xref: /openbmc/linux/drivers/crypto/nx/nx.c (revision 8be98d2f2a0a262f8bf8a0bc1fdf522b3c7aab17)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Routines supporting the Power 7+ Nest Accelerators driver
4   *
5   * Copyright (C) 2011-2012 International Business Machines Inc.
6   *
7   * Author: Kent Yoder <yoder1@us.ibm.com>
8   */
9  
10  #include <crypto/internal/aead.h>
11  #include <crypto/internal/hash.h>
12  #include <crypto/aes.h>
13  #include <crypto/sha2.h>
14  #include <crypto/algapi.h>
15  #include <crypto/scatterwalk.h>
16  #include <linux/module.h>
17  #include <linux/moduleparam.h>
18  #include <linux/types.h>
19  #include <linux/mm.h>
20  #include <linux/scatterlist.h>
21  #include <linux/device.h>
22  #include <linux/of.h>
23  #include <asm/hvcall.h>
24  #include <asm/vio.h>
25  
26  #include "nx_csbcpb.h"
27  #include "nx.h"
28  
29  
30  /**
31   * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
32   *
33   * @nx_ctx: the crypto context handle
34   * @op: PFO operation struct to pass in
35   * @may_sleep: flag indicating the request can sleep
36   *
37   * Make the hcall, retrying while the hardware is busy. If we cannot yield
38   * the thread, limit the number of retries to 10 here.
39   */
nx_hcall_sync(struct nx_crypto_ctx * nx_ctx,struct vio_pfo_op * op,u32 may_sleep)40  int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
41  		  struct vio_pfo_op    *op,
42  		  u32                   may_sleep)
43  {
44  	int rc, retries = 10;
45  	struct vio_dev *viodev = nx_driver.viodev;
46  
47  	atomic_inc(&(nx_ctx->stats->sync_ops));
48  
49  	do {
50  		rc = vio_h_cop_sync(viodev, op);
51  	} while (rc == -EBUSY && !may_sleep && retries--);
52  
53  	if (rc) {
54  		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
55  			"hcall rc: %ld\n", rc, op->hcall_err);
56  		atomic_inc(&(nx_ctx->stats->errors));
57  		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
58  		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
59  	}
60  
61  	return rc;
62  }
63  
64  /**
65   * nx_build_sg_list - build an NX scatter list describing a single  buffer
66   *
67   * @sg_head: pointer to the first scatter list element to build
68   * @start_addr: pointer to the linear buffer
69   * @len: length of the data at @start_addr
70   * @sgmax: the largest number of scatter list elements we're allowed to create
71   *
72   * This function will start writing nx_sg elements at @sg_head and keep
73   * writing them until all of the data from @start_addr is described or
74   * until sgmax elements have been written. Scatter list elements will be
75   * created such that none of the elements describes a buffer that crosses a 4K
76   * boundary.
77   */
nx_build_sg_list(struct nx_sg * sg_head,u8 * start_addr,unsigned int * len,u32 sgmax)78  struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
79  			       u8           *start_addr,
80  			       unsigned int *len,
81  			       u32           sgmax)
82  {
83  	unsigned int sg_len = 0;
84  	struct nx_sg *sg;
85  	u64 sg_addr = (u64)start_addr;
86  	u64 end_addr;
87  
88  	/* determine the start and end for this address range - slightly
89  	 * different if this is in VMALLOC_REGION */
90  	if (is_vmalloc_addr(start_addr))
91  		sg_addr = page_to_phys(vmalloc_to_page(start_addr))
92  			  + offset_in_page(sg_addr);
93  	else
94  		sg_addr = __pa(sg_addr);
95  
96  	end_addr = sg_addr + *len;
97  
98  	/* each iteration will write one struct nx_sg element and add the
99  	 * length of data described by that element to sg_len. Once @len bytes
100  	 * have been described (or @sgmax elements have been written), the
101  	 * loop ends. min_t is used to ensure @end_addr falls on the same page
102  	 * as sg_addr, if not, we need to create another nx_sg element for the
103  	 * data on the next page.
104  	 *
105  	 * Also when using vmalloc'ed data, every time that a system page
106  	 * boundary is crossed the physical address needs to be re-calculated.
107  	 */
108  	for (sg = sg_head; sg_len < *len; sg++) {
109  		u64 next_page;
110  
111  		sg->addr = sg_addr;
112  		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
113  				end_addr);
114  
115  		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
116  		sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
117  		sg_len += sg->len;
118  
119  		if (sg_addr >= next_page &&
120  				is_vmalloc_addr(start_addr + sg_len)) {
121  			sg_addr = page_to_phys(vmalloc_to_page(
122  						start_addr + sg_len));
123  			end_addr = sg_addr + *len - sg_len;
124  		}
125  
126  		if ((sg - sg_head) == sgmax) {
127  			pr_err("nx: scatter/gather list overflow, pid: %d\n",
128  			       current->pid);
129  			sg++;
130  			break;
131  		}
132  	}
133  	*len = sg_len;
134  
135  	/* return the moved sg_head pointer */
136  	return sg;
137  }
138  
139  /**
140   * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
141   *
142   * @nx_dst: pointer to the first nx_sg element to write
143   * @sglen: max number of nx_sg entries we're allowed to write
144   * @sg_src: pointer to the source linux scatterlist to walk
145   * @start: number of bytes to fast-forward past at the beginning of @sg_src
146   * @src_len: number of bytes to walk in @sg_src
147   */
nx_walk_and_build(struct nx_sg * nx_dst,unsigned int sglen,struct scatterlist * sg_src,unsigned int start,unsigned int * src_len)148  struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
149  				unsigned int        sglen,
150  				struct scatterlist *sg_src,
151  				unsigned int        start,
152  				unsigned int       *src_len)
153  {
154  	struct scatter_walk walk;
155  	struct nx_sg *nx_sg = nx_dst;
156  	unsigned int n, offset = 0, len = *src_len;
157  	char *dst;
158  
159  	/* we need to fast forward through @start bytes first */
160  	for (;;) {
161  		scatterwalk_start(&walk, sg_src);
162  
163  		if (start < offset + sg_src->length)
164  			break;
165  
166  		offset += sg_src->length;
167  		sg_src = sg_next(sg_src);
168  	}
169  
170  	/* start - offset is the number of bytes to advance in the scatterlist
171  	 * element we're currently looking at */
172  	scatterwalk_advance(&walk, start - offset);
173  
174  	while (len && (nx_sg - nx_dst) < sglen) {
175  		n = scatterwalk_clamp(&walk, len);
176  		if (!n) {
177  			/* In cases where we have scatterlist chain sg_next
178  			 * handles with it properly */
179  			scatterwalk_start(&walk, sg_next(walk.sg));
180  			n = scatterwalk_clamp(&walk, len);
181  		}
182  		dst = scatterwalk_map(&walk);
183  
184  		nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
185  		len -= n;
186  
187  		scatterwalk_unmap(dst);
188  		scatterwalk_advance(&walk, n);
189  		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
190  	}
191  	/* update to_process */
192  	*src_len -= len;
193  
194  	/* return the moved destination pointer */
195  	return nx_sg;
196  }
197  
198  /**
199   * trim_sg_list - ensures the bound in sg list.
200   * @sg: sg list head
201   * @end: sg lisg end
202   * @delta:  is the amount we need to crop in order to bound the list.
203   * @nbytes: length of data in the scatterlists or data length - whichever
204   *          is greater.
205   */
trim_sg_list(struct nx_sg * sg,struct nx_sg * end,unsigned int delta,unsigned int * nbytes)206  static long int trim_sg_list(struct nx_sg *sg,
207  			     struct nx_sg *end,
208  			     unsigned int delta,
209  			     unsigned int *nbytes)
210  {
211  	long int oplen;
212  	long int data_back;
213  	unsigned int is_delta = delta;
214  
215  	while (delta && end > sg) {
216  		struct nx_sg *last = end - 1;
217  
218  		if (last->len > delta) {
219  			last->len -= delta;
220  			delta = 0;
221  		} else {
222  			end--;
223  			delta -= last->len;
224  		}
225  	}
226  
227  	/* There are cases where we need to crop list in order to make it
228  	 * a block size multiple, but we also need to align data. In order to
229  	 * that we need to calculate how much we need to put back to be
230  	 * processed
231  	 */
232  	oplen = (sg - end) * sizeof(struct nx_sg);
233  	if (is_delta) {
234  		data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len;
235  		data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
236  		*nbytes -= data_back;
237  	}
238  
239  	return oplen;
240  }
241  
242  /**
243   * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
244   *                     scatterlists based on them.
245   *
246   * @nx_ctx: NX crypto context for the lists we're building
247   * @iv: iv data, if the algorithm requires it
248   * @dst: destination scatterlist
249   * @src: source scatterlist
250   * @nbytes: length of data described in the scatterlists
251   * @offset: number of bytes to fast-forward past at the beginning of
252   *          scatterlists.
253   * @oiv: destination for the iv data, if the algorithm requires it
254   *
255   * This is common code shared by all the AES algorithms. It uses the crypto
256   * scatterlist walk routines to traverse input and output scatterlists, building
257   * corresponding NX scatterlists
258   */
nx_build_sg_lists(struct nx_crypto_ctx * nx_ctx,const u8 * iv,struct scatterlist * dst,struct scatterlist * src,unsigned int * nbytes,unsigned int offset,u8 * oiv)259  int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
260  		      const u8              *iv,
261  		      struct scatterlist    *dst,
262  		      struct scatterlist    *src,
263  		      unsigned int          *nbytes,
264  		      unsigned int           offset,
265  		      u8                    *oiv)
266  {
267  	unsigned int delta = 0;
268  	unsigned int total = *nbytes;
269  	struct nx_sg *nx_insg = nx_ctx->in_sg;
270  	struct nx_sg *nx_outsg = nx_ctx->out_sg;
271  	unsigned int max_sg_len;
272  
273  	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
274  			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
275  	max_sg_len = min_t(u64, max_sg_len,
276  			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
277  
278  	if (oiv)
279  		memcpy(oiv, iv, AES_BLOCK_SIZE);
280  
281  	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
282  
283  	nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
284  					offset, nbytes);
285  	nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
286  					offset, nbytes);
287  
288  	if (*nbytes < total)
289  		delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
290  
291  	/* these lengths should be negative, which will indicate to phyp that
292  	 * the input and output parameters are scatterlists, not linear
293  	 * buffers */
294  	nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
295  	nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
296  
297  	return 0;
298  }
299  
300  /**
301   * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
302   *
303   * @nx_ctx: the nx context to initialize
304   * @function: the function code for the op
305   */
nx_ctx_init(struct nx_crypto_ctx * nx_ctx,unsigned int function)306  void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
307  {
308  	spin_lock_init(&nx_ctx->lock);
309  	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
310  	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
311  
312  	nx_ctx->op.flags = function;
313  	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
314  	nx_ctx->op.in = __pa(nx_ctx->in_sg);
315  	nx_ctx->op.out = __pa(nx_ctx->out_sg);
316  
317  	if (nx_ctx->csbcpb_aead) {
318  		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
319  
320  		nx_ctx->op_aead.flags = function;
321  		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
322  		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
323  		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
324  	}
325  }
326  
nx_of_update_status(struct device * dev,struct property * p,struct nx_of * props)327  static void nx_of_update_status(struct device   *dev,
328  			       struct property *p,
329  			       struct nx_of    *props)
330  {
331  	if (!strncmp(p->value, "okay", p->length)) {
332  		props->status = NX_WAITING;
333  		props->flags |= NX_OF_FLAG_STATUS_SET;
334  	} else {
335  		dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
336  			 (char *)p->value);
337  	}
338  }
339  
nx_of_update_sglen(struct device * dev,struct property * p,struct nx_of * props)340  static void nx_of_update_sglen(struct device   *dev,
341  			       struct property *p,
342  			       struct nx_of    *props)
343  {
344  	if (p->length != sizeof(props->max_sg_len)) {
345  		dev_err(dev, "%s: unexpected format for "
346  			"ibm,max-sg-len property\n", __func__);
347  		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
348  			"long, expected %zd bytes\n", __func__,
349  			p->length, sizeof(props->max_sg_len));
350  		return;
351  	}
352  
353  	props->max_sg_len = *(u32 *)p->value;
354  	props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
355  }
356  
nx_of_update_msc(struct device * dev,struct property * p,struct nx_of * props)357  static void nx_of_update_msc(struct device   *dev,
358  			     struct property *p,
359  			     struct nx_of    *props)
360  {
361  	struct msc_triplet *trip;
362  	struct max_sync_cop *msc;
363  	unsigned int bytes_so_far, i, lenp;
364  
365  	msc = (struct max_sync_cop *)p->value;
366  	lenp = p->length;
367  
368  	/* You can't tell if the data read in for this property is sane by its
369  	 * size alone. This is because there are sizes embedded in the data
370  	 * structure. The best we can do is check lengths as we parse and bail
371  	 * as soon as a length error is detected. */
372  	bytes_so_far = 0;
373  
374  	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
375  		bytes_so_far += sizeof(struct max_sync_cop);
376  
377  		trip = msc->trip;
378  
379  		for (i = 0;
380  		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
381  		     i < msc->triplets;
382  		     i++) {
383  			if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
384  				dev_err(dev, "unknown function code/mode "
385  					"combo: %d/%d (ignored)\n", msc->fc,
386  					msc->mode);
387  				goto next_loop;
388  			}
389  
390  			if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
391  				dev_warn(dev, "bogus sglen/databytelen: "
392  					 "%u/%u (ignored)\n", trip->sglen,
393  					 trip->databytelen);
394  				goto next_loop;
395  			}
396  
397  			switch (trip->keybitlen) {
398  			case 128:
399  			case 160:
400  				props->ap[msc->fc][msc->mode][0].databytelen =
401  					trip->databytelen;
402  				props->ap[msc->fc][msc->mode][0].sglen =
403  					trip->sglen;
404  				break;
405  			case 192:
406  				props->ap[msc->fc][msc->mode][1].databytelen =
407  					trip->databytelen;
408  				props->ap[msc->fc][msc->mode][1].sglen =
409  					trip->sglen;
410  				break;
411  			case 256:
412  				if (msc->fc == NX_FC_AES) {
413  					props->ap[msc->fc][msc->mode][2].
414  						databytelen = trip->databytelen;
415  					props->ap[msc->fc][msc->mode][2].sglen =
416  						trip->sglen;
417  				} else if (msc->fc == NX_FC_AES_HMAC ||
418  					   msc->fc == NX_FC_SHA) {
419  					props->ap[msc->fc][msc->mode][1].
420  						databytelen = trip->databytelen;
421  					props->ap[msc->fc][msc->mode][1].sglen =
422  						trip->sglen;
423  				} else {
424  					dev_warn(dev, "unknown function "
425  						"code/key bit len combo"
426  						": (%u/256)\n", msc->fc);
427  				}
428  				break;
429  			case 512:
430  				props->ap[msc->fc][msc->mode][2].databytelen =
431  					trip->databytelen;
432  				props->ap[msc->fc][msc->mode][2].sglen =
433  					trip->sglen;
434  				break;
435  			default:
436  				dev_warn(dev, "unknown function code/key bit "
437  					 "len combo: (%u/%u)\n", msc->fc,
438  					 trip->keybitlen);
439  				break;
440  			}
441  next_loop:
442  			bytes_so_far += sizeof(struct msc_triplet);
443  			trip++;
444  		}
445  
446  		msc = (struct max_sync_cop *)trip;
447  	}
448  
449  	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
450  }
451  
452  /**
453   * nx_of_init - read openFirmware values from the device tree
454   *
455   * @dev: device handle
456   * @props: pointer to struct to hold the properties values
457   *
458   * Called once at driver probe time, this function will read out the
459   * openFirmware properties we use at runtime. If all the OF properties are
460   * acceptable, when we exit this function props->flags will indicate that
461   * we're ready to register our crypto algorithms.
462   */
nx_of_init(struct device * dev,struct nx_of * props)463  static void nx_of_init(struct device *dev, struct nx_of *props)
464  {
465  	struct device_node *base_node = dev->of_node;
466  	struct property *p;
467  
468  	p = of_find_property(base_node, "status", NULL);
469  	if (!p)
470  		dev_info(dev, "%s: property 'status' not found\n", __func__);
471  	else
472  		nx_of_update_status(dev, p, props);
473  
474  	p = of_find_property(base_node, "ibm,max-sg-len", NULL);
475  	if (!p)
476  		dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
477  			 __func__);
478  	else
479  		nx_of_update_sglen(dev, p, props);
480  
481  	p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
482  	if (!p)
483  		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
484  			 __func__);
485  	else
486  		nx_of_update_msc(dev, p, props);
487  }
488  
nx_check_prop(struct device * dev,u32 fc,u32 mode,int slot)489  static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
490  {
491  	struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
492  
493  	if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
494  		if (dev)
495  			dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
496  				 "%u/%u (ignored)\n", fc, mode, slot,
497  				 props->sglen, props->databytelen);
498  		return false;
499  	}
500  
501  	return true;
502  }
503  
nx_check_props(struct device * dev,u32 fc,u32 mode)504  static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
505  {
506  	int i;
507  
508  	for (i = 0; i < 3; i++)
509  		if (!nx_check_prop(dev, fc, mode, i))
510  			return false;
511  
512  	return true;
513  }
514  
nx_register_skcipher(struct skcipher_alg * alg,u32 fc,u32 mode)515  static int nx_register_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode)
516  {
517  	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
518  	       crypto_register_skcipher(alg) : 0;
519  }
520  
nx_register_aead(struct aead_alg * alg,u32 fc,u32 mode)521  static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
522  {
523  	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
524  	       crypto_register_aead(alg) : 0;
525  }
526  
nx_register_shash(struct shash_alg * alg,u32 fc,u32 mode,int slot)527  static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
528  {
529  	return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
530  					  fc, mode, slot) :
531  			    nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
532  	       crypto_register_shash(alg) : 0;
533  }
534  
nx_unregister_skcipher(struct skcipher_alg * alg,u32 fc,u32 mode)535  static void nx_unregister_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode)
536  {
537  	if (nx_check_props(NULL, fc, mode))
538  		crypto_unregister_skcipher(alg);
539  }
540  
nx_unregister_aead(struct aead_alg * alg,u32 fc,u32 mode)541  static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
542  {
543  	if (nx_check_props(NULL, fc, mode))
544  		crypto_unregister_aead(alg);
545  }
546  
nx_unregister_shash(struct shash_alg * alg,u32 fc,u32 mode,int slot)547  static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
548  				int slot)
549  {
550  	if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
551  			nx_check_props(NULL, fc, mode))
552  		crypto_unregister_shash(alg);
553  }
554  
555  /**
556   * nx_register_algs - register algorithms with the crypto API
557   *
558   * Called from nx_probe()
559   *
560   * If all OF properties are in an acceptable state, the driver flags will
561   * indicate that we're ready and we'll create our debugfs files and register
562   * out crypto algorithms.
563   */
nx_register_algs(void)564  static int nx_register_algs(void)
565  {
566  	int rc = -1;
567  
568  	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
569  		goto out;
570  
571  	memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
572  
573  	NX_DEBUGFS_INIT(&nx_driver);
574  
575  	nx_driver.of.status = NX_OKAY;
576  
577  	rc = nx_register_skcipher(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
578  	if (rc)
579  		goto out;
580  
581  	rc = nx_register_skcipher(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
582  	if (rc)
583  		goto out_unreg_ecb;
584  
585  	rc = nx_register_skcipher(&nx_ctr3686_aes_alg, NX_FC_AES,
586  				  NX_MODE_AES_CTR);
587  	if (rc)
588  		goto out_unreg_cbc;
589  
590  	rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
591  	if (rc)
592  		goto out_unreg_ctr3686;
593  
594  	rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
595  	if (rc)
596  		goto out_unreg_gcm;
597  
598  	rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
599  	if (rc)
600  		goto out_unreg_gcm4106;
601  
602  	rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
603  	if (rc)
604  		goto out_unreg_ccm;
605  
606  	rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
607  			       NX_PROPS_SHA256);
608  	if (rc)
609  		goto out_unreg_ccm4309;
610  
611  	rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
612  			       NX_PROPS_SHA512);
613  	if (rc)
614  		goto out_unreg_s256;
615  
616  	rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
617  			       NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
618  	if (rc)
619  		goto out_unreg_s512;
620  
621  	goto out;
622  
623  out_unreg_s512:
624  	nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
625  			    NX_PROPS_SHA512);
626  out_unreg_s256:
627  	nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
628  			    NX_PROPS_SHA256);
629  out_unreg_ccm4309:
630  	nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
631  out_unreg_ccm:
632  	nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
633  out_unreg_gcm4106:
634  	nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
635  out_unreg_gcm:
636  	nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
637  out_unreg_ctr3686:
638  	nx_unregister_skcipher(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
639  out_unreg_cbc:
640  	nx_unregister_skcipher(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
641  out_unreg_ecb:
642  	nx_unregister_skcipher(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
643  out:
644  	return rc;
645  }
646  
647  /**
648   * nx_crypto_ctx_init - create and initialize a crypto api context
649   *
650   * @nx_ctx: the crypto api context
651   * @fc: function code for the context
652   * @mode: the function code specific mode for this context
653   */
nx_crypto_ctx_init(struct nx_crypto_ctx * nx_ctx,u32 fc,u32 mode)654  static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
655  {
656  	if (nx_driver.of.status != NX_OKAY) {
657  		pr_err("Attempt to initialize NX crypto context while device "
658  		       "is not available!\n");
659  		return -ENODEV;
660  	}
661  
662  	/* we need an extra page for csbcpb_aead for these modes */
663  	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
664  		nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
665  				   sizeof(struct nx_csbcpb);
666  	else
667  		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
668  				   sizeof(struct nx_csbcpb);
669  
670  	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
671  	if (!nx_ctx->kmem)
672  		return -ENOMEM;
673  
674  	/* the csbcpb and scatterlists must be 4K aligned pages */
675  	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
676  						       (u64)NX_PAGE_SIZE));
677  	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
678  	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
679  
680  	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
681  		nx_ctx->csbcpb_aead =
682  			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
683  					     NX_PAGE_SIZE);
684  
685  	/* give each context a pointer to global stats and their OF
686  	 * properties */
687  	nx_ctx->stats = &nx_driver.stats;
688  	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
689  	       sizeof(struct alg_props) * 3);
690  
691  	return 0;
692  }
693  
694  /* entry points from the crypto tfm initializers */
nx_crypto_ctx_aes_ccm_init(struct crypto_aead * tfm)695  int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
696  {
697  	crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx));
698  	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
699  				  NX_MODE_AES_CCM);
700  }
701  
nx_crypto_ctx_aes_gcm_init(struct crypto_aead * tfm)702  int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
703  {
704  	crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
705  	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
706  				  NX_MODE_AES_GCM);
707  }
708  
nx_crypto_ctx_aes_ctr_init(struct crypto_skcipher * tfm)709  int nx_crypto_ctx_aes_ctr_init(struct crypto_skcipher *tfm)
710  {
711  	return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
712  				  NX_MODE_AES_CTR);
713  }
714  
nx_crypto_ctx_aes_cbc_init(struct crypto_skcipher * tfm)715  int nx_crypto_ctx_aes_cbc_init(struct crypto_skcipher *tfm)
716  {
717  	return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
718  				  NX_MODE_AES_CBC);
719  }
720  
nx_crypto_ctx_aes_ecb_init(struct crypto_skcipher * tfm)721  int nx_crypto_ctx_aes_ecb_init(struct crypto_skcipher *tfm)
722  {
723  	return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
724  				  NX_MODE_AES_ECB);
725  }
726  
nx_crypto_ctx_sha_init(struct crypto_tfm * tfm)727  int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
728  {
729  	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
730  }
731  
nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm * tfm)732  int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
733  {
734  	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
735  				  NX_MODE_AES_XCBC_MAC);
736  }
737  
738  /**
739   * nx_crypto_ctx_exit - destroy a crypto api context
740   *
741   * @tfm: the crypto transform pointer for the context
742   *
743   * As crypto API contexts are destroyed, this exit hook is called to free the
744   * memory associated with it.
745   */
nx_crypto_ctx_exit(struct crypto_tfm * tfm)746  void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
747  {
748  	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
749  
750  	kfree_sensitive(nx_ctx->kmem);
751  	nx_ctx->csbcpb = NULL;
752  	nx_ctx->csbcpb_aead = NULL;
753  	nx_ctx->in_sg = NULL;
754  	nx_ctx->out_sg = NULL;
755  }
756  
nx_crypto_ctx_skcipher_exit(struct crypto_skcipher * tfm)757  void nx_crypto_ctx_skcipher_exit(struct crypto_skcipher *tfm)
758  {
759  	nx_crypto_ctx_exit(crypto_skcipher_ctx(tfm));
760  }
761  
nx_crypto_ctx_aead_exit(struct crypto_aead * tfm)762  void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
763  {
764  	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
765  
766  	kfree_sensitive(nx_ctx->kmem);
767  }
768  
nx_probe(struct vio_dev * viodev,const struct vio_device_id * id)769  static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
770  {
771  	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
772  		viodev->name, viodev->resource_id);
773  
774  	if (nx_driver.viodev) {
775  		dev_err(&viodev->dev, "%s: Attempt to register more than one "
776  			"instance of the hardware\n", __func__);
777  		return -EINVAL;
778  	}
779  
780  	nx_driver.viodev = viodev;
781  
782  	nx_of_init(&viodev->dev, &nx_driver.of);
783  
784  	return nx_register_algs();
785  }
786  
nx_remove(struct vio_dev * viodev)787  static void nx_remove(struct vio_dev *viodev)
788  {
789  	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
790  		viodev->unit_address);
791  
792  	if (nx_driver.of.status == NX_OKAY) {
793  		NX_DEBUGFS_FINI(&nx_driver);
794  
795  		nx_unregister_shash(&nx_shash_aes_xcbc_alg,
796  				    NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
797  		nx_unregister_shash(&nx_shash_sha512_alg,
798  				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
799  		nx_unregister_shash(&nx_shash_sha256_alg,
800  				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
801  		nx_unregister_aead(&nx_ccm4309_aes_alg,
802  				   NX_FC_AES, NX_MODE_AES_CCM);
803  		nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
804  		nx_unregister_aead(&nx_gcm4106_aes_alg,
805  				   NX_FC_AES, NX_MODE_AES_GCM);
806  		nx_unregister_aead(&nx_gcm_aes_alg,
807  				   NX_FC_AES, NX_MODE_AES_GCM);
808  		nx_unregister_skcipher(&nx_ctr3686_aes_alg,
809  				       NX_FC_AES, NX_MODE_AES_CTR);
810  		nx_unregister_skcipher(&nx_cbc_aes_alg, NX_FC_AES,
811  				       NX_MODE_AES_CBC);
812  		nx_unregister_skcipher(&nx_ecb_aes_alg, NX_FC_AES,
813  				       NX_MODE_AES_ECB);
814  	}
815  }
816  
817  
818  /* module wide initialization/cleanup */
nx_init(void)819  static int __init nx_init(void)
820  {
821  	return vio_register_driver(&nx_driver.viodriver);
822  }
823  
nx_fini(void)824  static void __exit nx_fini(void)
825  {
826  	vio_unregister_driver(&nx_driver.viodriver);
827  }
828  
829  static const struct vio_device_id nx_crypto_driver_ids[] = {
830  	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
831  	{ "", "" }
832  };
833  MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
834  
835  /* driver state structure */
836  struct nx_crypto_driver nx_driver = {
837  	.viodriver = {
838  		.id_table = nx_crypto_driver_ids,
839  		.probe = nx_probe,
840  		.remove = nx_remove,
841  		.name  = NX_NAME,
842  	},
843  };
844  
845  module_init(nx_init);
846  module_exit(nx_fini);
847  
848  MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
849  MODULE_DESCRIPTION(NX_STRING);
850  MODULE_LICENSE("GPL");
851  MODULE_VERSION(NX_VERSION);
852