1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell Octeon EP (EndPoint) Ethernet Driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8 #include <linux/types.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/vmalloc.h>
15
16 #include "octep_config.h"
17 #include "octep_main.h"
18 #include "octep_ctrl_net.h"
19
20 #define OCTEP_INTR_POLL_TIME_MSECS 100
21 struct workqueue_struct *octep_wq;
22
23 /* Supported Devices */
24 static const struct pci_device_id octep_pci_id_tbl[] = {
25 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN93_PF)},
26 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF95N_PF)},
27 {0, },
28 };
29 MODULE_DEVICE_TABLE(pci, octep_pci_id_tbl);
30
31 MODULE_AUTHOR("Veerasenareddy Burru <vburru@marvell.com>");
32 MODULE_DESCRIPTION(OCTEP_DRV_STRING);
33 MODULE_LICENSE("GPL");
34
35 /**
36 * octep_alloc_ioq_vectors() - Allocate Tx/Rx Queue interrupt info.
37 *
38 * @oct: Octeon device private data structure.
39 *
40 * Allocate resources to hold per Tx/Rx queue interrupt info.
41 * This is the information passed to interrupt handler, from which napi poll
42 * is scheduled and includes quick access to private data of Tx/Rx queue
43 * corresponding to the interrupt being handled.
44 *
45 * Return: 0, on successful allocation of resources for all queue interrupts.
46 * -1, if failed to allocate any resource.
47 */
octep_alloc_ioq_vectors(struct octep_device * oct)48 static int octep_alloc_ioq_vectors(struct octep_device *oct)
49 {
50 int i;
51 struct octep_ioq_vector *ioq_vector;
52
53 for (i = 0; i < oct->num_oqs; i++) {
54 oct->ioq_vector[i] = vzalloc(sizeof(*oct->ioq_vector[i]));
55 if (!oct->ioq_vector[i])
56 goto free_ioq_vector;
57
58 ioq_vector = oct->ioq_vector[i];
59 ioq_vector->iq = oct->iq[i];
60 ioq_vector->oq = oct->oq[i];
61 ioq_vector->octep_dev = oct;
62 }
63
64 dev_info(&oct->pdev->dev, "Allocated %d IOQ vectors\n", oct->num_oqs);
65 return 0;
66
67 free_ioq_vector:
68 while (i) {
69 i--;
70 vfree(oct->ioq_vector[i]);
71 oct->ioq_vector[i] = NULL;
72 }
73 return -1;
74 }
75
76 /**
77 * octep_free_ioq_vectors() - Free Tx/Rx Queue interrupt vector info.
78 *
79 * @oct: Octeon device private data structure.
80 */
octep_free_ioq_vectors(struct octep_device * oct)81 static void octep_free_ioq_vectors(struct octep_device *oct)
82 {
83 int i;
84
85 for (i = 0; i < oct->num_oqs; i++) {
86 if (oct->ioq_vector[i]) {
87 vfree(oct->ioq_vector[i]);
88 oct->ioq_vector[i] = NULL;
89 }
90 }
91 netdev_info(oct->netdev, "Freed IOQ Vectors\n");
92 }
93
94 /**
95 * octep_enable_msix_range() - enable MSI-x interrupts.
96 *
97 * @oct: Octeon device private data structure.
98 *
99 * Allocate and enable all MSI-x interrupts (queue and non-queue interrupts)
100 * for the Octeon device.
101 *
102 * Return: 0, on successfully enabling all MSI-x interrupts.
103 * -1, if failed to enable any MSI-x interrupt.
104 */
octep_enable_msix_range(struct octep_device * oct)105 static int octep_enable_msix_range(struct octep_device *oct)
106 {
107 int num_msix, msix_allocated;
108 int i;
109
110 /* Generic interrupts apart from input/output queues */
111 num_msix = oct->num_oqs + CFG_GET_NON_IOQ_MSIX(oct->conf);
112 oct->msix_entries = kcalloc(num_msix,
113 sizeof(struct msix_entry), GFP_KERNEL);
114 if (!oct->msix_entries)
115 goto msix_alloc_err;
116
117 for (i = 0; i < num_msix; i++)
118 oct->msix_entries[i].entry = i;
119
120 msix_allocated = pci_enable_msix_range(oct->pdev, oct->msix_entries,
121 num_msix, num_msix);
122 if (msix_allocated != num_msix) {
123 dev_err(&oct->pdev->dev,
124 "Failed to enable %d msix irqs; got only %d\n",
125 num_msix, msix_allocated);
126 goto enable_msix_err;
127 }
128 oct->num_irqs = msix_allocated;
129 dev_info(&oct->pdev->dev, "MSI-X enabled successfully\n");
130
131 return 0;
132
133 enable_msix_err:
134 if (msix_allocated > 0)
135 pci_disable_msix(oct->pdev);
136 kfree(oct->msix_entries);
137 oct->msix_entries = NULL;
138 msix_alloc_err:
139 return -1;
140 }
141
142 /**
143 * octep_disable_msix() - disable MSI-x interrupts.
144 *
145 * @oct: Octeon device private data structure.
146 *
147 * Disable MSI-x on the Octeon device.
148 */
octep_disable_msix(struct octep_device * oct)149 static void octep_disable_msix(struct octep_device *oct)
150 {
151 pci_disable_msix(oct->pdev);
152 kfree(oct->msix_entries);
153 oct->msix_entries = NULL;
154 dev_info(&oct->pdev->dev, "Disabled MSI-X\n");
155 }
156
157 /**
158 * octep_non_ioq_intr_handler() - common handler for all generic interrupts.
159 *
160 * @irq: Interrupt number.
161 * @data: interrupt data.
162 *
163 * this is common handler for all non-queue (generic) interrupts.
164 */
octep_non_ioq_intr_handler(int irq,void * data)165 static irqreturn_t octep_non_ioq_intr_handler(int irq, void *data)
166 {
167 struct octep_device *oct = data;
168
169 return oct->hw_ops.non_ioq_intr_handler(oct);
170 }
171
172 /**
173 * octep_ioq_intr_handler() - handler for all Tx/Rx queue interrupts.
174 *
175 * @irq: Interrupt number.
176 * @data: interrupt data contains pointers to Tx/Rx queue private data
177 * and correspong NAPI context.
178 *
179 * this is common handler for all non-queue (generic) interrupts.
180 */
octep_ioq_intr_handler(int irq,void * data)181 static irqreturn_t octep_ioq_intr_handler(int irq, void *data)
182 {
183 struct octep_ioq_vector *ioq_vector = data;
184 struct octep_device *oct = ioq_vector->octep_dev;
185
186 return oct->hw_ops.ioq_intr_handler(ioq_vector);
187 }
188
189 /**
190 * octep_request_irqs() - Register interrupt handlers.
191 *
192 * @oct: Octeon device private data structure.
193 *
194 * Register handlers for all queue and non-queue interrupts.
195 *
196 * Return: 0, on successful registration of all interrupt handlers.
197 * -1, on any error.
198 */
octep_request_irqs(struct octep_device * oct)199 static int octep_request_irqs(struct octep_device *oct)
200 {
201 struct net_device *netdev = oct->netdev;
202 struct octep_ioq_vector *ioq_vector;
203 struct msix_entry *msix_entry;
204 char **non_ioq_msix_names;
205 int num_non_ioq_msix;
206 int ret, i, j;
207
208 num_non_ioq_msix = CFG_GET_NON_IOQ_MSIX(oct->conf);
209 non_ioq_msix_names = CFG_GET_NON_IOQ_MSIX_NAMES(oct->conf);
210
211 oct->non_ioq_irq_names = kcalloc(num_non_ioq_msix,
212 OCTEP_MSIX_NAME_SIZE, GFP_KERNEL);
213 if (!oct->non_ioq_irq_names)
214 goto alloc_err;
215
216 /* First few MSI-X interrupts are non-queue interrupts */
217 for (i = 0; i < num_non_ioq_msix; i++) {
218 char *irq_name;
219
220 irq_name = &oct->non_ioq_irq_names[i * OCTEP_MSIX_NAME_SIZE];
221 msix_entry = &oct->msix_entries[i];
222
223 snprintf(irq_name, OCTEP_MSIX_NAME_SIZE,
224 "%s-%s", netdev->name, non_ioq_msix_names[i]);
225 ret = request_irq(msix_entry->vector,
226 octep_non_ioq_intr_handler, 0,
227 irq_name, oct);
228 if (ret) {
229 netdev_err(netdev,
230 "request_irq failed for %s; err=%d",
231 irq_name, ret);
232 goto non_ioq_irq_err;
233 }
234 }
235
236 /* Request IRQs for Tx/Rx queues */
237 for (j = 0; j < oct->num_oqs; j++) {
238 ioq_vector = oct->ioq_vector[j];
239 msix_entry = &oct->msix_entries[j + num_non_ioq_msix];
240
241 snprintf(ioq_vector->name, sizeof(ioq_vector->name),
242 "%s-q%d", netdev->name, j);
243 ret = request_irq(msix_entry->vector,
244 octep_ioq_intr_handler, 0,
245 ioq_vector->name, ioq_vector);
246 if (ret) {
247 netdev_err(netdev,
248 "request_irq failed for Q-%d; err=%d",
249 j, ret);
250 goto ioq_irq_err;
251 }
252
253 cpumask_set_cpu(j % num_online_cpus(),
254 &ioq_vector->affinity_mask);
255 irq_set_affinity_hint(msix_entry->vector,
256 &ioq_vector->affinity_mask);
257 }
258
259 return 0;
260 ioq_irq_err:
261 while (j) {
262 --j;
263 ioq_vector = oct->ioq_vector[j];
264 msix_entry = &oct->msix_entries[j + num_non_ioq_msix];
265
266 irq_set_affinity_hint(msix_entry->vector, NULL);
267 free_irq(msix_entry->vector, ioq_vector);
268 }
269 non_ioq_irq_err:
270 while (i) {
271 --i;
272 free_irq(oct->msix_entries[i].vector, oct);
273 }
274 kfree(oct->non_ioq_irq_names);
275 oct->non_ioq_irq_names = NULL;
276 alloc_err:
277 return -1;
278 }
279
280 /**
281 * octep_free_irqs() - free all registered interrupts.
282 *
283 * @oct: Octeon device private data structure.
284 *
285 * Free all queue and non-queue interrupts of the Octeon device.
286 */
octep_free_irqs(struct octep_device * oct)287 static void octep_free_irqs(struct octep_device *oct)
288 {
289 int i;
290
291 /* First few MSI-X interrupts are non queue interrupts; free them */
292 for (i = 0; i < CFG_GET_NON_IOQ_MSIX(oct->conf); i++)
293 free_irq(oct->msix_entries[i].vector, oct);
294 kfree(oct->non_ioq_irq_names);
295
296 /* Free IRQs for Input/Output (Tx/Rx) queues */
297 for (i = CFG_GET_NON_IOQ_MSIX(oct->conf); i < oct->num_irqs; i++) {
298 irq_set_affinity_hint(oct->msix_entries[i].vector, NULL);
299 free_irq(oct->msix_entries[i].vector,
300 oct->ioq_vector[i - CFG_GET_NON_IOQ_MSIX(oct->conf)]);
301 }
302 netdev_info(oct->netdev, "IRQs freed\n");
303 }
304
305 /**
306 * octep_setup_irqs() - setup interrupts for the Octeon device.
307 *
308 * @oct: Octeon device private data structure.
309 *
310 * Allocate data structures to hold per interrupt information, allocate/enable
311 * MSI-x interrupt and register interrupt handlers.
312 *
313 * Return: 0, on successful allocation and registration of all interrupts.
314 * -1, on any error.
315 */
octep_setup_irqs(struct octep_device * oct)316 static int octep_setup_irqs(struct octep_device *oct)
317 {
318 if (octep_alloc_ioq_vectors(oct))
319 goto ioq_vector_err;
320
321 if (octep_enable_msix_range(oct))
322 goto enable_msix_err;
323
324 if (octep_request_irqs(oct))
325 goto request_irq_err;
326
327 return 0;
328
329 request_irq_err:
330 octep_disable_msix(oct);
331 enable_msix_err:
332 octep_free_ioq_vectors(oct);
333 ioq_vector_err:
334 return -1;
335 }
336
337 /**
338 * octep_clean_irqs() - free all interrupts and its resources.
339 *
340 * @oct: Octeon device private data structure.
341 */
octep_clean_irqs(struct octep_device * oct)342 static void octep_clean_irqs(struct octep_device *oct)
343 {
344 octep_free_irqs(oct);
345 octep_disable_msix(oct);
346 octep_free_ioq_vectors(oct);
347 }
348
349 /**
350 * octep_enable_ioq_irq() - Enable MSI-x interrupt of a Tx/Rx queue.
351 *
352 * @iq: Octeon Tx queue data structure.
353 * @oq: Octeon Rx queue data structure.
354 */
octep_enable_ioq_irq(struct octep_iq * iq,struct octep_oq * oq)355 static void octep_enable_ioq_irq(struct octep_iq *iq, struct octep_oq *oq)
356 {
357 u32 pkts_pend = oq->pkts_pending;
358
359 netdev_dbg(iq->netdev, "enabling intr for Q-%u\n", iq->q_no);
360 if (iq->pkts_processed) {
361 writel(iq->pkts_processed, iq->inst_cnt_reg);
362 iq->pkt_in_done -= iq->pkts_processed;
363 iq->pkts_processed = 0;
364 }
365 if (oq->last_pkt_count - pkts_pend) {
366 writel(oq->last_pkt_count - pkts_pend, oq->pkts_sent_reg);
367 oq->last_pkt_count = pkts_pend;
368 }
369
370 /* Flush the previous wrties before writing to RESEND bit */
371 wmb();
372 writeq(1UL << OCTEP_OQ_INTR_RESEND_BIT, oq->pkts_sent_reg);
373 writeq(1UL << OCTEP_IQ_INTR_RESEND_BIT, iq->inst_cnt_reg);
374 }
375
376 /**
377 * octep_napi_poll() - NAPI poll function for Tx/Rx.
378 *
379 * @napi: pointer to napi context.
380 * @budget: max number of packets to be processed in single invocation.
381 */
octep_napi_poll(struct napi_struct * napi,int budget)382 static int octep_napi_poll(struct napi_struct *napi, int budget)
383 {
384 struct octep_ioq_vector *ioq_vector =
385 container_of(napi, struct octep_ioq_vector, napi);
386 u32 tx_pending, rx_done;
387
388 tx_pending = octep_iq_process_completions(ioq_vector->iq, budget);
389 rx_done = octep_oq_process_rx(ioq_vector->oq, budget);
390
391 /* need more polling if tx completion processing is still pending or
392 * processed at least 'budget' number of rx packets.
393 */
394 if (tx_pending || rx_done >= budget)
395 return budget;
396
397 napi_complete(napi);
398 octep_enable_ioq_irq(ioq_vector->iq, ioq_vector->oq);
399 return rx_done;
400 }
401
402 /**
403 * octep_napi_add() - Add NAPI poll for all Tx/Rx queues.
404 *
405 * @oct: Octeon device private data structure.
406 */
octep_napi_add(struct octep_device * oct)407 static void octep_napi_add(struct octep_device *oct)
408 {
409 int i;
410
411 for (i = 0; i < oct->num_oqs; i++) {
412 netdev_dbg(oct->netdev, "Adding NAPI on Q-%d\n", i);
413 netif_napi_add(oct->netdev, &oct->ioq_vector[i]->napi,
414 octep_napi_poll);
415 oct->oq[i]->napi = &oct->ioq_vector[i]->napi;
416 }
417 }
418
419 /**
420 * octep_napi_delete() - delete NAPI poll callback for all Tx/Rx queues.
421 *
422 * @oct: Octeon device private data structure.
423 */
octep_napi_delete(struct octep_device * oct)424 static void octep_napi_delete(struct octep_device *oct)
425 {
426 int i;
427
428 for (i = 0; i < oct->num_oqs; i++) {
429 netdev_dbg(oct->netdev, "Deleting NAPI on Q-%d\n", i);
430 netif_napi_del(&oct->ioq_vector[i]->napi);
431 oct->oq[i]->napi = NULL;
432 }
433 }
434
435 /**
436 * octep_napi_enable() - enable NAPI for all Tx/Rx queues.
437 *
438 * @oct: Octeon device private data structure.
439 */
octep_napi_enable(struct octep_device * oct)440 static void octep_napi_enable(struct octep_device *oct)
441 {
442 int i;
443
444 for (i = 0; i < oct->num_oqs; i++) {
445 netdev_dbg(oct->netdev, "Enabling NAPI on Q-%d\n", i);
446 napi_enable(&oct->ioq_vector[i]->napi);
447 }
448 }
449
450 /**
451 * octep_napi_disable() - disable NAPI for all Tx/Rx queues.
452 *
453 * @oct: Octeon device private data structure.
454 */
octep_napi_disable(struct octep_device * oct)455 static void octep_napi_disable(struct octep_device *oct)
456 {
457 int i;
458
459 for (i = 0; i < oct->num_oqs; i++) {
460 netdev_dbg(oct->netdev, "Disabling NAPI on Q-%d\n", i);
461 napi_disable(&oct->ioq_vector[i]->napi);
462 }
463 }
464
octep_link_up(struct net_device * netdev)465 static void octep_link_up(struct net_device *netdev)
466 {
467 netif_carrier_on(netdev);
468 netif_tx_start_all_queues(netdev);
469 }
470
471 /**
472 * octep_open() - start the octeon network device.
473 *
474 * @netdev: pointer to kernel network device.
475 *
476 * setup Tx/Rx queues, interrupts and enable hardware operation of Tx/Rx queues
477 * and interrupts..
478 *
479 * Return: 0, on successfully setting up device and bring it up.
480 * -1, on any error.
481 */
octep_open(struct net_device * netdev)482 static int octep_open(struct net_device *netdev)
483 {
484 struct octep_device *oct = netdev_priv(netdev);
485 int err, ret;
486
487 netdev_info(netdev, "Starting netdev ...\n");
488 netif_carrier_off(netdev);
489
490 oct->hw_ops.reset_io_queues(oct);
491
492 if (octep_setup_iqs(oct))
493 goto setup_iq_err;
494 if (octep_setup_oqs(oct))
495 goto setup_oq_err;
496 if (octep_setup_irqs(oct))
497 goto setup_irq_err;
498
499 err = netif_set_real_num_tx_queues(netdev, oct->num_oqs);
500 if (err)
501 goto set_queues_err;
502 err = netif_set_real_num_rx_queues(netdev, oct->num_iqs);
503 if (err)
504 goto set_queues_err;
505
506 octep_napi_add(oct);
507 octep_napi_enable(oct);
508
509 oct->link_info.admin_up = 1;
510 octep_ctrl_net_set_rx_state(oct, OCTEP_CTRL_NET_INVALID_VFID, true,
511 false);
512 octep_ctrl_net_set_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID, true,
513 false);
514 oct->poll_non_ioq_intr = false;
515
516 /* Enable the input and output queues for this Octeon device */
517 oct->hw_ops.enable_io_queues(oct);
518
519 /* Enable Octeon device interrupts */
520 oct->hw_ops.enable_interrupts(oct);
521
522 octep_oq_dbell_init(oct);
523
524 ret = octep_ctrl_net_get_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID);
525 if (ret > 0)
526 octep_link_up(netdev);
527
528 return 0;
529
530 set_queues_err:
531 octep_clean_irqs(oct);
532 setup_irq_err:
533 octep_free_oqs(oct);
534 setup_oq_err:
535 octep_free_iqs(oct);
536 setup_iq_err:
537 return -1;
538 }
539
540 /**
541 * octep_stop() - stop the octeon network device.
542 *
543 * @netdev: pointer to kernel network device.
544 *
545 * stop the device Tx/Rx operations, bring down the link and
546 * free up all resources allocated for Tx/Rx queues and interrupts.
547 */
octep_stop(struct net_device * netdev)548 static int octep_stop(struct net_device *netdev)
549 {
550 struct octep_device *oct = netdev_priv(netdev);
551
552 netdev_info(netdev, "Stopping the device ...\n");
553
554 octep_ctrl_net_set_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID, false,
555 false);
556 octep_ctrl_net_set_rx_state(oct, OCTEP_CTRL_NET_INVALID_VFID, false,
557 false);
558
559 /* Stop Tx from stack */
560 netif_tx_stop_all_queues(netdev);
561 netif_carrier_off(netdev);
562 netif_tx_disable(netdev);
563
564 oct->link_info.admin_up = 0;
565 oct->link_info.oper_up = 0;
566
567 oct->hw_ops.disable_interrupts(oct);
568 octep_napi_disable(oct);
569 octep_napi_delete(oct);
570
571 octep_clean_irqs(oct);
572 octep_clean_iqs(oct);
573
574 oct->hw_ops.disable_io_queues(oct);
575 oct->hw_ops.reset_io_queues(oct);
576 octep_free_oqs(oct);
577 octep_free_iqs(oct);
578
579 oct->poll_non_ioq_intr = true;
580 queue_delayed_work(octep_wq, &oct->intr_poll_task,
581 msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
582
583 netdev_info(netdev, "Device stopped !!\n");
584 return 0;
585 }
586
587 /**
588 * octep_iq_full_check() - check if a Tx queue is full.
589 *
590 * @iq: Octeon Tx queue data structure.
591 *
592 * Return: 0, if the Tx queue is not full.
593 * 1, if the Tx queue is full.
594 */
octep_iq_full_check(struct octep_iq * iq)595 static inline int octep_iq_full_check(struct octep_iq *iq)
596 {
597 if (likely((iq->max_count - atomic_read(&iq->instr_pending)) >=
598 OCTEP_WAKE_QUEUE_THRESHOLD))
599 return 0;
600
601 /* Stop the queue if unable to send */
602 netif_stop_subqueue(iq->netdev, iq->q_no);
603
604 /* check again and restart the queue, in case NAPI has just freed
605 * enough Tx ring entries.
606 */
607 if (unlikely((iq->max_count - atomic_read(&iq->instr_pending)) >=
608 OCTEP_WAKE_QUEUE_THRESHOLD)) {
609 netif_start_subqueue(iq->netdev, iq->q_no);
610 iq->stats.restart_cnt++;
611 return 0;
612 }
613
614 return 1;
615 }
616
617 /**
618 * octep_start_xmit() - Enqueue packet to Octoen hardware Tx Queue.
619 *
620 * @skb: packet skbuff pointer.
621 * @netdev: kernel network device.
622 *
623 * Return: NETDEV_TX_BUSY, if Tx Queue is full.
624 * NETDEV_TX_OK, if successfully enqueued to hardware Tx queue.
625 */
octep_start_xmit(struct sk_buff * skb,struct net_device * netdev)626 static netdev_tx_t octep_start_xmit(struct sk_buff *skb,
627 struct net_device *netdev)
628 {
629 struct octep_device *oct = netdev_priv(netdev);
630 struct octep_tx_sglist_desc *sglist;
631 struct octep_tx_buffer *tx_buffer;
632 struct octep_tx_desc_hw *hw_desc;
633 struct skb_shared_info *shinfo;
634 struct octep_instr_hdr *ih;
635 struct octep_iq *iq;
636 skb_frag_t *frag;
637 u16 nr_frags, si;
638 u16 q_no, wi;
639
640 q_no = skb_get_queue_mapping(skb);
641 if (q_no >= oct->num_iqs) {
642 netdev_err(netdev, "Invalid Tx skb->queue_mapping=%d\n", q_no);
643 q_no = q_no % oct->num_iqs;
644 }
645
646 iq = oct->iq[q_no];
647 if (octep_iq_full_check(iq)) {
648 iq->stats.tx_busy++;
649 return NETDEV_TX_BUSY;
650 }
651
652 shinfo = skb_shinfo(skb);
653 nr_frags = shinfo->nr_frags;
654
655 wi = iq->host_write_index;
656 hw_desc = &iq->desc_ring[wi];
657 hw_desc->ih64 = 0;
658
659 tx_buffer = iq->buff_info + wi;
660 tx_buffer->skb = skb;
661
662 ih = &hw_desc->ih;
663 ih->tlen = skb->len;
664 ih->pkind = oct->pkind;
665
666 if (!nr_frags) {
667 tx_buffer->gather = 0;
668 tx_buffer->dma = dma_map_single(iq->dev, skb->data,
669 skb->len, DMA_TO_DEVICE);
670 if (dma_mapping_error(iq->dev, tx_buffer->dma))
671 goto dma_map_err;
672 hw_desc->dptr = tx_buffer->dma;
673 } else {
674 /* Scatter/Gather */
675 dma_addr_t dma;
676 u16 len;
677
678 sglist = tx_buffer->sglist;
679
680 ih->gsz = nr_frags + 1;
681 ih->gather = 1;
682 tx_buffer->gather = 1;
683
684 len = skb_headlen(skb);
685 dma = dma_map_single(iq->dev, skb->data, len, DMA_TO_DEVICE);
686 if (dma_mapping_error(iq->dev, dma))
687 goto dma_map_err;
688
689 dma_sync_single_for_cpu(iq->dev, tx_buffer->sglist_dma,
690 OCTEP_SGLIST_SIZE_PER_PKT,
691 DMA_TO_DEVICE);
692 memset(sglist, 0, OCTEP_SGLIST_SIZE_PER_PKT);
693 sglist[0].len[3] = len;
694 sglist[0].dma_ptr[0] = dma;
695
696 si = 1; /* entry 0 is main skb, mapped above */
697 frag = &shinfo->frags[0];
698 while (nr_frags--) {
699 len = skb_frag_size(frag);
700 dma = skb_frag_dma_map(iq->dev, frag, 0,
701 len, DMA_TO_DEVICE);
702 if (dma_mapping_error(iq->dev, dma))
703 goto dma_map_sg_err;
704
705 sglist[si >> 2].len[3 - (si & 3)] = len;
706 sglist[si >> 2].dma_ptr[si & 3] = dma;
707
708 frag++;
709 si++;
710 }
711 dma_sync_single_for_device(iq->dev, tx_buffer->sglist_dma,
712 OCTEP_SGLIST_SIZE_PER_PKT,
713 DMA_TO_DEVICE);
714
715 hw_desc->dptr = tx_buffer->sglist_dma;
716 }
717
718 netdev_tx_sent_queue(iq->netdev_q, skb->len);
719 skb_tx_timestamp(skb);
720 atomic_inc(&iq->instr_pending);
721 wi++;
722 if (wi == iq->max_count)
723 wi = 0;
724 iq->host_write_index = wi;
725 /* Flush the hw descriptor before writing to doorbell */
726 wmb();
727
728 /* Ring Doorbell to notify the NIC there is a new packet */
729 writel(1, iq->doorbell_reg);
730 iq->stats.instr_posted++;
731 return NETDEV_TX_OK;
732
733 dma_map_sg_err:
734 if (si > 0) {
735 dma_unmap_single(iq->dev, sglist[0].dma_ptr[0],
736 sglist[0].len[3], DMA_TO_DEVICE);
737 sglist[0].len[3] = 0;
738 }
739 while (si > 1) {
740 dma_unmap_page(iq->dev, sglist[si >> 2].dma_ptr[si & 3],
741 sglist[si >> 2].len[3 - (si & 3)], DMA_TO_DEVICE);
742 sglist[si >> 2].len[3 - (si & 3)] = 0;
743 si--;
744 }
745 tx_buffer->gather = 0;
746 dma_map_err:
747 dev_kfree_skb_any(skb);
748 return NETDEV_TX_OK;
749 }
750
751 /**
752 * octep_get_stats64() - Get Octeon network device statistics.
753 *
754 * @netdev: kernel network device.
755 * @stats: pointer to stats structure to be filled in.
756 */
octep_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)757 static void octep_get_stats64(struct net_device *netdev,
758 struct rtnl_link_stats64 *stats)
759 {
760 u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
761 struct octep_device *oct = netdev_priv(netdev);
762 int q;
763
764 if (netif_running(netdev))
765 octep_ctrl_net_get_if_stats(oct,
766 OCTEP_CTRL_NET_INVALID_VFID,
767 &oct->iface_rx_stats,
768 &oct->iface_tx_stats);
769
770 tx_packets = 0;
771 tx_bytes = 0;
772 rx_packets = 0;
773 rx_bytes = 0;
774 for (q = 0; q < oct->num_oqs; q++) {
775 struct octep_iq *iq = oct->iq[q];
776 struct octep_oq *oq = oct->oq[q];
777
778 tx_packets += iq->stats.instr_completed;
779 tx_bytes += iq->stats.bytes_sent;
780 rx_packets += oq->stats.packets;
781 rx_bytes += oq->stats.bytes;
782 }
783 stats->tx_packets = tx_packets;
784 stats->tx_bytes = tx_bytes;
785 stats->rx_packets = rx_packets;
786 stats->rx_bytes = rx_bytes;
787 stats->multicast = oct->iface_rx_stats.mcast_pkts;
788 stats->rx_errors = oct->iface_rx_stats.err_pkts;
789 stats->collisions = oct->iface_tx_stats.xscol;
790 stats->tx_fifo_errors = oct->iface_tx_stats.undflw;
791 }
792
793 /**
794 * octep_tx_timeout_task - work queue task to Handle Tx queue timeout.
795 *
796 * @work: pointer to Tx queue timeout work_struct
797 *
798 * Stop and start the device so that it frees up all queue resources
799 * and restarts the queues, that potentially clears a Tx queue timeout
800 * condition.
801 **/
octep_tx_timeout_task(struct work_struct * work)802 static void octep_tx_timeout_task(struct work_struct *work)
803 {
804 struct octep_device *oct = container_of(work, struct octep_device,
805 tx_timeout_task);
806 struct net_device *netdev = oct->netdev;
807
808 rtnl_lock();
809 if (netif_running(netdev)) {
810 octep_stop(netdev);
811 octep_open(netdev);
812 }
813 rtnl_unlock();
814 }
815
816 /**
817 * octep_tx_timeout() - Handle Tx Queue timeout.
818 *
819 * @netdev: pointer to kernel network device.
820 * @txqueue: Timed out Tx queue number.
821 *
822 * Schedule a work to handle Tx queue timeout.
823 */
octep_tx_timeout(struct net_device * netdev,unsigned int txqueue)824 static void octep_tx_timeout(struct net_device *netdev, unsigned int txqueue)
825 {
826 struct octep_device *oct = netdev_priv(netdev);
827
828 queue_work(octep_wq, &oct->tx_timeout_task);
829 }
830
octep_set_mac(struct net_device * netdev,void * p)831 static int octep_set_mac(struct net_device *netdev, void *p)
832 {
833 struct octep_device *oct = netdev_priv(netdev);
834 struct sockaddr *addr = (struct sockaddr *)p;
835 int err;
836
837 if (!is_valid_ether_addr(addr->sa_data))
838 return -EADDRNOTAVAIL;
839
840 err = octep_ctrl_net_set_mac_addr(oct, OCTEP_CTRL_NET_INVALID_VFID,
841 addr->sa_data, true);
842 if (err)
843 return err;
844
845 memcpy(oct->mac_addr, addr->sa_data, ETH_ALEN);
846 eth_hw_addr_set(netdev, addr->sa_data);
847
848 return 0;
849 }
850
octep_change_mtu(struct net_device * netdev,int new_mtu)851 static int octep_change_mtu(struct net_device *netdev, int new_mtu)
852 {
853 struct octep_device *oct = netdev_priv(netdev);
854 struct octep_iface_link_info *link_info;
855 int err = 0;
856
857 link_info = &oct->link_info;
858 if (link_info->mtu == new_mtu)
859 return 0;
860
861 err = octep_ctrl_net_set_mtu(oct, OCTEP_CTRL_NET_INVALID_VFID, new_mtu,
862 true);
863 if (!err) {
864 oct->link_info.mtu = new_mtu;
865 netdev->mtu = new_mtu;
866 }
867
868 return err;
869 }
870
871 static const struct net_device_ops octep_netdev_ops = {
872 .ndo_open = octep_open,
873 .ndo_stop = octep_stop,
874 .ndo_start_xmit = octep_start_xmit,
875 .ndo_get_stats64 = octep_get_stats64,
876 .ndo_tx_timeout = octep_tx_timeout,
877 .ndo_set_mac_address = octep_set_mac,
878 .ndo_change_mtu = octep_change_mtu,
879 };
880
881 /**
882 * octep_intr_poll_task - work queue task to process non-ioq interrupts.
883 *
884 * @work: pointer to mbox work_struct
885 *
886 * Process non-ioq interrupts to handle control mailbox, pfvf mailbox.
887 **/
octep_intr_poll_task(struct work_struct * work)888 static void octep_intr_poll_task(struct work_struct *work)
889 {
890 struct octep_device *oct = container_of(work, struct octep_device,
891 intr_poll_task.work);
892
893 if (!oct->poll_non_ioq_intr) {
894 dev_info(&oct->pdev->dev, "Interrupt poll task stopped.\n");
895 return;
896 }
897
898 oct->hw_ops.poll_non_ioq_interrupts(oct);
899 queue_delayed_work(octep_wq, &oct->intr_poll_task,
900 msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
901 }
902
903 /**
904 * octep_hb_timeout_task - work queue task to check firmware heartbeat.
905 *
906 * @work: pointer to hb work_struct
907 *
908 * Check for heartbeat miss count. Uninitialize oct device if miss count
909 * exceeds configured max heartbeat miss count.
910 *
911 **/
octep_hb_timeout_task(struct work_struct * work)912 static void octep_hb_timeout_task(struct work_struct *work)
913 {
914 struct octep_device *oct = container_of(work, struct octep_device,
915 hb_task.work);
916
917 int miss_cnt;
918
919 miss_cnt = atomic_inc_return(&oct->hb_miss_cnt);
920 if (miss_cnt < oct->conf->max_hb_miss_cnt) {
921 queue_delayed_work(octep_wq, &oct->hb_task,
922 msecs_to_jiffies(oct->conf->hb_interval * 1000));
923 return;
924 }
925
926 dev_err(&oct->pdev->dev, "Missed %u heartbeats. Uninitializing\n",
927 miss_cnt);
928 rtnl_lock();
929 if (netif_running(oct->netdev))
930 octep_stop(oct->netdev);
931 rtnl_unlock();
932 }
933
934 /**
935 * octep_ctrl_mbox_task - work queue task to handle ctrl mbox messages.
936 *
937 * @work: pointer to ctrl mbox work_struct
938 *
939 * Poll ctrl mbox message queue and handle control messages from firmware.
940 **/
octep_ctrl_mbox_task(struct work_struct * work)941 static void octep_ctrl_mbox_task(struct work_struct *work)
942 {
943 struct octep_device *oct = container_of(work, struct octep_device,
944 ctrl_mbox_task);
945
946 octep_ctrl_net_recv_fw_messages(oct);
947 }
948
octep_devid_to_str(struct octep_device * oct)949 static const char *octep_devid_to_str(struct octep_device *oct)
950 {
951 switch (oct->chip_id) {
952 case OCTEP_PCI_DEVICE_ID_CN93_PF:
953 return "CN93XX";
954 case OCTEP_PCI_DEVICE_ID_CNF95N_PF:
955 return "CNF95N";
956 default:
957 return "Unsupported";
958 }
959 }
960
961 /**
962 * octep_device_setup() - Setup Octeon Device.
963 *
964 * @oct: Octeon device private data structure.
965 *
966 * Setup Octeon device hardware operations, configuration, etc ...
967 */
octep_device_setup(struct octep_device * oct)968 int octep_device_setup(struct octep_device *oct)
969 {
970 struct pci_dev *pdev = oct->pdev;
971 int i, ret;
972
973 /* allocate memory for oct->conf */
974 oct->conf = kzalloc(sizeof(*oct->conf), GFP_KERNEL);
975 if (!oct->conf)
976 return -ENOMEM;
977
978 /* Map BAR regions */
979 for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
980 oct->mmio[i].hw_addr =
981 ioremap(pci_resource_start(oct->pdev, i * 2),
982 pci_resource_len(oct->pdev, i * 2));
983 if (!oct->mmio[i].hw_addr)
984 goto unmap_prev;
985
986 oct->mmio[i].mapped = 1;
987 }
988
989 oct->chip_id = pdev->device;
990 oct->rev_id = pdev->revision;
991 dev_info(&pdev->dev, "chip_id = 0x%x\n", pdev->device);
992
993 switch (oct->chip_id) {
994 case OCTEP_PCI_DEVICE_ID_CN93_PF:
995 case OCTEP_PCI_DEVICE_ID_CNF95N_PF:
996 dev_info(&pdev->dev, "Setting up OCTEON %s PF PASS%d.%d\n",
997 octep_devid_to_str(oct), OCTEP_MAJOR_REV(oct),
998 OCTEP_MINOR_REV(oct));
999 octep_device_setup_cn93_pf(oct);
1000 break;
1001 default:
1002 dev_err(&pdev->dev,
1003 "%s: unsupported device\n", __func__);
1004 goto unsupported_dev;
1005 }
1006
1007 oct->pkind = CFG_GET_IQ_PKIND(oct->conf);
1008
1009 ret = octep_ctrl_net_init(oct);
1010 if (ret)
1011 return ret;
1012
1013 atomic_set(&oct->hb_miss_cnt, 0);
1014 INIT_DELAYED_WORK(&oct->hb_task, octep_hb_timeout_task);
1015 queue_delayed_work(octep_wq, &oct->hb_task,
1016 msecs_to_jiffies(oct->conf->hb_interval * 1000));
1017 return 0;
1018
1019 unsupported_dev:
1020 i = OCTEP_MMIO_REGIONS;
1021 unmap_prev:
1022 while (i--)
1023 iounmap(oct->mmio[i].hw_addr);
1024
1025 kfree(oct->conf);
1026 return -1;
1027 }
1028
1029 /**
1030 * octep_device_cleanup() - Cleanup Octeon Device.
1031 *
1032 * @oct: Octeon device private data structure.
1033 *
1034 * Cleanup Octeon device allocated resources.
1035 */
octep_device_cleanup(struct octep_device * oct)1036 static void octep_device_cleanup(struct octep_device *oct)
1037 {
1038 int i;
1039
1040 oct->poll_non_ioq_intr = false;
1041 cancel_delayed_work_sync(&oct->intr_poll_task);
1042 cancel_work_sync(&oct->ctrl_mbox_task);
1043
1044 dev_info(&oct->pdev->dev, "Cleaning up Octeon Device ...\n");
1045
1046 for (i = 0; i < OCTEP_MAX_VF; i++) {
1047 vfree(oct->mbox[i]);
1048 oct->mbox[i] = NULL;
1049 }
1050
1051 octep_ctrl_net_uninit(oct);
1052 cancel_delayed_work_sync(&oct->hb_task);
1053
1054 oct->hw_ops.soft_reset(oct);
1055 for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
1056 if (oct->mmio[i].mapped)
1057 iounmap(oct->mmio[i].hw_addr);
1058 }
1059
1060 kfree(oct->conf);
1061 oct->conf = NULL;
1062 }
1063
get_fw_ready_status(struct pci_dev * pdev)1064 static bool get_fw_ready_status(struct pci_dev *pdev)
1065 {
1066 u32 pos = 0;
1067 u16 vsec_id;
1068 u8 status;
1069
1070 while ((pos = pci_find_next_ext_capability(pdev, pos,
1071 PCI_EXT_CAP_ID_VNDR))) {
1072 pci_read_config_word(pdev, pos + 4, &vsec_id);
1073 #define FW_STATUS_VSEC_ID 0xA3
1074 if (vsec_id != FW_STATUS_VSEC_ID)
1075 continue;
1076
1077 pci_read_config_byte(pdev, (pos + 8), &status);
1078 dev_info(&pdev->dev, "Firmware ready status = %u\n", status);
1079 #define FW_STATUS_READY 1ULL
1080 return status == FW_STATUS_READY;
1081 }
1082 return false;
1083 }
1084
1085 /**
1086 * octep_probe() - Octeon PCI device probe handler.
1087 *
1088 * @pdev: PCI device structure.
1089 * @ent: entry in Octeon PCI device ID table.
1090 *
1091 * Initializes and enables the Octeon PCI device for network operations.
1092 * Initializes Octeon private data structure and registers a network device.
1093 */
octep_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1094 static int octep_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1095 {
1096 struct octep_device *octep_dev = NULL;
1097 struct net_device *netdev;
1098 int err;
1099
1100 err = pci_enable_device(pdev);
1101 if (err) {
1102 dev_err(&pdev->dev, "Failed to enable PCI device\n");
1103 return err;
1104 }
1105
1106 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1107 if (err) {
1108 dev_err(&pdev->dev, "Failed to set DMA mask !!\n");
1109 goto err_dma_mask;
1110 }
1111
1112 err = pci_request_mem_regions(pdev, OCTEP_DRV_NAME);
1113 if (err) {
1114 dev_err(&pdev->dev, "Failed to map PCI memory regions\n");
1115 goto err_pci_regions;
1116 }
1117
1118 pci_set_master(pdev);
1119
1120 if (!get_fw_ready_status(pdev)) {
1121 dev_notice(&pdev->dev, "Firmware not ready; defer probe.\n");
1122 err = -EPROBE_DEFER;
1123 goto err_alloc_netdev;
1124 }
1125
1126 netdev = alloc_etherdev_mq(sizeof(struct octep_device),
1127 OCTEP_MAX_QUEUES);
1128 if (!netdev) {
1129 dev_err(&pdev->dev, "Failed to allocate netdev\n");
1130 err = -ENOMEM;
1131 goto err_alloc_netdev;
1132 }
1133 SET_NETDEV_DEV(netdev, &pdev->dev);
1134
1135 octep_dev = netdev_priv(netdev);
1136 octep_dev->netdev = netdev;
1137 octep_dev->pdev = pdev;
1138 octep_dev->dev = &pdev->dev;
1139 pci_set_drvdata(pdev, octep_dev);
1140
1141 err = octep_device_setup(octep_dev);
1142 if (err) {
1143 dev_err(&pdev->dev, "Device setup failed\n");
1144 goto err_octep_config;
1145 }
1146 INIT_WORK(&octep_dev->tx_timeout_task, octep_tx_timeout_task);
1147 INIT_WORK(&octep_dev->ctrl_mbox_task, octep_ctrl_mbox_task);
1148 INIT_DELAYED_WORK(&octep_dev->intr_poll_task, octep_intr_poll_task);
1149 octep_dev->poll_non_ioq_intr = true;
1150 queue_delayed_work(octep_wq, &octep_dev->intr_poll_task,
1151 msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
1152
1153 netdev->netdev_ops = &octep_netdev_ops;
1154 octep_set_ethtool_ops(netdev);
1155 netif_carrier_off(netdev);
1156
1157 netdev->hw_features = NETIF_F_SG;
1158 netdev->features |= netdev->hw_features;
1159 netdev->min_mtu = OCTEP_MIN_MTU;
1160 netdev->max_mtu = OCTEP_MAX_MTU;
1161 netdev->mtu = OCTEP_DEFAULT_MTU;
1162
1163 err = octep_ctrl_net_get_mac_addr(octep_dev, OCTEP_CTRL_NET_INVALID_VFID,
1164 octep_dev->mac_addr);
1165 if (err) {
1166 dev_err(&pdev->dev, "Failed to get mac address\n");
1167 goto register_dev_err;
1168 }
1169 eth_hw_addr_set(netdev, octep_dev->mac_addr);
1170
1171 err = register_netdev(netdev);
1172 if (err) {
1173 dev_err(&pdev->dev, "Failed to register netdev\n");
1174 goto register_dev_err;
1175 }
1176 dev_info(&pdev->dev, "Device probe successful\n");
1177 return 0;
1178
1179 register_dev_err:
1180 octep_device_cleanup(octep_dev);
1181 err_octep_config:
1182 free_netdev(netdev);
1183 err_alloc_netdev:
1184 pci_release_mem_regions(pdev);
1185 err_pci_regions:
1186 err_dma_mask:
1187 pci_disable_device(pdev);
1188 return err;
1189 }
1190
1191 /**
1192 * octep_remove() - Remove Octeon PCI device from driver control.
1193 *
1194 * @pdev: PCI device structure of the Octeon device.
1195 *
1196 * Cleanup all resources allocated for the Octeon device.
1197 * Unregister from network device and disable the PCI device.
1198 */
octep_remove(struct pci_dev * pdev)1199 static void octep_remove(struct pci_dev *pdev)
1200 {
1201 struct octep_device *oct = pci_get_drvdata(pdev);
1202 struct net_device *netdev;
1203
1204 if (!oct)
1205 return;
1206
1207 netdev = oct->netdev;
1208 if (netdev->reg_state == NETREG_REGISTERED)
1209 unregister_netdev(netdev);
1210
1211 cancel_work_sync(&oct->tx_timeout_task);
1212 octep_device_cleanup(oct);
1213 pci_release_mem_regions(pdev);
1214 free_netdev(netdev);
1215 pci_disable_device(pdev);
1216 }
1217
1218 static struct pci_driver octep_driver = {
1219 .name = OCTEP_DRV_NAME,
1220 .id_table = octep_pci_id_tbl,
1221 .probe = octep_probe,
1222 .remove = octep_remove,
1223 };
1224
1225 /**
1226 * octep_init_module() - Module initialiation.
1227 *
1228 * create common resource for the driver and register PCI driver.
1229 */
octep_init_module(void)1230 static int __init octep_init_module(void)
1231 {
1232 int ret;
1233
1234 pr_info("%s: Loading %s ...\n", OCTEP_DRV_NAME, OCTEP_DRV_STRING);
1235
1236 /* work queue for all deferred tasks */
1237 octep_wq = create_singlethread_workqueue(OCTEP_DRV_NAME);
1238 if (!octep_wq) {
1239 pr_err("%s: Failed to create common workqueue\n",
1240 OCTEP_DRV_NAME);
1241 return -ENOMEM;
1242 }
1243
1244 ret = pci_register_driver(&octep_driver);
1245 if (ret < 0) {
1246 pr_err("%s: Failed to register PCI driver; err=%d\n",
1247 OCTEP_DRV_NAME, ret);
1248 destroy_workqueue(octep_wq);
1249 return ret;
1250 }
1251
1252 pr_info("%s: Loaded successfully !\n", OCTEP_DRV_NAME);
1253
1254 return ret;
1255 }
1256
1257 /**
1258 * octep_exit_module() - Module exit routine.
1259 *
1260 * unregister the driver with PCI subsystem and cleanup common resources.
1261 */
octep_exit_module(void)1262 static void __exit octep_exit_module(void)
1263 {
1264 pr_info("%s: Unloading ...\n", OCTEP_DRV_NAME);
1265
1266 pci_unregister_driver(&octep_driver);
1267 destroy_workqueue(octep_wq);
1268
1269 pr_info("%s: Unloading complete\n", OCTEP_DRV_NAME);
1270 }
1271
1272 module_init(octep_init_module);
1273 module_exit(octep_exit_module);
1274