1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT 256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod { /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp *lsrsp;
30 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
31
32 struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */
33
34 struct nvmet_fc_tgtport *tgtport;
35 struct nvmet_fc_tgt_assoc *assoc;
36 void *hosthandle;
37
38 union nvmefc_ls_requests *rqstbuf;
39 union nvmefc_ls_responses *rspbuf;
40 u16 rqstdatalen;
41 dma_addr_t rspdma;
42
43 struct scatterlist sg[2];
44
45 struct work_struct work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req;
50
51 struct nvmet_fc_tgtport *tgtport;
52 void *hosthandle;
53
54 int ls_error;
55 struct list_head lsreq_list; /* tgtport->ls_req_list */
56 bool req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64 NVMET_FCP_NODATA,
65 NVMET_FCP_WRITE,
66 NVMET_FCP_READ,
67 NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71 struct nvmefc_tgt_fcp_req *fcpreq;
72
73 struct nvme_fc_cmd_iu cmdiubuf;
74 struct nvme_fc_ersp_iu rspiubuf;
75 dma_addr_t rspdma;
76 struct scatterlist *next_sg;
77 struct scatterlist *data_sg;
78 int data_sg_cnt;
79 u32 offset;
80 enum nvmet_fcp_datadir io_dir;
81 bool active;
82 bool abort;
83 bool aborted;
84 bool writedataactive;
85 spinlock_t flock;
86
87 struct nvmet_req req;
88 struct work_struct defer_work;
89
90 struct nvmet_fc_tgtport *tgtport;
91 struct nvmet_fc_tgt_queue *queue;
92
93 struct list_head fcp_list; /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97 struct nvmet_fc_target_port fc_target_port;
98
99 struct list_head tgt_list; /* nvmet_fc_target_list */
100 struct device *dev; /* dev for dma mapping */
101 struct nvmet_fc_target_template *ops;
102
103 struct nvmet_fc_ls_iod *iod;
104 spinlock_t lock;
105 struct list_head ls_rcv_list;
106 struct list_head ls_req_list;
107 struct list_head ls_busylist;
108 struct list_head assoc_list;
109 struct list_head host_list;
110 struct ida assoc_cnt;
111 struct nvmet_fc_port_entry *pe;
112 struct kref ref;
113 u32 max_sg_cnt;
114
115 struct work_struct put_work;
116 };
117
118 struct nvmet_fc_port_entry {
119 struct nvmet_fc_tgtport *tgtport;
120 struct nvmet_port *port;
121 u64 node_name;
122 u64 port_name;
123 struct list_head pe_list;
124 };
125
126 struct nvmet_fc_defer_fcp_req {
127 struct list_head req_list;
128 struct nvmefc_tgt_fcp_req *fcp_req;
129 };
130
131 struct nvmet_fc_tgt_queue {
132 bool ninetypercent;
133 u16 qid;
134 u16 sqsize;
135 u16 ersp_ratio;
136 __le16 sqhd;
137 atomic_t connected;
138 atomic_t sqtail;
139 atomic_t zrspcnt;
140 atomic_t rsn;
141 spinlock_t qlock;
142 struct nvmet_cq nvme_cq;
143 struct nvmet_sq nvme_sq;
144 struct nvmet_fc_tgt_assoc *assoc;
145 struct list_head fod_list;
146 struct list_head pending_cmd_list;
147 struct list_head avail_defer_list;
148 struct workqueue_struct *work_q;
149 struct kref ref;
150 struct rcu_head rcu;
151 struct nvmet_fc_fcp_iod fod[]; /* array of fcp_iods */
152 } __aligned(sizeof(unsigned long long));
153
154 struct nvmet_fc_hostport {
155 struct nvmet_fc_tgtport *tgtport;
156 void *hosthandle;
157 struct list_head host_list;
158 struct kref ref;
159 u8 invalid;
160 };
161
162 struct nvmet_fc_tgt_assoc {
163 u64 association_id;
164 u32 a_id;
165 atomic_t terminating;
166 struct nvmet_fc_tgtport *tgtport;
167 struct nvmet_fc_hostport *hostport;
168 struct nvmet_fc_ls_iod *rcv_disconn;
169 struct list_head a_list;
170 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1];
171 struct kref ref;
172 struct work_struct del_work;
173 struct rcu_head rcu;
174 };
175
176
177 static inline int
nvmet_fc_iodnum(struct nvmet_fc_ls_iod * iodptr)178 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
179 {
180 return (iodptr - iodptr->tgtport->iod);
181 }
182
183 static inline int
nvmet_fc_fodnum(struct nvmet_fc_fcp_iod * fodptr)184 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
185 {
186 return (fodptr - fodptr->queue->fod);
187 }
188
189
190 /*
191 * Association and Connection IDs:
192 *
193 * Association ID will have random number in upper 6 bytes and zero
194 * in lower 2 bytes
195 *
196 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
197 *
198 * note: Association ID = Connection ID for queue 0
199 */
200 #define BYTES_FOR_QID sizeof(u16)
201 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
202 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
203
204 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)205 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
206 {
207 return (assoc->association_id | qid);
208 }
209
210 static inline u64
nvmet_fc_getassociationid(u64 connectionid)211 nvmet_fc_getassociationid(u64 connectionid)
212 {
213 return connectionid & ~NVMET_FC_QUEUEID_MASK;
214 }
215
216 static inline u16
nvmet_fc_getqueueid(u64 connectionid)217 nvmet_fc_getqueueid(u64 connectionid)
218 {
219 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
220 }
221
222 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)223 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
224 {
225 return container_of(targetport, struct nvmet_fc_tgtport,
226 fc_target_port);
227 }
228
229 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)230 nvmet_req_to_fod(struct nvmet_req *nvme_req)
231 {
232 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
233 }
234
235
236 /* *************************** Globals **************************** */
237
238
239 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
240
241 static LIST_HEAD(nvmet_fc_target_list);
242 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
243 static LIST_HEAD(nvmet_fc_portentry_list);
244
245
246 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
247 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
248 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
249 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
250 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
251 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
252 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
nvmet_fc_put_tgtport_work(struct work_struct * work)253 static void nvmet_fc_put_tgtport_work(struct work_struct *work)
254 {
255 struct nvmet_fc_tgtport *tgtport =
256 container_of(work, struct nvmet_fc_tgtport, put_work);
257
258 nvmet_fc_tgtport_put(tgtport);
259 }
260 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
261 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
262 struct nvmet_fc_fcp_iod *fod);
263 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
264 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
265 struct nvmet_fc_ls_iod *iod);
266
267
268 /* *********************** FC-NVME DMA Handling **************************** */
269
270 /*
271 * The fcloop device passes in a NULL device pointer. Real LLD's will
272 * pass in a valid device pointer. If NULL is passed to the dma mapping
273 * routines, depending on the platform, it may or may not succeed, and
274 * may crash.
275 *
276 * As such:
277 * Wrapper all the dma routines and check the dev pointer.
278 *
279 * If simple mappings (return just a dma address, we'll noop them,
280 * returning a dma address of 0.
281 *
282 * On more complex mappings (dma_map_sg), a pseudo routine fills
283 * in the scatter list, setting all dma addresses to 0.
284 */
285
286 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)287 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
288 enum dma_data_direction dir)
289 {
290 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
291 }
292
293 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)294 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
295 {
296 return dev ? dma_mapping_error(dev, dma_addr) : 0;
297 }
298
299 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)300 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
301 enum dma_data_direction dir)
302 {
303 if (dev)
304 dma_unmap_single(dev, addr, size, dir);
305 }
306
307 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)308 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
309 enum dma_data_direction dir)
310 {
311 if (dev)
312 dma_sync_single_for_cpu(dev, addr, size, dir);
313 }
314
315 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)316 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
317 enum dma_data_direction dir)
318 {
319 if (dev)
320 dma_sync_single_for_device(dev, addr, size, dir);
321 }
322
323 /* pseudo dma_map_sg call */
324 static int
fc_map_sg(struct scatterlist * sg,int nents)325 fc_map_sg(struct scatterlist *sg, int nents)
326 {
327 struct scatterlist *s;
328 int i;
329
330 WARN_ON(nents == 0 || sg[0].length == 0);
331
332 for_each_sg(sg, s, nents, i) {
333 s->dma_address = 0L;
334 #ifdef CONFIG_NEED_SG_DMA_LENGTH
335 s->dma_length = s->length;
336 #endif
337 }
338 return nents;
339 }
340
341 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)342 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
343 enum dma_data_direction dir)
344 {
345 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
346 }
347
348 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)349 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
350 enum dma_data_direction dir)
351 {
352 if (dev)
353 dma_unmap_sg(dev, sg, nents, dir);
354 }
355
356
357 /* ********************** FC-NVME LS XMT Handling ************************* */
358
359
360 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)361 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
362 {
363 struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
364 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
365 unsigned long flags;
366
367 spin_lock_irqsave(&tgtport->lock, flags);
368
369 if (!lsop->req_queued) {
370 spin_unlock_irqrestore(&tgtport->lock, flags);
371 goto out_putwork;
372 }
373
374 list_del(&lsop->lsreq_list);
375
376 lsop->req_queued = false;
377
378 spin_unlock_irqrestore(&tgtport->lock, flags);
379
380 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
381 (lsreq->rqstlen + lsreq->rsplen),
382 DMA_BIDIRECTIONAL);
383
384 out_putwork:
385 queue_work(nvmet_wq, &tgtport->put_work);
386 }
387
388 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))389 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
390 struct nvmet_fc_ls_req_op *lsop,
391 void (*done)(struct nvmefc_ls_req *req, int status))
392 {
393 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
394 unsigned long flags;
395 int ret = 0;
396
397 if (!tgtport->ops->ls_req)
398 return -EOPNOTSUPP;
399
400 if (!nvmet_fc_tgtport_get(tgtport))
401 return -ESHUTDOWN;
402
403 lsreq->done = done;
404 lsop->req_queued = false;
405 INIT_LIST_HEAD(&lsop->lsreq_list);
406
407 lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
408 lsreq->rqstlen + lsreq->rsplen,
409 DMA_BIDIRECTIONAL);
410 if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
411 ret = -EFAULT;
412 goto out_puttgtport;
413 }
414 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
415
416 spin_lock_irqsave(&tgtport->lock, flags);
417
418 list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
419
420 lsop->req_queued = true;
421
422 spin_unlock_irqrestore(&tgtport->lock, flags);
423
424 ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
425 lsreq);
426 if (ret)
427 goto out_unlink;
428
429 return 0;
430
431 out_unlink:
432 lsop->ls_error = ret;
433 spin_lock_irqsave(&tgtport->lock, flags);
434 lsop->req_queued = false;
435 list_del(&lsop->lsreq_list);
436 spin_unlock_irqrestore(&tgtport->lock, flags);
437 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
438 (lsreq->rqstlen + lsreq->rsplen),
439 DMA_BIDIRECTIONAL);
440 out_puttgtport:
441 nvmet_fc_tgtport_put(tgtport);
442
443 return ret;
444 }
445
446 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))447 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
448 struct nvmet_fc_ls_req_op *lsop,
449 void (*done)(struct nvmefc_ls_req *req, int status))
450 {
451 /* don't wait for completion */
452
453 return __nvmet_fc_send_ls_req(tgtport, lsop, done);
454 }
455
456 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)457 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
458 {
459 struct nvmet_fc_ls_req_op *lsop =
460 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
461
462 __nvmet_fc_finish_ls_req(lsop);
463
464 /* fc-nvme target doesn't care about success or failure of cmd */
465
466 kfree(lsop);
467 }
468
469 /*
470 * This routine sends a FC-NVME LS to disconnect (aka terminate)
471 * the FC-NVME Association. Terminating the association also
472 * terminates the FC-NVME connections (per queue, both admin and io
473 * queues) that are part of the association. E.g. things are torn
474 * down, and the related FC-NVME Association ID and Connection IDs
475 * become invalid.
476 *
477 * The behavior of the fc-nvme target is such that it's
478 * understanding of the association and connections will implicitly
479 * be torn down. The action is implicit as it may be due to a loss of
480 * connectivity with the fc-nvme host, so the target may never get a
481 * response even if it tried. As such, the action of this routine
482 * is to asynchronously send the LS, ignore any results of the LS, and
483 * continue on with terminating the association. If the fc-nvme host
484 * is present and receives the LS, it too can tear down.
485 */
486 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)487 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
488 {
489 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
490 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
491 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
492 struct nvmet_fc_ls_req_op *lsop;
493 struct nvmefc_ls_req *lsreq;
494 int ret;
495
496 /*
497 * If ls_req is NULL or no hosthandle, it's an older lldd and no
498 * message is normal. Otherwise, send unless the hostport has
499 * already been invalidated by the lldd.
500 */
501 if (!tgtport->ops->ls_req || !assoc->hostport ||
502 assoc->hostport->invalid)
503 return;
504
505 lsop = kzalloc((sizeof(*lsop) +
506 sizeof(*discon_rqst) + sizeof(*discon_acc) +
507 tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
508 if (!lsop) {
509 dev_info(tgtport->dev,
510 "{%d:%d} send Disconnect Association failed: ENOMEM\n",
511 tgtport->fc_target_port.port_num, assoc->a_id);
512 return;
513 }
514
515 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
516 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
517 lsreq = &lsop->ls_req;
518 if (tgtport->ops->lsrqst_priv_sz)
519 lsreq->private = (void *)&discon_acc[1];
520 else
521 lsreq->private = NULL;
522
523 lsop->tgtport = tgtport;
524 lsop->hosthandle = assoc->hostport->hosthandle;
525
526 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
527 assoc->association_id);
528
529 ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
530 nvmet_fc_disconnect_assoc_done);
531 if (ret) {
532 dev_info(tgtport->dev,
533 "{%d:%d} XMT Disconnect Association failed: %d\n",
534 tgtport->fc_target_port.port_num, assoc->a_id, ret);
535 kfree(lsop);
536 }
537 }
538
539
540 /* *********************** FC-NVME Port Management ************************ */
541
542
543 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)544 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
545 {
546 struct nvmet_fc_ls_iod *iod;
547 int i;
548
549 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
550 GFP_KERNEL);
551 if (!iod)
552 return -ENOMEM;
553
554 tgtport->iod = iod;
555
556 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
557 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
558 iod->tgtport = tgtport;
559 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
560
561 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
562 sizeof(union nvmefc_ls_responses),
563 GFP_KERNEL);
564 if (!iod->rqstbuf)
565 goto out_fail;
566
567 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
568
569 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
570 sizeof(*iod->rspbuf),
571 DMA_TO_DEVICE);
572 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
573 goto out_fail;
574 }
575
576 return 0;
577
578 out_fail:
579 kfree(iod->rqstbuf);
580 list_del(&iod->ls_rcv_list);
581 for (iod--, i--; i >= 0; iod--, i--) {
582 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
583 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
584 kfree(iod->rqstbuf);
585 list_del(&iod->ls_rcv_list);
586 }
587
588 kfree(iod);
589
590 return -EFAULT;
591 }
592
593 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)594 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
595 {
596 struct nvmet_fc_ls_iod *iod = tgtport->iod;
597 int i;
598
599 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
600 fc_dma_unmap_single(tgtport->dev,
601 iod->rspdma, sizeof(*iod->rspbuf),
602 DMA_TO_DEVICE);
603 kfree(iod->rqstbuf);
604 list_del(&iod->ls_rcv_list);
605 }
606 kfree(tgtport->iod);
607 }
608
609 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)610 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
611 {
612 struct nvmet_fc_ls_iod *iod;
613 unsigned long flags;
614
615 spin_lock_irqsave(&tgtport->lock, flags);
616 iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
617 struct nvmet_fc_ls_iod, ls_rcv_list);
618 if (iod)
619 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
620 spin_unlock_irqrestore(&tgtport->lock, flags);
621 return iod;
622 }
623
624
625 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)626 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
627 struct nvmet_fc_ls_iod *iod)
628 {
629 unsigned long flags;
630
631 spin_lock_irqsave(&tgtport->lock, flags);
632 list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
633 spin_unlock_irqrestore(&tgtport->lock, flags);
634 }
635
636 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)637 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
638 struct nvmet_fc_tgt_queue *queue)
639 {
640 struct nvmet_fc_fcp_iod *fod = queue->fod;
641 int i;
642
643 for (i = 0; i < queue->sqsize; fod++, i++) {
644 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
645 fod->tgtport = tgtport;
646 fod->queue = queue;
647 fod->active = false;
648 fod->abort = false;
649 fod->aborted = false;
650 fod->fcpreq = NULL;
651 list_add_tail(&fod->fcp_list, &queue->fod_list);
652 spin_lock_init(&fod->flock);
653
654 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
655 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
656 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
657 list_del(&fod->fcp_list);
658 for (fod--, i--; i >= 0; fod--, i--) {
659 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
660 sizeof(fod->rspiubuf),
661 DMA_TO_DEVICE);
662 fod->rspdma = 0L;
663 list_del(&fod->fcp_list);
664 }
665
666 return;
667 }
668 }
669 }
670
671 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)672 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
673 struct nvmet_fc_tgt_queue *queue)
674 {
675 struct nvmet_fc_fcp_iod *fod = queue->fod;
676 int i;
677
678 for (i = 0; i < queue->sqsize; fod++, i++) {
679 if (fod->rspdma)
680 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
681 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
682 }
683 }
684
685 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)686 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
687 {
688 struct nvmet_fc_fcp_iod *fod;
689
690 lockdep_assert_held(&queue->qlock);
691
692 fod = list_first_entry_or_null(&queue->fod_list,
693 struct nvmet_fc_fcp_iod, fcp_list);
694 if (fod) {
695 list_del(&fod->fcp_list);
696 fod->active = true;
697 /*
698 * no queue reference is taken, as it was taken by the
699 * queue lookup just prior to the allocation. The iod
700 * will "inherit" that reference.
701 */
702 }
703 return fod;
704 }
705
706
707 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)708 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
709 struct nvmet_fc_tgt_queue *queue,
710 struct nvmefc_tgt_fcp_req *fcpreq)
711 {
712 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
713
714 /*
715 * put all admin cmds on hw queue id 0. All io commands go to
716 * the respective hw queue based on a modulo basis
717 */
718 fcpreq->hwqid = queue->qid ?
719 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
720
721 nvmet_fc_handle_fcp_rqst(tgtport, fod);
722 }
723
724 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)725 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
726 {
727 struct nvmet_fc_fcp_iod *fod =
728 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
729
730 /* Submit deferred IO for processing */
731 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
732
733 }
734
735 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)736 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
737 struct nvmet_fc_fcp_iod *fod)
738 {
739 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
740 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
741 struct nvmet_fc_defer_fcp_req *deferfcp;
742 unsigned long flags;
743
744 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
745 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
746
747 fcpreq->nvmet_fc_private = NULL;
748
749 fod->active = false;
750 fod->abort = false;
751 fod->aborted = false;
752 fod->writedataactive = false;
753 fod->fcpreq = NULL;
754
755 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
756
757 /* release the queue lookup reference on the completed IO */
758 nvmet_fc_tgt_q_put(queue);
759
760 spin_lock_irqsave(&queue->qlock, flags);
761 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
762 struct nvmet_fc_defer_fcp_req, req_list);
763 if (!deferfcp) {
764 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
765 spin_unlock_irqrestore(&queue->qlock, flags);
766 return;
767 }
768
769 /* Re-use the fod for the next pending cmd that was deferred */
770 list_del(&deferfcp->req_list);
771
772 fcpreq = deferfcp->fcp_req;
773
774 /* deferfcp can be reused for another IO at a later date */
775 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
776
777 spin_unlock_irqrestore(&queue->qlock, flags);
778
779 /* Save NVME CMD IO in fod */
780 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
781
782 /* Setup new fcpreq to be processed */
783 fcpreq->rspaddr = NULL;
784 fcpreq->rsplen = 0;
785 fcpreq->nvmet_fc_private = fod;
786 fod->fcpreq = fcpreq;
787 fod->active = true;
788
789 /* inform LLDD IO is now being processed */
790 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
791
792 /*
793 * Leave the queue lookup get reference taken when
794 * fod was originally allocated.
795 */
796
797 queue_work(queue->work_q, &fod->defer_work);
798 }
799
800 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)801 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
802 u16 qid, u16 sqsize)
803 {
804 struct nvmet_fc_tgt_queue *queue;
805 int ret;
806
807 if (qid > NVMET_NR_QUEUES)
808 return NULL;
809
810 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
811 if (!queue)
812 return NULL;
813
814 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
815 assoc->tgtport->fc_target_port.port_num,
816 assoc->a_id, qid);
817 if (!queue->work_q)
818 goto out_free_queue;
819
820 queue->qid = qid;
821 queue->sqsize = sqsize;
822 queue->assoc = assoc;
823 INIT_LIST_HEAD(&queue->fod_list);
824 INIT_LIST_HEAD(&queue->avail_defer_list);
825 INIT_LIST_HEAD(&queue->pending_cmd_list);
826 atomic_set(&queue->connected, 0);
827 atomic_set(&queue->sqtail, 0);
828 atomic_set(&queue->rsn, 1);
829 atomic_set(&queue->zrspcnt, 0);
830 spin_lock_init(&queue->qlock);
831 kref_init(&queue->ref);
832
833 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
834
835 ret = nvmet_sq_init(&queue->nvme_sq);
836 if (ret)
837 goto out_fail_iodlist;
838
839 WARN_ON(assoc->queues[qid]);
840 assoc->queues[qid] = queue;
841
842 return queue;
843
844 out_fail_iodlist:
845 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
846 destroy_workqueue(queue->work_q);
847 out_free_queue:
848 kfree(queue);
849 return NULL;
850 }
851
852
853 static void
nvmet_fc_tgt_queue_free(struct kref * ref)854 nvmet_fc_tgt_queue_free(struct kref *ref)
855 {
856 struct nvmet_fc_tgt_queue *queue =
857 container_of(ref, struct nvmet_fc_tgt_queue, ref);
858
859 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
860
861 destroy_workqueue(queue->work_q);
862
863 kfree_rcu(queue, rcu);
864 }
865
866 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)867 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
868 {
869 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
870 }
871
872 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)873 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
874 {
875 return kref_get_unless_zero(&queue->ref);
876 }
877
878
879 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)880 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
881 {
882 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
883 struct nvmet_fc_fcp_iod *fod = queue->fod;
884 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
885 unsigned long flags;
886 int i;
887 bool disconnect;
888
889 disconnect = atomic_xchg(&queue->connected, 0);
890
891 /* if not connected, nothing to do */
892 if (!disconnect)
893 return;
894
895 spin_lock_irqsave(&queue->qlock, flags);
896 /* abort outstanding io's */
897 for (i = 0; i < queue->sqsize; fod++, i++) {
898 if (fod->active) {
899 spin_lock(&fod->flock);
900 fod->abort = true;
901 /*
902 * only call lldd abort routine if waiting for
903 * writedata. other outstanding ops should finish
904 * on their own.
905 */
906 if (fod->writedataactive) {
907 fod->aborted = true;
908 spin_unlock(&fod->flock);
909 tgtport->ops->fcp_abort(
910 &tgtport->fc_target_port, fod->fcpreq);
911 } else
912 spin_unlock(&fod->flock);
913 }
914 }
915
916 /* Cleanup defer'ed IOs in queue */
917 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
918 req_list) {
919 list_del(&deferfcp->req_list);
920 kfree(deferfcp);
921 }
922
923 for (;;) {
924 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
925 struct nvmet_fc_defer_fcp_req, req_list);
926 if (!deferfcp)
927 break;
928
929 list_del(&deferfcp->req_list);
930 spin_unlock_irqrestore(&queue->qlock, flags);
931
932 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
933 deferfcp->fcp_req);
934
935 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
936 deferfcp->fcp_req);
937
938 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
939 deferfcp->fcp_req);
940
941 /* release the queue lookup reference */
942 nvmet_fc_tgt_q_put(queue);
943
944 kfree(deferfcp);
945
946 spin_lock_irqsave(&queue->qlock, flags);
947 }
948 spin_unlock_irqrestore(&queue->qlock, flags);
949
950 flush_workqueue(queue->work_q);
951
952 nvmet_sq_destroy(&queue->nvme_sq);
953
954 nvmet_fc_tgt_q_put(queue);
955 }
956
957 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)958 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
959 u64 connection_id)
960 {
961 struct nvmet_fc_tgt_assoc *assoc;
962 struct nvmet_fc_tgt_queue *queue;
963 u64 association_id = nvmet_fc_getassociationid(connection_id);
964 u16 qid = nvmet_fc_getqueueid(connection_id);
965
966 if (qid > NVMET_NR_QUEUES)
967 return NULL;
968
969 rcu_read_lock();
970 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
971 if (association_id == assoc->association_id) {
972 queue = assoc->queues[qid];
973 if (queue &&
974 (!atomic_read(&queue->connected) ||
975 !nvmet_fc_tgt_q_get(queue)))
976 queue = NULL;
977 rcu_read_unlock();
978 return queue;
979 }
980 }
981 rcu_read_unlock();
982 return NULL;
983 }
984
985 static void
nvmet_fc_hostport_free(struct kref * ref)986 nvmet_fc_hostport_free(struct kref *ref)
987 {
988 struct nvmet_fc_hostport *hostport =
989 container_of(ref, struct nvmet_fc_hostport, ref);
990 struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
991 unsigned long flags;
992
993 spin_lock_irqsave(&tgtport->lock, flags);
994 list_del(&hostport->host_list);
995 spin_unlock_irqrestore(&tgtport->lock, flags);
996 if (tgtport->ops->host_release && hostport->invalid)
997 tgtport->ops->host_release(hostport->hosthandle);
998 kfree(hostport);
999 nvmet_fc_tgtport_put(tgtport);
1000 }
1001
1002 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)1003 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1004 {
1005 kref_put(&hostport->ref, nvmet_fc_hostport_free);
1006 }
1007
1008 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)1009 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1010 {
1011 return kref_get_unless_zero(&hostport->ref);
1012 }
1013
1014 static void
nvmet_fc_free_hostport(struct nvmet_fc_hostport * hostport)1015 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1016 {
1017 /* if LLDD not implemented, leave as NULL */
1018 if (!hostport || !hostport->hosthandle)
1019 return;
1020
1021 nvmet_fc_hostport_put(hostport);
1022 }
1023
1024 static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1025 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1026 {
1027 struct nvmet_fc_hostport *host;
1028
1029 lockdep_assert_held(&tgtport->lock);
1030
1031 list_for_each_entry(host, &tgtport->host_list, host_list) {
1032 if (host->hosthandle == hosthandle && !host->invalid) {
1033 if (nvmet_fc_hostport_get(host))
1034 return (host);
1035 }
1036 }
1037
1038 return NULL;
1039 }
1040
1041 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1042 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1043 {
1044 struct nvmet_fc_hostport *newhost, *match = NULL;
1045 unsigned long flags;
1046
1047 /* if LLDD not implemented, leave as NULL */
1048 if (!hosthandle)
1049 return NULL;
1050
1051 /*
1052 * take reference for what will be the newly allocated hostport if
1053 * we end up using a new allocation
1054 */
1055 if (!nvmet_fc_tgtport_get(tgtport))
1056 return ERR_PTR(-EINVAL);
1057
1058 spin_lock_irqsave(&tgtport->lock, flags);
1059 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1060 spin_unlock_irqrestore(&tgtport->lock, flags);
1061
1062 if (match) {
1063 /* no new allocation - release reference */
1064 nvmet_fc_tgtport_put(tgtport);
1065 return match;
1066 }
1067
1068 newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1069 if (!newhost) {
1070 /* no new allocation - release reference */
1071 nvmet_fc_tgtport_put(tgtport);
1072 return ERR_PTR(-ENOMEM);
1073 }
1074
1075 spin_lock_irqsave(&tgtport->lock, flags);
1076 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1077 if (match) {
1078 /* new allocation not needed */
1079 kfree(newhost);
1080 newhost = match;
1081 } else {
1082 newhost->tgtport = tgtport;
1083 newhost->hosthandle = hosthandle;
1084 INIT_LIST_HEAD(&newhost->host_list);
1085 kref_init(&newhost->ref);
1086
1087 list_add_tail(&newhost->host_list, &tgtport->host_list);
1088 }
1089 spin_unlock_irqrestore(&tgtport->lock, flags);
1090
1091 return newhost;
1092 }
1093
1094 static void
nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1095 nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1096 {
1097 nvmet_fc_delete_target_assoc(assoc);
1098 nvmet_fc_tgt_a_put(assoc);
1099 }
1100
1101 static void
nvmet_fc_delete_assoc_work(struct work_struct * work)1102 nvmet_fc_delete_assoc_work(struct work_struct *work)
1103 {
1104 struct nvmet_fc_tgt_assoc *assoc =
1105 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1106 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1107
1108 nvmet_fc_delete_assoc(assoc);
1109 nvmet_fc_tgtport_put(tgtport);
1110 }
1111
1112 static void
nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc * assoc)1113 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1114 {
1115 nvmet_fc_tgtport_get(assoc->tgtport);
1116 queue_work(nvmet_wq, &assoc->del_work);
1117 }
1118
1119 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1120 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1121 {
1122 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1123 unsigned long flags;
1124 u64 ran;
1125 int idx;
1126 bool needrandom = true;
1127
1128 if (!tgtport->pe)
1129 return NULL;
1130
1131 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1132 if (!assoc)
1133 return NULL;
1134
1135 idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1136 if (idx < 0)
1137 goto out_free_assoc;
1138
1139 if (!nvmet_fc_tgtport_get(tgtport))
1140 goto out_ida;
1141
1142 assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1143 if (IS_ERR(assoc->hostport))
1144 goto out_put;
1145
1146 assoc->tgtport = tgtport;
1147 assoc->a_id = idx;
1148 INIT_LIST_HEAD(&assoc->a_list);
1149 kref_init(&assoc->ref);
1150 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1151 atomic_set(&assoc->terminating, 0);
1152
1153 while (needrandom) {
1154 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1155 ran = ran << BYTES_FOR_QID_SHIFT;
1156
1157 spin_lock_irqsave(&tgtport->lock, flags);
1158 needrandom = false;
1159 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1160 if (ran == tmpassoc->association_id) {
1161 needrandom = true;
1162 break;
1163 }
1164 }
1165 if (!needrandom) {
1166 assoc->association_id = ran;
1167 list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1168 }
1169 spin_unlock_irqrestore(&tgtport->lock, flags);
1170 }
1171
1172 return assoc;
1173
1174 out_put:
1175 nvmet_fc_tgtport_put(tgtport);
1176 out_ida:
1177 ida_free(&tgtport->assoc_cnt, idx);
1178 out_free_assoc:
1179 kfree(assoc);
1180 return NULL;
1181 }
1182
1183 static void
nvmet_fc_target_assoc_free(struct kref * ref)1184 nvmet_fc_target_assoc_free(struct kref *ref)
1185 {
1186 struct nvmet_fc_tgt_assoc *assoc =
1187 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1188 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1189 struct nvmet_fc_ls_iod *oldls;
1190 unsigned long flags;
1191 int i;
1192
1193 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1194 if (assoc->queues[i])
1195 nvmet_fc_delete_target_queue(assoc->queues[i]);
1196 }
1197
1198 /* Send Disconnect now that all i/o has completed */
1199 nvmet_fc_xmt_disconnect_assoc(assoc);
1200
1201 nvmet_fc_free_hostport(assoc->hostport);
1202 spin_lock_irqsave(&tgtport->lock, flags);
1203 oldls = assoc->rcv_disconn;
1204 spin_unlock_irqrestore(&tgtport->lock, flags);
1205 /* if pending Rcv Disconnect Association LS, send rsp now */
1206 if (oldls)
1207 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1208 ida_free(&tgtport->assoc_cnt, assoc->a_id);
1209 dev_info(tgtport->dev,
1210 "{%d:%d} Association freed\n",
1211 tgtport->fc_target_port.port_num, assoc->a_id);
1212 kfree_rcu(assoc, rcu);
1213 nvmet_fc_tgtport_put(tgtport);
1214 }
1215
1216 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1217 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1218 {
1219 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1220 }
1221
1222 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1223 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1224 {
1225 return kref_get_unless_zero(&assoc->ref);
1226 }
1227
1228 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1229 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1230 {
1231 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1232 unsigned long flags;
1233 int i, terminating;
1234
1235 terminating = atomic_xchg(&assoc->terminating, 1);
1236
1237 /* if already terminating, do nothing */
1238 if (terminating)
1239 return;
1240
1241 spin_lock_irqsave(&tgtport->lock, flags);
1242 list_del_rcu(&assoc->a_list);
1243 spin_unlock_irqrestore(&tgtport->lock, flags);
1244
1245 synchronize_rcu();
1246
1247 /* ensure all in-flight I/Os have been processed */
1248 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1249 if (assoc->queues[i])
1250 flush_workqueue(assoc->queues[i]->work_q);
1251 }
1252
1253 dev_info(tgtport->dev,
1254 "{%d:%d} Association deleted\n",
1255 tgtport->fc_target_port.port_num, assoc->a_id);
1256 }
1257
1258 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1259 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1260 u64 association_id)
1261 {
1262 struct nvmet_fc_tgt_assoc *assoc;
1263 struct nvmet_fc_tgt_assoc *ret = NULL;
1264
1265 rcu_read_lock();
1266 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1267 if (association_id == assoc->association_id) {
1268 ret = assoc;
1269 if (!nvmet_fc_tgt_a_get(assoc))
1270 ret = NULL;
1271 break;
1272 }
1273 }
1274 rcu_read_unlock();
1275
1276 return ret;
1277 }
1278
1279 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1280 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1281 struct nvmet_fc_port_entry *pe,
1282 struct nvmet_port *port)
1283 {
1284 lockdep_assert_held(&nvmet_fc_tgtlock);
1285
1286 pe->tgtport = tgtport;
1287 tgtport->pe = pe;
1288
1289 pe->port = port;
1290 port->priv = pe;
1291
1292 pe->node_name = tgtport->fc_target_port.node_name;
1293 pe->port_name = tgtport->fc_target_port.port_name;
1294 INIT_LIST_HEAD(&pe->pe_list);
1295
1296 list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1297 }
1298
1299 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1300 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1301 {
1302 unsigned long flags;
1303
1304 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1305 if (pe->tgtport)
1306 pe->tgtport->pe = NULL;
1307 list_del(&pe->pe_list);
1308 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1309 }
1310
1311 /*
1312 * called when a targetport deregisters. Breaks the relationship
1313 * with the nvmet port, but leaves the port_entry in place so that
1314 * re-registration can resume operation.
1315 */
1316 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1317 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1318 {
1319 struct nvmet_fc_port_entry *pe;
1320 unsigned long flags;
1321
1322 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1323 pe = tgtport->pe;
1324 if (pe)
1325 pe->tgtport = NULL;
1326 tgtport->pe = NULL;
1327 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1328 }
1329
1330 /*
1331 * called when a new targetport is registered. Looks in the
1332 * existing nvmet port_entries to see if the nvmet layer is
1333 * configured for the targetport's wwn's. (the targetport existed,
1334 * nvmet configured, the lldd unregistered the tgtport, and is now
1335 * reregistering the same targetport). If so, set the nvmet port
1336 * port entry on the targetport.
1337 */
1338 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1339 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1340 {
1341 struct nvmet_fc_port_entry *pe;
1342 unsigned long flags;
1343
1344 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1345 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1346 if (tgtport->fc_target_port.node_name == pe->node_name &&
1347 tgtport->fc_target_port.port_name == pe->port_name) {
1348 WARN_ON(pe->tgtport);
1349 tgtport->pe = pe;
1350 pe->tgtport = tgtport;
1351 break;
1352 }
1353 }
1354 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1355 }
1356
1357 /**
1358 * nvmet_fc_register_targetport - transport entry point called by an
1359 * LLDD to register the existence of a local
1360 * NVME subystem FC port.
1361 * @pinfo: pointer to information about the port to be registered
1362 * @template: LLDD entrypoints and operational parameters for the port
1363 * @dev: physical hardware device node port corresponds to. Will be
1364 * used for DMA mappings
1365 * @portptr: pointer to a local port pointer. Upon success, the routine
1366 * will allocate a nvme_fc_local_port structure and place its
1367 * address in the local port pointer. Upon failure, local port
1368 * pointer will be set to NULL.
1369 *
1370 * Returns:
1371 * a completion status. Must be 0 upon success; a negative errno
1372 * (ex: -ENXIO) upon failure.
1373 */
1374 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1375 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1376 struct nvmet_fc_target_template *template,
1377 struct device *dev,
1378 struct nvmet_fc_target_port **portptr)
1379 {
1380 struct nvmet_fc_tgtport *newrec;
1381 unsigned long flags;
1382 int ret, idx;
1383
1384 if (!template->xmt_ls_rsp || !template->fcp_op ||
1385 !template->fcp_abort ||
1386 !template->fcp_req_release || !template->targetport_delete ||
1387 !template->max_hw_queues || !template->max_sgl_segments ||
1388 !template->max_dif_sgl_segments || !template->dma_boundary) {
1389 ret = -EINVAL;
1390 goto out_regtgt_failed;
1391 }
1392
1393 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1394 GFP_KERNEL);
1395 if (!newrec) {
1396 ret = -ENOMEM;
1397 goto out_regtgt_failed;
1398 }
1399
1400 idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1401 if (idx < 0) {
1402 ret = -ENOSPC;
1403 goto out_fail_kfree;
1404 }
1405
1406 if (!get_device(dev) && dev) {
1407 ret = -ENODEV;
1408 goto out_ida_put;
1409 }
1410
1411 newrec->fc_target_port.node_name = pinfo->node_name;
1412 newrec->fc_target_port.port_name = pinfo->port_name;
1413 if (template->target_priv_sz)
1414 newrec->fc_target_port.private = &newrec[1];
1415 else
1416 newrec->fc_target_port.private = NULL;
1417 newrec->fc_target_port.port_id = pinfo->port_id;
1418 newrec->fc_target_port.port_num = idx;
1419 INIT_LIST_HEAD(&newrec->tgt_list);
1420 newrec->dev = dev;
1421 newrec->ops = template;
1422 spin_lock_init(&newrec->lock);
1423 INIT_LIST_HEAD(&newrec->ls_rcv_list);
1424 INIT_LIST_HEAD(&newrec->ls_req_list);
1425 INIT_LIST_HEAD(&newrec->ls_busylist);
1426 INIT_LIST_HEAD(&newrec->assoc_list);
1427 INIT_LIST_HEAD(&newrec->host_list);
1428 kref_init(&newrec->ref);
1429 ida_init(&newrec->assoc_cnt);
1430 newrec->max_sg_cnt = template->max_sgl_segments;
1431 INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1432
1433 ret = nvmet_fc_alloc_ls_iodlist(newrec);
1434 if (ret) {
1435 ret = -ENOMEM;
1436 goto out_free_newrec;
1437 }
1438
1439 nvmet_fc_portentry_rebind_tgt(newrec);
1440
1441 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1442 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1443 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1444
1445 *portptr = &newrec->fc_target_port;
1446 return 0;
1447
1448 out_free_newrec:
1449 put_device(dev);
1450 out_ida_put:
1451 ida_free(&nvmet_fc_tgtport_cnt, idx);
1452 out_fail_kfree:
1453 kfree(newrec);
1454 out_regtgt_failed:
1455 *portptr = NULL;
1456 return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1459
1460
1461 static void
nvmet_fc_free_tgtport(struct kref * ref)1462 nvmet_fc_free_tgtport(struct kref *ref)
1463 {
1464 struct nvmet_fc_tgtport *tgtport =
1465 container_of(ref, struct nvmet_fc_tgtport, ref);
1466 struct device *dev = tgtport->dev;
1467 unsigned long flags;
1468
1469 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1470 list_del(&tgtport->tgt_list);
1471 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1472
1473 nvmet_fc_free_ls_iodlist(tgtport);
1474
1475 /* let the LLDD know we've finished tearing it down */
1476 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1477
1478 ida_free(&nvmet_fc_tgtport_cnt,
1479 tgtport->fc_target_port.port_num);
1480
1481 ida_destroy(&tgtport->assoc_cnt);
1482
1483 kfree(tgtport);
1484
1485 put_device(dev);
1486 }
1487
1488 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1489 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1490 {
1491 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1492 }
1493
1494 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1495 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1496 {
1497 return kref_get_unless_zero(&tgtport->ref);
1498 }
1499
1500 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1501 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1502 {
1503 struct nvmet_fc_tgt_assoc *assoc;
1504
1505 rcu_read_lock();
1506 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1507 if (!nvmet_fc_tgt_a_get(assoc))
1508 continue;
1509 nvmet_fc_schedule_delete_assoc(assoc);
1510 nvmet_fc_tgt_a_put(assoc);
1511 }
1512 rcu_read_unlock();
1513 }
1514
1515 /**
1516 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1517 * to remove references to a hosthandle for LS's.
1518 *
1519 * The nvmet-fc layer ensures that any references to the hosthandle
1520 * on the targetport are forgotten (set to NULL). The LLDD will
1521 * typically call this when a login with a remote host port has been
1522 * lost, thus LS's for the remote host port are no longer possible.
1523 *
1524 * If an LS request is outstanding to the targetport/hosthandle (or
1525 * issued concurrently with the call to invalidate the host), the
1526 * LLDD is responsible for terminating/aborting the LS and completing
1527 * the LS request. It is recommended that these terminations/aborts
1528 * occur after calling to invalidate the host handle to avoid additional
1529 * retries by the nvmet-fc transport. The nvmet-fc transport may
1530 * continue to reference host handle while it cleans up outstanding
1531 * NVME associations. The nvmet-fc transport will call the
1532 * ops->host_release() callback to notify the LLDD that all references
1533 * are complete and the related host handle can be recovered.
1534 * Note: if there are no references, the callback may be called before
1535 * the invalidate host call returns.
1536 *
1537 * @target_port: pointer to the (registered) target port that a prior
1538 * LS was received on and which supplied the transport the
1539 * hosthandle.
1540 * @hosthandle: the handle (pointer) that represents the host port
1541 * that no longer has connectivity and that LS's should
1542 * no longer be directed to.
1543 */
1544 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1545 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1546 void *hosthandle)
1547 {
1548 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1549 struct nvmet_fc_tgt_assoc *assoc, *next;
1550 unsigned long flags;
1551 bool noassoc = true;
1552
1553 spin_lock_irqsave(&tgtport->lock, flags);
1554 list_for_each_entry_safe(assoc, next,
1555 &tgtport->assoc_list, a_list) {
1556 if (!assoc->hostport ||
1557 assoc->hostport->hosthandle != hosthandle)
1558 continue;
1559 if (!nvmet_fc_tgt_a_get(assoc))
1560 continue;
1561 assoc->hostport->invalid = 1;
1562 noassoc = false;
1563 nvmet_fc_schedule_delete_assoc(assoc);
1564 nvmet_fc_tgt_a_put(assoc);
1565 }
1566 spin_unlock_irqrestore(&tgtport->lock, flags);
1567
1568 /* if there's nothing to wait for - call the callback */
1569 if (noassoc && tgtport->ops->host_release)
1570 tgtport->ops->host_release(hosthandle);
1571 }
1572 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1573
1574 /*
1575 * nvmet layer has called to terminate an association
1576 */
1577 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1578 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1579 {
1580 struct nvmet_fc_tgtport *tgtport, *next;
1581 struct nvmet_fc_tgt_assoc *assoc;
1582 struct nvmet_fc_tgt_queue *queue;
1583 unsigned long flags;
1584 bool found_ctrl = false;
1585
1586 /* this is a bit ugly, but don't want to make locks layered */
1587 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1588 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1589 tgt_list) {
1590 if (!nvmet_fc_tgtport_get(tgtport))
1591 continue;
1592 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1593
1594 rcu_read_lock();
1595 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1596 queue = assoc->queues[0];
1597 if (queue && queue->nvme_sq.ctrl == ctrl) {
1598 if (nvmet_fc_tgt_a_get(assoc))
1599 found_ctrl = true;
1600 break;
1601 }
1602 }
1603 rcu_read_unlock();
1604
1605 nvmet_fc_tgtport_put(tgtport);
1606
1607 if (found_ctrl) {
1608 nvmet_fc_schedule_delete_assoc(assoc);
1609 nvmet_fc_tgt_a_put(assoc);
1610 return;
1611 }
1612
1613 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1614 }
1615 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1616 }
1617
1618 /**
1619 * nvmet_fc_unregister_targetport - transport entry point called by an
1620 * LLDD to deregister/remove a previously
1621 * registered a local NVME subsystem FC port.
1622 * @target_port: pointer to the (registered) target port that is to be
1623 * deregistered.
1624 *
1625 * Returns:
1626 * a completion status. Must be 0 upon success; a negative errno
1627 * (ex: -ENXIO) upon failure.
1628 */
1629 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1630 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1631 {
1632 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1633
1634 nvmet_fc_portentry_unbind_tgt(tgtport);
1635
1636 /* terminate any outstanding associations */
1637 __nvmet_fc_free_assocs(tgtport);
1638
1639 flush_workqueue(nvmet_wq);
1640
1641 /*
1642 * should terminate LS's as well. However, LS's will be generated
1643 * at the tail end of association termination, so they likely don't
1644 * exist yet. And even if they did, it's worthwhile to just let
1645 * them finish and targetport ref counting will clean things up.
1646 */
1647
1648 nvmet_fc_tgtport_put(tgtport);
1649
1650 return 0;
1651 }
1652 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1653
1654
1655 /* ********************** FC-NVME LS RCV Handling ************************* */
1656
1657
1658 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1659 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1660 struct nvmet_fc_ls_iod *iod)
1661 {
1662 struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1663 struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1664 struct nvmet_fc_tgt_queue *queue;
1665 int ret = 0;
1666
1667 memset(acc, 0, sizeof(*acc));
1668
1669 /*
1670 * FC-NVME spec changes. There are initiators sending different
1671 * lengths as padding sizes for Create Association Cmd descriptor
1672 * was incorrect.
1673 * Accept anything of "minimum" length. Assume format per 1.15
1674 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1675 * trailing pad length is.
1676 */
1677 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1678 ret = VERR_CR_ASSOC_LEN;
1679 else if (be32_to_cpu(rqst->desc_list_len) <
1680 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1681 ret = VERR_CR_ASSOC_RQST_LEN;
1682 else if (rqst->assoc_cmd.desc_tag !=
1683 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1684 ret = VERR_CR_ASSOC_CMD;
1685 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1686 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1687 ret = VERR_CR_ASSOC_CMD_LEN;
1688 else if (!rqst->assoc_cmd.ersp_ratio ||
1689 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1690 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1691 ret = VERR_ERSP_RATIO;
1692
1693 else {
1694 /* new association w/ admin queue */
1695 iod->assoc = nvmet_fc_alloc_target_assoc(
1696 tgtport, iod->hosthandle);
1697 if (!iod->assoc)
1698 ret = VERR_ASSOC_ALLOC_FAIL;
1699 else {
1700 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1701 be16_to_cpu(rqst->assoc_cmd.sqsize));
1702 if (!queue) {
1703 ret = VERR_QUEUE_ALLOC_FAIL;
1704 nvmet_fc_tgt_a_put(iod->assoc);
1705 }
1706 }
1707 }
1708
1709 if (ret) {
1710 dev_err(tgtport->dev,
1711 "Create Association LS failed: %s\n",
1712 validation_errors[ret]);
1713 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1714 sizeof(*acc), rqst->w0.ls_cmd,
1715 FCNVME_RJT_RC_LOGIC,
1716 FCNVME_RJT_EXP_NONE, 0);
1717 return;
1718 }
1719
1720 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1721 atomic_set(&queue->connected, 1);
1722 queue->sqhd = 0; /* best place to init value */
1723
1724 dev_info(tgtport->dev,
1725 "{%d:%d} Association created\n",
1726 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1727
1728 /* format a response */
1729
1730 iod->lsrsp->rsplen = sizeof(*acc);
1731
1732 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1733 fcnvme_lsdesc_len(
1734 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1735 FCNVME_LS_CREATE_ASSOCIATION);
1736 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1737 acc->associd.desc_len =
1738 fcnvme_lsdesc_len(
1739 sizeof(struct fcnvme_lsdesc_assoc_id));
1740 acc->associd.association_id =
1741 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1742 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1743 acc->connectid.desc_len =
1744 fcnvme_lsdesc_len(
1745 sizeof(struct fcnvme_lsdesc_conn_id));
1746 acc->connectid.connection_id = acc->associd.association_id;
1747 }
1748
1749 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1750 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1751 struct nvmet_fc_ls_iod *iod)
1752 {
1753 struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1754 struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1755 struct nvmet_fc_tgt_queue *queue;
1756 int ret = 0;
1757
1758 memset(acc, 0, sizeof(*acc));
1759
1760 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1761 ret = VERR_CR_CONN_LEN;
1762 else if (rqst->desc_list_len !=
1763 fcnvme_lsdesc_len(
1764 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1765 ret = VERR_CR_CONN_RQST_LEN;
1766 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1767 ret = VERR_ASSOC_ID;
1768 else if (rqst->associd.desc_len !=
1769 fcnvme_lsdesc_len(
1770 sizeof(struct fcnvme_lsdesc_assoc_id)))
1771 ret = VERR_ASSOC_ID_LEN;
1772 else if (rqst->connect_cmd.desc_tag !=
1773 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1774 ret = VERR_CR_CONN_CMD;
1775 else if (rqst->connect_cmd.desc_len !=
1776 fcnvme_lsdesc_len(
1777 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1778 ret = VERR_CR_CONN_CMD_LEN;
1779 else if (!rqst->connect_cmd.ersp_ratio ||
1780 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1781 be16_to_cpu(rqst->connect_cmd.sqsize)))
1782 ret = VERR_ERSP_RATIO;
1783
1784 else {
1785 /* new io queue */
1786 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1787 be64_to_cpu(rqst->associd.association_id));
1788 if (!iod->assoc)
1789 ret = VERR_NO_ASSOC;
1790 else {
1791 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1792 be16_to_cpu(rqst->connect_cmd.qid),
1793 be16_to_cpu(rqst->connect_cmd.sqsize));
1794 if (!queue)
1795 ret = VERR_QUEUE_ALLOC_FAIL;
1796
1797 /* release get taken in nvmet_fc_find_target_assoc */
1798 nvmet_fc_tgt_a_put(iod->assoc);
1799 }
1800 }
1801
1802 if (ret) {
1803 dev_err(tgtport->dev,
1804 "Create Connection LS failed: %s\n",
1805 validation_errors[ret]);
1806 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1807 sizeof(*acc), rqst->w0.ls_cmd,
1808 (ret == VERR_NO_ASSOC) ?
1809 FCNVME_RJT_RC_INV_ASSOC :
1810 FCNVME_RJT_RC_LOGIC,
1811 FCNVME_RJT_EXP_NONE, 0);
1812 return;
1813 }
1814
1815 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1816 atomic_set(&queue->connected, 1);
1817 queue->sqhd = 0; /* best place to init value */
1818
1819 /* format a response */
1820
1821 iod->lsrsp->rsplen = sizeof(*acc);
1822
1823 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1824 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1825 FCNVME_LS_CREATE_CONNECTION);
1826 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1827 acc->connectid.desc_len =
1828 fcnvme_lsdesc_len(
1829 sizeof(struct fcnvme_lsdesc_conn_id));
1830 acc->connectid.connection_id =
1831 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1832 be16_to_cpu(rqst->connect_cmd.qid)));
1833 }
1834
1835 /*
1836 * Returns true if the LS response is to be transmit
1837 * Returns false if the LS response is to be delayed
1838 */
1839 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1840 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1841 struct nvmet_fc_ls_iod *iod)
1842 {
1843 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1844 &iod->rqstbuf->rq_dis_assoc;
1845 struct fcnvme_ls_disconnect_assoc_acc *acc =
1846 &iod->rspbuf->rsp_dis_assoc;
1847 struct nvmet_fc_tgt_assoc *assoc = NULL;
1848 struct nvmet_fc_ls_iod *oldls = NULL;
1849 unsigned long flags;
1850 int ret = 0;
1851
1852 memset(acc, 0, sizeof(*acc));
1853
1854 ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1855 if (!ret) {
1856 /* match an active association - takes an assoc ref if !NULL */
1857 assoc = nvmet_fc_find_target_assoc(tgtport,
1858 be64_to_cpu(rqst->associd.association_id));
1859 iod->assoc = assoc;
1860 if (!assoc)
1861 ret = VERR_NO_ASSOC;
1862 }
1863
1864 if (ret || !assoc) {
1865 dev_err(tgtport->dev,
1866 "Disconnect LS failed: %s\n",
1867 validation_errors[ret]);
1868 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1869 sizeof(*acc), rqst->w0.ls_cmd,
1870 (ret == VERR_NO_ASSOC) ?
1871 FCNVME_RJT_RC_INV_ASSOC :
1872 FCNVME_RJT_RC_LOGIC,
1873 FCNVME_RJT_EXP_NONE, 0);
1874 return true;
1875 }
1876
1877 /* format a response */
1878
1879 iod->lsrsp->rsplen = sizeof(*acc);
1880
1881 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1882 fcnvme_lsdesc_len(
1883 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1884 FCNVME_LS_DISCONNECT_ASSOC);
1885
1886 /*
1887 * The rules for LS response says the response cannot
1888 * go back until ABTS's have been sent for all outstanding
1889 * I/O and a Disconnect Association LS has been sent.
1890 * So... save off the Disconnect LS to send the response
1891 * later. If there was a prior LS already saved, replace
1892 * it with the newer one and send a can't perform reject
1893 * on the older one.
1894 */
1895 spin_lock_irqsave(&tgtport->lock, flags);
1896 oldls = assoc->rcv_disconn;
1897 assoc->rcv_disconn = iod;
1898 spin_unlock_irqrestore(&tgtport->lock, flags);
1899
1900 if (oldls) {
1901 dev_info(tgtport->dev,
1902 "{%d:%d} Multiple Disconnect Association LS's "
1903 "received\n",
1904 tgtport->fc_target_port.port_num, assoc->a_id);
1905 /* overwrite good response with bogus failure */
1906 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1907 sizeof(*iod->rspbuf),
1908 /* ok to use rqst, LS is same */
1909 rqst->w0.ls_cmd,
1910 FCNVME_RJT_RC_UNAB,
1911 FCNVME_RJT_EXP_NONE, 0);
1912 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1913 }
1914
1915 nvmet_fc_schedule_delete_assoc(assoc);
1916 nvmet_fc_tgt_a_put(assoc);
1917
1918 return false;
1919 }
1920
1921
1922 /* *********************** NVME Ctrl Routines **************************** */
1923
1924
1925 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1926
1927 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1928
1929 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1930 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1931 {
1932 struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1933 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1934
1935 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1936 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1937 nvmet_fc_free_ls_iod(tgtport, iod);
1938 nvmet_fc_tgtport_put(tgtport);
1939 }
1940
1941 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1942 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1943 struct nvmet_fc_ls_iod *iod)
1944 {
1945 int ret;
1946
1947 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1948 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1949
1950 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1951 if (ret)
1952 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1953 }
1954
1955 /*
1956 * Actual processing routine for received FC-NVME LS Requests from the LLD
1957 */
1958 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1959 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1960 struct nvmet_fc_ls_iod *iod)
1961 {
1962 struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1963 bool sendrsp = true;
1964
1965 iod->lsrsp->nvme_fc_private = iod;
1966 iod->lsrsp->rspbuf = iod->rspbuf;
1967 iod->lsrsp->rspdma = iod->rspdma;
1968 iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1969 /* Be preventative. handlers will later set to valid length */
1970 iod->lsrsp->rsplen = 0;
1971
1972 iod->assoc = NULL;
1973
1974 /*
1975 * handlers:
1976 * parse request input, execute the request, and format the
1977 * LS response
1978 */
1979 switch (w0->ls_cmd) {
1980 case FCNVME_LS_CREATE_ASSOCIATION:
1981 /* Creates Association and initial Admin Queue/Connection */
1982 nvmet_fc_ls_create_association(tgtport, iod);
1983 break;
1984 case FCNVME_LS_CREATE_CONNECTION:
1985 /* Creates an IO Queue/Connection */
1986 nvmet_fc_ls_create_connection(tgtport, iod);
1987 break;
1988 case FCNVME_LS_DISCONNECT_ASSOC:
1989 /* Terminate a Queue/Connection or the Association */
1990 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1991 break;
1992 default:
1993 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1994 sizeof(*iod->rspbuf), w0->ls_cmd,
1995 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1996 }
1997
1998 if (sendrsp)
1999 nvmet_fc_xmt_ls_rsp(tgtport, iod);
2000 }
2001
2002 /*
2003 * Actual processing routine for received FC-NVME LS Requests from the LLD
2004 */
2005 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)2006 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2007 {
2008 struct nvmet_fc_ls_iod *iod =
2009 container_of(work, struct nvmet_fc_ls_iod, work);
2010 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2011
2012 nvmet_fc_handle_ls_rqst(tgtport, iod);
2013 }
2014
2015
2016 /**
2017 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2018 * upon the reception of a NVME LS request.
2019 *
2020 * The nvmet-fc layer will copy payload to an internal structure for
2021 * processing. As such, upon completion of the routine, the LLDD may
2022 * immediately free/reuse the LS request buffer passed in the call.
2023 *
2024 * If this routine returns error, the LLDD should abort the exchange.
2025 *
2026 * @target_port: pointer to the (registered) target port the LS was
2027 * received on.
2028 * @hosthandle: pointer to the host specific data, gets stored in iod.
2029 * @lsrsp: pointer to a lsrsp structure to be used to reference
2030 * the exchange corresponding to the LS.
2031 * @lsreqbuf: pointer to the buffer containing the LS Request
2032 * @lsreqbuf_len: length, in bytes, of the received LS request
2033 */
2034 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2035 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2036 void *hosthandle,
2037 struct nvmefc_ls_rsp *lsrsp,
2038 void *lsreqbuf, u32 lsreqbuf_len)
2039 {
2040 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2041 struct nvmet_fc_ls_iod *iod;
2042 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2043
2044 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2045 dev_info(tgtport->dev,
2046 "RCV %s LS failed: payload too large (%d)\n",
2047 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2048 nvmefc_ls_names[w0->ls_cmd] : "",
2049 lsreqbuf_len);
2050 return -E2BIG;
2051 }
2052
2053 if (!nvmet_fc_tgtport_get(tgtport)) {
2054 dev_info(tgtport->dev,
2055 "RCV %s LS failed: target deleting\n",
2056 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2057 nvmefc_ls_names[w0->ls_cmd] : "");
2058 return -ESHUTDOWN;
2059 }
2060
2061 iod = nvmet_fc_alloc_ls_iod(tgtport);
2062 if (!iod) {
2063 dev_info(tgtport->dev,
2064 "RCV %s LS failed: context allocation failed\n",
2065 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2066 nvmefc_ls_names[w0->ls_cmd] : "");
2067 nvmet_fc_tgtport_put(tgtport);
2068 return -ENOENT;
2069 }
2070
2071 iod->lsrsp = lsrsp;
2072 iod->fcpreq = NULL;
2073 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2074 iod->rqstdatalen = lsreqbuf_len;
2075 iod->hosthandle = hosthandle;
2076
2077 queue_work(nvmet_wq, &iod->work);
2078
2079 return 0;
2080 }
2081 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2082
2083
2084 /*
2085 * **********************
2086 * Start of FCP handling
2087 * **********************
2088 */
2089
2090 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2091 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2092 {
2093 struct scatterlist *sg;
2094 unsigned int nent;
2095
2096 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2097 if (!sg)
2098 goto out;
2099
2100 fod->data_sg = sg;
2101 fod->data_sg_cnt = nent;
2102 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2103 ((fod->io_dir == NVMET_FCP_WRITE) ?
2104 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2105 /* note: write from initiator perspective */
2106 fod->next_sg = fod->data_sg;
2107
2108 return 0;
2109
2110 out:
2111 return NVME_SC_INTERNAL;
2112 }
2113
2114 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2115 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2116 {
2117 if (!fod->data_sg || !fod->data_sg_cnt)
2118 return;
2119
2120 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2121 ((fod->io_dir == NVMET_FCP_WRITE) ?
2122 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2123 sgl_free(fod->data_sg);
2124 fod->data_sg = NULL;
2125 fod->data_sg_cnt = 0;
2126 }
2127
2128
2129 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2130 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2131 {
2132 u32 sqtail, used;
2133
2134 /* egad, this is ugly. And sqtail is just a best guess */
2135 sqtail = atomic_read(&q->sqtail) % q->sqsize;
2136
2137 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2138 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2139 }
2140
2141 /*
2142 * Prep RSP payload.
2143 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2144 */
2145 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2146 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2147 struct nvmet_fc_fcp_iod *fod)
2148 {
2149 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2150 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2151 struct nvme_completion *cqe = &ersp->cqe;
2152 u32 *cqewd = (u32 *)cqe;
2153 bool send_ersp = false;
2154 u32 rsn, rspcnt, xfr_length;
2155
2156 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2157 xfr_length = fod->req.transfer_len;
2158 else
2159 xfr_length = fod->offset;
2160
2161 /*
2162 * check to see if we can send a 0's rsp.
2163 * Note: to send a 0's response, the NVME-FC host transport will
2164 * recreate the CQE. The host transport knows: sq id, SQHD (last
2165 * seen in an ersp), and command_id. Thus it will create a
2166 * zero-filled CQE with those known fields filled in. Transport
2167 * must send an ersp for any condition where the cqe won't match
2168 * this.
2169 *
2170 * Here are the FC-NVME mandated cases where we must send an ersp:
2171 * every N responses, where N=ersp_ratio
2172 * force fabric commands to send ersp's (not in FC-NVME but good
2173 * practice)
2174 * normal cmds: any time status is non-zero, or status is zero
2175 * but words 0 or 1 are non-zero.
2176 * the SQ is 90% or more full
2177 * the cmd is a fused command
2178 * transferred data length not equal to cmd iu length
2179 */
2180 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2181 if (!(rspcnt % fod->queue->ersp_ratio) ||
2182 nvme_is_fabrics((struct nvme_command *) sqe) ||
2183 xfr_length != fod->req.transfer_len ||
2184 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2185 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2186 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2187 send_ersp = true;
2188
2189 /* re-set the fields */
2190 fod->fcpreq->rspaddr = ersp;
2191 fod->fcpreq->rspdma = fod->rspdma;
2192
2193 if (!send_ersp) {
2194 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2195 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2196 } else {
2197 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2198 rsn = atomic_inc_return(&fod->queue->rsn);
2199 ersp->rsn = cpu_to_be32(rsn);
2200 ersp->xfrd_len = cpu_to_be32(xfr_length);
2201 fod->fcpreq->rsplen = sizeof(*ersp);
2202 }
2203
2204 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2205 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2206 }
2207
2208 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2209
2210 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2211 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2212 struct nvmet_fc_fcp_iod *fod)
2213 {
2214 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2215
2216 /* data no longer needed */
2217 nvmet_fc_free_tgt_pgs(fod);
2218
2219 /*
2220 * if an ABTS was received or we issued the fcp_abort early
2221 * don't call abort routine again.
2222 */
2223 /* no need to take lock - lock was taken earlier to get here */
2224 if (!fod->aborted)
2225 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2226
2227 nvmet_fc_free_fcp_iod(fod->queue, fod);
2228 }
2229
2230 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2231 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2232 struct nvmet_fc_fcp_iod *fod)
2233 {
2234 int ret;
2235
2236 fod->fcpreq->op = NVMET_FCOP_RSP;
2237 fod->fcpreq->timeout = 0;
2238
2239 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2240
2241 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2242 if (ret)
2243 nvmet_fc_abort_op(tgtport, fod);
2244 }
2245
2246 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2247 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2248 struct nvmet_fc_fcp_iod *fod, u8 op)
2249 {
2250 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2251 struct scatterlist *sg = fod->next_sg;
2252 unsigned long flags;
2253 u32 remaininglen = fod->req.transfer_len - fod->offset;
2254 u32 tlen = 0;
2255 int ret;
2256
2257 fcpreq->op = op;
2258 fcpreq->offset = fod->offset;
2259 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2260
2261 /*
2262 * for next sequence:
2263 * break at a sg element boundary
2264 * attempt to keep sequence length capped at
2265 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2266 * be longer if a single sg element is larger
2267 * than that amount. This is done to avoid creating
2268 * a new sg list to use for the tgtport api.
2269 */
2270 fcpreq->sg = sg;
2271 fcpreq->sg_cnt = 0;
2272 while (tlen < remaininglen &&
2273 fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2274 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2275 fcpreq->sg_cnt++;
2276 tlen += sg_dma_len(sg);
2277 sg = sg_next(sg);
2278 }
2279 if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2280 fcpreq->sg_cnt++;
2281 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2282 sg = sg_next(sg);
2283 }
2284 if (tlen < remaininglen)
2285 fod->next_sg = sg;
2286 else
2287 fod->next_sg = NULL;
2288
2289 fcpreq->transfer_length = tlen;
2290 fcpreq->transferred_length = 0;
2291 fcpreq->fcp_error = 0;
2292 fcpreq->rsplen = 0;
2293
2294 /*
2295 * If the last READDATA request: check if LLDD supports
2296 * combined xfr with response.
2297 */
2298 if ((op == NVMET_FCOP_READDATA) &&
2299 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2300 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2301 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2302 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2303 }
2304
2305 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2306 if (ret) {
2307 /*
2308 * should be ok to set w/o lock as its in the thread of
2309 * execution (not an async timer routine) and doesn't
2310 * contend with any clearing action
2311 */
2312 fod->abort = true;
2313
2314 if (op == NVMET_FCOP_WRITEDATA) {
2315 spin_lock_irqsave(&fod->flock, flags);
2316 fod->writedataactive = false;
2317 spin_unlock_irqrestore(&fod->flock, flags);
2318 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2319 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2320 fcpreq->fcp_error = ret;
2321 fcpreq->transferred_length = 0;
2322 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2323 }
2324 }
2325 }
2326
2327 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2328 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2329 {
2330 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2331 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2332
2333 /* if in the middle of an io and we need to tear down */
2334 if (abort) {
2335 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2336 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2337 return true;
2338 }
2339
2340 nvmet_fc_abort_op(tgtport, fod);
2341 return true;
2342 }
2343
2344 return false;
2345 }
2346
2347 /*
2348 * actual done handler for FCP operations when completed by the lldd
2349 */
2350 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2351 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2352 {
2353 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2354 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2355 unsigned long flags;
2356 bool abort;
2357
2358 spin_lock_irqsave(&fod->flock, flags);
2359 abort = fod->abort;
2360 fod->writedataactive = false;
2361 spin_unlock_irqrestore(&fod->flock, flags);
2362
2363 switch (fcpreq->op) {
2364
2365 case NVMET_FCOP_WRITEDATA:
2366 if (__nvmet_fc_fod_op_abort(fod, abort))
2367 return;
2368 if (fcpreq->fcp_error ||
2369 fcpreq->transferred_length != fcpreq->transfer_length) {
2370 spin_lock_irqsave(&fod->flock, flags);
2371 fod->abort = true;
2372 spin_unlock_irqrestore(&fod->flock, flags);
2373
2374 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2375 return;
2376 }
2377
2378 fod->offset += fcpreq->transferred_length;
2379 if (fod->offset != fod->req.transfer_len) {
2380 spin_lock_irqsave(&fod->flock, flags);
2381 fod->writedataactive = true;
2382 spin_unlock_irqrestore(&fod->flock, flags);
2383
2384 /* transfer the next chunk */
2385 nvmet_fc_transfer_fcp_data(tgtport, fod,
2386 NVMET_FCOP_WRITEDATA);
2387 return;
2388 }
2389
2390 /* data transfer complete, resume with nvmet layer */
2391 fod->req.execute(&fod->req);
2392 break;
2393
2394 case NVMET_FCOP_READDATA:
2395 case NVMET_FCOP_READDATA_RSP:
2396 if (__nvmet_fc_fod_op_abort(fod, abort))
2397 return;
2398 if (fcpreq->fcp_error ||
2399 fcpreq->transferred_length != fcpreq->transfer_length) {
2400 nvmet_fc_abort_op(tgtport, fod);
2401 return;
2402 }
2403
2404 /* success */
2405
2406 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2407 /* data no longer needed */
2408 nvmet_fc_free_tgt_pgs(fod);
2409 nvmet_fc_free_fcp_iod(fod->queue, fod);
2410 return;
2411 }
2412
2413 fod->offset += fcpreq->transferred_length;
2414 if (fod->offset != fod->req.transfer_len) {
2415 /* transfer the next chunk */
2416 nvmet_fc_transfer_fcp_data(tgtport, fod,
2417 NVMET_FCOP_READDATA);
2418 return;
2419 }
2420
2421 /* data transfer complete, send response */
2422
2423 /* data no longer needed */
2424 nvmet_fc_free_tgt_pgs(fod);
2425
2426 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2427
2428 break;
2429
2430 case NVMET_FCOP_RSP:
2431 if (__nvmet_fc_fod_op_abort(fod, abort))
2432 return;
2433 nvmet_fc_free_fcp_iod(fod->queue, fod);
2434 break;
2435
2436 default:
2437 break;
2438 }
2439 }
2440
2441 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2442 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2443 {
2444 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2445
2446 nvmet_fc_fod_op_done(fod);
2447 }
2448
2449 /*
2450 * actual completion handler after execution by the nvmet layer
2451 */
2452 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2453 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2454 struct nvmet_fc_fcp_iod *fod, int status)
2455 {
2456 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2457 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2458 unsigned long flags;
2459 bool abort;
2460
2461 spin_lock_irqsave(&fod->flock, flags);
2462 abort = fod->abort;
2463 spin_unlock_irqrestore(&fod->flock, flags);
2464
2465 /* if we have a CQE, snoop the last sq_head value */
2466 if (!status)
2467 fod->queue->sqhd = cqe->sq_head;
2468
2469 if (abort) {
2470 nvmet_fc_abort_op(tgtport, fod);
2471 return;
2472 }
2473
2474 /* if an error handling the cmd post initial parsing */
2475 if (status) {
2476 /* fudge up a failed CQE status for our transport error */
2477 memset(cqe, 0, sizeof(*cqe));
2478 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2479 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2480 cqe->command_id = sqe->command_id;
2481 cqe->status = cpu_to_le16(status);
2482 } else {
2483
2484 /*
2485 * try to push the data even if the SQE status is non-zero.
2486 * There may be a status where data still was intended to
2487 * be moved
2488 */
2489 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2490 /* push the data over before sending rsp */
2491 nvmet_fc_transfer_fcp_data(tgtport, fod,
2492 NVMET_FCOP_READDATA);
2493 return;
2494 }
2495
2496 /* writes & no data - fall thru */
2497 }
2498
2499 /* data no longer needed */
2500 nvmet_fc_free_tgt_pgs(fod);
2501
2502 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2503 }
2504
2505
2506 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2507 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2508 {
2509 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2510 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2511
2512 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2513 }
2514
2515
2516 /*
2517 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2518 */
2519 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2520 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2521 struct nvmet_fc_fcp_iod *fod)
2522 {
2523 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2524 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2525 int ret;
2526
2527 /*
2528 * Fused commands are currently not supported in the linux
2529 * implementation.
2530 *
2531 * As such, the implementation of the FC transport does not
2532 * look at the fused commands and order delivery to the upper
2533 * layer until we have both based on csn.
2534 */
2535
2536 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2537
2538 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2539 fod->io_dir = NVMET_FCP_WRITE;
2540 if (!nvme_is_write(&cmdiu->sqe))
2541 goto transport_error;
2542 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2543 fod->io_dir = NVMET_FCP_READ;
2544 if (nvme_is_write(&cmdiu->sqe))
2545 goto transport_error;
2546 } else {
2547 fod->io_dir = NVMET_FCP_NODATA;
2548 if (xfrlen)
2549 goto transport_error;
2550 }
2551
2552 fod->req.cmd = &fod->cmdiubuf.sqe;
2553 fod->req.cqe = &fod->rspiubuf.cqe;
2554 if (!tgtport->pe)
2555 goto transport_error;
2556 fod->req.port = tgtport->pe->port;
2557
2558 /* clear any response payload */
2559 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2560
2561 fod->data_sg = NULL;
2562 fod->data_sg_cnt = 0;
2563
2564 ret = nvmet_req_init(&fod->req,
2565 &fod->queue->nvme_cq,
2566 &fod->queue->nvme_sq,
2567 &nvmet_fc_tgt_fcp_ops);
2568 if (!ret) {
2569 /* bad SQE content or invalid ctrl state */
2570 /* nvmet layer has already called op done to send rsp. */
2571 return;
2572 }
2573
2574 fod->req.transfer_len = xfrlen;
2575
2576 /* keep a running counter of tail position */
2577 atomic_inc(&fod->queue->sqtail);
2578
2579 if (fod->req.transfer_len) {
2580 ret = nvmet_fc_alloc_tgt_pgs(fod);
2581 if (ret) {
2582 nvmet_req_complete(&fod->req, ret);
2583 return;
2584 }
2585 }
2586 fod->req.sg = fod->data_sg;
2587 fod->req.sg_cnt = fod->data_sg_cnt;
2588 fod->offset = 0;
2589
2590 if (fod->io_dir == NVMET_FCP_WRITE) {
2591 /* pull the data over before invoking nvmet layer */
2592 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2593 return;
2594 }
2595
2596 /*
2597 * Reads or no data:
2598 *
2599 * can invoke the nvmet_layer now. If read data, cmd completion will
2600 * push the data
2601 */
2602 fod->req.execute(&fod->req);
2603 return;
2604
2605 transport_error:
2606 nvmet_fc_abort_op(tgtport, fod);
2607 }
2608
2609 /**
2610 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2611 * upon the reception of a NVME FCP CMD IU.
2612 *
2613 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2614 * layer for processing.
2615 *
2616 * The nvmet_fc layer allocates a local job structure (struct
2617 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2618 * CMD IU buffer to the job structure. As such, on a successful
2619 * completion (returns 0), the LLDD may immediately free/reuse
2620 * the CMD IU buffer passed in the call.
2621 *
2622 * However, in some circumstances, due to the packetized nature of FC
2623 * and the api of the FC LLDD which may issue a hw command to send the
2624 * response, but the LLDD may not get the hw completion for that command
2625 * and upcall the nvmet_fc layer before a new command may be
2626 * asynchronously received - its possible for a command to be received
2627 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2628 * the appearance of more commands received than fits in the sq.
2629 * To alleviate this scenario, a temporary queue is maintained in the
2630 * transport for pending LLDD requests waiting for a queue job structure.
2631 * In these "overrun" cases, a temporary queue element is allocated
2632 * the LLDD request and CMD iu buffer information remembered, and the
2633 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2634 * structure is freed, it is immediately reallocated for anything on the
2635 * pending request list. The LLDDs defer_rcv() callback is called,
2636 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2637 * is then started normally with the transport.
2638 *
2639 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2640 * the completion as successful but must not reuse the CMD IU buffer
2641 * until the LLDD's defer_rcv() callback has been called for the
2642 * corresponding struct nvmefc_tgt_fcp_req pointer.
2643 *
2644 * If there is any other condition in which an error occurs, the
2645 * transport will return a non-zero status indicating the error.
2646 * In all cases other than -EOVERFLOW, the transport has not accepted the
2647 * request and the LLDD should abort the exchange.
2648 *
2649 * @target_port: pointer to the (registered) target port the FCP CMD IU
2650 * was received on.
2651 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2652 * the exchange corresponding to the FCP Exchange.
2653 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2654 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2655 */
2656 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2657 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2658 struct nvmefc_tgt_fcp_req *fcpreq,
2659 void *cmdiubuf, u32 cmdiubuf_len)
2660 {
2661 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2662 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2663 struct nvmet_fc_tgt_queue *queue;
2664 struct nvmet_fc_fcp_iod *fod;
2665 struct nvmet_fc_defer_fcp_req *deferfcp;
2666 unsigned long flags;
2667
2668 /* validate iu, so the connection id can be used to find the queue */
2669 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2670 (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2671 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2672 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2673 return -EIO;
2674
2675 queue = nvmet_fc_find_target_queue(tgtport,
2676 be64_to_cpu(cmdiu->connection_id));
2677 if (!queue)
2678 return -ENOTCONN;
2679
2680 /*
2681 * note: reference taken by find_target_queue
2682 * After successful fod allocation, the fod will inherit the
2683 * ownership of that reference and will remove the reference
2684 * when the fod is freed.
2685 */
2686
2687 spin_lock_irqsave(&queue->qlock, flags);
2688
2689 fod = nvmet_fc_alloc_fcp_iod(queue);
2690 if (fod) {
2691 spin_unlock_irqrestore(&queue->qlock, flags);
2692
2693 fcpreq->nvmet_fc_private = fod;
2694 fod->fcpreq = fcpreq;
2695
2696 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2697
2698 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2699
2700 return 0;
2701 }
2702
2703 if (!tgtport->ops->defer_rcv) {
2704 spin_unlock_irqrestore(&queue->qlock, flags);
2705 /* release the queue lookup reference */
2706 nvmet_fc_tgt_q_put(queue);
2707 return -ENOENT;
2708 }
2709
2710 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2711 struct nvmet_fc_defer_fcp_req, req_list);
2712 if (deferfcp) {
2713 /* Just re-use one that was previously allocated */
2714 list_del(&deferfcp->req_list);
2715 } else {
2716 spin_unlock_irqrestore(&queue->qlock, flags);
2717
2718 /* Now we need to dynamically allocate one */
2719 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2720 if (!deferfcp) {
2721 /* release the queue lookup reference */
2722 nvmet_fc_tgt_q_put(queue);
2723 return -ENOMEM;
2724 }
2725 spin_lock_irqsave(&queue->qlock, flags);
2726 }
2727
2728 /* For now, use rspaddr / rsplen to save payload information */
2729 fcpreq->rspaddr = cmdiubuf;
2730 fcpreq->rsplen = cmdiubuf_len;
2731 deferfcp->fcp_req = fcpreq;
2732
2733 /* defer processing till a fod becomes available */
2734 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2735
2736 /* NOTE: the queue lookup reference is still valid */
2737
2738 spin_unlock_irqrestore(&queue->qlock, flags);
2739
2740 return -EOVERFLOW;
2741 }
2742 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2743
2744 /**
2745 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2746 * upon the reception of an ABTS for a FCP command
2747 *
2748 * Notify the transport that an ABTS has been received for a FCP command
2749 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2750 * LLDD believes the command is still being worked on
2751 * (template_ops->fcp_req_release() has not been called).
2752 *
2753 * The transport will wait for any outstanding work (an op to the LLDD,
2754 * which the lldd should complete with error due to the ABTS; or the
2755 * completion from the nvmet layer of the nvme command), then will
2756 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2757 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2758 * to the ABTS either after return from this function (assuming any
2759 * outstanding op work has been terminated) or upon the callback being
2760 * called.
2761 *
2762 * @target_port: pointer to the (registered) target port the FCP CMD IU
2763 * was received on.
2764 * @fcpreq: pointer to the fcpreq request structure that corresponds
2765 * to the exchange that received the ABTS.
2766 */
2767 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2768 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2769 struct nvmefc_tgt_fcp_req *fcpreq)
2770 {
2771 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2772 struct nvmet_fc_tgt_queue *queue;
2773 unsigned long flags;
2774
2775 if (!fod || fod->fcpreq != fcpreq)
2776 /* job appears to have already completed, ignore abort */
2777 return;
2778
2779 queue = fod->queue;
2780
2781 spin_lock_irqsave(&queue->qlock, flags);
2782 if (fod->active) {
2783 /*
2784 * mark as abort. The abort handler, invoked upon completion
2785 * of any work, will detect the aborted status and do the
2786 * callback.
2787 */
2788 spin_lock(&fod->flock);
2789 fod->abort = true;
2790 fod->aborted = true;
2791 spin_unlock(&fod->flock);
2792 }
2793 spin_unlock_irqrestore(&queue->qlock, flags);
2794 }
2795 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2796
2797
2798 struct nvmet_fc_traddr {
2799 u64 nn;
2800 u64 pn;
2801 };
2802
2803 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2804 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2805 {
2806 u64 token64;
2807
2808 if (match_u64(sstr, &token64))
2809 return -EINVAL;
2810 *val = token64;
2811
2812 return 0;
2813 }
2814
2815 /*
2816 * This routine validates and extracts the WWN's from the TRADDR string.
2817 * As kernel parsers need the 0x to determine number base, universally
2818 * build string to parse with 0x prefix before parsing name strings.
2819 */
2820 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2821 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2822 {
2823 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2824 substring_t wwn = { name, &name[sizeof(name)-1] };
2825 int nnoffset, pnoffset;
2826
2827 /* validate if string is one of the 2 allowed formats */
2828 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2829 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2830 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2831 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2832 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2833 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2834 NVME_FC_TRADDR_OXNNLEN;
2835 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2836 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2837 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2838 "pn-", NVME_FC_TRADDR_NNLEN))) {
2839 nnoffset = NVME_FC_TRADDR_NNLEN;
2840 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2841 } else
2842 goto out_einval;
2843
2844 name[0] = '0';
2845 name[1] = 'x';
2846 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2847
2848 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2849 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2850 goto out_einval;
2851
2852 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2853 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2854 goto out_einval;
2855
2856 return 0;
2857
2858 out_einval:
2859 pr_warn("%s: bad traddr string\n", __func__);
2860 return -EINVAL;
2861 }
2862
2863 static int
nvmet_fc_add_port(struct nvmet_port * port)2864 nvmet_fc_add_port(struct nvmet_port *port)
2865 {
2866 struct nvmet_fc_tgtport *tgtport;
2867 struct nvmet_fc_port_entry *pe;
2868 struct nvmet_fc_traddr traddr = { 0L, 0L };
2869 unsigned long flags;
2870 int ret;
2871
2872 /* validate the address info */
2873 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2874 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2875 return -EINVAL;
2876
2877 /* map the traddr address info to a target port */
2878
2879 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2880 sizeof(port->disc_addr.traddr));
2881 if (ret)
2882 return ret;
2883
2884 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2885 if (!pe)
2886 return -ENOMEM;
2887
2888 ret = -ENXIO;
2889 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2890 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2891 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2892 (tgtport->fc_target_port.port_name == traddr.pn)) {
2893 /* a FC port can only be 1 nvmet port id */
2894 if (!tgtport->pe) {
2895 nvmet_fc_portentry_bind(tgtport, pe, port);
2896 ret = 0;
2897 } else
2898 ret = -EALREADY;
2899 break;
2900 }
2901 }
2902 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2903
2904 if (ret)
2905 kfree(pe);
2906
2907 return ret;
2908 }
2909
2910 static void
nvmet_fc_remove_port(struct nvmet_port * port)2911 nvmet_fc_remove_port(struct nvmet_port *port)
2912 {
2913 struct nvmet_fc_port_entry *pe = port->priv;
2914
2915 nvmet_fc_portentry_unbind(pe);
2916
2917 /* terminate any outstanding associations */
2918 __nvmet_fc_free_assocs(pe->tgtport);
2919
2920 kfree(pe);
2921 }
2922
2923 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2924 nvmet_fc_discovery_chg(struct nvmet_port *port)
2925 {
2926 struct nvmet_fc_port_entry *pe = port->priv;
2927 struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2928
2929 if (tgtport && tgtport->ops->discovery_event)
2930 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2931 }
2932
2933 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2934 .owner = THIS_MODULE,
2935 .type = NVMF_TRTYPE_FC,
2936 .msdbd = 1,
2937 .add_port = nvmet_fc_add_port,
2938 .remove_port = nvmet_fc_remove_port,
2939 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2940 .delete_ctrl = nvmet_fc_delete_ctrl,
2941 .discovery_chg = nvmet_fc_discovery_chg,
2942 };
2943
nvmet_fc_init_module(void)2944 static int __init nvmet_fc_init_module(void)
2945 {
2946 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2947 }
2948
nvmet_fc_exit_module(void)2949 static void __exit nvmet_fc_exit_module(void)
2950 {
2951 /* ensure any shutdown operation, e.g. delete ctrls have finished */
2952 flush_workqueue(nvmet_wq);
2953
2954 /* sanity check - all lports should be removed */
2955 if (!list_empty(&nvmet_fc_target_list))
2956 pr_warn("%s: targetport list not empty\n", __func__);
2957
2958 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2959
2960 ida_destroy(&nvmet_fc_tgtport_cnt);
2961 }
2962
2963 module_init(nvmet_fc_init_module);
2964 module_exit(nvmet_fc_exit_module);
2965
2966 MODULE_LICENSE("GPL v2");
2967