1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP target.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17 #include <trace/events/sock.h>
18
19 #include "nvmet.h"
20
21 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE)
22 #define NVMET_TCP_MAXH2CDATA 0x400000 /* 16M arbitrary limit */
23
param_store_val(const char * str,int * val,int min,int max)24 static int param_store_val(const char *str, int *val, int min, int max)
25 {
26 int ret, new_val;
27
28 ret = kstrtoint(str, 10, &new_val);
29 if (ret)
30 return -EINVAL;
31
32 if (new_val < min || new_val > max)
33 return -EINVAL;
34
35 *val = new_val;
36 return 0;
37 }
38
set_params(const char * str,const struct kernel_param * kp)39 static int set_params(const char *str, const struct kernel_param *kp)
40 {
41 return param_store_val(str, kp->arg, 0, INT_MAX);
42 }
43
44 static const struct kernel_param_ops set_param_ops = {
45 .set = set_params,
46 .get = param_get_int,
47 };
48
49 /* Define the socket priority to use for connections were it is desirable
50 * that the NIC consider performing optimized packet processing or filtering.
51 * A non-zero value being sufficient to indicate general consideration of any
52 * possible optimization. Making it a module param allows for alternative
53 * values that may be unique for some NIC implementations.
54 */
55 static int so_priority;
56 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
57 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
58
59 /* Define a time period (in usecs) that io_work() shall sample an activated
60 * queue before determining it to be idle. This optional module behavior
61 * can enable NIC solutions that support socket optimized packet processing
62 * using advanced interrupt moderation techniques.
63 */
64 static int idle_poll_period_usecs;
65 device_param_cb(idle_poll_period_usecs, &set_param_ops,
66 &idle_poll_period_usecs, 0644);
67 MODULE_PARM_DESC(idle_poll_period_usecs,
68 "nvmet tcp io_work poll till idle time period in usecs: Default 0");
69
70 #define NVMET_TCP_RECV_BUDGET 8
71 #define NVMET_TCP_SEND_BUDGET 8
72 #define NVMET_TCP_IO_WORK_BUDGET 64
73
74 enum nvmet_tcp_send_state {
75 NVMET_TCP_SEND_DATA_PDU,
76 NVMET_TCP_SEND_DATA,
77 NVMET_TCP_SEND_R2T,
78 NVMET_TCP_SEND_DDGST,
79 NVMET_TCP_SEND_RESPONSE
80 };
81
82 enum nvmet_tcp_recv_state {
83 NVMET_TCP_RECV_PDU,
84 NVMET_TCP_RECV_DATA,
85 NVMET_TCP_RECV_DDGST,
86 NVMET_TCP_RECV_ERR,
87 };
88
89 enum {
90 NVMET_TCP_F_INIT_FAILED = (1 << 0),
91 };
92
93 struct nvmet_tcp_cmd {
94 struct nvmet_tcp_queue *queue;
95 struct nvmet_req req;
96
97 struct nvme_tcp_cmd_pdu *cmd_pdu;
98 struct nvme_tcp_rsp_pdu *rsp_pdu;
99 struct nvme_tcp_data_pdu *data_pdu;
100 struct nvme_tcp_r2t_pdu *r2t_pdu;
101
102 u32 rbytes_done;
103 u32 wbytes_done;
104
105 u32 pdu_len;
106 u32 pdu_recv;
107 int sg_idx;
108 struct msghdr recv_msg;
109 struct bio_vec *iov;
110 u32 flags;
111
112 struct list_head entry;
113 struct llist_node lentry;
114
115 /* send state */
116 u32 offset;
117 struct scatterlist *cur_sg;
118 enum nvmet_tcp_send_state state;
119
120 __le32 exp_ddgst;
121 __le32 recv_ddgst;
122 };
123
124 enum nvmet_tcp_queue_state {
125 NVMET_TCP_Q_CONNECTING,
126 NVMET_TCP_Q_LIVE,
127 NVMET_TCP_Q_DISCONNECTING,
128 };
129
130 struct nvmet_tcp_queue {
131 struct socket *sock;
132 struct nvmet_tcp_port *port;
133 struct work_struct io_work;
134 struct nvmet_cq nvme_cq;
135 struct nvmet_sq nvme_sq;
136
137 /* send state */
138 struct nvmet_tcp_cmd *cmds;
139 unsigned int nr_cmds;
140 struct list_head free_list;
141 struct llist_head resp_list;
142 struct list_head resp_send_list;
143 int send_list_len;
144 struct nvmet_tcp_cmd *snd_cmd;
145
146 /* recv state */
147 int offset;
148 int left;
149 enum nvmet_tcp_recv_state rcv_state;
150 struct nvmet_tcp_cmd *cmd;
151 union nvme_tcp_pdu pdu;
152
153 /* digest state */
154 bool hdr_digest;
155 bool data_digest;
156 struct ahash_request *snd_hash;
157 struct ahash_request *rcv_hash;
158
159 unsigned long poll_end;
160
161 spinlock_t state_lock;
162 enum nvmet_tcp_queue_state state;
163
164 struct sockaddr_storage sockaddr;
165 struct sockaddr_storage sockaddr_peer;
166 struct work_struct release_work;
167
168 int idx;
169 struct list_head queue_list;
170
171 struct nvmet_tcp_cmd connect;
172
173 struct page_frag_cache pf_cache;
174
175 void (*data_ready)(struct sock *);
176 void (*state_change)(struct sock *);
177 void (*write_space)(struct sock *);
178 };
179
180 struct nvmet_tcp_port {
181 struct socket *sock;
182 struct work_struct accept_work;
183 struct nvmet_port *nport;
184 struct sockaddr_storage addr;
185 void (*data_ready)(struct sock *);
186 };
187
188 static DEFINE_IDA(nvmet_tcp_queue_ida);
189 static LIST_HEAD(nvmet_tcp_queue_list);
190 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
191
192 static struct workqueue_struct *nvmet_tcp_wq;
193 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
194 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
195 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
196
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)197 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
198 struct nvmet_tcp_cmd *cmd)
199 {
200 if (unlikely(!queue->nr_cmds)) {
201 /* We didn't allocate cmds yet, send 0xffff */
202 return USHRT_MAX;
203 }
204
205 return cmd - queue->cmds;
206 }
207
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)208 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
209 {
210 return nvme_is_write(cmd->req.cmd) &&
211 cmd->rbytes_done < cmd->req.transfer_len;
212 }
213
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)214 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
215 {
216 return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
217 }
218
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)219 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
220 {
221 return !nvme_is_write(cmd->req.cmd) &&
222 cmd->req.transfer_len > 0 &&
223 !cmd->req.cqe->status;
224 }
225
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)226 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
227 {
228 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
229 !cmd->rbytes_done;
230 }
231
232 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)233 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
234 {
235 struct nvmet_tcp_cmd *cmd;
236
237 cmd = list_first_entry_or_null(&queue->free_list,
238 struct nvmet_tcp_cmd, entry);
239 if (!cmd)
240 return NULL;
241 list_del_init(&cmd->entry);
242
243 cmd->rbytes_done = cmd->wbytes_done = 0;
244 cmd->pdu_len = 0;
245 cmd->pdu_recv = 0;
246 cmd->iov = NULL;
247 cmd->flags = 0;
248 return cmd;
249 }
250
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)251 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
252 {
253 if (unlikely(cmd == &cmd->queue->connect))
254 return;
255
256 list_add_tail(&cmd->entry, &cmd->queue->free_list);
257 }
258
queue_cpu(struct nvmet_tcp_queue * queue)259 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
260 {
261 return queue->sock->sk->sk_incoming_cpu;
262 }
263
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)264 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
265 {
266 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
267 }
268
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)269 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
270 {
271 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
272 }
273
nvmet_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)274 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
275 void *pdu, size_t len)
276 {
277 struct scatterlist sg;
278
279 sg_init_one(&sg, pdu, len);
280 ahash_request_set_crypt(hash, &sg, pdu + len, len);
281 crypto_ahash_digest(hash);
282 }
283
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)284 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
285 void *pdu, size_t len)
286 {
287 struct nvme_tcp_hdr *hdr = pdu;
288 __le32 recv_digest;
289 __le32 exp_digest;
290
291 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
292 pr_err("queue %d: header digest enabled but no header digest\n",
293 queue->idx);
294 return -EPROTO;
295 }
296
297 recv_digest = *(__le32 *)(pdu + hdr->hlen);
298 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
299 exp_digest = *(__le32 *)(pdu + hdr->hlen);
300 if (recv_digest != exp_digest) {
301 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
302 queue->idx, le32_to_cpu(recv_digest),
303 le32_to_cpu(exp_digest));
304 return -EPROTO;
305 }
306
307 return 0;
308 }
309
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)310 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
311 {
312 struct nvme_tcp_hdr *hdr = pdu;
313 u8 digest_len = nvmet_tcp_hdgst_len(queue);
314 u32 len;
315
316 len = le32_to_cpu(hdr->plen) - hdr->hlen -
317 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
318
319 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
320 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
321 return -EPROTO;
322 }
323
324 return 0;
325 }
326
327 /* If cmd buffers are NULL, no operation is performed */
nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd * cmd)328 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
329 {
330 kfree(cmd->iov);
331 sgl_free(cmd->req.sg);
332 cmd->iov = NULL;
333 cmd->req.sg = NULL;
334 }
335
nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd * cmd)336 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
337 {
338 struct bio_vec *iov = cmd->iov;
339 struct scatterlist *sg;
340 u32 length, offset, sg_offset;
341 int nr_pages;
342
343 length = cmd->pdu_len;
344 nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
345 offset = cmd->rbytes_done;
346 cmd->sg_idx = offset / PAGE_SIZE;
347 sg_offset = offset % PAGE_SIZE;
348 sg = &cmd->req.sg[cmd->sg_idx];
349
350 while (length) {
351 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
352
353 bvec_set_page(iov, sg_page(sg), iov_len,
354 sg->offset + sg_offset);
355
356 length -= iov_len;
357 sg = sg_next(sg);
358 iov++;
359 sg_offset = 0;
360 }
361
362 iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
363 nr_pages, cmd->pdu_len);
364 }
365
nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)366 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
367 {
368 queue->rcv_state = NVMET_TCP_RECV_ERR;
369 if (queue->nvme_sq.ctrl)
370 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
371 else
372 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
373 }
374
nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)375 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
376 {
377 queue->rcv_state = NVMET_TCP_RECV_ERR;
378 if (status == -EPIPE || status == -ECONNRESET)
379 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
380 else
381 nvmet_tcp_fatal_error(queue);
382 }
383
nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)384 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
385 {
386 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
387 u32 len = le32_to_cpu(sgl->length);
388
389 if (!len)
390 return 0;
391
392 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
393 NVME_SGL_FMT_OFFSET)) {
394 if (!nvme_is_write(cmd->req.cmd))
395 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
396
397 if (len > cmd->req.port->inline_data_size)
398 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
399 cmd->pdu_len = len;
400 }
401 cmd->req.transfer_len += len;
402
403 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
404 if (!cmd->req.sg)
405 return NVME_SC_INTERNAL;
406 cmd->cur_sg = cmd->req.sg;
407
408 if (nvmet_tcp_has_data_in(cmd)) {
409 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
410 sizeof(*cmd->iov), GFP_KERNEL);
411 if (!cmd->iov)
412 goto err;
413 }
414
415 return 0;
416 err:
417 nvmet_tcp_free_cmd_buffers(cmd);
418 return NVME_SC_INTERNAL;
419 }
420
nvmet_tcp_calc_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)421 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
422 struct nvmet_tcp_cmd *cmd)
423 {
424 ahash_request_set_crypt(hash, cmd->req.sg,
425 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
426 crypto_ahash_digest(hash);
427 }
428
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)429 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
430 {
431 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
432 struct nvmet_tcp_queue *queue = cmd->queue;
433 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
434 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
435
436 cmd->offset = 0;
437 cmd->state = NVMET_TCP_SEND_DATA_PDU;
438
439 pdu->hdr.type = nvme_tcp_c2h_data;
440 pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
441 NVME_TCP_F_DATA_SUCCESS : 0);
442 pdu->hdr.hlen = sizeof(*pdu);
443 pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
444 pdu->hdr.plen =
445 cpu_to_le32(pdu->hdr.hlen + hdgst +
446 cmd->req.transfer_len + ddgst);
447 pdu->command_id = cmd->req.cqe->command_id;
448 pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
449 pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
450
451 if (queue->data_digest) {
452 pdu->hdr.flags |= NVME_TCP_F_DDGST;
453 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
454 }
455
456 if (cmd->queue->hdr_digest) {
457 pdu->hdr.flags |= NVME_TCP_F_HDGST;
458 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
459 }
460 }
461
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)462 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
463 {
464 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
465 struct nvmet_tcp_queue *queue = cmd->queue;
466 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
467
468 cmd->offset = 0;
469 cmd->state = NVMET_TCP_SEND_R2T;
470
471 pdu->hdr.type = nvme_tcp_r2t;
472 pdu->hdr.flags = 0;
473 pdu->hdr.hlen = sizeof(*pdu);
474 pdu->hdr.pdo = 0;
475 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
476
477 pdu->command_id = cmd->req.cmd->common.command_id;
478 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
479 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
480 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
481 if (cmd->queue->hdr_digest) {
482 pdu->hdr.flags |= NVME_TCP_F_HDGST;
483 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
484 }
485 }
486
nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)487 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
488 {
489 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
490 struct nvmet_tcp_queue *queue = cmd->queue;
491 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
492
493 cmd->offset = 0;
494 cmd->state = NVMET_TCP_SEND_RESPONSE;
495
496 pdu->hdr.type = nvme_tcp_rsp;
497 pdu->hdr.flags = 0;
498 pdu->hdr.hlen = sizeof(*pdu);
499 pdu->hdr.pdo = 0;
500 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
501 if (cmd->queue->hdr_digest) {
502 pdu->hdr.flags |= NVME_TCP_F_HDGST;
503 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
504 }
505 }
506
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)507 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
508 {
509 struct llist_node *node;
510 struct nvmet_tcp_cmd *cmd;
511
512 for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
513 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
514 list_add(&cmd->entry, &queue->resp_send_list);
515 queue->send_list_len++;
516 }
517 }
518
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)519 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
520 {
521 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
522 struct nvmet_tcp_cmd, entry);
523 if (!queue->snd_cmd) {
524 nvmet_tcp_process_resp_list(queue);
525 queue->snd_cmd =
526 list_first_entry_or_null(&queue->resp_send_list,
527 struct nvmet_tcp_cmd, entry);
528 if (unlikely(!queue->snd_cmd))
529 return NULL;
530 }
531
532 list_del_init(&queue->snd_cmd->entry);
533 queue->send_list_len--;
534
535 if (nvmet_tcp_need_data_out(queue->snd_cmd))
536 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
537 else if (nvmet_tcp_need_data_in(queue->snd_cmd))
538 nvmet_setup_r2t_pdu(queue->snd_cmd);
539 else
540 nvmet_setup_response_pdu(queue->snd_cmd);
541
542 return queue->snd_cmd;
543 }
544
nvmet_tcp_queue_response(struct nvmet_req * req)545 static void nvmet_tcp_queue_response(struct nvmet_req *req)
546 {
547 struct nvmet_tcp_cmd *cmd =
548 container_of(req, struct nvmet_tcp_cmd, req);
549 struct nvmet_tcp_queue *queue = cmd->queue;
550 enum nvmet_tcp_recv_state queue_state;
551 struct nvmet_tcp_cmd *queue_cmd;
552 struct nvme_sgl_desc *sgl;
553 u32 len;
554
555 /* Pairs with store_release in nvmet_prepare_receive_pdu() */
556 queue_state = smp_load_acquire(&queue->rcv_state);
557 queue_cmd = READ_ONCE(queue->cmd);
558
559 if (unlikely(cmd == queue_cmd)) {
560 sgl = &cmd->req.cmd->common.dptr.sgl;
561 len = le32_to_cpu(sgl->length);
562
563 /*
564 * Wait for inline data before processing the response.
565 * Avoid using helpers, this might happen before
566 * nvmet_req_init is completed.
567 */
568 if (queue_state == NVMET_TCP_RECV_PDU &&
569 len && len <= cmd->req.port->inline_data_size &&
570 nvme_is_write(cmd->req.cmd))
571 return;
572 }
573
574 llist_add(&cmd->lentry, &queue->resp_list);
575 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
576 }
577
nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)578 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
579 {
580 if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
581 nvmet_tcp_queue_response(&cmd->req);
582 else
583 cmd->req.execute(&cmd->req);
584 }
585
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)586 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
587 {
588 struct msghdr msg = {
589 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
590 };
591 struct bio_vec bvec;
592 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
593 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
594 int ret;
595
596 bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
597 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
598 ret = sock_sendmsg(cmd->queue->sock, &msg);
599 if (ret <= 0)
600 return ret;
601
602 cmd->offset += ret;
603 left -= ret;
604
605 if (left)
606 return -EAGAIN;
607
608 cmd->state = NVMET_TCP_SEND_DATA;
609 cmd->offset = 0;
610 return 1;
611 }
612
nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)613 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
614 {
615 struct nvmet_tcp_queue *queue = cmd->queue;
616 int ret;
617
618 while (cmd->cur_sg) {
619 struct msghdr msg = {
620 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
621 };
622 struct page *page = sg_page(cmd->cur_sg);
623 struct bio_vec bvec;
624 u32 left = cmd->cur_sg->length - cmd->offset;
625
626 if ((!last_in_batch && cmd->queue->send_list_len) ||
627 cmd->wbytes_done + left < cmd->req.transfer_len ||
628 queue->data_digest || !queue->nvme_sq.sqhd_disabled)
629 msg.msg_flags |= MSG_MORE;
630
631 bvec_set_page(&bvec, page, left, cmd->offset);
632 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
633 ret = sock_sendmsg(cmd->queue->sock, &msg);
634 if (ret <= 0)
635 return ret;
636
637 cmd->offset += ret;
638 cmd->wbytes_done += ret;
639
640 /* Done with sg?*/
641 if (cmd->offset == cmd->cur_sg->length) {
642 cmd->cur_sg = sg_next(cmd->cur_sg);
643 cmd->offset = 0;
644 }
645 }
646
647 if (queue->data_digest) {
648 cmd->state = NVMET_TCP_SEND_DDGST;
649 cmd->offset = 0;
650 } else {
651 if (queue->nvme_sq.sqhd_disabled) {
652 cmd->queue->snd_cmd = NULL;
653 nvmet_tcp_put_cmd(cmd);
654 } else {
655 nvmet_setup_response_pdu(cmd);
656 }
657 }
658
659 if (queue->nvme_sq.sqhd_disabled)
660 nvmet_tcp_free_cmd_buffers(cmd);
661
662 return 1;
663
664 }
665
nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)666 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
667 bool last_in_batch)
668 {
669 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
670 struct bio_vec bvec;
671 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
672 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
673 int ret;
674
675 if (!last_in_batch && cmd->queue->send_list_len)
676 msg.msg_flags |= MSG_MORE;
677 else
678 msg.msg_flags |= MSG_EOR;
679
680 bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
681 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
682 ret = sock_sendmsg(cmd->queue->sock, &msg);
683 if (ret <= 0)
684 return ret;
685 cmd->offset += ret;
686 left -= ret;
687
688 if (left)
689 return -EAGAIN;
690
691 nvmet_tcp_free_cmd_buffers(cmd);
692 cmd->queue->snd_cmd = NULL;
693 nvmet_tcp_put_cmd(cmd);
694 return 1;
695 }
696
nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)697 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
698 {
699 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
700 struct bio_vec bvec;
701 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
702 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
703 int ret;
704
705 if (!last_in_batch && cmd->queue->send_list_len)
706 msg.msg_flags |= MSG_MORE;
707 else
708 msg.msg_flags |= MSG_EOR;
709
710 bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
711 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
712 ret = sock_sendmsg(cmd->queue->sock, &msg);
713 if (ret <= 0)
714 return ret;
715 cmd->offset += ret;
716 left -= ret;
717
718 if (left)
719 return -EAGAIN;
720
721 cmd->queue->snd_cmd = NULL;
722 return 1;
723 }
724
nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)725 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
726 {
727 struct nvmet_tcp_queue *queue = cmd->queue;
728 int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
729 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
730 struct kvec iov = {
731 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
732 .iov_len = left
733 };
734 int ret;
735
736 if (!last_in_batch && cmd->queue->send_list_len)
737 msg.msg_flags |= MSG_MORE;
738 else
739 msg.msg_flags |= MSG_EOR;
740
741 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
742 if (unlikely(ret <= 0))
743 return ret;
744
745 cmd->offset += ret;
746 left -= ret;
747
748 if (left)
749 return -EAGAIN;
750
751 if (queue->nvme_sq.sqhd_disabled) {
752 cmd->queue->snd_cmd = NULL;
753 nvmet_tcp_put_cmd(cmd);
754 } else {
755 nvmet_setup_response_pdu(cmd);
756 }
757 return 1;
758 }
759
nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)760 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
761 bool last_in_batch)
762 {
763 struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
764 int ret = 0;
765
766 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
767 cmd = nvmet_tcp_fetch_cmd(queue);
768 if (unlikely(!cmd))
769 return 0;
770 }
771
772 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
773 ret = nvmet_try_send_data_pdu(cmd);
774 if (ret <= 0)
775 goto done_send;
776 }
777
778 if (cmd->state == NVMET_TCP_SEND_DATA) {
779 ret = nvmet_try_send_data(cmd, last_in_batch);
780 if (ret <= 0)
781 goto done_send;
782 }
783
784 if (cmd->state == NVMET_TCP_SEND_DDGST) {
785 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
786 if (ret <= 0)
787 goto done_send;
788 }
789
790 if (cmd->state == NVMET_TCP_SEND_R2T) {
791 ret = nvmet_try_send_r2t(cmd, last_in_batch);
792 if (ret <= 0)
793 goto done_send;
794 }
795
796 if (cmd->state == NVMET_TCP_SEND_RESPONSE)
797 ret = nvmet_try_send_response(cmd, last_in_batch);
798
799 done_send:
800 if (ret < 0) {
801 if (ret == -EAGAIN)
802 return 0;
803 return ret;
804 }
805
806 return 1;
807 }
808
nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)809 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
810 int budget, int *sends)
811 {
812 int i, ret = 0;
813
814 for (i = 0; i < budget; i++) {
815 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
816 if (unlikely(ret < 0)) {
817 nvmet_tcp_socket_error(queue, ret);
818 goto done;
819 } else if (ret == 0) {
820 break;
821 }
822 (*sends)++;
823 }
824 done:
825 return ret;
826 }
827
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)828 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
829 {
830 queue->offset = 0;
831 queue->left = sizeof(struct nvme_tcp_hdr);
832 WRITE_ONCE(queue->cmd, NULL);
833 /* Ensure rcv_state is visible only after queue->cmd is set */
834 smp_store_release(&queue->rcv_state, NVMET_TCP_RECV_PDU);
835 }
836
nvmet_tcp_free_crypto(struct nvmet_tcp_queue * queue)837 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
838 {
839 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
840
841 ahash_request_free(queue->rcv_hash);
842 ahash_request_free(queue->snd_hash);
843 crypto_free_ahash(tfm);
844 }
845
nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue * queue)846 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
847 {
848 struct crypto_ahash *tfm;
849
850 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
851 if (IS_ERR(tfm))
852 return PTR_ERR(tfm);
853
854 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
855 if (!queue->snd_hash)
856 goto free_tfm;
857 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
858
859 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
860 if (!queue->rcv_hash)
861 goto free_snd_hash;
862 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
863
864 return 0;
865 free_snd_hash:
866 ahash_request_free(queue->snd_hash);
867 free_tfm:
868 crypto_free_ahash(tfm);
869 return -ENOMEM;
870 }
871
872
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)873 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
874 {
875 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
876 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
877 struct msghdr msg = {};
878 struct kvec iov;
879 int ret;
880
881 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
882 pr_err("bad nvme-tcp pdu length (%d)\n",
883 le32_to_cpu(icreq->hdr.plen));
884 nvmet_tcp_fatal_error(queue);
885 return -EPROTO;
886 }
887
888 if (icreq->pfv != NVME_TCP_PFV_1_0) {
889 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
890 return -EPROTO;
891 }
892
893 if (icreq->hpda != 0) {
894 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
895 icreq->hpda);
896 return -EPROTO;
897 }
898
899 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
900 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
901 if (queue->hdr_digest || queue->data_digest) {
902 ret = nvmet_tcp_alloc_crypto(queue);
903 if (ret)
904 return ret;
905 }
906
907 memset(icresp, 0, sizeof(*icresp));
908 icresp->hdr.type = nvme_tcp_icresp;
909 icresp->hdr.hlen = sizeof(*icresp);
910 icresp->hdr.pdo = 0;
911 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
912 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
913 icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
914 icresp->cpda = 0;
915 if (queue->hdr_digest)
916 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
917 if (queue->data_digest)
918 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
919
920 iov.iov_base = icresp;
921 iov.iov_len = sizeof(*icresp);
922 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
923 if (ret < 0)
924 return ret; /* queue removal will cleanup */
925
926 queue->state = NVMET_TCP_Q_LIVE;
927 nvmet_prepare_receive_pdu(queue);
928 return 0;
929 }
930
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)931 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
932 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
933 {
934 size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
935 int ret;
936
937 /*
938 * This command has not been processed yet, hence we are trying to
939 * figure out if there is still pending data left to receive. If
940 * we don't, we can simply prepare for the next pdu and bail out,
941 * otherwise we will need to prepare a buffer and receive the
942 * stale data before continuing forward.
943 */
944 if (!nvme_is_write(cmd->req.cmd) || !data_len ||
945 data_len > cmd->req.port->inline_data_size) {
946 nvmet_prepare_receive_pdu(queue);
947 return;
948 }
949
950 ret = nvmet_tcp_map_data(cmd);
951 if (unlikely(ret)) {
952 pr_err("queue %d: failed to map data\n", queue->idx);
953 nvmet_tcp_fatal_error(queue);
954 return;
955 }
956
957 queue->rcv_state = NVMET_TCP_RECV_DATA;
958 nvmet_tcp_build_pdu_iovec(cmd);
959 cmd->flags |= NVMET_TCP_F_INIT_FAILED;
960 }
961
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)962 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
963 {
964 struct nvme_tcp_data_pdu *data = &queue->pdu.data;
965 struct nvmet_tcp_cmd *cmd;
966 unsigned int exp_data_len;
967
968 if (likely(queue->nr_cmds)) {
969 if (unlikely(data->ttag >= queue->nr_cmds)) {
970 pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
971 queue->idx, data->ttag, queue->nr_cmds);
972 nvmet_tcp_fatal_error(queue);
973 return -EPROTO;
974 }
975 cmd = &queue->cmds[data->ttag];
976 } else {
977 cmd = &queue->connect;
978 }
979
980 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
981 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
982 data->ttag, le32_to_cpu(data->data_offset),
983 cmd->rbytes_done);
984 /* FIXME: use path and transport errors */
985 nvmet_tcp_fatal_error(queue);
986 return -EPROTO;
987 }
988
989 exp_data_len = le32_to_cpu(data->hdr.plen) -
990 nvmet_tcp_hdgst_len(queue) -
991 nvmet_tcp_ddgst_len(queue) -
992 sizeof(*data);
993
994 cmd->pdu_len = le32_to_cpu(data->data_length);
995 if (unlikely(cmd->pdu_len != exp_data_len ||
996 cmd->pdu_len == 0 ||
997 cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
998 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
999 /* FIXME: use proper transport errors */
1000 nvmet_tcp_fatal_error(queue);
1001 return -EPROTO;
1002 }
1003 cmd->pdu_recv = 0;
1004 nvmet_tcp_build_pdu_iovec(cmd);
1005 queue->cmd = cmd;
1006 queue->rcv_state = NVMET_TCP_RECV_DATA;
1007
1008 return 0;
1009 }
1010
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)1011 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1012 {
1013 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1014 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1015 struct nvmet_req *req;
1016 int ret;
1017
1018 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1019 if (hdr->type != nvme_tcp_icreq) {
1020 pr_err("unexpected pdu type (%d) before icreq\n",
1021 hdr->type);
1022 nvmet_tcp_fatal_error(queue);
1023 return -EPROTO;
1024 }
1025 return nvmet_tcp_handle_icreq(queue);
1026 }
1027
1028 if (unlikely(hdr->type == nvme_tcp_icreq)) {
1029 pr_err("queue %d: received icreq pdu in state %d\n",
1030 queue->idx, queue->state);
1031 nvmet_tcp_fatal_error(queue);
1032 return -EPROTO;
1033 }
1034
1035 if (hdr->type == nvme_tcp_h2c_data) {
1036 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1037 if (unlikely(ret))
1038 return ret;
1039 return 0;
1040 }
1041
1042 queue->cmd = nvmet_tcp_get_cmd(queue);
1043 if (unlikely(!queue->cmd)) {
1044 /* This should never happen */
1045 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1046 queue->idx, queue->nr_cmds, queue->send_list_len,
1047 nvme_cmd->common.opcode);
1048 nvmet_tcp_fatal_error(queue);
1049 return -ENOMEM;
1050 }
1051
1052 req = &queue->cmd->req;
1053 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1054
1055 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1056 &queue->nvme_sq, &nvmet_tcp_ops))) {
1057 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1058 req->cmd, req->cmd->common.command_id,
1059 req->cmd->common.opcode,
1060 le32_to_cpu(req->cmd->common.dptr.sgl.length));
1061
1062 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1063 return 0;
1064 }
1065
1066 ret = nvmet_tcp_map_data(queue->cmd);
1067 if (unlikely(ret)) {
1068 pr_err("queue %d: failed to map data\n", queue->idx);
1069 if (nvmet_tcp_has_inline_data(queue->cmd))
1070 nvmet_tcp_fatal_error(queue);
1071 else
1072 nvmet_req_complete(req, ret);
1073 ret = -EAGAIN;
1074 goto out;
1075 }
1076
1077 if (nvmet_tcp_need_data_in(queue->cmd)) {
1078 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1079 queue->rcv_state = NVMET_TCP_RECV_DATA;
1080 nvmet_tcp_build_pdu_iovec(queue->cmd);
1081 return 0;
1082 }
1083 /* send back R2T */
1084 nvmet_tcp_queue_response(&queue->cmd->req);
1085 goto out;
1086 }
1087
1088 queue->cmd->req.execute(&queue->cmd->req);
1089 out:
1090 nvmet_prepare_receive_pdu(queue);
1091 return ret;
1092 }
1093
1094 static const u8 nvme_tcp_pdu_sizes[] = {
1095 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu),
1096 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu),
1097 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu),
1098 };
1099
nvmet_tcp_pdu_size(u8 type)1100 static inline u8 nvmet_tcp_pdu_size(u8 type)
1101 {
1102 size_t idx = type;
1103
1104 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1105 nvme_tcp_pdu_sizes[idx]) ?
1106 nvme_tcp_pdu_sizes[idx] : 0;
1107 }
1108
nvmet_tcp_pdu_valid(u8 type)1109 static inline bool nvmet_tcp_pdu_valid(u8 type)
1110 {
1111 switch (type) {
1112 case nvme_tcp_icreq:
1113 case nvme_tcp_cmd:
1114 case nvme_tcp_h2c_data:
1115 /* fallthru */
1116 return true;
1117 }
1118
1119 return false;
1120 }
1121
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1122 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1123 {
1124 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1125 int len;
1126 struct kvec iov;
1127 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1128
1129 recv:
1130 iov.iov_base = (void *)&queue->pdu + queue->offset;
1131 iov.iov_len = queue->left;
1132 len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1133 iov.iov_len, msg.msg_flags);
1134 if (unlikely(len < 0))
1135 return len;
1136
1137 queue->offset += len;
1138 queue->left -= len;
1139 if (queue->left)
1140 return -EAGAIN;
1141
1142 if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1143 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1144
1145 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1146 pr_err("unexpected pdu type %d\n", hdr->type);
1147 nvmet_tcp_fatal_error(queue);
1148 return -EIO;
1149 }
1150
1151 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1152 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1153 return -EIO;
1154 }
1155
1156 queue->left = hdr->hlen - queue->offset + hdgst;
1157 goto recv;
1158 }
1159
1160 if (queue->hdr_digest &&
1161 nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1162 nvmet_tcp_fatal_error(queue); /* fatal */
1163 return -EPROTO;
1164 }
1165
1166 if (queue->data_digest &&
1167 nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1168 nvmet_tcp_fatal_error(queue); /* fatal */
1169 return -EPROTO;
1170 }
1171
1172 return nvmet_tcp_done_recv_pdu(queue);
1173 }
1174
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1175 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1176 {
1177 struct nvmet_tcp_queue *queue = cmd->queue;
1178
1179 nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1180 queue->offset = 0;
1181 queue->left = NVME_TCP_DIGEST_LENGTH;
1182 queue->rcv_state = NVMET_TCP_RECV_DDGST;
1183 }
1184
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1185 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1186 {
1187 struct nvmet_tcp_cmd *cmd = queue->cmd;
1188 int ret;
1189
1190 while (msg_data_left(&cmd->recv_msg)) {
1191 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1192 cmd->recv_msg.msg_flags);
1193 if (ret <= 0)
1194 return ret;
1195
1196 cmd->pdu_recv += ret;
1197 cmd->rbytes_done += ret;
1198 }
1199
1200 if (queue->data_digest) {
1201 nvmet_tcp_prep_recv_ddgst(cmd);
1202 return 0;
1203 }
1204
1205 if (cmd->rbytes_done == cmd->req.transfer_len)
1206 nvmet_tcp_execute_request(cmd);
1207
1208 nvmet_prepare_receive_pdu(queue);
1209 return 0;
1210 }
1211
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1212 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1213 {
1214 struct nvmet_tcp_cmd *cmd = queue->cmd;
1215 int ret;
1216 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1217 struct kvec iov = {
1218 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1219 .iov_len = queue->left
1220 };
1221
1222 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1223 iov.iov_len, msg.msg_flags);
1224 if (unlikely(ret < 0))
1225 return ret;
1226
1227 queue->offset += ret;
1228 queue->left -= ret;
1229 if (queue->left)
1230 return -EAGAIN;
1231
1232 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1233 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1234 queue->idx, cmd->req.cmd->common.command_id,
1235 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1236 le32_to_cpu(cmd->exp_ddgst));
1237 nvmet_req_uninit(&cmd->req);
1238 nvmet_tcp_free_cmd_buffers(cmd);
1239 nvmet_tcp_fatal_error(queue);
1240 ret = -EPROTO;
1241 goto out;
1242 }
1243
1244 if (cmd->rbytes_done == cmd->req.transfer_len)
1245 nvmet_tcp_execute_request(cmd);
1246
1247 ret = 0;
1248 out:
1249 nvmet_prepare_receive_pdu(queue);
1250 return ret;
1251 }
1252
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1253 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1254 {
1255 int result = 0;
1256
1257 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1258 return 0;
1259
1260 if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1261 result = nvmet_tcp_try_recv_pdu(queue);
1262 if (result != 0)
1263 goto done_recv;
1264 }
1265
1266 if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1267 result = nvmet_tcp_try_recv_data(queue);
1268 if (result != 0)
1269 goto done_recv;
1270 }
1271
1272 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1273 result = nvmet_tcp_try_recv_ddgst(queue);
1274 if (result != 0)
1275 goto done_recv;
1276 }
1277
1278 done_recv:
1279 if (result < 0) {
1280 if (result == -EAGAIN)
1281 return 0;
1282 return result;
1283 }
1284 return 1;
1285 }
1286
nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1287 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1288 int budget, int *recvs)
1289 {
1290 int i, ret = 0;
1291
1292 for (i = 0; i < budget; i++) {
1293 ret = nvmet_tcp_try_recv_one(queue);
1294 if (unlikely(ret < 0)) {
1295 nvmet_tcp_socket_error(queue, ret);
1296 goto done;
1297 } else if (ret == 0) {
1298 break;
1299 }
1300 (*recvs)++;
1301 }
1302 done:
1303 return ret;
1304 }
1305
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1306 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1307 {
1308 spin_lock(&queue->state_lock);
1309 if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1310 queue->state = NVMET_TCP_Q_DISCONNECTING;
1311 queue_work(nvmet_wq, &queue->release_work);
1312 }
1313 spin_unlock(&queue->state_lock);
1314 }
1315
nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue * queue)1316 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1317 {
1318 queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1319 }
1320
nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue * queue,int ops)1321 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1322 int ops)
1323 {
1324 if (!idle_poll_period_usecs)
1325 return false;
1326
1327 if (ops)
1328 nvmet_tcp_arm_queue_deadline(queue);
1329
1330 return !time_after(jiffies, queue->poll_end);
1331 }
1332
nvmet_tcp_io_work(struct work_struct * w)1333 static void nvmet_tcp_io_work(struct work_struct *w)
1334 {
1335 struct nvmet_tcp_queue *queue =
1336 container_of(w, struct nvmet_tcp_queue, io_work);
1337 bool pending;
1338 int ret, ops = 0;
1339
1340 do {
1341 pending = false;
1342
1343 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1344 if (ret > 0)
1345 pending = true;
1346 else if (ret < 0)
1347 return;
1348
1349 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1350 if (ret > 0)
1351 pending = true;
1352 else if (ret < 0)
1353 return;
1354
1355 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1356
1357 /*
1358 * Requeue the worker if idle deadline period is in progress or any
1359 * ops activity was recorded during the do-while loop above.
1360 */
1361 if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1362 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1363 }
1364
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1365 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1366 struct nvmet_tcp_cmd *c)
1367 {
1368 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1369
1370 c->queue = queue;
1371 c->req.port = queue->port->nport;
1372
1373 c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1374 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1375 if (!c->cmd_pdu)
1376 return -ENOMEM;
1377 c->req.cmd = &c->cmd_pdu->cmd;
1378
1379 c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1380 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1381 if (!c->rsp_pdu)
1382 goto out_free_cmd;
1383 c->req.cqe = &c->rsp_pdu->cqe;
1384
1385 c->data_pdu = page_frag_alloc(&queue->pf_cache,
1386 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1387 if (!c->data_pdu)
1388 goto out_free_rsp;
1389
1390 c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1391 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1392 if (!c->r2t_pdu)
1393 goto out_free_data;
1394
1395 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1396
1397 list_add_tail(&c->entry, &queue->free_list);
1398
1399 return 0;
1400 out_free_data:
1401 page_frag_free(c->data_pdu);
1402 out_free_rsp:
1403 page_frag_free(c->rsp_pdu);
1404 out_free_cmd:
1405 page_frag_free(c->cmd_pdu);
1406 return -ENOMEM;
1407 }
1408
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1409 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1410 {
1411 page_frag_free(c->r2t_pdu);
1412 page_frag_free(c->data_pdu);
1413 page_frag_free(c->rsp_pdu);
1414 page_frag_free(c->cmd_pdu);
1415 }
1416
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1417 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1418 {
1419 struct nvmet_tcp_cmd *cmds;
1420 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1421
1422 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1423 if (!cmds)
1424 goto out;
1425
1426 for (i = 0; i < nr_cmds; i++) {
1427 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1428 if (ret)
1429 goto out_free;
1430 }
1431
1432 queue->cmds = cmds;
1433
1434 return 0;
1435 out_free:
1436 while (--i >= 0)
1437 nvmet_tcp_free_cmd(cmds + i);
1438 kfree(cmds);
1439 out:
1440 return ret;
1441 }
1442
nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1443 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1444 {
1445 struct nvmet_tcp_cmd *cmds = queue->cmds;
1446 int i;
1447
1448 for (i = 0; i < queue->nr_cmds; i++)
1449 nvmet_tcp_free_cmd(cmds + i);
1450
1451 nvmet_tcp_free_cmd(&queue->connect);
1452 kfree(cmds);
1453 }
1454
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1455 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1456 {
1457 struct socket *sock = queue->sock;
1458
1459 write_lock_bh(&sock->sk->sk_callback_lock);
1460 sock->sk->sk_data_ready = queue->data_ready;
1461 sock->sk->sk_state_change = queue->state_change;
1462 sock->sk->sk_write_space = queue->write_space;
1463 sock->sk->sk_user_data = NULL;
1464 write_unlock_bh(&sock->sk->sk_callback_lock);
1465 }
1466
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1467 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1468 {
1469 struct nvmet_tcp_cmd *cmd = queue->cmds;
1470 int i;
1471
1472 for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1473 if (nvmet_tcp_need_data_in(cmd))
1474 nvmet_req_uninit(&cmd->req);
1475 }
1476
1477 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1478 /* failed in connect */
1479 nvmet_req_uninit(&queue->connect.req);
1480 }
1481 }
1482
nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue * queue)1483 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1484 {
1485 struct nvmet_tcp_cmd *cmd = queue->cmds;
1486 int i;
1487
1488 for (i = 0; i < queue->nr_cmds; i++, cmd++)
1489 nvmet_tcp_free_cmd_buffers(cmd);
1490 nvmet_tcp_free_cmd_buffers(&queue->connect);
1491 }
1492
nvmet_tcp_release_queue_work(struct work_struct * w)1493 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1494 {
1495 struct page *page;
1496 struct nvmet_tcp_queue *queue =
1497 container_of(w, struct nvmet_tcp_queue, release_work);
1498
1499 mutex_lock(&nvmet_tcp_queue_mutex);
1500 list_del_init(&queue->queue_list);
1501 mutex_unlock(&nvmet_tcp_queue_mutex);
1502
1503 nvmet_tcp_restore_socket_callbacks(queue);
1504 cancel_work_sync(&queue->io_work);
1505 /* stop accepting incoming data */
1506 queue->rcv_state = NVMET_TCP_RECV_ERR;
1507
1508 nvmet_tcp_uninit_data_in_cmds(queue);
1509 nvmet_sq_destroy(&queue->nvme_sq);
1510 cancel_work_sync(&queue->io_work);
1511 nvmet_tcp_free_cmd_data_in_buffers(queue);
1512 sock_release(queue->sock);
1513 nvmet_tcp_free_cmds(queue);
1514 if (queue->hdr_digest || queue->data_digest)
1515 nvmet_tcp_free_crypto(queue);
1516 ida_free(&nvmet_tcp_queue_ida, queue->idx);
1517
1518 page = virt_to_head_page(queue->pf_cache.va);
1519 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1520 kfree(queue);
1521 }
1522
nvmet_tcp_data_ready(struct sock * sk)1523 static void nvmet_tcp_data_ready(struct sock *sk)
1524 {
1525 struct nvmet_tcp_queue *queue;
1526
1527 trace_sk_data_ready(sk);
1528
1529 read_lock_bh(&sk->sk_callback_lock);
1530 queue = sk->sk_user_data;
1531 if (likely(queue))
1532 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1533 read_unlock_bh(&sk->sk_callback_lock);
1534 }
1535
nvmet_tcp_write_space(struct sock * sk)1536 static void nvmet_tcp_write_space(struct sock *sk)
1537 {
1538 struct nvmet_tcp_queue *queue;
1539
1540 read_lock_bh(&sk->sk_callback_lock);
1541 queue = sk->sk_user_data;
1542 if (unlikely(!queue))
1543 goto out;
1544
1545 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1546 queue->write_space(sk);
1547 goto out;
1548 }
1549
1550 if (sk_stream_is_writeable(sk)) {
1551 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1552 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1553 }
1554 out:
1555 read_unlock_bh(&sk->sk_callback_lock);
1556 }
1557
nvmet_tcp_state_change(struct sock * sk)1558 static void nvmet_tcp_state_change(struct sock *sk)
1559 {
1560 struct nvmet_tcp_queue *queue;
1561
1562 read_lock_bh(&sk->sk_callback_lock);
1563 queue = sk->sk_user_data;
1564 if (!queue)
1565 goto done;
1566
1567 switch (sk->sk_state) {
1568 case TCP_FIN_WAIT2:
1569 case TCP_LAST_ACK:
1570 break;
1571 case TCP_FIN_WAIT1:
1572 case TCP_CLOSE_WAIT:
1573 case TCP_CLOSE:
1574 /* FALLTHRU */
1575 nvmet_tcp_schedule_release_queue(queue);
1576 break;
1577 default:
1578 pr_warn("queue %d unhandled state %d\n",
1579 queue->idx, sk->sk_state);
1580 }
1581 done:
1582 read_unlock_bh(&sk->sk_callback_lock);
1583 }
1584
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1585 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1586 {
1587 struct socket *sock = queue->sock;
1588 struct inet_sock *inet = inet_sk(sock->sk);
1589 int ret;
1590
1591 ret = kernel_getsockname(sock,
1592 (struct sockaddr *)&queue->sockaddr);
1593 if (ret < 0)
1594 return ret;
1595
1596 ret = kernel_getpeername(sock,
1597 (struct sockaddr *)&queue->sockaddr_peer);
1598 if (ret < 0)
1599 return ret;
1600
1601 /*
1602 * Cleanup whatever is sitting in the TCP transmit queue on socket
1603 * close. This is done to prevent stale data from being sent should
1604 * the network connection be restored before TCP times out.
1605 */
1606 sock_no_linger(sock->sk);
1607
1608 if (so_priority > 0)
1609 sock_set_priority(sock->sk, so_priority);
1610
1611 /* Set socket type of service */
1612 if (inet->rcv_tos > 0)
1613 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1614
1615 ret = 0;
1616 write_lock_bh(&sock->sk->sk_callback_lock);
1617 if (sock->sk->sk_state != TCP_ESTABLISHED) {
1618 /*
1619 * If the socket is already closing, don't even start
1620 * consuming it
1621 */
1622 ret = -ENOTCONN;
1623 } else {
1624 sock->sk->sk_user_data = queue;
1625 queue->data_ready = sock->sk->sk_data_ready;
1626 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1627 queue->state_change = sock->sk->sk_state_change;
1628 sock->sk->sk_state_change = nvmet_tcp_state_change;
1629 queue->write_space = sock->sk->sk_write_space;
1630 sock->sk->sk_write_space = nvmet_tcp_write_space;
1631 if (idle_poll_period_usecs)
1632 nvmet_tcp_arm_queue_deadline(queue);
1633 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1634 }
1635 write_unlock_bh(&sock->sk->sk_callback_lock);
1636
1637 return ret;
1638 }
1639
nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1640 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1641 struct socket *newsock)
1642 {
1643 struct nvmet_tcp_queue *queue;
1644 int ret;
1645
1646 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1647 if (!queue)
1648 return -ENOMEM;
1649
1650 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1651 INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1652 queue->sock = newsock;
1653 queue->port = port;
1654 queue->nr_cmds = 0;
1655 spin_lock_init(&queue->state_lock);
1656 queue->state = NVMET_TCP_Q_CONNECTING;
1657 INIT_LIST_HEAD(&queue->free_list);
1658 init_llist_head(&queue->resp_list);
1659 INIT_LIST_HEAD(&queue->resp_send_list);
1660
1661 queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1662 if (queue->idx < 0) {
1663 ret = queue->idx;
1664 goto out_free_queue;
1665 }
1666
1667 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1668 if (ret)
1669 goto out_ida_remove;
1670
1671 ret = nvmet_sq_init(&queue->nvme_sq);
1672 if (ret)
1673 goto out_free_connect;
1674
1675 nvmet_prepare_receive_pdu(queue);
1676
1677 mutex_lock(&nvmet_tcp_queue_mutex);
1678 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1679 mutex_unlock(&nvmet_tcp_queue_mutex);
1680
1681 ret = nvmet_tcp_set_queue_sock(queue);
1682 if (ret)
1683 goto out_destroy_sq;
1684
1685 return 0;
1686 out_destroy_sq:
1687 mutex_lock(&nvmet_tcp_queue_mutex);
1688 list_del_init(&queue->queue_list);
1689 mutex_unlock(&nvmet_tcp_queue_mutex);
1690 nvmet_sq_destroy(&queue->nvme_sq);
1691 out_free_connect:
1692 nvmet_tcp_free_cmd(&queue->connect);
1693 out_ida_remove:
1694 ida_free(&nvmet_tcp_queue_ida, queue->idx);
1695 out_free_queue:
1696 kfree(queue);
1697 return ret;
1698 }
1699
nvmet_tcp_accept_work(struct work_struct * w)1700 static void nvmet_tcp_accept_work(struct work_struct *w)
1701 {
1702 struct nvmet_tcp_port *port =
1703 container_of(w, struct nvmet_tcp_port, accept_work);
1704 struct socket *newsock;
1705 int ret;
1706
1707 while (true) {
1708 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1709 if (ret < 0) {
1710 if (ret != -EAGAIN)
1711 pr_warn("failed to accept err=%d\n", ret);
1712 return;
1713 }
1714 ret = nvmet_tcp_alloc_queue(port, newsock);
1715 if (ret) {
1716 pr_err("failed to allocate queue\n");
1717 sock_release(newsock);
1718 }
1719 }
1720 }
1721
nvmet_tcp_listen_data_ready(struct sock * sk)1722 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1723 {
1724 struct nvmet_tcp_port *port;
1725
1726 trace_sk_data_ready(sk);
1727
1728 read_lock_bh(&sk->sk_callback_lock);
1729 port = sk->sk_user_data;
1730 if (!port)
1731 goto out;
1732
1733 if (sk->sk_state == TCP_LISTEN)
1734 queue_work(nvmet_wq, &port->accept_work);
1735 out:
1736 read_unlock_bh(&sk->sk_callback_lock);
1737 }
1738
nvmet_tcp_add_port(struct nvmet_port * nport)1739 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1740 {
1741 struct nvmet_tcp_port *port;
1742 __kernel_sa_family_t af;
1743 int ret;
1744
1745 port = kzalloc(sizeof(*port), GFP_KERNEL);
1746 if (!port)
1747 return -ENOMEM;
1748
1749 switch (nport->disc_addr.adrfam) {
1750 case NVMF_ADDR_FAMILY_IP4:
1751 af = AF_INET;
1752 break;
1753 case NVMF_ADDR_FAMILY_IP6:
1754 af = AF_INET6;
1755 break;
1756 default:
1757 pr_err("address family %d not supported\n",
1758 nport->disc_addr.adrfam);
1759 ret = -EINVAL;
1760 goto err_port;
1761 }
1762
1763 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1764 nport->disc_addr.trsvcid, &port->addr);
1765 if (ret) {
1766 pr_err("malformed ip/port passed: %s:%s\n",
1767 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1768 goto err_port;
1769 }
1770
1771 port->nport = nport;
1772 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1773 if (port->nport->inline_data_size < 0)
1774 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1775
1776 ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1777 IPPROTO_TCP, &port->sock);
1778 if (ret) {
1779 pr_err("failed to create a socket\n");
1780 goto err_port;
1781 }
1782
1783 port->sock->sk->sk_user_data = port;
1784 port->data_ready = port->sock->sk->sk_data_ready;
1785 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1786 sock_set_reuseaddr(port->sock->sk);
1787 tcp_sock_set_nodelay(port->sock->sk);
1788 if (so_priority > 0)
1789 sock_set_priority(port->sock->sk, so_priority);
1790
1791 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1792 sizeof(port->addr));
1793 if (ret) {
1794 pr_err("failed to bind port socket %d\n", ret);
1795 goto err_sock;
1796 }
1797
1798 ret = kernel_listen(port->sock, 128);
1799 if (ret) {
1800 pr_err("failed to listen %d on port sock\n", ret);
1801 goto err_sock;
1802 }
1803
1804 nport->priv = port;
1805 pr_info("enabling port %d (%pISpc)\n",
1806 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1807
1808 return 0;
1809
1810 err_sock:
1811 sock_release(port->sock);
1812 err_port:
1813 kfree(port);
1814 return ret;
1815 }
1816
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)1817 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1818 {
1819 struct nvmet_tcp_queue *queue;
1820
1821 mutex_lock(&nvmet_tcp_queue_mutex);
1822 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1823 if (queue->port == port)
1824 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1825 mutex_unlock(&nvmet_tcp_queue_mutex);
1826 }
1827
nvmet_tcp_remove_port(struct nvmet_port * nport)1828 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1829 {
1830 struct nvmet_tcp_port *port = nport->priv;
1831
1832 write_lock_bh(&port->sock->sk->sk_callback_lock);
1833 port->sock->sk->sk_data_ready = port->data_ready;
1834 port->sock->sk->sk_user_data = NULL;
1835 write_unlock_bh(&port->sock->sk->sk_callback_lock);
1836 cancel_work_sync(&port->accept_work);
1837 /*
1838 * Destroy the remaining queues, which are not belong to any
1839 * controller yet.
1840 */
1841 nvmet_tcp_destroy_port_queues(port);
1842
1843 sock_release(port->sock);
1844 kfree(port);
1845 }
1846
nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)1847 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1848 {
1849 struct nvmet_tcp_queue *queue;
1850
1851 mutex_lock(&nvmet_tcp_queue_mutex);
1852 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1853 if (queue->nvme_sq.ctrl == ctrl)
1854 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1855 mutex_unlock(&nvmet_tcp_queue_mutex);
1856 }
1857
nvmet_tcp_install_queue(struct nvmet_sq * sq)1858 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1859 {
1860 struct nvmet_tcp_queue *queue =
1861 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1862
1863 if (sq->qid == 0) {
1864 /* Let inflight controller teardown complete */
1865 flush_workqueue(nvmet_wq);
1866 }
1867
1868 queue->nr_cmds = sq->size * 2;
1869 if (nvmet_tcp_alloc_cmds(queue)) {
1870 queue->nr_cmds = 0;
1871 return NVME_SC_INTERNAL;
1872 }
1873 return 0;
1874 }
1875
nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)1876 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1877 struct nvmet_port *nport, char *traddr)
1878 {
1879 struct nvmet_tcp_port *port = nport->priv;
1880
1881 if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1882 struct nvmet_tcp_cmd *cmd =
1883 container_of(req, struct nvmet_tcp_cmd, req);
1884 struct nvmet_tcp_queue *queue = cmd->queue;
1885
1886 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1887 } else {
1888 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1889 }
1890 }
1891
1892 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1893 .owner = THIS_MODULE,
1894 .type = NVMF_TRTYPE_TCP,
1895 .msdbd = 1,
1896 .add_port = nvmet_tcp_add_port,
1897 .remove_port = nvmet_tcp_remove_port,
1898 .queue_response = nvmet_tcp_queue_response,
1899 .delete_ctrl = nvmet_tcp_delete_ctrl,
1900 .install_queue = nvmet_tcp_install_queue,
1901 .disc_traddr = nvmet_tcp_disc_port_addr,
1902 };
1903
nvmet_tcp_init(void)1904 static int __init nvmet_tcp_init(void)
1905 {
1906 int ret;
1907
1908 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
1909 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1910 if (!nvmet_tcp_wq)
1911 return -ENOMEM;
1912
1913 ret = nvmet_register_transport(&nvmet_tcp_ops);
1914 if (ret)
1915 goto err;
1916
1917 return 0;
1918 err:
1919 destroy_workqueue(nvmet_tcp_wq);
1920 return ret;
1921 }
1922
nvmet_tcp_exit(void)1923 static void __exit nvmet_tcp_exit(void)
1924 {
1925 struct nvmet_tcp_queue *queue;
1926
1927 nvmet_unregister_transport(&nvmet_tcp_ops);
1928
1929 flush_workqueue(nvmet_wq);
1930 mutex_lock(&nvmet_tcp_queue_mutex);
1931 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1932 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1933 mutex_unlock(&nvmet_tcp_queue_mutex);
1934 flush_workqueue(nvmet_wq);
1935
1936 destroy_workqueue(nvmet_tcp_wq);
1937 ida_destroy(&nvmet_tcp_queue_ida);
1938 }
1939
1940 module_init(nvmet_tcp_init);
1941 module_exit(nvmet_tcp_exit);
1942
1943 MODULE_LICENSE("GPL v2");
1944 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1945