1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30 #include "swap.h"
31
32 /**
33 * kfree_const - conditionally free memory
34 * @x: pointer to the memory
35 *
36 * Function calls kfree only if @x is not in .rodata section.
37 */
kfree_const(const void * x)38 void kfree_const(const void *x)
39 {
40 if (!is_kernel_rodata((unsigned long)x))
41 kfree(x);
42 }
43 EXPORT_SYMBOL(kfree_const);
44
45 /**
46 * kstrdup - allocate space for and copy an existing string
47 * @s: the string to duplicate
48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49 *
50 * Return: newly allocated copy of @s or %NULL in case of error
51 */
52 noinline
kstrdup(const char * s,gfp_t gfp)53 char *kstrdup(const char *s, gfp_t gfp)
54 {
55 size_t len;
56 char *buf;
57
58 if (!s)
59 return NULL;
60
61 len = strlen(s) + 1;
62 buf = kmalloc_track_caller(len, gfp);
63 if (buf)
64 memcpy(buf, s, len);
65 return buf;
66 }
67 EXPORT_SYMBOL(kstrdup);
68
69 /**
70 * kstrdup_const - conditionally duplicate an existing const string
71 * @s: the string to duplicate
72 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
73 *
74 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
75 * must not be passed to krealloc().
76 *
77 * Return: source string if it is in .rodata section otherwise
78 * fallback to kstrdup.
79 */
kstrdup_const(const char * s,gfp_t gfp)80 const char *kstrdup_const(const char *s, gfp_t gfp)
81 {
82 if (is_kernel_rodata((unsigned long)s))
83 return s;
84
85 return kstrdup(s, gfp);
86 }
87 EXPORT_SYMBOL(kstrdup_const);
88
89 /**
90 * kstrndup - allocate space for and copy an existing string
91 * @s: the string to duplicate
92 * @max: read at most @max chars from @s
93 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
94 *
95 * Note: Use kmemdup_nul() instead if the size is known exactly.
96 *
97 * Return: newly allocated copy of @s or %NULL in case of error
98 */
kstrndup(const char * s,size_t max,gfp_t gfp)99 char *kstrndup(const char *s, size_t max, gfp_t gfp)
100 {
101 size_t len;
102 char *buf;
103
104 if (!s)
105 return NULL;
106
107 len = strnlen(s, max);
108 buf = kmalloc_track_caller(len+1, gfp);
109 if (buf) {
110 memcpy(buf, s, len);
111 buf[len] = '\0';
112 }
113 return buf;
114 }
115 EXPORT_SYMBOL(kstrndup);
116
117 /**
118 * kmemdup - duplicate region of memory
119 *
120 * @src: memory region to duplicate
121 * @len: memory region length
122 * @gfp: GFP mask to use
123 *
124 * Return: newly allocated copy of @src or %NULL in case of error,
125 * result is physically contiguous. Use kfree() to free.
126 */
kmemdup(const void * src,size_t len,gfp_t gfp)127 void *kmemdup(const void *src, size_t len, gfp_t gfp)
128 {
129 void *p;
130
131 p = kmalloc_track_caller(len, gfp);
132 if (p)
133 memcpy(p, src, len);
134 return p;
135 }
136 EXPORT_SYMBOL(kmemdup);
137
138 /**
139 * kvmemdup - duplicate region of memory
140 *
141 * @src: memory region to duplicate
142 * @len: memory region length
143 * @gfp: GFP mask to use
144 *
145 * Return: newly allocated copy of @src or %NULL in case of error,
146 * result may be not physically contiguous. Use kvfree() to free.
147 */
kvmemdup(const void * src,size_t len,gfp_t gfp)148 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
149 {
150 void *p;
151
152 p = kvmalloc(len, gfp);
153 if (p)
154 memcpy(p, src, len);
155 return p;
156 }
157 EXPORT_SYMBOL(kvmemdup);
158
159 /**
160 * kmemdup_nul - Create a NUL-terminated string from unterminated data
161 * @s: The data to stringify
162 * @len: The size of the data
163 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
164 *
165 * Return: newly allocated copy of @s with NUL-termination or %NULL in
166 * case of error
167 */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)168 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
169 {
170 char *buf;
171
172 if (!s)
173 return NULL;
174
175 buf = kmalloc_track_caller(len + 1, gfp);
176 if (buf) {
177 memcpy(buf, s, len);
178 buf[len] = '\0';
179 }
180 return buf;
181 }
182 EXPORT_SYMBOL(kmemdup_nul);
183
184 /**
185 * memdup_user - duplicate memory region from user space
186 *
187 * @src: source address in user space
188 * @len: number of bytes to copy
189 *
190 * Return: an ERR_PTR() on failure. Result is physically
191 * contiguous, to be freed by kfree().
192 */
memdup_user(const void __user * src,size_t len)193 void *memdup_user(const void __user *src, size_t len)
194 {
195 void *p;
196
197 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
198 if (!p)
199 return ERR_PTR(-ENOMEM);
200
201 if (copy_from_user(p, src, len)) {
202 kfree(p);
203 return ERR_PTR(-EFAULT);
204 }
205
206 return p;
207 }
208 EXPORT_SYMBOL(memdup_user);
209
210 /**
211 * vmemdup_user - duplicate memory region from user space
212 *
213 * @src: source address in user space
214 * @len: number of bytes to copy
215 *
216 * Return: an ERR_PTR() on failure. Result may be not
217 * physically contiguous. Use kvfree() to free.
218 */
vmemdup_user(const void __user * src,size_t len)219 void *vmemdup_user(const void __user *src, size_t len)
220 {
221 void *p;
222
223 p = kvmalloc(len, GFP_USER);
224 if (!p)
225 return ERR_PTR(-ENOMEM);
226
227 if (copy_from_user(p, src, len)) {
228 kvfree(p);
229 return ERR_PTR(-EFAULT);
230 }
231
232 return p;
233 }
234 EXPORT_SYMBOL(vmemdup_user);
235
236 /**
237 * strndup_user - duplicate an existing string from user space
238 * @s: The string to duplicate
239 * @n: Maximum number of bytes to copy, including the trailing NUL.
240 *
241 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
242 */
strndup_user(const char __user * s,long n)243 char *strndup_user(const char __user *s, long n)
244 {
245 char *p;
246 long length;
247
248 length = strnlen_user(s, n);
249
250 if (!length)
251 return ERR_PTR(-EFAULT);
252
253 if (length > n)
254 return ERR_PTR(-EINVAL);
255
256 p = memdup_user(s, length);
257
258 if (IS_ERR(p))
259 return p;
260
261 p[length - 1] = '\0';
262
263 return p;
264 }
265 EXPORT_SYMBOL(strndup_user);
266
267 /**
268 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
269 *
270 * @src: source address in user space
271 * @len: number of bytes to copy
272 *
273 * Return: an ERR_PTR() on failure.
274 */
memdup_user_nul(const void __user * src,size_t len)275 void *memdup_user_nul(const void __user *src, size_t len)
276 {
277 char *p;
278
279 /*
280 * Always use GFP_KERNEL, since copy_from_user() can sleep and
281 * cause pagefault, which makes it pointless to use GFP_NOFS
282 * or GFP_ATOMIC.
283 */
284 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
285 if (!p)
286 return ERR_PTR(-ENOMEM);
287
288 if (copy_from_user(p, src, len)) {
289 kfree(p);
290 return ERR_PTR(-EFAULT);
291 }
292 p[len] = '\0';
293
294 return p;
295 }
296 EXPORT_SYMBOL(memdup_user_nul);
297
298 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)299 int vma_is_stack_for_current(struct vm_area_struct *vma)
300 {
301 struct task_struct * __maybe_unused t = current;
302
303 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
304 }
305
306 /*
307 * Change backing file, only valid to use during initial VMA setup.
308 */
vma_set_file(struct vm_area_struct * vma,struct file * file)309 void vma_set_file(struct vm_area_struct *vma, struct file *file)
310 {
311 /* Changing an anonymous vma with this is illegal */
312 get_file(file);
313 swap(vma->vm_file, file);
314 fput(file);
315 }
316 EXPORT_SYMBOL(vma_set_file);
317
318 #ifndef STACK_RND_MASK
319 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
320 #endif
321
randomize_stack_top(unsigned long stack_top)322 unsigned long randomize_stack_top(unsigned long stack_top)
323 {
324 unsigned long random_variable = 0;
325
326 if (current->flags & PF_RANDOMIZE) {
327 random_variable = get_random_long();
328 random_variable &= STACK_RND_MASK;
329 random_variable <<= PAGE_SHIFT;
330 }
331 #ifdef CONFIG_STACK_GROWSUP
332 return PAGE_ALIGN(stack_top) + random_variable;
333 #else
334 return PAGE_ALIGN(stack_top) - random_variable;
335 #endif
336 }
337
338 /**
339 * randomize_page - Generate a random, page aligned address
340 * @start: The smallest acceptable address the caller will take.
341 * @range: The size of the area, starting at @start, within which the
342 * random address must fall.
343 *
344 * If @start + @range would overflow, @range is capped.
345 *
346 * NOTE: Historical use of randomize_range, which this replaces, presumed that
347 * @start was already page aligned. We now align it regardless.
348 *
349 * Return: A page aligned address within [start, start + range). On error,
350 * @start is returned.
351 */
randomize_page(unsigned long start,unsigned long range)352 unsigned long randomize_page(unsigned long start, unsigned long range)
353 {
354 if (!PAGE_ALIGNED(start)) {
355 range -= PAGE_ALIGN(start) - start;
356 start = PAGE_ALIGN(start);
357 }
358
359 if (start > ULONG_MAX - range)
360 range = ULONG_MAX - start;
361
362 range >>= PAGE_SHIFT;
363
364 if (range == 0)
365 return start;
366
367 return start + (get_random_long() % range << PAGE_SHIFT);
368 }
369
370 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)371 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
372 {
373 /* Is the current task 32bit ? */
374 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
375 return randomize_page(mm->brk, SZ_32M);
376
377 return randomize_page(mm->brk, SZ_1G);
378 }
379
arch_mmap_rnd(void)380 unsigned long arch_mmap_rnd(void)
381 {
382 unsigned long rnd;
383
384 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
385 if (is_compat_task())
386 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
387 else
388 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
389 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
390
391 return rnd << PAGE_SHIFT;
392 }
393
mmap_is_legacy(struct rlimit * rlim_stack)394 static int mmap_is_legacy(struct rlimit *rlim_stack)
395 {
396 if (current->personality & ADDR_COMPAT_LAYOUT)
397 return 1;
398
399 /* On parisc the stack always grows up - so a unlimited stack should
400 * not be an indicator to use the legacy memory layout. */
401 if (rlim_stack->rlim_cur == RLIM_INFINITY &&
402 !IS_ENABLED(CONFIG_STACK_GROWSUP))
403 return 1;
404
405 return sysctl_legacy_va_layout;
406 }
407
408 /*
409 * Leave enough space between the mmap area and the stack to honour ulimit in
410 * the face of randomisation.
411 */
412 #define MIN_GAP (SZ_128M)
413 #define MAX_GAP (STACK_TOP / 6 * 5)
414
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)415 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
416 {
417 #ifdef CONFIG_STACK_GROWSUP
418 /*
419 * For an upwards growing stack the calculation is much simpler.
420 * Memory for the maximum stack size is reserved at the top of the
421 * task. mmap_base starts directly below the stack and grows
422 * downwards.
423 */
424 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
425 #else
426 unsigned long gap = rlim_stack->rlim_cur;
427 unsigned long pad = stack_guard_gap;
428
429 /* Account for stack randomization if necessary */
430 if (current->flags & PF_RANDOMIZE)
431 pad += (STACK_RND_MASK << PAGE_SHIFT);
432
433 /* Values close to RLIM_INFINITY can overflow. */
434 if (gap + pad > gap)
435 gap += pad;
436
437 if (gap < MIN_GAP && MIN_GAP < MAX_GAP)
438 gap = MIN_GAP;
439 else if (gap > MAX_GAP)
440 gap = MAX_GAP;
441
442 return PAGE_ALIGN(STACK_TOP - gap - rnd);
443 #endif
444 }
445
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)446 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
447 {
448 unsigned long random_factor = 0UL;
449
450 if (current->flags & PF_RANDOMIZE)
451 random_factor = arch_mmap_rnd();
452
453 if (mmap_is_legacy(rlim_stack)) {
454 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
455 mm->get_unmapped_area = arch_get_unmapped_area;
456 } else {
457 mm->mmap_base = mmap_base(random_factor, rlim_stack);
458 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
459 }
460 }
461 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)462 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
463 {
464 mm->mmap_base = TASK_UNMAPPED_BASE;
465 mm->get_unmapped_area = arch_get_unmapped_area;
466 }
467 #endif
468
469 /**
470 * __account_locked_vm - account locked pages to an mm's locked_vm
471 * @mm: mm to account against
472 * @pages: number of pages to account
473 * @inc: %true if @pages should be considered positive, %false if not
474 * @task: task used to check RLIMIT_MEMLOCK
475 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
476 *
477 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
478 * that mmap_lock is held as writer.
479 *
480 * Return:
481 * * 0 on success
482 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
483 */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)484 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
485 struct task_struct *task, bool bypass_rlim)
486 {
487 unsigned long locked_vm, limit;
488 int ret = 0;
489
490 mmap_assert_write_locked(mm);
491
492 locked_vm = mm->locked_vm;
493 if (inc) {
494 if (!bypass_rlim) {
495 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
496 if (locked_vm + pages > limit)
497 ret = -ENOMEM;
498 }
499 if (!ret)
500 mm->locked_vm = locked_vm + pages;
501 } else {
502 WARN_ON_ONCE(pages > locked_vm);
503 mm->locked_vm = locked_vm - pages;
504 }
505
506 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
507 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
508 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
509 ret ? " - exceeded" : "");
510
511 return ret;
512 }
513 EXPORT_SYMBOL_GPL(__account_locked_vm);
514
515 /**
516 * account_locked_vm - account locked pages to an mm's locked_vm
517 * @mm: mm to account against, may be NULL
518 * @pages: number of pages to account
519 * @inc: %true if @pages should be considered positive, %false if not
520 *
521 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
522 *
523 * Return:
524 * * 0 on success, or if mm is NULL
525 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
526 */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)527 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
528 {
529 int ret;
530
531 if (pages == 0 || !mm)
532 return 0;
533
534 mmap_write_lock(mm);
535 ret = __account_locked_vm(mm, pages, inc, current,
536 capable(CAP_IPC_LOCK));
537 mmap_write_unlock(mm);
538
539 return ret;
540 }
541 EXPORT_SYMBOL_GPL(account_locked_vm);
542
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)543 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
544 unsigned long len, unsigned long prot,
545 unsigned long flag, unsigned long pgoff)
546 {
547 unsigned long ret;
548 struct mm_struct *mm = current->mm;
549 unsigned long populate;
550 LIST_HEAD(uf);
551
552 ret = security_mmap_file(file, prot, flag);
553 if (!ret) {
554 if (mmap_write_lock_killable(mm))
555 return -EINTR;
556 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
557 &uf);
558 mmap_write_unlock(mm);
559 userfaultfd_unmap_complete(mm, &uf);
560 if (populate)
561 mm_populate(ret, populate);
562 }
563 return ret;
564 }
565
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)566 unsigned long vm_mmap(struct file *file, unsigned long addr,
567 unsigned long len, unsigned long prot,
568 unsigned long flag, unsigned long offset)
569 {
570 if (unlikely(offset + PAGE_ALIGN(len) < offset))
571 return -EINVAL;
572 if (unlikely(offset_in_page(offset)))
573 return -EINVAL;
574
575 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
576 }
577 EXPORT_SYMBOL(vm_mmap);
578
579 /**
580 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
581 * failure, fall back to non-contiguous (vmalloc) allocation.
582 * @size: size of the request.
583 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
584 * @node: numa node to allocate from
585 *
586 * Uses kmalloc to get the memory but if the allocation fails then falls back
587 * to the vmalloc allocator. Use kvfree for freeing the memory.
588 *
589 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
590 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
591 * preferable to the vmalloc fallback, due to visible performance drawbacks.
592 *
593 * Return: pointer to the allocated memory of %NULL in case of failure
594 */
kvmalloc_node(size_t size,gfp_t flags,int node)595 void *kvmalloc_node(size_t size, gfp_t flags, int node)
596 {
597 gfp_t kmalloc_flags = flags;
598 void *ret;
599
600 /*
601 * We want to attempt a large physically contiguous block first because
602 * it is less likely to fragment multiple larger blocks and therefore
603 * contribute to a long term fragmentation less than vmalloc fallback.
604 * However make sure that larger requests are not too disruptive - no
605 * OOM killer and no allocation failure warnings as we have a fallback.
606 */
607 if (size > PAGE_SIZE) {
608 kmalloc_flags |= __GFP_NOWARN;
609
610 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
611 kmalloc_flags |= __GFP_NORETRY;
612
613 /* nofail semantic is implemented by the vmalloc fallback */
614 kmalloc_flags &= ~__GFP_NOFAIL;
615 }
616
617 ret = kmalloc_node(size, kmalloc_flags, node);
618
619 /*
620 * It doesn't really make sense to fallback to vmalloc for sub page
621 * requests
622 */
623 if (ret || size <= PAGE_SIZE)
624 return ret;
625
626 /* non-sleeping allocations are not supported by vmalloc */
627 if (!gfpflags_allow_blocking(flags))
628 return NULL;
629
630 /* Don't even allow crazy sizes */
631 if (unlikely(size > INT_MAX)) {
632 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
633 return NULL;
634 }
635
636 /*
637 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
638 * since the callers already cannot assume anything
639 * about the resulting pointer, and cannot play
640 * protection games.
641 */
642 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
643 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
644 node, __builtin_return_address(0));
645 }
646 EXPORT_SYMBOL(kvmalloc_node);
647
648 /**
649 * kvfree() - Free memory.
650 * @addr: Pointer to allocated memory.
651 *
652 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
653 * It is slightly more efficient to use kfree() or vfree() if you are certain
654 * that you know which one to use.
655 *
656 * Context: Either preemptible task context or not-NMI interrupt.
657 */
kvfree(const void * addr)658 void kvfree(const void *addr)
659 {
660 if (is_vmalloc_addr(addr))
661 vfree(addr);
662 else
663 kfree(addr);
664 }
665 EXPORT_SYMBOL(kvfree);
666
667 /**
668 * kvfree_sensitive - Free a data object containing sensitive information.
669 * @addr: address of the data object to be freed.
670 * @len: length of the data object.
671 *
672 * Use the special memzero_explicit() function to clear the content of a
673 * kvmalloc'ed object containing sensitive data to make sure that the
674 * compiler won't optimize out the data clearing.
675 */
kvfree_sensitive(const void * addr,size_t len)676 void kvfree_sensitive(const void *addr, size_t len)
677 {
678 if (likely(!ZERO_OR_NULL_PTR(addr))) {
679 memzero_explicit((void *)addr, len);
680 kvfree(addr);
681 }
682 }
683 EXPORT_SYMBOL(kvfree_sensitive);
684
kvrealloc(const void * p,size_t oldsize,size_t newsize,gfp_t flags)685 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
686 {
687 void *newp;
688
689 if (oldsize >= newsize)
690 return (void *)p;
691 newp = kvmalloc(newsize, flags);
692 if (!newp)
693 return NULL;
694 memcpy(newp, p, oldsize);
695 kvfree(p);
696 return newp;
697 }
698 EXPORT_SYMBOL(kvrealloc);
699
700 /**
701 * __vmalloc_array - allocate memory for a virtually contiguous array.
702 * @n: number of elements.
703 * @size: element size.
704 * @flags: the type of memory to allocate (see kmalloc).
705 */
__vmalloc_array(size_t n,size_t size,gfp_t flags)706 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
707 {
708 size_t bytes;
709
710 if (unlikely(check_mul_overflow(n, size, &bytes)))
711 return NULL;
712 return __vmalloc(bytes, flags);
713 }
714 EXPORT_SYMBOL(__vmalloc_array);
715
716 /**
717 * vmalloc_array - allocate memory for a virtually contiguous array.
718 * @n: number of elements.
719 * @size: element size.
720 */
vmalloc_array(size_t n,size_t size)721 void *vmalloc_array(size_t n, size_t size)
722 {
723 return __vmalloc_array(n, size, GFP_KERNEL);
724 }
725 EXPORT_SYMBOL(vmalloc_array);
726
727 /**
728 * __vcalloc - allocate and zero memory for a virtually contiguous array.
729 * @n: number of elements.
730 * @size: element size.
731 * @flags: the type of memory to allocate (see kmalloc).
732 */
__vcalloc(size_t n,size_t size,gfp_t flags)733 void *__vcalloc(size_t n, size_t size, gfp_t flags)
734 {
735 return __vmalloc_array(n, size, flags | __GFP_ZERO);
736 }
737 EXPORT_SYMBOL(__vcalloc);
738
739 /**
740 * vcalloc - allocate and zero memory for a virtually contiguous array.
741 * @n: number of elements.
742 * @size: element size.
743 */
vcalloc(size_t n,size_t size)744 void *vcalloc(size_t n, size_t size)
745 {
746 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
747 }
748 EXPORT_SYMBOL(vcalloc);
749
folio_anon_vma(struct folio * folio)750 struct anon_vma *folio_anon_vma(struct folio *folio)
751 {
752 unsigned long mapping = (unsigned long)folio->mapping;
753
754 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
755 return NULL;
756 return (void *)(mapping - PAGE_MAPPING_ANON);
757 }
758
759 /**
760 * folio_mapping - Find the mapping where this folio is stored.
761 * @folio: The folio.
762 *
763 * For folios which are in the page cache, return the mapping that this
764 * page belongs to. Folios in the swap cache return the swap mapping
765 * this page is stored in (which is different from the mapping for the
766 * swap file or swap device where the data is stored).
767 *
768 * You can call this for folios which aren't in the swap cache or page
769 * cache and it will return NULL.
770 */
folio_mapping(struct folio * folio)771 struct address_space *folio_mapping(struct folio *folio)
772 {
773 struct address_space *mapping;
774
775 /* This happens if someone calls flush_dcache_page on slab page */
776 if (unlikely(folio_test_slab(folio)))
777 return NULL;
778
779 if (unlikely(folio_test_swapcache(folio)))
780 return swap_address_space(folio->swap);
781
782 mapping = folio->mapping;
783 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
784 return NULL;
785
786 return mapping;
787 }
788 EXPORT_SYMBOL(folio_mapping);
789
790 /**
791 * folio_copy - Copy the contents of one folio to another.
792 * @dst: Folio to copy to.
793 * @src: Folio to copy from.
794 *
795 * The bytes in the folio represented by @src are copied to @dst.
796 * Assumes the caller has validated that @dst is at least as large as @src.
797 * Can be called in atomic context for order-0 folios, but if the folio is
798 * larger, it may sleep.
799 */
folio_copy(struct folio * dst,struct folio * src)800 void folio_copy(struct folio *dst, struct folio *src)
801 {
802 long i = 0;
803 long nr = folio_nr_pages(src);
804
805 for (;;) {
806 copy_highpage(folio_page(dst, i), folio_page(src, i));
807 if (++i == nr)
808 break;
809 cond_resched();
810 }
811 }
812
813 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
814 int sysctl_overcommit_ratio __read_mostly = 50;
815 unsigned long sysctl_overcommit_kbytes __read_mostly;
816 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
817 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
818 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
819
overcommit_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)820 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
821 size_t *lenp, loff_t *ppos)
822 {
823 int ret;
824
825 ret = proc_dointvec(table, write, buffer, lenp, ppos);
826 if (ret == 0 && write)
827 sysctl_overcommit_kbytes = 0;
828 return ret;
829 }
830
sync_overcommit_as(struct work_struct * dummy)831 static void sync_overcommit_as(struct work_struct *dummy)
832 {
833 percpu_counter_sync(&vm_committed_as);
834 }
835
overcommit_policy_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)836 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
837 size_t *lenp, loff_t *ppos)
838 {
839 struct ctl_table t;
840 int new_policy = -1;
841 int ret;
842
843 /*
844 * The deviation of sync_overcommit_as could be big with loose policy
845 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
846 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
847 * with the strict "NEVER", and to avoid possible race condition (even
848 * though user usually won't too frequently do the switching to policy
849 * OVERCOMMIT_NEVER), the switch is done in the following order:
850 * 1. changing the batch
851 * 2. sync percpu count on each CPU
852 * 3. switch the policy
853 */
854 if (write) {
855 t = *table;
856 t.data = &new_policy;
857 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
858 if (ret || new_policy == -1)
859 return ret;
860
861 mm_compute_batch(new_policy);
862 if (new_policy == OVERCOMMIT_NEVER)
863 schedule_on_each_cpu(sync_overcommit_as);
864 sysctl_overcommit_memory = new_policy;
865 } else {
866 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
867 }
868
869 return ret;
870 }
871
overcommit_kbytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)872 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
873 size_t *lenp, loff_t *ppos)
874 {
875 int ret;
876
877 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
878 if (ret == 0 && write)
879 sysctl_overcommit_ratio = 0;
880 return ret;
881 }
882
883 /*
884 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
885 */
vm_commit_limit(void)886 unsigned long vm_commit_limit(void)
887 {
888 unsigned long allowed;
889
890 if (sysctl_overcommit_kbytes)
891 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
892 else
893 allowed = ((totalram_pages() - hugetlb_total_pages())
894 * sysctl_overcommit_ratio / 100);
895 allowed += total_swap_pages;
896
897 return allowed;
898 }
899
900 /*
901 * Make sure vm_committed_as in one cacheline and not cacheline shared with
902 * other variables. It can be updated by several CPUs frequently.
903 */
904 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
905
906 /*
907 * The global memory commitment made in the system can be a metric
908 * that can be used to drive ballooning decisions when Linux is hosted
909 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
910 * balancing memory across competing virtual machines that are hosted.
911 * Several metrics drive this policy engine including the guest reported
912 * memory commitment.
913 *
914 * The time cost of this is very low for small platforms, and for big
915 * platform like a 2S/36C/72T Skylake server, in worst case where
916 * vm_committed_as's spinlock is under severe contention, the time cost
917 * could be about 30~40 microseconds.
918 */
vm_memory_committed(void)919 unsigned long vm_memory_committed(void)
920 {
921 return percpu_counter_sum_positive(&vm_committed_as);
922 }
923 EXPORT_SYMBOL_GPL(vm_memory_committed);
924
925 /*
926 * Check that a process has enough memory to allocate a new virtual
927 * mapping. 0 means there is enough memory for the allocation to
928 * succeed and -ENOMEM implies there is not.
929 *
930 * We currently support three overcommit policies, which are set via the
931 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
932 *
933 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
934 * Additional code 2002 Jul 20 by Robert Love.
935 *
936 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
937 *
938 * Note this is a helper function intended to be used by LSMs which
939 * wish to use this logic.
940 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)941 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
942 {
943 long allowed;
944
945 vm_acct_memory(pages);
946
947 /*
948 * Sometimes we want to use more memory than we have
949 */
950 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
951 return 0;
952
953 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
954 if (pages > totalram_pages() + total_swap_pages)
955 goto error;
956 return 0;
957 }
958
959 allowed = vm_commit_limit();
960 /*
961 * Reserve some for root
962 */
963 if (!cap_sys_admin)
964 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
965
966 /*
967 * Don't let a single process grow so big a user can't recover
968 */
969 if (mm) {
970 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
971
972 allowed -= min_t(long, mm->total_vm / 32, reserve);
973 }
974
975 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
976 return 0;
977 error:
978 pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n",
979 __func__, current->pid, current->comm);
980 vm_unacct_memory(pages);
981
982 return -ENOMEM;
983 }
984
985 /**
986 * get_cmdline() - copy the cmdline value to a buffer.
987 * @task: the task whose cmdline value to copy.
988 * @buffer: the buffer to copy to.
989 * @buflen: the length of the buffer. Larger cmdline values are truncated
990 * to this length.
991 *
992 * Return: the size of the cmdline field copied. Note that the copy does
993 * not guarantee an ending NULL byte.
994 */
get_cmdline(struct task_struct * task,char * buffer,int buflen)995 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
996 {
997 int res = 0;
998 unsigned int len;
999 struct mm_struct *mm = get_task_mm(task);
1000 unsigned long arg_start, arg_end, env_start, env_end;
1001 if (!mm)
1002 goto out;
1003 if (!mm->arg_end)
1004 goto out_mm; /* Shh! No looking before we're done */
1005
1006 spin_lock(&mm->arg_lock);
1007 arg_start = mm->arg_start;
1008 arg_end = mm->arg_end;
1009 env_start = mm->env_start;
1010 env_end = mm->env_end;
1011 spin_unlock(&mm->arg_lock);
1012
1013 len = arg_end - arg_start;
1014
1015 if (len > buflen)
1016 len = buflen;
1017
1018 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1019
1020 /*
1021 * If the nul at the end of args has been overwritten, then
1022 * assume application is using setproctitle(3).
1023 */
1024 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1025 len = strnlen(buffer, res);
1026 if (len < res) {
1027 res = len;
1028 } else {
1029 len = env_end - env_start;
1030 if (len > buflen - res)
1031 len = buflen - res;
1032 res += access_process_vm(task, env_start,
1033 buffer+res, len,
1034 FOLL_FORCE);
1035 res = strnlen(buffer, res);
1036 }
1037 }
1038 out_mm:
1039 mmput(mm);
1040 out:
1041 return res;
1042 }
1043
memcmp_pages(struct page * page1,struct page * page2)1044 int __weak memcmp_pages(struct page *page1, struct page *page2)
1045 {
1046 char *addr1, *addr2;
1047 int ret;
1048
1049 addr1 = kmap_atomic(page1);
1050 addr2 = kmap_atomic(page2);
1051 ret = memcmp(addr1, addr2, PAGE_SIZE);
1052 kunmap_atomic(addr2);
1053 kunmap_atomic(addr1);
1054 return ret;
1055 }
1056
1057 #ifdef CONFIG_PRINTK
1058 /**
1059 * mem_dump_obj - Print available provenance information
1060 * @object: object for which to find provenance information.
1061 *
1062 * This function uses pr_cont(), so that the caller is expected to have
1063 * printed out whatever preamble is appropriate. The provenance information
1064 * depends on the type of object and on how much debugging is enabled.
1065 * For example, for a slab-cache object, the slab name is printed, and,
1066 * if available, the return address and stack trace from the allocation
1067 * and last free path of that object.
1068 */
mem_dump_obj(void * object)1069 void mem_dump_obj(void *object)
1070 {
1071 const char *type;
1072
1073 if (kmem_dump_obj(object))
1074 return;
1075
1076 if (vmalloc_dump_obj(object))
1077 return;
1078
1079 if (is_vmalloc_addr(object))
1080 type = "vmalloc memory";
1081 else if (virt_addr_valid(object))
1082 type = "non-slab/vmalloc memory";
1083 else if (object == NULL)
1084 type = "NULL pointer";
1085 else if (object == ZERO_SIZE_PTR)
1086 type = "zero-size pointer";
1087 else
1088 type = "non-paged memory";
1089
1090 pr_cont(" %s\n", type);
1091 }
1092 EXPORT_SYMBOL_GPL(mem_dump_obj);
1093 #endif
1094
1095 /*
1096 * A driver might set a page logically offline -- PageOffline() -- and
1097 * turn the page inaccessible in the hypervisor; after that, access to page
1098 * content can be fatal.
1099 *
1100 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1101 * pages after checking PageOffline(); however, these PFN walkers can race
1102 * with drivers that set PageOffline().
1103 *
1104 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1105 * synchronize with such drivers, achieving that a page cannot be set
1106 * PageOffline() while frozen.
1107 *
1108 * page_offline_begin()/page_offline_end() is used by drivers that care about
1109 * such races when setting a page PageOffline().
1110 */
1111 static DECLARE_RWSEM(page_offline_rwsem);
1112
page_offline_freeze(void)1113 void page_offline_freeze(void)
1114 {
1115 down_read(&page_offline_rwsem);
1116 }
1117
page_offline_thaw(void)1118 void page_offline_thaw(void)
1119 {
1120 up_read(&page_offline_rwsem);
1121 }
1122
page_offline_begin(void)1123 void page_offline_begin(void)
1124 {
1125 down_write(&page_offline_rwsem);
1126 }
1127 EXPORT_SYMBOL(page_offline_begin);
1128
page_offline_end(void)1129 void page_offline_end(void)
1130 {
1131 up_write(&page_offline_rwsem);
1132 }
1133 EXPORT_SYMBOL(page_offline_end);
1134
1135 #ifndef flush_dcache_folio
flush_dcache_folio(struct folio * folio)1136 void flush_dcache_folio(struct folio *folio)
1137 {
1138 long i, nr = folio_nr_pages(folio);
1139
1140 for (i = 0; i < nr; i++)
1141 flush_dcache_page(folio_page(folio, i));
1142 }
1143 EXPORT_SYMBOL(flush_dcache_folio);
1144 #endif
1145