1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5
6 #include <linux/bitfield.h>
7 #include <linux/bits.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-buf.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/list.h>
15 #include <linux/math64.h>
16 #include <linux/mm.h>
17 #include <linux/moduleparam.h>
18 #include <linux/scatterlist.h>
19 #include <linux/spinlock.h>
20 #include <linux/srcu.h>
21 #include <linux/types.h>
22 #include <linux/uaccess.h>
23 #include <linux/wait.h>
24 #include <drm/drm_file.h>
25 #include <drm/drm_gem.h>
26 #include <drm/drm_prime.h>
27 #include <drm/drm_print.h>
28 #include <uapi/drm/qaic_accel.h>
29
30 #include "qaic.h"
31
32 #define SEM_VAL_MASK GENMASK_ULL(11, 0)
33 #define SEM_INDEX_MASK GENMASK_ULL(4, 0)
34 #define BULK_XFER BIT(3)
35 #define GEN_COMPLETION BIT(4)
36 #define INBOUND_XFER 1
37 #define OUTBOUND_XFER 2
38 #define REQHP_OFF 0x0 /* we read this */
39 #define REQTP_OFF 0x4 /* we write this */
40 #define RSPHP_OFF 0x8 /* we write this */
41 #define RSPTP_OFF 0xc /* we read this */
42
43 #define ENCODE_SEM(val, index, sync, cmd, flags) \
44 ({ \
45 FIELD_PREP(GENMASK(11, 0), (val)) | \
46 FIELD_PREP(GENMASK(20, 16), (index)) | \
47 FIELD_PREP(BIT(22), (sync)) | \
48 FIELD_PREP(GENMASK(26, 24), (cmd)) | \
49 FIELD_PREP(GENMASK(30, 29), (flags)) | \
50 FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \
51 })
52 #define NUM_EVENTS 128
53 #define NUM_DELAYS 10
54
55 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
56 module_param(wait_exec_default_timeout_ms, uint, 0600);
57 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
58
59 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
60 module_param(datapath_poll_interval_us, uint, 0600);
61 MODULE_PARM_DESC(datapath_poll_interval_us,
62 "Amount of time to sleep between activity when datapath polling is enabled");
63
64 struct dbc_req {
65 /*
66 * A request ID is assigned to each memory handle going in DMA queue.
67 * As a single memory handle can enqueue multiple elements in DMA queue
68 * all of them will have the same request ID.
69 */
70 __le16 req_id;
71 /* Future use */
72 __u8 seq_id;
73 /*
74 * Special encoded variable
75 * 7 0 - Do not force to generate MSI after DMA is completed
76 * 1 - Force to generate MSI after DMA is completed
77 * 6:5 Reserved
78 * 4 1 - Generate completion element in the response queue
79 * 0 - No Completion Code
80 * 3 0 - DMA request is a Link list transfer
81 * 1 - DMA request is a Bulk transfer
82 * 2 Reserved
83 * 1:0 00 - No DMA transfer involved
84 * 01 - DMA transfer is part of inbound transfer
85 * 10 - DMA transfer has outbound transfer
86 * 11 - NA
87 */
88 __u8 cmd;
89 __le32 resv;
90 /* Source address for the transfer */
91 __le64 src_addr;
92 /* Destination address for the transfer */
93 __le64 dest_addr;
94 /* Length of transfer request */
95 __le32 len;
96 __le32 resv2;
97 /* Doorbell address */
98 __le64 db_addr;
99 /*
100 * Special encoded variable
101 * 7 1 - Doorbell(db) write
102 * 0 - No doorbell write
103 * 6:2 Reserved
104 * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary
105 * 01 - 16 bit access, db address must be aligned to 16bit-boundary
106 * 10 - 8 bit access, db address must be aligned to 8bit-boundary
107 * 11 - Reserved
108 */
109 __u8 db_len;
110 __u8 resv3;
111 __le16 resv4;
112 /* 32 bit data written to doorbell address */
113 __le32 db_data;
114 /*
115 * Special encoded variable
116 * All the fields of sem_cmdX are passed from user and all are ORed
117 * together to form sem_cmd.
118 * 0:11 Semaphore value
119 * 15:12 Reserved
120 * 20:16 Semaphore index
121 * 21 Reserved
122 * 22 Semaphore Sync
123 * 23 Reserved
124 * 26:24 Semaphore command
125 * 28:27 Reserved
126 * 29 Semaphore DMA out bound sync fence
127 * 30 Semaphore DMA in bound sync fence
128 * 31 Enable semaphore command
129 */
130 __le32 sem_cmd0;
131 __le32 sem_cmd1;
132 __le32 sem_cmd2;
133 __le32 sem_cmd3;
134 } __packed;
135
136 struct dbc_rsp {
137 /* Request ID of the memory handle whose DMA transaction is completed */
138 __le16 req_id;
139 /* Status of the DMA transaction. 0 : Success otherwise failure */
140 __le16 status;
141 } __packed;
142
get_dbc_req_elem_size(void)143 inline int get_dbc_req_elem_size(void)
144 {
145 return sizeof(struct dbc_req);
146 }
147
get_dbc_rsp_elem_size(void)148 inline int get_dbc_rsp_elem_size(void)
149 {
150 return sizeof(struct dbc_rsp);
151 }
152
free_slice(struct kref * kref)153 static void free_slice(struct kref *kref)
154 {
155 struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
156
157 list_del(&slice->slice);
158 drm_gem_object_put(&slice->bo->base);
159 sg_free_table(slice->sgt);
160 kfree(slice->sgt);
161 kfree(slice->reqs);
162 kfree(slice);
163 }
164
clone_range_of_sgt_for_slice(struct qaic_device * qdev,struct sg_table ** sgt_out,struct sg_table * sgt_in,u64 size,u64 offset)165 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
166 struct sg_table *sgt_in, u64 size, u64 offset)
167 {
168 struct scatterlist *sg, *sgn, *sgf, *sgl;
169 unsigned int len, nents, offf, offl;
170 struct sg_table *sgt;
171 size_t total_len;
172 int ret, j;
173
174 /* find out number of relevant nents needed for this mem */
175 total_len = 0;
176 sgf = NULL;
177 sgl = NULL;
178 nents = 0;
179 offf = 0;
180 offl = 0;
181
182 size = size ? size : PAGE_SIZE;
183 for_each_sgtable_dma_sg(sgt_in, sg, j) {
184 len = sg_dma_len(sg);
185
186 if (!len)
187 continue;
188 if (offset >= total_len && offset < total_len + len) {
189 sgf = sg;
190 offf = offset - total_len;
191 }
192 if (sgf)
193 nents++;
194 if (offset + size >= total_len &&
195 offset + size <= total_len + len) {
196 sgl = sg;
197 offl = offset + size - total_len;
198 break;
199 }
200 total_len += len;
201 }
202
203 if (!sgf || !sgl) {
204 ret = -EINVAL;
205 goto out;
206 }
207
208 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
209 if (!sgt) {
210 ret = -ENOMEM;
211 goto out;
212 }
213
214 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
215 if (ret)
216 goto free_sgt;
217
218 /* copy relevant sg node and fix page and length */
219 sgn = sgf;
220 for_each_sgtable_dma_sg(sgt, sg, j) {
221 memcpy(sg, sgn, sizeof(*sg));
222 if (sgn == sgf) {
223 sg_dma_address(sg) += offf;
224 sg_dma_len(sg) -= offf;
225 sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
226 } else {
227 offf = 0;
228 }
229 if (sgn == sgl) {
230 sg_dma_len(sg) = offl - offf;
231 sg_set_page(sg, sg_page(sgn), offl - offf, offf);
232 sg_mark_end(sg);
233 break;
234 }
235 sgn = sg_next(sgn);
236 }
237
238 *sgt_out = sgt;
239 return ret;
240
241 free_sgt:
242 kfree(sgt);
243 out:
244 *sgt_out = NULL;
245 return ret;
246 }
247
encode_reqs(struct qaic_device * qdev,struct bo_slice * slice,struct qaic_attach_slice_entry * req)248 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
249 struct qaic_attach_slice_entry *req)
250 {
251 __le64 db_addr = cpu_to_le64(req->db_addr);
252 __le32 db_data = cpu_to_le32(req->db_data);
253 struct scatterlist *sg;
254 __u8 cmd = BULK_XFER;
255 int presync_sem;
256 u64 dev_addr;
257 __u8 db_len;
258 int i;
259
260 if (!slice->no_xfer)
261 cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
262
263 if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
264 return -EINVAL;
265
266 presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
267 if (presync_sem > 1)
268 return -EINVAL;
269
270 presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
271 req->sem2.presync << 2 | req->sem3.presync << 3;
272
273 switch (req->db_len) {
274 case 32:
275 db_len = BIT(7);
276 break;
277 case 16:
278 db_len = BIT(7) | 1;
279 break;
280 case 8:
281 db_len = BIT(7) | 2;
282 break;
283 case 0:
284 db_len = 0; /* doorbell is not active for this command */
285 break;
286 default:
287 return -EINVAL; /* should never hit this */
288 }
289
290 /*
291 * When we end up splitting up a single request (ie a buf slice) into
292 * multiple DMA requests, we have to manage the sync data carefully.
293 * There can only be one presync sem. That needs to be on every xfer
294 * so that the DMA engine doesn't transfer data before the receiver is
295 * ready. We only do the doorbell and postsync sems after the xfer.
296 * To guarantee previous xfers for the request are complete, we use a
297 * fence.
298 */
299 dev_addr = req->dev_addr;
300 for_each_sgtable_dma_sg(slice->sgt, sg, i) {
301 slice->reqs[i].cmd = cmd;
302 slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
303 sg_dma_address(sg) : dev_addr);
304 slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
305 dev_addr : sg_dma_address(sg));
306 /*
307 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA
308 * segment size is set to UINT_MAX by qaic and hence return
309 * values of sg_dma_len(sg) can never exceed u32 range. So,
310 * by down sizing we are not corrupting the value.
311 */
312 slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
313 switch (presync_sem) {
314 case BIT(0):
315 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
316 req->sem0.index,
317 req->sem0.presync,
318 req->sem0.cmd,
319 req->sem0.flags));
320 break;
321 case BIT(1):
322 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
323 req->sem1.index,
324 req->sem1.presync,
325 req->sem1.cmd,
326 req->sem1.flags));
327 break;
328 case BIT(2):
329 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
330 req->sem2.index,
331 req->sem2.presync,
332 req->sem2.cmd,
333 req->sem2.flags));
334 break;
335 case BIT(3):
336 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
337 req->sem3.index,
338 req->sem3.presync,
339 req->sem3.cmd,
340 req->sem3.flags));
341 break;
342 }
343 dev_addr += sg_dma_len(sg);
344 }
345 /* add post transfer stuff to last segment */
346 i--;
347 slice->reqs[i].cmd |= GEN_COMPLETION;
348 slice->reqs[i].db_addr = db_addr;
349 slice->reqs[i].db_len = db_len;
350 slice->reqs[i].db_data = db_data;
351 /*
352 * Add a fence if we have more than one request going to the hardware
353 * representing the entirety of the user request, and the user request
354 * has no presync condition.
355 * Fences are expensive, so we try to avoid them. We rely on the
356 * hardware behavior to avoid needing one when there is a presync
357 * condition. When a presync exists, all requests for that same
358 * presync will be queued into a fifo. Thus, since we queue the
359 * post xfer activity only on the last request we queue, the hardware
360 * will ensure that the last queued request is processed last, thus
361 * making sure the post xfer activity happens at the right time without
362 * a fence.
363 */
364 if (i && !presync_sem)
365 req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
366 QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
367 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
368 req->sem0.presync, req->sem0.cmd,
369 req->sem0.flags));
370 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
371 req->sem1.presync, req->sem1.cmd,
372 req->sem1.flags));
373 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
374 req->sem2.presync, req->sem2.cmd,
375 req->sem2.flags));
376 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
377 req->sem3.presync, req->sem3.cmd,
378 req->sem3.flags));
379
380 return 0;
381 }
382
qaic_map_one_slice(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_entry * slice_ent)383 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
384 struct qaic_attach_slice_entry *slice_ent)
385 {
386 struct sg_table *sgt = NULL;
387 struct bo_slice *slice;
388 int ret;
389
390 ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
391 if (ret)
392 goto out;
393
394 slice = kmalloc(sizeof(*slice), GFP_KERNEL);
395 if (!slice) {
396 ret = -ENOMEM;
397 goto free_sgt;
398 }
399
400 slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
401 if (!slice->reqs) {
402 ret = -ENOMEM;
403 goto free_slice;
404 }
405
406 slice->no_xfer = !slice_ent->size;
407 slice->sgt = sgt;
408 slice->nents = sgt->nents;
409 slice->dir = bo->dir;
410 slice->bo = bo;
411 slice->size = slice_ent->size;
412 slice->offset = slice_ent->offset;
413
414 ret = encode_reqs(qdev, slice, slice_ent);
415 if (ret)
416 goto free_req;
417
418 bo->total_slice_nents += sgt->nents;
419 kref_init(&slice->ref_count);
420 drm_gem_object_get(&bo->base);
421 list_add_tail(&slice->slice, &bo->slices);
422
423 return 0;
424
425 free_req:
426 kfree(slice->reqs);
427 free_slice:
428 kfree(slice);
429 free_sgt:
430 sg_free_table(sgt);
431 kfree(sgt);
432 out:
433 return ret;
434 }
435
create_sgt(struct qaic_device * qdev,struct sg_table ** sgt_out,u64 size)436 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
437 {
438 struct scatterlist *sg;
439 struct sg_table *sgt;
440 struct page **pages;
441 int *pages_order;
442 int buf_extra;
443 int max_order;
444 int nr_pages;
445 int ret = 0;
446 int i, j, k;
447 int order;
448
449 if (size) {
450 nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
451 /*
452 * calculate how much extra we are going to allocate, to remove
453 * later
454 */
455 buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
456 max_order = min(MAX_ORDER - 1, get_order(size));
457 } else {
458 /* allocate a single page for book keeping */
459 nr_pages = 1;
460 buf_extra = 0;
461 max_order = 0;
462 }
463
464 pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
465 if (!pages) {
466 ret = -ENOMEM;
467 goto out;
468 }
469 pages_order = (void *)pages + sizeof(*pages) * nr_pages;
470
471 /*
472 * Allocate requested memory using alloc_pages. It is possible to allocate
473 * the requested memory in multiple chunks by calling alloc_pages
474 * multiple times. Use SG table to handle multiple allocated pages.
475 */
476 i = 0;
477 while (nr_pages > 0) {
478 order = min(get_order(nr_pages * PAGE_SIZE), max_order);
479 while (1) {
480 pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
481 __GFP_NOWARN | __GFP_ZERO |
482 (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
483 order);
484 if (pages[i])
485 break;
486 if (!order--) {
487 ret = -ENOMEM;
488 goto free_partial_alloc;
489 }
490 }
491
492 max_order = order;
493 pages_order[i] = order;
494
495 nr_pages -= 1 << order;
496 if (nr_pages <= 0)
497 /* account for over allocation */
498 buf_extra += abs(nr_pages) * PAGE_SIZE;
499 i++;
500 }
501
502 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
503 if (!sgt) {
504 ret = -ENOMEM;
505 goto free_partial_alloc;
506 }
507
508 if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
509 ret = -ENOMEM;
510 goto free_sgt;
511 }
512
513 /* Populate the SG table with the allocated memory pages */
514 sg = sgt->sgl;
515 for (k = 0; k < i; k++, sg = sg_next(sg)) {
516 /* Last entry requires special handling */
517 if (k < i - 1) {
518 sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
519 } else {
520 sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
521 sg_mark_end(sg);
522 }
523 }
524
525 kvfree(pages);
526 *sgt_out = sgt;
527 return ret;
528
529 free_sgt:
530 kfree(sgt);
531 free_partial_alloc:
532 for (j = 0; j < i; j++)
533 __free_pages(pages[j], pages_order[j]);
534 kvfree(pages);
535 out:
536 *sgt_out = NULL;
537 return ret;
538 }
539
invalid_sem(struct qaic_sem * sem)540 static bool invalid_sem(struct qaic_sem *sem)
541 {
542 if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
543 !(sem->presync == 0 || sem->presync == 1) || sem->pad ||
544 sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
545 sem->cmd > QAIC_SEM_WAIT_GT_0)
546 return true;
547 return false;
548 }
549
qaic_validate_req(struct qaic_device * qdev,struct qaic_attach_slice_entry * slice_ent,u32 count,u64 total_size)550 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
551 u32 count, u64 total_size)
552 {
553 u64 total;
554 int i;
555
556 for (i = 0; i < count; i++) {
557 if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
558 slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
559 invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
560 invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
561 return -EINVAL;
562
563 if (check_add_overflow(slice_ent[i].offset, slice_ent[i].size, &total) ||
564 total > total_size)
565 return -EINVAL;
566 }
567
568 return 0;
569 }
570
qaic_free_sgt(struct sg_table * sgt)571 static void qaic_free_sgt(struct sg_table *sgt)
572 {
573 struct scatterlist *sg;
574
575 for (sg = sgt->sgl; sg; sg = sg_next(sg))
576 if (sg_page(sg))
577 __free_pages(sg_page(sg), get_order(sg->length));
578 sg_free_table(sgt);
579 kfree(sgt);
580 }
581
qaic_gem_print_info(struct drm_printer * p,unsigned int indent,const struct drm_gem_object * obj)582 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
583 const struct drm_gem_object *obj)
584 {
585 struct qaic_bo *bo = to_qaic_bo(obj);
586
587 drm_printf_indent(p, indent, "user requested size=%llu\n", bo->size);
588 }
589
590 static const struct vm_operations_struct drm_vm_ops = {
591 .open = drm_gem_vm_open,
592 .close = drm_gem_vm_close,
593 };
594
qaic_gem_object_mmap(struct drm_gem_object * obj,struct vm_area_struct * vma)595 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
596 {
597 struct qaic_bo *bo = to_qaic_bo(obj);
598 unsigned long offset = 0;
599 struct scatterlist *sg;
600 int ret = 0;
601
602 if (obj->import_attach)
603 return -EINVAL;
604
605 for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
606 if (sg_page(sg)) {
607 ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
608 sg->length, vma->vm_page_prot);
609 if (ret)
610 goto out;
611 offset += sg->length;
612 }
613 }
614
615 out:
616 return ret;
617 }
618
qaic_free_object(struct drm_gem_object * obj)619 static void qaic_free_object(struct drm_gem_object *obj)
620 {
621 struct qaic_bo *bo = to_qaic_bo(obj);
622
623 if (obj->import_attach) {
624 /* DMABUF/PRIME Path */
625 drm_prime_gem_destroy(obj, NULL);
626 } else {
627 /* Private buffer allocation path */
628 qaic_free_sgt(bo->sgt);
629 }
630
631 drm_gem_object_release(obj);
632 kfree(bo);
633 }
634
635 static const struct drm_gem_object_funcs qaic_gem_funcs = {
636 .free = qaic_free_object,
637 .print_info = qaic_gem_print_info,
638 .mmap = qaic_gem_object_mmap,
639 .vm_ops = &drm_vm_ops,
640 };
641
qaic_alloc_init_bo(void)642 static struct qaic_bo *qaic_alloc_init_bo(void)
643 {
644 struct qaic_bo *bo;
645
646 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
647 if (!bo)
648 return ERR_PTR(-ENOMEM);
649
650 INIT_LIST_HEAD(&bo->slices);
651 init_completion(&bo->xfer_done);
652 complete_all(&bo->xfer_done);
653
654 return bo;
655 }
656
qaic_create_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)657 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
658 {
659 struct qaic_create_bo *args = data;
660 int usr_rcu_id, qdev_rcu_id;
661 struct drm_gem_object *obj;
662 struct qaic_device *qdev;
663 struct qaic_user *usr;
664 struct qaic_bo *bo;
665 size_t size;
666 int ret;
667
668 if (args->pad)
669 return -EINVAL;
670
671 size = PAGE_ALIGN(args->size);
672 if (size == 0)
673 return -EINVAL;
674
675 usr = file_priv->driver_priv;
676 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
677 if (!usr->qddev) {
678 ret = -ENODEV;
679 goto unlock_usr_srcu;
680 }
681
682 qdev = usr->qddev->qdev;
683 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
684 if (qdev->in_reset) {
685 ret = -ENODEV;
686 goto unlock_dev_srcu;
687 }
688
689 bo = qaic_alloc_init_bo();
690 if (IS_ERR(bo)) {
691 ret = PTR_ERR(bo);
692 goto unlock_dev_srcu;
693 }
694 obj = &bo->base;
695
696 drm_gem_private_object_init(dev, obj, size);
697
698 obj->funcs = &qaic_gem_funcs;
699 ret = create_sgt(qdev, &bo->sgt, size);
700 if (ret)
701 goto free_bo;
702
703 bo->size = args->size;
704
705 ret = drm_gem_handle_create(file_priv, obj, &args->handle);
706 if (ret)
707 goto free_sgt;
708
709 bo->handle = args->handle;
710 drm_gem_object_put(obj);
711 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
712 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
713
714 return 0;
715
716 free_sgt:
717 qaic_free_sgt(bo->sgt);
718 free_bo:
719 kfree(bo);
720 unlock_dev_srcu:
721 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
722 unlock_usr_srcu:
723 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
724 return ret;
725 }
726
qaic_mmap_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)727 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
728 {
729 struct qaic_mmap_bo *args = data;
730 int usr_rcu_id, qdev_rcu_id;
731 struct drm_gem_object *obj;
732 struct qaic_device *qdev;
733 struct qaic_user *usr;
734 int ret;
735
736 usr = file_priv->driver_priv;
737 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
738 if (!usr->qddev) {
739 ret = -ENODEV;
740 goto unlock_usr_srcu;
741 }
742
743 qdev = usr->qddev->qdev;
744 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
745 if (qdev->in_reset) {
746 ret = -ENODEV;
747 goto unlock_dev_srcu;
748 }
749
750 obj = drm_gem_object_lookup(file_priv, args->handle);
751 if (!obj) {
752 ret = -ENOENT;
753 goto unlock_dev_srcu;
754 }
755
756 ret = drm_gem_create_mmap_offset(obj);
757 if (ret == 0)
758 args->offset = drm_vma_node_offset_addr(&obj->vma_node);
759
760 drm_gem_object_put(obj);
761
762 unlock_dev_srcu:
763 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
764 unlock_usr_srcu:
765 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
766 return ret;
767 }
768
qaic_gem_prime_import(struct drm_device * dev,struct dma_buf * dma_buf)769 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
770 {
771 struct dma_buf_attachment *attach;
772 struct drm_gem_object *obj;
773 struct qaic_bo *bo;
774 int ret;
775
776 bo = qaic_alloc_init_bo();
777 if (IS_ERR(bo)) {
778 ret = PTR_ERR(bo);
779 goto out;
780 }
781
782 obj = &bo->base;
783 get_dma_buf(dma_buf);
784
785 attach = dma_buf_attach(dma_buf, dev->dev);
786 if (IS_ERR(attach)) {
787 ret = PTR_ERR(attach);
788 goto attach_fail;
789 }
790
791 if (!attach->dmabuf->size) {
792 ret = -EINVAL;
793 goto size_align_fail;
794 }
795
796 drm_gem_private_object_init(dev, obj, attach->dmabuf->size);
797 /*
798 * skipping dma_buf_map_attachment() as we do not know the direction
799 * just yet. Once the direction is known in the subsequent IOCTL to
800 * attach slicing, we can do it then.
801 */
802
803 obj->funcs = &qaic_gem_funcs;
804 obj->import_attach = attach;
805 obj->resv = dma_buf->resv;
806
807 return obj;
808
809 size_align_fail:
810 dma_buf_detach(dma_buf, attach);
811 attach_fail:
812 dma_buf_put(dma_buf);
813 kfree(bo);
814 out:
815 return ERR_PTR(ret);
816 }
817
qaic_prepare_import_bo(struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)818 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
819 {
820 struct drm_gem_object *obj = &bo->base;
821 struct sg_table *sgt;
822 int ret;
823
824 if (obj->import_attach->dmabuf->size < hdr->size)
825 return -EINVAL;
826
827 sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
828 if (IS_ERR(sgt)) {
829 ret = PTR_ERR(sgt);
830 return ret;
831 }
832
833 bo->sgt = sgt;
834 bo->size = hdr->size;
835
836 return 0;
837 }
838
qaic_prepare_export_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)839 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
840 struct qaic_attach_slice_hdr *hdr)
841 {
842 int ret;
843
844 if (bo->size != hdr->size)
845 return -EINVAL;
846
847 ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
848 if (ret)
849 return -EFAULT;
850
851 return 0;
852 }
853
qaic_prepare_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)854 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
855 struct qaic_attach_slice_hdr *hdr)
856 {
857 int ret;
858
859 if (bo->base.import_attach)
860 ret = qaic_prepare_import_bo(bo, hdr);
861 else
862 ret = qaic_prepare_export_bo(qdev, bo, hdr);
863
864 if (ret == 0)
865 bo->dir = hdr->dir;
866
867 return ret;
868 }
869
qaic_unprepare_import_bo(struct qaic_bo * bo)870 static void qaic_unprepare_import_bo(struct qaic_bo *bo)
871 {
872 dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
873 bo->sgt = NULL;
874 bo->size = 0;
875 }
876
qaic_unprepare_export_bo(struct qaic_device * qdev,struct qaic_bo * bo)877 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
878 {
879 dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
880 }
881
qaic_unprepare_bo(struct qaic_device * qdev,struct qaic_bo * bo)882 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
883 {
884 if (bo->base.import_attach)
885 qaic_unprepare_import_bo(bo);
886 else
887 qaic_unprepare_export_bo(qdev, bo);
888
889 bo->dir = 0;
890 }
891
qaic_free_slices_bo(struct qaic_bo * bo)892 static void qaic_free_slices_bo(struct qaic_bo *bo)
893 {
894 struct bo_slice *slice, *temp;
895
896 list_for_each_entry_safe(slice, temp, &bo->slices, slice)
897 kref_put(&slice->ref_count, free_slice);
898 }
899
qaic_attach_slicing_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr,struct qaic_attach_slice_entry * slice_ent)900 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
901 struct qaic_attach_slice_hdr *hdr,
902 struct qaic_attach_slice_entry *slice_ent)
903 {
904 int ret, i;
905
906 for (i = 0; i < hdr->count; i++) {
907 ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
908 if (ret) {
909 qaic_free_slices_bo(bo);
910 return ret;
911 }
912 }
913
914 if (bo->total_slice_nents > qdev->dbc[hdr->dbc_id].nelem) {
915 qaic_free_slices_bo(bo);
916 return -ENOSPC;
917 }
918
919 bo->sliced = true;
920 bo->nr_slice = hdr->count;
921 list_add_tail(&bo->bo_list, &qdev->dbc[hdr->dbc_id].bo_lists);
922
923 return 0;
924 }
925
qaic_attach_slice_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)926 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
927 {
928 struct qaic_attach_slice_entry *slice_ent;
929 struct qaic_attach_slice *args = data;
930 int rcu_id, usr_rcu_id, qdev_rcu_id;
931 struct dma_bridge_chan *dbc;
932 struct drm_gem_object *obj;
933 struct qaic_device *qdev;
934 unsigned long arg_size;
935 struct qaic_user *usr;
936 u8 __user *user_data;
937 struct qaic_bo *bo;
938 int ret;
939
940 if (args->hdr.count == 0)
941 return -EINVAL;
942
943 arg_size = args->hdr.count * sizeof(*slice_ent);
944 if (arg_size / args->hdr.count != sizeof(*slice_ent))
945 return -EINVAL;
946
947 if (args->hdr.size == 0)
948 return -EINVAL;
949
950 if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
951 return -EINVAL;
952
953 if (args->data == 0)
954 return -EINVAL;
955
956 usr = file_priv->driver_priv;
957 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
958 if (!usr->qddev) {
959 ret = -ENODEV;
960 goto unlock_usr_srcu;
961 }
962
963 qdev = usr->qddev->qdev;
964 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
965 if (qdev->in_reset) {
966 ret = -ENODEV;
967 goto unlock_dev_srcu;
968 }
969
970 if (args->hdr.dbc_id >= qdev->num_dbc) {
971 ret = -EINVAL;
972 goto unlock_dev_srcu;
973 }
974
975 user_data = u64_to_user_ptr(args->data);
976
977 slice_ent = kzalloc(arg_size, GFP_KERNEL);
978 if (!slice_ent) {
979 ret = -EINVAL;
980 goto unlock_dev_srcu;
981 }
982
983 ret = copy_from_user(slice_ent, user_data, arg_size);
984 if (ret) {
985 ret = -EFAULT;
986 goto free_slice_ent;
987 }
988
989 ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size);
990 if (ret)
991 goto free_slice_ent;
992
993 obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
994 if (!obj) {
995 ret = -ENOENT;
996 goto free_slice_ent;
997 }
998
999 bo = to_qaic_bo(obj);
1000
1001 if (bo->sliced) {
1002 ret = -EINVAL;
1003 goto put_bo;
1004 }
1005
1006 dbc = &qdev->dbc[args->hdr.dbc_id];
1007 rcu_id = srcu_read_lock(&dbc->ch_lock);
1008 if (dbc->usr != usr) {
1009 ret = -EINVAL;
1010 goto unlock_ch_srcu;
1011 }
1012
1013 ret = qaic_prepare_bo(qdev, bo, &args->hdr);
1014 if (ret)
1015 goto unlock_ch_srcu;
1016
1017 ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
1018 if (ret)
1019 goto unprepare_bo;
1020
1021 if (args->hdr.dir == DMA_TO_DEVICE)
1022 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
1023
1024 bo->dbc = dbc;
1025 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1026 drm_gem_object_put(obj);
1027 kfree(slice_ent);
1028 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1029 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1030
1031 return 0;
1032
1033 unprepare_bo:
1034 qaic_unprepare_bo(qdev, bo);
1035 unlock_ch_srcu:
1036 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1037 put_bo:
1038 drm_gem_object_put(obj);
1039 free_slice_ent:
1040 kfree(slice_ent);
1041 unlock_dev_srcu:
1042 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1043 unlock_usr_srcu:
1044 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1045 return ret;
1046 }
1047
copy_exec_reqs(struct qaic_device * qdev,struct bo_slice * slice,u32 dbc_id,u32 head,u32 * ptail)1048 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
1049 u32 head, u32 *ptail)
1050 {
1051 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1052 struct dbc_req *reqs = slice->reqs;
1053 u32 tail = *ptail;
1054 u32 avail;
1055
1056 avail = head - tail;
1057 if (head <= tail)
1058 avail += dbc->nelem;
1059
1060 --avail;
1061
1062 if (avail < slice->nents)
1063 return -EAGAIN;
1064
1065 if (tail + slice->nents > dbc->nelem) {
1066 avail = dbc->nelem - tail;
1067 avail = min_t(u32, avail, slice->nents);
1068 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1069 sizeof(*reqs) * avail);
1070 reqs += avail;
1071 avail = slice->nents - avail;
1072 if (avail)
1073 memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
1074 } else {
1075 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1076 sizeof(*reqs) * slice->nents);
1077 }
1078
1079 *ptail = (tail + slice->nents) % dbc->nelem;
1080
1081 return 0;
1082 }
1083
1084 /*
1085 * Based on the value of resize we may only need to transmit first_n
1086 * entries and the last entry, with last_bytes to send from the last entry.
1087 * Note that first_n could be 0.
1088 */
copy_partial_exec_reqs(struct qaic_device * qdev,struct bo_slice * slice,u64 resize,u32 dbc_id,u32 head,u32 * ptail)1089 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
1090 u64 resize, u32 dbc_id, u32 head, u32 *ptail)
1091 {
1092 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1093 struct dbc_req *reqs = slice->reqs;
1094 struct dbc_req *last_req;
1095 u32 tail = *ptail;
1096 u64 total_bytes;
1097 u64 last_bytes;
1098 u32 first_n;
1099 u32 avail;
1100 int ret;
1101 int i;
1102
1103 avail = head - tail;
1104 if (head <= tail)
1105 avail += dbc->nelem;
1106
1107 --avail;
1108
1109 total_bytes = 0;
1110 for (i = 0; i < slice->nents; i++) {
1111 total_bytes += le32_to_cpu(reqs[i].len);
1112 if (total_bytes >= resize)
1113 break;
1114 }
1115
1116 if (total_bytes < resize) {
1117 /* User space should have used the full buffer path. */
1118 ret = -EINVAL;
1119 return ret;
1120 }
1121
1122 first_n = i;
1123 last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize;
1124
1125 if (avail < (first_n + 1))
1126 return -EAGAIN;
1127
1128 if (first_n) {
1129 if (tail + first_n > dbc->nelem) {
1130 avail = dbc->nelem - tail;
1131 avail = min_t(u32, avail, first_n);
1132 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1133 sizeof(*reqs) * avail);
1134 last_req = reqs + avail;
1135 avail = first_n - avail;
1136 if (avail)
1137 memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
1138 } else {
1139 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1140 sizeof(*reqs) * first_n);
1141 }
1142 }
1143
1144 /* Copy over the last entry. Here we need to adjust len to the left over
1145 * size, and set src and dst to the entry it is copied to.
1146 */
1147 last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size();
1148 memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
1149
1150 /*
1151 * last_bytes holds size of a DMA segment, maximum DMA segment size is
1152 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32
1153 * range. So, by down sizing we are not corrupting the value.
1154 */
1155 last_req->len = cpu_to_le32((u32)last_bytes);
1156 last_req->src_addr = reqs[first_n].src_addr;
1157 last_req->dest_addr = reqs[first_n].dest_addr;
1158
1159 *ptail = (tail + first_n + 1) % dbc->nelem;
1160
1161 return 0;
1162 }
1163
send_bo_list_to_device(struct qaic_device * qdev,struct drm_file * file_priv,struct qaic_execute_entry * exec,unsigned int count,bool is_partial,struct dma_bridge_chan * dbc,u32 head,u32 * tail)1164 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
1165 struct qaic_execute_entry *exec, unsigned int count,
1166 bool is_partial, struct dma_bridge_chan *dbc, u32 head,
1167 u32 *tail)
1168 {
1169 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1170 struct drm_gem_object *obj;
1171 struct bo_slice *slice;
1172 unsigned long flags;
1173 struct qaic_bo *bo;
1174 bool queued;
1175 int i, j;
1176 int ret;
1177
1178 for (i = 0; i < count; i++) {
1179 /*
1180 * ref count will be decremented when the transfer of this
1181 * buffer is complete. It is inside dbc_irq_threaded_fn().
1182 */
1183 obj = drm_gem_object_lookup(file_priv,
1184 is_partial ? pexec[i].handle : exec[i].handle);
1185 if (!obj) {
1186 ret = -ENOENT;
1187 goto failed_to_send_bo;
1188 }
1189
1190 bo = to_qaic_bo(obj);
1191
1192 if (!bo->sliced) {
1193 ret = -EINVAL;
1194 goto failed_to_send_bo;
1195 }
1196
1197 if (is_partial && pexec[i].resize > bo->size) {
1198 ret = -EINVAL;
1199 goto failed_to_send_bo;
1200 }
1201
1202 spin_lock_irqsave(&dbc->xfer_lock, flags);
1203 queued = bo->queued;
1204 bo->queued = true;
1205 if (queued) {
1206 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1207 ret = -EINVAL;
1208 goto failed_to_send_bo;
1209 }
1210
1211 bo->req_id = dbc->next_req_id++;
1212
1213 list_for_each_entry(slice, &bo->slices, slice) {
1214 /*
1215 * If this slice does not fall under the given
1216 * resize then skip this slice and continue the loop
1217 */
1218 if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset)
1219 continue;
1220
1221 for (j = 0; j < slice->nents; j++)
1222 slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
1223
1224 /*
1225 * If it is a partial execute ioctl call then check if
1226 * resize has cut this slice short then do a partial copy
1227 * else do complete copy
1228 */
1229 if (is_partial && pexec[i].resize &&
1230 pexec[i].resize < slice->offset + slice->size)
1231 ret = copy_partial_exec_reqs(qdev, slice,
1232 pexec[i].resize - slice->offset,
1233 dbc->id, head, tail);
1234 else
1235 ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
1236 if (ret) {
1237 bo->queued = false;
1238 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1239 goto failed_to_send_bo;
1240 }
1241 }
1242 reinit_completion(&bo->xfer_done);
1243 list_add_tail(&bo->xfer_list, &dbc->xfer_list);
1244 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1245 dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
1246 }
1247
1248 return 0;
1249
1250 failed_to_send_bo:
1251 if (likely(obj))
1252 drm_gem_object_put(obj);
1253 for (j = 0; j < i; j++) {
1254 spin_lock_irqsave(&dbc->xfer_lock, flags);
1255 bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
1256 obj = &bo->base;
1257 bo->queued = false;
1258 list_del(&bo->xfer_list);
1259 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1260 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1261 drm_gem_object_put(obj);
1262 }
1263 return ret;
1264 }
1265
update_profiling_data(struct drm_file * file_priv,struct qaic_execute_entry * exec,unsigned int count,bool is_partial,u64 received_ts,u64 submit_ts,u32 queue_level)1266 static void update_profiling_data(struct drm_file *file_priv,
1267 struct qaic_execute_entry *exec, unsigned int count,
1268 bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
1269 {
1270 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1271 struct drm_gem_object *obj;
1272 struct qaic_bo *bo;
1273 int i;
1274
1275 for (i = 0; i < count; i++) {
1276 /*
1277 * Since we already committed the BO to hardware, the only way
1278 * this should fail is a pending signal. We can't cancel the
1279 * submit to hardware, so we have to just skip the profiling
1280 * data. In case the signal is not fatal to the process, we
1281 * return success so that the user doesn't try to resubmit.
1282 */
1283 obj = drm_gem_object_lookup(file_priv,
1284 is_partial ? pexec[i].handle : exec[i].handle);
1285 if (!obj)
1286 break;
1287 bo = to_qaic_bo(obj);
1288 bo->perf_stats.req_received_ts = received_ts;
1289 bo->perf_stats.req_submit_ts = submit_ts;
1290 bo->perf_stats.queue_level_before = queue_level;
1291 queue_level += bo->total_slice_nents;
1292 drm_gem_object_put(obj);
1293 }
1294 }
1295
__qaic_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv,bool is_partial)1296 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
1297 bool is_partial)
1298 {
1299 struct qaic_execute *args = data;
1300 struct qaic_execute_entry *exec;
1301 struct dma_bridge_chan *dbc;
1302 int usr_rcu_id, qdev_rcu_id;
1303 struct qaic_device *qdev;
1304 struct qaic_user *usr;
1305 u8 __user *user_data;
1306 unsigned long n;
1307 u64 received_ts;
1308 u32 queue_level;
1309 u64 submit_ts;
1310 int rcu_id;
1311 u32 head;
1312 u32 tail;
1313 u64 size;
1314 int ret;
1315
1316 received_ts = ktime_get_ns();
1317
1318 size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec);
1319 n = (unsigned long)size * args->hdr.count;
1320 if (args->hdr.count == 0 || n / args->hdr.count != size)
1321 return -EINVAL;
1322
1323 user_data = u64_to_user_ptr(args->data);
1324
1325 exec = kcalloc(args->hdr.count, size, GFP_KERNEL);
1326 if (!exec)
1327 return -ENOMEM;
1328
1329 if (copy_from_user(exec, user_data, n)) {
1330 ret = -EFAULT;
1331 goto free_exec;
1332 }
1333
1334 usr = file_priv->driver_priv;
1335 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1336 if (!usr->qddev) {
1337 ret = -ENODEV;
1338 goto unlock_usr_srcu;
1339 }
1340
1341 qdev = usr->qddev->qdev;
1342 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1343 if (qdev->in_reset) {
1344 ret = -ENODEV;
1345 goto unlock_dev_srcu;
1346 }
1347
1348 if (args->hdr.dbc_id >= qdev->num_dbc) {
1349 ret = -EINVAL;
1350 goto unlock_dev_srcu;
1351 }
1352
1353 dbc = &qdev->dbc[args->hdr.dbc_id];
1354
1355 rcu_id = srcu_read_lock(&dbc->ch_lock);
1356 if (!dbc->usr || dbc->usr->handle != usr->handle) {
1357 ret = -EPERM;
1358 goto release_ch_rcu;
1359 }
1360
1361 head = readl(dbc->dbc_base + REQHP_OFF);
1362 tail = readl(dbc->dbc_base + REQTP_OFF);
1363
1364 if (head == U32_MAX || tail == U32_MAX) {
1365 /* PCI link error */
1366 ret = -ENODEV;
1367 goto release_ch_rcu;
1368 }
1369
1370 queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
1371
1372 ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
1373 head, &tail);
1374 if (ret)
1375 goto release_ch_rcu;
1376
1377 /* Finalize commit to hardware */
1378 submit_ts = ktime_get_ns();
1379 writel(tail, dbc->dbc_base + REQTP_OFF);
1380
1381 update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
1382 submit_ts, queue_level);
1383
1384 if (datapath_polling)
1385 schedule_work(&dbc->poll_work);
1386
1387 release_ch_rcu:
1388 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1389 unlock_dev_srcu:
1390 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1391 unlock_usr_srcu:
1392 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1393 free_exec:
1394 kfree(exec);
1395 return ret;
1396 }
1397
qaic_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1398 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1399 {
1400 return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
1401 }
1402
qaic_partial_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1403 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1404 {
1405 return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
1406 }
1407
1408 /*
1409 * Our interrupt handling is a bit more complicated than a simple ideal, but
1410 * sadly necessary.
1411 *
1412 * Each dbc has a completion queue. Entries in the queue correspond to DMA
1413 * requests which the device has processed. The hardware already has a built
1414 * in irq mitigation. When the device puts an entry into the queue, it will
1415 * only trigger an interrupt if the queue was empty. Therefore, when adding
1416 * the Nth event to a non-empty queue, the hardware doesn't trigger an
1417 * interrupt. This means the host doesn't get additional interrupts signaling
1418 * the same thing - the queue has something to process.
1419 * This behavior can be overridden in the DMA request.
1420 * This means that when the host receives an interrupt, it is required to
1421 * drain the queue.
1422 *
1423 * This behavior is what NAPI attempts to accomplish, although we can't use
1424 * NAPI as we don't have a netdev. We use threaded irqs instead.
1425 *
1426 * However, there is a situation where the host drains the queue fast enough
1427 * that every event causes an interrupt. Typically this is not a problem as
1428 * the rate of events would be low. However, that is not the case with
1429 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
1430 * lprnet, the host receives roughly 80k interrupts per second from the device
1431 * (per /proc/interrupts). While NAPI documentation indicates the host should
1432 * just chug along, sadly that behavior causes instability in some hosts.
1433 *
1434 * Therefore, we implement an interrupt disable scheme similar to NAPI. The
1435 * key difference is that we will delay after draining the queue for a small
1436 * time to allow additional events to come in via polling. Using the above
1437 * lprnet workload, this reduces the number of interrupts processed from
1438 * ~80k/sec to about 64 in 5 minutes and appears to solve the system
1439 * instability.
1440 */
dbc_irq_handler(int irq,void * data)1441 irqreturn_t dbc_irq_handler(int irq, void *data)
1442 {
1443 struct dma_bridge_chan *dbc = data;
1444 int rcu_id;
1445 u32 head;
1446 u32 tail;
1447
1448 rcu_id = srcu_read_lock(&dbc->ch_lock);
1449
1450 if (!dbc->usr) {
1451 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1452 return IRQ_HANDLED;
1453 }
1454
1455 head = readl(dbc->dbc_base + RSPHP_OFF);
1456 if (head == U32_MAX) { /* PCI link error */
1457 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1458 return IRQ_NONE;
1459 }
1460
1461 tail = readl(dbc->dbc_base + RSPTP_OFF);
1462 if (tail == U32_MAX) { /* PCI link error */
1463 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1464 return IRQ_NONE;
1465 }
1466
1467 if (head == tail) { /* queue empty */
1468 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1469 return IRQ_NONE;
1470 }
1471
1472 disable_irq_nosync(irq);
1473 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1474 return IRQ_WAKE_THREAD;
1475 }
1476
irq_polling_work(struct work_struct * work)1477 void irq_polling_work(struct work_struct *work)
1478 {
1479 struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work);
1480 unsigned long flags;
1481 int rcu_id;
1482 u32 head;
1483 u32 tail;
1484
1485 rcu_id = srcu_read_lock(&dbc->ch_lock);
1486
1487 while (1) {
1488 if (dbc->qdev->in_reset) {
1489 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1490 return;
1491 }
1492 if (!dbc->usr) {
1493 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1494 return;
1495 }
1496 spin_lock_irqsave(&dbc->xfer_lock, flags);
1497 if (list_empty(&dbc->xfer_list)) {
1498 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1499 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1500 return;
1501 }
1502 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1503
1504 head = readl(dbc->dbc_base + RSPHP_OFF);
1505 if (head == U32_MAX) { /* PCI link error */
1506 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1507 return;
1508 }
1509
1510 tail = readl(dbc->dbc_base + RSPTP_OFF);
1511 if (tail == U32_MAX) { /* PCI link error */
1512 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1513 return;
1514 }
1515
1516 if (head != tail) {
1517 irq_wake_thread(dbc->irq, dbc);
1518 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1519 return;
1520 }
1521
1522 cond_resched();
1523 usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
1524 }
1525 }
1526
dbc_irq_threaded_fn(int irq,void * data)1527 irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
1528 {
1529 struct dma_bridge_chan *dbc = data;
1530 int event_count = NUM_EVENTS;
1531 int delay_count = NUM_DELAYS;
1532 struct qaic_device *qdev;
1533 struct qaic_bo *bo, *i;
1534 struct dbc_rsp *rsp;
1535 unsigned long flags;
1536 int rcu_id;
1537 u16 status;
1538 u16 req_id;
1539 u32 head;
1540 u32 tail;
1541
1542 rcu_id = srcu_read_lock(&dbc->ch_lock);
1543
1544 head = readl(dbc->dbc_base + RSPHP_OFF);
1545 if (head == U32_MAX) /* PCI link error */
1546 goto error_out;
1547
1548 qdev = dbc->qdev;
1549 read_fifo:
1550
1551 if (!event_count) {
1552 event_count = NUM_EVENTS;
1553 cond_resched();
1554 }
1555
1556 /*
1557 * if this channel isn't assigned or gets unassigned during processing
1558 * we have nothing further to do
1559 */
1560 if (!dbc->usr)
1561 goto error_out;
1562
1563 tail = readl(dbc->dbc_base + RSPTP_OFF);
1564 if (tail == U32_MAX) /* PCI link error */
1565 goto error_out;
1566
1567 if (head == tail) { /* queue empty */
1568 if (delay_count) {
1569 --delay_count;
1570 usleep_range(100, 200);
1571 goto read_fifo; /* check for a new event */
1572 }
1573 goto normal_out;
1574 }
1575
1576 delay_count = NUM_DELAYS;
1577 while (head != tail) {
1578 if (!event_count)
1579 break;
1580 --event_count;
1581 rsp = dbc->rsp_q_base + head * sizeof(*rsp);
1582 req_id = le16_to_cpu(rsp->req_id);
1583 status = le16_to_cpu(rsp->status);
1584 if (status)
1585 pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
1586 spin_lock_irqsave(&dbc->xfer_lock, flags);
1587 /*
1588 * A BO can receive multiple interrupts, since a BO can be
1589 * divided into multiple slices and a buffer receives as many
1590 * interrupts as slices. So until it receives interrupts for
1591 * all the slices we cannot mark that buffer complete.
1592 */
1593 list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
1594 if (bo->req_id == req_id)
1595 bo->nr_slice_xfer_done++;
1596 else
1597 continue;
1598
1599 if (bo->nr_slice_xfer_done < bo->nr_slice)
1600 break;
1601
1602 /*
1603 * At this point we have received all the interrupts for
1604 * BO, which means BO execution is complete.
1605 */
1606 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1607 bo->nr_slice_xfer_done = 0;
1608 bo->queued = false;
1609 list_del(&bo->xfer_list);
1610 bo->perf_stats.req_processed_ts = ktime_get_ns();
1611 complete_all(&bo->xfer_done);
1612 drm_gem_object_put(&bo->base);
1613 break;
1614 }
1615 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1616 head = (head + 1) % dbc->nelem;
1617 }
1618
1619 /*
1620 * Update the head pointer of response queue and let the device know
1621 * that we have consumed elements from the queue.
1622 */
1623 writel(head, dbc->dbc_base + RSPHP_OFF);
1624
1625 /* elements might have been put in the queue while we were processing */
1626 goto read_fifo;
1627
1628 normal_out:
1629 if (likely(!datapath_polling))
1630 enable_irq(irq);
1631 else
1632 schedule_work(&dbc->poll_work);
1633 /* checking the fifo and enabling irqs is a race, missed event check */
1634 tail = readl(dbc->dbc_base + RSPTP_OFF);
1635 if (tail != U32_MAX && head != tail) {
1636 if (likely(!datapath_polling))
1637 disable_irq_nosync(irq);
1638 goto read_fifo;
1639 }
1640 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1641 return IRQ_HANDLED;
1642
1643 error_out:
1644 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1645 if (likely(!datapath_polling))
1646 enable_irq(irq);
1647 else
1648 schedule_work(&dbc->poll_work);
1649
1650 return IRQ_HANDLED;
1651 }
1652
qaic_wait_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1653 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1654 {
1655 struct qaic_wait *args = data;
1656 int usr_rcu_id, qdev_rcu_id;
1657 struct dma_bridge_chan *dbc;
1658 struct drm_gem_object *obj;
1659 struct qaic_device *qdev;
1660 unsigned long timeout;
1661 struct qaic_user *usr;
1662 struct qaic_bo *bo;
1663 int rcu_id;
1664 int ret;
1665
1666 if (args->pad != 0)
1667 return -EINVAL;
1668
1669 usr = file_priv->driver_priv;
1670 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1671 if (!usr->qddev) {
1672 ret = -ENODEV;
1673 goto unlock_usr_srcu;
1674 }
1675
1676 qdev = usr->qddev->qdev;
1677 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1678 if (qdev->in_reset) {
1679 ret = -ENODEV;
1680 goto unlock_dev_srcu;
1681 }
1682
1683 if (args->dbc_id >= qdev->num_dbc) {
1684 ret = -EINVAL;
1685 goto unlock_dev_srcu;
1686 }
1687
1688 dbc = &qdev->dbc[args->dbc_id];
1689
1690 rcu_id = srcu_read_lock(&dbc->ch_lock);
1691 if (dbc->usr != usr) {
1692 ret = -EPERM;
1693 goto unlock_ch_srcu;
1694 }
1695
1696 obj = drm_gem_object_lookup(file_priv, args->handle);
1697 if (!obj) {
1698 ret = -ENOENT;
1699 goto unlock_ch_srcu;
1700 }
1701
1702 bo = to_qaic_bo(obj);
1703 timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
1704 timeout = msecs_to_jiffies(timeout);
1705 ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
1706 if (!ret) {
1707 ret = -ETIMEDOUT;
1708 goto put_obj;
1709 }
1710 if (ret > 0)
1711 ret = 0;
1712
1713 if (!dbc->usr)
1714 ret = -EPERM;
1715
1716 put_obj:
1717 drm_gem_object_put(obj);
1718 unlock_ch_srcu:
1719 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1720 unlock_dev_srcu:
1721 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1722 unlock_usr_srcu:
1723 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1724 return ret;
1725 }
1726
qaic_perf_stats_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1727 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1728 {
1729 struct qaic_perf_stats_entry *ent = NULL;
1730 struct qaic_perf_stats *args = data;
1731 int usr_rcu_id, qdev_rcu_id;
1732 struct drm_gem_object *obj;
1733 struct qaic_device *qdev;
1734 struct qaic_user *usr;
1735 struct qaic_bo *bo;
1736 int ret, i;
1737
1738 usr = file_priv->driver_priv;
1739 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1740 if (!usr->qddev) {
1741 ret = -ENODEV;
1742 goto unlock_usr_srcu;
1743 }
1744
1745 qdev = usr->qddev->qdev;
1746 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1747 if (qdev->in_reset) {
1748 ret = -ENODEV;
1749 goto unlock_dev_srcu;
1750 }
1751
1752 if (args->hdr.dbc_id >= qdev->num_dbc) {
1753 ret = -EINVAL;
1754 goto unlock_dev_srcu;
1755 }
1756
1757 ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL);
1758 if (!ent) {
1759 ret = -EINVAL;
1760 goto unlock_dev_srcu;
1761 }
1762
1763 ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent));
1764 if (ret) {
1765 ret = -EFAULT;
1766 goto free_ent;
1767 }
1768
1769 for (i = 0; i < args->hdr.count; i++) {
1770 obj = drm_gem_object_lookup(file_priv, ent[i].handle);
1771 if (!obj) {
1772 ret = -ENOENT;
1773 goto free_ent;
1774 }
1775 bo = to_qaic_bo(obj);
1776 /*
1777 * perf stats ioctl is called before wait ioctl is complete then
1778 * the latency information is invalid.
1779 */
1780 if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
1781 ent[i].device_latency_us = 0;
1782 } else {
1783 ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
1784 bo->perf_stats.req_submit_ts), 1000);
1785 }
1786 ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
1787 bo->perf_stats.req_received_ts), 1000);
1788 ent[i].queue_level_before = bo->perf_stats.queue_level_before;
1789 ent[i].num_queue_element = bo->total_slice_nents;
1790 drm_gem_object_put(obj);
1791 }
1792
1793 if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
1794 ret = -EFAULT;
1795
1796 free_ent:
1797 kfree(ent);
1798 unlock_dev_srcu:
1799 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1800 unlock_usr_srcu:
1801 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1802 return ret;
1803 }
1804
empty_xfer_list(struct qaic_device * qdev,struct dma_bridge_chan * dbc)1805 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1806 {
1807 unsigned long flags;
1808 struct qaic_bo *bo;
1809
1810 spin_lock_irqsave(&dbc->xfer_lock, flags);
1811 while (!list_empty(&dbc->xfer_list)) {
1812 bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
1813 bo->queued = false;
1814 list_del(&bo->xfer_list);
1815 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1816 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1817 complete_all(&bo->xfer_done);
1818 drm_gem_object_put(&bo->base);
1819 spin_lock_irqsave(&dbc->xfer_lock, flags);
1820 }
1821 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1822 }
1823
disable_dbc(struct qaic_device * qdev,u32 dbc_id,struct qaic_user * usr)1824 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1825 {
1826 if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
1827 return -EPERM;
1828
1829 qdev->dbc[dbc_id].usr = NULL;
1830 synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
1831 return 0;
1832 }
1833
1834 /**
1835 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
1836 * user. Add user context back to DBC to enable it. This function trusts the
1837 * DBC ID passed and expects the DBC to be disabled.
1838 * @qdev: Qranium device handle
1839 * @dbc_id: ID of the DBC
1840 * @usr: User context
1841 */
enable_dbc(struct qaic_device * qdev,u32 dbc_id,struct qaic_user * usr)1842 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1843 {
1844 qdev->dbc[dbc_id].usr = usr;
1845 }
1846
wakeup_dbc(struct qaic_device * qdev,u32 dbc_id)1847 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
1848 {
1849 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1850
1851 dbc->usr = NULL;
1852 empty_xfer_list(qdev, dbc);
1853 synchronize_srcu(&dbc->ch_lock);
1854 /*
1855 * Threads holding channel lock, may add more elements in the xfer_list.
1856 * Flush out these elements from xfer_list.
1857 */
1858 empty_xfer_list(qdev, dbc);
1859 }
1860
release_dbc(struct qaic_device * qdev,u32 dbc_id)1861 void release_dbc(struct qaic_device *qdev, u32 dbc_id)
1862 {
1863 struct bo_slice *slice, *slice_temp;
1864 struct qaic_bo *bo, *bo_temp;
1865 struct dma_bridge_chan *dbc;
1866
1867 dbc = &qdev->dbc[dbc_id];
1868 if (!dbc->in_use)
1869 return;
1870
1871 wakeup_dbc(qdev, dbc_id);
1872
1873 dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
1874 dbc->total_size = 0;
1875 dbc->req_q_base = NULL;
1876 dbc->dma_addr = 0;
1877 dbc->nelem = 0;
1878 dbc->usr = NULL;
1879
1880 list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
1881 list_for_each_entry_safe(slice, slice_temp, &bo->slices, slice)
1882 kref_put(&slice->ref_count, free_slice);
1883 bo->sliced = false;
1884 INIT_LIST_HEAD(&bo->slices);
1885 bo->total_slice_nents = 0;
1886 bo->dir = 0;
1887 bo->dbc = NULL;
1888 bo->nr_slice = 0;
1889 bo->nr_slice_xfer_done = 0;
1890 bo->queued = false;
1891 bo->req_id = 0;
1892 init_completion(&bo->xfer_done);
1893 complete_all(&bo->xfer_done);
1894 list_del(&bo->bo_list);
1895 bo->perf_stats.req_received_ts = 0;
1896 bo->perf_stats.req_submit_ts = 0;
1897 bo->perf_stats.req_processed_ts = 0;
1898 bo->perf_stats.queue_level_before = 0;
1899 }
1900
1901 dbc->in_use = false;
1902 wake_up(&dbc->dbc_release);
1903 }
1904