1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44
45 static void coroutine_fn GRAPH_RDLOCK
46 bdrv_parent_cb_resize(BlockDriverState *bs);
47
48 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
49 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
50
51 static void GRAPH_RDLOCK
bdrv_parent_drained_begin(BlockDriverState * bs,BdrvChild * ignore)52 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
53 {
54 BdrvChild *c, *next;
55 IO_OR_GS_CODE();
56 assert_bdrv_graph_readable();
57
58 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
59 if (c == ignore) {
60 continue;
61 }
62 bdrv_parent_drained_begin_single(c);
63 }
64 }
65
bdrv_parent_drained_end_single(BdrvChild * c)66 void bdrv_parent_drained_end_single(BdrvChild *c)
67 {
68 GLOBAL_STATE_CODE();
69
70 assert(c->quiesced_parent);
71 c->quiesced_parent = false;
72
73 if (c->klass->drained_end) {
74 c->klass->drained_end(c);
75 }
76 }
77
78 static void GRAPH_RDLOCK
bdrv_parent_drained_end(BlockDriverState * bs,BdrvChild * ignore)79 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
80 {
81 BdrvChild *c;
82 IO_OR_GS_CODE();
83 assert_bdrv_graph_readable();
84
85 QLIST_FOREACH(c, &bs->parents, next_parent) {
86 if (c == ignore) {
87 continue;
88 }
89 bdrv_parent_drained_end_single(c);
90 }
91 }
92
bdrv_parent_drained_poll_single(BdrvChild * c)93 bool bdrv_parent_drained_poll_single(BdrvChild *c)
94 {
95 IO_OR_GS_CODE();
96
97 if (c->klass->drained_poll) {
98 return c->klass->drained_poll(c);
99 }
100 return false;
101 }
102
103 static bool GRAPH_RDLOCK
bdrv_parent_drained_poll(BlockDriverState * bs,BdrvChild * ignore,bool ignore_bds_parents)104 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
105 bool ignore_bds_parents)
106 {
107 BdrvChild *c, *next;
108 bool busy = false;
109 IO_OR_GS_CODE();
110 assert_bdrv_graph_readable();
111
112 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
113 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
114 continue;
115 }
116 busy |= bdrv_parent_drained_poll_single(c);
117 }
118
119 return busy;
120 }
121
bdrv_parent_drained_begin_single(BdrvChild * c)122 void bdrv_parent_drained_begin_single(BdrvChild *c)
123 {
124 GLOBAL_STATE_CODE();
125
126 assert(!c->quiesced_parent);
127 c->quiesced_parent = true;
128
129 if (c->klass->drained_begin) {
130 /* called with rdlock taken, but it doesn't really need it. */
131 c->klass->drained_begin(c);
132 }
133 }
134
bdrv_merge_limits(BlockLimits * dst,const BlockLimits * src)135 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
136 {
137 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
138 src->pdiscard_alignment);
139 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
140 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
141 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
142 src->max_hw_transfer);
143 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
144 src->opt_mem_alignment);
145 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
146 src->min_mem_alignment);
147 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
148 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
149 }
150
151 typedef struct BdrvRefreshLimitsState {
152 BlockDriverState *bs;
153 BlockLimits old_bl;
154 } BdrvRefreshLimitsState;
155
bdrv_refresh_limits_abort(void * opaque)156 static void bdrv_refresh_limits_abort(void *opaque)
157 {
158 BdrvRefreshLimitsState *s = opaque;
159
160 s->bs->bl = s->old_bl;
161 }
162
163 static TransactionActionDrv bdrv_refresh_limits_drv = {
164 .abort = bdrv_refresh_limits_abort,
165 .clean = g_free,
166 };
167
168 /* @tran is allowed to be NULL, in this case no rollback is possible. */
bdrv_refresh_limits(BlockDriverState * bs,Transaction * tran,Error ** errp)169 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
170 {
171 ERRP_GUARD();
172 BlockDriver *drv = bs->drv;
173 BdrvChild *c;
174 bool have_limits;
175
176 GLOBAL_STATE_CODE();
177
178 if (tran) {
179 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
180 *s = (BdrvRefreshLimitsState) {
181 .bs = bs,
182 .old_bl = bs->bl,
183 };
184 tran_add(tran, &bdrv_refresh_limits_drv, s);
185 }
186
187 memset(&bs->bl, 0, sizeof(bs->bl));
188
189 if (!drv) {
190 return;
191 }
192
193 /* Default alignment based on whether driver has byte interface */
194 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
195 drv->bdrv_aio_preadv ||
196 drv->bdrv_co_preadv_part) ? 1 : 512;
197
198 /* Take some limits from the children as a default */
199 have_limits = false;
200 QLIST_FOREACH(c, &bs->children, next) {
201 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
202 {
203 bdrv_merge_limits(&bs->bl, &c->bs->bl);
204 have_limits = true;
205 }
206
207 if (c->role & BDRV_CHILD_FILTERED) {
208 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
209 }
210 }
211
212 if (!have_limits) {
213 bs->bl.min_mem_alignment = 512;
214 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
215
216 /* Safe default since most protocols use readv()/writev()/etc */
217 bs->bl.max_iov = IOV_MAX;
218 }
219
220 /* Then let the driver override it */
221 if (drv->bdrv_refresh_limits) {
222 drv->bdrv_refresh_limits(bs, errp);
223 if (*errp) {
224 return;
225 }
226 }
227
228 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
229 error_setg(errp, "Driver requires too large request alignment");
230 }
231 }
232
233 /**
234 * The copy-on-read flag is actually a reference count so multiple users may
235 * use the feature without worrying about clobbering its previous state.
236 * Copy-on-read stays enabled until all users have called to disable it.
237 */
bdrv_enable_copy_on_read(BlockDriverState * bs)238 void bdrv_enable_copy_on_read(BlockDriverState *bs)
239 {
240 IO_CODE();
241 qatomic_inc(&bs->copy_on_read);
242 }
243
bdrv_disable_copy_on_read(BlockDriverState * bs)244 void bdrv_disable_copy_on_read(BlockDriverState *bs)
245 {
246 int old = qatomic_fetch_dec(&bs->copy_on_read);
247 IO_CODE();
248 assert(old >= 1);
249 }
250
251 typedef struct {
252 Coroutine *co;
253 BlockDriverState *bs;
254 bool done;
255 bool begin;
256 bool poll;
257 BdrvChild *parent;
258 } BdrvCoDrainData;
259
260 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
bdrv_drain_poll(BlockDriverState * bs,BdrvChild * ignore_parent,bool ignore_bds_parents)261 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
262 bool ignore_bds_parents)
263 {
264 GLOBAL_STATE_CODE();
265
266 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
267 return true;
268 }
269
270 if (qatomic_read(&bs->in_flight)) {
271 return true;
272 }
273
274 return false;
275 }
276
bdrv_drain_poll_top_level(BlockDriverState * bs,BdrvChild * ignore_parent)277 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
278 BdrvChild *ignore_parent)
279 {
280 GLOBAL_STATE_CODE();
281 GRAPH_RDLOCK_GUARD_MAINLOOP();
282
283 return bdrv_drain_poll(bs, ignore_parent, false);
284 }
285
286 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
287 bool poll);
288 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
289
bdrv_co_drain_bh_cb(void * opaque)290 static void bdrv_co_drain_bh_cb(void *opaque)
291 {
292 BdrvCoDrainData *data = opaque;
293 Coroutine *co = data->co;
294 BlockDriverState *bs = data->bs;
295
296 if (bs) {
297 bdrv_dec_in_flight(bs);
298 if (data->begin) {
299 bdrv_do_drained_begin(bs, data->parent, data->poll);
300 } else {
301 assert(!data->poll);
302 bdrv_do_drained_end(bs, data->parent);
303 }
304 } else {
305 assert(data->begin);
306 bdrv_drain_all_begin();
307 }
308
309 data->done = true;
310 aio_co_wake(co);
311 }
312
bdrv_co_yield_to_drain(BlockDriverState * bs,bool begin,BdrvChild * parent,bool poll)313 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
314 bool begin,
315 BdrvChild *parent,
316 bool poll)
317 {
318 BdrvCoDrainData data;
319 Coroutine *self = qemu_coroutine_self();
320
321 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
322 * other coroutines run if they were queued by aio_co_enter(). */
323
324 assert(qemu_in_coroutine());
325 data = (BdrvCoDrainData) {
326 .co = self,
327 .bs = bs,
328 .done = false,
329 .begin = begin,
330 .parent = parent,
331 .poll = poll,
332 };
333
334 if (bs) {
335 bdrv_inc_in_flight(bs);
336 }
337
338 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
339 bdrv_co_drain_bh_cb, &data);
340
341 qemu_coroutine_yield();
342 /* If we are resumed from some other event (such as an aio completion or a
343 * timer callback), it is a bug in the caller that should be fixed. */
344 assert(data.done);
345 }
346
bdrv_do_drained_begin(BlockDriverState * bs,BdrvChild * parent,bool poll)347 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
348 bool poll)
349 {
350 IO_OR_GS_CODE();
351
352 if (qemu_in_coroutine()) {
353 bdrv_co_yield_to_drain(bs, true, parent, poll);
354 return;
355 }
356
357 GLOBAL_STATE_CODE();
358
359 /* Stop things in parent-to-child order */
360 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
361 GRAPH_RDLOCK_GUARD_MAINLOOP();
362 bdrv_parent_drained_begin(bs, parent);
363 if (bs->drv && bs->drv->bdrv_drain_begin) {
364 bs->drv->bdrv_drain_begin(bs);
365 }
366 }
367
368 /*
369 * Wait for drained requests to finish.
370 *
371 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
372 * call is needed so things in this AioContext can make progress even
373 * though we don't return to the main AioContext loop - this automatically
374 * includes other nodes in the same AioContext and therefore all child
375 * nodes.
376 */
377 if (poll) {
378 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
379 }
380 }
381
bdrv_do_drained_begin_quiesce(BlockDriverState * bs,BdrvChild * parent)382 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
383 {
384 bdrv_do_drained_begin(bs, parent, false);
385 }
386
387 void coroutine_mixed_fn
bdrv_drained_begin(BlockDriverState * bs)388 bdrv_drained_begin(BlockDriverState *bs)
389 {
390 IO_OR_GS_CODE();
391 bdrv_do_drained_begin(bs, NULL, true);
392 }
393
394 /**
395 * This function does not poll, nor must any of its recursively called
396 * functions.
397 */
bdrv_do_drained_end(BlockDriverState * bs,BdrvChild * parent)398 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
399 {
400 int old_quiesce_counter;
401
402 IO_OR_GS_CODE();
403
404 if (qemu_in_coroutine()) {
405 bdrv_co_yield_to_drain(bs, false, parent, false);
406 return;
407 }
408
409 /* At this point, we should be always running in the main loop. */
410 GLOBAL_STATE_CODE();
411 assert(bs->quiesce_counter > 0);
412 GLOBAL_STATE_CODE();
413
414 /* Re-enable things in child-to-parent order */
415 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
416 if (old_quiesce_counter == 1) {
417 GRAPH_RDLOCK_GUARD_MAINLOOP();
418 if (bs->drv && bs->drv->bdrv_drain_end) {
419 bs->drv->bdrv_drain_end(bs);
420 }
421 bdrv_parent_drained_end(bs, parent);
422 }
423 }
424
bdrv_drained_end(BlockDriverState * bs)425 void bdrv_drained_end(BlockDriverState *bs)
426 {
427 IO_OR_GS_CODE();
428 bdrv_do_drained_end(bs, NULL);
429 }
430
bdrv_drain(BlockDriverState * bs)431 void bdrv_drain(BlockDriverState *bs)
432 {
433 IO_OR_GS_CODE();
434 bdrv_drained_begin(bs);
435 bdrv_drained_end(bs);
436 }
437
bdrv_drain_assert_idle(BlockDriverState * bs)438 static void bdrv_drain_assert_idle(BlockDriverState *bs)
439 {
440 BdrvChild *child, *next;
441 GLOBAL_STATE_CODE();
442 GRAPH_RDLOCK_GUARD_MAINLOOP();
443
444 assert(qatomic_read(&bs->in_flight) == 0);
445 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
446 bdrv_drain_assert_idle(child->bs);
447 }
448 }
449
450 unsigned int bdrv_drain_all_count = 0;
451
bdrv_drain_all_poll(void)452 static bool bdrv_drain_all_poll(void)
453 {
454 BlockDriverState *bs = NULL;
455 bool result = false;
456
457 GLOBAL_STATE_CODE();
458 GRAPH_RDLOCK_GUARD_MAINLOOP();
459
460 /*
461 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL,
462 * so iterating bdrv_next_all_states() is safe.
463 */
464 while ((bs = bdrv_next_all_states(bs))) {
465 result |= bdrv_drain_poll(bs, NULL, true);
466 }
467
468 return result;
469 }
470
471 /*
472 * Wait for pending requests to complete across all BlockDriverStates
473 *
474 * This function does not flush data to disk, use bdrv_flush_all() for that
475 * after calling this function.
476 *
477 * This pauses all block jobs and disables external clients. It must
478 * be paired with bdrv_drain_all_end().
479 *
480 * NOTE: no new block jobs or BlockDriverStates can be created between
481 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
482 */
bdrv_drain_all_begin_nopoll(void)483 void bdrv_drain_all_begin_nopoll(void)
484 {
485 BlockDriverState *bs = NULL;
486 GLOBAL_STATE_CODE();
487
488 /*
489 * bdrv queue is managed by record/replay,
490 * waiting for finishing the I/O requests may
491 * be infinite
492 */
493 if (replay_events_enabled()) {
494 return;
495 }
496
497 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
498 * loop AioContext, so make sure we're in the main context. */
499 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
500 assert(bdrv_drain_all_count < INT_MAX);
501 bdrv_drain_all_count++;
502
503 /* Quiesce all nodes, without polling in-flight requests yet. The graph
504 * cannot change during this loop. */
505 while ((bs = bdrv_next_all_states(bs))) {
506 bdrv_do_drained_begin(bs, NULL, false);
507 }
508 }
509
bdrv_drain_all_begin(void)510 void coroutine_mixed_fn bdrv_drain_all_begin(void)
511 {
512 BlockDriverState *bs = NULL;
513
514 if (qemu_in_coroutine()) {
515 bdrv_co_yield_to_drain(NULL, true, NULL, true);
516 return;
517 }
518
519 /*
520 * bdrv queue is managed by record/replay,
521 * waiting for finishing the I/O requests may
522 * be infinite
523 */
524 if (replay_events_enabled()) {
525 return;
526 }
527
528 bdrv_drain_all_begin_nopoll();
529
530 /* Now poll the in-flight requests */
531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
532
533 while ((bs = bdrv_next_all_states(bs))) {
534 bdrv_drain_assert_idle(bs);
535 }
536 }
537
bdrv_drain_all_end_quiesce(BlockDriverState * bs)538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
539 {
540 GLOBAL_STATE_CODE();
541
542 g_assert(bs->quiesce_counter > 0);
543 g_assert(!bs->refcnt);
544
545 while (bs->quiesce_counter) {
546 bdrv_do_drained_end(bs, NULL);
547 }
548 }
549
bdrv_drain_all_end(void)550 void bdrv_drain_all_end(void)
551 {
552 BlockDriverState *bs = NULL;
553 GLOBAL_STATE_CODE();
554
555 /*
556 * bdrv queue is managed by record/replay,
557 * waiting for finishing the I/O requests may
558 * be endless
559 */
560 if (replay_events_enabled()) {
561 return;
562 }
563
564 while ((bs = bdrv_next_all_states(bs))) {
565 bdrv_do_drained_end(bs, NULL);
566 }
567
568 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
569 assert(bdrv_drain_all_count > 0);
570 bdrv_drain_all_count--;
571 }
572
bdrv_drain_all(void)573 void bdrv_drain_all(void)
574 {
575 GLOBAL_STATE_CODE();
576 bdrv_drain_all_begin();
577 bdrv_drain_all_end();
578 }
579
580 /**
581 * Remove an active request from the tracked requests list
582 *
583 * This function should be called when a tracked request is completing.
584 */
tracked_request_end(BdrvTrackedRequest * req)585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
586 {
587 if (req->serialising) {
588 qatomic_dec(&req->bs->serialising_in_flight);
589 }
590
591 qemu_mutex_lock(&req->bs->reqs_lock);
592 QLIST_REMOVE(req, list);
593 qemu_mutex_unlock(&req->bs->reqs_lock);
594
595 /*
596 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
597 * anymore because the request has been removed from the list, so it's safe
598 * to restart the queue outside reqs_lock to minimize the critical section.
599 */
600 qemu_co_queue_restart_all(&req->wait_queue);
601 }
602
603 /**
604 * Add an active request to the tracked requests list
605 */
tracked_request_begin(BdrvTrackedRequest * req,BlockDriverState * bs,int64_t offset,int64_t bytes,enum BdrvTrackedRequestType type)606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
607 BlockDriverState *bs,
608 int64_t offset,
609 int64_t bytes,
610 enum BdrvTrackedRequestType type)
611 {
612 bdrv_check_request(offset, bytes, &error_abort);
613
614 *req = (BdrvTrackedRequest){
615 .bs = bs,
616 .offset = offset,
617 .bytes = bytes,
618 .type = type,
619 .co = qemu_coroutine_self(),
620 .serialising = false,
621 .overlap_offset = offset,
622 .overlap_bytes = bytes,
623 };
624
625 qemu_co_queue_init(&req->wait_queue);
626
627 qemu_mutex_lock(&bs->reqs_lock);
628 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
629 qemu_mutex_unlock(&bs->reqs_lock);
630 }
631
tracked_request_overlaps(BdrvTrackedRequest * req,int64_t offset,int64_t bytes)632 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
633 int64_t offset, int64_t bytes)
634 {
635 bdrv_check_request(offset, bytes, &error_abort);
636
637 /* aaaa bbbb */
638 if (offset >= req->overlap_offset + req->overlap_bytes) {
639 return false;
640 }
641 /* bbbb aaaa */
642 if (req->overlap_offset >= offset + bytes) {
643 return false;
644 }
645 return true;
646 }
647
648 /* Called with self->bs->reqs_lock held */
649 static coroutine_fn BdrvTrackedRequest *
bdrv_find_conflicting_request(BdrvTrackedRequest * self)650 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
651 {
652 BdrvTrackedRequest *req;
653
654 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
655 if (req == self || (!req->serialising && !self->serialising)) {
656 continue;
657 }
658 if (tracked_request_overlaps(req, self->overlap_offset,
659 self->overlap_bytes))
660 {
661 /*
662 * Hitting this means there was a reentrant request, for
663 * example, a block driver issuing nested requests. This must
664 * never happen since it means deadlock.
665 */
666 assert(qemu_coroutine_self() != req->co);
667
668 /*
669 * If the request is already (indirectly) waiting for us, or
670 * will wait for us as soon as it wakes up, then just go on
671 * (instead of producing a deadlock in the former case).
672 */
673 if (!req->waiting_for) {
674 return req;
675 }
676 }
677 }
678
679 return NULL;
680 }
681
682 /* Called with self->bs->reqs_lock held */
683 static void coroutine_fn
bdrv_wait_serialising_requests_locked(BdrvTrackedRequest * self)684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
685 {
686 BdrvTrackedRequest *req;
687
688 while ((req = bdrv_find_conflicting_request(self))) {
689 self->waiting_for = req;
690 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
691 self->waiting_for = NULL;
692 }
693 }
694
695 /* Called with req->bs->reqs_lock held */
tracked_request_set_serialising(BdrvTrackedRequest * req,uint64_t align)696 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
697 uint64_t align)
698 {
699 int64_t overlap_offset = req->offset & ~(align - 1);
700 int64_t overlap_bytes =
701 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
702
703 bdrv_check_request(req->offset, req->bytes, &error_abort);
704
705 if (!req->serialising) {
706 qatomic_inc(&req->bs->serialising_in_flight);
707 req->serialising = true;
708 }
709
710 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
711 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
712 }
713
714 /**
715 * Return the tracked request on @bs for the current coroutine, or
716 * NULL if there is none.
717 */
bdrv_co_get_self_request(BlockDriverState * bs)718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
719 {
720 BdrvTrackedRequest *req;
721 Coroutine *self = qemu_coroutine_self();
722 IO_CODE();
723
724 QLIST_FOREACH(req, &bs->tracked_requests, list) {
725 if (req->co == self) {
726 return req;
727 }
728 }
729
730 return NULL;
731 }
732
733 /**
734 * Round a region to subcluster (if supported) or cluster boundaries
735 */
736 void coroutine_fn GRAPH_RDLOCK
bdrv_round_to_subclusters(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * align_offset,int64_t * align_bytes)737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
738 int64_t *align_offset, int64_t *align_bytes)
739 {
740 BlockDriverInfo bdi;
741 IO_CODE();
742 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
743 *align_offset = offset;
744 *align_bytes = bytes;
745 } else {
746 int64_t c = bdi.subcluster_size;
747 *align_offset = QEMU_ALIGN_DOWN(offset, c);
748 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
749 }
750 }
751
bdrv_get_cluster_size(BlockDriverState * bs)752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
753 {
754 BlockDriverInfo bdi;
755 int ret;
756
757 ret = bdrv_co_get_info(bs, &bdi);
758 if (ret < 0 || bdi.cluster_size == 0) {
759 return bs->bl.request_alignment;
760 } else {
761 return bdi.cluster_size;
762 }
763 }
764
bdrv_inc_in_flight(BlockDriverState * bs)765 void bdrv_inc_in_flight(BlockDriverState *bs)
766 {
767 IO_CODE();
768 qatomic_inc(&bs->in_flight);
769 }
770
bdrv_wakeup(BlockDriverState * bs)771 void bdrv_wakeup(BlockDriverState *bs)
772 {
773 IO_CODE();
774 aio_wait_kick();
775 }
776
bdrv_dec_in_flight(BlockDriverState * bs)777 void bdrv_dec_in_flight(BlockDriverState *bs)
778 {
779 IO_CODE();
780 qatomic_dec(&bs->in_flight);
781 bdrv_wakeup(bs);
782 }
783
784 static void coroutine_fn
bdrv_wait_serialising_requests(BdrvTrackedRequest * self)785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
786 {
787 BlockDriverState *bs = self->bs;
788
789 if (!qatomic_read(&bs->serialising_in_flight)) {
790 return;
791 }
792
793 qemu_mutex_lock(&bs->reqs_lock);
794 bdrv_wait_serialising_requests_locked(self);
795 qemu_mutex_unlock(&bs->reqs_lock);
796 }
797
bdrv_make_request_serialising(BdrvTrackedRequest * req,uint64_t align)798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
799 uint64_t align)
800 {
801 IO_CODE();
802
803 qemu_mutex_lock(&req->bs->reqs_lock);
804
805 tracked_request_set_serialising(req, align);
806 bdrv_wait_serialising_requests_locked(req);
807
808 qemu_mutex_unlock(&req->bs->reqs_lock);
809 }
810
bdrv_check_qiov_request(int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,Error ** errp)811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
812 QEMUIOVector *qiov, size_t qiov_offset,
813 Error **errp)
814 {
815 /*
816 * Check generic offset/bytes correctness
817 */
818
819 if (offset < 0) {
820 error_setg(errp, "offset is negative: %" PRIi64, offset);
821 return -EIO;
822 }
823
824 if (bytes < 0) {
825 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
826 return -EIO;
827 }
828
829 if (bytes > BDRV_MAX_LENGTH) {
830 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
831 bytes, BDRV_MAX_LENGTH);
832 return -EIO;
833 }
834
835 if (offset > BDRV_MAX_LENGTH) {
836 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
837 offset, BDRV_MAX_LENGTH);
838 return -EIO;
839 }
840
841 if (offset > BDRV_MAX_LENGTH - bytes) {
842 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
843 "exceeds maximum(%" PRIi64 ")", offset, bytes,
844 BDRV_MAX_LENGTH);
845 return -EIO;
846 }
847
848 if (!qiov) {
849 return 0;
850 }
851
852 /*
853 * Check qiov and qiov_offset
854 */
855
856 if (qiov_offset > qiov->size) {
857 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
858 qiov_offset, qiov->size);
859 return -EIO;
860 }
861
862 if (bytes > qiov->size - qiov_offset) {
863 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
864 "vector size(%zu)", bytes, qiov_offset, qiov->size);
865 return -EIO;
866 }
867
868 return 0;
869 }
870
bdrv_check_request(int64_t offset,int64_t bytes,Error ** errp)871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
872 {
873 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
874 }
875
bdrv_check_request32(int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)876 static int bdrv_check_request32(int64_t offset, int64_t bytes,
877 QEMUIOVector *qiov, size_t qiov_offset)
878 {
879 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
880 if (ret < 0) {
881 return ret;
882 }
883
884 if (bytes > BDRV_REQUEST_MAX_BYTES) {
885 return -EIO;
886 }
887
888 return 0;
889 }
890
891 /*
892 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
893 * The operation is sped up by checking the block status and only writing
894 * zeroes to the device if they currently do not return zeroes. Optional
895 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
896 * BDRV_REQ_FUA).
897 *
898 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
899 */
bdrv_make_zero(BdrvChild * child,BdrvRequestFlags flags)900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
901 {
902 int ret;
903 int64_t target_size, bytes, offset = 0;
904 BlockDriverState *bs = child->bs;
905 IO_CODE();
906
907 target_size = bdrv_getlength(bs);
908 if (target_size < 0) {
909 return target_size;
910 }
911
912 for (;;) {
913 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
914 if (bytes <= 0) {
915 return 0;
916 }
917 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
918 if (ret < 0) {
919 return ret;
920 }
921 if (ret & BDRV_BLOCK_ZERO) {
922 offset += bytes;
923 continue;
924 }
925 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
926 if (ret < 0) {
927 return ret;
928 }
929 offset += bytes;
930 }
931 }
932
933 /*
934 * Writes to the file and ensures that no writes are reordered across this
935 * request (acts as a barrier)
936 *
937 * Returns 0 on success, -errno in error cases.
938 */
bdrv_co_pwrite_sync(BdrvChild * child,int64_t offset,int64_t bytes,const void * buf,BdrvRequestFlags flags)939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
940 int64_t bytes, const void *buf,
941 BdrvRequestFlags flags)
942 {
943 int ret;
944 IO_CODE();
945 assert_bdrv_graph_readable();
946
947 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
948 if (ret < 0) {
949 return ret;
950 }
951
952 ret = bdrv_co_flush(child->bs);
953 if (ret < 0) {
954 return ret;
955 }
956
957 return 0;
958 }
959
960 typedef struct CoroutineIOCompletion {
961 Coroutine *coroutine;
962 int ret;
963 } CoroutineIOCompletion;
964
bdrv_co_io_em_complete(void * opaque,int ret)965 static void bdrv_co_io_em_complete(void *opaque, int ret)
966 {
967 CoroutineIOCompletion *co = opaque;
968
969 co->ret = ret;
970 aio_co_wake(co->coroutine);
971 }
972
973 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_preadv(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,int flags)974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
975 QEMUIOVector *qiov, size_t qiov_offset, int flags)
976 {
977 BlockDriver *drv = bs->drv;
978 int64_t sector_num;
979 unsigned int nb_sectors;
980 QEMUIOVector local_qiov;
981 int ret;
982 assert_bdrv_graph_readable();
983
984 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
985 assert(!(flags & ~bs->supported_read_flags));
986
987 if (!drv) {
988 return -ENOMEDIUM;
989 }
990
991 if (drv->bdrv_co_preadv_part) {
992 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
993 flags);
994 }
995
996 if (qiov_offset > 0 || bytes != qiov->size) {
997 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
998 qiov = &local_qiov;
999 }
1000
1001 if (drv->bdrv_co_preadv) {
1002 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1003 goto out;
1004 }
1005
1006 if (drv->bdrv_aio_preadv) {
1007 BlockAIOCB *acb;
1008 CoroutineIOCompletion co = {
1009 .coroutine = qemu_coroutine_self(),
1010 };
1011
1012 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1013 bdrv_co_io_em_complete, &co);
1014 if (acb == NULL) {
1015 ret = -EIO;
1016 goto out;
1017 } else {
1018 qemu_coroutine_yield();
1019 ret = co.ret;
1020 goto out;
1021 }
1022 }
1023
1024 sector_num = offset >> BDRV_SECTOR_BITS;
1025 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1026
1027 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1028 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1029 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1030 assert(drv->bdrv_co_readv);
1031
1032 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1033
1034 out:
1035 if (qiov == &local_qiov) {
1036 qemu_iovec_destroy(&local_qiov);
1037 }
1038
1039 return ret;
1040 }
1041
1042 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_pwritev(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1044 QEMUIOVector *qiov, size_t qiov_offset,
1045 BdrvRequestFlags flags)
1046 {
1047 BlockDriver *drv = bs->drv;
1048 bool emulate_fua = false;
1049 int64_t sector_num;
1050 unsigned int nb_sectors;
1051 QEMUIOVector local_qiov;
1052 int ret;
1053 assert_bdrv_graph_readable();
1054
1055 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1056
1057 if (!drv) {
1058 return -ENOMEDIUM;
1059 }
1060
1061 if ((flags & BDRV_REQ_FUA) &&
1062 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1063 flags &= ~BDRV_REQ_FUA;
1064 emulate_fua = true;
1065 }
1066
1067 flags &= bs->supported_write_flags;
1068
1069 if (drv->bdrv_co_pwritev_part) {
1070 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1071 flags);
1072 goto emulate_flags;
1073 }
1074
1075 if (qiov_offset > 0 || bytes != qiov->size) {
1076 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1077 qiov = &local_qiov;
1078 }
1079
1080 if (drv->bdrv_co_pwritev) {
1081 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1082 goto emulate_flags;
1083 }
1084
1085 if (drv->bdrv_aio_pwritev) {
1086 BlockAIOCB *acb;
1087 CoroutineIOCompletion co = {
1088 .coroutine = qemu_coroutine_self(),
1089 };
1090
1091 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1092 bdrv_co_io_em_complete, &co);
1093 if (acb == NULL) {
1094 ret = -EIO;
1095 } else {
1096 qemu_coroutine_yield();
1097 ret = co.ret;
1098 }
1099 goto emulate_flags;
1100 }
1101
1102 sector_num = offset >> BDRV_SECTOR_BITS;
1103 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1104
1105 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1106 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1107 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1108
1109 assert(drv->bdrv_co_writev);
1110 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1111
1112 emulate_flags:
1113 if (ret == 0 && emulate_fua) {
1114 ret = bdrv_co_flush(bs);
1115 }
1116
1117 if (qiov == &local_qiov) {
1118 qemu_iovec_destroy(&local_qiov);
1119 }
1120
1121 return ret;
1122 }
1123
1124 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_pwritev_compressed(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)1125 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1126 int64_t bytes, QEMUIOVector *qiov,
1127 size_t qiov_offset)
1128 {
1129 BlockDriver *drv = bs->drv;
1130 QEMUIOVector local_qiov;
1131 int ret;
1132 assert_bdrv_graph_readable();
1133
1134 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1135
1136 if (!drv) {
1137 return -ENOMEDIUM;
1138 }
1139
1140 if (!block_driver_can_compress(drv)) {
1141 return -ENOTSUP;
1142 }
1143
1144 if (drv->bdrv_co_pwritev_compressed_part) {
1145 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1146 qiov, qiov_offset);
1147 }
1148
1149 if (qiov_offset == 0) {
1150 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1151 }
1152
1153 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1154 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1155 qemu_iovec_destroy(&local_qiov);
1156
1157 return ret;
1158 }
1159
1160 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_copy_on_readv(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,int flags)1161 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1162 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1163 {
1164 BlockDriverState *bs = child->bs;
1165
1166 /* Perform I/O through a temporary buffer so that users who scribble over
1167 * their read buffer while the operation is in progress do not end up
1168 * modifying the image file. This is critical for zero-copy guest I/O
1169 * where anything might happen inside guest memory.
1170 */
1171 void *bounce_buffer = NULL;
1172
1173 BlockDriver *drv = bs->drv;
1174 int64_t align_offset;
1175 int64_t align_bytes;
1176 int64_t skip_bytes;
1177 int ret;
1178 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1179 BDRV_REQUEST_MAX_BYTES);
1180 int64_t progress = 0;
1181 bool skip_write;
1182
1183 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1184
1185 if (!drv) {
1186 return -ENOMEDIUM;
1187 }
1188
1189 /*
1190 * Do not write anything when the BDS is inactive. That is not
1191 * allowed, and it would not help.
1192 */
1193 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1194
1195 /* FIXME We cannot require callers to have write permissions when all they
1196 * are doing is a read request. If we did things right, write permissions
1197 * would be obtained anyway, but internally by the copy-on-read code. As
1198 * long as it is implemented here rather than in a separate filter driver,
1199 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1200 * it could request permissions. Therefore we have to bypass the permission
1201 * system for the moment. */
1202 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1203
1204 /* Cover entire cluster so no additional backing file I/O is required when
1205 * allocating cluster in the image file. Note that this value may exceed
1206 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1207 * is one reason we loop rather than doing it all at once.
1208 */
1209 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1210 skip_bytes = offset - align_offset;
1211
1212 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1213 align_offset, align_bytes);
1214
1215 while (align_bytes) {
1216 int64_t pnum;
1217
1218 if (skip_write) {
1219 ret = 1; /* "already allocated", so nothing will be copied */
1220 pnum = MIN(align_bytes, max_transfer);
1221 } else {
1222 ret = bdrv_co_is_allocated(bs, align_offset,
1223 MIN(align_bytes, max_transfer), &pnum);
1224 if (ret < 0) {
1225 /*
1226 * Safe to treat errors in querying allocation as if
1227 * unallocated; we'll probably fail again soon on the
1228 * read, but at least that will set a decent errno.
1229 */
1230 pnum = MIN(align_bytes, max_transfer);
1231 }
1232
1233 /* Stop at EOF if the image ends in the middle of the cluster */
1234 if (ret == 0 && pnum == 0) {
1235 assert(progress >= bytes);
1236 break;
1237 }
1238
1239 assert(skip_bytes < pnum);
1240 }
1241
1242 if (ret <= 0) {
1243 QEMUIOVector local_qiov;
1244
1245 /* Must copy-on-read; use the bounce buffer */
1246 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1247 if (!bounce_buffer) {
1248 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1249 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1250 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1251
1252 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1253 if (!bounce_buffer) {
1254 ret = -ENOMEM;
1255 goto err;
1256 }
1257 }
1258 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1259
1260 ret = bdrv_driver_preadv(bs, align_offset, pnum,
1261 &local_qiov, 0, 0);
1262 if (ret < 0) {
1263 goto err;
1264 }
1265
1266 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1267 if (drv->bdrv_co_pwrite_zeroes &&
1268 buffer_is_zero(bounce_buffer, pnum)) {
1269 /* FIXME: Should we (perhaps conditionally) be setting
1270 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1271 * that still correctly reads as zero? */
1272 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1273 BDRV_REQ_WRITE_UNCHANGED);
1274 } else {
1275 /* This does not change the data on the disk, it is not
1276 * necessary to flush even in cache=writethrough mode.
1277 */
1278 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1279 &local_qiov, 0,
1280 BDRV_REQ_WRITE_UNCHANGED);
1281 }
1282
1283 if (ret < 0) {
1284 /* It might be okay to ignore write errors for guest
1285 * requests. If this is a deliberate copy-on-read
1286 * then we don't want to ignore the error. Simply
1287 * report it in all cases.
1288 */
1289 goto err;
1290 }
1291
1292 if (!(flags & BDRV_REQ_PREFETCH)) {
1293 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1294 bounce_buffer + skip_bytes,
1295 MIN(pnum - skip_bytes, bytes - progress));
1296 }
1297 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1298 /* Read directly into the destination */
1299 ret = bdrv_driver_preadv(bs, offset + progress,
1300 MIN(pnum - skip_bytes, bytes - progress),
1301 qiov, qiov_offset + progress, 0);
1302 if (ret < 0) {
1303 goto err;
1304 }
1305 }
1306
1307 align_offset += pnum;
1308 align_bytes -= pnum;
1309 progress += pnum - skip_bytes;
1310 skip_bytes = 0;
1311 }
1312 ret = 0;
1313
1314 err:
1315 qemu_vfree(bounce_buffer);
1316 return ret;
1317 }
1318
1319 /*
1320 * Forwards an already correctly aligned request to the BlockDriver. This
1321 * handles copy on read, zeroing after EOF, and fragmentation of large
1322 * reads; any other features must be implemented by the caller.
1323 */
1324 static int coroutine_fn GRAPH_RDLOCK
bdrv_aligned_preadv(BdrvChild * child,BdrvTrackedRequest * req,int64_t offset,int64_t bytes,int64_t align,QEMUIOVector * qiov,size_t qiov_offset,int flags)1325 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1326 int64_t offset, int64_t bytes, int64_t align,
1327 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1328 {
1329 BlockDriverState *bs = child->bs;
1330 int64_t total_bytes, max_bytes;
1331 int ret = 0;
1332 int64_t bytes_remaining = bytes;
1333 int max_transfer;
1334
1335 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1336 assert(is_power_of_2(align));
1337 assert((offset & (align - 1)) == 0);
1338 assert((bytes & (align - 1)) == 0);
1339 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1340 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1341 align);
1342
1343 /*
1344 * TODO: We would need a per-BDS .supported_read_flags and
1345 * potential fallback support, if we ever implement any read flags
1346 * to pass through to drivers. For now, there aren't any
1347 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1348 */
1349 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1350 BDRV_REQ_REGISTERED_BUF)));
1351
1352 /* Handle Copy on Read and associated serialisation */
1353 if (flags & BDRV_REQ_COPY_ON_READ) {
1354 /* If we touch the same cluster it counts as an overlap. This
1355 * guarantees that allocating writes will be serialized and not race
1356 * with each other for the same cluster. For example, in copy-on-read
1357 * it ensures that the CoR read and write operations are atomic and
1358 * guest writes cannot interleave between them. */
1359 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1360 } else {
1361 bdrv_wait_serialising_requests(req);
1362 }
1363
1364 if (flags & BDRV_REQ_COPY_ON_READ) {
1365 int64_t pnum;
1366
1367 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1368 flags &= ~BDRV_REQ_COPY_ON_READ;
1369
1370 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum);
1371 if (ret < 0) {
1372 goto out;
1373 }
1374
1375 if (!ret || pnum != bytes) {
1376 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1377 qiov, qiov_offset, flags);
1378 goto out;
1379 } else if (flags & BDRV_REQ_PREFETCH) {
1380 goto out;
1381 }
1382 }
1383
1384 /* Forward the request to the BlockDriver, possibly fragmenting it */
1385 total_bytes = bdrv_co_getlength(bs);
1386 if (total_bytes < 0) {
1387 ret = total_bytes;
1388 goto out;
1389 }
1390
1391 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1392
1393 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1394 if (bytes <= max_bytes && bytes <= max_transfer) {
1395 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1396 goto out;
1397 }
1398
1399 while (bytes_remaining) {
1400 int64_t num;
1401
1402 if (max_bytes) {
1403 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1404 assert(num);
1405
1406 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1407 num, qiov,
1408 qiov_offset + bytes - bytes_remaining,
1409 flags);
1410 max_bytes -= num;
1411 } else {
1412 num = bytes_remaining;
1413 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1414 0, bytes_remaining);
1415 }
1416 if (ret < 0) {
1417 goto out;
1418 }
1419 bytes_remaining -= num;
1420 }
1421
1422 out:
1423 return ret < 0 ? ret : 0;
1424 }
1425
1426 /*
1427 * Request padding
1428 *
1429 * |<---- align ----->| |<----- align ---->|
1430 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1431 * | | | | | |
1432 * -*----------$-------*-------- ... --------*-----$------------*---
1433 * | | | | | |
1434 * | offset | | end |
1435 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1436 * [buf ... ) [tail_buf )
1437 *
1438 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1439 * is placed at the beginning of @buf and @tail at the @end.
1440 *
1441 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1442 * around tail, if tail exists.
1443 *
1444 * @merge_reads is true for small requests,
1445 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1446 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1447 *
1448 * @write is true for write requests, false for read requests.
1449 *
1450 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1451 * merge existing vector elements into a single one. @collapse_bounce_buf acts
1452 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
1453 * I/O vector elements so for read requests, the data can be copied back after
1454 * the read is done.
1455 */
1456 typedef struct BdrvRequestPadding {
1457 uint8_t *buf;
1458 size_t buf_len;
1459 uint8_t *tail_buf;
1460 size_t head;
1461 size_t tail;
1462 bool merge_reads;
1463 bool write;
1464 QEMUIOVector local_qiov;
1465
1466 uint8_t *collapse_bounce_buf;
1467 size_t collapse_len;
1468 QEMUIOVector pre_collapse_qiov;
1469 } BdrvRequestPadding;
1470
bdrv_init_padding(BlockDriverState * bs,int64_t offset,int64_t bytes,bool write,BdrvRequestPadding * pad)1471 static bool bdrv_init_padding(BlockDriverState *bs,
1472 int64_t offset, int64_t bytes,
1473 bool write,
1474 BdrvRequestPadding *pad)
1475 {
1476 int64_t align = bs->bl.request_alignment;
1477 int64_t sum;
1478
1479 bdrv_check_request(offset, bytes, &error_abort);
1480 assert(align <= INT_MAX); /* documented in block/block_int.h */
1481 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1482
1483 memset(pad, 0, sizeof(*pad));
1484
1485 pad->head = offset & (align - 1);
1486 pad->tail = ((offset + bytes) & (align - 1));
1487 if (pad->tail) {
1488 pad->tail = align - pad->tail;
1489 }
1490
1491 if (!pad->head && !pad->tail) {
1492 return false;
1493 }
1494
1495 assert(bytes); /* Nothing good in aligning zero-length requests */
1496
1497 sum = pad->head + bytes + pad->tail;
1498 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1499 pad->buf = qemu_blockalign(bs, pad->buf_len);
1500 pad->merge_reads = sum == pad->buf_len;
1501 if (pad->tail) {
1502 pad->tail_buf = pad->buf + pad->buf_len - align;
1503 }
1504
1505 pad->write = write;
1506
1507 return true;
1508 }
1509
1510 static int coroutine_fn GRAPH_RDLOCK
bdrv_padding_rmw_read(BdrvChild * child,BdrvTrackedRequest * req,BdrvRequestPadding * pad,bool zero_middle)1511 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1512 BdrvRequestPadding *pad, bool zero_middle)
1513 {
1514 QEMUIOVector local_qiov;
1515 BlockDriverState *bs = child->bs;
1516 uint64_t align = bs->bl.request_alignment;
1517 int ret;
1518
1519 assert(req->serialising && pad->buf);
1520
1521 if (pad->head || pad->merge_reads) {
1522 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1523
1524 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1525
1526 if (pad->head) {
1527 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1528 }
1529 if (pad->merge_reads && pad->tail) {
1530 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1531 }
1532 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1533 align, &local_qiov, 0, 0);
1534 if (ret < 0) {
1535 return ret;
1536 }
1537 if (pad->head) {
1538 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1539 }
1540 if (pad->merge_reads && pad->tail) {
1541 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1542 }
1543
1544 if (pad->merge_reads) {
1545 goto zero_mem;
1546 }
1547 }
1548
1549 if (pad->tail) {
1550 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1551
1552 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1553 ret = bdrv_aligned_preadv(
1554 child, req,
1555 req->overlap_offset + req->overlap_bytes - align,
1556 align, align, &local_qiov, 0, 0);
1557 if (ret < 0) {
1558 return ret;
1559 }
1560 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1561 }
1562
1563 zero_mem:
1564 if (zero_middle) {
1565 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1566 }
1567
1568 return 0;
1569 }
1570
1571 /**
1572 * Free *pad's associated buffers, and perform any necessary finalization steps.
1573 */
bdrv_padding_finalize(BdrvRequestPadding * pad)1574 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1575 {
1576 if (pad->collapse_bounce_buf) {
1577 if (!pad->write) {
1578 /*
1579 * If padding required elements in the vector to be collapsed into a
1580 * bounce buffer, copy the bounce buffer content back
1581 */
1582 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1583 pad->collapse_bounce_buf, pad->collapse_len);
1584 }
1585 qemu_vfree(pad->collapse_bounce_buf);
1586 qemu_iovec_destroy(&pad->pre_collapse_qiov);
1587 }
1588 if (pad->buf) {
1589 qemu_vfree(pad->buf);
1590 qemu_iovec_destroy(&pad->local_qiov);
1591 }
1592 memset(pad, 0, sizeof(*pad));
1593 }
1594
1595 /*
1596 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1597 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1598 *
1599 * To ensure this, when necessary, the first two or three elements of @iov are
1600 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1601 * bounce buffer in pad->local_qiov.
1602 *
1603 * After performing a read request, the data from the bounce buffer must be
1604 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1605 */
bdrv_create_padded_qiov(BlockDriverState * bs,BdrvRequestPadding * pad,struct iovec * iov,int niov,size_t iov_offset,size_t bytes)1606 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1607 BdrvRequestPadding *pad,
1608 struct iovec *iov, int niov,
1609 size_t iov_offset, size_t bytes)
1610 {
1611 int padded_niov, surplus_count, collapse_count;
1612
1613 /* Assert this invariant */
1614 assert(niov <= IOV_MAX);
1615
1616 /*
1617 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
1618 * to the guest is not ideal, but there is little else we can do. At least
1619 * this will practically never happen on 64-bit systems.
1620 */
1621 if (SIZE_MAX - pad->head < bytes ||
1622 SIZE_MAX - pad->head - bytes < pad->tail)
1623 {
1624 return -EINVAL;
1625 }
1626
1627 /* Length of the resulting IOV if we just concatenated everything */
1628 padded_niov = !!pad->head + niov + !!pad->tail;
1629
1630 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1631
1632 if (pad->head) {
1633 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1634 }
1635
1636 /*
1637 * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1638 * Instead, merge the first two or three elements of @iov to reduce the
1639 * number of vector elements as necessary.
1640 */
1641 if (padded_niov > IOV_MAX) {
1642 /*
1643 * Only head and tail can have lead to the number of entries exceeding
1644 * IOV_MAX, so we can exceed it by the head and tail at most. We need
1645 * to reduce the number of elements by `surplus_count`, so we merge that
1646 * many elements plus one into one element.
1647 */
1648 surplus_count = padded_niov - IOV_MAX;
1649 assert(surplus_count <= !!pad->head + !!pad->tail);
1650 collapse_count = surplus_count + 1;
1651
1652 /*
1653 * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1654 * advance `iov` (and associated variables) by those elements.
1655 */
1656 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1657 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1658 collapse_count, iov_offset, SIZE_MAX);
1659 iov += collapse_count;
1660 iov_offset = 0;
1661 niov -= collapse_count;
1662 bytes -= pad->pre_collapse_qiov.size;
1663
1664 /*
1665 * Construct the bounce buffer to match the length of the to-collapse
1666 * vector elements, and for write requests, initialize it with the data
1667 * from those elements. Then add it to `pad->local_qiov`.
1668 */
1669 pad->collapse_len = pad->pre_collapse_qiov.size;
1670 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1671 if (pad->write) {
1672 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1673 pad->collapse_bounce_buf, pad->collapse_len);
1674 }
1675 qemu_iovec_add(&pad->local_qiov,
1676 pad->collapse_bounce_buf, pad->collapse_len);
1677 }
1678
1679 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1680
1681 if (pad->tail) {
1682 qemu_iovec_add(&pad->local_qiov,
1683 pad->buf + pad->buf_len - pad->tail, pad->tail);
1684 }
1685
1686 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1687 return 0;
1688 }
1689
1690 /*
1691 * bdrv_pad_request
1692 *
1693 * Exchange request parameters with padded request if needed. Don't include RMW
1694 * read of padding, bdrv_padding_rmw_read() should be called separately if
1695 * needed.
1696 *
1697 * @write is true for write requests, false for read requests.
1698 *
1699 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1700 * - on function start they represent original request
1701 * - on failure or when padding is not needed they are unchanged
1702 * - on success when padding is needed they represent padded request
1703 */
bdrv_pad_request(BlockDriverState * bs,QEMUIOVector ** qiov,size_t * qiov_offset,int64_t * offset,int64_t * bytes,bool write,BdrvRequestPadding * pad,bool * padded,BdrvRequestFlags * flags)1704 static int bdrv_pad_request(BlockDriverState *bs,
1705 QEMUIOVector **qiov, size_t *qiov_offset,
1706 int64_t *offset, int64_t *bytes,
1707 bool write,
1708 BdrvRequestPadding *pad, bool *padded,
1709 BdrvRequestFlags *flags)
1710 {
1711 int ret;
1712 struct iovec *sliced_iov;
1713 int sliced_niov;
1714 size_t sliced_head, sliced_tail;
1715
1716 /* Should have been checked by the caller already */
1717 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1718 if (ret < 0) {
1719 return ret;
1720 }
1721
1722 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1723 if (padded) {
1724 *padded = false;
1725 }
1726 return 0;
1727 }
1728
1729 /*
1730 * For prefetching in stream_populate(), no qiov is passed along, because
1731 * only copy-on-read matters.
1732 */
1733 if (*qiov) {
1734 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1735 &sliced_head, &sliced_tail,
1736 &sliced_niov);
1737
1738 /* Guaranteed by bdrv_check_request32() */
1739 assert(*bytes <= SIZE_MAX);
1740 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1741 sliced_head, *bytes);
1742 if (ret < 0) {
1743 bdrv_padding_finalize(pad);
1744 return ret;
1745 }
1746 *qiov = &pad->local_qiov;
1747 *qiov_offset = 0;
1748 }
1749
1750 *bytes += pad->head + pad->tail;
1751 *offset -= pad->head;
1752 if (padded) {
1753 *padded = true;
1754 }
1755 if (flags) {
1756 /* Can't use optimization hint with bounce buffer */
1757 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1758 }
1759
1760 return 0;
1761 }
1762
bdrv_co_preadv(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)1763 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1764 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1765 BdrvRequestFlags flags)
1766 {
1767 IO_CODE();
1768 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1769 }
1770
bdrv_co_preadv_part(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)1771 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1772 int64_t offset, int64_t bytes,
1773 QEMUIOVector *qiov, size_t qiov_offset,
1774 BdrvRequestFlags flags)
1775 {
1776 BlockDriverState *bs = child->bs;
1777 BdrvTrackedRequest req;
1778 BdrvRequestPadding pad;
1779 int ret;
1780 IO_CODE();
1781
1782 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1783
1784 if (!bdrv_co_is_inserted(bs)) {
1785 return -ENOMEDIUM;
1786 }
1787
1788 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1789 if (ret < 0) {
1790 return ret;
1791 }
1792
1793 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1794 /*
1795 * Aligning zero request is nonsense. Even if driver has special meaning
1796 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1797 * it to driver due to request_alignment.
1798 *
1799 * Still, no reason to return an error if someone do unaligned
1800 * zero-length read occasionally.
1801 */
1802 return 0;
1803 }
1804
1805 bdrv_inc_in_flight(bs);
1806
1807 /* Don't do copy-on-read if we read data before write operation */
1808 if (qatomic_read(&bs->copy_on_read)) {
1809 flags |= BDRV_REQ_COPY_ON_READ;
1810 }
1811
1812 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1813 &pad, NULL, &flags);
1814 if (ret < 0) {
1815 goto fail;
1816 }
1817
1818 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1819 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1820 bs->bl.request_alignment,
1821 qiov, qiov_offset, flags);
1822 tracked_request_end(&req);
1823 bdrv_padding_finalize(&pad);
1824
1825 fail:
1826 bdrv_dec_in_flight(bs);
1827
1828 return ret;
1829 }
1830
1831 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_pwrite_zeroes(BlockDriverState * bs,int64_t offset,int64_t bytes,BdrvRequestFlags flags)1832 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1833 BdrvRequestFlags flags)
1834 {
1835 BlockDriver *drv = bs->drv;
1836 QEMUIOVector qiov;
1837 void *buf = NULL;
1838 int ret = 0;
1839 bool need_flush = false;
1840 int head = 0;
1841 int tail = 0;
1842
1843 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1844 INT64_MAX);
1845 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1846 bs->bl.request_alignment);
1847 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1848
1849 assert_bdrv_graph_readable();
1850 bdrv_check_request(offset, bytes, &error_abort);
1851
1852 if (!drv) {
1853 return -ENOMEDIUM;
1854 }
1855
1856 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1857 return -ENOTSUP;
1858 }
1859
1860 /* By definition there is no user buffer so this flag doesn't make sense */
1861 if (flags & BDRV_REQ_REGISTERED_BUF) {
1862 return -EINVAL;
1863 }
1864
1865 /* If opened with discard=off we should never unmap. */
1866 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1867 flags &= ~BDRV_REQ_MAY_UNMAP;
1868 }
1869
1870 /* Invalidate the cached block-status data range if this write overlaps */
1871 bdrv_bsc_invalidate_range(bs, offset, bytes);
1872
1873 assert(alignment % bs->bl.request_alignment == 0);
1874 head = offset % alignment;
1875 tail = (offset + bytes) % alignment;
1876 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1877 assert(max_write_zeroes >= bs->bl.request_alignment);
1878
1879 while (bytes > 0 && !ret) {
1880 int64_t num = bytes;
1881
1882 /* Align request. Block drivers can expect the "bulk" of the request
1883 * to be aligned, and that unaligned requests do not cross cluster
1884 * boundaries.
1885 */
1886 if (head) {
1887 /* Make a small request up to the first aligned sector. For
1888 * convenience, limit this request to max_transfer even if
1889 * we don't need to fall back to writes. */
1890 num = MIN(MIN(bytes, max_transfer), alignment - head);
1891 head = (head + num) % alignment;
1892 assert(num < max_write_zeroes);
1893 } else if (tail && num > alignment) {
1894 /* Shorten the request to the last aligned sector. */
1895 num -= tail;
1896 }
1897
1898 /* limit request size */
1899 if (num > max_write_zeroes) {
1900 num = max_write_zeroes;
1901 }
1902
1903 ret = -ENOTSUP;
1904 /* First try the efficient write zeroes operation */
1905 if (drv->bdrv_co_pwrite_zeroes) {
1906 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1907 flags & bs->supported_zero_flags);
1908 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1909 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1910 need_flush = true;
1911 }
1912 } else {
1913 assert(!bs->supported_zero_flags);
1914 }
1915
1916 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1917 /* Fall back to bounce buffer if write zeroes is unsupported */
1918 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1919
1920 if ((flags & BDRV_REQ_FUA) &&
1921 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1922 /* No need for bdrv_driver_pwrite() to do a fallback
1923 * flush on each chunk; use just one at the end */
1924 write_flags &= ~BDRV_REQ_FUA;
1925 need_flush = true;
1926 }
1927 num = MIN(num, max_transfer);
1928 if (buf == NULL) {
1929 buf = qemu_try_blockalign0(bs, num);
1930 if (buf == NULL) {
1931 ret = -ENOMEM;
1932 goto fail;
1933 }
1934 }
1935 qemu_iovec_init_buf(&qiov, buf, num);
1936
1937 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1938
1939 /* Keep bounce buffer around if it is big enough for all
1940 * all future requests.
1941 */
1942 if (num < max_transfer) {
1943 qemu_vfree(buf);
1944 buf = NULL;
1945 }
1946 }
1947
1948 offset += num;
1949 bytes -= num;
1950 }
1951
1952 fail:
1953 if (ret == 0 && need_flush) {
1954 ret = bdrv_co_flush(bs);
1955 }
1956 qemu_vfree(buf);
1957 return ret;
1958 }
1959
1960 static inline int coroutine_fn GRAPH_RDLOCK
bdrv_co_write_req_prepare(BdrvChild * child,int64_t offset,int64_t bytes,BdrvTrackedRequest * req,int flags)1961 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1962 BdrvTrackedRequest *req, int flags)
1963 {
1964 BlockDriverState *bs = child->bs;
1965
1966 bdrv_check_request(offset, bytes, &error_abort);
1967
1968 if (bdrv_is_read_only(bs)) {
1969 return -EPERM;
1970 }
1971
1972 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1973 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1974 assert(!(flags & ~BDRV_REQ_MASK));
1975 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1976
1977 if (flags & BDRV_REQ_SERIALISING) {
1978 QEMU_LOCK_GUARD(&bs->reqs_lock);
1979
1980 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1981
1982 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1983 return -EBUSY;
1984 }
1985
1986 bdrv_wait_serialising_requests_locked(req);
1987 } else {
1988 bdrv_wait_serialising_requests(req);
1989 }
1990
1991 assert(req->overlap_offset <= offset);
1992 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1993 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1994 child->perm & BLK_PERM_RESIZE);
1995
1996 switch (req->type) {
1997 case BDRV_TRACKED_WRITE:
1998 case BDRV_TRACKED_DISCARD:
1999 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2000 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2001 } else {
2002 assert(child->perm & BLK_PERM_WRITE);
2003 }
2004 bdrv_write_threshold_check_write(bs, offset, bytes);
2005 return 0;
2006 case BDRV_TRACKED_TRUNCATE:
2007 assert(child->perm & BLK_PERM_RESIZE);
2008 return 0;
2009 default:
2010 abort();
2011 }
2012 }
2013
2014 static inline void coroutine_fn GRAPH_RDLOCK
bdrv_co_write_req_finish(BdrvChild * child,int64_t offset,int64_t bytes,BdrvTrackedRequest * req,int ret)2015 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2016 BdrvTrackedRequest *req, int ret)
2017 {
2018 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2019 BlockDriverState *bs = child->bs;
2020
2021 bdrv_check_request(offset, bytes, &error_abort);
2022
2023 qatomic_inc(&bs->write_gen);
2024
2025 /*
2026 * Discard cannot extend the image, but in error handling cases, such as
2027 * when reverting a qcow2 cluster allocation, the discarded range can pass
2028 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2029 * here. Instead, just skip it, since semantically a discard request
2030 * beyond EOF cannot expand the image anyway.
2031 */
2032 if (ret == 0 &&
2033 (req->type == BDRV_TRACKED_TRUNCATE ||
2034 end_sector > bs->total_sectors) &&
2035 req->type != BDRV_TRACKED_DISCARD) {
2036 bs->total_sectors = end_sector;
2037 bdrv_parent_cb_resize(bs);
2038 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2039 }
2040 if (req->bytes) {
2041 switch (req->type) {
2042 case BDRV_TRACKED_WRITE:
2043 stat64_max(&bs->wr_highest_offset, offset + bytes);
2044 /* fall through, to set dirty bits */
2045 case BDRV_TRACKED_DISCARD:
2046 bdrv_set_dirty(bs, offset, bytes);
2047 break;
2048 default:
2049 break;
2050 }
2051 }
2052 }
2053
2054 /*
2055 * Forwards an already correctly aligned write request to the BlockDriver,
2056 * after possibly fragmenting it.
2057 */
2058 static int coroutine_fn GRAPH_RDLOCK
bdrv_aligned_pwritev(BdrvChild * child,BdrvTrackedRequest * req,int64_t offset,int64_t bytes,int64_t align,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)2059 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2060 int64_t offset, int64_t bytes, int64_t align,
2061 QEMUIOVector *qiov, size_t qiov_offset,
2062 BdrvRequestFlags flags)
2063 {
2064 BlockDriverState *bs = child->bs;
2065 BlockDriver *drv = bs->drv;
2066 int ret;
2067
2068 int64_t bytes_remaining = bytes;
2069 int max_transfer;
2070
2071 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2072
2073 if (!drv) {
2074 return -ENOMEDIUM;
2075 }
2076
2077 if (bdrv_has_readonly_bitmaps(bs)) {
2078 return -EPERM;
2079 }
2080
2081 assert(is_power_of_2(align));
2082 assert((offset & (align - 1)) == 0);
2083 assert((bytes & (align - 1)) == 0);
2084 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2085 align);
2086
2087 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2088
2089 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2090 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2091 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2092 flags |= BDRV_REQ_ZERO_WRITE;
2093 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2094 flags |= BDRV_REQ_MAY_UNMAP;
2095 }
2096
2097 /* Can't use optimization hint with bufferless zero write */
2098 flags &= ~BDRV_REQ_REGISTERED_BUF;
2099 }
2100
2101 if (ret < 0) {
2102 /* Do nothing, write notifier decided to fail this request */
2103 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2104 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2105 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2106 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2107 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2108 qiov, qiov_offset);
2109 } else if (bytes <= max_transfer) {
2110 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2111 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2112 } else {
2113 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2114 while (bytes_remaining) {
2115 int num = MIN(bytes_remaining, max_transfer);
2116 int local_flags = flags;
2117
2118 assert(num);
2119 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2120 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2121 /* If FUA is going to be emulated by flush, we only
2122 * need to flush on the last iteration */
2123 local_flags &= ~BDRV_REQ_FUA;
2124 }
2125
2126 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2127 num, qiov,
2128 qiov_offset + bytes - bytes_remaining,
2129 local_flags);
2130 if (ret < 0) {
2131 break;
2132 }
2133 bytes_remaining -= num;
2134 }
2135 }
2136 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2137
2138 if (ret >= 0) {
2139 ret = 0;
2140 }
2141 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2142
2143 return ret;
2144 }
2145
2146 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_zero_pwritev(BdrvChild * child,int64_t offset,int64_t bytes,BdrvRequestFlags flags,BdrvTrackedRequest * req)2147 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2148 BdrvRequestFlags flags, BdrvTrackedRequest *req)
2149 {
2150 BlockDriverState *bs = child->bs;
2151 QEMUIOVector local_qiov;
2152 uint64_t align = bs->bl.request_alignment;
2153 int ret = 0;
2154 bool padding;
2155 BdrvRequestPadding pad;
2156
2157 /* This flag doesn't make sense for padding or zero writes */
2158 flags &= ~BDRV_REQ_REGISTERED_BUF;
2159
2160 padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2161 if (padding) {
2162 assert(!(flags & BDRV_REQ_NO_WAIT));
2163 bdrv_make_request_serialising(req, align);
2164
2165 bdrv_padding_rmw_read(child, req, &pad, true);
2166
2167 if (pad.head || pad.merge_reads) {
2168 int64_t aligned_offset = offset & ~(align - 1);
2169 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2170
2171 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2172 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2173 align, &local_qiov, 0,
2174 flags & ~BDRV_REQ_ZERO_WRITE);
2175 if (ret < 0 || pad.merge_reads) {
2176 /* Error or all work is done */
2177 goto out;
2178 }
2179 offset += write_bytes - pad.head;
2180 bytes -= write_bytes - pad.head;
2181 }
2182 }
2183
2184 assert(!bytes || (offset & (align - 1)) == 0);
2185 if (bytes >= align) {
2186 /* Write the aligned part in the middle. */
2187 int64_t aligned_bytes = bytes & ~(align - 1);
2188 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2189 NULL, 0, flags);
2190 if (ret < 0) {
2191 goto out;
2192 }
2193 bytes -= aligned_bytes;
2194 offset += aligned_bytes;
2195 }
2196
2197 assert(!bytes || (offset & (align - 1)) == 0);
2198 if (bytes) {
2199 assert(align == pad.tail + bytes);
2200
2201 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2202 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2203 &local_qiov, 0,
2204 flags & ~BDRV_REQ_ZERO_WRITE);
2205 }
2206
2207 out:
2208 bdrv_padding_finalize(&pad);
2209
2210 return ret;
2211 }
2212
2213 /*
2214 * Handle a write request in coroutine context
2215 */
bdrv_co_pwritev(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)2216 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2217 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2218 BdrvRequestFlags flags)
2219 {
2220 IO_CODE();
2221 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2222 }
2223
bdrv_co_pwritev_part(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)2224 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2225 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2226 BdrvRequestFlags flags)
2227 {
2228 BlockDriverState *bs = child->bs;
2229 BdrvTrackedRequest req;
2230 uint64_t align = bs->bl.request_alignment;
2231 BdrvRequestPadding pad;
2232 int ret;
2233 bool padded = false;
2234 IO_CODE();
2235
2236 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2237
2238 if (!bdrv_co_is_inserted(bs)) {
2239 return -ENOMEDIUM;
2240 }
2241
2242 if (flags & BDRV_REQ_ZERO_WRITE) {
2243 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2244 } else {
2245 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2246 }
2247 if (ret < 0) {
2248 return ret;
2249 }
2250
2251 /* If the request is misaligned then we can't make it efficient */
2252 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2253 !QEMU_IS_ALIGNED(offset | bytes, align))
2254 {
2255 return -ENOTSUP;
2256 }
2257
2258 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2259 /*
2260 * Aligning zero request is nonsense. Even if driver has special meaning
2261 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2262 * it to driver due to request_alignment.
2263 *
2264 * Still, no reason to return an error if someone do unaligned
2265 * zero-length write occasionally.
2266 */
2267 return 0;
2268 }
2269
2270 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2271 /*
2272 * Pad request for following read-modify-write cycle.
2273 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2274 * alignment only if there is no ZERO flag.
2275 */
2276 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2277 &pad, &padded, &flags);
2278 if (ret < 0) {
2279 return ret;
2280 }
2281 }
2282
2283 bdrv_inc_in_flight(bs);
2284 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2285
2286 if (flags & BDRV_REQ_ZERO_WRITE) {
2287 assert(!padded);
2288 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2289 goto out;
2290 }
2291
2292 if (padded) {
2293 /*
2294 * Request was unaligned to request_alignment and therefore
2295 * padded. We are going to do read-modify-write, and must
2296 * serialize the request to prevent interactions of the
2297 * widened region with other transactions.
2298 */
2299 assert(!(flags & BDRV_REQ_NO_WAIT));
2300 bdrv_make_request_serialising(&req, align);
2301 bdrv_padding_rmw_read(child, &req, &pad, false);
2302 }
2303
2304 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2305 qiov, qiov_offset, flags);
2306
2307 bdrv_padding_finalize(&pad);
2308
2309 out:
2310 tracked_request_end(&req);
2311 bdrv_dec_in_flight(bs);
2312
2313 return ret;
2314 }
2315
bdrv_co_pwrite_zeroes(BdrvChild * child,int64_t offset,int64_t bytes,BdrvRequestFlags flags)2316 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2317 int64_t bytes, BdrvRequestFlags flags)
2318 {
2319 IO_CODE();
2320 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2321 assert_bdrv_graph_readable();
2322
2323 return bdrv_co_pwritev(child, offset, bytes, NULL,
2324 BDRV_REQ_ZERO_WRITE | flags);
2325 }
2326
2327 /*
2328 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2329 */
bdrv_flush_all(void)2330 int bdrv_flush_all(void)
2331 {
2332 BdrvNextIterator it;
2333 BlockDriverState *bs = NULL;
2334 int result = 0;
2335
2336 GLOBAL_STATE_CODE();
2337 GRAPH_RDLOCK_GUARD_MAINLOOP();
2338
2339 /*
2340 * bdrv queue is managed by record/replay,
2341 * creating new flush request for stopping
2342 * the VM may break the determinism
2343 */
2344 if (replay_events_enabled()) {
2345 return result;
2346 }
2347
2348 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2349 int ret = bdrv_flush(bs);
2350 if (ret < 0 && !result) {
2351 result = ret;
2352 }
2353 }
2354
2355 return result;
2356 }
2357
2358 /*
2359 * Returns the allocation status of the specified sectors.
2360 * Drivers not implementing the functionality are assumed to not support
2361 * backing files, hence all their sectors are reported as allocated.
2362 *
2363 * If 'want_zero' is true, the caller is querying for mapping
2364 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2365 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2366 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2367 *
2368 * If 'offset' is beyond the end of the disk image the return value is
2369 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2370 *
2371 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2372 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2373 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2374 *
2375 * 'pnum' is set to the number of bytes (including and immediately
2376 * following the specified offset) that are easily known to be in the
2377 * same allocated/unallocated state. Note that a second call starting
2378 * at the original offset plus returned pnum may have the same status.
2379 * The returned value is non-zero on success except at end-of-file.
2380 *
2381 * Returns negative errno on failure. Otherwise, if the
2382 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2383 * set to the host mapping and BDS corresponding to the guest offset.
2384 */
2385 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_block_status(BlockDriverState * bs,bool want_zero,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2386 bdrv_co_do_block_status(BlockDriverState *bs, bool want_zero,
2387 int64_t offset, int64_t bytes,
2388 int64_t *pnum, int64_t *map, BlockDriverState **file)
2389 {
2390 int64_t total_size;
2391 int64_t n; /* bytes */
2392 int ret;
2393 int64_t local_map = 0;
2394 BlockDriverState *local_file = NULL;
2395 int64_t aligned_offset, aligned_bytes;
2396 uint32_t align;
2397 bool has_filtered_child;
2398
2399 assert(pnum);
2400 assert_bdrv_graph_readable();
2401 *pnum = 0;
2402 total_size = bdrv_co_getlength(bs);
2403 if (total_size < 0) {
2404 ret = total_size;
2405 goto early_out;
2406 }
2407
2408 if (offset >= total_size) {
2409 ret = BDRV_BLOCK_EOF;
2410 goto early_out;
2411 }
2412 if (!bytes) {
2413 ret = 0;
2414 goto early_out;
2415 }
2416
2417 n = total_size - offset;
2418 if (n < bytes) {
2419 bytes = n;
2420 }
2421
2422 /* Must be non-NULL or bdrv_co_getlength() would have failed */
2423 assert(bs->drv);
2424 has_filtered_child = bdrv_filter_child(bs);
2425 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2426 *pnum = bytes;
2427 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2428 if (offset + bytes == total_size) {
2429 ret |= BDRV_BLOCK_EOF;
2430 }
2431 if (bs->drv->protocol_name) {
2432 ret |= BDRV_BLOCK_OFFSET_VALID;
2433 local_map = offset;
2434 local_file = bs;
2435 }
2436 goto early_out;
2437 }
2438
2439 bdrv_inc_in_flight(bs);
2440
2441 /* Round out to request_alignment boundaries */
2442 align = bs->bl.request_alignment;
2443 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2444 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2445
2446 if (bs->drv->bdrv_co_block_status) {
2447 /*
2448 * Use the block-status cache only for protocol nodes: Format
2449 * drivers are generally quick to inquire the status, but protocol
2450 * drivers often need to get information from outside of qemu, so
2451 * we do not have control over the actual implementation. There
2452 * have been cases where inquiring the status took an unreasonably
2453 * long time, and we can do nothing in qemu to fix it.
2454 * This is especially problematic for images with large data areas,
2455 * because finding the few holes in them and giving them special
2456 * treatment does not gain much performance. Therefore, we try to
2457 * cache the last-identified data region.
2458 *
2459 * Second, limiting ourselves to protocol nodes allows us to assume
2460 * the block status for data regions to be DATA | OFFSET_VALID, and
2461 * that the host offset is the same as the guest offset.
2462 *
2463 * Note that it is possible that external writers zero parts of
2464 * the cached regions without the cache being invalidated, and so
2465 * we may report zeroes as data. This is not catastrophic,
2466 * however, because reporting zeroes as data is fine.
2467 */
2468 if (QLIST_EMPTY(&bs->children) &&
2469 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2470 {
2471 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2472 local_file = bs;
2473 local_map = aligned_offset;
2474 } else {
2475 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2476 aligned_bytes, pnum, &local_map,
2477 &local_file);
2478
2479 /*
2480 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2481 * the cache is queried above. Technically, we do not need to check
2482 * it here; the worst that can happen is that we fill the cache for
2483 * non-protocol nodes, and then it is never used. However, filling
2484 * the cache requires an RCU update, so double check here to avoid
2485 * such an update if possible.
2486 *
2487 * Check want_zero, because we only want to update the cache when we
2488 * have accurate information about what is zero and what is data.
2489 */
2490 if (want_zero &&
2491 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2492 QLIST_EMPTY(&bs->children))
2493 {
2494 /*
2495 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2496 * returned local_map value must be the same as the offset we
2497 * have passed (aligned_offset), and local_bs must be the node
2498 * itself.
2499 * Assert this, because we follow this rule when reading from
2500 * the cache (see the `local_file = bs` and
2501 * `local_map = aligned_offset` assignments above), and the
2502 * result the cache delivers must be the same as the driver
2503 * would deliver.
2504 */
2505 assert(local_file == bs);
2506 assert(local_map == aligned_offset);
2507 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2508 }
2509 }
2510 } else {
2511 /* Default code for filters */
2512
2513 local_file = bdrv_filter_bs(bs);
2514 assert(local_file);
2515
2516 *pnum = aligned_bytes;
2517 local_map = aligned_offset;
2518 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2519 }
2520 if (ret < 0) {
2521 *pnum = 0;
2522 goto out;
2523 }
2524
2525 /*
2526 * The driver's result must be a non-zero multiple of request_alignment.
2527 * Clamp pnum and adjust map to original request.
2528 */
2529 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2530 align > offset - aligned_offset);
2531 if (ret & BDRV_BLOCK_RECURSE) {
2532 assert(ret & BDRV_BLOCK_DATA);
2533 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2534 assert(!(ret & BDRV_BLOCK_ZERO));
2535 }
2536
2537 *pnum -= offset - aligned_offset;
2538 if (*pnum > bytes) {
2539 *pnum = bytes;
2540 }
2541 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2542 local_map += offset - aligned_offset;
2543 }
2544
2545 if (ret & BDRV_BLOCK_RAW) {
2546 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2547 ret = bdrv_co_do_block_status(local_file, want_zero, local_map,
2548 *pnum, pnum, &local_map, &local_file);
2549 goto out;
2550 }
2551
2552 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2553 ret |= BDRV_BLOCK_ALLOCATED;
2554 } else if (bs->drv->supports_backing) {
2555 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2556
2557 if (!cow_bs) {
2558 ret |= BDRV_BLOCK_ZERO;
2559 } else if (want_zero) {
2560 int64_t size2 = bdrv_co_getlength(cow_bs);
2561
2562 if (size2 >= 0 && offset >= size2) {
2563 ret |= BDRV_BLOCK_ZERO;
2564 }
2565 }
2566 }
2567
2568 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2569 local_file && local_file != bs &&
2570 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2571 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2572 int64_t file_pnum;
2573 int ret2;
2574
2575 ret2 = bdrv_co_do_block_status(local_file, want_zero, local_map,
2576 *pnum, &file_pnum, NULL, NULL);
2577 if (ret2 >= 0) {
2578 /* Ignore errors. This is just providing extra information, it
2579 * is useful but not necessary.
2580 */
2581 if (ret2 & BDRV_BLOCK_EOF &&
2582 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2583 /*
2584 * It is valid for the format block driver to read
2585 * beyond the end of the underlying file's current
2586 * size; such areas read as zero.
2587 */
2588 ret |= BDRV_BLOCK_ZERO;
2589 } else {
2590 /* Limit request to the range reported by the protocol driver */
2591 *pnum = file_pnum;
2592 ret |= (ret2 & BDRV_BLOCK_ZERO);
2593 }
2594 }
2595
2596 /*
2597 * Now that the recursive search was done, clear the flag. Otherwise,
2598 * with more complicated block graphs like snapshot-access ->
2599 * copy-before-write -> qcow2, where the return value will be propagated
2600 * further up to a parent bdrv_co_do_block_status() call, both the
2601 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is
2602 * not allowed.
2603 */
2604 ret &= ~BDRV_BLOCK_RECURSE;
2605 }
2606
2607 out:
2608 bdrv_dec_in_flight(bs);
2609 if (ret >= 0 && offset + *pnum == total_size) {
2610 ret |= BDRV_BLOCK_EOF;
2611 }
2612 early_out:
2613 if (file) {
2614 *file = local_file;
2615 }
2616 if (map) {
2617 *map = local_map;
2618 }
2619 return ret;
2620 }
2621
2622 int coroutine_fn
bdrv_co_common_block_status_above(BlockDriverState * bs,BlockDriverState * base,bool include_base,bool want_zero,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file,int * depth)2623 bdrv_co_common_block_status_above(BlockDriverState *bs,
2624 BlockDriverState *base,
2625 bool include_base,
2626 bool want_zero,
2627 int64_t offset,
2628 int64_t bytes,
2629 int64_t *pnum,
2630 int64_t *map,
2631 BlockDriverState **file,
2632 int *depth)
2633 {
2634 int ret;
2635 BlockDriverState *p;
2636 int64_t eof = 0;
2637 int dummy;
2638 IO_CODE();
2639
2640 assert(!include_base || base); /* Can't include NULL base */
2641 assert_bdrv_graph_readable();
2642
2643 if (!depth) {
2644 depth = &dummy;
2645 }
2646 *depth = 0;
2647
2648 if (!include_base && bs == base) {
2649 *pnum = bytes;
2650 return 0;
2651 }
2652
2653 ret = bdrv_co_do_block_status(bs, want_zero, offset, bytes, pnum,
2654 map, file);
2655 ++*depth;
2656 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2657 return ret;
2658 }
2659
2660 if (ret & BDRV_BLOCK_EOF) {
2661 eof = offset + *pnum;
2662 }
2663
2664 assert(*pnum <= bytes);
2665 bytes = *pnum;
2666
2667 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2668 p = bdrv_filter_or_cow_bs(p))
2669 {
2670 ret = bdrv_co_do_block_status(p, want_zero, offset, bytes, pnum,
2671 map, file);
2672 ++*depth;
2673 if (ret < 0) {
2674 return ret;
2675 }
2676 if (*pnum == 0) {
2677 /*
2678 * The top layer deferred to this layer, and because this layer is
2679 * short, any zeroes that we synthesize beyond EOF behave as if they
2680 * were allocated at this layer.
2681 *
2682 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2683 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2684 * below.
2685 */
2686 assert(ret & BDRV_BLOCK_EOF);
2687 *pnum = bytes;
2688 if (file) {
2689 *file = p;
2690 }
2691 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2692 break;
2693 }
2694 if (ret & BDRV_BLOCK_ALLOCATED) {
2695 /*
2696 * We've found the node and the status, we must break.
2697 *
2698 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2699 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2700 * below.
2701 */
2702 ret &= ~BDRV_BLOCK_EOF;
2703 break;
2704 }
2705
2706 if (p == base) {
2707 assert(include_base);
2708 break;
2709 }
2710
2711 /*
2712 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2713 * let's continue the diving.
2714 */
2715 assert(*pnum <= bytes);
2716 bytes = *pnum;
2717 }
2718
2719 if (offset + *pnum == eof) {
2720 ret |= BDRV_BLOCK_EOF;
2721 }
2722
2723 return ret;
2724 }
2725
bdrv_co_block_status_above(BlockDriverState * bs,BlockDriverState * base,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2726 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2727 BlockDriverState *base,
2728 int64_t offset, int64_t bytes,
2729 int64_t *pnum, int64_t *map,
2730 BlockDriverState **file)
2731 {
2732 IO_CODE();
2733 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2734 bytes, pnum, map, file, NULL);
2735 }
2736
bdrv_co_block_status(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2737 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset,
2738 int64_t bytes, int64_t *pnum,
2739 int64_t *map, BlockDriverState **file)
2740 {
2741 IO_CODE();
2742 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2743 offset, bytes, pnum, map, file);
2744 }
2745
2746 /*
2747 * Check @bs (and its backing chain) to see if the range defined
2748 * by @offset and @bytes is known to read as zeroes.
2749 * Return 1 if that is the case, 0 otherwise and -errno on error.
2750 * This test is meant to be fast rather than accurate so returning 0
2751 * does not guarantee non-zero data.
2752 */
bdrv_co_is_zero_fast(BlockDriverState * bs,int64_t offset,int64_t bytes)2753 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2754 int64_t bytes)
2755 {
2756 int ret;
2757 int64_t pnum = bytes;
2758 IO_CODE();
2759
2760 if (!bytes) {
2761 return 1;
2762 }
2763
2764 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2765 bytes, &pnum, NULL, NULL, NULL);
2766
2767 if (ret < 0) {
2768 return ret;
2769 }
2770
2771 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2772 }
2773
bdrv_co_is_allocated(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * pnum)2774 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2775 int64_t bytes, int64_t *pnum)
2776 {
2777 int ret;
2778 int64_t dummy;
2779 IO_CODE();
2780
2781 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2782 bytes, pnum ? pnum : &dummy, NULL,
2783 NULL, NULL);
2784 if (ret < 0) {
2785 return ret;
2786 }
2787 return !!(ret & BDRV_BLOCK_ALLOCATED);
2788 }
2789
2790 /*
2791 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2792 *
2793 * Return a positive depth if (a prefix of) the given range is allocated
2794 * in any image between BASE and TOP (BASE is only included if include_base
2795 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2796 * BASE can be NULL to check if the given offset is allocated in any
2797 * image of the chain. Return 0 otherwise, or negative errno on
2798 * failure.
2799 *
2800 * 'pnum' is set to the number of bytes (including and immediately
2801 * following the specified offset) that are known to be in the same
2802 * allocated/unallocated state. Note that a subsequent call starting
2803 * at 'offset + *pnum' may return the same allocation status (in other
2804 * words, the result is not necessarily the maximum possible range);
2805 * but 'pnum' will only be 0 when end of file is reached.
2806 */
bdrv_co_is_allocated_above(BlockDriverState * bs,BlockDriverState * base,bool include_base,int64_t offset,int64_t bytes,int64_t * pnum)2807 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs,
2808 BlockDriverState *base,
2809 bool include_base, int64_t offset,
2810 int64_t bytes, int64_t *pnum)
2811 {
2812 int depth;
2813 int ret;
2814 IO_CODE();
2815
2816 ret = bdrv_co_common_block_status_above(bs, base, include_base, false,
2817 offset, bytes, pnum, NULL, NULL,
2818 &depth);
2819 if (ret < 0) {
2820 return ret;
2821 }
2822
2823 if (ret & BDRV_BLOCK_ALLOCATED) {
2824 return depth;
2825 }
2826 return 0;
2827 }
2828
2829 int coroutine_fn
bdrv_co_readv_vmstate(BlockDriverState * bs,QEMUIOVector * qiov,int64_t pos)2830 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2831 {
2832 BlockDriver *drv = bs->drv;
2833 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2834 int ret;
2835 IO_CODE();
2836 assert_bdrv_graph_readable();
2837
2838 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2839 if (ret < 0) {
2840 return ret;
2841 }
2842
2843 if (!drv) {
2844 return -ENOMEDIUM;
2845 }
2846
2847 bdrv_inc_in_flight(bs);
2848
2849 if (drv->bdrv_co_load_vmstate) {
2850 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2851 } else if (child_bs) {
2852 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2853 } else {
2854 ret = -ENOTSUP;
2855 }
2856
2857 bdrv_dec_in_flight(bs);
2858
2859 return ret;
2860 }
2861
2862 int coroutine_fn
bdrv_co_writev_vmstate(BlockDriverState * bs,QEMUIOVector * qiov,int64_t pos)2863 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2864 {
2865 BlockDriver *drv = bs->drv;
2866 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2867 int ret;
2868 IO_CODE();
2869 assert_bdrv_graph_readable();
2870
2871 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2872 if (ret < 0) {
2873 return ret;
2874 }
2875
2876 if (!drv) {
2877 return -ENOMEDIUM;
2878 }
2879
2880 bdrv_inc_in_flight(bs);
2881
2882 if (drv->bdrv_co_save_vmstate) {
2883 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2884 } else if (child_bs) {
2885 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2886 } else {
2887 ret = -ENOTSUP;
2888 }
2889
2890 bdrv_dec_in_flight(bs);
2891
2892 return ret;
2893 }
2894
bdrv_save_vmstate(BlockDriverState * bs,const uint8_t * buf,int64_t pos,int size)2895 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2896 int64_t pos, int size)
2897 {
2898 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2899 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2900 IO_CODE();
2901
2902 return ret < 0 ? ret : size;
2903 }
2904
bdrv_load_vmstate(BlockDriverState * bs,uint8_t * buf,int64_t pos,int size)2905 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2906 int64_t pos, int size)
2907 {
2908 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2909 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2910 IO_CODE();
2911
2912 return ret < 0 ? ret : size;
2913 }
2914
2915 /**************************************************************/
2916 /* async I/Os */
2917
2918 /**
2919 * Synchronously cancels an acb. Must be called with the BQL held and the acb
2920 * must be processed with the BQL held too (IOThreads are not allowed).
2921 *
2922 * Use bdrv_aio_cancel_async() instead when possible.
2923 */
bdrv_aio_cancel(BlockAIOCB * acb)2924 void bdrv_aio_cancel(BlockAIOCB *acb)
2925 {
2926 GLOBAL_STATE_CODE();
2927 qemu_aio_ref(acb);
2928 bdrv_aio_cancel_async(acb);
2929 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1);
2930 qemu_aio_unref(acb);
2931 }
2932
2933 /* Async version of aio cancel. The caller is not blocked if the acb implements
2934 * cancel_async, otherwise we do nothing and let the request normally complete.
2935 * In either case the completion callback must be called. */
bdrv_aio_cancel_async(BlockAIOCB * acb)2936 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2937 {
2938 IO_CODE();
2939 if (acb->aiocb_info->cancel_async) {
2940 acb->aiocb_info->cancel_async(acb);
2941 }
2942 }
2943
2944 /**************************************************************/
2945 /* Coroutine block device emulation */
2946
bdrv_co_flush(BlockDriverState * bs)2947 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2948 {
2949 BdrvChild *primary_child = bdrv_primary_child(bs);
2950 BdrvChild *child;
2951 int current_gen;
2952 int ret = 0;
2953 IO_CODE();
2954
2955 assert_bdrv_graph_readable();
2956 bdrv_inc_in_flight(bs);
2957
2958 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2959 bdrv_is_sg(bs)) {
2960 goto early_exit;
2961 }
2962
2963 qemu_mutex_lock(&bs->reqs_lock);
2964 current_gen = qatomic_read(&bs->write_gen);
2965
2966 /* Wait until any previous flushes are completed */
2967 while (bs->active_flush_req) {
2968 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2969 }
2970
2971 /* Flushes reach this point in nondecreasing current_gen order. */
2972 bs->active_flush_req = true;
2973 qemu_mutex_unlock(&bs->reqs_lock);
2974
2975 /* Write back all layers by calling one driver function */
2976 if (bs->drv->bdrv_co_flush) {
2977 ret = bs->drv->bdrv_co_flush(bs);
2978 goto out;
2979 }
2980
2981 /* Write back cached data to the OS even with cache=unsafe */
2982 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2983 if (bs->drv->bdrv_co_flush_to_os) {
2984 ret = bs->drv->bdrv_co_flush_to_os(bs);
2985 if (ret < 0) {
2986 goto out;
2987 }
2988 }
2989
2990 /* But don't actually force it to the disk with cache=unsafe */
2991 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2992 goto flush_children;
2993 }
2994
2995 /* Check if we really need to flush anything */
2996 if (bs->flushed_gen == current_gen) {
2997 goto flush_children;
2998 }
2999
3000 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3001 if (!bs->drv) {
3002 /* bs->drv->bdrv_co_flush() might have ejected the BDS
3003 * (even in case of apparent success) */
3004 ret = -ENOMEDIUM;
3005 goto out;
3006 }
3007 if (bs->drv->bdrv_co_flush_to_disk) {
3008 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3009 } else if (bs->drv->bdrv_aio_flush) {
3010 BlockAIOCB *acb;
3011 CoroutineIOCompletion co = {
3012 .coroutine = qemu_coroutine_self(),
3013 };
3014
3015 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3016 if (acb == NULL) {
3017 ret = -EIO;
3018 } else {
3019 qemu_coroutine_yield();
3020 ret = co.ret;
3021 }
3022 } else {
3023 /*
3024 * Some block drivers always operate in either writethrough or unsafe
3025 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3026 * know how the server works (because the behaviour is hardcoded or
3027 * depends on server-side configuration), so we can't ensure that
3028 * everything is safe on disk. Returning an error doesn't work because
3029 * that would break guests even if the server operates in writethrough
3030 * mode.
3031 *
3032 * Let's hope the user knows what he's doing.
3033 */
3034 ret = 0;
3035 }
3036
3037 if (ret < 0) {
3038 goto out;
3039 }
3040
3041 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3042 * in the case of cache=unsafe, so there are no useless flushes.
3043 */
3044 flush_children:
3045 ret = 0;
3046 QLIST_FOREACH(child, &bs->children, next) {
3047 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3048 int this_child_ret = bdrv_co_flush(child->bs);
3049 if (!ret) {
3050 ret = this_child_ret;
3051 }
3052 }
3053 }
3054
3055 out:
3056 /* Notify any pending flushes that we have completed */
3057 if (ret == 0) {
3058 bs->flushed_gen = current_gen;
3059 }
3060
3061 qemu_mutex_lock(&bs->reqs_lock);
3062 bs->active_flush_req = false;
3063 /* Return value is ignored - it's ok if wait queue is empty */
3064 qemu_co_queue_next(&bs->flush_queue);
3065 qemu_mutex_unlock(&bs->reqs_lock);
3066
3067 early_exit:
3068 bdrv_dec_in_flight(bs);
3069 return ret;
3070 }
3071
bdrv_co_pdiscard(BdrvChild * child,int64_t offset,int64_t bytes)3072 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3073 int64_t bytes)
3074 {
3075 BdrvTrackedRequest req;
3076 int ret;
3077 int64_t max_pdiscard;
3078 int head, tail, align;
3079 BlockDriverState *bs = child->bs;
3080 IO_CODE();
3081 assert_bdrv_graph_readable();
3082
3083 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3084 return -ENOMEDIUM;
3085 }
3086
3087 if (bdrv_has_readonly_bitmaps(bs)) {
3088 return -EPERM;
3089 }
3090
3091 ret = bdrv_check_request(offset, bytes, NULL);
3092 if (ret < 0) {
3093 return ret;
3094 }
3095
3096 /* Do nothing if disabled. */
3097 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3098 return 0;
3099 }
3100
3101 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3102 return 0;
3103 }
3104
3105 /* Invalidate the cached block-status data range if this discard overlaps */
3106 bdrv_bsc_invalidate_range(bs, offset, bytes);
3107
3108 /* Discard is advisory, but some devices track and coalesce
3109 * unaligned requests, so we must pass everything down rather than
3110 * round here. Still, most devices will just silently ignore
3111 * unaligned requests (by returning -ENOTSUP), so we must fragment
3112 * the request accordingly. */
3113 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3114 assert(align % bs->bl.request_alignment == 0);
3115 head = offset % align;
3116 tail = (offset + bytes) % align;
3117
3118 bdrv_inc_in_flight(bs);
3119 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3120
3121 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3122 if (ret < 0) {
3123 goto out;
3124 }
3125
3126 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3127 align);
3128 assert(max_pdiscard >= bs->bl.request_alignment);
3129
3130 while (bytes > 0) {
3131 int64_t num = bytes;
3132
3133 if (head) {
3134 /* Make small requests to get to alignment boundaries. */
3135 num = MIN(bytes, align - head);
3136 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3137 num %= bs->bl.request_alignment;
3138 }
3139 head = (head + num) % align;
3140 assert(num < max_pdiscard);
3141 } else if (tail) {
3142 if (num > align) {
3143 /* Shorten the request to the last aligned cluster. */
3144 num -= tail;
3145 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3146 tail > bs->bl.request_alignment) {
3147 tail %= bs->bl.request_alignment;
3148 num -= tail;
3149 }
3150 }
3151 /* limit request size */
3152 if (num > max_pdiscard) {
3153 num = max_pdiscard;
3154 }
3155
3156 if (!bs->drv) {
3157 ret = -ENOMEDIUM;
3158 goto out;
3159 }
3160 if (bs->drv->bdrv_co_pdiscard) {
3161 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3162 } else {
3163 BlockAIOCB *acb;
3164 CoroutineIOCompletion co = {
3165 .coroutine = qemu_coroutine_self(),
3166 };
3167
3168 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3169 bdrv_co_io_em_complete, &co);
3170 if (acb == NULL) {
3171 ret = -EIO;
3172 goto out;
3173 } else {
3174 qemu_coroutine_yield();
3175 ret = co.ret;
3176 }
3177 }
3178 if (ret && ret != -ENOTSUP) {
3179 goto out;
3180 }
3181
3182 offset += num;
3183 bytes -= num;
3184 }
3185 ret = 0;
3186 out:
3187 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3188 tracked_request_end(&req);
3189 bdrv_dec_in_flight(bs);
3190 return ret;
3191 }
3192
bdrv_co_ioctl(BlockDriverState * bs,int req,void * buf)3193 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3194 {
3195 BlockDriver *drv = bs->drv;
3196 CoroutineIOCompletion co = {
3197 .coroutine = qemu_coroutine_self(),
3198 };
3199 BlockAIOCB *acb;
3200 IO_CODE();
3201 assert_bdrv_graph_readable();
3202
3203 bdrv_inc_in_flight(bs);
3204 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3205 co.ret = -ENOTSUP;
3206 goto out;
3207 }
3208
3209 if (drv->bdrv_co_ioctl) {
3210 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3211 } else {
3212 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3213 if (!acb) {
3214 co.ret = -ENOTSUP;
3215 goto out;
3216 }
3217 qemu_coroutine_yield();
3218 }
3219 out:
3220 bdrv_dec_in_flight(bs);
3221 return co.ret;
3222 }
3223
bdrv_co_zone_report(BlockDriverState * bs,int64_t offset,unsigned int * nr_zones,BlockZoneDescriptor * zones)3224 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3225 unsigned int *nr_zones,
3226 BlockZoneDescriptor *zones)
3227 {
3228 BlockDriver *drv = bs->drv;
3229 CoroutineIOCompletion co = {
3230 .coroutine = qemu_coroutine_self(),
3231 };
3232 IO_CODE();
3233
3234 bdrv_inc_in_flight(bs);
3235 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3236 co.ret = -ENOTSUP;
3237 goto out;
3238 }
3239 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3240 out:
3241 bdrv_dec_in_flight(bs);
3242 return co.ret;
3243 }
3244
bdrv_co_zone_mgmt(BlockDriverState * bs,BlockZoneOp op,int64_t offset,int64_t len)3245 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3246 int64_t offset, int64_t len)
3247 {
3248 BlockDriver *drv = bs->drv;
3249 CoroutineIOCompletion co = {
3250 .coroutine = qemu_coroutine_self(),
3251 };
3252 IO_CODE();
3253
3254 bdrv_inc_in_flight(bs);
3255 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3256 co.ret = -ENOTSUP;
3257 goto out;
3258 }
3259 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3260 out:
3261 bdrv_dec_in_flight(bs);
3262 return co.ret;
3263 }
3264
bdrv_co_zone_append(BlockDriverState * bs,int64_t * offset,QEMUIOVector * qiov,BdrvRequestFlags flags)3265 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3266 QEMUIOVector *qiov,
3267 BdrvRequestFlags flags)
3268 {
3269 int ret;
3270 BlockDriver *drv = bs->drv;
3271 CoroutineIOCompletion co = {
3272 .coroutine = qemu_coroutine_self(),
3273 };
3274 IO_CODE();
3275
3276 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3277 if (ret < 0) {
3278 return ret;
3279 }
3280
3281 bdrv_inc_in_flight(bs);
3282 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3283 co.ret = -ENOTSUP;
3284 goto out;
3285 }
3286 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3287 out:
3288 bdrv_dec_in_flight(bs);
3289 return co.ret;
3290 }
3291
qemu_blockalign(BlockDriverState * bs,size_t size)3292 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3293 {
3294 IO_CODE();
3295 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3296 }
3297
qemu_blockalign0(BlockDriverState * bs,size_t size)3298 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3299 {
3300 IO_CODE();
3301 return memset(qemu_blockalign(bs, size), 0, size);
3302 }
3303
qemu_try_blockalign(BlockDriverState * bs,size_t size)3304 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3305 {
3306 size_t align = bdrv_opt_mem_align(bs);
3307 IO_CODE();
3308
3309 /* Ensure that NULL is never returned on success */
3310 assert(align > 0);
3311 if (size == 0) {
3312 size = align;
3313 }
3314
3315 return qemu_try_memalign(align, size);
3316 }
3317
qemu_try_blockalign0(BlockDriverState * bs,size_t size)3318 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3319 {
3320 void *mem = qemu_try_blockalign(bs, size);
3321 IO_CODE();
3322
3323 if (mem) {
3324 memset(mem, 0, size);
3325 }
3326
3327 return mem;
3328 }
3329
3330 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3331 static void GRAPH_RDLOCK
bdrv_register_buf_rollback(BlockDriverState * bs,void * host,size_t size,BdrvChild * final_child)3332 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3333 BdrvChild *final_child)
3334 {
3335 BdrvChild *child;
3336
3337 GLOBAL_STATE_CODE();
3338 assert_bdrv_graph_readable();
3339
3340 QLIST_FOREACH(child, &bs->children, next) {
3341 if (child == final_child) {
3342 break;
3343 }
3344
3345 bdrv_unregister_buf(child->bs, host, size);
3346 }
3347
3348 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3349 bs->drv->bdrv_unregister_buf(bs, host, size);
3350 }
3351 }
3352
bdrv_register_buf(BlockDriverState * bs,void * host,size_t size,Error ** errp)3353 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3354 Error **errp)
3355 {
3356 BdrvChild *child;
3357
3358 GLOBAL_STATE_CODE();
3359 GRAPH_RDLOCK_GUARD_MAINLOOP();
3360
3361 if (bs->drv && bs->drv->bdrv_register_buf) {
3362 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3363 return false;
3364 }
3365 }
3366 QLIST_FOREACH(child, &bs->children, next) {
3367 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3368 bdrv_register_buf_rollback(bs, host, size, child);
3369 return false;
3370 }
3371 }
3372 return true;
3373 }
3374
bdrv_unregister_buf(BlockDriverState * bs,void * host,size_t size)3375 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3376 {
3377 BdrvChild *child;
3378
3379 GLOBAL_STATE_CODE();
3380 GRAPH_RDLOCK_GUARD_MAINLOOP();
3381
3382 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3383 bs->drv->bdrv_unregister_buf(bs, host, size);
3384 }
3385 QLIST_FOREACH(child, &bs->children, next) {
3386 bdrv_unregister_buf(child->bs, host, size);
3387 }
3388 }
3389
bdrv_co_copy_range_internal(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags,bool recurse_src)3390 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3391 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3392 int64_t dst_offset, int64_t bytes,
3393 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3394 bool recurse_src)
3395 {
3396 BdrvTrackedRequest req;
3397 int ret;
3398 assert_bdrv_graph_readable();
3399
3400 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3401 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3402 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3403 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3404 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3405
3406 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3407 return -ENOMEDIUM;
3408 }
3409 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3410 if (ret) {
3411 return ret;
3412 }
3413 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3414 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3415 }
3416
3417 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3418 return -ENOMEDIUM;
3419 }
3420 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3421 if (ret) {
3422 return ret;
3423 }
3424
3425 if (!src->bs->drv->bdrv_co_copy_range_from
3426 || !dst->bs->drv->bdrv_co_copy_range_to
3427 || src->bs->encrypted || dst->bs->encrypted) {
3428 return -ENOTSUP;
3429 }
3430
3431 if (recurse_src) {
3432 bdrv_inc_in_flight(src->bs);
3433 tracked_request_begin(&req, src->bs, src_offset, bytes,
3434 BDRV_TRACKED_READ);
3435
3436 /* BDRV_REQ_SERIALISING is only for write operation */
3437 assert(!(read_flags & BDRV_REQ_SERIALISING));
3438 bdrv_wait_serialising_requests(&req);
3439
3440 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3441 src, src_offset,
3442 dst, dst_offset,
3443 bytes,
3444 read_flags, write_flags);
3445
3446 tracked_request_end(&req);
3447 bdrv_dec_in_flight(src->bs);
3448 } else {
3449 bdrv_inc_in_flight(dst->bs);
3450 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3451 BDRV_TRACKED_WRITE);
3452 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3453 write_flags);
3454 if (!ret) {
3455 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3456 src, src_offset,
3457 dst, dst_offset,
3458 bytes,
3459 read_flags, write_flags);
3460 }
3461 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3462 tracked_request_end(&req);
3463 bdrv_dec_in_flight(dst->bs);
3464 }
3465
3466 return ret;
3467 }
3468
3469 /* Copy range from @src to @dst.
3470 *
3471 * See the comment of bdrv_co_copy_range for the parameter and return value
3472 * semantics. */
bdrv_co_copy_range_from(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3473 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3474 BdrvChild *dst, int64_t dst_offset,
3475 int64_t bytes,
3476 BdrvRequestFlags read_flags,
3477 BdrvRequestFlags write_flags)
3478 {
3479 IO_CODE();
3480 assert_bdrv_graph_readable();
3481 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3482 read_flags, write_flags);
3483 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3484 bytes, read_flags, write_flags, true);
3485 }
3486
3487 /* Copy range from @src to @dst.
3488 *
3489 * See the comment of bdrv_co_copy_range for the parameter and return value
3490 * semantics. */
bdrv_co_copy_range_to(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3491 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3492 BdrvChild *dst, int64_t dst_offset,
3493 int64_t bytes,
3494 BdrvRequestFlags read_flags,
3495 BdrvRequestFlags write_flags)
3496 {
3497 IO_CODE();
3498 assert_bdrv_graph_readable();
3499 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3500 read_flags, write_flags);
3501 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3502 bytes, read_flags, write_flags, false);
3503 }
3504
bdrv_co_copy_range(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3505 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3506 BdrvChild *dst, int64_t dst_offset,
3507 int64_t bytes, BdrvRequestFlags read_flags,
3508 BdrvRequestFlags write_flags)
3509 {
3510 IO_CODE();
3511 assert_bdrv_graph_readable();
3512
3513 return bdrv_co_copy_range_from(src, src_offset,
3514 dst, dst_offset,
3515 bytes, read_flags, write_flags);
3516 }
3517
3518 static void coroutine_fn GRAPH_RDLOCK
bdrv_parent_cb_resize(BlockDriverState * bs)3519 bdrv_parent_cb_resize(BlockDriverState *bs)
3520 {
3521 BdrvChild *c;
3522
3523 assert_bdrv_graph_readable();
3524
3525 QLIST_FOREACH(c, &bs->parents, next_parent) {
3526 if (c->klass->resize) {
3527 c->klass->resize(c);
3528 }
3529 }
3530 }
3531
3532 /**
3533 * Truncate file to 'offset' bytes (needed only for file protocols)
3534 *
3535 * If 'exact' is true, the file must be resized to exactly the given
3536 * 'offset'. Otherwise, it is sufficient for the node to be at least
3537 * 'offset' bytes in length.
3538 */
bdrv_co_truncate(BdrvChild * child,int64_t offset,bool exact,PreallocMode prealloc,BdrvRequestFlags flags,Error ** errp)3539 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3540 PreallocMode prealloc, BdrvRequestFlags flags,
3541 Error **errp)
3542 {
3543 BlockDriverState *bs = child->bs;
3544 BdrvChild *filtered, *backing;
3545 BlockDriver *drv = bs->drv;
3546 BdrvTrackedRequest req;
3547 int64_t old_size, new_bytes;
3548 int ret;
3549 IO_CODE();
3550 assert_bdrv_graph_readable();
3551
3552 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3553 if (!drv) {
3554 error_setg(errp, "No medium inserted");
3555 return -ENOMEDIUM;
3556 }
3557 if (offset < 0) {
3558 error_setg(errp, "Image size cannot be negative");
3559 return -EINVAL;
3560 }
3561
3562 ret = bdrv_check_request(offset, 0, errp);
3563 if (ret < 0) {
3564 return ret;
3565 }
3566
3567 old_size = bdrv_co_getlength(bs);
3568 if (old_size < 0) {
3569 error_setg_errno(errp, -old_size, "Failed to get old image size");
3570 return old_size;
3571 }
3572
3573 if (bdrv_is_read_only(bs)) {
3574 error_setg(errp, "Image is read-only");
3575 return -EACCES;
3576 }
3577
3578 if (offset > old_size) {
3579 new_bytes = offset - old_size;
3580 } else {
3581 new_bytes = 0;
3582 }
3583
3584 bdrv_inc_in_flight(bs);
3585 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3586 BDRV_TRACKED_TRUNCATE);
3587
3588 /* If we are growing the image and potentially using preallocation for the
3589 * new area, we need to make sure that no write requests are made to it
3590 * concurrently or they might be overwritten by preallocation. */
3591 if (new_bytes) {
3592 bdrv_make_request_serialising(&req, 1);
3593 }
3594 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3595 0);
3596 if (ret < 0) {
3597 error_setg_errno(errp, -ret,
3598 "Failed to prepare request for truncation");
3599 goto out;
3600 }
3601
3602 filtered = bdrv_filter_child(bs);
3603 backing = bdrv_cow_child(bs);
3604
3605 /*
3606 * If the image has a backing file that is large enough that it would
3607 * provide data for the new area, we cannot leave it unallocated because
3608 * then the backing file content would become visible. Instead, zero-fill
3609 * the new area.
3610 *
3611 * Note that if the image has a backing file, but was opened without the
3612 * backing file, taking care of keeping things consistent with that backing
3613 * file is the user's responsibility.
3614 */
3615 if (new_bytes && backing) {
3616 int64_t backing_len;
3617
3618 backing_len = bdrv_co_getlength(backing->bs);
3619 if (backing_len < 0) {
3620 ret = backing_len;
3621 error_setg_errno(errp, -ret, "Could not get backing file size");
3622 goto out;
3623 }
3624
3625 if (backing_len > old_size) {
3626 flags |= BDRV_REQ_ZERO_WRITE;
3627 }
3628 }
3629
3630 if (drv->bdrv_co_truncate) {
3631 if (flags & ~bs->supported_truncate_flags) {
3632 error_setg(errp, "Block driver does not support requested flags");
3633 ret = -ENOTSUP;
3634 goto out;
3635 }
3636 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3637 } else if (filtered) {
3638 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3639 } else {
3640 error_setg(errp, "Image format driver does not support resize");
3641 ret = -ENOTSUP;
3642 goto out;
3643 }
3644 if (ret < 0) {
3645 goto out;
3646 }
3647
3648 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3649 if (ret < 0) {
3650 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3651 } else {
3652 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3653 }
3654 /*
3655 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3656 * failed, but the latter doesn't affect how we should finish the request.
3657 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3658 */
3659 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3660
3661 out:
3662 tracked_request_end(&req);
3663 bdrv_dec_in_flight(bs);
3664
3665 return ret;
3666 }
3667
bdrv_cancel_in_flight(BlockDriverState * bs)3668 void bdrv_cancel_in_flight(BlockDriverState *bs)
3669 {
3670 GLOBAL_STATE_CODE();
3671 GRAPH_RDLOCK_GUARD_MAINLOOP();
3672
3673 if (!bs || !bs->drv) {
3674 return;
3675 }
3676
3677 if (bs->drv->bdrv_cancel_in_flight) {
3678 bs->drv->bdrv_cancel_in_flight(bs);
3679 }
3680 }
3681
3682 int coroutine_fn
bdrv_co_preadv_snapshot(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)3683 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3684 QEMUIOVector *qiov, size_t qiov_offset)
3685 {
3686 BlockDriverState *bs = child->bs;
3687 BlockDriver *drv = bs->drv;
3688 int ret;
3689 IO_CODE();
3690 assert_bdrv_graph_readable();
3691
3692 if (!drv) {
3693 return -ENOMEDIUM;
3694 }
3695
3696 if (!drv->bdrv_co_preadv_snapshot) {
3697 return -ENOTSUP;
3698 }
3699
3700 bdrv_inc_in_flight(bs);
3701 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3702 bdrv_dec_in_flight(bs);
3703
3704 return ret;
3705 }
3706
3707 int coroutine_fn
bdrv_co_snapshot_block_status(BlockDriverState * bs,bool want_zero,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)3708 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3709 bool want_zero, int64_t offset, int64_t bytes,
3710 int64_t *pnum, int64_t *map,
3711 BlockDriverState **file)
3712 {
3713 BlockDriver *drv = bs->drv;
3714 int ret;
3715 IO_CODE();
3716 assert_bdrv_graph_readable();
3717
3718 if (!drv) {
3719 return -ENOMEDIUM;
3720 }
3721
3722 if (!drv->bdrv_co_snapshot_block_status) {
3723 return -ENOTSUP;
3724 }
3725
3726 bdrv_inc_in_flight(bs);
3727 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3728 pnum, map, file);
3729 bdrv_dec_in_flight(bs);
3730
3731 return ret;
3732 }
3733
3734 int coroutine_fn
bdrv_co_pdiscard_snapshot(BlockDriverState * bs,int64_t offset,int64_t bytes)3735 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3736 {
3737 BlockDriver *drv = bs->drv;
3738 int ret;
3739 IO_CODE();
3740 assert_bdrv_graph_readable();
3741
3742 if (!drv) {
3743 return -ENOMEDIUM;
3744 }
3745
3746 if (!drv->bdrv_co_pdiscard_snapshot) {
3747 return -ENOTSUP;
3748 }
3749
3750 bdrv_inc_in_flight(bs);
3751 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3752 bdrv_dec_in_flight(bs);
3753
3754 return ret;
3755 }
3756