1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20 [NVME_IOPOLICY_QD] = "queue-depth",
21 };
22
23 static int iopolicy = NVME_IOPOLICY_NUMA;
24
nvme_set_iopolicy(const char * val,const struct kernel_param * kp)25 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
26 {
27 if (!val)
28 return -EINVAL;
29 if (!strncmp(val, "numa", 4))
30 iopolicy = NVME_IOPOLICY_NUMA;
31 else if (!strncmp(val, "round-robin", 11))
32 iopolicy = NVME_IOPOLICY_RR;
33 else if (!strncmp(val, "queue-depth", 11))
34 iopolicy = NVME_IOPOLICY_QD;
35 else
36 return -EINVAL;
37
38 return 0;
39 }
40
nvme_get_iopolicy(char * buf,const struct kernel_param * kp)41 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
42 {
43 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
44 }
45
46 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
47 &iopolicy, 0644);
48 MODULE_PARM_DESC(iopolicy,
49 "Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'");
50
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)51 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
52 {
53 subsys->iopolicy = iopolicy;
54 }
55
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)56 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
57 {
58 struct nvme_ns_head *h;
59
60 lockdep_assert_held(&subsys->lock);
61 list_for_each_entry(h, &subsys->nsheads, entry)
62 if (h->disk)
63 blk_mq_unfreeze_queue(h->disk->queue);
64 }
65
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)66 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
67 {
68 struct nvme_ns_head *h;
69
70 lockdep_assert_held(&subsys->lock);
71 list_for_each_entry(h, &subsys->nsheads, entry)
72 if (h->disk)
73 blk_mq_freeze_queue_wait(h->disk->queue);
74 }
75
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)76 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
77 {
78 struct nvme_ns_head *h;
79
80 lockdep_assert_held(&subsys->lock);
81 list_for_each_entry(h, &subsys->nsheads, entry)
82 if (h->disk)
83 blk_freeze_queue_start(h->disk->queue);
84 }
85
nvme_failover_req(struct request * req)86 void nvme_failover_req(struct request *req)
87 {
88 struct nvme_ns *ns = req->q->queuedata;
89 u16 status = nvme_req(req)->status & 0x7ff;
90 unsigned long flags;
91 struct bio *bio;
92
93 nvme_mpath_clear_current_path(ns);
94
95 /*
96 * If we got back an ANA error, we know the controller is alive but not
97 * ready to serve this namespace. Kick of a re-read of the ANA
98 * information page, and just try any other available path for now.
99 */
100 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
101 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
102 queue_work(nvme_wq, &ns->ctrl->ana_work);
103 }
104
105 spin_lock_irqsave(&ns->head->requeue_lock, flags);
106 for (bio = req->bio; bio; bio = bio->bi_next) {
107 bio_set_dev(bio, ns->head->disk->part0);
108 if (bio->bi_opf & REQ_POLLED) {
109 bio->bi_opf &= ~REQ_POLLED;
110 bio->bi_cookie = BLK_QC_T_NONE;
111 }
112 /*
113 * The alternate request queue that we may end up submitting
114 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
115 * will fail the I/O immediately with EAGAIN to the issuer.
116 * We are not in the issuer context which cannot block. Clear
117 * the flag to avoid spurious EAGAIN I/O failures.
118 */
119 bio->bi_opf &= ~REQ_NOWAIT;
120 }
121 blk_steal_bios(&ns->head->requeue_list, req);
122 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
123
124 nvme_req(req)->status = 0;
125 nvme_end_req(req);
126 kblockd_schedule_work(&ns->head->requeue_work);
127 }
128
nvme_mpath_start_request(struct request * rq)129 void nvme_mpath_start_request(struct request *rq)
130 {
131 struct nvme_ns *ns = rq->q->queuedata;
132 struct gendisk *disk = ns->head->disk;
133
134 if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) {
135 atomic_inc(&ns->ctrl->nr_active);
136 nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE;
137 }
138
139 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
140 return;
141
142 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
143 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
144 jiffies);
145 }
146 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
147
nvme_mpath_end_request(struct request * rq)148 void nvme_mpath_end_request(struct request *rq)
149 {
150 struct nvme_ns *ns = rq->q->queuedata;
151
152 if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE)
153 atomic_dec_if_positive(&ns->ctrl->nr_active);
154
155 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
156 return;
157 bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
158 blk_rq_bytes(rq) >> SECTOR_SHIFT,
159 nvme_req(rq)->start_time);
160 }
161
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)162 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
163 {
164 struct nvme_ns *ns;
165 int srcu_idx;
166
167 srcu_idx = srcu_read_lock(&ctrl->srcu);
168 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
169 srcu_read_lock_held(&ctrl->srcu)) {
170 if (!ns->head->disk)
171 continue;
172 kblockd_schedule_work(&ns->head->requeue_work);
173 if (ctrl->state == NVME_CTRL_LIVE)
174 disk_uevent(ns->head->disk, KOBJ_CHANGE);
175 }
176 srcu_read_unlock(&ctrl->srcu, srcu_idx);
177 }
178
179 static const char *nvme_ana_state_names[] = {
180 [0] = "invalid state",
181 [NVME_ANA_OPTIMIZED] = "optimized",
182 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
183 [NVME_ANA_INACCESSIBLE] = "inaccessible",
184 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
185 [NVME_ANA_CHANGE] = "change",
186 };
187
nvme_mpath_clear_current_path(struct nvme_ns * ns)188 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
189 {
190 struct nvme_ns_head *head = ns->head;
191 bool changed = false;
192 int node;
193
194 if (!head)
195 goto out;
196
197 for_each_node(node) {
198 if (ns == rcu_access_pointer(head->current_path[node])) {
199 rcu_assign_pointer(head->current_path[node], NULL);
200 changed = true;
201 }
202 }
203 out:
204 return changed;
205 }
206
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)207 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
208 {
209 struct nvme_ns *ns;
210 int srcu_idx;
211
212 srcu_idx = srcu_read_lock(&ctrl->srcu);
213 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
214 srcu_read_lock_held(&ctrl->srcu)) {
215 nvme_mpath_clear_current_path(ns);
216 kblockd_schedule_work(&ns->head->requeue_work);
217 }
218 srcu_read_unlock(&ctrl->srcu, srcu_idx);
219 }
220
nvme_mpath_revalidate_paths(struct nvme_ns * ns)221 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
222 {
223 struct nvme_ns_head *head = ns->head;
224 sector_t capacity = get_capacity(head->disk);
225 int node;
226 int srcu_idx;
227
228 srcu_idx = srcu_read_lock(&head->srcu);
229 list_for_each_entry_srcu(ns, &head->list, siblings,
230 srcu_read_lock_held(&head->srcu)) {
231 if (capacity != get_capacity(ns->disk))
232 clear_bit(NVME_NS_READY, &ns->flags);
233 }
234 srcu_read_unlock(&head->srcu, srcu_idx);
235
236 for_each_node(node)
237 rcu_assign_pointer(head->current_path[node], NULL);
238 kblockd_schedule_work(&head->requeue_work);
239 }
240
nvme_path_is_disabled(struct nvme_ns * ns)241 static bool nvme_path_is_disabled(struct nvme_ns *ns)
242 {
243 /*
244 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
245 * still be able to complete assuming that the controller is connected.
246 * Otherwise it will fail immediately and return to the requeue list.
247 */
248 if (ns->ctrl->state != NVME_CTRL_LIVE &&
249 ns->ctrl->state != NVME_CTRL_DELETING)
250 return true;
251 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
252 !test_bit(NVME_NS_READY, &ns->flags))
253 return true;
254 return false;
255 }
256
__nvme_find_path(struct nvme_ns_head * head,int node)257 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
258 {
259 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
260 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
261
262 list_for_each_entry_srcu(ns, &head->list, siblings,
263 srcu_read_lock_held(&head->srcu)) {
264 if (nvme_path_is_disabled(ns))
265 continue;
266
267 if (ns->ctrl->numa_node != NUMA_NO_NODE &&
268 READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
269 distance = node_distance(node, ns->ctrl->numa_node);
270 else
271 distance = LOCAL_DISTANCE;
272
273 switch (ns->ana_state) {
274 case NVME_ANA_OPTIMIZED:
275 if (distance < found_distance) {
276 found_distance = distance;
277 found = ns;
278 }
279 break;
280 case NVME_ANA_NONOPTIMIZED:
281 if (distance < fallback_distance) {
282 fallback_distance = distance;
283 fallback = ns;
284 }
285 break;
286 default:
287 break;
288 }
289 }
290
291 if (!found)
292 found = fallback;
293 if (found)
294 rcu_assign_pointer(head->current_path[node], found);
295 return found;
296 }
297
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)298 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
299 struct nvme_ns *ns)
300 {
301 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
302 siblings);
303 if (ns)
304 return ns;
305 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
306 }
307
nvme_round_robin_path(struct nvme_ns_head * head)308 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head)
309 {
310 struct nvme_ns *ns, *found = NULL;
311 int node = numa_node_id();
312 struct nvme_ns *old = srcu_dereference(head->current_path[node],
313 &head->srcu);
314
315 if (unlikely(!old))
316 return __nvme_find_path(head, node);
317
318 if (list_is_singular(&head->list)) {
319 if (nvme_path_is_disabled(old))
320 return NULL;
321 return old;
322 }
323
324 for (ns = nvme_next_ns(head, old);
325 ns && ns != old;
326 ns = nvme_next_ns(head, ns)) {
327 if (nvme_path_is_disabled(ns))
328 continue;
329
330 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
331 found = ns;
332 goto out;
333 }
334 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
335 found = ns;
336 }
337
338 /*
339 * The loop above skips the current path for round-robin semantics.
340 * Fall back to the current path if either:
341 * - no other optimized path found and current is optimized,
342 * - no other usable path found and current is usable.
343 */
344 if (!nvme_path_is_disabled(old) &&
345 (old->ana_state == NVME_ANA_OPTIMIZED ||
346 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
347 return old;
348
349 if (!found)
350 return NULL;
351 out:
352 rcu_assign_pointer(head->current_path[node], found);
353 return found;
354 }
355
nvme_queue_depth_path(struct nvme_ns_head * head)356 static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head)
357 {
358 struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns;
359 unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX;
360 unsigned int depth;
361
362 list_for_each_entry_srcu(ns, &head->list, siblings,
363 srcu_read_lock_held(&head->srcu)) {
364 if (nvme_path_is_disabled(ns))
365 continue;
366
367 depth = atomic_read(&ns->ctrl->nr_active);
368
369 switch (ns->ana_state) {
370 case NVME_ANA_OPTIMIZED:
371 if (depth < min_depth_opt) {
372 min_depth_opt = depth;
373 best_opt = ns;
374 }
375 break;
376 case NVME_ANA_NONOPTIMIZED:
377 if (depth < min_depth_nonopt) {
378 min_depth_nonopt = depth;
379 best_nonopt = ns;
380 }
381 break;
382 default:
383 break;
384 }
385
386 if (min_depth_opt == 0)
387 return best_opt;
388 }
389
390 return best_opt ? best_opt : best_nonopt;
391 }
392
nvme_path_is_optimized(struct nvme_ns * ns)393 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
394 {
395 return ns->ctrl->state == NVME_CTRL_LIVE &&
396 ns->ana_state == NVME_ANA_OPTIMIZED;
397 }
398
nvme_numa_path(struct nvme_ns_head * head)399 static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head)
400 {
401 int node = numa_node_id();
402 struct nvme_ns *ns;
403
404 ns = srcu_dereference(head->current_path[node], &head->srcu);
405 if (unlikely(!ns))
406 return __nvme_find_path(head, node);
407 if (unlikely(!nvme_path_is_optimized(ns)))
408 return __nvme_find_path(head, node);
409 return ns;
410 }
411
nvme_find_path(struct nvme_ns_head * head)412 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
413 {
414 switch (READ_ONCE(head->subsys->iopolicy)) {
415 case NVME_IOPOLICY_QD:
416 return nvme_queue_depth_path(head);
417 case NVME_IOPOLICY_RR:
418 return nvme_round_robin_path(head);
419 default:
420 return nvme_numa_path(head);
421 }
422 }
423
nvme_available_path(struct nvme_ns_head * head)424 static bool nvme_available_path(struct nvme_ns_head *head)
425 {
426 struct nvme_ns *ns;
427
428 if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
429 return NULL;
430
431 list_for_each_entry_srcu(ns, &head->list, siblings,
432 srcu_read_lock_held(&head->srcu)) {
433 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
434 continue;
435 switch (ns->ctrl->state) {
436 case NVME_CTRL_LIVE:
437 case NVME_CTRL_RESETTING:
438 case NVME_CTRL_CONNECTING:
439 /* fallthru */
440 return true;
441 default:
442 break;
443 }
444 }
445 return false;
446 }
447
nvme_ns_head_submit_bio(struct bio * bio)448 static void nvme_ns_head_submit_bio(struct bio *bio)
449 {
450 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
451 struct device *dev = disk_to_dev(head->disk);
452 struct nvme_ns *ns;
453 int srcu_idx;
454
455 /*
456 * The namespace might be going away and the bio might be moved to a
457 * different queue via blk_steal_bios(), so we need to use the bio_split
458 * pool from the original queue to allocate the bvecs from.
459 */
460 bio = bio_split_to_limits(bio);
461 if (!bio)
462 return;
463
464 srcu_idx = srcu_read_lock(&head->srcu);
465 ns = nvme_find_path(head);
466 if (likely(ns)) {
467 bio_set_dev(bio, ns->disk->part0);
468 bio->bi_opf |= REQ_NVME_MPATH;
469 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
470 bio->bi_iter.bi_sector);
471 submit_bio_noacct(bio);
472 } else if (nvme_available_path(head)) {
473 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
474
475 spin_lock_irq(&head->requeue_lock);
476 bio_list_add(&head->requeue_list, bio);
477 spin_unlock_irq(&head->requeue_lock);
478 } else {
479 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
480
481 bio_io_error(bio);
482 }
483
484 srcu_read_unlock(&head->srcu, srcu_idx);
485 }
486
nvme_ns_head_open(struct gendisk * disk,blk_mode_t mode)487 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
488 {
489 if (!nvme_tryget_ns_head(disk->private_data))
490 return -ENXIO;
491 return 0;
492 }
493
nvme_ns_head_release(struct gendisk * disk)494 static void nvme_ns_head_release(struct gendisk *disk)
495 {
496 nvme_put_ns_head(disk->private_data);
497 }
498
499 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)500 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
501 unsigned int nr_zones, report_zones_cb cb, void *data)
502 {
503 struct nvme_ns_head *head = disk->private_data;
504 struct nvme_ns *ns;
505 int srcu_idx, ret = -EWOULDBLOCK;
506
507 srcu_idx = srcu_read_lock(&head->srcu);
508 ns = nvme_find_path(head);
509 if (ns)
510 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
511 srcu_read_unlock(&head->srcu, srcu_idx);
512 return ret;
513 }
514 #else
515 #define nvme_ns_head_report_zones NULL
516 #endif /* CONFIG_BLK_DEV_ZONED */
517
518 const struct block_device_operations nvme_ns_head_ops = {
519 .owner = THIS_MODULE,
520 .submit_bio = nvme_ns_head_submit_bio,
521 .open = nvme_ns_head_open,
522 .release = nvme_ns_head_release,
523 .ioctl = nvme_ns_head_ioctl,
524 .compat_ioctl = blkdev_compat_ptr_ioctl,
525 .getgeo = nvme_getgeo,
526 .report_zones = nvme_ns_head_report_zones,
527 .pr_ops = &nvme_pr_ops,
528 };
529
cdev_to_ns_head(struct cdev * cdev)530 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
531 {
532 return container_of(cdev, struct nvme_ns_head, cdev);
533 }
534
nvme_ns_head_chr_open(struct inode * inode,struct file * file)535 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
536 {
537 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
538 return -ENXIO;
539 return 0;
540 }
541
nvme_ns_head_chr_release(struct inode * inode,struct file * file)542 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
543 {
544 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
545 return 0;
546 }
547
548 static const struct file_operations nvme_ns_head_chr_fops = {
549 .owner = THIS_MODULE,
550 .open = nvme_ns_head_chr_open,
551 .release = nvme_ns_head_chr_release,
552 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
553 .compat_ioctl = compat_ptr_ioctl,
554 .uring_cmd = nvme_ns_head_chr_uring_cmd,
555 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
556 };
557
nvme_add_ns_head_cdev(struct nvme_ns_head * head)558 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
559 {
560 int ret;
561
562 head->cdev_device.parent = &head->subsys->dev;
563 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
564 head->subsys->instance, head->instance);
565 if (ret)
566 return ret;
567 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
568 &nvme_ns_head_chr_fops, THIS_MODULE);
569 return ret;
570 }
571
nvme_partition_scan_work(struct work_struct * work)572 static void nvme_partition_scan_work(struct work_struct *work)
573 {
574 struct nvme_ns_head *head =
575 container_of(work, struct nvme_ns_head, partition_scan_work);
576
577 if (WARN_ON_ONCE(!test_and_clear_bit(GD_SUPPRESS_PART_SCAN,
578 &head->disk->state)))
579 return;
580
581 mutex_lock(&head->disk->open_mutex);
582 bdev_disk_changed(head->disk, false);
583 mutex_unlock(&head->disk->open_mutex);
584 }
585
nvme_requeue_work(struct work_struct * work)586 static void nvme_requeue_work(struct work_struct *work)
587 {
588 struct nvme_ns_head *head =
589 container_of(work, struct nvme_ns_head, requeue_work);
590 struct bio *bio, *next;
591
592 spin_lock_irq(&head->requeue_lock);
593 next = bio_list_get(&head->requeue_list);
594 spin_unlock_irq(&head->requeue_lock);
595
596 while ((bio = next) != NULL) {
597 next = bio->bi_next;
598 bio->bi_next = NULL;
599
600 submit_bio_noacct(bio);
601 }
602 }
603
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)604 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
605 {
606 bool vwc = false;
607
608 mutex_init(&head->lock);
609 bio_list_init(&head->requeue_list);
610 spin_lock_init(&head->requeue_lock);
611 INIT_WORK(&head->requeue_work, nvme_requeue_work);
612 INIT_WORK(&head->partition_scan_work, nvme_partition_scan_work);
613
614 /*
615 * Add a multipath node if the subsystems supports multiple controllers.
616 * We also do this for private namespaces as the namespace sharing flag
617 * could change after a rescan.
618 */
619 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
620 !nvme_is_unique_nsid(ctrl, head) || !multipath)
621 return 0;
622
623 head->disk = blk_alloc_disk(ctrl->numa_node);
624 if (!head->disk)
625 return -ENOMEM;
626 head->disk->fops = &nvme_ns_head_ops;
627 head->disk->private_data = head;
628
629 /*
630 * We need to suppress the partition scan from occuring within the
631 * controller's scan_work context. If a path error occurs here, the IO
632 * will wait until a path becomes available or all paths are torn down,
633 * but that action also occurs within scan_work, so it would deadlock.
634 * Defer the partion scan to a different context that does not block
635 * scan_work.
636 */
637 set_bit(GD_SUPPRESS_PART_SCAN, &head->disk->state);
638 sprintf(head->disk->disk_name, "nvme%dn%d",
639 ctrl->subsys->instance, head->instance);
640
641 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
642 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
643 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
644 /*
645 * This assumes all controllers that refer to a namespace either
646 * support poll queues or not. That is not a strict guarantee,
647 * but if the assumption is wrong the effect is only suboptimal
648 * performance but not correctness problem.
649 */
650 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
651 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
652 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
653
654 /* set to a default value of 512 until the disk is validated */
655 blk_queue_logical_block_size(head->disk->queue, 512);
656 blk_set_stacking_limits(&head->disk->queue->limits);
657 blk_queue_dma_alignment(head->disk->queue, 3);
658
659 /* we need to propagate up the VMC settings */
660 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
661 vwc = true;
662 blk_queue_write_cache(head->disk->queue, vwc, vwc);
663 return 0;
664 }
665
nvme_mpath_set_live(struct nvme_ns * ns)666 static void nvme_mpath_set_live(struct nvme_ns *ns)
667 {
668 struct nvme_ns_head *head = ns->head;
669 int rc;
670
671 if (!head->disk)
672 return;
673
674 /*
675 * test_and_set_bit() is used because it is protecting against two nvme
676 * paths simultaneously calling device_add_disk() on the same namespace
677 * head.
678 */
679 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
680 rc = device_add_disk(&head->subsys->dev, head->disk,
681 nvme_ns_id_attr_groups);
682 if (rc) {
683 clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags);
684 return;
685 }
686 nvme_add_ns_head_cdev(head);
687 kblockd_schedule_work(&head->partition_scan_work);
688 }
689
690 mutex_lock(&head->lock);
691 if (nvme_path_is_optimized(ns)) {
692 int node, srcu_idx;
693
694 srcu_idx = srcu_read_lock(&head->srcu);
695 for_each_online_node(node)
696 __nvme_find_path(head, node);
697 srcu_read_unlock(&head->srcu, srcu_idx);
698 }
699 mutex_unlock(&head->lock);
700
701 synchronize_srcu(&head->srcu);
702 kblockd_schedule_work(&head->requeue_work);
703 }
704
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))705 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
706 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
707 void *))
708 {
709 void *base = ctrl->ana_log_buf;
710 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
711 int error, i;
712
713 lockdep_assert_held(&ctrl->ana_lock);
714
715 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
716 struct nvme_ana_group_desc *desc = base + offset;
717 u32 nr_nsids;
718 size_t nsid_buf_size;
719
720 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
721 return -EINVAL;
722
723 nr_nsids = le32_to_cpu(desc->nnsids);
724 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
725
726 if (WARN_ON_ONCE(desc->grpid == 0))
727 return -EINVAL;
728 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
729 return -EINVAL;
730 if (WARN_ON_ONCE(desc->state == 0))
731 return -EINVAL;
732 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
733 return -EINVAL;
734
735 offset += sizeof(*desc);
736 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
737 return -EINVAL;
738
739 error = cb(ctrl, desc, data);
740 if (error)
741 return error;
742
743 offset += nsid_buf_size;
744 }
745
746 return 0;
747 }
748
nvme_state_is_live(enum nvme_ana_state state)749 static inline bool nvme_state_is_live(enum nvme_ana_state state)
750 {
751 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
752 }
753
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)754 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
755 struct nvme_ns *ns)
756 {
757 ns->ana_grpid = le32_to_cpu(desc->grpid);
758 ns->ana_state = desc->state;
759 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
760 /*
761 * nvme_mpath_set_live() will trigger I/O to the multipath path device
762 * and in turn to this path device. However we cannot accept this I/O
763 * if the controller is not live. This may deadlock if called from
764 * nvme_mpath_init_identify() and the ctrl will never complete
765 * initialization, preventing I/O from completing. For this case we
766 * will reprocess the ANA log page in nvme_mpath_update() once the
767 * controller is ready.
768 */
769 if (nvme_state_is_live(ns->ana_state) &&
770 ns->ctrl->state == NVME_CTRL_LIVE)
771 nvme_mpath_set_live(ns);
772 }
773
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)774 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
775 struct nvme_ana_group_desc *desc, void *data)
776 {
777 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
778 unsigned *nr_change_groups = data;
779 struct nvme_ns *ns;
780 int srcu_idx;
781
782 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
783 le32_to_cpu(desc->grpid),
784 nvme_ana_state_names[desc->state]);
785
786 if (desc->state == NVME_ANA_CHANGE)
787 (*nr_change_groups)++;
788
789 if (!nr_nsids)
790 return 0;
791
792 srcu_idx = srcu_read_lock(&ctrl->srcu);
793 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
794 srcu_read_lock_held(&ctrl->srcu)) {
795 unsigned nsid;
796 again:
797 nsid = le32_to_cpu(desc->nsids[n]);
798 if (ns->head->ns_id < nsid)
799 continue;
800 if (ns->head->ns_id == nsid)
801 nvme_update_ns_ana_state(desc, ns);
802 if (++n == nr_nsids)
803 break;
804 if (ns->head->ns_id > nsid)
805 goto again;
806 }
807 srcu_read_unlock(&ctrl->srcu, srcu_idx);
808 return 0;
809 }
810
nvme_read_ana_log(struct nvme_ctrl * ctrl)811 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
812 {
813 u32 nr_change_groups = 0;
814 int error;
815
816 mutex_lock(&ctrl->ana_lock);
817 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
818 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
819 if (error) {
820 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
821 goto out_unlock;
822 }
823
824 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
825 nvme_update_ana_state);
826 if (error)
827 goto out_unlock;
828
829 /*
830 * In theory we should have an ANATT timer per group as they might enter
831 * the change state at different times. But that is a lot of overhead
832 * just to protect against a target that keeps entering new changes
833 * states while never finishing previous ones. But we'll still
834 * eventually time out once all groups are in change state, so this
835 * isn't a big deal.
836 *
837 * We also double the ANATT value to provide some slack for transports
838 * or AEN processing overhead.
839 */
840 if (nr_change_groups)
841 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
842 else
843 del_timer_sync(&ctrl->anatt_timer);
844 out_unlock:
845 mutex_unlock(&ctrl->ana_lock);
846 return error;
847 }
848
nvme_ana_work(struct work_struct * work)849 static void nvme_ana_work(struct work_struct *work)
850 {
851 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
852
853 if (ctrl->state != NVME_CTRL_LIVE)
854 return;
855
856 nvme_read_ana_log(ctrl);
857 }
858
nvme_mpath_update(struct nvme_ctrl * ctrl)859 void nvme_mpath_update(struct nvme_ctrl *ctrl)
860 {
861 u32 nr_change_groups = 0;
862
863 if (!ctrl->ana_log_buf)
864 return;
865
866 mutex_lock(&ctrl->ana_lock);
867 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
868 mutex_unlock(&ctrl->ana_lock);
869 }
870
nvme_anatt_timeout(struct timer_list * t)871 static void nvme_anatt_timeout(struct timer_list *t)
872 {
873 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
874
875 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
876 nvme_reset_ctrl(ctrl);
877 }
878
nvme_mpath_stop(struct nvme_ctrl * ctrl)879 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
880 {
881 if (!nvme_ctrl_use_ana(ctrl))
882 return;
883 del_timer_sync(&ctrl->anatt_timer);
884 cancel_work_sync(&ctrl->ana_work);
885 }
886
887 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
888 struct device_attribute subsys_attr_##_name = \
889 __ATTR(_name, _mode, _show, _store)
890
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)891 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
892 struct device_attribute *attr, char *buf)
893 {
894 struct nvme_subsystem *subsys =
895 container_of(dev, struct nvme_subsystem, dev);
896
897 return sysfs_emit(buf, "%s\n",
898 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
899 }
900
nvme_subsys_iopolicy_update(struct nvme_subsystem * subsys,int iopolicy)901 static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys,
902 int iopolicy)
903 {
904 struct nvme_ctrl *ctrl;
905 int old_iopolicy = READ_ONCE(subsys->iopolicy);
906
907 if (old_iopolicy == iopolicy)
908 return;
909
910 WRITE_ONCE(subsys->iopolicy, iopolicy);
911
912 /* iopolicy changes clear the mpath by design */
913 mutex_lock(&nvme_subsystems_lock);
914 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
915 nvme_mpath_clear_ctrl_paths(ctrl);
916 mutex_unlock(&nvme_subsystems_lock);
917
918 pr_notice("subsysnqn %s iopolicy changed from %s to %s\n",
919 subsys->subnqn,
920 nvme_iopolicy_names[old_iopolicy],
921 nvme_iopolicy_names[iopolicy]);
922 }
923
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)924 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
925 struct device_attribute *attr, const char *buf, size_t count)
926 {
927 struct nvme_subsystem *subsys =
928 container_of(dev, struct nvme_subsystem, dev);
929 int i;
930
931 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
932 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
933 nvme_subsys_iopolicy_update(subsys, i);
934 return count;
935 }
936 }
937
938 return -EINVAL;
939 }
940 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
941 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
942
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)943 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
944 char *buf)
945 {
946 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
947 }
948 DEVICE_ATTR_RO(ana_grpid);
949
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)950 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
951 char *buf)
952 {
953 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
954
955 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
956 }
957 DEVICE_ATTR_RO(ana_state);
958
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)959 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
960 struct nvme_ana_group_desc *desc, void *data)
961 {
962 struct nvme_ana_group_desc *dst = data;
963
964 if (desc->grpid != dst->grpid)
965 return 0;
966
967 *dst = *desc;
968 return -ENXIO; /* just break out of the loop */
969 }
970
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)971 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
972 {
973 if (nvme_ctrl_use_ana(ns->ctrl)) {
974 struct nvme_ana_group_desc desc = {
975 .grpid = anagrpid,
976 .state = 0,
977 };
978
979 mutex_lock(&ns->ctrl->ana_lock);
980 ns->ana_grpid = le32_to_cpu(anagrpid);
981 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
982 mutex_unlock(&ns->ctrl->ana_lock);
983 if (desc.state) {
984 /* found the group desc: update */
985 nvme_update_ns_ana_state(&desc, ns);
986 } else {
987 /* group desc not found: trigger a re-read */
988 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
989 queue_work(nvme_wq, &ns->ctrl->ana_work);
990 }
991 } else {
992 ns->ana_state = NVME_ANA_OPTIMIZED;
993 nvme_mpath_set_live(ns);
994 }
995
996 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
997 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
998 ns->head->disk->queue);
999 #ifdef CONFIG_BLK_DEV_ZONED
1000 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
1001 ns->head->disk->nr_zones = ns->disk->nr_zones;
1002 #endif
1003 }
1004
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)1005 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
1006 {
1007 if (!head->disk)
1008 return;
1009 if (test_and_clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
1010 nvme_cdev_del(&head->cdev, &head->cdev_device);
1011 /*
1012 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
1013 * to allow multipath to fail all I/O.
1014 */
1015 synchronize_srcu(&head->srcu);
1016 kblockd_schedule_work(&head->requeue_work);
1017 del_gendisk(head->disk);
1018 }
1019 /*
1020 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
1021 * to allow multipath to fail all I/O.
1022 */
1023 synchronize_srcu(&head->srcu);
1024 kblockd_schedule_work(&head->requeue_work);
1025 }
1026
nvme_mpath_remove_disk(struct nvme_ns_head * head)1027 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
1028 {
1029 if (!head->disk)
1030 return;
1031 /* make sure all pending bios are cleaned up */
1032 kblockd_schedule_work(&head->requeue_work);
1033 flush_work(&head->requeue_work);
1034 flush_work(&head->partition_scan_work);
1035 put_disk(head->disk);
1036 }
1037
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)1038 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
1039 {
1040 mutex_init(&ctrl->ana_lock);
1041 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
1042 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
1043 }
1044
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)1045 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1046 {
1047 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
1048 size_t ana_log_size;
1049 int error = 0;
1050
1051 /* check if multipath is enabled and we have the capability */
1052 if (!multipath || !ctrl->subsys ||
1053 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
1054 return 0;
1055
1056 /* initialize this in the identify path to cover controller resets */
1057 atomic_set(&ctrl->nr_active, 0);
1058
1059 if (!ctrl->max_namespaces ||
1060 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
1061 dev_err(ctrl->device,
1062 "Invalid MNAN value %u\n", ctrl->max_namespaces);
1063 return -EINVAL;
1064 }
1065
1066 ctrl->anacap = id->anacap;
1067 ctrl->anatt = id->anatt;
1068 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
1069 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
1070
1071 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
1072 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
1073 ctrl->max_namespaces * sizeof(__le32);
1074 if (ana_log_size > max_transfer_size) {
1075 dev_err(ctrl->device,
1076 "ANA log page size (%zd) larger than MDTS (%zd).\n",
1077 ana_log_size, max_transfer_size);
1078 dev_err(ctrl->device, "disabling ANA support.\n");
1079 goto out_uninit;
1080 }
1081 if (ana_log_size > ctrl->ana_log_size) {
1082 nvme_mpath_stop(ctrl);
1083 nvme_mpath_uninit(ctrl);
1084 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
1085 if (!ctrl->ana_log_buf)
1086 return -ENOMEM;
1087 }
1088 ctrl->ana_log_size = ana_log_size;
1089 error = nvme_read_ana_log(ctrl);
1090 if (error)
1091 goto out_uninit;
1092 return 0;
1093
1094 out_uninit:
1095 nvme_mpath_uninit(ctrl);
1096 return error;
1097 }
1098
nvme_mpath_uninit(struct nvme_ctrl * ctrl)1099 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1100 {
1101 kvfree(ctrl->ana_log_buf);
1102 ctrl->ana_log_buf = NULL;
1103 ctrl->ana_log_size = 0;
1104 }
1105