xref: /openbmc/linux/security/keys/keyctl.c (revision 7e24a55b2122746c2eef192296fc84624354f895)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /* Userspace key control operations
3   *
4   * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
5   * Written by David Howells (dhowells@redhat.com)
6   */
7  
8  #include <linux/init.h>
9  #include <linux/sched.h>
10  #include <linux/sched/task.h>
11  #include <linux/slab.h>
12  #include <linux/syscalls.h>
13  #include <linux/key.h>
14  #include <linux/keyctl.h>
15  #include <linux/fs.h>
16  #include <linux/capability.h>
17  #include <linux/cred.h>
18  #include <linux/string.h>
19  #include <linux/err.h>
20  #include <linux/vmalloc.h>
21  #include <linux/security.h>
22  #include <linux/uio.h>
23  #include <linux/uaccess.h>
24  #include <keys/request_key_auth-type.h>
25  #include "internal.h"
26  
27  #define KEY_MAX_DESC_SIZE 4096
28  
29  static const unsigned char keyrings_capabilities[2] = {
30  	[0] = (KEYCTL_CAPS0_CAPABILITIES |
31  	       (IS_ENABLED(CONFIG_PERSISTENT_KEYRINGS)	? KEYCTL_CAPS0_PERSISTENT_KEYRINGS : 0) |
32  	       (IS_ENABLED(CONFIG_KEY_DH_OPERATIONS)	? KEYCTL_CAPS0_DIFFIE_HELLMAN : 0) |
33  	       (IS_ENABLED(CONFIG_ASYMMETRIC_KEY_TYPE)	? KEYCTL_CAPS0_PUBLIC_KEY : 0) |
34  	       (IS_ENABLED(CONFIG_BIG_KEYS)		? KEYCTL_CAPS0_BIG_KEY : 0) |
35  	       KEYCTL_CAPS0_INVALIDATE |
36  	       KEYCTL_CAPS0_RESTRICT_KEYRING |
37  	       KEYCTL_CAPS0_MOVE
38  	       ),
39  	[1] = (KEYCTL_CAPS1_NS_KEYRING_NAME |
40  	       KEYCTL_CAPS1_NS_KEY_TAG |
41  	       (IS_ENABLED(CONFIG_KEY_NOTIFICATIONS)	? KEYCTL_CAPS1_NOTIFICATIONS : 0)
42  	       ),
43  };
44  
key_get_type_from_user(char * type,const char __user * _type,unsigned len)45  static int key_get_type_from_user(char *type,
46  				  const char __user *_type,
47  				  unsigned len)
48  {
49  	int ret;
50  
51  	ret = strncpy_from_user(type, _type, len);
52  	if (ret < 0)
53  		return ret;
54  	if (ret == 0 || ret >= len)
55  		return -EINVAL;
56  	if (type[0] == '.')
57  		return -EPERM;
58  	type[len - 1] = '\0';
59  	return 0;
60  }
61  
62  /*
63   * Extract the description of a new key from userspace and either add it as a
64   * new key to the specified keyring or update a matching key in that keyring.
65   *
66   * If the description is NULL or an empty string, the key type is asked to
67   * generate one from the payload.
68   *
69   * The keyring must be writable so that we can attach the key to it.
70   *
71   * If successful, the new key's serial number is returned, otherwise an error
72   * code is returned.
73   */
SYSCALL_DEFINE5(add_key,const char __user *,_type,const char __user *,_description,const void __user *,_payload,size_t,plen,key_serial_t,ringid)74  SYSCALL_DEFINE5(add_key, const char __user *, _type,
75  		const char __user *, _description,
76  		const void __user *, _payload,
77  		size_t, plen,
78  		key_serial_t, ringid)
79  {
80  	key_ref_t keyring_ref, key_ref;
81  	char type[32], *description;
82  	void *payload;
83  	long ret;
84  
85  	ret = -EINVAL;
86  	if (plen > 1024 * 1024 - 1)
87  		goto error;
88  
89  	/* draw all the data into kernel space */
90  	ret = key_get_type_from_user(type, _type, sizeof(type));
91  	if (ret < 0)
92  		goto error;
93  
94  	description = NULL;
95  	if (_description) {
96  		description = strndup_user(_description, KEY_MAX_DESC_SIZE);
97  		if (IS_ERR(description)) {
98  			ret = PTR_ERR(description);
99  			goto error;
100  		}
101  		if (!*description) {
102  			kfree(description);
103  			description = NULL;
104  		} else if ((description[0] == '.') &&
105  			   (strncmp(type, "keyring", 7) == 0)) {
106  			ret = -EPERM;
107  			goto error2;
108  		}
109  	}
110  
111  	/* pull the payload in if one was supplied */
112  	payload = NULL;
113  
114  	if (plen) {
115  		ret = -ENOMEM;
116  		payload = kvmalloc(plen, GFP_KERNEL);
117  		if (!payload)
118  			goto error2;
119  
120  		ret = -EFAULT;
121  		if (copy_from_user(payload, _payload, plen) != 0)
122  			goto error3;
123  	}
124  
125  	/* find the target keyring (which must be writable) */
126  	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
127  	if (IS_ERR(keyring_ref)) {
128  		ret = PTR_ERR(keyring_ref);
129  		goto error3;
130  	}
131  
132  	/* create or update the requested key and add it to the target
133  	 * keyring */
134  	key_ref = key_create_or_update(keyring_ref, type, description,
135  				       payload, plen, KEY_PERM_UNDEF,
136  				       KEY_ALLOC_IN_QUOTA);
137  	if (!IS_ERR(key_ref)) {
138  		ret = key_ref_to_ptr(key_ref)->serial;
139  		key_ref_put(key_ref);
140  	}
141  	else {
142  		ret = PTR_ERR(key_ref);
143  	}
144  
145  	key_ref_put(keyring_ref);
146   error3:
147  	kvfree_sensitive(payload, plen);
148   error2:
149  	kfree(description);
150   error:
151  	return ret;
152  }
153  
154  /*
155   * Search the process keyrings and keyring trees linked from those for a
156   * matching key.  Keyrings must have appropriate Search permission to be
157   * searched.
158   *
159   * If a key is found, it will be attached to the destination keyring if there's
160   * one specified and the serial number of the key will be returned.
161   *
162   * If no key is found, /sbin/request-key will be invoked if _callout_info is
163   * non-NULL in an attempt to create a key.  The _callout_info string will be
164   * passed to /sbin/request-key to aid with completing the request.  If the
165   * _callout_info string is "" then it will be changed to "-".
166   */
SYSCALL_DEFINE4(request_key,const char __user *,_type,const char __user *,_description,const char __user *,_callout_info,key_serial_t,destringid)167  SYSCALL_DEFINE4(request_key, const char __user *, _type,
168  		const char __user *, _description,
169  		const char __user *, _callout_info,
170  		key_serial_t, destringid)
171  {
172  	struct key_type *ktype;
173  	struct key *key;
174  	key_ref_t dest_ref;
175  	size_t callout_len;
176  	char type[32], *description, *callout_info;
177  	long ret;
178  
179  	/* pull the type into kernel space */
180  	ret = key_get_type_from_user(type, _type, sizeof(type));
181  	if (ret < 0)
182  		goto error;
183  
184  	/* pull the description into kernel space */
185  	description = strndup_user(_description, KEY_MAX_DESC_SIZE);
186  	if (IS_ERR(description)) {
187  		ret = PTR_ERR(description);
188  		goto error;
189  	}
190  
191  	/* pull the callout info into kernel space */
192  	callout_info = NULL;
193  	callout_len = 0;
194  	if (_callout_info) {
195  		callout_info = strndup_user(_callout_info, PAGE_SIZE);
196  		if (IS_ERR(callout_info)) {
197  			ret = PTR_ERR(callout_info);
198  			goto error2;
199  		}
200  		callout_len = strlen(callout_info);
201  	}
202  
203  	/* get the destination keyring if specified */
204  	dest_ref = NULL;
205  	if (destringid) {
206  		dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
207  					   KEY_NEED_WRITE);
208  		if (IS_ERR(dest_ref)) {
209  			ret = PTR_ERR(dest_ref);
210  			goto error3;
211  		}
212  	}
213  
214  	/* find the key type */
215  	ktype = key_type_lookup(type);
216  	if (IS_ERR(ktype)) {
217  		ret = PTR_ERR(ktype);
218  		goto error4;
219  	}
220  
221  	/* do the search */
222  	key = request_key_and_link(ktype, description, NULL, callout_info,
223  				   callout_len, NULL, key_ref_to_ptr(dest_ref),
224  				   KEY_ALLOC_IN_QUOTA);
225  	if (IS_ERR(key)) {
226  		ret = PTR_ERR(key);
227  		goto error5;
228  	}
229  
230  	/* wait for the key to finish being constructed */
231  	ret = wait_for_key_construction(key, 1);
232  	if (ret < 0)
233  		goto error6;
234  
235  	ret = key->serial;
236  
237  error6:
238   	key_put(key);
239  error5:
240  	key_type_put(ktype);
241  error4:
242  	key_ref_put(dest_ref);
243  error3:
244  	kfree(callout_info);
245  error2:
246  	kfree(description);
247  error:
248  	return ret;
249  }
250  
251  /*
252   * Get the ID of the specified process keyring.
253   *
254   * The requested keyring must have search permission to be found.
255   *
256   * If successful, the ID of the requested keyring will be returned.
257   */
keyctl_get_keyring_ID(key_serial_t id,int create)258  long keyctl_get_keyring_ID(key_serial_t id, int create)
259  {
260  	key_ref_t key_ref;
261  	unsigned long lflags;
262  	long ret;
263  
264  	lflags = create ? KEY_LOOKUP_CREATE : 0;
265  	key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH);
266  	if (IS_ERR(key_ref)) {
267  		ret = PTR_ERR(key_ref);
268  		goto error;
269  	}
270  
271  	ret = key_ref_to_ptr(key_ref)->serial;
272  	key_ref_put(key_ref);
273  error:
274  	return ret;
275  }
276  
277  /*
278   * Join a (named) session keyring.
279   *
280   * Create and join an anonymous session keyring or join a named session
281   * keyring, creating it if necessary.  A named session keyring must have Search
282   * permission for it to be joined.  Session keyrings without this permit will
283   * be skipped over.  It is not permitted for userspace to create or join
284   * keyrings whose name begin with a dot.
285   *
286   * If successful, the ID of the joined session keyring will be returned.
287   */
keyctl_join_session_keyring(const char __user * _name)288  long keyctl_join_session_keyring(const char __user *_name)
289  {
290  	char *name;
291  	long ret;
292  
293  	/* fetch the name from userspace */
294  	name = NULL;
295  	if (_name) {
296  		name = strndup_user(_name, KEY_MAX_DESC_SIZE);
297  		if (IS_ERR(name)) {
298  			ret = PTR_ERR(name);
299  			goto error;
300  		}
301  
302  		ret = -EPERM;
303  		if (name[0] == '.')
304  			goto error_name;
305  	}
306  
307  	/* join the session */
308  	ret = join_session_keyring(name);
309  error_name:
310  	kfree(name);
311  error:
312  	return ret;
313  }
314  
315  /*
316   * Update a key's data payload from the given data.
317   *
318   * The key must grant the caller Write permission and the key type must support
319   * updating for this to work.  A negative key can be positively instantiated
320   * with this call.
321   *
322   * If successful, 0 will be returned.  If the key type does not support
323   * updating, then -EOPNOTSUPP will be returned.
324   */
keyctl_update_key(key_serial_t id,const void __user * _payload,size_t plen)325  long keyctl_update_key(key_serial_t id,
326  		       const void __user *_payload,
327  		       size_t plen)
328  {
329  	key_ref_t key_ref;
330  	void *payload;
331  	long ret;
332  
333  	ret = -EINVAL;
334  	if (plen > PAGE_SIZE)
335  		goto error;
336  
337  	/* pull the payload in if one was supplied */
338  	payload = NULL;
339  	if (plen) {
340  		ret = -ENOMEM;
341  		payload = kvmalloc(plen, GFP_KERNEL);
342  		if (!payload)
343  			goto error;
344  
345  		ret = -EFAULT;
346  		if (copy_from_user(payload, _payload, plen) != 0)
347  			goto error2;
348  	}
349  
350  	/* find the target key (which must be writable) */
351  	key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
352  	if (IS_ERR(key_ref)) {
353  		ret = PTR_ERR(key_ref);
354  		goto error2;
355  	}
356  
357  	/* update the key */
358  	ret = key_update(key_ref, payload, plen);
359  
360  	key_ref_put(key_ref);
361  error2:
362  	kvfree_sensitive(payload, plen);
363  error:
364  	return ret;
365  }
366  
367  /*
368   * Revoke a key.
369   *
370   * The key must be grant the caller Write or Setattr permission for this to
371   * work.  The key type should give up its quota claim when revoked.  The key
372   * and any links to the key will be automatically garbage collected after a
373   * certain amount of time (/proc/sys/kernel/keys/gc_delay).
374   *
375   * Keys with KEY_FLAG_KEEP set should not be revoked.
376   *
377   * If successful, 0 is returned.
378   */
keyctl_revoke_key(key_serial_t id)379  long keyctl_revoke_key(key_serial_t id)
380  {
381  	key_ref_t key_ref;
382  	struct key *key;
383  	long ret;
384  
385  	key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE);
386  	if (IS_ERR(key_ref)) {
387  		ret = PTR_ERR(key_ref);
388  		if (ret != -EACCES)
389  			goto error;
390  		key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
391  		if (IS_ERR(key_ref)) {
392  			ret = PTR_ERR(key_ref);
393  			goto error;
394  		}
395  	}
396  
397  	key = key_ref_to_ptr(key_ref);
398  	ret = 0;
399  	if (test_bit(KEY_FLAG_KEEP, &key->flags))
400  		ret = -EPERM;
401  	else
402  		key_revoke(key);
403  
404  	key_ref_put(key_ref);
405  error:
406  	return ret;
407  }
408  
409  /*
410   * Invalidate a key.
411   *
412   * The key must be grant the caller Invalidate permission for this to work.
413   * The key and any links to the key will be automatically garbage collected
414   * immediately.
415   *
416   * Keys with KEY_FLAG_KEEP set should not be invalidated.
417   *
418   * If successful, 0 is returned.
419   */
keyctl_invalidate_key(key_serial_t id)420  long keyctl_invalidate_key(key_serial_t id)
421  {
422  	key_ref_t key_ref;
423  	struct key *key;
424  	long ret;
425  
426  	kenter("%d", id);
427  
428  	key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH);
429  	if (IS_ERR(key_ref)) {
430  		ret = PTR_ERR(key_ref);
431  
432  		/* Root is permitted to invalidate certain special keys */
433  		if (capable(CAP_SYS_ADMIN)) {
434  			key_ref = lookup_user_key(id, 0, KEY_SYSADMIN_OVERRIDE);
435  			if (IS_ERR(key_ref))
436  				goto error;
437  			if (test_bit(KEY_FLAG_ROOT_CAN_INVAL,
438  				     &key_ref_to_ptr(key_ref)->flags))
439  				goto invalidate;
440  			goto error_put;
441  		}
442  
443  		goto error;
444  	}
445  
446  invalidate:
447  	key = key_ref_to_ptr(key_ref);
448  	ret = 0;
449  	if (test_bit(KEY_FLAG_KEEP, &key->flags))
450  		ret = -EPERM;
451  	else
452  		key_invalidate(key);
453  error_put:
454  	key_ref_put(key_ref);
455  error:
456  	kleave(" = %ld", ret);
457  	return ret;
458  }
459  
460  /*
461   * Clear the specified keyring, creating an empty process keyring if one of the
462   * special keyring IDs is used.
463   *
464   * The keyring must grant the caller Write permission and not have
465   * KEY_FLAG_KEEP set for this to work.  If successful, 0 will be returned.
466   */
keyctl_keyring_clear(key_serial_t ringid)467  long keyctl_keyring_clear(key_serial_t ringid)
468  {
469  	key_ref_t keyring_ref;
470  	struct key *keyring;
471  	long ret;
472  
473  	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
474  	if (IS_ERR(keyring_ref)) {
475  		ret = PTR_ERR(keyring_ref);
476  
477  		/* Root is permitted to invalidate certain special keyrings */
478  		if (capable(CAP_SYS_ADMIN)) {
479  			keyring_ref = lookup_user_key(ringid, 0,
480  						      KEY_SYSADMIN_OVERRIDE);
481  			if (IS_ERR(keyring_ref))
482  				goto error;
483  			if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR,
484  				     &key_ref_to_ptr(keyring_ref)->flags))
485  				goto clear;
486  			goto error_put;
487  		}
488  
489  		goto error;
490  	}
491  
492  clear:
493  	keyring = key_ref_to_ptr(keyring_ref);
494  	if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
495  		ret = -EPERM;
496  	else
497  		ret = keyring_clear(keyring);
498  error_put:
499  	key_ref_put(keyring_ref);
500  error:
501  	return ret;
502  }
503  
504  /*
505   * Create a link from a keyring to a key if there's no matching key in the
506   * keyring, otherwise replace the link to the matching key with a link to the
507   * new key.
508   *
509   * The key must grant the caller Link permission and the keyring must grant
510   * the caller Write permission.  Furthermore, if an additional link is created,
511   * the keyring's quota will be extended.
512   *
513   * If successful, 0 will be returned.
514   */
keyctl_keyring_link(key_serial_t id,key_serial_t ringid)515  long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
516  {
517  	key_ref_t keyring_ref, key_ref;
518  	long ret;
519  
520  	keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
521  	if (IS_ERR(keyring_ref)) {
522  		ret = PTR_ERR(keyring_ref);
523  		goto error;
524  	}
525  
526  	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
527  	if (IS_ERR(key_ref)) {
528  		ret = PTR_ERR(key_ref);
529  		goto error2;
530  	}
531  
532  	ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
533  
534  	key_ref_put(key_ref);
535  error2:
536  	key_ref_put(keyring_ref);
537  error:
538  	return ret;
539  }
540  
541  /*
542   * Unlink a key from a keyring.
543   *
544   * The keyring must grant the caller Write permission for this to work; the key
545   * itself need not grant the caller anything.  If the last link to a key is
546   * removed then that key will be scheduled for destruction.
547   *
548   * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked.
549   *
550   * If successful, 0 will be returned.
551   */
keyctl_keyring_unlink(key_serial_t id,key_serial_t ringid)552  long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid)
553  {
554  	key_ref_t keyring_ref, key_ref;
555  	struct key *keyring, *key;
556  	long ret;
557  
558  	keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE);
559  	if (IS_ERR(keyring_ref)) {
560  		ret = PTR_ERR(keyring_ref);
561  		goto error;
562  	}
563  
564  	key_ref = lookup_user_key(id, KEY_LOOKUP_PARTIAL, KEY_NEED_UNLINK);
565  	if (IS_ERR(key_ref)) {
566  		ret = PTR_ERR(key_ref);
567  		goto error2;
568  	}
569  
570  	keyring = key_ref_to_ptr(keyring_ref);
571  	key = key_ref_to_ptr(key_ref);
572  	if (test_bit(KEY_FLAG_KEEP, &keyring->flags) &&
573  	    test_bit(KEY_FLAG_KEEP, &key->flags))
574  		ret = -EPERM;
575  	else
576  		ret = key_unlink(keyring, key);
577  
578  	key_ref_put(key_ref);
579  error2:
580  	key_ref_put(keyring_ref);
581  error:
582  	return ret;
583  }
584  
585  /*
586   * Move a link to a key from one keyring to another, displacing any matching
587   * key from the destination keyring.
588   *
589   * The key must grant the caller Link permission and both keyrings must grant
590   * the caller Write permission.  There must also be a link in the from keyring
591   * to the key.  If both keyrings are the same, nothing is done.
592   *
593   * If successful, 0 will be returned.
594   */
keyctl_keyring_move(key_serial_t id,key_serial_t from_ringid,key_serial_t to_ringid,unsigned int flags)595  long keyctl_keyring_move(key_serial_t id, key_serial_t from_ringid,
596  			 key_serial_t to_ringid, unsigned int flags)
597  {
598  	key_ref_t key_ref, from_ref, to_ref;
599  	long ret;
600  
601  	if (flags & ~KEYCTL_MOVE_EXCL)
602  		return -EINVAL;
603  
604  	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
605  	if (IS_ERR(key_ref))
606  		return PTR_ERR(key_ref);
607  
608  	from_ref = lookup_user_key(from_ringid, 0, KEY_NEED_WRITE);
609  	if (IS_ERR(from_ref)) {
610  		ret = PTR_ERR(from_ref);
611  		goto error2;
612  	}
613  
614  	to_ref = lookup_user_key(to_ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
615  	if (IS_ERR(to_ref)) {
616  		ret = PTR_ERR(to_ref);
617  		goto error3;
618  	}
619  
620  	ret = key_move(key_ref_to_ptr(key_ref), key_ref_to_ptr(from_ref),
621  		       key_ref_to_ptr(to_ref), flags);
622  
623  	key_ref_put(to_ref);
624  error3:
625  	key_ref_put(from_ref);
626  error2:
627  	key_ref_put(key_ref);
628  	return ret;
629  }
630  
631  /*
632   * Return a description of a key to userspace.
633   *
634   * The key must grant the caller View permission for this to work.
635   *
636   * If there's a buffer, we place up to buflen bytes of data into it formatted
637   * in the following way:
638   *
639   *	type;uid;gid;perm;description<NUL>
640   *
641   * If successful, we return the amount of description available, irrespective
642   * of how much we may have copied into the buffer.
643   */
keyctl_describe_key(key_serial_t keyid,char __user * buffer,size_t buflen)644  long keyctl_describe_key(key_serial_t keyid,
645  			 char __user *buffer,
646  			 size_t buflen)
647  {
648  	struct key *key, *instkey;
649  	key_ref_t key_ref;
650  	char *infobuf;
651  	long ret;
652  	int desclen, infolen;
653  
654  	key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
655  	if (IS_ERR(key_ref)) {
656  		/* viewing a key under construction is permitted if we have the
657  		 * authorisation token handy */
658  		if (PTR_ERR(key_ref) == -EACCES) {
659  			instkey = key_get_instantiation_authkey(keyid);
660  			if (!IS_ERR(instkey)) {
661  				key_put(instkey);
662  				key_ref = lookup_user_key(keyid,
663  							  KEY_LOOKUP_PARTIAL,
664  							  KEY_AUTHTOKEN_OVERRIDE);
665  				if (!IS_ERR(key_ref))
666  					goto okay;
667  			}
668  		}
669  
670  		ret = PTR_ERR(key_ref);
671  		goto error;
672  	}
673  
674  okay:
675  	key = key_ref_to_ptr(key_ref);
676  	desclen = strlen(key->description);
677  
678  	/* calculate how much information we're going to return */
679  	ret = -ENOMEM;
680  	infobuf = kasprintf(GFP_KERNEL,
681  			    "%s;%d;%d;%08x;",
682  			    key->type->name,
683  			    from_kuid_munged(current_user_ns(), key->uid),
684  			    from_kgid_munged(current_user_ns(), key->gid),
685  			    key->perm);
686  	if (!infobuf)
687  		goto error2;
688  	infolen = strlen(infobuf);
689  	ret = infolen + desclen + 1;
690  
691  	/* consider returning the data */
692  	if (buffer && buflen >= ret) {
693  		if (copy_to_user(buffer, infobuf, infolen) != 0 ||
694  		    copy_to_user(buffer + infolen, key->description,
695  				 desclen + 1) != 0)
696  			ret = -EFAULT;
697  	}
698  
699  	kfree(infobuf);
700  error2:
701  	key_ref_put(key_ref);
702  error:
703  	return ret;
704  }
705  
706  /*
707   * Search the specified keyring and any keyrings it links to for a matching
708   * key.  Only keyrings that grant the caller Search permission will be searched
709   * (this includes the starting keyring).  Only keys with Search permission can
710   * be found.
711   *
712   * If successful, the found key will be linked to the destination keyring if
713   * supplied and the key has Link permission, and the found key ID will be
714   * returned.
715   */
keyctl_keyring_search(key_serial_t ringid,const char __user * _type,const char __user * _description,key_serial_t destringid)716  long keyctl_keyring_search(key_serial_t ringid,
717  			   const char __user *_type,
718  			   const char __user *_description,
719  			   key_serial_t destringid)
720  {
721  	struct key_type *ktype;
722  	key_ref_t keyring_ref, key_ref, dest_ref;
723  	char type[32], *description;
724  	long ret;
725  
726  	/* pull the type and description into kernel space */
727  	ret = key_get_type_from_user(type, _type, sizeof(type));
728  	if (ret < 0)
729  		goto error;
730  
731  	description = strndup_user(_description, KEY_MAX_DESC_SIZE);
732  	if (IS_ERR(description)) {
733  		ret = PTR_ERR(description);
734  		goto error;
735  	}
736  
737  	/* get the keyring at which to begin the search */
738  	keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH);
739  	if (IS_ERR(keyring_ref)) {
740  		ret = PTR_ERR(keyring_ref);
741  		goto error2;
742  	}
743  
744  	/* get the destination keyring if specified */
745  	dest_ref = NULL;
746  	if (destringid) {
747  		dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE,
748  					   KEY_NEED_WRITE);
749  		if (IS_ERR(dest_ref)) {
750  			ret = PTR_ERR(dest_ref);
751  			goto error3;
752  		}
753  	}
754  
755  	/* find the key type */
756  	ktype = key_type_lookup(type);
757  	if (IS_ERR(ktype)) {
758  		ret = PTR_ERR(ktype);
759  		goto error4;
760  	}
761  
762  	/* do the search */
763  	key_ref = keyring_search(keyring_ref, ktype, description, true);
764  	if (IS_ERR(key_ref)) {
765  		ret = PTR_ERR(key_ref);
766  
767  		/* treat lack or presence of a negative key the same */
768  		if (ret == -EAGAIN)
769  			ret = -ENOKEY;
770  		goto error5;
771  	}
772  
773  	/* link the resulting key to the destination keyring if we can */
774  	if (dest_ref) {
775  		ret = key_permission(key_ref, KEY_NEED_LINK);
776  		if (ret < 0)
777  			goto error6;
778  
779  		ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref));
780  		if (ret < 0)
781  			goto error6;
782  	}
783  
784  	ret = key_ref_to_ptr(key_ref)->serial;
785  
786  error6:
787  	key_ref_put(key_ref);
788  error5:
789  	key_type_put(ktype);
790  error4:
791  	key_ref_put(dest_ref);
792  error3:
793  	key_ref_put(keyring_ref);
794  error2:
795  	kfree(description);
796  error:
797  	return ret;
798  }
799  
800  /*
801   * Call the read method
802   */
__keyctl_read_key(struct key * key,char * buffer,size_t buflen)803  static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen)
804  {
805  	long ret;
806  
807  	down_read(&key->sem);
808  	ret = key_validate(key);
809  	if (ret == 0)
810  		ret = key->type->read(key, buffer, buflen);
811  	up_read(&key->sem);
812  	return ret;
813  }
814  
815  /*
816   * Read a key's payload.
817   *
818   * The key must either grant the caller Read permission, or it must grant the
819   * caller Search permission when searched for from the process keyrings.
820   *
821   * If successful, we place up to buflen bytes of data into the buffer, if one
822   * is provided, and return the amount of data that is available in the key,
823   * irrespective of how much we copied into the buffer.
824   */
keyctl_read_key(key_serial_t keyid,char __user * buffer,size_t buflen)825  long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen)
826  {
827  	struct key *key;
828  	key_ref_t key_ref;
829  	long ret;
830  	char *key_data = NULL;
831  	size_t key_data_len;
832  
833  	/* find the key first */
834  	key_ref = lookup_user_key(keyid, 0, KEY_DEFER_PERM_CHECK);
835  	if (IS_ERR(key_ref)) {
836  		ret = -ENOKEY;
837  		goto out;
838  	}
839  
840  	key = key_ref_to_ptr(key_ref);
841  
842  	ret = key_read_state(key);
843  	if (ret < 0)
844  		goto key_put_out; /* Negatively instantiated */
845  
846  	/* see if we can read it directly */
847  	ret = key_permission(key_ref, KEY_NEED_READ);
848  	if (ret == 0)
849  		goto can_read_key;
850  	if (ret != -EACCES)
851  		goto key_put_out;
852  
853  	/* we can't; see if it's searchable from this process's keyrings
854  	 * - we automatically take account of the fact that it may be
855  	 *   dangling off an instantiation key
856  	 */
857  	if (!is_key_possessed(key_ref)) {
858  		ret = -EACCES;
859  		goto key_put_out;
860  	}
861  
862  	/* the key is probably readable - now try to read it */
863  can_read_key:
864  	if (!key->type->read) {
865  		ret = -EOPNOTSUPP;
866  		goto key_put_out;
867  	}
868  
869  	if (!buffer || !buflen) {
870  		/* Get the key length from the read method */
871  		ret = __keyctl_read_key(key, NULL, 0);
872  		goto key_put_out;
873  	}
874  
875  	/*
876  	 * Read the data with the semaphore held (since we might sleep)
877  	 * to protect against the key being updated or revoked.
878  	 *
879  	 * Allocating a temporary buffer to hold the keys before
880  	 * transferring them to user buffer to avoid potential
881  	 * deadlock involving page fault and mmap_lock.
882  	 *
883  	 * key_data_len = (buflen <= PAGE_SIZE)
884  	 *		? buflen : actual length of key data
885  	 *
886  	 * This prevents allocating arbitrary large buffer which can
887  	 * be much larger than the actual key length. In the latter case,
888  	 * at least 2 passes of this loop is required.
889  	 */
890  	key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0;
891  	for (;;) {
892  		if (key_data_len) {
893  			key_data = kvmalloc(key_data_len, GFP_KERNEL);
894  			if (!key_data) {
895  				ret = -ENOMEM;
896  				goto key_put_out;
897  			}
898  		}
899  
900  		ret = __keyctl_read_key(key, key_data, key_data_len);
901  
902  		/*
903  		 * Read methods will just return the required length without
904  		 * any copying if the provided length isn't large enough.
905  		 */
906  		if (ret <= 0 || ret > buflen)
907  			break;
908  
909  		/*
910  		 * The key may change (unlikely) in between 2 consecutive
911  		 * __keyctl_read_key() calls. In this case, we reallocate
912  		 * a larger buffer and redo the key read when
913  		 * key_data_len < ret <= buflen.
914  		 */
915  		if (ret > key_data_len) {
916  			if (unlikely(key_data))
917  				kvfree_sensitive(key_data, key_data_len);
918  			key_data_len = ret;
919  			continue;	/* Allocate buffer */
920  		}
921  
922  		if (copy_to_user(buffer, key_data, ret))
923  			ret = -EFAULT;
924  		break;
925  	}
926  	kvfree_sensitive(key_data, key_data_len);
927  
928  key_put_out:
929  	key_put(key);
930  out:
931  	return ret;
932  }
933  
934  /*
935   * Change the ownership of a key
936   *
937   * The key must grant the caller Setattr permission for this to work, though
938   * the key need not be fully instantiated yet.  For the UID to be changed, or
939   * for the GID to be changed to a group the caller is not a member of, the
940   * caller must have sysadmin capability.  If either uid or gid is -1 then that
941   * attribute is not changed.
942   *
943   * If the UID is to be changed, the new user must have sufficient quota to
944   * accept the key.  The quota deduction will be removed from the old user to
945   * the new user should the attribute be changed.
946   *
947   * If successful, 0 will be returned.
948   */
keyctl_chown_key(key_serial_t id,uid_t user,gid_t group)949  long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group)
950  {
951  	struct key_user *newowner, *zapowner = NULL;
952  	struct key *key;
953  	key_ref_t key_ref;
954  	long ret;
955  	kuid_t uid;
956  	kgid_t gid;
957  
958  	uid = make_kuid(current_user_ns(), user);
959  	gid = make_kgid(current_user_ns(), group);
960  	ret = -EINVAL;
961  	if ((user != (uid_t) -1) && !uid_valid(uid))
962  		goto error;
963  	if ((group != (gid_t) -1) && !gid_valid(gid))
964  		goto error;
965  
966  	ret = 0;
967  	if (user == (uid_t) -1 && group == (gid_t) -1)
968  		goto error;
969  
970  	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
971  				  KEY_NEED_SETATTR);
972  	if (IS_ERR(key_ref)) {
973  		ret = PTR_ERR(key_ref);
974  		goto error;
975  	}
976  
977  	key = key_ref_to_ptr(key_ref);
978  
979  	/* make the changes with the locks held to prevent chown/chown races */
980  	ret = -EACCES;
981  	down_write(&key->sem);
982  
983  	{
984  		bool is_privileged_op = false;
985  
986  		/* only the sysadmin can chown a key to some other UID */
987  		if (user != (uid_t) -1 && !uid_eq(key->uid, uid))
988  			is_privileged_op = true;
989  
990  		/* only the sysadmin can set the key's GID to a group other
991  		 * than one of those that the current process subscribes to */
992  		if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid))
993  			is_privileged_op = true;
994  
995  		if (is_privileged_op && !capable(CAP_SYS_ADMIN))
996  			goto error_put;
997  	}
998  
999  	/* change the UID */
1000  	if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) {
1001  		ret = -ENOMEM;
1002  		newowner = key_user_lookup(uid);
1003  		if (!newowner)
1004  			goto error_put;
1005  
1006  		/* transfer the quota burden to the new user */
1007  		if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
1008  			unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
1009  				key_quota_root_maxkeys : key_quota_maxkeys;
1010  			unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
1011  				key_quota_root_maxbytes : key_quota_maxbytes;
1012  
1013  			spin_lock(&newowner->lock);
1014  			if (newowner->qnkeys + 1 > maxkeys ||
1015  			    newowner->qnbytes + key->quotalen > maxbytes ||
1016  			    newowner->qnbytes + key->quotalen <
1017  			    newowner->qnbytes)
1018  				goto quota_overrun;
1019  
1020  			newowner->qnkeys++;
1021  			newowner->qnbytes += key->quotalen;
1022  			spin_unlock(&newowner->lock);
1023  
1024  			spin_lock(&key->user->lock);
1025  			key->user->qnkeys--;
1026  			key->user->qnbytes -= key->quotalen;
1027  			spin_unlock(&key->user->lock);
1028  		}
1029  
1030  		atomic_dec(&key->user->nkeys);
1031  		atomic_inc(&newowner->nkeys);
1032  
1033  		if (key->state != KEY_IS_UNINSTANTIATED) {
1034  			atomic_dec(&key->user->nikeys);
1035  			atomic_inc(&newowner->nikeys);
1036  		}
1037  
1038  		zapowner = key->user;
1039  		key->user = newowner;
1040  		key->uid = uid;
1041  	}
1042  
1043  	/* change the GID */
1044  	if (group != (gid_t) -1)
1045  		key->gid = gid;
1046  
1047  	notify_key(key, NOTIFY_KEY_SETATTR, 0);
1048  	ret = 0;
1049  
1050  error_put:
1051  	up_write(&key->sem);
1052  	key_put(key);
1053  	if (zapowner)
1054  		key_user_put(zapowner);
1055  error:
1056  	return ret;
1057  
1058  quota_overrun:
1059  	spin_unlock(&newowner->lock);
1060  	zapowner = newowner;
1061  	ret = -EDQUOT;
1062  	goto error_put;
1063  }
1064  
1065  /*
1066   * Change the permission mask on a key.
1067   *
1068   * The key must grant the caller Setattr permission for this to work, though
1069   * the key need not be fully instantiated yet.  If the caller does not have
1070   * sysadmin capability, it may only change the permission on keys that it owns.
1071   */
keyctl_setperm_key(key_serial_t id,key_perm_t perm)1072  long keyctl_setperm_key(key_serial_t id, key_perm_t perm)
1073  {
1074  	struct key *key;
1075  	key_ref_t key_ref;
1076  	long ret;
1077  
1078  	ret = -EINVAL;
1079  	if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL))
1080  		goto error;
1081  
1082  	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1083  				  KEY_NEED_SETATTR);
1084  	if (IS_ERR(key_ref)) {
1085  		ret = PTR_ERR(key_ref);
1086  		goto error;
1087  	}
1088  
1089  	key = key_ref_to_ptr(key_ref);
1090  
1091  	/* make the changes with the locks held to prevent chown/chmod races */
1092  	ret = -EACCES;
1093  	down_write(&key->sem);
1094  
1095  	/* if we're not the sysadmin, we can only change a key that we own */
1096  	if (uid_eq(key->uid, current_fsuid()) || capable(CAP_SYS_ADMIN)) {
1097  		key->perm = perm;
1098  		notify_key(key, NOTIFY_KEY_SETATTR, 0);
1099  		ret = 0;
1100  	}
1101  
1102  	up_write(&key->sem);
1103  	key_put(key);
1104  error:
1105  	return ret;
1106  }
1107  
1108  /*
1109   * Get the destination keyring for instantiation and check that the caller has
1110   * Write permission on it.
1111   */
get_instantiation_keyring(key_serial_t ringid,struct request_key_auth * rka,struct key ** _dest_keyring)1112  static long get_instantiation_keyring(key_serial_t ringid,
1113  				      struct request_key_auth *rka,
1114  				      struct key **_dest_keyring)
1115  {
1116  	key_ref_t dkref;
1117  
1118  	*_dest_keyring = NULL;
1119  
1120  	/* just return a NULL pointer if we weren't asked to make a link */
1121  	if (ringid == 0)
1122  		return 0;
1123  
1124  	/* if a specific keyring is nominated by ID, then use that */
1125  	if (ringid > 0) {
1126  		dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
1127  		if (IS_ERR(dkref))
1128  			return PTR_ERR(dkref);
1129  		*_dest_keyring = key_ref_to_ptr(dkref);
1130  		return 0;
1131  	}
1132  
1133  	if (ringid == KEY_SPEC_REQKEY_AUTH_KEY)
1134  		return -EINVAL;
1135  
1136  	/* otherwise specify the destination keyring recorded in the
1137  	 * authorisation key (any KEY_SPEC_*_KEYRING) */
1138  	if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) {
1139  		*_dest_keyring = key_get(rka->dest_keyring);
1140  		return 0;
1141  	}
1142  
1143  	return -ENOKEY;
1144  }
1145  
1146  /*
1147   * Change the request_key authorisation key on the current process.
1148   */
keyctl_change_reqkey_auth(struct key * key)1149  static int keyctl_change_reqkey_auth(struct key *key)
1150  {
1151  	struct cred *new;
1152  
1153  	new = prepare_creds();
1154  	if (!new)
1155  		return -ENOMEM;
1156  
1157  	key_put(new->request_key_auth);
1158  	new->request_key_auth = key_get(key);
1159  
1160  	return commit_creds(new);
1161  }
1162  
1163  /*
1164   * Instantiate a key with the specified payload and link the key into the
1165   * destination keyring if one is given.
1166   *
1167   * The caller must have the appropriate instantiation permit set for this to
1168   * work (see keyctl_assume_authority).  No other permissions are required.
1169   *
1170   * If successful, 0 will be returned.
1171   */
keyctl_instantiate_key_common(key_serial_t id,struct iov_iter * from,key_serial_t ringid)1172  static long keyctl_instantiate_key_common(key_serial_t id,
1173  				   struct iov_iter *from,
1174  				   key_serial_t ringid)
1175  {
1176  	const struct cred *cred = current_cred();
1177  	struct request_key_auth *rka;
1178  	struct key *instkey, *dest_keyring;
1179  	size_t plen = from ? iov_iter_count(from) : 0;
1180  	void *payload;
1181  	long ret;
1182  
1183  	kenter("%d,,%zu,%d", id, plen, ringid);
1184  
1185  	if (!plen)
1186  		from = NULL;
1187  
1188  	ret = -EINVAL;
1189  	if (plen > 1024 * 1024 - 1)
1190  		goto error;
1191  
1192  	/* the appropriate instantiation authorisation key must have been
1193  	 * assumed before calling this */
1194  	ret = -EPERM;
1195  	instkey = cred->request_key_auth;
1196  	if (!instkey)
1197  		goto error;
1198  
1199  	rka = instkey->payload.data[0];
1200  	if (rka->target_key->serial != id)
1201  		goto error;
1202  
1203  	/* pull the payload in if one was supplied */
1204  	payload = NULL;
1205  
1206  	if (from) {
1207  		ret = -ENOMEM;
1208  		payload = kvmalloc(plen, GFP_KERNEL);
1209  		if (!payload)
1210  			goto error;
1211  
1212  		ret = -EFAULT;
1213  		if (!copy_from_iter_full(payload, plen, from))
1214  			goto error2;
1215  	}
1216  
1217  	/* find the destination keyring amongst those belonging to the
1218  	 * requesting task */
1219  	ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1220  	if (ret < 0)
1221  		goto error2;
1222  
1223  	/* instantiate the key and link it into a keyring */
1224  	ret = key_instantiate_and_link(rka->target_key, payload, plen,
1225  				       dest_keyring, instkey);
1226  
1227  	key_put(dest_keyring);
1228  
1229  	/* discard the assumed authority if it's just been disabled by
1230  	 * instantiation of the key */
1231  	if (ret == 0)
1232  		keyctl_change_reqkey_auth(NULL);
1233  
1234  error2:
1235  	kvfree_sensitive(payload, plen);
1236  error:
1237  	return ret;
1238  }
1239  
1240  /*
1241   * Instantiate a key with the specified payload and link the key into the
1242   * destination keyring if one is given.
1243   *
1244   * The caller must have the appropriate instantiation permit set for this to
1245   * work (see keyctl_assume_authority).  No other permissions are required.
1246   *
1247   * If successful, 0 will be returned.
1248   */
keyctl_instantiate_key(key_serial_t id,const void __user * _payload,size_t plen,key_serial_t ringid)1249  long keyctl_instantiate_key(key_serial_t id,
1250  			    const void __user *_payload,
1251  			    size_t plen,
1252  			    key_serial_t ringid)
1253  {
1254  	if (_payload && plen) {
1255  		struct iovec iov;
1256  		struct iov_iter from;
1257  		int ret;
1258  
1259  		ret = import_single_range(ITER_SOURCE, (void __user *)_payload, plen,
1260  					  &iov, &from);
1261  		if (unlikely(ret))
1262  			return ret;
1263  
1264  		return keyctl_instantiate_key_common(id, &from, ringid);
1265  	}
1266  
1267  	return keyctl_instantiate_key_common(id, NULL, ringid);
1268  }
1269  
1270  /*
1271   * Instantiate a key with the specified multipart payload and link the key into
1272   * the destination keyring if one is given.
1273   *
1274   * The caller must have the appropriate instantiation permit set for this to
1275   * work (see keyctl_assume_authority).  No other permissions are required.
1276   *
1277   * If successful, 0 will be returned.
1278   */
keyctl_instantiate_key_iov(key_serial_t id,const struct iovec __user * _payload_iov,unsigned ioc,key_serial_t ringid)1279  long keyctl_instantiate_key_iov(key_serial_t id,
1280  				const struct iovec __user *_payload_iov,
1281  				unsigned ioc,
1282  				key_serial_t ringid)
1283  {
1284  	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1285  	struct iov_iter from;
1286  	long ret;
1287  
1288  	if (!_payload_iov)
1289  		ioc = 0;
1290  
1291  	ret = import_iovec(ITER_SOURCE, _payload_iov, ioc,
1292  				    ARRAY_SIZE(iovstack), &iov, &from);
1293  	if (ret < 0)
1294  		return ret;
1295  	ret = keyctl_instantiate_key_common(id, &from, ringid);
1296  	kfree(iov);
1297  	return ret;
1298  }
1299  
1300  /*
1301   * Negatively instantiate the key with the given timeout (in seconds) and link
1302   * the key into the destination keyring if one is given.
1303   *
1304   * The caller must have the appropriate instantiation permit set for this to
1305   * work (see keyctl_assume_authority).  No other permissions are required.
1306   *
1307   * The key and any links to the key will be automatically garbage collected
1308   * after the timeout expires.
1309   *
1310   * Negative keys are used to rate limit repeated request_key() calls by causing
1311   * them to return -ENOKEY until the negative key expires.
1312   *
1313   * If successful, 0 will be returned.
1314   */
keyctl_negate_key(key_serial_t id,unsigned timeout,key_serial_t ringid)1315  long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
1316  {
1317  	return keyctl_reject_key(id, timeout, ENOKEY, ringid);
1318  }
1319  
1320  /*
1321   * Negatively instantiate the key with the given timeout (in seconds) and error
1322   * code and link the key into the destination keyring if one is given.
1323   *
1324   * The caller must have the appropriate instantiation permit set for this to
1325   * work (see keyctl_assume_authority).  No other permissions are required.
1326   *
1327   * The key and any links to the key will be automatically garbage collected
1328   * after the timeout expires.
1329   *
1330   * Negative keys are used to rate limit repeated request_key() calls by causing
1331   * them to return the specified error code until the negative key expires.
1332   *
1333   * If successful, 0 will be returned.
1334   */
keyctl_reject_key(key_serial_t id,unsigned timeout,unsigned error,key_serial_t ringid)1335  long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error,
1336  		       key_serial_t ringid)
1337  {
1338  	const struct cred *cred = current_cred();
1339  	struct request_key_auth *rka;
1340  	struct key *instkey, *dest_keyring;
1341  	long ret;
1342  
1343  	kenter("%d,%u,%u,%d", id, timeout, error, ringid);
1344  
1345  	/* must be a valid error code and mustn't be a kernel special */
1346  	if (error <= 0 ||
1347  	    error >= MAX_ERRNO ||
1348  	    error == ERESTARTSYS ||
1349  	    error == ERESTARTNOINTR ||
1350  	    error == ERESTARTNOHAND ||
1351  	    error == ERESTART_RESTARTBLOCK)
1352  		return -EINVAL;
1353  
1354  	/* the appropriate instantiation authorisation key must have been
1355  	 * assumed before calling this */
1356  	ret = -EPERM;
1357  	instkey = cred->request_key_auth;
1358  	if (!instkey)
1359  		goto error;
1360  
1361  	rka = instkey->payload.data[0];
1362  	if (rka->target_key->serial != id)
1363  		goto error;
1364  
1365  	/* find the destination keyring if present (which must also be
1366  	 * writable) */
1367  	ret = get_instantiation_keyring(ringid, rka, &dest_keyring);
1368  	if (ret < 0)
1369  		goto error;
1370  
1371  	/* instantiate the key and link it into a keyring */
1372  	ret = key_reject_and_link(rka->target_key, timeout, error,
1373  				  dest_keyring, instkey);
1374  
1375  	key_put(dest_keyring);
1376  
1377  	/* discard the assumed authority if it's just been disabled by
1378  	 * instantiation of the key */
1379  	if (ret == 0)
1380  		keyctl_change_reqkey_auth(NULL);
1381  
1382  error:
1383  	return ret;
1384  }
1385  
1386  /*
1387   * Read or set the default keyring in which request_key() will cache keys and
1388   * return the old setting.
1389   *
1390   * If a thread or process keyring is specified then it will be created if it
1391   * doesn't yet exist.  The old setting will be returned if successful.
1392   */
keyctl_set_reqkey_keyring(int reqkey_defl)1393  long keyctl_set_reqkey_keyring(int reqkey_defl)
1394  {
1395  	struct cred *new;
1396  	int ret, old_setting;
1397  
1398  	old_setting = current_cred_xxx(jit_keyring);
1399  
1400  	if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE)
1401  		return old_setting;
1402  
1403  	new = prepare_creds();
1404  	if (!new)
1405  		return -ENOMEM;
1406  
1407  	switch (reqkey_defl) {
1408  	case KEY_REQKEY_DEFL_THREAD_KEYRING:
1409  		ret = install_thread_keyring_to_cred(new);
1410  		if (ret < 0)
1411  			goto error;
1412  		goto set;
1413  
1414  	case KEY_REQKEY_DEFL_PROCESS_KEYRING:
1415  		ret = install_process_keyring_to_cred(new);
1416  		if (ret < 0)
1417  			goto error;
1418  		goto set;
1419  
1420  	case KEY_REQKEY_DEFL_DEFAULT:
1421  	case KEY_REQKEY_DEFL_SESSION_KEYRING:
1422  	case KEY_REQKEY_DEFL_USER_KEYRING:
1423  	case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
1424  	case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
1425  		goto set;
1426  
1427  	case KEY_REQKEY_DEFL_NO_CHANGE:
1428  	case KEY_REQKEY_DEFL_GROUP_KEYRING:
1429  	default:
1430  		ret = -EINVAL;
1431  		goto error;
1432  	}
1433  
1434  set:
1435  	new->jit_keyring = reqkey_defl;
1436  	commit_creds(new);
1437  	return old_setting;
1438  error:
1439  	abort_creds(new);
1440  	return ret;
1441  }
1442  
1443  /*
1444   * Set or clear the timeout on a key.
1445   *
1446   * Either the key must grant the caller Setattr permission or else the caller
1447   * must hold an instantiation authorisation token for the key.
1448   *
1449   * The timeout is either 0 to clear the timeout, or a number of seconds from
1450   * the current time.  The key and any links to the key will be automatically
1451   * garbage collected after the timeout expires.
1452   *
1453   * Keys with KEY_FLAG_KEEP set should not be timed out.
1454   *
1455   * If successful, 0 is returned.
1456   */
keyctl_set_timeout(key_serial_t id,unsigned timeout)1457  long keyctl_set_timeout(key_serial_t id, unsigned timeout)
1458  {
1459  	struct key *key, *instkey;
1460  	key_ref_t key_ref;
1461  	long ret;
1462  
1463  	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL,
1464  				  KEY_NEED_SETATTR);
1465  	if (IS_ERR(key_ref)) {
1466  		/* setting the timeout on a key under construction is permitted
1467  		 * if we have the authorisation token handy */
1468  		if (PTR_ERR(key_ref) == -EACCES) {
1469  			instkey = key_get_instantiation_authkey(id);
1470  			if (!IS_ERR(instkey)) {
1471  				key_put(instkey);
1472  				key_ref = lookup_user_key(id,
1473  							  KEY_LOOKUP_PARTIAL,
1474  							  KEY_AUTHTOKEN_OVERRIDE);
1475  				if (!IS_ERR(key_ref))
1476  					goto okay;
1477  			}
1478  		}
1479  
1480  		ret = PTR_ERR(key_ref);
1481  		goto error;
1482  	}
1483  
1484  okay:
1485  	key = key_ref_to_ptr(key_ref);
1486  	ret = 0;
1487  	if (test_bit(KEY_FLAG_KEEP, &key->flags)) {
1488  		ret = -EPERM;
1489  	} else {
1490  		key_set_timeout(key, timeout);
1491  		notify_key(key, NOTIFY_KEY_SETATTR, 0);
1492  	}
1493  	key_put(key);
1494  
1495  error:
1496  	return ret;
1497  }
1498  
1499  /*
1500   * Assume (or clear) the authority to instantiate the specified key.
1501   *
1502   * This sets the authoritative token currently in force for key instantiation.
1503   * This must be done for a key to be instantiated.  It has the effect of making
1504   * available all the keys from the caller of the request_key() that created a
1505   * key to request_key() calls made by the caller of this function.
1506   *
1507   * The caller must have the instantiation key in their process keyrings with a
1508   * Search permission grant available to the caller.
1509   *
1510   * If the ID given is 0, then the setting will be cleared and 0 returned.
1511   *
1512   * If the ID given has a matching an authorisation key, then that key will be
1513   * set and its ID will be returned.  The authorisation key can be read to get
1514   * the callout information passed to request_key().
1515   */
keyctl_assume_authority(key_serial_t id)1516  long keyctl_assume_authority(key_serial_t id)
1517  {
1518  	struct key *authkey;
1519  	long ret;
1520  
1521  	/* special key IDs aren't permitted */
1522  	ret = -EINVAL;
1523  	if (id < 0)
1524  		goto error;
1525  
1526  	/* we divest ourselves of authority if given an ID of 0 */
1527  	if (id == 0) {
1528  		ret = keyctl_change_reqkey_auth(NULL);
1529  		goto error;
1530  	}
1531  
1532  	/* attempt to assume the authority temporarily granted to us whilst we
1533  	 * instantiate the specified key
1534  	 * - the authorisation key must be in the current task's keyrings
1535  	 *   somewhere
1536  	 */
1537  	authkey = key_get_instantiation_authkey(id);
1538  	if (IS_ERR(authkey)) {
1539  		ret = PTR_ERR(authkey);
1540  		goto error;
1541  	}
1542  
1543  	ret = keyctl_change_reqkey_auth(authkey);
1544  	if (ret == 0)
1545  		ret = authkey->serial;
1546  	key_put(authkey);
1547  error:
1548  	return ret;
1549  }
1550  
1551  /*
1552   * Get a key's the LSM security label.
1553   *
1554   * The key must grant the caller View permission for this to work.
1555   *
1556   * If there's a buffer, then up to buflen bytes of data will be placed into it.
1557   *
1558   * If successful, the amount of information available will be returned,
1559   * irrespective of how much was copied (including the terminal NUL).
1560   */
keyctl_get_security(key_serial_t keyid,char __user * buffer,size_t buflen)1561  long keyctl_get_security(key_serial_t keyid,
1562  			 char __user *buffer,
1563  			 size_t buflen)
1564  {
1565  	struct key *key, *instkey;
1566  	key_ref_t key_ref;
1567  	char *context;
1568  	long ret;
1569  
1570  	key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW);
1571  	if (IS_ERR(key_ref)) {
1572  		if (PTR_ERR(key_ref) != -EACCES)
1573  			return PTR_ERR(key_ref);
1574  
1575  		/* viewing a key under construction is also permitted if we
1576  		 * have the authorisation token handy */
1577  		instkey = key_get_instantiation_authkey(keyid);
1578  		if (IS_ERR(instkey))
1579  			return PTR_ERR(instkey);
1580  		key_put(instkey);
1581  
1582  		key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL,
1583  					  KEY_AUTHTOKEN_OVERRIDE);
1584  		if (IS_ERR(key_ref))
1585  			return PTR_ERR(key_ref);
1586  	}
1587  
1588  	key = key_ref_to_ptr(key_ref);
1589  	ret = security_key_getsecurity(key, &context);
1590  	if (ret == 0) {
1591  		/* if no information was returned, give userspace an empty
1592  		 * string */
1593  		ret = 1;
1594  		if (buffer && buflen > 0 &&
1595  		    copy_to_user(buffer, "", 1) != 0)
1596  			ret = -EFAULT;
1597  	} else if (ret > 0) {
1598  		/* return as much data as there's room for */
1599  		if (buffer && buflen > 0) {
1600  			if (buflen > ret)
1601  				buflen = ret;
1602  
1603  			if (copy_to_user(buffer, context, buflen) != 0)
1604  				ret = -EFAULT;
1605  		}
1606  
1607  		kfree(context);
1608  	}
1609  
1610  	key_ref_put(key_ref);
1611  	return ret;
1612  }
1613  
1614  /*
1615   * Attempt to install the calling process's session keyring on the process's
1616   * parent process.
1617   *
1618   * The keyring must exist and must grant the caller LINK permission, and the
1619   * parent process must be single-threaded and must have the same effective
1620   * ownership as this process and mustn't be SUID/SGID.
1621   *
1622   * The keyring will be emplaced on the parent when it next resumes userspace.
1623   *
1624   * If successful, 0 will be returned.
1625   */
keyctl_session_to_parent(void)1626  long keyctl_session_to_parent(void)
1627  {
1628  	struct task_struct *me, *parent;
1629  	const struct cred *mycred, *pcred;
1630  	struct callback_head *newwork, *oldwork;
1631  	key_ref_t keyring_r;
1632  	struct cred *cred;
1633  	int ret;
1634  
1635  	keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK);
1636  	if (IS_ERR(keyring_r))
1637  		return PTR_ERR(keyring_r);
1638  
1639  	ret = -ENOMEM;
1640  
1641  	/* our parent is going to need a new cred struct, a new tgcred struct
1642  	 * and new security data, so we allocate them here to prevent ENOMEM in
1643  	 * our parent */
1644  	cred = cred_alloc_blank();
1645  	if (!cred)
1646  		goto error_keyring;
1647  	newwork = &cred->rcu;
1648  
1649  	cred->session_keyring = key_ref_to_ptr(keyring_r);
1650  	keyring_r = NULL;
1651  	init_task_work(newwork, key_change_session_keyring);
1652  
1653  	me = current;
1654  	rcu_read_lock();
1655  	write_lock_irq(&tasklist_lock);
1656  
1657  	ret = -EPERM;
1658  	oldwork = NULL;
1659  	parent = rcu_dereference_protected(me->real_parent,
1660  					   lockdep_is_held(&tasklist_lock));
1661  
1662  	/* the parent mustn't be init and mustn't be a kernel thread */
1663  	if (parent->pid <= 1 || !parent->mm)
1664  		goto unlock;
1665  
1666  	/* the parent must be single threaded */
1667  	if (!thread_group_empty(parent))
1668  		goto unlock;
1669  
1670  	/* the parent and the child must have different session keyrings or
1671  	 * there's no point */
1672  	mycred = current_cred();
1673  	pcred = __task_cred(parent);
1674  	if (mycred == pcred ||
1675  	    mycred->session_keyring == pcred->session_keyring) {
1676  		ret = 0;
1677  		goto unlock;
1678  	}
1679  
1680  	/* the parent must have the same effective ownership and mustn't be
1681  	 * SUID/SGID */
1682  	if (!uid_eq(pcred->uid,	 mycred->euid) ||
1683  	    !uid_eq(pcred->euid, mycred->euid) ||
1684  	    !uid_eq(pcred->suid, mycred->euid) ||
1685  	    !gid_eq(pcred->gid,	 mycred->egid) ||
1686  	    !gid_eq(pcred->egid, mycred->egid) ||
1687  	    !gid_eq(pcred->sgid, mycred->egid))
1688  		goto unlock;
1689  
1690  	/* the keyrings must have the same UID */
1691  	if ((pcred->session_keyring &&
1692  	     !uid_eq(pcred->session_keyring->uid, mycred->euid)) ||
1693  	    !uid_eq(mycred->session_keyring->uid, mycred->euid))
1694  		goto unlock;
1695  
1696  	/* cancel an already pending keyring replacement */
1697  	oldwork = task_work_cancel_func(parent, key_change_session_keyring);
1698  
1699  	/* the replacement session keyring is applied just prior to userspace
1700  	 * restarting */
1701  	ret = task_work_add(parent, newwork, TWA_RESUME);
1702  	if (!ret)
1703  		newwork = NULL;
1704  unlock:
1705  	write_unlock_irq(&tasklist_lock);
1706  	rcu_read_unlock();
1707  	if (oldwork)
1708  		put_cred(container_of(oldwork, struct cred, rcu));
1709  	if (newwork)
1710  		put_cred(cred);
1711  	return ret;
1712  
1713  error_keyring:
1714  	key_ref_put(keyring_r);
1715  	return ret;
1716  }
1717  
1718  /*
1719   * Apply a restriction to a given keyring.
1720   *
1721   * The caller must have Setattr permission to change keyring restrictions.
1722   *
1723   * The requested type name may be a NULL pointer to reject all attempts
1724   * to link to the keyring.  In this case, _restriction must also be NULL.
1725   * Otherwise, both _type and _restriction must be non-NULL.
1726   *
1727   * Returns 0 if successful.
1728   */
keyctl_restrict_keyring(key_serial_t id,const char __user * _type,const char __user * _restriction)1729  long keyctl_restrict_keyring(key_serial_t id, const char __user *_type,
1730  			     const char __user *_restriction)
1731  {
1732  	key_ref_t key_ref;
1733  	char type[32];
1734  	char *restriction = NULL;
1735  	long ret;
1736  
1737  	key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR);
1738  	if (IS_ERR(key_ref))
1739  		return PTR_ERR(key_ref);
1740  
1741  	ret = -EINVAL;
1742  	if (_type) {
1743  		if (!_restriction)
1744  			goto error;
1745  
1746  		ret = key_get_type_from_user(type, _type, sizeof(type));
1747  		if (ret < 0)
1748  			goto error;
1749  
1750  		restriction = strndup_user(_restriction, PAGE_SIZE);
1751  		if (IS_ERR(restriction)) {
1752  			ret = PTR_ERR(restriction);
1753  			goto error;
1754  		}
1755  	} else {
1756  		if (_restriction)
1757  			goto error;
1758  	}
1759  
1760  	ret = keyring_restrict(key_ref, _type ? type : NULL, restriction);
1761  	kfree(restriction);
1762  error:
1763  	key_ref_put(key_ref);
1764  	return ret;
1765  }
1766  
1767  #ifdef CONFIG_KEY_NOTIFICATIONS
1768  /*
1769   * Watch for changes to a key.
1770   *
1771   * The caller must have View permission to watch a key or keyring.
1772   */
keyctl_watch_key(key_serial_t id,int watch_queue_fd,int watch_id)1773  long keyctl_watch_key(key_serial_t id, int watch_queue_fd, int watch_id)
1774  {
1775  	struct watch_queue *wqueue;
1776  	struct watch_list *wlist = NULL;
1777  	struct watch *watch = NULL;
1778  	struct key *key;
1779  	key_ref_t key_ref;
1780  	long ret;
1781  
1782  	if (watch_id < -1 || watch_id > 0xff)
1783  		return -EINVAL;
1784  
1785  	key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_VIEW);
1786  	if (IS_ERR(key_ref))
1787  		return PTR_ERR(key_ref);
1788  	key = key_ref_to_ptr(key_ref);
1789  
1790  	wqueue = get_watch_queue(watch_queue_fd);
1791  	if (IS_ERR(wqueue)) {
1792  		ret = PTR_ERR(wqueue);
1793  		goto err_key;
1794  	}
1795  
1796  	if (watch_id >= 0) {
1797  		ret = -ENOMEM;
1798  		if (!key->watchers) {
1799  			wlist = kzalloc(sizeof(*wlist), GFP_KERNEL);
1800  			if (!wlist)
1801  				goto err_wqueue;
1802  			init_watch_list(wlist, NULL);
1803  		}
1804  
1805  		watch = kzalloc(sizeof(*watch), GFP_KERNEL);
1806  		if (!watch)
1807  			goto err_wlist;
1808  
1809  		init_watch(watch, wqueue);
1810  		watch->id	= key->serial;
1811  		watch->info_id	= (u32)watch_id << WATCH_INFO_ID__SHIFT;
1812  
1813  		ret = security_watch_key(key);
1814  		if (ret < 0)
1815  			goto err_watch;
1816  
1817  		down_write(&key->sem);
1818  		if (!key->watchers) {
1819  			key->watchers = wlist;
1820  			wlist = NULL;
1821  		}
1822  
1823  		ret = add_watch_to_object(watch, key->watchers);
1824  		up_write(&key->sem);
1825  
1826  		if (ret == 0)
1827  			watch = NULL;
1828  	} else {
1829  		ret = -EBADSLT;
1830  		if (key->watchers) {
1831  			down_write(&key->sem);
1832  			ret = remove_watch_from_object(key->watchers,
1833  						       wqueue, key_serial(key),
1834  						       false);
1835  			up_write(&key->sem);
1836  		}
1837  	}
1838  
1839  err_watch:
1840  	kfree(watch);
1841  err_wlist:
1842  	kfree(wlist);
1843  err_wqueue:
1844  	put_watch_queue(wqueue);
1845  err_key:
1846  	key_put(key);
1847  	return ret;
1848  }
1849  #endif /* CONFIG_KEY_NOTIFICATIONS */
1850  
1851  /*
1852   * Get keyrings subsystem capabilities.
1853   */
keyctl_capabilities(unsigned char __user * _buffer,size_t buflen)1854  long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen)
1855  {
1856  	size_t size = buflen;
1857  
1858  	if (size > 0) {
1859  		if (size > sizeof(keyrings_capabilities))
1860  			size = sizeof(keyrings_capabilities);
1861  		if (copy_to_user(_buffer, keyrings_capabilities, size) != 0)
1862  			return -EFAULT;
1863  		if (size < buflen &&
1864  		    clear_user(_buffer + size, buflen - size) != 0)
1865  			return -EFAULT;
1866  	}
1867  
1868  	return sizeof(keyrings_capabilities);
1869  }
1870  
1871  /*
1872   * The key control system call
1873   */
SYSCALL_DEFINE5(keyctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)1874  SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3,
1875  		unsigned long, arg4, unsigned long, arg5)
1876  {
1877  	switch (option) {
1878  	case KEYCTL_GET_KEYRING_ID:
1879  		return keyctl_get_keyring_ID((key_serial_t) arg2,
1880  					     (int) arg3);
1881  
1882  	case KEYCTL_JOIN_SESSION_KEYRING:
1883  		return keyctl_join_session_keyring((const char __user *) arg2);
1884  
1885  	case KEYCTL_UPDATE:
1886  		return keyctl_update_key((key_serial_t) arg2,
1887  					 (const void __user *) arg3,
1888  					 (size_t) arg4);
1889  
1890  	case KEYCTL_REVOKE:
1891  		return keyctl_revoke_key((key_serial_t) arg2);
1892  
1893  	case KEYCTL_DESCRIBE:
1894  		return keyctl_describe_key((key_serial_t) arg2,
1895  					   (char __user *) arg3,
1896  					   (unsigned) arg4);
1897  
1898  	case KEYCTL_CLEAR:
1899  		return keyctl_keyring_clear((key_serial_t) arg2);
1900  
1901  	case KEYCTL_LINK:
1902  		return keyctl_keyring_link((key_serial_t) arg2,
1903  					   (key_serial_t) arg3);
1904  
1905  	case KEYCTL_UNLINK:
1906  		return keyctl_keyring_unlink((key_serial_t) arg2,
1907  					     (key_serial_t) arg3);
1908  
1909  	case KEYCTL_SEARCH:
1910  		return keyctl_keyring_search((key_serial_t) arg2,
1911  					     (const char __user *) arg3,
1912  					     (const char __user *) arg4,
1913  					     (key_serial_t) arg5);
1914  
1915  	case KEYCTL_READ:
1916  		return keyctl_read_key((key_serial_t) arg2,
1917  				       (char __user *) arg3,
1918  				       (size_t) arg4);
1919  
1920  	case KEYCTL_CHOWN:
1921  		return keyctl_chown_key((key_serial_t) arg2,
1922  					(uid_t) arg3,
1923  					(gid_t) arg4);
1924  
1925  	case KEYCTL_SETPERM:
1926  		return keyctl_setperm_key((key_serial_t) arg2,
1927  					  (key_perm_t) arg3);
1928  
1929  	case KEYCTL_INSTANTIATE:
1930  		return keyctl_instantiate_key((key_serial_t) arg2,
1931  					      (const void __user *) arg3,
1932  					      (size_t) arg4,
1933  					      (key_serial_t) arg5);
1934  
1935  	case KEYCTL_NEGATE:
1936  		return keyctl_negate_key((key_serial_t) arg2,
1937  					 (unsigned) arg3,
1938  					 (key_serial_t) arg4);
1939  
1940  	case KEYCTL_SET_REQKEY_KEYRING:
1941  		return keyctl_set_reqkey_keyring(arg2);
1942  
1943  	case KEYCTL_SET_TIMEOUT:
1944  		return keyctl_set_timeout((key_serial_t) arg2,
1945  					  (unsigned) arg3);
1946  
1947  	case KEYCTL_ASSUME_AUTHORITY:
1948  		return keyctl_assume_authority((key_serial_t) arg2);
1949  
1950  	case KEYCTL_GET_SECURITY:
1951  		return keyctl_get_security((key_serial_t) arg2,
1952  					   (char __user *) arg3,
1953  					   (size_t) arg4);
1954  
1955  	case KEYCTL_SESSION_TO_PARENT:
1956  		return keyctl_session_to_parent();
1957  
1958  	case KEYCTL_REJECT:
1959  		return keyctl_reject_key((key_serial_t) arg2,
1960  					 (unsigned) arg3,
1961  					 (unsigned) arg4,
1962  					 (key_serial_t) arg5);
1963  
1964  	case KEYCTL_INSTANTIATE_IOV:
1965  		return keyctl_instantiate_key_iov(
1966  			(key_serial_t) arg2,
1967  			(const struct iovec __user *) arg3,
1968  			(unsigned) arg4,
1969  			(key_serial_t) arg5);
1970  
1971  	case KEYCTL_INVALIDATE:
1972  		return keyctl_invalidate_key((key_serial_t) arg2);
1973  
1974  	case KEYCTL_GET_PERSISTENT:
1975  		return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3);
1976  
1977  	case KEYCTL_DH_COMPUTE:
1978  		return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2,
1979  					 (char __user *) arg3, (size_t) arg4,
1980  					 (struct keyctl_kdf_params __user *) arg5);
1981  
1982  	case KEYCTL_RESTRICT_KEYRING:
1983  		return keyctl_restrict_keyring((key_serial_t) arg2,
1984  					       (const char __user *) arg3,
1985  					       (const char __user *) arg4);
1986  
1987  	case KEYCTL_PKEY_QUERY:
1988  		if (arg3 != 0)
1989  			return -EINVAL;
1990  		return keyctl_pkey_query((key_serial_t)arg2,
1991  					 (const char __user *)arg4,
1992  					 (struct keyctl_pkey_query __user *)arg5);
1993  
1994  	case KEYCTL_PKEY_ENCRYPT:
1995  	case KEYCTL_PKEY_DECRYPT:
1996  	case KEYCTL_PKEY_SIGN:
1997  		return keyctl_pkey_e_d_s(
1998  			option,
1999  			(const struct keyctl_pkey_params __user *)arg2,
2000  			(const char __user *)arg3,
2001  			(const void __user *)arg4,
2002  			(void __user *)arg5);
2003  
2004  	case KEYCTL_PKEY_VERIFY:
2005  		return keyctl_pkey_verify(
2006  			(const struct keyctl_pkey_params __user *)arg2,
2007  			(const char __user *)arg3,
2008  			(const void __user *)arg4,
2009  			(const void __user *)arg5);
2010  
2011  	case KEYCTL_MOVE:
2012  		return keyctl_keyring_move((key_serial_t)arg2,
2013  					   (key_serial_t)arg3,
2014  					   (key_serial_t)arg4,
2015  					   (unsigned int)arg5);
2016  
2017  	case KEYCTL_CAPABILITIES:
2018  		return keyctl_capabilities((unsigned char __user *)arg2, (size_t)arg3);
2019  
2020  	case KEYCTL_WATCH_KEY:
2021  		return keyctl_watch_key((key_serial_t)arg2, (int)arg3, (int)arg4);
2022  
2023  	default:
2024  		return -EOPNOTSUPP;
2025  	}
2026  }
2027