1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
3
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/overflow.h>
12 #include <linux/pci.h>
13 #include <linux/pci_regs.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/dma-direct.h> /* for bus_dma_region */
18
19 #include "of_private.h"
20
21 /* Max address size we deal with */
22 #define OF_MAX_ADDR_CELLS 4
23 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
24 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
25
26 /* Debug utility */
27 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)28 static void of_dump_addr(const char *s, const __be32 *addr, int na)
29 {
30 pr_debug("%s", s);
31 while (na--)
32 pr_cont(" %08x", be32_to_cpu(*(addr++)));
33 pr_cont("\n");
34 }
35 #else
of_dump_addr(const char * s,const __be32 * addr,int na)36 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
37 #endif
38
39 /* Callbacks for bus specific translators */
40 struct of_bus {
41 const char *name;
42 const char *addresses;
43 int (*match)(struct device_node *parent);
44 void (*count_cells)(struct device_node *child,
45 int *addrc, int *sizec);
46 u64 (*map)(__be32 *addr, const __be32 *range,
47 int na, int ns, int pna);
48 int (*translate)(__be32 *addr, u64 offset, int na);
49 bool has_flags;
50 unsigned int (*get_flags)(const __be32 *addr);
51 };
52
53 /*
54 * Default translator (generic bus)
55 */
56
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)57 static void of_bus_default_count_cells(struct device_node *dev,
58 int *addrc, int *sizec)
59 {
60 if (addrc)
61 *addrc = of_n_addr_cells(dev);
62 if (sizec)
63 *sizec = of_n_size_cells(dev);
64 }
65
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 int na, int ns, int pna)
68 {
69 u64 cp, s, da;
70
71 cp = of_read_number(range, na);
72 s = of_read_number(range + na + pna, ns);
73 da = of_read_number(addr, na);
74
75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
76
77 if (da < cp || da >= (cp + s))
78 return OF_BAD_ADDR;
79 return da - cp;
80 }
81
of_bus_default_translate(__be32 * addr,u64 offset,int na)82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83 {
84 u64 a = of_read_number(addr, na);
85 memset(addr, 0, na * 4);
86 a += offset;
87 if (na > 1)
88 addr[na - 2] = cpu_to_be32(a >> 32);
89 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90
91 return 0;
92 }
93
of_bus_default_flags_get_flags(const __be32 * addr)94 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
95 {
96 return of_read_number(addr, 1);
97 }
98
of_bus_default_get_flags(const __be32 * addr)99 static unsigned int of_bus_default_get_flags(const __be32 *addr)
100 {
101 return IORESOURCE_MEM;
102 }
103
of_bus_default_flags_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)104 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
105 int ns, int pna)
106 {
107 u64 cp, s, da;
108
109 /* Check that flags match */
110 if (*addr != *range)
111 return OF_BAD_ADDR;
112
113 /* Read address values, skipping high cell */
114 cp = of_read_number(range + 1, na - 1);
115 s = of_read_number(range + na + pna, ns);
116 da = of_read_number(addr + 1, na - 1);
117
118 pr_debug("default flags map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
119
120 if (da < cp || da >= (cp + s))
121 return OF_BAD_ADDR;
122 return da - cp;
123 }
124
of_bus_default_flags_translate(__be32 * addr,u64 offset,int na)125 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
126 {
127 /* Keep "flags" part (high cell) in translated address */
128 return of_bus_default_translate(addr + 1, offset, na - 1);
129 }
130
131 #ifdef CONFIG_PCI
of_bus_pci_get_flags(const __be32 * addr)132 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
133 {
134 unsigned int flags = 0;
135 u32 w = be32_to_cpup(addr);
136
137 if (!IS_ENABLED(CONFIG_PCI))
138 return 0;
139
140 switch((w >> 24) & 0x03) {
141 case 0x01:
142 flags |= IORESOURCE_IO;
143 break;
144 case 0x02: /* 32 bits */
145 flags |= IORESOURCE_MEM;
146 break;
147
148 case 0x03: /* 64 bits */
149 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
150 break;
151 }
152 if (w & 0x40000000)
153 flags |= IORESOURCE_PREFETCH;
154 return flags;
155 }
156
157 /*
158 * PCI bus specific translator
159 */
160
of_node_is_pcie(struct device_node * np)161 static bool of_node_is_pcie(struct device_node *np)
162 {
163 bool is_pcie = of_node_name_eq(np, "pcie");
164
165 if (is_pcie)
166 pr_warn_once("%pOF: Missing device_type\n", np);
167
168 return is_pcie;
169 }
170
of_bus_pci_match(struct device_node * np)171 static int of_bus_pci_match(struct device_node *np)
172 {
173 /*
174 * "pciex" is PCI Express
175 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
176 * "ht" is hypertransport
177 *
178 * If none of the device_type match, and that the node name is
179 * "pcie", accept the device as PCI (with a warning).
180 */
181 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
182 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
183 of_node_is_pcie(np);
184 }
185
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)186 static void of_bus_pci_count_cells(struct device_node *np,
187 int *addrc, int *sizec)
188 {
189 if (addrc)
190 *addrc = 3;
191 if (sizec)
192 *sizec = 2;
193 }
194
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)195 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
196 int pna)
197 {
198 u64 cp, s, da;
199 unsigned int af, rf;
200
201 af = of_bus_pci_get_flags(addr);
202 rf = of_bus_pci_get_flags(range);
203
204 /* Check address type match */
205 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
206 return OF_BAD_ADDR;
207
208 /* Read address values, skipping high cell */
209 cp = of_read_number(range + 1, na - 1);
210 s = of_read_number(range + na + pna, ns);
211 da = of_read_number(addr + 1, na - 1);
212
213 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
214
215 if (da < cp || da >= (cp + s))
216 return OF_BAD_ADDR;
217 return da - cp;
218 }
219
of_bus_pci_translate(__be32 * addr,u64 offset,int na)220 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
221 {
222 return of_bus_default_translate(addr + 1, offset, na - 1);
223 }
224 #endif /* CONFIG_PCI */
225
226 /*
227 * of_pci_range_to_resource - Create a resource from an of_pci_range
228 * @range: the PCI range that describes the resource
229 * @np: device node where the range belongs to
230 * @res: pointer to a valid resource that will be updated to
231 * reflect the values contained in the range.
232 *
233 * Returns -EINVAL if the range cannot be converted to resource.
234 *
235 * Note that if the range is an IO range, the resource will be converted
236 * using pci_address_to_pio() which can fail if it is called too early or
237 * if the range cannot be matched to any host bridge IO space (our case here).
238 * To guard against that we try to register the IO range first.
239 * If that fails we know that pci_address_to_pio() will do too.
240 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)241 int of_pci_range_to_resource(struct of_pci_range *range,
242 struct device_node *np, struct resource *res)
243 {
244 int err;
245 res->flags = range->flags;
246 res->parent = res->child = res->sibling = NULL;
247 res->name = np->full_name;
248
249 if (res->flags & IORESOURCE_IO) {
250 unsigned long port;
251 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
252 range->size);
253 if (err)
254 goto invalid_range;
255 port = pci_address_to_pio(range->cpu_addr);
256 if (port == (unsigned long)-1) {
257 err = -EINVAL;
258 goto invalid_range;
259 }
260 res->start = port;
261 } else {
262 if ((sizeof(resource_size_t) < 8) &&
263 upper_32_bits(range->cpu_addr)) {
264 err = -EINVAL;
265 goto invalid_range;
266 }
267
268 res->start = range->cpu_addr;
269 }
270 res->end = res->start + range->size - 1;
271 return 0;
272
273 invalid_range:
274 res->start = (resource_size_t)OF_BAD_ADDR;
275 res->end = (resource_size_t)OF_BAD_ADDR;
276 return err;
277 }
278 EXPORT_SYMBOL(of_pci_range_to_resource);
279
280 /*
281 * of_range_to_resource - Create a resource from a ranges entry
282 * @np: device node where the range belongs to
283 * @index: the 'ranges' index to convert to a resource
284 * @res: pointer to a valid resource that will be updated to
285 * reflect the values contained in the range.
286 *
287 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
288 * converted to resource.
289 */
of_range_to_resource(struct device_node * np,int index,struct resource * res)290 int of_range_to_resource(struct device_node *np, int index, struct resource *res)
291 {
292 int ret, i = 0;
293 struct of_range_parser parser;
294 struct of_range range;
295
296 ret = of_range_parser_init(&parser, np);
297 if (ret)
298 return ret;
299
300 for_each_of_range(&parser, &range)
301 if (i++ == index)
302 return of_pci_range_to_resource(&range, np, res);
303
304 return -ENOENT;
305 }
306 EXPORT_SYMBOL(of_range_to_resource);
307
308 /*
309 * ISA bus specific translator
310 */
311
of_bus_isa_match(struct device_node * np)312 static int of_bus_isa_match(struct device_node *np)
313 {
314 return of_node_name_eq(np, "isa");
315 }
316
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)317 static void of_bus_isa_count_cells(struct device_node *child,
318 int *addrc, int *sizec)
319 {
320 if (addrc)
321 *addrc = 2;
322 if (sizec)
323 *sizec = 1;
324 }
325
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)326 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
327 int pna)
328 {
329 u64 cp, s, da;
330
331 /* Check address type match */
332 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
333 return OF_BAD_ADDR;
334
335 /* Read address values, skipping high cell */
336 cp = of_read_number(range + 1, na - 1);
337 s = of_read_number(range + na + pna, ns);
338 da = of_read_number(addr + 1, na - 1);
339
340 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
341
342 if (da < cp || da >= (cp + s))
343 return OF_BAD_ADDR;
344 return da - cp;
345 }
346
of_bus_isa_translate(__be32 * addr,u64 offset,int na)347 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
348 {
349 return of_bus_default_translate(addr + 1, offset, na - 1);
350 }
351
of_bus_isa_get_flags(const __be32 * addr)352 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
353 {
354 unsigned int flags = 0;
355 u32 w = be32_to_cpup(addr);
356
357 if (w & 1)
358 flags |= IORESOURCE_IO;
359 else
360 flags |= IORESOURCE_MEM;
361 return flags;
362 }
363
of_bus_default_flags_match(struct device_node * np)364 static int of_bus_default_flags_match(struct device_node *np)
365 {
366 return of_bus_n_addr_cells(np) == 3;
367 }
368
369 /*
370 * Array of bus specific translators
371 */
372
373 static struct of_bus of_busses[] = {
374 #ifdef CONFIG_PCI
375 /* PCI */
376 {
377 .name = "pci",
378 .addresses = "assigned-addresses",
379 .match = of_bus_pci_match,
380 .count_cells = of_bus_pci_count_cells,
381 .map = of_bus_pci_map,
382 .translate = of_bus_pci_translate,
383 .has_flags = true,
384 .get_flags = of_bus_pci_get_flags,
385 },
386 #endif /* CONFIG_PCI */
387 /* ISA */
388 {
389 .name = "isa",
390 .addresses = "reg",
391 .match = of_bus_isa_match,
392 .count_cells = of_bus_isa_count_cells,
393 .map = of_bus_isa_map,
394 .translate = of_bus_isa_translate,
395 .has_flags = true,
396 .get_flags = of_bus_isa_get_flags,
397 },
398 /* Default with flags cell */
399 {
400 .name = "default-flags",
401 .addresses = "reg",
402 .match = of_bus_default_flags_match,
403 .count_cells = of_bus_default_count_cells,
404 .map = of_bus_default_flags_map,
405 .translate = of_bus_default_flags_translate,
406 .has_flags = true,
407 .get_flags = of_bus_default_flags_get_flags,
408 },
409 /* Default */
410 {
411 .name = "default",
412 .addresses = "reg",
413 .match = NULL,
414 .count_cells = of_bus_default_count_cells,
415 .map = of_bus_default_map,
416 .translate = of_bus_default_translate,
417 .get_flags = of_bus_default_get_flags,
418 },
419 };
420
of_match_bus(struct device_node * np)421 static struct of_bus *of_match_bus(struct device_node *np)
422 {
423 int i;
424
425 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
426 if (!of_busses[i].match || of_busses[i].match(np))
427 return &of_busses[i];
428 BUG();
429 return NULL;
430 }
431
of_empty_ranges_quirk(struct device_node * np)432 static int of_empty_ranges_quirk(struct device_node *np)
433 {
434 if (IS_ENABLED(CONFIG_PPC)) {
435 /* To save cycles, we cache the result for global "Mac" setting */
436 static int quirk_state = -1;
437
438 /* PA-SEMI sdc DT bug */
439 if (of_device_is_compatible(np, "1682m-sdc"))
440 return true;
441
442 /* Make quirk cached */
443 if (quirk_state < 0)
444 quirk_state =
445 of_machine_is_compatible("Power Macintosh") ||
446 of_machine_is_compatible("MacRISC");
447 return quirk_state;
448 }
449 return false;
450 }
451
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)452 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
453 struct of_bus *pbus, __be32 *addr,
454 int na, int ns, int pna, const char *rprop)
455 {
456 const __be32 *ranges;
457 unsigned int rlen;
458 int rone;
459 u64 offset = OF_BAD_ADDR;
460
461 /*
462 * Normally, an absence of a "ranges" property means we are
463 * crossing a non-translatable boundary, and thus the addresses
464 * below the current cannot be converted to CPU physical ones.
465 * Unfortunately, while this is very clear in the spec, it's not
466 * what Apple understood, and they do have things like /uni-n or
467 * /ht nodes with no "ranges" property and a lot of perfectly
468 * useable mapped devices below them. Thus we treat the absence of
469 * "ranges" as equivalent to an empty "ranges" property which means
470 * a 1:1 translation at that level. It's up to the caller not to try
471 * to translate addresses that aren't supposed to be translated in
472 * the first place. --BenH.
473 *
474 * As far as we know, this damage only exists on Apple machines, so
475 * This code is only enabled on powerpc. --gcl
476 *
477 * This quirk also applies for 'dma-ranges' which frequently exist in
478 * child nodes without 'dma-ranges' in the parent nodes. --RobH
479 */
480 ranges = of_get_property(parent, rprop, &rlen);
481 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
482 strcmp(rprop, "dma-ranges")) {
483 pr_debug("no ranges; cannot translate\n");
484 return 1;
485 }
486 if (ranges == NULL || rlen == 0) {
487 offset = of_read_number(addr, na);
488 memset(addr, 0, pna * 4);
489 pr_debug("empty ranges; 1:1 translation\n");
490 goto finish;
491 }
492
493 pr_debug("walking ranges...\n");
494
495 /* Now walk through the ranges */
496 rlen /= 4;
497 rone = na + pna + ns;
498 for (; rlen >= rone; rlen -= rone, ranges += rone) {
499 offset = bus->map(addr, ranges, na, ns, pna);
500 if (offset != OF_BAD_ADDR)
501 break;
502 }
503 if (offset == OF_BAD_ADDR) {
504 pr_debug("not found !\n");
505 return 1;
506 }
507 memcpy(addr, ranges + na, 4 * pna);
508
509 finish:
510 of_dump_addr("parent translation for:", addr, pna);
511 pr_debug("with offset: %llx\n", offset);
512
513 /* Translate it into parent bus space */
514 return pbus->translate(addr, offset, pna);
515 }
516
517 /*
518 * Translate an address from the device-tree into a CPU physical address,
519 * this walks up the tree and applies the various bus mappings on the
520 * way.
521 *
522 * Note: We consider that crossing any level with #size-cells == 0 to mean
523 * that translation is impossible (that is we are not dealing with a value
524 * that can be mapped to a cpu physical address). This is not really specified
525 * that way, but this is traditionally the way IBM at least do things
526 *
527 * Whenever the translation fails, the *host pointer will be set to the
528 * device that had registered logical PIO mapping, and the return code is
529 * relative to that node.
530 */
__of_translate_address(struct device_node * dev,struct device_node * (* get_parent)(const struct device_node *),const __be32 * in_addr,const char * rprop,struct device_node ** host)531 static u64 __of_translate_address(struct device_node *dev,
532 struct device_node *(*get_parent)(const struct device_node *),
533 const __be32 *in_addr, const char *rprop,
534 struct device_node **host)
535 {
536 struct device_node *parent = NULL;
537 struct of_bus *bus, *pbus;
538 __be32 addr[OF_MAX_ADDR_CELLS];
539 int na, ns, pna, pns;
540 u64 result = OF_BAD_ADDR;
541
542 pr_debug("** translation for device %pOF **\n", dev);
543
544 /* Increase refcount at current level */
545 of_node_get(dev);
546
547 *host = NULL;
548 /* Get parent & match bus type */
549 parent = get_parent(dev);
550 if (parent == NULL)
551 goto bail;
552 bus = of_match_bus(parent);
553
554 /* Count address cells & copy address locally */
555 bus->count_cells(dev, &na, &ns);
556 if (!OF_CHECK_COUNTS(na, ns)) {
557 pr_debug("Bad cell count for %pOF\n", dev);
558 goto bail;
559 }
560 memcpy(addr, in_addr, na * 4);
561
562 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
563 bus->name, na, ns, parent);
564 of_dump_addr("translating address:", addr, na);
565
566 /* Translate */
567 for (;;) {
568 struct logic_pio_hwaddr *iorange;
569
570 /* Switch to parent bus */
571 of_node_put(dev);
572 dev = parent;
573 parent = get_parent(dev);
574
575 /* If root, we have finished */
576 if (parent == NULL) {
577 pr_debug("reached root node\n");
578 result = of_read_number(addr, na);
579 break;
580 }
581
582 /*
583 * For indirectIO device which has no ranges property, get
584 * the address from reg directly.
585 */
586 iorange = find_io_range_by_fwnode(&dev->fwnode);
587 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
588 result = of_read_number(addr + 1, na - 1);
589 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
590 dev, result);
591 *host = of_node_get(dev);
592 break;
593 }
594
595 /* Get new parent bus and counts */
596 pbus = of_match_bus(parent);
597 pbus->count_cells(dev, &pna, &pns);
598 if (!OF_CHECK_COUNTS(pna, pns)) {
599 pr_err("Bad cell count for %pOF\n", dev);
600 break;
601 }
602
603 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
604 pbus->name, pna, pns, parent);
605
606 /* Apply bus translation */
607 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
608 break;
609
610 /* Complete the move up one level */
611 na = pna;
612 ns = pns;
613 bus = pbus;
614
615 of_dump_addr("one level translation:", addr, na);
616 }
617 bail:
618 of_node_put(parent);
619 of_node_put(dev);
620
621 return result;
622 }
623
of_translate_address(struct device_node * dev,const __be32 * in_addr)624 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
625 {
626 struct device_node *host;
627 u64 ret;
628
629 ret = __of_translate_address(dev, of_get_parent,
630 in_addr, "ranges", &host);
631 if (host) {
632 of_node_put(host);
633 return OF_BAD_ADDR;
634 }
635
636 return ret;
637 }
638 EXPORT_SYMBOL(of_translate_address);
639
640 #ifdef CONFIG_HAS_DMA
__of_get_dma_parent(const struct device_node * np)641 struct device_node *__of_get_dma_parent(const struct device_node *np)
642 {
643 struct of_phandle_args args;
644 int ret, index;
645
646 index = of_property_match_string(np, "interconnect-names", "dma-mem");
647 if (index < 0)
648 return of_get_parent(np);
649
650 ret = of_parse_phandle_with_args(np, "interconnects",
651 "#interconnect-cells",
652 index, &args);
653 if (ret < 0)
654 return of_get_parent(np);
655
656 return of_node_get(args.np);
657 }
658 #endif
659
of_get_next_dma_parent(struct device_node * np)660 static struct device_node *of_get_next_dma_parent(struct device_node *np)
661 {
662 struct device_node *parent;
663
664 parent = __of_get_dma_parent(np);
665 of_node_put(np);
666
667 return parent;
668 }
669
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)670 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
671 {
672 struct device_node *host;
673 u64 ret;
674
675 ret = __of_translate_address(dev, __of_get_dma_parent,
676 in_addr, "dma-ranges", &host);
677
678 if (host) {
679 of_node_put(host);
680 return OF_BAD_ADDR;
681 }
682
683 return ret;
684 }
685 EXPORT_SYMBOL(of_translate_dma_address);
686
687 /**
688 * of_translate_dma_region - Translate device tree address and size tuple
689 * @dev: device tree node for which to translate
690 * @prop: pointer into array of cells
691 * @start: return value for the start of the DMA range
692 * @length: return value for the length of the DMA range
693 *
694 * Returns a pointer to the cell immediately following the translated DMA region.
695 */
of_translate_dma_region(struct device_node * dev,const __be32 * prop,phys_addr_t * start,size_t * length)696 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
697 phys_addr_t *start, size_t *length)
698 {
699 struct device_node *parent;
700 u64 address, size;
701 int na, ns;
702
703 parent = __of_get_dma_parent(dev);
704 if (!parent)
705 return NULL;
706
707 na = of_bus_n_addr_cells(parent);
708 ns = of_bus_n_size_cells(parent);
709
710 of_node_put(parent);
711
712 address = of_translate_dma_address(dev, prop);
713 if (address == OF_BAD_ADDR)
714 return NULL;
715
716 size = of_read_number(prop + na, ns);
717
718 if (start)
719 *start = address;
720
721 if (length)
722 *length = size;
723
724 return prop + na + ns;
725 }
726 EXPORT_SYMBOL(of_translate_dma_region);
727
__of_get_address(struct device_node * dev,int index,int bar_no,u64 * size,unsigned int * flags)728 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
729 u64 *size, unsigned int *flags)
730 {
731 const __be32 *prop;
732 unsigned int psize;
733 struct device_node *parent;
734 struct of_bus *bus;
735 int onesize, i, na, ns;
736
737 /* Get parent & match bus type */
738 parent = of_get_parent(dev);
739 if (parent == NULL)
740 return NULL;
741 bus = of_match_bus(parent);
742 if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
743 of_node_put(parent);
744 return NULL;
745 }
746 bus->count_cells(dev, &na, &ns);
747 of_node_put(parent);
748 if (!OF_CHECK_ADDR_COUNT(na))
749 return NULL;
750
751 /* Get "reg" or "assigned-addresses" property */
752 prop = of_get_property(dev, bus->addresses, &psize);
753 if (prop == NULL)
754 return NULL;
755 psize /= 4;
756
757 onesize = na + ns;
758 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
759 u32 val = be32_to_cpu(prop[0]);
760 /* PCI bus matches on BAR number instead of index */
761 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
762 ((index >= 0) && (i == index))) {
763 if (size)
764 *size = of_read_number(prop + na, ns);
765 if (flags)
766 *flags = bus->get_flags(prop);
767 return prop;
768 }
769 }
770 return NULL;
771 }
772 EXPORT_SYMBOL(__of_get_address);
773
774 /**
775 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
776 * @np: device tree node for which to retrieve "reg" from
777 * @idx: "reg" entry index to read
778 * @addr: return value for the untranslated address
779 * @size: return value for the entry size
780 *
781 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
782 * size values filled in.
783 */
of_property_read_reg(struct device_node * np,int idx,u64 * addr,u64 * size)784 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
785 {
786 const __be32 *prop = of_get_address(np, idx, size, NULL);
787
788 if (!prop)
789 return -EINVAL;
790
791 *addr = of_read_number(prop, of_n_addr_cells(np));
792
793 return 0;
794 }
795 EXPORT_SYMBOL(of_property_read_reg);
796
parser_init(struct of_pci_range_parser * parser,struct device_node * node,const char * name)797 static int parser_init(struct of_pci_range_parser *parser,
798 struct device_node *node, const char *name)
799 {
800 int rlen;
801
802 parser->node = node;
803 parser->pna = of_n_addr_cells(node);
804 parser->na = of_bus_n_addr_cells(node);
805 parser->ns = of_bus_n_size_cells(node);
806 parser->dma = !strcmp(name, "dma-ranges");
807 parser->bus = of_match_bus(node);
808
809 parser->range = of_get_property(node, name, &rlen);
810 if (parser->range == NULL)
811 return -ENOENT;
812
813 parser->end = parser->range + rlen / sizeof(__be32);
814
815 return 0;
816 }
817
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)818 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
819 struct device_node *node)
820 {
821 return parser_init(parser, node, "ranges");
822 }
823 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
824
of_pci_dma_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)825 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
826 struct device_node *node)
827 {
828 return parser_init(parser, node, "dma-ranges");
829 }
830 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
831 #define of_dma_range_parser_init of_pci_dma_range_parser_init
832
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)833 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
834 struct of_pci_range *range)
835 {
836 int na = parser->na;
837 int ns = parser->ns;
838 int np = parser->pna + na + ns;
839 int busflag_na = 0;
840
841 if (!range)
842 return NULL;
843
844 if (!parser->range || parser->range + np > parser->end)
845 return NULL;
846
847 range->flags = parser->bus->get_flags(parser->range);
848
849 /* A extra cell for resource flags */
850 if (parser->bus->has_flags)
851 busflag_na = 1;
852
853 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
854
855 if (parser->dma)
856 range->cpu_addr = of_translate_dma_address(parser->node,
857 parser->range + na);
858 else
859 range->cpu_addr = of_translate_address(parser->node,
860 parser->range + na);
861 range->size = of_read_number(parser->range + parser->pna + na, ns);
862
863 parser->range += np;
864
865 /* Now consume following elements while they are contiguous */
866 while (parser->range + np <= parser->end) {
867 u32 flags = 0;
868 u64 bus_addr, cpu_addr, size;
869
870 flags = parser->bus->get_flags(parser->range);
871 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
872 if (parser->dma)
873 cpu_addr = of_translate_dma_address(parser->node,
874 parser->range + na);
875 else
876 cpu_addr = of_translate_address(parser->node,
877 parser->range + na);
878 size = of_read_number(parser->range + parser->pna + na, ns);
879
880 if (flags != range->flags)
881 break;
882 if (bus_addr != range->bus_addr + range->size ||
883 cpu_addr != range->cpu_addr + range->size)
884 break;
885
886 range->size += size;
887 parser->range += np;
888 }
889
890 return range;
891 }
892 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
893
of_translate_ioport(struct device_node * dev,const __be32 * in_addr,u64 size)894 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
895 u64 size)
896 {
897 u64 taddr;
898 unsigned long port;
899 struct device_node *host;
900
901 taddr = __of_translate_address(dev, of_get_parent,
902 in_addr, "ranges", &host);
903 if (host) {
904 /* host-specific port access */
905 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
906 of_node_put(host);
907 } else {
908 /* memory-mapped I/O range */
909 port = pci_address_to_pio(taddr);
910 }
911
912 if (port == (unsigned long)-1)
913 return OF_BAD_ADDR;
914
915 return port;
916 }
917
918 #ifdef CONFIG_HAS_DMA
919 /**
920 * of_dma_get_range - Get DMA range info and put it into a map array
921 * @np: device node to get DMA range info
922 * @map: dma range structure to return
923 *
924 * Look in bottom up direction for the first "dma-ranges" property
925 * and parse it. Put the information into a DMA offset map array.
926 *
927 * dma-ranges format:
928 * DMA addr (dma_addr) : naddr cells
929 * CPU addr (phys_addr_t) : pna cells
930 * size : nsize cells
931 *
932 * It returns -ENODEV if "dma-ranges" property was not found for this
933 * device in the DT.
934 */
of_dma_get_range(struct device_node * np,const struct bus_dma_region ** map)935 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
936 {
937 struct device_node *node = of_node_get(np);
938 const __be32 *ranges = NULL;
939 bool found_dma_ranges = false;
940 struct of_range_parser parser;
941 struct of_range range;
942 struct bus_dma_region *r;
943 int len, num_ranges = 0;
944 int ret = 0;
945
946 while (node) {
947 ranges = of_get_property(node, "dma-ranges", &len);
948
949 /* Ignore empty ranges, they imply no translation required */
950 if (ranges && len > 0)
951 break;
952
953 /* Once we find 'dma-ranges', then a missing one is an error */
954 if (found_dma_ranges && !ranges) {
955 ret = -ENODEV;
956 goto out;
957 }
958 found_dma_ranges = true;
959
960 node = of_get_next_dma_parent(node);
961 }
962
963 if (!node || !ranges) {
964 pr_debug("no dma-ranges found for node(%pOF)\n", np);
965 ret = -ENODEV;
966 goto out;
967 }
968
969 of_dma_range_parser_init(&parser, node);
970 for_each_of_range(&parser, &range) {
971 if (range.cpu_addr == OF_BAD_ADDR) {
972 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
973 range.bus_addr, node);
974 continue;
975 }
976 num_ranges++;
977 }
978
979 if (!num_ranges) {
980 ret = -EINVAL;
981 goto out;
982 }
983
984 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
985 if (!r) {
986 ret = -ENOMEM;
987 goto out;
988 }
989
990 /*
991 * Record all info in the generic DMA ranges array for struct device,
992 * returning an error if we don't find any parsable ranges.
993 */
994 *map = r;
995 of_dma_range_parser_init(&parser, node);
996 for_each_of_range(&parser, &range) {
997 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
998 range.bus_addr, range.cpu_addr, range.size);
999 if (range.cpu_addr == OF_BAD_ADDR)
1000 continue;
1001 r->cpu_start = range.cpu_addr;
1002 r->dma_start = range.bus_addr;
1003 r->size = range.size;
1004 r->offset = range.cpu_addr - range.bus_addr;
1005 r++;
1006 }
1007 out:
1008 of_node_put(node);
1009 return ret;
1010 }
1011 #endif /* CONFIG_HAS_DMA */
1012
1013 /**
1014 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
1015 * @np: The node to start searching from or NULL to start from the root
1016 *
1017 * Gets the highest CPU physical address that is addressable by all DMA masters
1018 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
1019 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
1020 */
of_dma_get_max_cpu_address(struct device_node * np)1021 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
1022 {
1023 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
1024 struct of_range_parser parser;
1025 phys_addr_t subtree_max_addr;
1026 struct device_node *child;
1027 struct of_range range;
1028 const __be32 *ranges;
1029 u64 cpu_end = 0;
1030 int len;
1031
1032 if (!np)
1033 np = of_root;
1034
1035 ranges = of_get_property(np, "dma-ranges", &len);
1036 if (ranges && len) {
1037 of_dma_range_parser_init(&parser, np);
1038 for_each_of_range(&parser, &range)
1039 if (range.cpu_addr + range.size > cpu_end)
1040 cpu_end = range.cpu_addr + range.size - 1;
1041
1042 if (max_cpu_addr > cpu_end)
1043 max_cpu_addr = cpu_end;
1044 }
1045
1046 for_each_available_child_of_node(np, child) {
1047 subtree_max_addr = of_dma_get_max_cpu_address(child);
1048 if (max_cpu_addr > subtree_max_addr)
1049 max_cpu_addr = subtree_max_addr;
1050 }
1051
1052 return max_cpu_addr;
1053 }
1054
1055 /**
1056 * of_dma_is_coherent - Check if device is coherent
1057 * @np: device node
1058 *
1059 * It returns true if "dma-coherent" property was found
1060 * for this device in the DT, or if DMA is coherent by
1061 * default for OF devices on the current platform and no
1062 * "dma-noncoherent" property was found for this device.
1063 */
of_dma_is_coherent(struct device_node * np)1064 bool of_dma_is_coherent(struct device_node *np)
1065 {
1066 struct device_node *node;
1067 bool is_coherent = dma_default_coherent;
1068
1069 node = of_node_get(np);
1070
1071 while (node) {
1072 if (of_property_read_bool(node, "dma-coherent")) {
1073 is_coherent = true;
1074 break;
1075 }
1076 if (of_property_read_bool(node, "dma-noncoherent")) {
1077 is_coherent = false;
1078 break;
1079 }
1080 node = of_get_next_dma_parent(node);
1081 }
1082 of_node_put(node);
1083 return is_coherent;
1084 }
1085 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1086
1087 /**
1088 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1089 * @np: device node
1090 *
1091 * Returns true if the "nonposted-mmio" property was found for
1092 * the device's bus.
1093 *
1094 * This is currently only enabled on builds that support Apple ARM devices, as
1095 * an optimization.
1096 */
of_mmio_is_nonposted(struct device_node * np)1097 static bool of_mmio_is_nonposted(struct device_node *np)
1098 {
1099 struct device_node *parent;
1100 bool nonposted;
1101
1102 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1103 return false;
1104
1105 parent = of_get_parent(np);
1106 if (!parent)
1107 return false;
1108
1109 nonposted = of_property_read_bool(parent, "nonposted-mmio");
1110
1111 of_node_put(parent);
1112 return nonposted;
1113 }
1114
__of_address_to_resource(struct device_node * dev,int index,int bar_no,struct resource * r)1115 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1116 struct resource *r)
1117 {
1118 u64 taddr;
1119 const __be32 *addrp;
1120 u64 size;
1121 unsigned int flags;
1122 const char *name = NULL;
1123
1124 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1125 if (addrp == NULL)
1126 return -EINVAL;
1127
1128 /* Get optional "reg-names" property to add a name to a resource */
1129 if (index >= 0)
1130 of_property_read_string_index(dev, "reg-names", index, &name);
1131
1132 if (flags & IORESOURCE_MEM)
1133 taddr = of_translate_address(dev, addrp);
1134 else if (flags & IORESOURCE_IO)
1135 taddr = of_translate_ioport(dev, addrp, size);
1136 else
1137 return -EINVAL;
1138
1139 if (taddr == OF_BAD_ADDR)
1140 return -EINVAL;
1141 memset(r, 0, sizeof(struct resource));
1142
1143 if (of_mmio_is_nonposted(dev))
1144 flags |= IORESOURCE_MEM_NONPOSTED;
1145
1146 if (overflows_type(taddr, r->start))
1147 return -EOVERFLOW;
1148 r->start = taddr;
1149 if (overflows_type(taddr + size - 1, r->end))
1150 return -EOVERFLOW;
1151 r->end = taddr + size - 1;
1152 r->flags = flags;
1153 r->name = name ? name : dev->full_name;
1154
1155 return 0;
1156 }
1157
1158 /**
1159 * of_address_to_resource - Translate device tree address and return as resource
1160 * @dev: Caller's Device Node
1161 * @index: Index into the array
1162 * @r: Pointer to resource array
1163 *
1164 * Returns -EINVAL if the range cannot be converted to resource.
1165 *
1166 * Note that if your address is a PIO address, the conversion will fail if
1167 * the physical address can't be internally converted to an IO token with
1168 * pci_address_to_pio(), that is because it's either called too early or it
1169 * can't be matched to any host bridge IO space
1170 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)1171 int of_address_to_resource(struct device_node *dev, int index,
1172 struct resource *r)
1173 {
1174 return __of_address_to_resource(dev, index, -1, r);
1175 }
1176 EXPORT_SYMBOL_GPL(of_address_to_resource);
1177
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)1178 int of_pci_address_to_resource(struct device_node *dev, int bar,
1179 struct resource *r)
1180 {
1181
1182 if (!IS_ENABLED(CONFIG_PCI))
1183 return -ENOSYS;
1184
1185 return __of_address_to_resource(dev, -1, bar, r);
1186 }
1187 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1188
1189 /**
1190 * of_iomap - Maps the memory mapped IO for a given device_node
1191 * @np: the device whose io range will be mapped
1192 * @index: index of the io range
1193 *
1194 * Returns a pointer to the mapped memory
1195 */
of_iomap(struct device_node * np,int index)1196 void __iomem *of_iomap(struct device_node *np, int index)
1197 {
1198 struct resource res;
1199
1200 if (of_address_to_resource(np, index, &res))
1201 return NULL;
1202
1203 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1204 return ioremap_np(res.start, resource_size(&res));
1205 else
1206 return ioremap(res.start, resource_size(&res));
1207 }
1208 EXPORT_SYMBOL(of_iomap);
1209
1210 /*
1211 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1212 * for a given device_node
1213 * @device: the device whose io range will be mapped
1214 * @index: index of the io range
1215 * @name: name "override" for the memory region request or NULL
1216 *
1217 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1218 * error code on failure. Usage example:
1219 *
1220 * base = of_io_request_and_map(node, 0, "foo");
1221 * if (IS_ERR(base))
1222 * return PTR_ERR(base);
1223 */
of_io_request_and_map(struct device_node * np,int index,const char * name)1224 void __iomem *of_io_request_and_map(struct device_node *np, int index,
1225 const char *name)
1226 {
1227 struct resource res;
1228 void __iomem *mem;
1229
1230 if (of_address_to_resource(np, index, &res))
1231 return IOMEM_ERR_PTR(-EINVAL);
1232
1233 if (!name)
1234 name = res.name;
1235 if (!request_mem_region(res.start, resource_size(&res), name))
1236 return IOMEM_ERR_PTR(-EBUSY);
1237
1238 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1239 mem = ioremap_np(res.start, resource_size(&res));
1240 else
1241 mem = ioremap(res.start, resource_size(&res));
1242
1243 if (!mem) {
1244 release_mem_region(res.start, resource_size(&res));
1245 return IOMEM_ERR_PTR(-ENOMEM);
1246 }
1247
1248 return mem;
1249 }
1250 EXPORT_SYMBOL(of_io_request_and_map);
1251