1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2011-2014, Intel Corporation.
4 * Copyright (c) 2017-2021 Christoph Hellwig.
5 */
6 #include <linux/blk-integrity.h>
7 #include <linux/ptrace.h> /* for force_successful_syscall_return */
8 #include <linux/nvme_ioctl.h>
9 #include <linux/io_uring.h>
10 #include "nvme.h"
11
12 enum {
13 NVME_IOCTL_VEC = (1 << 0),
14 NVME_IOCTL_PARTITION = (1 << 1),
15 };
16
nvme_cmd_allowed(struct nvme_ns * ns,struct nvme_command * c,unsigned int flags,bool open_for_write)17 static bool nvme_cmd_allowed(struct nvme_ns *ns, struct nvme_command *c,
18 unsigned int flags, bool open_for_write)
19 {
20 u32 effects;
21
22 /*
23 * Do not allow unprivileged passthrough on partitions, as that allows an
24 * escape from the containment of the partition.
25 */
26 if (flags & NVME_IOCTL_PARTITION)
27 goto admin;
28
29 /*
30 * Do not allow unprivileged processes to send vendor specific or fabrics
31 * commands as we can't be sure about their effects.
32 */
33 if (c->common.opcode >= nvme_cmd_vendor_start ||
34 c->common.opcode == nvme_fabrics_command)
35 goto admin;
36
37 /*
38 * Do not allow unprivileged passthrough of admin commands except
39 * for a subset of identify commands that contain information required
40 * to form proper I/O commands in userspace and do not expose any
41 * potentially sensitive information.
42 */
43 if (!ns) {
44 if (c->common.opcode == nvme_admin_identify) {
45 switch (c->identify.cns) {
46 case NVME_ID_CNS_NS:
47 case NVME_ID_CNS_CS_NS:
48 case NVME_ID_CNS_NS_CS_INDEP:
49 case NVME_ID_CNS_CS_CTRL:
50 case NVME_ID_CNS_CTRL:
51 return true;
52 }
53 }
54 goto admin;
55 }
56
57 /*
58 * Check if the controller provides a Commands Supported and Effects log
59 * and marks this command as supported. If not reject unprivileged
60 * passthrough.
61 */
62 effects = nvme_command_effects(ns->ctrl, ns, c->common.opcode);
63 if (!(effects & NVME_CMD_EFFECTS_CSUPP))
64 goto admin;
65
66 /*
67 * Don't allow passthrough for command that have intrusive (or unknown)
68 * effects.
69 */
70 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
71 NVME_CMD_EFFECTS_UUID_SEL |
72 NVME_CMD_EFFECTS_SCOPE_MASK))
73 goto admin;
74
75 /*
76 * Only allow I/O commands that transfer data to the controller or that
77 * change the logical block contents if the file descriptor is open for
78 * writing.
79 */
80 if ((nvme_is_write(c) || (effects & NVME_CMD_EFFECTS_LBCC)) &&
81 !open_for_write)
82 goto admin;
83
84 return true;
85 admin:
86 return capable(CAP_SYS_ADMIN);
87 }
88
89 /*
90 * Convert integer values from ioctl structures to user pointers, silently
91 * ignoring the upper bits in the compat case to match behaviour of 32-bit
92 * kernels.
93 */
nvme_to_user_ptr(uintptr_t ptrval)94 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
95 {
96 if (in_compat_syscall())
97 ptrval = (compat_uptr_t)ptrval;
98 return (void __user *)ptrval;
99 }
100
nvme_add_user_metadata(struct request * req,void __user * ubuf,unsigned len,u32 seed)101 static void *nvme_add_user_metadata(struct request *req, void __user *ubuf,
102 unsigned len, u32 seed)
103 {
104 struct bio_integrity_payload *bip;
105 int ret = -ENOMEM;
106 void *buf;
107 struct bio *bio = req->bio;
108
109 buf = kmalloc(len, GFP_KERNEL);
110 if (!buf)
111 goto out;
112
113 if (req_op(req) == REQ_OP_DRV_OUT) {
114 ret = -EFAULT;
115 if (copy_from_user(buf, ubuf, len))
116 goto out_free_meta;
117 } else {
118 memset(buf, 0, len);
119 }
120
121 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
122 if (IS_ERR(bip)) {
123 ret = PTR_ERR(bip);
124 goto out_free_meta;
125 }
126
127 bip->bip_iter.bi_sector = seed;
128 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
129 offset_in_page(buf));
130 if (ret != len) {
131 ret = -ENOMEM;
132 goto out_free_meta;
133 }
134
135 req->cmd_flags |= REQ_INTEGRITY;
136 return buf;
137 out_free_meta:
138 kfree(buf);
139 out:
140 return ERR_PTR(ret);
141 }
142
nvme_finish_user_metadata(struct request * req,void __user * ubuf,void * meta,unsigned len,int ret)143 static int nvme_finish_user_metadata(struct request *req, void __user *ubuf,
144 void *meta, unsigned len, int ret)
145 {
146 if (!ret && req_op(req) == REQ_OP_DRV_IN &&
147 copy_to_user(ubuf, meta, len))
148 ret = -EFAULT;
149 kfree(meta);
150 return ret;
151 }
152
nvme_alloc_user_request(struct request_queue * q,struct nvme_command * cmd,blk_opf_t rq_flags,blk_mq_req_flags_t blk_flags)153 static struct request *nvme_alloc_user_request(struct request_queue *q,
154 struct nvme_command *cmd, blk_opf_t rq_flags,
155 blk_mq_req_flags_t blk_flags)
156 {
157 struct request *req;
158
159 req = blk_mq_alloc_request(q, nvme_req_op(cmd) | rq_flags, blk_flags);
160 if (IS_ERR(req))
161 return req;
162 nvme_init_request(req, cmd);
163 nvme_req(req)->flags |= NVME_REQ_USERCMD;
164 return req;
165 }
166
nvme_map_user_request(struct request * req,u64 ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,u32 meta_seed,void ** metap,struct io_uring_cmd * ioucmd,unsigned int flags)167 static int nvme_map_user_request(struct request *req, u64 ubuffer,
168 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
169 u32 meta_seed, void **metap, struct io_uring_cmd *ioucmd,
170 unsigned int flags)
171 {
172 struct request_queue *q = req->q;
173 struct nvme_ns *ns = q->queuedata;
174 struct block_device *bdev = ns ? ns->disk->part0 : NULL;
175 bool supports_metadata = bdev && blk_get_integrity(bdev->bd_disk);
176 bool has_metadata = meta_buffer && meta_len;
177 struct bio *bio = NULL;
178 void *meta = NULL;
179 int ret;
180
181 if (has_metadata && !supports_metadata)
182 return -EINVAL;
183
184 if (ioucmd && (ioucmd->flags & IORING_URING_CMD_FIXED)) {
185 struct iov_iter iter;
186
187 /* fixedbufs is only for non-vectored io */
188 if (WARN_ON_ONCE(flags & NVME_IOCTL_VEC))
189 return -EINVAL;
190 ret = io_uring_cmd_import_fixed(ubuffer, bufflen,
191 rq_data_dir(req), &iter, ioucmd);
192 if (ret < 0)
193 goto out;
194 ret = blk_rq_map_user_iov(q, req, NULL, &iter, GFP_KERNEL);
195 } else {
196 ret = blk_rq_map_user_io(req, NULL, nvme_to_user_ptr(ubuffer),
197 bufflen, GFP_KERNEL, flags & NVME_IOCTL_VEC, 0,
198 0, rq_data_dir(req));
199 }
200
201 if (ret)
202 goto out;
203 bio = req->bio;
204 if (bdev)
205 bio_set_dev(bio, bdev);
206
207 if (has_metadata) {
208 meta = nvme_add_user_metadata(req, meta_buffer, meta_len,
209 meta_seed);
210 if (IS_ERR(meta)) {
211 ret = PTR_ERR(meta);
212 goto out_unmap;
213 }
214 *metap = meta;
215 }
216
217 return ret;
218
219 out_unmap:
220 if (bio)
221 blk_rq_unmap_user(bio);
222 out:
223 blk_mq_free_request(req);
224 return ret;
225 }
226
nvme_submit_user_cmd(struct request_queue * q,struct nvme_command * cmd,u64 ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,u32 meta_seed,u64 * result,unsigned timeout,unsigned int flags)227 static int nvme_submit_user_cmd(struct request_queue *q,
228 struct nvme_command *cmd, u64 ubuffer, unsigned bufflen,
229 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
230 u64 *result, unsigned timeout, unsigned int flags)
231 {
232 struct nvme_ns *ns = q->queuedata;
233 struct nvme_ctrl *ctrl;
234 struct request *req;
235 void *meta = NULL;
236 struct bio *bio;
237 u32 effects;
238 int ret;
239
240 req = nvme_alloc_user_request(q, cmd, 0, 0);
241 if (IS_ERR(req))
242 return PTR_ERR(req);
243
244 req->timeout = timeout;
245 if (ubuffer && bufflen) {
246 ret = nvme_map_user_request(req, ubuffer, bufflen, meta_buffer,
247 meta_len, meta_seed, &meta, NULL, flags);
248 if (ret)
249 return ret;
250 }
251
252 bio = req->bio;
253 ctrl = nvme_req(req)->ctrl;
254
255 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
256 ret = nvme_execute_rq(req, false);
257 if (result)
258 *result = le64_to_cpu(nvme_req(req)->result.u64);
259 if (meta)
260 ret = nvme_finish_user_metadata(req, meta_buffer, meta,
261 meta_len, ret);
262 if (bio)
263 blk_rq_unmap_user(bio);
264 blk_mq_free_request(req);
265
266 if (effects)
267 nvme_passthru_end(ctrl, ns, effects, cmd, ret);
268
269 return ret;
270 }
271
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)272 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
273 {
274 struct nvme_user_io io;
275 struct nvme_command c;
276 unsigned length, meta_len;
277 void __user *metadata;
278
279 if (copy_from_user(&io, uio, sizeof(io)))
280 return -EFAULT;
281 if (io.flags)
282 return -EINVAL;
283
284 switch (io.opcode) {
285 case nvme_cmd_write:
286 case nvme_cmd_read:
287 case nvme_cmd_compare:
288 break;
289 default:
290 return -EINVAL;
291 }
292
293 length = (io.nblocks + 1) << ns->lba_shift;
294
295 if ((io.control & NVME_RW_PRINFO_PRACT) &&
296 ns->ms == sizeof(struct t10_pi_tuple)) {
297 /*
298 * Protection information is stripped/inserted by the
299 * controller.
300 */
301 if (nvme_to_user_ptr(io.metadata))
302 return -EINVAL;
303 meta_len = 0;
304 metadata = NULL;
305 } else {
306 meta_len = (io.nblocks + 1) * ns->ms;
307 metadata = nvme_to_user_ptr(io.metadata);
308 }
309
310 if (ns->features & NVME_NS_EXT_LBAS) {
311 length += meta_len;
312 meta_len = 0;
313 } else if (meta_len) {
314 if ((io.metadata & 3) || !io.metadata)
315 return -EINVAL;
316 }
317
318 memset(&c, 0, sizeof(c));
319 c.rw.opcode = io.opcode;
320 c.rw.flags = io.flags;
321 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
322 c.rw.slba = cpu_to_le64(io.slba);
323 c.rw.length = cpu_to_le16(io.nblocks);
324 c.rw.control = cpu_to_le16(io.control);
325 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
326 c.rw.reftag = cpu_to_le32(io.reftag);
327 c.rw.apptag = cpu_to_le16(io.apptag);
328 c.rw.appmask = cpu_to_le16(io.appmask);
329
330 return nvme_submit_user_cmd(ns->queue, &c, io.addr, length, metadata,
331 meta_len, lower_32_bits(io.slba), NULL, 0, 0);
332 }
333
nvme_validate_passthru_nsid(struct nvme_ctrl * ctrl,struct nvme_ns * ns,__u32 nsid)334 static bool nvme_validate_passthru_nsid(struct nvme_ctrl *ctrl,
335 struct nvme_ns *ns, __u32 nsid)
336 {
337 if (ns && nsid != ns->head->ns_id) {
338 dev_err(ctrl->device,
339 "%s: nsid (%u) in cmd does not match nsid (%u) of namespace\n",
340 current->comm, nsid, ns->head->ns_id);
341 return false;
342 }
343
344 return true;
345 }
346
nvme_user_cmd(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd,unsigned int flags,bool open_for_write)347 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
348 struct nvme_passthru_cmd __user *ucmd, unsigned int flags,
349 bool open_for_write)
350 {
351 struct nvme_passthru_cmd cmd;
352 struct nvme_command c;
353 unsigned timeout = 0;
354 u64 result;
355 int status;
356
357 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
358 return -EFAULT;
359 if (cmd.flags)
360 return -EINVAL;
361 if (!nvme_validate_passthru_nsid(ctrl, ns, cmd.nsid))
362 return -EINVAL;
363
364 memset(&c, 0, sizeof(c));
365 c.common.opcode = cmd.opcode;
366 c.common.flags = cmd.flags;
367 c.common.nsid = cpu_to_le32(cmd.nsid);
368 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
369 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
370 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
371 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
372 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
373 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
374 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
375 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
376
377 if (!nvme_cmd_allowed(ns, &c, 0, open_for_write))
378 return -EACCES;
379
380 if (cmd.timeout_ms)
381 timeout = msecs_to_jiffies(cmd.timeout_ms);
382
383 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
384 cmd.addr, cmd.data_len, nvme_to_user_ptr(cmd.metadata),
385 cmd.metadata_len, 0, &result, timeout, 0);
386
387 if (status >= 0) {
388 if (put_user(result, &ucmd->result))
389 return -EFAULT;
390 }
391
392 return status;
393 }
394
nvme_user_cmd64(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd64 __user * ucmd,unsigned int flags,bool open_for_write)395 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
396 struct nvme_passthru_cmd64 __user *ucmd, unsigned int flags,
397 bool open_for_write)
398 {
399 struct nvme_passthru_cmd64 cmd;
400 struct nvme_command c;
401 unsigned timeout = 0;
402 int status;
403
404 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
405 return -EFAULT;
406 if (cmd.flags)
407 return -EINVAL;
408 if (!nvme_validate_passthru_nsid(ctrl, ns, cmd.nsid))
409 return -EINVAL;
410
411 memset(&c, 0, sizeof(c));
412 c.common.opcode = cmd.opcode;
413 c.common.flags = cmd.flags;
414 c.common.nsid = cpu_to_le32(cmd.nsid);
415 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
416 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
417 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
418 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
419 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
420 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
421 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
422 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
423
424 if (!nvme_cmd_allowed(ns, &c, flags, open_for_write))
425 return -EACCES;
426
427 if (cmd.timeout_ms)
428 timeout = msecs_to_jiffies(cmd.timeout_ms);
429
430 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
431 cmd.addr, cmd.data_len, nvme_to_user_ptr(cmd.metadata),
432 cmd.metadata_len, 0, &cmd.result, timeout, flags);
433
434 if (status >= 0) {
435 if (put_user(cmd.result, &ucmd->result))
436 return -EFAULT;
437 }
438
439 return status;
440 }
441
442 struct nvme_uring_data {
443 __u64 metadata;
444 __u64 addr;
445 __u32 data_len;
446 __u32 metadata_len;
447 __u32 timeout_ms;
448 };
449
450 /*
451 * This overlays struct io_uring_cmd pdu.
452 * Expect build errors if this grows larger than that.
453 */
454 struct nvme_uring_cmd_pdu {
455 union {
456 struct bio *bio;
457 struct request *req;
458 };
459 u32 meta_len;
460 u32 nvme_status;
461 union {
462 struct {
463 void *meta; /* kernel-resident buffer */
464 void __user *meta_buffer;
465 };
466 u64 result;
467 } u;
468 };
469
nvme_uring_cmd_pdu(struct io_uring_cmd * ioucmd)470 static inline struct nvme_uring_cmd_pdu *nvme_uring_cmd_pdu(
471 struct io_uring_cmd *ioucmd)
472 {
473 return (struct nvme_uring_cmd_pdu *)&ioucmd->pdu;
474 }
475
nvme_uring_task_meta_cb(struct io_uring_cmd * ioucmd,unsigned issue_flags)476 static void nvme_uring_task_meta_cb(struct io_uring_cmd *ioucmd,
477 unsigned issue_flags)
478 {
479 struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
480 struct request *req = pdu->req;
481 int status;
482 u64 result;
483
484 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
485 status = -EINTR;
486 else
487 status = nvme_req(req)->status;
488
489 result = le64_to_cpu(nvme_req(req)->result.u64);
490
491 if (pdu->meta_len)
492 status = nvme_finish_user_metadata(req, pdu->u.meta_buffer,
493 pdu->u.meta, pdu->meta_len, status);
494 if (req->bio)
495 blk_rq_unmap_user(req->bio);
496 blk_mq_free_request(req);
497
498 io_uring_cmd_done(ioucmd, status, result, issue_flags);
499 }
500
nvme_uring_task_cb(struct io_uring_cmd * ioucmd,unsigned issue_flags)501 static void nvme_uring_task_cb(struct io_uring_cmd *ioucmd,
502 unsigned issue_flags)
503 {
504 struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
505
506 if (pdu->bio)
507 blk_rq_unmap_user(pdu->bio);
508
509 io_uring_cmd_done(ioucmd, pdu->nvme_status, pdu->u.result, issue_flags);
510 }
511
nvme_uring_cmd_end_io(struct request * req,blk_status_t err)512 static enum rq_end_io_ret nvme_uring_cmd_end_io(struct request *req,
513 blk_status_t err)
514 {
515 struct io_uring_cmd *ioucmd = req->end_io_data;
516 struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
517
518 req->bio = pdu->bio;
519 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) {
520 pdu->nvme_status = -EINTR;
521 } else {
522 pdu->nvme_status = nvme_req(req)->status;
523 if (!pdu->nvme_status)
524 pdu->nvme_status = blk_status_to_errno(err);
525 }
526 pdu->u.result = le64_to_cpu(nvme_req(req)->result.u64);
527
528 /*
529 * IOPOLL could potentially complete this request directly, but
530 * if multiple rings are polling on the same queue, then it's possible
531 * for one ring to find completions for another ring. Punting the
532 * completion via task_work will always direct it to the right
533 * location, rather than potentially complete requests for ringA
534 * under iopoll invocations from ringB.
535 */
536 io_uring_cmd_do_in_task_lazy(ioucmd, nvme_uring_task_cb);
537 return RQ_END_IO_FREE;
538 }
539
nvme_uring_cmd_end_io_meta(struct request * req,blk_status_t err)540 static enum rq_end_io_ret nvme_uring_cmd_end_io_meta(struct request *req,
541 blk_status_t err)
542 {
543 struct io_uring_cmd *ioucmd = req->end_io_data;
544 struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
545
546 req->bio = pdu->bio;
547 pdu->req = req;
548
549 /*
550 * For iopoll, complete it directly.
551 * Otherwise, move the completion to task work.
552 */
553 if (blk_rq_is_poll(req)) {
554 WRITE_ONCE(ioucmd->cookie, NULL);
555 nvme_uring_task_meta_cb(ioucmd, IO_URING_F_UNLOCKED);
556 } else {
557 io_uring_cmd_do_in_task_lazy(ioucmd, nvme_uring_task_meta_cb);
558 }
559
560 return RQ_END_IO_NONE;
561 }
562
nvme_uring_cmd_io(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct io_uring_cmd * ioucmd,unsigned int issue_flags,bool vec)563 static int nvme_uring_cmd_io(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
564 struct io_uring_cmd *ioucmd, unsigned int issue_flags, bool vec)
565 {
566 struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
567 const struct nvme_uring_cmd *cmd = io_uring_sqe_cmd(ioucmd->sqe);
568 struct request_queue *q = ns ? ns->queue : ctrl->admin_q;
569 struct nvme_uring_data d;
570 struct nvme_command c;
571 struct request *req;
572 blk_opf_t rq_flags = REQ_ALLOC_CACHE;
573 blk_mq_req_flags_t blk_flags = 0;
574 void *meta = NULL;
575 int ret;
576
577 c.common.opcode = READ_ONCE(cmd->opcode);
578 c.common.flags = READ_ONCE(cmd->flags);
579 if (c.common.flags)
580 return -EINVAL;
581
582 c.common.command_id = 0;
583 c.common.nsid = cpu_to_le32(cmd->nsid);
584 if (!nvme_validate_passthru_nsid(ctrl, ns, le32_to_cpu(c.common.nsid)))
585 return -EINVAL;
586
587 c.common.cdw2[0] = cpu_to_le32(READ_ONCE(cmd->cdw2));
588 c.common.cdw2[1] = cpu_to_le32(READ_ONCE(cmd->cdw3));
589 c.common.metadata = 0;
590 c.common.dptr.prp1 = c.common.dptr.prp2 = 0;
591 c.common.cdw10 = cpu_to_le32(READ_ONCE(cmd->cdw10));
592 c.common.cdw11 = cpu_to_le32(READ_ONCE(cmd->cdw11));
593 c.common.cdw12 = cpu_to_le32(READ_ONCE(cmd->cdw12));
594 c.common.cdw13 = cpu_to_le32(READ_ONCE(cmd->cdw13));
595 c.common.cdw14 = cpu_to_le32(READ_ONCE(cmd->cdw14));
596 c.common.cdw15 = cpu_to_le32(READ_ONCE(cmd->cdw15));
597
598 if (!nvme_cmd_allowed(ns, &c, 0, ioucmd->file->f_mode & FMODE_WRITE))
599 return -EACCES;
600
601 d.metadata = READ_ONCE(cmd->metadata);
602 d.addr = READ_ONCE(cmd->addr);
603 d.data_len = READ_ONCE(cmd->data_len);
604 d.metadata_len = READ_ONCE(cmd->metadata_len);
605 d.timeout_ms = READ_ONCE(cmd->timeout_ms);
606
607 if (issue_flags & IO_URING_F_NONBLOCK) {
608 rq_flags |= REQ_NOWAIT;
609 blk_flags = BLK_MQ_REQ_NOWAIT;
610 }
611 if (issue_flags & IO_URING_F_IOPOLL)
612 rq_flags |= REQ_POLLED;
613
614 req = nvme_alloc_user_request(q, &c, rq_flags, blk_flags);
615 if (IS_ERR(req))
616 return PTR_ERR(req);
617 req->timeout = d.timeout_ms ? msecs_to_jiffies(d.timeout_ms) : 0;
618
619 if (d.addr && d.data_len) {
620 ret = nvme_map_user_request(req, d.addr,
621 d.data_len, nvme_to_user_ptr(d.metadata),
622 d.metadata_len, 0, &meta, ioucmd, vec);
623 if (ret)
624 return ret;
625 }
626
627 if (blk_rq_is_poll(req)) {
628 ioucmd->flags |= IORING_URING_CMD_POLLED;
629 WRITE_ONCE(ioucmd->cookie, req);
630 }
631
632 /* to free bio on completion, as req->bio will be null at that time */
633 pdu->bio = req->bio;
634 pdu->meta_len = d.metadata_len;
635 req->end_io_data = ioucmd;
636 if (pdu->meta_len) {
637 pdu->u.meta = meta;
638 pdu->u.meta_buffer = nvme_to_user_ptr(d.metadata);
639 req->end_io = nvme_uring_cmd_end_io_meta;
640 } else {
641 req->end_io = nvme_uring_cmd_end_io;
642 }
643 blk_execute_rq_nowait(req, false);
644 return -EIOCBQUEUED;
645 }
646
is_ctrl_ioctl(unsigned int cmd)647 static bool is_ctrl_ioctl(unsigned int cmd)
648 {
649 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
650 return true;
651 if (is_sed_ioctl(cmd))
652 return true;
653 return false;
654 }
655
nvme_ctrl_ioctl(struct nvme_ctrl * ctrl,unsigned int cmd,void __user * argp,bool open_for_write)656 static int nvme_ctrl_ioctl(struct nvme_ctrl *ctrl, unsigned int cmd,
657 void __user *argp, bool open_for_write)
658 {
659 switch (cmd) {
660 case NVME_IOCTL_ADMIN_CMD:
661 return nvme_user_cmd(ctrl, NULL, argp, 0, open_for_write);
662 case NVME_IOCTL_ADMIN64_CMD:
663 return nvme_user_cmd64(ctrl, NULL, argp, 0, open_for_write);
664 default:
665 return sed_ioctl(ctrl->opal_dev, cmd, argp);
666 }
667 }
668
669 #ifdef COMPAT_FOR_U64_ALIGNMENT
670 struct nvme_user_io32 {
671 __u8 opcode;
672 __u8 flags;
673 __u16 control;
674 __u16 nblocks;
675 __u16 rsvd;
676 __u64 metadata;
677 __u64 addr;
678 __u64 slba;
679 __u32 dsmgmt;
680 __u32 reftag;
681 __u16 apptag;
682 __u16 appmask;
683 } __attribute__((__packed__));
684 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
685 #endif /* COMPAT_FOR_U64_ALIGNMENT */
686
nvme_ns_ioctl(struct nvme_ns * ns,unsigned int cmd,void __user * argp,unsigned int flags,bool open_for_write)687 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned int cmd,
688 void __user *argp, unsigned int flags, bool open_for_write)
689 {
690 switch (cmd) {
691 case NVME_IOCTL_ID:
692 force_successful_syscall_return();
693 return ns->head->ns_id;
694 case NVME_IOCTL_IO_CMD:
695 return nvme_user_cmd(ns->ctrl, ns, argp, flags, open_for_write);
696 /*
697 * struct nvme_user_io can have different padding on some 32-bit ABIs.
698 * Just accept the compat version as all fields that are used are the
699 * same size and at the same offset.
700 */
701 #ifdef COMPAT_FOR_U64_ALIGNMENT
702 case NVME_IOCTL_SUBMIT_IO32:
703 #endif
704 case NVME_IOCTL_SUBMIT_IO:
705 return nvme_submit_io(ns, argp);
706 case NVME_IOCTL_IO64_CMD_VEC:
707 flags |= NVME_IOCTL_VEC;
708 fallthrough;
709 case NVME_IOCTL_IO64_CMD:
710 return nvme_user_cmd64(ns->ctrl, ns, argp, flags,
711 open_for_write);
712 default:
713 return -ENOTTY;
714 }
715 }
716
nvme_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)717 int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
718 unsigned int cmd, unsigned long arg)
719 {
720 struct nvme_ns *ns = bdev->bd_disk->private_data;
721 bool open_for_write = mode & BLK_OPEN_WRITE;
722 void __user *argp = (void __user *)arg;
723 unsigned int flags = 0;
724
725 if (bdev_is_partition(bdev))
726 flags |= NVME_IOCTL_PARTITION;
727
728 if (is_ctrl_ioctl(cmd))
729 return nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
730 return nvme_ns_ioctl(ns, cmd, argp, flags, open_for_write);
731 }
732
nvme_ns_chr_ioctl(struct file * file,unsigned int cmd,unsigned long arg)733 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
734 {
735 struct nvme_ns *ns =
736 container_of(file_inode(file)->i_cdev, struct nvme_ns, cdev);
737 bool open_for_write = file->f_mode & FMODE_WRITE;
738 void __user *argp = (void __user *)arg;
739
740 if (is_ctrl_ioctl(cmd))
741 return nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
742 return nvme_ns_ioctl(ns, cmd, argp, 0, open_for_write);
743 }
744
nvme_uring_cmd_checks(unsigned int issue_flags)745 static int nvme_uring_cmd_checks(unsigned int issue_flags)
746 {
747
748 /* NVMe passthrough requires big SQE/CQE support */
749 if ((issue_flags & (IO_URING_F_SQE128|IO_URING_F_CQE32)) !=
750 (IO_URING_F_SQE128|IO_URING_F_CQE32))
751 return -EOPNOTSUPP;
752 return 0;
753 }
754
nvme_ns_uring_cmd(struct nvme_ns * ns,struct io_uring_cmd * ioucmd,unsigned int issue_flags)755 static int nvme_ns_uring_cmd(struct nvme_ns *ns, struct io_uring_cmd *ioucmd,
756 unsigned int issue_flags)
757 {
758 struct nvme_ctrl *ctrl = ns->ctrl;
759 int ret;
760
761 BUILD_BUG_ON(sizeof(struct nvme_uring_cmd_pdu) > sizeof(ioucmd->pdu));
762
763 ret = nvme_uring_cmd_checks(issue_flags);
764 if (ret)
765 return ret;
766
767 switch (ioucmd->cmd_op) {
768 case NVME_URING_CMD_IO:
769 ret = nvme_uring_cmd_io(ctrl, ns, ioucmd, issue_flags, false);
770 break;
771 case NVME_URING_CMD_IO_VEC:
772 ret = nvme_uring_cmd_io(ctrl, ns, ioucmd, issue_flags, true);
773 break;
774 default:
775 ret = -ENOTTY;
776 }
777
778 return ret;
779 }
780
nvme_ns_chr_uring_cmd(struct io_uring_cmd * ioucmd,unsigned int issue_flags)781 int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags)
782 {
783 struct nvme_ns *ns = container_of(file_inode(ioucmd->file)->i_cdev,
784 struct nvme_ns, cdev);
785
786 return nvme_ns_uring_cmd(ns, ioucmd, issue_flags);
787 }
788
nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd * ioucmd,struct io_comp_batch * iob,unsigned int poll_flags)789 int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
790 struct io_comp_batch *iob,
791 unsigned int poll_flags)
792 {
793 struct request *req;
794 int ret = 0;
795
796 if (!(ioucmd->flags & IORING_URING_CMD_POLLED))
797 return 0;
798
799 req = READ_ONCE(ioucmd->cookie);
800 if (req && blk_rq_is_poll(req))
801 ret = blk_rq_poll(req, iob, poll_flags);
802 return ret;
803 }
804 #ifdef CONFIG_NVME_MULTIPATH
nvme_ns_head_ctrl_ioctl(struct nvme_ns * ns,unsigned int cmd,void __user * argp,struct nvme_ns_head * head,int srcu_idx,bool open_for_write)805 static int nvme_ns_head_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
806 void __user *argp, struct nvme_ns_head *head, int srcu_idx,
807 bool open_for_write)
808 __releases(&head->srcu)
809 {
810 struct nvme_ctrl *ctrl = ns->ctrl;
811 int ret;
812
813 nvme_get_ctrl(ns->ctrl);
814 srcu_read_unlock(&head->srcu, srcu_idx);
815 ret = nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
816
817 nvme_put_ctrl(ctrl);
818 return ret;
819 }
820
nvme_ns_head_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)821 int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
822 unsigned int cmd, unsigned long arg)
823 {
824 struct nvme_ns_head *head = bdev->bd_disk->private_data;
825 bool open_for_write = mode & BLK_OPEN_WRITE;
826 void __user *argp = (void __user *)arg;
827 struct nvme_ns *ns;
828 int srcu_idx, ret = -EWOULDBLOCK;
829 unsigned int flags = 0;
830
831 if (bdev_is_partition(bdev))
832 flags |= NVME_IOCTL_PARTITION;
833
834 srcu_idx = srcu_read_lock(&head->srcu);
835 ns = nvme_find_path(head);
836 if (!ns)
837 goto out_unlock;
838
839 /*
840 * Handle ioctls that apply to the controller instead of the namespace
841 * seperately and drop the ns SRCU reference early. This avoids a
842 * deadlock when deleting namespaces using the passthrough interface.
843 */
844 if (is_ctrl_ioctl(cmd))
845 return nvme_ns_head_ctrl_ioctl(ns, cmd, argp, head, srcu_idx,
846 open_for_write);
847
848 ret = nvme_ns_ioctl(ns, cmd, argp, flags, open_for_write);
849 out_unlock:
850 srcu_read_unlock(&head->srcu, srcu_idx);
851 return ret;
852 }
853
nvme_ns_head_chr_ioctl(struct file * file,unsigned int cmd,unsigned long arg)854 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
855 unsigned long arg)
856 {
857 bool open_for_write = file->f_mode & FMODE_WRITE;
858 struct cdev *cdev = file_inode(file)->i_cdev;
859 struct nvme_ns_head *head =
860 container_of(cdev, struct nvme_ns_head, cdev);
861 void __user *argp = (void __user *)arg;
862 struct nvme_ns *ns;
863 int srcu_idx, ret = -EWOULDBLOCK;
864
865 srcu_idx = srcu_read_lock(&head->srcu);
866 ns = nvme_find_path(head);
867 if (!ns)
868 goto out_unlock;
869
870 if (is_ctrl_ioctl(cmd))
871 return nvme_ns_head_ctrl_ioctl(ns, cmd, argp, head, srcu_idx,
872 open_for_write);
873
874 ret = nvme_ns_ioctl(ns, cmd, argp, 0, open_for_write);
875 out_unlock:
876 srcu_read_unlock(&head->srcu, srcu_idx);
877 return ret;
878 }
879
nvme_ns_head_chr_uring_cmd(struct io_uring_cmd * ioucmd,unsigned int issue_flags)880 int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
881 unsigned int issue_flags)
882 {
883 struct cdev *cdev = file_inode(ioucmd->file)->i_cdev;
884 struct nvme_ns_head *head = container_of(cdev, struct nvme_ns_head, cdev);
885 int srcu_idx = srcu_read_lock(&head->srcu);
886 struct nvme_ns *ns = nvme_find_path(head);
887 int ret = -EINVAL;
888
889 if (ns)
890 ret = nvme_ns_uring_cmd(ns, ioucmd, issue_flags);
891 srcu_read_unlock(&head->srcu, srcu_idx);
892 return ret;
893 }
894 #endif /* CONFIG_NVME_MULTIPATH */
895
nvme_dev_uring_cmd(struct io_uring_cmd * ioucmd,unsigned int issue_flags)896 int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags)
897 {
898 struct nvme_ctrl *ctrl = ioucmd->file->private_data;
899 int ret;
900
901 /* IOPOLL not supported yet */
902 if (issue_flags & IO_URING_F_IOPOLL)
903 return -EOPNOTSUPP;
904
905 ret = nvme_uring_cmd_checks(issue_flags);
906 if (ret)
907 return ret;
908
909 switch (ioucmd->cmd_op) {
910 case NVME_URING_CMD_ADMIN:
911 ret = nvme_uring_cmd_io(ctrl, NULL, ioucmd, issue_flags, false);
912 break;
913 case NVME_URING_CMD_ADMIN_VEC:
914 ret = nvme_uring_cmd_io(ctrl, NULL, ioucmd, issue_flags, true);
915 break;
916 default:
917 ret = -ENOTTY;
918 }
919
920 return ret;
921 }
922
nvme_dev_user_cmd(struct nvme_ctrl * ctrl,void __user * argp,bool open_for_write)923 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp,
924 bool open_for_write)
925 {
926 struct nvme_ns *ns;
927 int ret, srcu_idx;
928
929 srcu_idx = srcu_read_lock(&ctrl->srcu);
930 if (list_empty(&ctrl->namespaces)) {
931 ret = -ENOTTY;
932 goto out_unlock;
933 }
934
935 ns = list_first_or_null_rcu(&ctrl->namespaces, struct nvme_ns, list);
936 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
937 dev_warn(ctrl->device,
938 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
939 ret = -EINVAL;
940 goto out_unlock;
941 }
942
943 dev_warn(ctrl->device,
944 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
945 if (!nvme_get_ns(ns)) {
946 ret = -ENXIO;
947 goto out_unlock;
948 }
949 srcu_read_unlock(&ctrl->srcu, srcu_idx);
950
951 ret = nvme_user_cmd(ctrl, ns, argp, 0, open_for_write);
952 nvme_put_ns(ns);
953 return ret;
954
955 out_unlock:
956 srcu_read_unlock(&ctrl->srcu, srcu_idx);
957 return ret;
958 }
959
nvme_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)960 long nvme_dev_ioctl(struct file *file, unsigned int cmd,
961 unsigned long arg)
962 {
963 bool open_for_write = file->f_mode & FMODE_WRITE;
964 struct nvme_ctrl *ctrl = file->private_data;
965 void __user *argp = (void __user *)arg;
966
967 switch (cmd) {
968 case NVME_IOCTL_ADMIN_CMD:
969 return nvme_user_cmd(ctrl, NULL, argp, 0, open_for_write);
970 case NVME_IOCTL_ADMIN64_CMD:
971 return nvme_user_cmd64(ctrl, NULL, argp, 0, open_for_write);
972 case NVME_IOCTL_IO_CMD:
973 return nvme_dev_user_cmd(ctrl, argp, open_for_write);
974 case NVME_IOCTL_RESET:
975 if (!capable(CAP_SYS_ADMIN))
976 return -EACCES;
977 dev_warn(ctrl->device, "resetting controller\n");
978 return nvme_reset_ctrl_sync(ctrl);
979 case NVME_IOCTL_SUBSYS_RESET:
980 if (!capable(CAP_SYS_ADMIN))
981 return -EACCES;
982 return nvme_reset_subsystem(ctrl);
983 case NVME_IOCTL_RESCAN:
984 if (!capable(CAP_SYS_ADMIN))
985 return -EACCES;
986 nvme_queue_scan(ctrl);
987 return 0;
988 default:
989 return -ENOTTY;
990 }
991 }
992