_CLRIENUM                 0x1fdc
117 
118 #define APLIC_SETIPNUM_LE              0x2000
119 #define APLIC_SETIPNUM_BE              0x2004
120 
121 #define APLIC_ISTATE_PENDING           (1U << 0)
122 #define APLIC_ISTATE_ENABLED           (1U << 1)
123 #define APLIC_ISTATE_ENPEND            (APLIC_ISTATE_ENABLED | \
124                                         APLIC_ISTATE_PENDING)
125 #define APLIC_ISTATE_INPUT             (1U << 8)
126 
127 #define APLIC_GENMSI                   0x3000
128 
129 #define APLIC_TARGET_BASE              0x3004
130 #define APLIC_TARGET_HART_IDX_SHIFT    18
131 #define APLIC_TARGET_HART_IDX_MASK     0x3fff
132 #define APLIC_TARGET_GUEST_IDX_SHIFT   12
133 #define APLIC_TARGET_GUEST_IDX_MASK    0x3f
134 #define APLIC_TARGET_IPRIO_MASK        0xff
135 #define APLIC_TARGET_EIID_MASK         0x7ff
136 
137 #define APLIC_IDC_BASE                 0x4000
138 #define APLIC_IDC_SIZE                 32
139 
140 #define APLIC_IDC_IDELIVERY            0x00
141 
142 #define APLIC_IDC_IFORCE               0x04
143 
144 #define APLIC_IDC_ITHRESHOLD           0x08
145 
146 #define APLIC_IDC_TOPI                 0x18
147 #define APLIC_IDC_TOPI_ID_SHIFT        16
148 #define APLIC_IDC_TOPI_ID_MASK         0x3ff
149 #define APLIC_IDC_TOPI_PRIO_MASK       0xff
150 
151 #define APLIC_IDC_CLAIMI               0x1c
152 
153 /*
154  * KVM AIA only supports APLIC MSI, fallback to QEMU emulation if we want to use
155  * APLIC Wired.
156  */
is_kvm_aia(bool msimode)157 static bool is_kvm_aia(bool msimode)
158 {
159     return kvm_irqchip_in_kernel() && msimode;
160 }
161 
riscv_aplic_irq_rectified_val(RISCVAPLICState * aplic,uint32_t irq)162 static bool riscv_aplic_irq_rectified_val(RISCVAPLICState *aplic,
163                                           uint32_t irq)
164 {
165     uint32_t sourcecfg, sm, raw_input, irq_inverted;
166 
167     if (!irq || aplic->num_irqs <= irq) {
168         return false;
169     }
170 
171     sourcecfg = aplic->sourcecfg[irq];
172     if (sourcecfg & APLIC_SOURCECFG_D) {
173         return false;
174     }
175 
176     sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
177     if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
178         return false;
179     }
180 
181     raw_input = (aplic->state[irq] & APLIC_ISTATE_INPUT) ? 1 : 0;
182     irq_inverted = (sm == APLIC_SOURCECFG_SM_LEVEL_LOW ||
183                     sm == APLIC_SOURCECFG_SM_EDGE_FALL) ? 1 : 0;
184 
185     return !!(raw_input ^ irq_inverted);
186 }
187 
riscv_aplic_read_input_word(RISCVAPLICState * aplic,uint32_t word)188 static uint32_t riscv_aplic_read_input_word(RISCVAPLICState *aplic,
189                                             uint32_t word)
190 {
191     uint32_t i, irq, rectified_val, ret = 0;
192 
193     for (i = 0; i < 32; i++) {
194         irq = word * 32 + i;
195 
196         rectified_val = riscv_aplic_irq_rectified_val(aplic, irq);
197         ret |= rectified_val << i;
198     }
199 
200     return ret;
201 }
202 
riscv_aplic_read_pending_word(RISCVAPLICState * aplic,uint32_t word)203 static uint32_t riscv_aplic_read_pending_word(RISCVAPLICState *aplic,
204                                               uint32_t word)
205 {
206     uint32_t i, irq, ret = 0;
207 
208     for (i = 0; i < 32; i++) {
209         irq = word * 32 + i;
210         if (!irq || aplic->num_irqs <= irq) {
211             continue;
212         }
213 
214         ret |= ((aplic->state[irq] & APLIC_ISTATE_PENDING) ? 1 : 0) << i;
215     }
216 
217     return ret;
218 }
219 
riscv_aplic_set_pending_raw(RISCVAPLICState * aplic,uint32_t irq,bool pending)220 static void riscv_aplic_set_pending_raw(RISCVAPLICState *aplic,
221                                         uint32_t irq, bool pending)
222 {
223     if (pending) {
224         aplic->state[irq] |= APLIC_ISTATE_PENDING;
225     } else {
226         aplic->state[irq] &= ~APLIC_ISTATE_PENDING;
227     }
228 }
229 
riscv_aplic_set_pending(RISCVAPLICState * aplic,uint32_t irq,bool pending)230 static void riscv_aplic_set_pending(RISCVAPLICState *aplic,
231                                     uint32_t irq, bool pending)
232 {
233     uint32_t sourcecfg, sm;
234 
235     if ((irq <= 0) || (aplic->num_irqs <= irq)) {
236         return;
237     }
238 
239     sourcecfg = aplic->sourcecfg[irq];
240     if (sourcecfg & APLIC_SOURCECFG_D) {
241         return;
242     }
243 
244     sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
245     if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
246         return;
247     }
248 
249     if ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) ||
250         (sm == APLIC_SOURCECFG_SM_LEVEL_LOW)) {
251         if (!aplic->msimode || (aplic->msimode && !pending)) {
252             return;
253         }
254         if ((aplic->state[irq] & APLIC_ISTATE_INPUT) &&
255             (sm == APLIC_SOURCECFG_SM_LEVEL_LOW)) {
256             return;
257         }
258         if (!(aplic->state[irq] & APLIC_ISTATE_INPUT) &&
259             (sm == APLIC_SOURCECFG_SM_LEVEL_HIGH)) {
260             return;
261         }
262     }
263 
264     riscv_aplic_set_pending_raw(aplic, irq, pending);
265 }
266 
riscv_aplic_set_pending_word(RISCVAPLICState * aplic,uint32_t word,uint32_t value,bool pending)267 static void riscv_aplic_set_pending_word(RISCVAPLICState *aplic,
268                                          uint32_t word, uint32_t value,
269                                          bool pending)
270 {
271     uint32_t i, irq;
272 
273     for (i = 0; i < 32; i++) {
274         irq = word * 32 + i;
275         if (!irq || aplic->num_irqs <= irq) {
276             continue;
277         }
278 
279         if (value & (1U << i)) {
280             riscv_aplic_set_pending(aplic, irq, pending);
281         }
282     }
283 }
284 
riscv_aplic_read_enabled_word(RISCVAPLICState * aplic,int word)285 static uint32_t riscv_aplic_read_enabled_word(RISCVAPLICState *aplic,
286                                               int word)
287 {
288     uint32_t i, irq, ret = 0;
289 
290     for (i = 0; i < 32; i++) {
291         irq = word * 32 + i;
292         if (!irq || aplic->num_irqs <= irq) {
293             continue;
294         }
295 
296         ret |= ((aplic->state[irq] & APLIC_ISTATE_ENABLED) ? 1 : 0) << i;
297     }
298 
299     return ret;
300 }
301 
riscv_aplic_set_enabled_raw(RISCVAPLICState * aplic,uint32_t irq,bool enabled)302 static void riscv_aplic_set_enabled_raw(RISCVAPLICState *aplic,
303                                         uint32_t irq, bool enabled)
304 {
305     if (enabled) {
306         aplic->state[irq] |= APLIC_ISTATE_ENABLED;
307     } else {
308         aplic->state[irq] &= ~APLIC_ISTATE_ENABLED;
309     }
310 }
311 
riscv_aplic_set_enabled(RISCVAPLICState * aplic,uint32_t irq,bool enabled)312 static void riscv_aplic_set_enabled(RISCVAPLICState *aplic,
313                                     uint32_t irq, bool enabled)
314 {
315     uint32_t sourcecfg, sm;
316 
317     if ((irq <= 0) || (aplic->num_irqs <= irq)) {
318         return;
319     }
320 
321     sourcecfg = aplic->sourcecfg[irq];
322     if (sourcecfg & APLIC_SOURCECFG_D) {
323         return;
324     }
325 
326     sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
327     if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
328         return;
329     }
330 
331     riscv_aplic_set_enabled_raw(aplic, irq, enabled);
332 }
333 
riscv_aplic_set_enabled_word(RISCVAPLICState * aplic,uint32_t word,uint32_t value,bool enabled)334 static void riscv_aplic_set_enabled_word(RISCVAPLICState *aplic,
335                                          uint32_t word, uint32_t value,
336                                          bool enabled)
337 {
338     uint32_t i, irq;
339 
340     for (i = 0; i < 32; i++) {
341         irq = word * 32 + i;
342         if (!irq || aplic->num_irqs <= irq) {
343             continue;
344         }
345 
346         if (value & (1U << i)) {
347             riscv_aplic_set_enabled(aplic, irq, enabled);
348         }
349     }
350 }
351 
riscv_aplic_msi_send(RISCVAPLICState * aplic,uint32_t hart_idx,uint32_t guest_idx,uint32_t eiid)352 static void riscv_aplic_msi_send(RISCVAPLICState *aplic,
353                                  uint32_t hart_idx, uint32_t guest_idx,
354                                  uint32_t eiid)
355 {
356     uint64_t addr;
357     MemTxResult result;
358     RISCVAPLICState *aplic_m;
359     uint32_t lhxs, lhxw, hhxs, hhxw, group_idx, msicfgaddr, msicfgaddrH;
360 
361     aplic_m = aplic;
362     while (aplic_m && !aplic_m->mmode) {
363         aplic_m = aplic_m->parent;
364     }
365     if (!aplic_m) {
366         qemu_log_mask(LOG_GUEST_ERROR, "%s: m-level APLIC not found\n",
367                       __func__);
368         return;
369     }
370 
371     if (aplic->mmode) {
372         msicfgaddr = aplic_m->mmsicfgaddr;
373         msicfgaddrH = aplic_m->mmsicfgaddrH;
374     } else {
375         msicfgaddr = aplic_m->smsicfgaddr;
376         msicfgaddrH = aplic_m->smsicfgaddrH;
377     }
378 
379     lhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXS_SHIFT) &
380             APLIC_xMSICFGADDRH_LHXS_MASK;
381     lhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXW_SHIFT) &
382             APLIC_xMSICFGADDRH_LHXW_MASK;
383     hhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXS_SHIFT) &
384             APLIC_xMSICFGADDRH_HHXS_MASK;
385     hhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXW_SHIFT) &
386             APLIC_xMSICFGADDRH_HHXW_MASK;
387 
388     group_idx = hart_idx >> lhxw;
389     hart_idx &= APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw);
390 
391     addr = msicfgaddr;
392     addr |= ((uint64_t)(msicfgaddrH & APLIC_xMSICFGADDRH_BAPPN_MASK)) << 32;
393     addr |= ((uint64_t)(group_idx & APLIC_xMSICFGADDR_PPN_HHX_MASK(hhxw))) <<
394              APLIC_xMSICFGADDR_PPN_HHX_SHIFT(hhxs);
395     addr |= ((uint64_t)(hart_idx & APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw))) <<
396              APLIC_xMSICFGADDR_PPN_LHX_SHIFT(lhxs);
397     addr |= (uint64_t)(guest_idx & APLIC_xMSICFGADDR_PPN_HART(lhxs));
398     addr <<= APLIC_xMSICFGADDR_PPN_SHIFT;
399 
400     address_space_stl_le(&address_space_memory, addr,
401                          eiid, MEMTXATTRS_UNSPECIFIED, &result);
402     if (result != MEMTX_OK) {
403         qemu_log_mask(LOG_GUEST_ERROR, "%s: MSI write failed for "
404                       "hart_index=%d guest_index=%d eiid=%d\n",
405                       __func__, hart_idx, guest_idx, eiid);
406     }
407 }
408 
riscv_aplic_msi_irq_update(RISCVAPLICState * aplic,uint32_t irq)409 static void riscv_aplic_msi_irq_update(RISCVAPLICState *aplic, uint32_t irq)
410 {
411     uint32_t hart_idx, guest_idx, eiid;
412 
413     if (!aplic->msimode || (aplic->num_irqs <= irq) ||
414         !(aplic->domaincfg & APLIC_DOMAINCFG_IE)) {
415         return;
416     }
417 
418     if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) != APLIC_ISTATE_ENPEND) {
419         return;
420     }
421 
422     riscv_aplic_set_pending_raw(aplic, irq, false);
423 
424     hart_idx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
425     hart_idx &= APLIC_TARGET_HART_IDX_MASK;
426     if (aplic->mmode) {
427         /* M-level APLIC ignores guest_index */
428         guest_idx = 0;
429     } else {
430         guest_idx = aplic->target[irq] >> APLIC_TARGET_GUEST_IDX_SHIFT;
431         guest_idx &= APLIC_TARGET_GUEST_IDX_MASK;
432     }
433     eiid = aplic->target[irq] & APLIC_TARGET_EIID_MASK;
434     riscv_aplic_msi_send(aplic, hart_idx, guest_idx, eiid);
435 }
436 
riscv_aplic_idc_topi(RISCVAPLICState * aplic,uint32_t idc)437 static uint32_t riscv_aplic_idc_topi(RISCVAPLICState *aplic, uint32_t idc)
438 {
439     uint32_t best_irq, best_iprio;
440     uint32_t irq, iprio, ihartidx, ithres;
441 
442     if (aplic->num_harts <= idc) {
443         return 0;
444     }
445 
446     ithres = aplic->ithreshold[idc];
447     best_irq = best_iprio = UINT32_MAX;
448     for (irq = 1; irq < aplic->num_irqs; irq++) {
449         if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) !=
450             APLIC_ISTATE_ENPEND) {
451             continue;
452         }
453 
454         ihartidx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
455         ihartidx &= APLIC_TARGET_HART_IDX_MASK;
456         if (ihartidx != idc) {
457             continue;
458         }
459 
460         iprio = aplic->target[irq] & aplic->iprio_mask;
461         if (ithres && iprio >= ithres) {
462             continue;
463         }
464 
465         if (iprio < best_iprio) {
466             best_irq = irq;
467             best_iprio = iprio;
468         }
469     }
470 
471     if (best_irq < aplic->num_irqs && best_iprio <= aplic->iprio_mask) {
472         return (best_irq << APLIC_IDC_TOPI_ID_SHIFT) | best_iprio;
473     }
474 
475     return 0;
476 }
477 
riscv_aplic_idc_update(RISCVAPLICState * aplic,uint32_t idc)478 static void riscv_aplic_idc_update(RISCVAPLICState *aplic, uint32_t idc)
479 {
480     uint32_t topi;
481 
482     if (aplic->msimode || aplic->num_harts <= idc) {
483         return;
484     }
485 
486     topi = riscv_aplic_idc_topi(aplic, idc);
487     if ((aplic->domaincfg & APLIC_DOMAINCFG_IE) &&
488         aplic->idelivery[idc] &&
489         (aplic->iforce[idc] || topi)) {
490         qemu_irq_raise(aplic->external_irqs[idc]);
491     } else {
492         qemu_irq_lower(aplic->external_irqs[idc]);
493     }
494 }
495 
riscv_aplic_idc_claimi(RISCVAPLICState * aplic,uint32_t idc)496 static uint32_t riscv_aplic_idc_claimi(RISCVAPLICState *aplic, uint32_t idc)
497 {
498     uint32_t irq, state, sm, topi = riscv_aplic_idc_topi(aplic, idc);
499 
500     if (!topi) {
501         aplic->iforce[idc] = 0;
502         riscv_aplic_idc_update(aplic, idc);
503         return 0;
504     }
505 
506     irq = (topi >> APLIC_IDC_TOPI_ID_SHIFT) & APLIC_IDC_TOPI_ID_MASK;
507     sm = aplic->sourcecfg[irq] & APLIC_SOURCECFG_SM_MASK;
508     state = aplic->state[irq];
509     riscv_aplic_set_pending_raw(aplic, irq, false);
510     if ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) &&
511         (state & APLIC_ISTATE_INPUT)) {
512         riscv_aplic_set_pending_raw(aplic, irq, true);
513     } else if ((sm == APLIC_SOURCECFG_SM_LEVEL_LOW) &&
514                !(state & APLIC_ISTATE_INPUT)) {
515         riscv_aplic_set_pending_raw(aplic, irq, true);
516     }
517     riscv_aplic_idc_update(aplic, idc);
518 
519     return topi;
520 }
521 
riscv_aplic_request(void * opaque,int irq,int level)522 static void riscv_aplic_request(void *opaque, int irq, int level)
523 {
524     bool update = false;
525     RISCVAPLICState *aplic = opaque;
526     uint32_t sourcecfg, childidx, state, idc;
527 
528     assert((0 < irq) && (irq < aplic->num_irqs));
529 
530     sourcecfg = aplic->sourcecfg[irq];
531     if (sourcecfg & APLIC_SOURCECFG_D) {
532         childidx = sourcecfg & APLIC_SOURCECFG_CHILDIDX_MASK;
533         if (childidx < aplic->num_children) {
534             riscv_aplic_request(aplic->children[childidx], irq, level);
535         }
536         return;
537     }
538 
539     state = aplic->state[irq];
540     switch (sourcecfg & APLIC_SOURCECFG_SM_MASK) {
541     case APLIC_SOURCECFG_SM_EDGE_RISE:
542         if ((level > 0) && !(state & APLIC_ISTATE_INPUT) &&
543             !(state & APLIC_ISTATE_PENDING)) {
544             riscv_aplic_set_pending_raw(aplic, irq, true);
545             update = true;
546         }
547         break;
548     case APLIC_SOURCECFG_SM_EDGE_FALL:
549         if ((level <= 0) && (state & APLIC_ISTATE_INPUT) &&
550             !(state & APLIC_ISTATE_PENDING)) {
551             riscv_aplic_set_pending_raw(aplic, irq, true);
552             update = true;
553         }
554         break;
555     case APLIC_SOURCECFG_SM_LEVEL_HIGH:
556         if ((level > 0) && !(state & APLIC_ISTATE_PENDING)) {
557             riscv_aplic_set_pending_raw(aplic, irq, true);
558             update = true;
559         }
560         break;
561     case APLIC_SOURCECFG_SM_LEVEL_LOW:
562         if ((level <= 0) && !(state & APLIC_ISTATE_PENDING)) {
563             riscv_aplic_set_pending_raw(aplic, irq, true);
564             update = true;
565         }
566         break;
567     default:
568         break;
569     }
570 
571     if (level <= 0) {
572         aplic->state[irq] &= ~APLIC_ISTATE_INPUT;
573     } else {
574         aplic->state[irq] |= APLIC_ISTATE_INPUT;
575     }
576 
577     if (update) {
578         if (aplic->msimode) {
579             riscv_aplic_msi_irq_update(aplic, irq);
580         } else {
581             idc = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
582             idc &= APLIC_TARGET_HART_IDX_MASK;
583             riscv_aplic_idc_update(aplic, idc);
584         }
585     }
586 }
587 
riscv_aplic_read(void * opaque,hwaddr addr,unsigned size)588 static uint64_t riscv_aplic_read(void *opaque, hwaddr addr, unsigned size)
589 {
590     uint32_t irq, word, idc;
591     RISCVAPLICState *aplic = opaque;
592 
593     /* Reads must be 4 byte words */
594     if ((addr & 0x3) != 0) {
595         goto err;
596     }
597 
598     if (addr == APLIC_DOMAINCFG) {
599         return APLIC_DOMAINCFG_RDONLY | aplic->domaincfg |
600                (aplic->msimode ? APLIC_DOMAINCFG_DM : 0);
601     } else if ((APLIC_SOURCECFG_BASE <= addr) &&
602             (addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) {
603         irq  = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1;
604         return aplic->sourcecfg[irq];
605     } else if (aplic->mmode && aplic->msimode &&
606                (addr == APLIC_MMSICFGADDR)) {
607         return aplic->mmsicfgaddr;
608     } else if (aplic->mmode && aplic->msimode &&
609                (addr == APLIC_MMSICFGADDRH)) {
610         return aplic->mmsicfgaddrH;
611     } else if (aplic->mmode && aplic->msimode &&
612                (addr == APLIC_SMSICFGADDR)) {
613         /*
614          * Registers SMSICFGADDR and SMSICFGADDRH are implemented only if:
615          * (a) the interrupt domain is at machine level
616          * (b) the domain's harts implement supervisor mode
617          * (c) the domain has one or more child supervisor-level domains
618          *     that support MSI delivery mode (domaincfg.DM is not read-
619          *     only zero in at least one of the supervisor-level child
620          * domains).
621          */
622         return (aplic->num_children) ? aplic->smsicfgaddr : 0;
623     } else if (aplic->mmode && aplic->msimode &&
624                (addr == APLIC_SMSICFGADDRH)) {
625         return (aplic->num_children) ? aplic->smsicfgaddrH : 0;
626     } else if ((APLIC_SETIP_BASE <= addr) &&
627             (addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) {
628         word = (addr - APLIC_SETIP_BASE) >> 2;
629         return riscv_aplic_read_pending_word(aplic, word);
630     } else if (addr == APLIC_SETIPNUM) {
631         return 0;
632     } else if ((APLIC_CLRIP_BASE <= addr) &&
633             (addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) {
634         word = (addr - APLIC_CLRIP_BASE) >> 2;
635         return riscv_aplic_read_input_word(aplic, word);
636     } else if (addr == APLIC_CLRIPNUM) {
637         return 0;
638     } else if ((APLIC_SETIE_BASE <= addr) &&
639             (addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) {
640         word = (addr - APLIC_SETIE_BASE) >> 2;
641         return riscv_aplic_read_enabled_word(aplic, word);
642     } else if (addr == APLIC_SETIENUM) {
643         return 0;
644     } else if ((APLIC_CLRIE_BASE <= addr) &&
645             (addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) {
646         return 0;
647     } else if (addr == APLIC_CLRIENUM) {
648         return 0;
649     } else if (addr == APLIC_SETIPNUM_LE) {
650         return 0;
651     } else if (addr == APLIC_SETIPNUM_BE) {
652         return 0;
653     } else if (addr == APLIC_GENMSI) {
654         return (aplic->msimode) ? aplic->genmsi : 0;
655     } else if ((APLIC_TARGET_BASE <= addr) &&
656             (addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) {
657         irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1;
658         return aplic->target[irq];
659     } else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) &&
660             (addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) {
661         idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE;
662         switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) {
663         case APLIC_IDC_IDELIVERY:
664             return aplic->idelivery[idc];
665         case APLIC_IDC_IFORCE:
666             return aplic->iforce[idc];
667         case APLIC_IDC_ITHRESHOLD:
668             return aplic->ithreshold[idc];
669         case APLIC_IDC_TOPI:
670             return riscv_aplic_idc_topi(aplic, idc);
671         case APLIC_IDC_CLAIMI:
672             return riscv_aplic_idc_claimi(aplic, idc);
673         default:
674             goto err;
675         };
676     }
677 
678 err:
679     qemu_log_mask(LOG_GUEST_ERROR,
680                   "%s: Invalid register read 0x%" HWADDR_PRIx "\n",
681                   __func__, addr);
682     return 0;
683 }
684 
riscv_aplic_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)685 static void riscv_aplic_write(void *opaque, hwaddr addr, uint64_t value,
686         unsigned size)
687 {
688     RISCVAPLICState *aplic = opaque;
689     uint32_t irq, word, idc = UINT32_MAX;
690 
691     /* Writes must be 4 byte words */
692     if ((addr & 0x3) != 0) {
693         goto err;
694     }
695 
696     if (addr == APLIC_DOMAINCFG) {
697         /* Only IE bit writable at the moment */
698         value &= APLIC_DOMAINCFG_IE;
699         aplic->domaincfg = value;
700     } else if ((APLIC_SOURCECFG_BASE <= addr) &&
701             (addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) {
702         irq  = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1;
703         if (!aplic->num_children && (value & APLIC_SOURCECFG_D)) {
704             value = 0;
705         }
706         if (value & APLIC_SOURCECFG_D) {
707             value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_CHILDIDX_MASK);
708         } else {
709             value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_SM_MASK);
710         }
711         aplic->sourcecfg[irq] = value;
712         if ((aplic->sourcecfg[irq] & APLIC_SOURCECFG_D) ||
713             (aplic->sourcecfg[irq] == 0)) {
714             riscv_aplic_set_pending_raw(aplic, irq, false);
715             riscv_aplic_set_enabled_raw(aplic, irq, false);
716         } else {
717             if (riscv_aplic_irq_rectified_val(aplic, irq)) {
718                 riscv_aplic_set_pending_raw(aplic, irq, true);
719             }
720         }
721     } else if (aplic->mmode && aplic->msimode &&
722                (addr == APLIC_MMSICFGADDR)) {
723         if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
724             aplic->mmsicfgaddr = value;
725         }
726     } else if (aplic->mmode && aplic->msimode &&
727                (addr == APLIC_MMSICFGADDRH)) {
728         if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
729             aplic->mmsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK;
730         }
731     } else if (aplic->mmode && aplic->msimode &&
732                (addr == APLIC_SMSICFGADDR)) {
733         /*
734          * Registers SMSICFGADDR and SMSICFGADDRH are implemented only if:
735          * (a) the interrupt domain is at machine level
736          * (b) the domain's harts implement supervisor mode
737          * (c) the domain has one or more child supervisor-level domains
738          *     that support MSI delivery mode (domaincfg.DM is not read-
739          *     only zero in at least one of the supervisor-level child
740          * domains).
741          */
742         if (aplic->num_children &&
743             !(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
744             aplic->smsicfgaddr = value;
745         }
746     } else if (aplic->mmode && aplic->msimode &&
747                (addr == APLIC_SMSICFGADDRH)) {
748         if (aplic->num_children &&
749             !(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
750             aplic->smsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK;
751         }
752     } else if ((APLIC_SETIP_BASE <= addr) &&
753             (addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) {
754         word = (addr - APLIC_SETIP_BASE) >> 2;
755         riscv_aplic_set_pending_word(aplic, word, value, true);
756     } else if (addr == APLIC_SETIPNUM) {
757         riscv_aplic_set_pending(aplic, value, true);
758     } else if ((APLIC_CLRIP_BASE <= addr) &&
759             (addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) {
760         word = (addr - APLIC_CLRIP_BASE) >> 2;
761         riscv_aplic_set_pending_word(aplic, word, value, false);
762     } else if (addr == APLIC_CLRIPNUM) {
763         riscv_aplic_set_pending(aplic, value, false);
764     } else if ((APLIC_SETIE_BASE <= addr) &&
765             (addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) {
766         word = (addr - APLIC_SETIE_BASE) >> 2;
767         riscv_aplic_set_enabled_word(aplic, word, value, true);
768     } else if (addr == APLIC_SETIENUM) {
769         riscv_aplic_set_enabled(aplic, value, true);
770     } else if ((APLIC_CLRIE_BASE <= addr) &&
771             (addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) {
772         word = (addr - APLIC_CLRIE_BASE) >> 2;
773         riscv_aplic_set_enabled_word(aplic, word, value, false);
774     } else if (addr == APLIC_CLRIENUM) {
775         riscv_aplic_set_enabled(aplic, value, false);
776     } else if (addr == APLIC_SETIPNUM_LE) {
777         riscv_aplic_set_pending(aplic, value, true);
778     } else if (addr == APLIC_SETIPNUM_BE) {
779         riscv_aplic_set_pending(aplic, bswap32(value), true);
780     } else if (addr == APLIC_GENMSI) {
781         if (aplic->msimode) {
782             aplic->genmsi = value & ~(APLIC_TARGET_GUEST_IDX_MASK <<
783                                       APLIC_TARGET_GUEST_IDX_SHIFT);
784             riscv_aplic_msi_send(aplic,
785                                  value >> APLIC_TARGET_HART_IDX_SHIFT,
786                                  0,
787                                  value & APLIC_TARGET_EIID_MASK);
788         }
789     } else if ((APLIC_TARGET_BASE <= addr) &&
790             (addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) {
791         irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1;
792         if (aplic->msimode) {
793             aplic->target[irq] = value;
794         } else {
795             aplic->target[irq] = (value & ~APLIC_TARGET_IPRIO_MASK) |
796                                  ((value & aplic->iprio_mask) ?
797                                   (value & aplic->iprio_mask) : 1);
798         }
799     } else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) &&
800             (addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) {
801         idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE;
802         switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) {
803         case APLIC_IDC_IDELIVERY:
804             aplic->idelivery[idc] = value & 0x1;
805             break;
806         case APLIC_IDC_IFORCE:
807             aplic->iforce[idc] = value & 0x1;
808             break;
809         case APLIC_IDC_ITHRESHOLD:
810             aplic->ithreshold[idc] = value & aplic->iprio_mask;
811             break;
812         default:
813             goto err;
814         };
815     } else {
816         goto err;
817     }
818 
819     if (aplic->msimode) {
820         for (irq = 1; irq < aplic->num_irqs; irq++) {
821             riscv_aplic_msi_irq_update(aplic, irq);
822         }
823     } else {
824         if (idc == UINT32_MAX) {
825             for (idc = 0; idc < aplic->num_harts; idc++) {
826                 riscv_aplic_idc_update(aplic, idc);
827             }
828         } else {
829             riscv_aplic_idc_update(aplic, idc);
830         }
831     }
832 
833     return;
834 
835 err:
836     qemu_log_mask(LOG_GUEST_ERROR,
837                   "%s: Invalid register write 0x%" HWADDR_PRIx "\n",
838                   __func__, addr);
839 }
840 
841 static const MemoryRegionOps riscv_aplic_ops = {
842     .read = riscv_aplic_read,
843     .write = riscv_aplic_write,
844     .endianness = DEVICE_LITTLE_ENDIAN,
845     .valid = {
846         .min_access_size = 4,
847         .max_access_size = 4
848     }
849 };
850 
riscv_aplic_realize(DeviceState * dev,Error ** errp)851 static void riscv_aplic_realize(DeviceState *dev, Error **errp)
852 {
853     uint32_t i;
854     RISCVAPLICState *aplic = RISCV_APLIC(dev);
855 
856     if (!is_kvm_aia(aplic->msimode)) {
857         aplic->bitfield_words = (aplic->num_irqs + 31) >> 5;
858         aplic->sourcecfg = g_new0(uint32_t, aplic->num_irqs);
859         aplic->state = g_new0(uint32_t, aplic->num_irqs);
860         aplic->target = g_new0(uint32_t, aplic->num_irqs);
861         if (!aplic->msimode) {
862             for (i = 0; i < aplic->num_irqs; i++) {
863                 aplic->target[i] = 1;
864             }
865         }
866         aplic->idelivery = g_new0(uint32_t, aplic->num_harts);
867         aplic->iforce = g_new0(uint32_t, aplic->num_harts);
868         aplic->ithreshold = g_new0(uint32_t, aplic->num_harts);
869 
870         memory_region_init_io(&aplic->mmio, OBJECT(dev), &riscv_aplic_ops,
871                               aplic, TYPE_RISCV_APLIC, aplic->aperture_size);
872         sysbus_init_mmio(SYS_BUS_DEVICE(dev), &aplic->mmio);
873     }
874 
875     /*
876      * Only root APLICs have hardware IRQ lines. All non-root APLICs
877      * have IRQ lines delegated by their parent APLIC.
878      */
879     if (!aplic->parent) {
880         if (kvm_enabled() && is_kvm_aia(aplic->msimode)) {
881             qdev_init_gpio_in(dev, riscv_kvm_aplic_request, aplic->num_irqs);
882         } else {
883             qdev_init_gpio_in(dev, riscv_aplic_request, aplic->num_irqs);
884         }
885     }
886 
887     /* Create output IRQ lines for non-MSI mode */
888     if (!aplic->msimode) {
889         aplic->external_irqs = g_malloc(sizeof(qemu_irq) * aplic->num_harts);
890         qdev_init_gpio_out(dev, aplic->external_irqs, aplic->num_harts);
891 
892         /* Claim the CPU interrupt to be triggered by this APLIC */
893         for (i = 0; i < aplic->num_harts; i++) {
894             RISCVCPU *cpu = RISCV_CPU(cpu_by_arch_id(aplic->hartid_base + i));
895             if (riscv_cpu_claim_interrupts(cpu,
896                 (aplic->mmode) ? MIP_MEIP : MIP_SEIP) < 0) {
897                 error_report("%s already claimed",
898                              (aplic->mmode) ? "MEIP" : "SEIP");
899                 exit(1);
900             }
901         }
902     }
903 
904     msi_nonbroken = true;
905 }
906 
907 static Property riscv_aplic_properties[] = {
908     DEFINE_PROP_UINT32("aperture-size", RISCVAPLICState, aperture_size, 0),
909     DEFINE_PROP_UINT32("hartid-base", RISCVAPLICState, hartid_base, 0),
910     DEFINE_PROP_UINT32("num-harts", RISCVAPLICState, num_harts, 0),
911     DEFINE_PROP_UINT32("iprio-mask", RISCVAPLICState, iprio_mask, 0),
912     DEFINE_PROP_UINT32("num-irqs", RISCVAPLICState, num_irqs, 0),
913     DEFINE_PROP_BOOL("msimode", RISCVAPLICState, msimode, 0),
914     DEFINE_PROP_BOOL("mmode", RISCVAPLICState, mmode, 0),
915     DEFINE_PROP_END_OF_LIST(),
916 };
917 
918 static const VMStateDescription vmstate_riscv_aplic = {
919     .name = "riscv_aplic",
920     .version_id = 1,
921     .minimum_version_id = 1,
922     .fields = (const VMStateField[]) {
923             VMSTATE_UINT32(domaincfg, RISCVAPLICState),
924             VMSTATE_UINT32(mmsicfgaddr, RISCVAPLICState),
925             VMSTATE_UINT32(mmsicfgaddrH, RISCVAPLICState),
926             VMSTATE_UINT32(smsicfgaddr, RISCVAPLICState),
927             VMSTATE_UINT32(smsicfgaddrH, RISCVAPLICState),
928             VMSTATE_UINT32(genmsi, RISCVAPLICState),
929             VMSTATE_VARRAY_UINT32(sourcecfg, RISCVAPLICState,
930                                   num_irqs, 0,
931                                   vmstate_info_uint32, uint32_t),
932             VMSTATE_VARRAY_UINT32(state, RISCVAPLICState,
933                                   num_irqs, 0,
934                                   vmstate_info_uint32, uint32_t),
935             VMSTATE_VARRAY_UINT32(target, RISCVAPLICState,
936                                   num_irqs, 0,
937                                   vmstate_info_uint32, uint32_t),
938             VMSTATE_VARRAY_UINT32(idelivery, RISCVAPLICState,
939                                   num_harts, 0,
940                                   vmstate_info_uint32, uint32_t),
941             VMSTATE_VARRAY_UINT32(iforce, RISCVAPLICState,
942                                   num_harts, 0,
943                                   vmstate_info_uint32, uint32_t),
944             VMSTATE_VARRAY_UINT32(ithreshold, RISCVAPLICState,
945                                   num_harts, 0,
946                                   vmstate_info_uint32, uint32_t),
947             VMSTATE_END_OF_LIST()
948         }
949 };
950 
riscv_aplic_class_init(ObjectClass * klass,void * data)951 static void riscv_aplic_class_init(ObjectClass *klass, void *data)
952 {
953     DeviceClass *dc = DEVICE_CLASS(klass);
954 
955     device_class_set_props(dc, riscv_aplic_properties);
956     dc->realize = riscv_aplic_realize;
957     dc->vmsd = &vmstate_riscv_aplic;
958 }
959 
960 static const TypeInfo riscv_aplic_info = {
961     .name          = TYPE_RISCV_APLIC,
962     .parent        = TYPE_SYS_BUS_DEVICE,
963     .instance_size = sizeof(RISCVAPLICState),
964     .class_init    = riscv_aplic_class_init,
965 };
966 
riscv_aplic_register_types(void)967 static void riscv_aplic_register_types(void)
968 {
969     type_register_static(&riscv_aplic_info);
970 }
971 
type_init(riscv_aplic_register_types)972 type_init(riscv_aplic_register_types)
973 
974 /*
975  * Add a APLIC device to another APLIC device as child for
976  * interrupt delegation.
977  */
978 void riscv_aplic_add_child(DeviceState *parent, DeviceState *child)
979 {
980     RISCVAPLICState *caplic, *paplic;
981 
982     assert(parent && child);
983     caplic = RISCV_APLIC(child);
984     paplic = RISCV_APLIC(parent);
985 
986     assert(paplic->num_irqs == caplic->num_irqs);
987     assert(paplic->num_children <= QEMU_APLIC_MAX_CHILDREN);
988 
989     caplic->parent = paplic;
990     paplic->children[paplic->num_children] = caplic;
991     paplic->num_children++;
992 }
993 
994 /*
995  * Create APLIC device.
996  */
riscv_aplic_create(hwaddr addr,hwaddr size,uint32_t hartid_base,uint32_t num_harts,uint32_t num_sources,uint32_t iprio_bits,bool msimode,bool mmode,DeviceState * parent)997 DeviceState *riscv_aplic_create(hwaddr addr, hwaddr size,
998     uint32_t hartid_base, uint32_t num_harts, uint32_t num_sources,
999     uint32_t iprio_bits, bool msimode, bool mmode, DeviceState *parent)
1000 {
1001     DeviceState *dev = qdev_new(TYPE_RISCV_APLIC);
1002     uint32_t i;
1003 
1004     assert(num_harts < APLIC_MAX_IDC);
1005     assert((APLIC_IDC_BASE + (num_harts * APLIC_IDC_SIZE)) <= size);
1006     assert(num_sources < APLIC_MAX_SOURCE);
1007     assert(APLIC_MIN_IPRIO_BITS <= iprio_bits);
1008     assert(iprio_bits <= APLIC_MAX_IPRIO_BITS);
1009 
1010     qdev_prop_set_uint32(dev, "aperture-size", size);
1011     qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
1012     qdev_prop_set_uint32(dev, "num-harts", num_harts);
1013     qdev_prop_set_uint32(dev, "iprio-mask", ((1U << iprio_bits) - 1));
1014     qdev_prop_set_uint32(dev, "num-irqs", num_sources + 1);
1015     qdev_prop_set_bit(dev, "msimode", msimode);
1016     qdev_prop_set_bit(dev, "mmode", mmode);
1017 
1018     if (parent) {
1019         riscv_aplic_add_child(parent, dev);
1020     }
1021 
1022     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1023 
1024     if (!is_kvm_aia(msimode)) {
1025         sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
1026     }
1027 
1028     if (!msimode) {
1029         for (i = 0; i < num_harts; i++) {
1030             CPUState *cpu = cpu_by_arch_id(hartid_base + i);
1031 
1032             qdev_connect_gpio_out_named(dev, NULL, i,
1033                                         qdev_get_gpio_in(DEVICE(cpu),
1034                                             (mmode) ? IRQ_M_EXT : IRQ_S_EXT));
1035         }
1036     }
1037 
1038     return dev;
1039 }
1040