xref: /openbmc/linux/drivers/nvme/target/core.c (revision 71de5fc3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #include <generated/utsrelease.h>
14 
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17 
18 #include "nvmet.h"
19 
20 struct kmem_cache *nvmet_bvec_cache;
21 struct workqueue_struct *buffered_io_wq;
22 struct workqueue_struct *zbd_wq;
23 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
24 static DEFINE_IDA(cntlid_ida);
25 
26 struct workqueue_struct *nvmet_wq;
27 EXPORT_SYMBOL_GPL(nvmet_wq);
28 
29 /*
30  * This read/write semaphore is used to synchronize access to configuration
31  * information on a target system that will result in discovery log page
32  * information change for at least one host.
33  * The full list of resources to protected by this semaphore is:
34  *
35  *  - subsystems list
36  *  - per-subsystem allowed hosts list
37  *  - allow_any_host subsystem attribute
38  *  - nvmet_genctr
39  *  - the nvmet_transports array
40  *
41  * When updating any of those lists/structures write lock should be obtained,
42  * while when reading (popolating discovery log page or checking host-subsystem
43  * link) read lock is obtained to allow concurrent reads.
44  */
45 DECLARE_RWSEM(nvmet_config_sem);
46 
47 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
48 u64 nvmet_ana_chgcnt;
49 DECLARE_RWSEM(nvmet_ana_sem);
50 
errno_to_nvme_status(struct nvmet_req * req,int errno)51 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
52 {
53 	switch (errno) {
54 	case 0:
55 		return NVME_SC_SUCCESS;
56 	case -ENOSPC:
57 		req->error_loc = offsetof(struct nvme_rw_command, length);
58 		return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
59 	case -EREMOTEIO:
60 		req->error_loc = offsetof(struct nvme_rw_command, slba);
61 		return  NVME_SC_LBA_RANGE | NVME_SC_DNR;
62 	case -EOPNOTSUPP:
63 		req->error_loc = offsetof(struct nvme_common_command, opcode);
64 		switch (req->cmd->common.opcode) {
65 		case nvme_cmd_dsm:
66 		case nvme_cmd_write_zeroes:
67 			return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
68 		default:
69 			return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
70 		}
71 		break;
72 	case -ENODATA:
73 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
74 		return NVME_SC_ACCESS_DENIED;
75 	case -EIO:
76 		fallthrough;
77 	default:
78 		req->error_loc = offsetof(struct nvme_common_command, opcode);
79 		return NVME_SC_INTERNAL | NVME_SC_DNR;
80 	}
81 }
82 
nvmet_report_invalid_opcode(struct nvmet_req * req)83 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
84 {
85 	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
86 		 req->sq->qid);
87 
88 	req->error_loc = offsetof(struct nvme_common_command, opcode);
89 	return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
90 }
91 
92 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
93 		const char *subsysnqn);
94 
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)95 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
96 		size_t len)
97 {
98 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
99 		req->error_loc = offsetof(struct nvme_common_command, dptr);
100 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
101 	}
102 	return 0;
103 }
104 
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)105 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
106 {
107 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
108 		req->error_loc = offsetof(struct nvme_common_command, dptr);
109 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
110 	}
111 	return 0;
112 }
113 
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)114 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
115 {
116 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
117 		req->error_loc = offsetof(struct nvme_common_command, dptr);
118 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
119 	}
120 	return 0;
121 }
122 
nvmet_max_nsid(struct nvmet_subsys * subsys)123 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
124 {
125 	struct nvmet_ns *cur;
126 	unsigned long idx;
127 	u32 nsid = 0;
128 
129 	xa_for_each(&subsys->namespaces, idx, cur)
130 		nsid = cur->nsid;
131 
132 	return nsid;
133 }
134 
nvmet_async_event_result(struct nvmet_async_event * aen)135 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
136 {
137 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
138 }
139 
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)140 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
141 {
142 	struct nvmet_req *req;
143 
144 	mutex_lock(&ctrl->lock);
145 	while (ctrl->nr_async_event_cmds) {
146 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
147 		mutex_unlock(&ctrl->lock);
148 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
149 		mutex_lock(&ctrl->lock);
150 	}
151 	mutex_unlock(&ctrl->lock);
152 }
153 
nvmet_async_events_process(struct nvmet_ctrl * ctrl)154 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
155 {
156 	struct nvmet_async_event *aen;
157 	struct nvmet_req *req;
158 
159 	mutex_lock(&ctrl->lock);
160 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
161 		aen = list_first_entry(&ctrl->async_events,
162 				       struct nvmet_async_event, entry);
163 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
164 		nvmet_set_result(req, nvmet_async_event_result(aen));
165 
166 		list_del(&aen->entry);
167 		kfree(aen);
168 
169 		mutex_unlock(&ctrl->lock);
170 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
171 		nvmet_req_complete(req, 0);
172 		mutex_lock(&ctrl->lock);
173 	}
174 	mutex_unlock(&ctrl->lock);
175 }
176 
nvmet_async_events_free(struct nvmet_ctrl * ctrl)177 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
178 {
179 	struct nvmet_async_event *aen, *tmp;
180 
181 	mutex_lock(&ctrl->lock);
182 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
183 		list_del(&aen->entry);
184 		kfree(aen);
185 	}
186 	mutex_unlock(&ctrl->lock);
187 }
188 
nvmet_async_event_work(struct work_struct * work)189 static void nvmet_async_event_work(struct work_struct *work)
190 {
191 	struct nvmet_ctrl *ctrl =
192 		container_of(work, struct nvmet_ctrl, async_event_work);
193 
194 	nvmet_async_events_process(ctrl);
195 }
196 
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)197 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
198 		u8 event_info, u8 log_page)
199 {
200 	struct nvmet_async_event *aen;
201 
202 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
203 	if (!aen)
204 		return;
205 
206 	aen->event_type = event_type;
207 	aen->event_info = event_info;
208 	aen->log_page = log_page;
209 
210 	mutex_lock(&ctrl->lock);
211 	list_add_tail(&aen->entry, &ctrl->async_events);
212 	mutex_unlock(&ctrl->lock);
213 
214 	queue_work(nvmet_wq, &ctrl->async_event_work);
215 }
216 
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)217 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
218 {
219 	u32 i;
220 
221 	mutex_lock(&ctrl->lock);
222 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
223 		goto out_unlock;
224 
225 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
226 		if (ctrl->changed_ns_list[i] == nsid)
227 			goto out_unlock;
228 	}
229 
230 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
231 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
232 		ctrl->nr_changed_ns = U32_MAX;
233 		goto out_unlock;
234 	}
235 
236 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
237 out_unlock:
238 	mutex_unlock(&ctrl->lock);
239 }
240 
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)241 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
242 {
243 	struct nvmet_ctrl *ctrl;
244 
245 	lockdep_assert_held(&subsys->lock);
246 
247 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
248 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
249 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
250 			continue;
251 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
252 				NVME_AER_NOTICE_NS_CHANGED,
253 				NVME_LOG_CHANGED_NS);
254 	}
255 }
256 
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)257 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
258 		struct nvmet_port *port)
259 {
260 	struct nvmet_ctrl *ctrl;
261 
262 	mutex_lock(&subsys->lock);
263 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
264 		if (port && ctrl->port != port)
265 			continue;
266 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
267 			continue;
268 		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
269 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
270 	}
271 	mutex_unlock(&subsys->lock);
272 }
273 
nvmet_port_send_ana_event(struct nvmet_port * port)274 void nvmet_port_send_ana_event(struct nvmet_port *port)
275 {
276 	struct nvmet_subsys_link *p;
277 
278 	down_read(&nvmet_config_sem);
279 	list_for_each_entry(p, &port->subsystems, entry)
280 		nvmet_send_ana_event(p->subsys, port);
281 	up_read(&nvmet_config_sem);
282 }
283 
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)284 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
285 {
286 	int ret = 0;
287 
288 	down_write(&nvmet_config_sem);
289 	if (nvmet_transports[ops->type])
290 		ret = -EINVAL;
291 	else
292 		nvmet_transports[ops->type] = ops;
293 	up_write(&nvmet_config_sem);
294 
295 	return ret;
296 }
297 EXPORT_SYMBOL_GPL(nvmet_register_transport);
298 
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)299 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
300 {
301 	down_write(&nvmet_config_sem);
302 	nvmet_transports[ops->type] = NULL;
303 	up_write(&nvmet_config_sem);
304 }
305 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
306 
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)307 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
308 {
309 	struct nvmet_ctrl *ctrl;
310 
311 	mutex_lock(&subsys->lock);
312 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
313 		if (ctrl->port == port)
314 			ctrl->ops->delete_ctrl(ctrl);
315 	}
316 	mutex_unlock(&subsys->lock);
317 }
318 
nvmet_enable_port(struct nvmet_port * port)319 int nvmet_enable_port(struct nvmet_port *port)
320 {
321 	const struct nvmet_fabrics_ops *ops;
322 	int ret;
323 
324 	lockdep_assert_held(&nvmet_config_sem);
325 
326 	ops = nvmet_transports[port->disc_addr.trtype];
327 	if (!ops) {
328 		up_write(&nvmet_config_sem);
329 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
330 		down_write(&nvmet_config_sem);
331 		ops = nvmet_transports[port->disc_addr.trtype];
332 		if (!ops) {
333 			pr_err("transport type %d not supported\n",
334 				port->disc_addr.trtype);
335 			return -EINVAL;
336 		}
337 	}
338 
339 	if (!try_module_get(ops->owner))
340 		return -EINVAL;
341 
342 	/*
343 	 * If the user requested PI support and the transport isn't pi capable,
344 	 * don't enable the port.
345 	 */
346 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
347 		pr_err("T10-PI is not supported by transport type %d\n",
348 		       port->disc_addr.trtype);
349 		ret = -EINVAL;
350 		goto out_put;
351 	}
352 
353 	ret = ops->add_port(port);
354 	if (ret)
355 		goto out_put;
356 
357 	/* If the transport didn't set inline_data_size, then disable it. */
358 	if (port->inline_data_size < 0)
359 		port->inline_data_size = 0;
360 
361 	port->enabled = true;
362 	port->tr_ops = ops;
363 	return 0;
364 
365 out_put:
366 	module_put(ops->owner);
367 	return ret;
368 }
369 
nvmet_disable_port(struct nvmet_port * port)370 void nvmet_disable_port(struct nvmet_port *port)
371 {
372 	const struct nvmet_fabrics_ops *ops;
373 
374 	lockdep_assert_held(&nvmet_config_sem);
375 
376 	port->enabled = false;
377 	port->tr_ops = NULL;
378 
379 	ops = nvmet_transports[port->disc_addr.trtype];
380 	ops->remove_port(port);
381 	module_put(ops->owner);
382 }
383 
nvmet_keep_alive_timer(struct work_struct * work)384 static void nvmet_keep_alive_timer(struct work_struct *work)
385 {
386 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
387 			struct nvmet_ctrl, ka_work);
388 	bool reset_tbkas = ctrl->reset_tbkas;
389 
390 	ctrl->reset_tbkas = false;
391 	if (reset_tbkas) {
392 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
393 			ctrl->cntlid);
394 		queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
395 		return;
396 	}
397 
398 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
399 		ctrl->cntlid, ctrl->kato);
400 
401 	nvmet_ctrl_fatal_error(ctrl);
402 }
403 
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)404 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
405 {
406 	if (unlikely(ctrl->kato == 0))
407 		return;
408 
409 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
410 		ctrl->cntlid, ctrl->kato);
411 
412 	queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
413 }
414 
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)415 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
416 {
417 	if (unlikely(ctrl->kato == 0))
418 		return;
419 
420 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
421 
422 	cancel_delayed_work_sync(&ctrl->ka_work);
423 }
424 
nvmet_req_find_ns(struct nvmet_req * req)425 u16 nvmet_req_find_ns(struct nvmet_req *req)
426 {
427 	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
428 	struct nvmet_subsys *subsys = nvmet_req_subsys(req);
429 
430 	req->ns = xa_load(&subsys->namespaces, nsid);
431 	if (unlikely(!req->ns)) {
432 		req->error_loc = offsetof(struct nvme_common_command, nsid);
433 		if (nvmet_subsys_nsid_exists(subsys, nsid))
434 			return NVME_SC_INTERNAL_PATH_ERROR;
435 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
436 	}
437 
438 	percpu_ref_get(&req->ns->ref);
439 	return NVME_SC_SUCCESS;
440 }
441 
nvmet_destroy_namespace(struct percpu_ref * ref)442 static void nvmet_destroy_namespace(struct percpu_ref *ref)
443 {
444 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
445 
446 	complete(&ns->disable_done);
447 }
448 
nvmet_put_namespace(struct nvmet_ns * ns)449 void nvmet_put_namespace(struct nvmet_ns *ns)
450 {
451 	percpu_ref_put(&ns->ref);
452 }
453 
nvmet_ns_dev_disable(struct nvmet_ns * ns)454 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
455 {
456 	nvmet_bdev_ns_disable(ns);
457 	nvmet_file_ns_disable(ns);
458 }
459 
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)460 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
461 {
462 	int ret;
463 	struct pci_dev *p2p_dev;
464 
465 	if (!ns->use_p2pmem)
466 		return 0;
467 
468 	if (!ns->bdev) {
469 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
470 		return -EINVAL;
471 	}
472 
473 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
474 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
475 		       ns->device_path);
476 		return -EINVAL;
477 	}
478 
479 	if (ns->p2p_dev) {
480 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
481 		if (ret < 0)
482 			return -EINVAL;
483 	} else {
484 		/*
485 		 * Right now we just check that there is p2pmem available so
486 		 * we can report an error to the user right away if there
487 		 * is not. We'll find the actual device to use once we
488 		 * setup the controller when the port's device is available.
489 		 */
490 
491 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
492 		if (!p2p_dev) {
493 			pr_err("no peer-to-peer memory is available for %s\n",
494 			       ns->device_path);
495 			return -EINVAL;
496 		}
497 
498 		pci_dev_put(p2p_dev);
499 	}
500 
501 	return 0;
502 }
503 
504 /*
505  * Note: ctrl->subsys->lock should be held when calling this function
506  */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)507 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
508 				    struct nvmet_ns *ns)
509 {
510 	struct device *clients[2];
511 	struct pci_dev *p2p_dev;
512 	int ret;
513 
514 	if (!ctrl->p2p_client || !ns->use_p2pmem)
515 		return;
516 
517 	if (ns->p2p_dev) {
518 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
519 		if (ret < 0)
520 			return;
521 
522 		p2p_dev = pci_dev_get(ns->p2p_dev);
523 	} else {
524 		clients[0] = ctrl->p2p_client;
525 		clients[1] = nvmet_ns_dev(ns);
526 
527 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
528 		if (!p2p_dev) {
529 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
530 			       dev_name(ctrl->p2p_client), ns->device_path);
531 			return;
532 		}
533 	}
534 
535 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
536 	if (ret < 0)
537 		pci_dev_put(p2p_dev);
538 
539 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
540 		ns->nsid);
541 }
542 
nvmet_ns_revalidate(struct nvmet_ns * ns)543 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
544 {
545 	loff_t oldsize = ns->size;
546 
547 	if (ns->bdev)
548 		nvmet_bdev_ns_revalidate(ns);
549 	else
550 		nvmet_file_ns_revalidate(ns);
551 
552 	return oldsize != ns->size;
553 }
554 
nvmet_ns_enable(struct nvmet_ns * ns)555 int nvmet_ns_enable(struct nvmet_ns *ns)
556 {
557 	struct nvmet_subsys *subsys = ns->subsys;
558 	struct nvmet_ctrl *ctrl;
559 	int ret;
560 
561 	mutex_lock(&subsys->lock);
562 	ret = 0;
563 
564 	if (nvmet_is_passthru_subsys(subsys)) {
565 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
566 		goto out_unlock;
567 	}
568 
569 	if (ns->enabled)
570 		goto out_unlock;
571 
572 	ret = -EMFILE;
573 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
574 		goto out_unlock;
575 
576 	ret = nvmet_bdev_ns_enable(ns);
577 	if (ret == -ENOTBLK)
578 		ret = nvmet_file_ns_enable(ns);
579 	if (ret)
580 		goto out_unlock;
581 
582 	ret = nvmet_p2pmem_ns_enable(ns);
583 	if (ret)
584 		goto out_dev_disable;
585 
586 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
587 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
588 
589 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
590 				0, GFP_KERNEL);
591 	if (ret)
592 		goto out_dev_put;
593 
594 	if (ns->nsid > subsys->max_nsid)
595 		subsys->max_nsid = ns->nsid;
596 
597 	ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
598 	if (ret)
599 		goto out_restore_subsys_maxnsid;
600 
601 	subsys->nr_namespaces++;
602 
603 	nvmet_ns_changed(subsys, ns->nsid);
604 	ns->enabled = true;
605 	ret = 0;
606 out_unlock:
607 	mutex_unlock(&subsys->lock);
608 	return ret;
609 
610 out_restore_subsys_maxnsid:
611 	subsys->max_nsid = nvmet_max_nsid(subsys);
612 	percpu_ref_exit(&ns->ref);
613 out_dev_put:
614 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
615 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
616 out_dev_disable:
617 	nvmet_ns_dev_disable(ns);
618 	goto out_unlock;
619 }
620 
nvmet_ns_disable(struct nvmet_ns * ns)621 void nvmet_ns_disable(struct nvmet_ns *ns)
622 {
623 	struct nvmet_subsys *subsys = ns->subsys;
624 	struct nvmet_ctrl *ctrl;
625 
626 	mutex_lock(&subsys->lock);
627 	if (!ns->enabled)
628 		goto out_unlock;
629 
630 	ns->enabled = false;
631 	xa_erase(&ns->subsys->namespaces, ns->nsid);
632 	if (ns->nsid == subsys->max_nsid)
633 		subsys->max_nsid = nvmet_max_nsid(subsys);
634 
635 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
636 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
637 
638 	mutex_unlock(&subsys->lock);
639 
640 	/*
641 	 * Now that we removed the namespaces from the lookup list, we
642 	 * can kill the per_cpu ref and wait for any remaining references
643 	 * to be dropped, as well as a RCU grace period for anyone only
644 	 * using the namepace under rcu_read_lock().  Note that we can't
645 	 * use call_rcu here as we need to ensure the namespaces have
646 	 * been fully destroyed before unloading the module.
647 	 */
648 	percpu_ref_kill(&ns->ref);
649 	synchronize_rcu();
650 	wait_for_completion(&ns->disable_done);
651 	percpu_ref_exit(&ns->ref);
652 
653 	mutex_lock(&subsys->lock);
654 
655 	subsys->nr_namespaces--;
656 	nvmet_ns_changed(subsys, ns->nsid);
657 	nvmet_ns_dev_disable(ns);
658 out_unlock:
659 	mutex_unlock(&subsys->lock);
660 }
661 
nvmet_ns_free(struct nvmet_ns * ns)662 void nvmet_ns_free(struct nvmet_ns *ns)
663 {
664 	nvmet_ns_disable(ns);
665 
666 	down_write(&nvmet_ana_sem);
667 	nvmet_ana_group_enabled[ns->anagrpid]--;
668 	up_write(&nvmet_ana_sem);
669 
670 	kfree(ns->device_path);
671 	kfree(ns);
672 }
673 
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)674 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
675 {
676 	struct nvmet_ns *ns;
677 
678 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
679 	if (!ns)
680 		return NULL;
681 
682 	init_completion(&ns->disable_done);
683 
684 	ns->nsid = nsid;
685 	ns->subsys = subsys;
686 
687 	down_write(&nvmet_ana_sem);
688 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
689 	nvmet_ana_group_enabled[ns->anagrpid]++;
690 	up_write(&nvmet_ana_sem);
691 
692 	uuid_gen(&ns->uuid);
693 	ns->buffered_io = false;
694 	ns->csi = NVME_CSI_NVM;
695 
696 	return ns;
697 }
698 
nvmet_update_sq_head(struct nvmet_req * req)699 static void nvmet_update_sq_head(struct nvmet_req *req)
700 {
701 	if (req->sq->size) {
702 		u32 old_sqhd, new_sqhd;
703 
704 		old_sqhd = READ_ONCE(req->sq->sqhd);
705 		do {
706 			new_sqhd = (old_sqhd + 1) % req->sq->size;
707 		} while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
708 	}
709 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
710 }
711 
nvmet_set_error(struct nvmet_req * req,u16 status)712 static void nvmet_set_error(struct nvmet_req *req, u16 status)
713 {
714 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
715 	struct nvme_error_slot *new_error_slot;
716 	unsigned long flags;
717 
718 	req->cqe->status = cpu_to_le16(status << 1);
719 
720 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
721 		return;
722 
723 	spin_lock_irqsave(&ctrl->error_lock, flags);
724 	ctrl->err_counter++;
725 	new_error_slot =
726 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
727 
728 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
729 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
730 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
731 	new_error_slot->status_field = cpu_to_le16(status << 1);
732 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
733 	new_error_slot->lba = cpu_to_le64(req->error_slba);
734 	new_error_slot->nsid = req->cmd->common.nsid;
735 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
736 
737 	/* set the more bit for this request */
738 	req->cqe->status |= cpu_to_le16(1 << 14);
739 }
740 
__nvmet_req_complete(struct nvmet_req * req,u16 status)741 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
742 {
743 	struct nvmet_ns *ns = req->ns;
744 
745 	if (!req->sq->sqhd_disabled)
746 		nvmet_update_sq_head(req);
747 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
748 	req->cqe->command_id = req->cmd->common.command_id;
749 
750 	if (unlikely(status))
751 		nvmet_set_error(req, status);
752 
753 	trace_nvmet_req_complete(req);
754 
755 	req->ops->queue_response(req);
756 	if (ns)
757 		nvmet_put_namespace(ns);
758 }
759 
nvmet_req_complete(struct nvmet_req * req,u16 status)760 void nvmet_req_complete(struct nvmet_req *req, u16 status)
761 {
762 	struct nvmet_sq *sq = req->sq;
763 
764 	__nvmet_req_complete(req, status);
765 	percpu_ref_put(&sq->ref);
766 }
767 EXPORT_SYMBOL_GPL(nvmet_req_complete);
768 
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)769 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
770 		u16 qid, u16 size)
771 {
772 	cq->qid = qid;
773 	cq->size = size;
774 }
775 
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)776 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
777 		u16 qid, u16 size)
778 {
779 	sq->sqhd = 0;
780 	sq->qid = qid;
781 	sq->size = size;
782 
783 	ctrl->sqs[qid] = sq;
784 }
785 
nvmet_confirm_sq(struct percpu_ref * ref)786 static void nvmet_confirm_sq(struct percpu_ref *ref)
787 {
788 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
789 
790 	complete(&sq->confirm_done);
791 }
792 
nvmet_sq_destroy(struct nvmet_sq * sq)793 void nvmet_sq_destroy(struct nvmet_sq *sq)
794 {
795 	struct nvmet_ctrl *ctrl = sq->ctrl;
796 
797 	/*
798 	 * If this is the admin queue, complete all AERs so that our
799 	 * queue doesn't have outstanding requests on it.
800 	 */
801 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
802 		nvmet_async_events_failall(ctrl);
803 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
804 	wait_for_completion(&sq->confirm_done);
805 	wait_for_completion(&sq->free_done);
806 	percpu_ref_exit(&sq->ref);
807 	nvmet_auth_sq_free(sq);
808 
809 	if (ctrl) {
810 		/*
811 		 * The teardown flow may take some time, and the host may not
812 		 * send us keep-alive during this period, hence reset the
813 		 * traffic based keep-alive timer so we don't trigger a
814 		 * controller teardown as a result of a keep-alive expiration.
815 		 */
816 		ctrl->reset_tbkas = true;
817 		sq->ctrl->sqs[sq->qid] = NULL;
818 		nvmet_ctrl_put(ctrl);
819 		sq->ctrl = NULL; /* allows reusing the queue later */
820 	}
821 }
822 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
823 
nvmet_sq_free(struct percpu_ref * ref)824 static void nvmet_sq_free(struct percpu_ref *ref)
825 {
826 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
827 
828 	complete(&sq->free_done);
829 }
830 
nvmet_sq_init(struct nvmet_sq * sq)831 int nvmet_sq_init(struct nvmet_sq *sq)
832 {
833 	int ret;
834 
835 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
836 	if (ret) {
837 		pr_err("percpu_ref init failed!\n");
838 		return ret;
839 	}
840 	init_completion(&sq->free_done);
841 	init_completion(&sq->confirm_done);
842 	nvmet_auth_sq_init(sq);
843 
844 	return 0;
845 }
846 EXPORT_SYMBOL_GPL(nvmet_sq_init);
847 
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)848 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
849 		struct nvmet_ns *ns)
850 {
851 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
852 
853 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
854 		return NVME_SC_ANA_INACCESSIBLE;
855 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
856 		return NVME_SC_ANA_PERSISTENT_LOSS;
857 	if (unlikely(state == NVME_ANA_CHANGE))
858 		return NVME_SC_ANA_TRANSITION;
859 	return 0;
860 }
861 
nvmet_io_cmd_check_access(struct nvmet_req * req)862 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
863 {
864 	if (unlikely(req->ns->readonly)) {
865 		switch (req->cmd->common.opcode) {
866 		case nvme_cmd_read:
867 		case nvme_cmd_flush:
868 			break;
869 		default:
870 			return NVME_SC_NS_WRITE_PROTECTED;
871 		}
872 	}
873 
874 	return 0;
875 }
876 
nvmet_parse_io_cmd(struct nvmet_req * req)877 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
878 {
879 	struct nvme_command *cmd = req->cmd;
880 	u16 ret;
881 
882 	if (nvme_is_fabrics(cmd))
883 		return nvmet_parse_fabrics_io_cmd(req);
884 
885 	if (unlikely(!nvmet_check_auth_status(req)))
886 		return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
887 
888 	ret = nvmet_check_ctrl_status(req);
889 	if (unlikely(ret))
890 		return ret;
891 
892 	if (nvmet_is_passthru_req(req))
893 		return nvmet_parse_passthru_io_cmd(req);
894 
895 	ret = nvmet_req_find_ns(req);
896 	if (unlikely(ret))
897 		return ret;
898 
899 	ret = nvmet_check_ana_state(req->port, req->ns);
900 	if (unlikely(ret)) {
901 		req->error_loc = offsetof(struct nvme_common_command, nsid);
902 		return ret;
903 	}
904 	ret = nvmet_io_cmd_check_access(req);
905 	if (unlikely(ret)) {
906 		req->error_loc = offsetof(struct nvme_common_command, nsid);
907 		return ret;
908 	}
909 
910 	switch (req->ns->csi) {
911 	case NVME_CSI_NVM:
912 		if (req->ns->file)
913 			return nvmet_file_parse_io_cmd(req);
914 		return nvmet_bdev_parse_io_cmd(req);
915 	case NVME_CSI_ZNS:
916 		if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
917 			return nvmet_bdev_zns_parse_io_cmd(req);
918 		return NVME_SC_INVALID_IO_CMD_SET;
919 	default:
920 		return NVME_SC_INVALID_IO_CMD_SET;
921 	}
922 }
923 
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)924 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
925 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
926 {
927 	u8 flags = req->cmd->common.flags;
928 	u16 status;
929 
930 	req->cq = cq;
931 	req->sq = sq;
932 	req->ops = ops;
933 	req->sg = NULL;
934 	req->metadata_sg = NULL;
935 	req->sg_cnt = 0;
936 	req->metadata_sg_cnt = 0;
937 	req->transfer_len = 0;
938 	req->metadata_len = 0;
939 	req->cqe->status = 0;
940 	req->cqe->sq_head = 0;
941 	req->ns = NULL;
942 	req->error_loc = NVMET_NO_ERROR_LOC;
943 	req->error_slba = 0;
944 
945 	/* no support for fused commands yet */
946 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
947 		req->error_loc = offsetof(struct nvme_common_command, flags);
948 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
949 		goto fail;
950 	}
951 
952 	/*
953 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
954 	 * contains an address of a single contiguous physical buffer that is
955 	 * byte aligned.
956 	 */
957 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
958 		req->error_loc = offsetof(struct nvme_common_command, flags);
959 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
960 		goto fail;
961 	}
962 
963 	if (unlikely(!req->sq->ctrl))
964 		/* will return an error for any non-connect command: */
965 		status = nvmet_parse_connect_cmd(req);
966 	else if (likely(req->sq->qid != 0))
967 		status = nvmet_parse_io_cmd(req);
968 	else
969 		status = nvmet_parse_admin_cmd(req);
970 
971 	if (status)
972 		goto fail;
973 
974 	trace_nvmet_req_init(req, req->cmd);
975 
976 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
977 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
978 		goto fail;
979 	}
980 
981 	if (sq->ctrl)
982 		sq->ctrl->reset_tbkas = true;
983 
984 	return true;
985 
986 fail:
987 	__nvmet_req_complete(req, status);
988 	return false;
989 }
990 EXPORT_SYMBOL_GPL(nvmet_req_init);
991 
nvmet_req_uninit(struct nvmet_req * req)992 void nvmet_req_uninit(struct nvmet_req *req)
993 {
994 	percpu_ref_put(&req->sq->ref);
995 	if (req->ns)
996 		nvmet_put_namespace(req->ns);
997 }
998 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
999 
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)1000 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1001 {
1002 	if (unlikely(len != req->transfer_len)) {
1003 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1004 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1005 		return false;
1006 	}
1007 
1008 	return true;
1009 }
1010 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1011 
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)1012 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1013 {
1014 	if (unlikely(data_len > req->transfer_len)) {
1015 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1016 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1017 		return false;
1018 	}
1019 
1020 	return true;
1021 }
1022 
nvmet_data_transfer_len(struct nvmet_req * req)1023 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1024 {
1025 	return req->transfer_len - req->metadata_len;
1026 }
1027 
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1028 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1029 		struct nvmet_req *req)
1030 {
1031 	req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1032 			nvmet_data_transfer_len(req));
1033 	if (!req->sg)
1034 		goto out_err;
1035 
1036 	if (req->metadata_len) {
1037 		req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1038 				&req->metadata_sg_cnt, req->metadata_len);
1039 		if (!req->metadata_sg)
1040 			goto out_free_sg;
1041 	}
1042 
1043 	req->p2p_dev = p2p_dev;
1044 
1045 	return 0;
1046 out_free_sg:
1047 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1048 out_err:
1049 	return -ENOMEM;
1050 }
1051 
nvmet_req_find_p2p_dev(struct nvmet_req * req)1052 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1053 {
1054 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1055 	    !req->sq->ctrl || !req->sq->qid || !req->ns)
1056 		return NULL;
1057 	return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1058 }
1059 
nvmet_req_alloc_sgls(struct nvmet_req * req)1060 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1061 {
1062 	struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1063 
1064 	if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1065 		return 0;
1066 
1067 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1068 			    &req->sg_cnt);
1069 	if (unlikely(!req->sg))
1070 		goto out;
1071 
1072 	if (req->metadata_len) {
1073 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1074 					     &req->metadata_sg_cnt);
1075 		if (unlikely(!req->metadata_sg))
1076 			goto out_free;
1077 	}
1078 
1079 	return 0;
1080 out_free:
1081 	sgl_free(req->sg);
1082 out:
1083 	return -ENOMEM;
1084 }
1085 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1086 
nvmet_req_free_sgls(struct nvmet_req * req)1087 void nvmet_req_free_sgls(struct nvmet_req *req)
1088 {
1089 	if (req->p2p_dev) {
1090 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1091 		if (req->metadata_sg)
1092 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1093 		req->p2p_dev = NULL;
1094 	} else {
1095 		sgl_free(req->sg);
1096 		if (req->metadata_sg)
1097 			sgl_free(req->metadata_sg);
1098 	}
1099 
1100 	req->sg = NULL;
1101 	req->metadata_sg = NULL;
1102 	req->sg_cnt = 0;
1103 	req->metadata_sg_cnt = 0;
1104 }
1105 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1106 
nvmet_cc_en(u32 cc)1107 static inline bool nvmet_cc_en(u32 cc)
1108 {
1109 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1110 }
1111 
nvmet_cc_css(u32 cc)1112 static inline u8 nvmet_cc_css(u32 cc)
1113 {
1114 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1115 }
1116 
nvmet_cc_mps(u32 cc)1117 static inline u8 nvmet_cc_mps(u32 cc)
1118 {
1119 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1120 }
1121 
nvmet_cc_ams(u32 cc)1122 static inline u8 nvmet_cc_ams(u32 cc)
1123 {
1124 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1125 }
1126 
nvmet_cc_shn(u32 cc)1127 static inline u8 nvmet_cc_shn(u32 cc)
1128 {
1129 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1130 }
1131 
nvmet_cc_iosqes(u32 cc)1132 static inline u8 nvmet_cc_iosqes(u32 cc)
1133 {
1134 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1135 }
1136 
nvmet_cc_iocqes(u32 cc)1137 static inline u8 nvmet_cc_iocqes(u32 cc)
1138 {
1139 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1140 }
1141 
nvmet_css_supported(u8 cc_css)1142 static inline bool nvmet_css_supported(u8 cc_css)
1143 {
1144 	switch (cc_css << NVME_CC_CSS_SHIFT) {
1145 	case NVME_CC_CSS_NVM:
1146 	case NVME_CC_CSS_CSI:
1147 		return true;
1148 	default:
1149 		return false;
1150 	}
1151 }
1152 
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1153 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1154 {
1155 	lockdep_assert_held(&ctrl->lock);
1156 
1157 	/*
1158 	 * Only I/O controllers should verify iosqes,iocqes.
1159 	 * Strictly speaking, the spec says a discovery controller
1160 	 * should verify iosqes,iocqes are zeroed, however that
1161 	 * would break backwards compatibility, so don't enforce it.
1162 	 */
1163 	if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1164 	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1165 	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1166 		ctrl->csts = NVME_CSTS_CFS;
1167 		return;
1168 	}
1169 
1170 	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1171 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1172 	    !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1173 		ctrl->csts = NVME_CSTS_CFS;
1174 		return;
1175 	}
1176 
1177 	ctrl->csts = NVME_CSTS_RDY;
1178 
1179 	/*
1180 	 * Controllers that are not yet enabled should not really enforce the
1181 	 * keep alive timeout, but we still want to track a timeout and cleanup
1182 	 * in case a host died before it enabled the controller.  Hence, simply
1183 	 * reset the keep alive timer when the controller is enabled.
1184 	 */
1185 	if (ctrl->kato)
1186 		mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1187 }
1188 
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1189 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1190 {
1191 	lockdep_assert_held(&ctrl->lock);
1192 
1193 	/* XXX: tear down queues? */
1194 	ctrl->csts &= ~NVME_CSTS_RDY;
1195 	ctrl->cc = 0;
1196 }
1197 
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1198 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1199 {
1200 	u32 old;
1201 
1202 	mutex_lock(&ctrl->lock);
1203 	old = ctrl->cc;
1204 	ctrl->cc = new;
1205 
1206 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1207 		nvmet_start_ctrl(ctrl);
1208 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1209 		nvmet_clear_ctrl(ctrl);
1210 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1211 		nvmet_clear_ctrl(ctrl);
1212 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1213 	}
1214 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1215 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1216 	mutex_unlock(&ctrl->lock);
1217 }
1218 
nvmet_init_cap(struct nvmet_ctrl * ctrl)1219 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1220 {
1221 	/* command sets supported: NVMe command set: */
1222 	ctrl->cap = (1ULL << 37);
1223 	/* Controller supports one or more I/O Command Sets */
1224 	ctrl->cap |= (1ULL << 43);
1225 	/* CC.EN timeout in 500msec units: */
1226 	ctrl->cap |= (15ULL << 24);
1227 	/* maximum queue entries supported: */
1228 	if (ctrl->ops->get_max_queue_size)
1229 		ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1;
1230 	else
1231 		ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1232 
1233 	if (nvmet_is_passthru_subsys(ctrl->subsys))
1234 		nvmet_passthrough_override_cap(ctrl);
1235 }
1236 
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1237 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1238 				       const char *hostnqn, u16 cntlid,
1239 				       struct nvmet_req *req)
1240 {
1241 	struct nvmet_ctrl *ctrl = NULL;
1242 	struct nvmet_subsys *subsys;
1243 
1244 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1245 	if (!subsys) {
1246 		pr_warn("connect request for invalid subsystem %s!\n",
1247 			subsysnqn);
1248 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1249 		goto out;
1250 	}
1251 
1252 	mutex_lock(&subsys->lock);
1253 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1254 		if (ctrl->cntlid == cntlid) {
1255 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1256 				pr_warn("hostnqn mismatch.\n");
1257 				continue;
1258 			}
1259 			if (!kref_get_unless_zero(&ctrl->ref))
1260 				continue;
1261 
1262 			/* ctrl found */
1263 			goto found;
1264 		}
1265 	}
1266 
1267 	ctrl = NULL; /* ctrl not found */
1268 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1269 		cntlid, subsysnqn, hostnqn);
1270 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1271 
1272 found:
1273 	mutex_unlock(&subsys->lock);
1274 	nvmet_subsys_put(subsys);
1275 out:
1276 	return ctrl;
1277 }
1278 
nvmet_check_ctrl_status(struct nvmet_req * req)1279 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1280 {
1281 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1282 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1283 		       req->cmd->common.opcode, req->sq->qid);
1284 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1285 	}
1286 
1287 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1288 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1289 		       req->cmd->common.opcode, req->sq->qid);
1290 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1291 	}
1292 
1293 	if (unlikely(!nvmet_check_auth_status(req))) {
1294 		pr_warn("qid %d not authenticated\n", req->sq->qid);
1295 		return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
1296 	}
1297 	return 0;
1298 }
1299 
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1300 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1301 {
1302 	struct nvmet_host_link *p;
1303 
1304 	lockdep_assert_held(&nvmet_config_sem);
1305 
1306 	if (subsys->allow_any_host)
1307 		return true;
1308 
1309 	if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1310 		return true;
1311 
1312 	list_for_each_entry(p, &subsys->hosts, entry) {
1313 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1314 			return true;
1315 	}
1316 
1317 	return false;
1318 }
1319 
1320 /*
1321  * Note: ctrl->subsys->lock should be held when calling this function
1322  */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1323 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1324 		struct nvmet_req *req)
1325 {
1326 	struct nvmet_ns *ns;
1327 	unsigned long idx;
1328 
1329 	if (!req->p2p_client)
1330 		return;
1331 
1332 	ctrl->p2p_client = get_device(req->p2p_client);
1333 
1334 	xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1335 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1336 }
1337 
1338 /*
1339  * Note: ctrl->subsys->lock should be held when calling this function
1340  */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1341 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1342 {
1343 	struct radix_tree_iter iter;
1344 	void __rcu **slot;
1345 
1346 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1347 		pci_dev_put(radix_tree_deref_slot(slot));
1348 
1349 	put_device(ctrl->p2p_client);
1350 }
1351 
nvmet_fatal_error_handler(struct work_struct * work)1352 static void nvmet_fatal_error_handler(struct work_struct *work)
1353 {
1354 	struct nvmet_ctrl *ctrl =
1355 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1356 
1357 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1358 	ctrl->ops->delete_ctrl(ctrl);
1359 }
1360 
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp)1361 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1362 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1363 {
1364 	struct nvmet_subsys *subsys;
1365 	struct nvmet_ctrl *ctrl;
1366 	int ret;
1367 	u16 status;
1368 
1369 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1370 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1371 	if (!subsys) {
1372 		pr_warn("connect request for invalid subsystem %s!\n",
1373 			subsysnqn);
1374 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1375 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1376 		goto out;
1377 	}
1378 
1379 	down_read(&nvmet_config_sem);
1380 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1381 		pr_info("connect by host %s for subsystem %s not allowed\n",
1382 			hostnqn, subsysnqn);
1383 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1384 		up_read(&nvmet_config_sem);
1385 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1386 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1387 		goto out_put_subsystem;
1388 	}
1389 	up_read(&nvmet_config_sem);
1390 
1391 	status = NVME_SC_INTERNAL;
1392 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1393 	if (!ctrl)
1394 		goto out_put_subsystem;
1395 	mutex_init(&ctrl->lock);
1396 
1397 	ctrl->port = req->port;
1398 	ctrl->ops = req->ops;
1399 
1400 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1401 	/* By default, set loop targets to clear IDS by default */
1402 	if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1403 		subsys->clear_ids = 1;
1404 #endif
1405 
1406 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1407 	INIT_LIST_HEAD(&ctrl->async_events);
1408 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1409 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1410 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1411 
1412 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1413 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1414 
1415 	kref_init(&ctrl->ref);
1416 	ctrl->subsys = subsys;
1417 	nvmet_init_cap(ctrl);
1418 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1419 
1420 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1421 			sizeof(__le32), GFP_KERNEL);
1422 	if (!ctrl->changed_ns_list)
1423 		goto out_free_ctrl;
1424 
1425 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1426 			sizeof(struct nvmet_sq *),
1427 			GFP_KERNEL);
1428 	if (!ctrl->sqs)
1429 		goto out_free_changed_ns_list;
1430 
1431 	if (subsys->cntlid_min > subsys->cntlid_max)
1432 		goto out_free_sqs;
1433 
1434 	ret = ida_alloc_range(&cntlid_ida,
1435 			     subsys->cntlid_min, subsys->cntlid_max,
1436 			     GFP_KERNEL);
1437 	if (ret < 0) {
1438 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1439 		goto out_free_sqs;
1440 	}
1441 	ctrl->cntlid = ret;
1442 
1443 	/*
1444 	 * Discovery controllers may use some arbitrary high value
1445 	 * in order to cleanup stale discovery sessions
1446 	 */
1447 	if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1448 		kato = NVMET_DISC_KATO_MS;
1449 
1450 	/* keep-alive timeout in seconds */
1451 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1452 
1453 	ctrl->err_counter = 0;
1454 	spin_lock_init(&ctrl->error_lock);
1455 
1456 	nvmet_start_keep_alive_timer(ctrl);
1457 
1458 	mutex_lock(&subsys->lock);
1459 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1460 	nvmet_setup_p2p_ns_map(ctrl, req);
1461 	mutex_unlock(&subsys->lock);
1462 
1463 	*ctrlp = ctrl;
1464 	return 0;
1465 
1466 out_free_sqs:
1467 	kfree(ctrl->sqs);
1468 out_free_changed_ns_list:
1469 	kfree(ctrl->changed_ns_list);
1470 out_free_ctrl:
1471 	kfree(ctrl);
1472 out_put_subsystem:
1473 	nvmet_subsys_put(subsys);
1474 out:
1475 	return status;
1476 }
1477 
nvmet_ctrl_free(struct kref * ref)1478 static void nvmet_ctrl_free(struct kref *ref)
1479 {
1480 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1481 	struct nvmet_subsys *subsys = ctrl->subsys;
1482 
1483 	mutex_lock(&subsys->lock);
1484 	nvmet_release_p2p_ns_map(ctrl);
1485 	list_del(&ctrl->subsys_entry);
1486 	mutex_unlock(&subsys->lock);
1487 
1488 	nvmet_stop_keep_alive_timer(ctrl);
1489 
1490 	flush_work(&ctrl->async_event_work);
1491 	cancel_work_sync(&ctrl->fatal_err_work);
1492 
1493 	nvmet_destroy_auth(ctrl);
1494 
1495 	ida_free(&cntlid_ida, ctrl->cntlid);
1496 
1497 	nvmet_async_events_free(ctrl);
1498 	kfree(ctrl->sqs);
1499 	kfree(ctrl->changed_ns_list);
1500 	kfree(ctrl);
1501 
1502 	nvmet_subsys_put(subsys);
1503 }
1504 
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1505 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1506 {
1507 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1508 }
1509 
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1510 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1511 {
1512 	mutex_lock(&ctrl->lock);
1513 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1514 		ctrl->csts |= NVME_CSTS_CFS;
1515 		queue_work(nvmet_wq, &ctrl->fatal_err_work);
1516 	}
1517 	mutex_unlock(&ctrl->lock);
1518 }
1519 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1520 
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1521 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1522 		const char *subsysnqn)
1523 {
1524 	struct nvmet_subsys_link *p;
1525 
1526 	if (!port)
1527 		return NULL;
1528 
1529 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1530 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1531 			return NULL;
1532 		return nvmet_disc_subsys;
1533 	}
1534 
1535 	down_read(&nvmet_config_sem);
1536 	list_for_each_entry(p, &port->subsystems, entry) {
1537 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1538 				NVMF_NQN_SIZE)) {
1539 			if (!kref_get_unless_zero(&p->subsys->ref))
1540 				break;
1541 			up_read(&nvmet_config_sem);
1542 			return p->subsys;
1543 		}
1544 	}
1545 	up_read(&nvmet_config_sem);
1546 	return NULL;
1547 }
1548 
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1549 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1550 		enum nvme_subsys_type type)
1551 {
1552 	struct nvmet_subsys *subsys;
1553 	char serial[NVMET_SN_MAX_SIZE / 2];
1554 	int ret;
1555 
1556 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1557 	if (!subsys)
1558 		return ERR_PTR(-ENOMEM);
1559 
1560 	subsys->ver = NVMET_DEFAULT_VS;
1561 	/* generate a random serial number as our controllers are ephemeral: */
1562 	get_random_bytes(&serial, sizeof(serial));
1563 	bin2hex(subsys->serial, &serial, sizeof(serial));
1564 
1565 	subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1566 	if (!subsys->model_number) {
1567 		ret = -ENOMEM;
1568 		goto free_subsys;
1569 	}
1570 
1571 	subsys->ieee_oui = 0;
1572 
1573 	subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1574 	if (!subsys->firmware_rev) {
1575 		ret = -ENOMEM;
1576 		goto free_mn;
1577 	}
1578 
1579 	switch (type) {
1580 	case NVME_NQN_NVME:
1581 		subsys->max_qid = NVMET_NR_QUEUES;
1582 		break;
1583 	case NVME_NQN_DISC:
1584 	case NVME_NQN_CURR:
1585 		subsys->max_qid = 0;
1586 		break;
1587 	default:
1588 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1589 		ret = -EINVAL;
1590 		goto free_fr;
1591 	}
1592 	subsys->type = type;
1593 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1594 			GFP_KERNEL);
1595 	if (!subsys->subsysnqn) {
1596 		ret = -ENOMEM;
1597 		goto free_fr;
1598 	}
1599 	subsys->cntlid_min = NVME_CNTLID_MIN;
1600 	subsys->cntlid_max = NVME_CNTLID_MAX;
1601 	kref_init(&subsys->ref);
1602 
1603 	mutex_init(&subsys->lock);
1604 	xa_init(&subsys->namespaces);
1605 	INIT_LIST_HEAD(&subsys->ctrls);
1606 	INIT_LIST_HEAD(&subsys->hosts);
1607 
1608 	return subsys;
1609 
1610 free_fr:
1611 	kfree(subsys->firmware_rev);
1612 free_mn:
1613 	kfree(subsys->model_number);
1614 free_subsys:
1615 	kfree(subsys);
1616 	return ERR_PTR(ret);
1617 }
1618 
nvmet_subsys_free(struct kref * ref)1619 static void nvmet_subsys_free(struct kref *ref)
1620 {
1621 	struct nvmet_subsys *subsys =
1622 		container_of(ref, struct nvmet_subsys, ref);
1623 
1624 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1625 
1626 	xa_destroy(&subsys->namespaces);
1627 	nvmet_passthru_subsys_free(subsys);
1628 
1629 	kfree(subsys->subsysnqn);
1630 	kfree(subsys->model_number);
1631 	kfree(subsys->firmware_rev);
1632 	kfree(subsys);
1633 }
1634 
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1635 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1636 {
1637 	struct nvmet_ctrl *ctrl;
1638 
1639 	mutex_lock(&subsys->lock);
1640 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1641 		ctrl->ops->delete_ctrl(ctrl);
1642 	mutex_unlock(&subsys->lock);
1643 }
1644 
nvmet_subsys_put(struct nvmet_subsys * subsys)1645 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1646 {
1647 	kref_put(&subsys->ref, nvmet_subsys_free);
1648 }
1649 
nvmet_init(void)1650 static int __init nvmet_init(void)
1651 {
1652 	int error = -ENOMEM;
1653 
1654 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1655 
1656 	nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1657 			NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1658 			SLAB_HWCACHE_ALIGN, NULL);
1659 	if (!nvmet_bvec_cache)
1660 		return -ENOMEM;
1661 
1662 	zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1663 	if (!zbd_wq)
1664 		goto out_destroy_bvec_cache;
1665 
1666 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1667 			WQ_MEM_RECLAIM, 0);
1668 	if (!buffered_io_wq)
1669 		goto out_free_zbd_work_queue;
1670 
1671 	nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM, 0);
1672 	if (!nvmet_wq)
1673 		goto out_free_buffered_work_queue;
1674 
1675 	error = nvmet_init_discovery();
1676 	if (error)
1677 		goto out_free_nvmet_work_queue;
1678 
1679 	error = nvmet_init_configfs();
1680 	if (error)
1681 		goto out_exit_discovery;
1682 	return 0;
1683 
1684 out_exit_discovery:
1685 	nvmet_exit_discovery();
1686 out_free_nvmet_work_queue:
1687 	destroy_workqueue(nvmet_wq);
1688 out_free_buffered_work_queue:
1689 	destroy_workqueue(buffered_io_wq);
1690 out_free_zbd_work_queue:
1691 	destroy_workqueue(zbd_wq);
1692 out_destroy_bvec_cache:
1693 	kmem_cache_destroy(nvmet_bvec_cache);
1694 	return error;
1695 }
1696 
nvmet_exit(void)1697 static void __exit nvmet_exit(void)
1698 {
1699 	nvmet_exit_configfs();
1700 	nvmet_exit_discovery();
1701 	ida_destroy(&cntlid_ida);
1702 	destroy_workqueue(nvmet_wq);
1703 	destroy_workqueue(buffered_io_wq);
1704 	destroy_workqueue(zbd_wq);
1705 	kmem_cache_destroy(nvmet_bvec_cache);
1706 
1707 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1708 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1709 }
1710 
1711 module_init(nvmet_init);
1712 module_exit(nvmet_exit);
1713 
1714 MODULE_LICENSE("GPL v2");
1715