1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31
32 #include "trace.h"
33 #include "nvme.h"
34
35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 /*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44 #define NVME_MAX_KB_SZ 8192
45 #define NVME_MAX_SEGS 128
46 #define NVME_MAX_NR_ALLOCATIONS 5
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
71 .get = param_get_uint,
72 };
73
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
io_queue_count_set(const char * val,const struct kernel_param * kp)78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 unsigned int n;
81 int ret;
82
83 ret = kstrtouint(val, 10, &n);
84 if (ret != 0 || n > num_possible_cpus())
85 return -EINVAL;
86 return param_set_uint(val, kp);
87 }
88
89 static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
92 };
93
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
99
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108 struct nvme_dev;
109 struct nvme_queue;
110
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114
115 /*
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 */
118 struct nvme_dev {
119 struct nvme_queue *queues;
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
122 u32 __iomem *dbs;
123 struct device *dev;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
126 unsigned online_queues;
127 unsigned max_qid;
128 unsigned io_queues[HCTX_MAX_TYPES];
129 unsigned int num_vecs;
130 u32 q_depth;
131 int io_sqes;
132 u32 db_stride;
133 void __iomem *bar;
134 unsigned long bar_mapped_size;
135 struct mutex shutdown_lock;
136 bool subsystem;
137 u64 cmb_size;
138 bool cmb_use_sqes;
139 u32 cmbsz;
140 u32 cmbloc;
141 struct nvme_ctrl ctrl;
142 u32 last_ps;
143 bool hmb;
144
145 mempool_t *iod_mempool;
146
147 /* shadow doorbell buffer support: */
148 __le32 *dbbuf_dbs;
149 dma_addr_t dbbuf_dbs_dma_addr;
150 __le32 *dbbuf_eis;
151 dma_addr_t dbbuf_eis_dma_addr;
152
153 /* host memory buffer support: */
154 u64 host_mem_size;
155 u32 nr_host_mem_descs;
156 u32 host_mem_descs_size;
157 dma_addr_t host_mem_descs_dma;
158 struct nvme_host_mem_buf_desc *host_mem_descs;
159 void **host_mem_desc_bufs;
160 unsigned int nr_allocated_queues;
161 unsigned int nr_write_queues;
162 unsigned int nr_poll_queues;
163 };
164
io_queue_depth_set(const char * val,const struct kernel_param * kp)165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 NVME_PCI_MAX_QUEUE_SIZE);
169 }
170
sq_idx(unsigned int qid,u32 stride)171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 return qid * 2 * stride;
174 }
175
cq_idx(unsigned int qid,u32 stride)176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 return (qid * 2 + 1) * stride;
179 }
180
to_nvme_dev(struct nvme_ctrl * ctrl)181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185
186 /*
187 * An NVM Express queue. Each device has at least two (one for admin
188 * commands and one for I/O commands).
189 */
190 struct nvme_queue {
191 struct nvme_dev *dev;
192 spinlock_t sq_lock;
193 void *sq_cmds;
194 /* only used for poll queues: */
195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 struct nvme_completion *cqes;
197 dma_addr_t sq_dma_addr;
198 dma_addr_t cq_dma_addr;
199 u32 __iomem *q_db;
200 u32 q_depth;
201 u16 cq_vector;
202 u16 sq_tail;
203 u16 last_sq_tail;
204 u16 cq_head;
205 u16 qid;
206 u8 cq_phase;
207 u8 sqes;
208 unsigned long flags;
209 #define NVMEQ_ENABLED 0
210 #define NVMEQ_SQ_CMB 1
211 #define NVMEQ_DELETE_ERROR 2
212 #define NVMEQ_POLLED 3
213 __le32 *dbbuf_sq_db;
214 __le32 *dbbuf_cq_db;
215 __le32 *dbbuf_sq_ei;
216 __le32 *dbbuf_cq_ei;
217 struct completion delete_done;
218 };
219
220 union nvme_descriptor {
221 struct nvme_sgl_desc *sg_list;
222 __le64 *prp_list;
223 };
224
225 /*
226 * The nvme_iod describes the data in an I/O.
227 *
228 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
229 * to the actual struct scatterlist.
230 */
231 struct nvme_iod {
232 struct nvme_request req;
233 struct nvme_command cmd;
234 bool aborted;
235 s8 nr_allocations; /* PRP list pool allocations. 0 means small
236 pool in use */
237 unsigned int dma_len; /* length of single DMA segment mapping */
238 dma_addr_t first_dma;
239 dma_addr_t meta_dma;
240 struct sg_table sgt;
241 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
242 };
243
nvme_dbbuf_size(struct nvme_dev * dev)244 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
245 {
246 return dev->nr_allocated_queues * 8 * dev->db_stride;
247 }
248
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)249 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
250 {
251 unsigned int mem_size = nvme_dbbuf_size(dev);
252
253 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
254 return;
255
256 if (dev->dbbuf_dbs) {
257 /*
258 * Clear the dbbuf memory so the driver doesn't observe stale
259 * values from the previous instantiation.
260 */
261 memset(dev->dbbuf_dbs, 0, mem_size);
262 memset(dev->dbbuf_eis, 0, mem_size);
263 return;
264 }
265
266 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
267 &dev->dbbuf_dbs_dma_addr,
268 GFP_KERNEL);
269 if (!dev->dbbuf_dbs)
270 goto fail;
271 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
272 &dev->dbbuf_eis_dma_addr,
273 GFP_KERNEL);
274 if (!dev->dbbuf_eis)
275 goto fail_free_dbbuf_dbs;
276 return;
277
278 fail_free_dbbuf_dbs:
279 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
280 dev->dbbuf_dbs_dma_addr);
281 dev->dbbuf_dbs = NULL;
282 fail:
283 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
284 }
285
nvme_dbbuf_dma_free(struct nvme_dev * dev)286 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
287 {
288 unsigned int mem_size = nvme_dbbuf_size(dev);
289
290 if (dev->dbbuf_dbs) {
291 dma_free_coherent(dev->dev, mem_size,
292 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
293 dev->dbbuf_dbs = NULL;
294 }
295 if (dev->dbbuf_eis) {
296 dma_free_coherent(dev->dev, mem_size,
297 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
298 dev->dbbuf_eis = NULL;
299 }
300 }
301
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)302 static void nvme_dbbuf_init(struct nvme_dev *dev,
303 struct nvme_queue *nvmeq, int qid)
304 {
305 if (!dev->dbbuf_dbs || !qid)
306 return;
307
308 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
309 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
310 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
311 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
312 }
313
nvme_dbbuf_free(struct nvme_queue * nvmeq)314 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
315 {
316 if (!nvmeq->qid)
317 return;
318
319 nvmeq->dbbuf_sq_db = NULL;
320 nvmeq->dbbuf_cq_db = NULL;
321 nvmeq->dbbuf_sq_ei = NULL;
322 nvmeq->dbbuf_cq_ei = NULL;
323 }
324
nvme_dbbuf_set(struct nvme_dev * dev)325 static void nvme_dbbuf_set(struct nvme_dev *dev)
326 {
327 struct nvme_command c = { };
328 unsigned int i;
329
330 if (!dev->dbbuf_dbs)
331 return;
332
333 c.dbbuf.opcode = nvme_admin_dbbuf;
334 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
335 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
336
337 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
338 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
339 /* Free memory and continue on */
340 nvme_dbbuf_dma_free(dev);
341
342 for (i = 1; i <= dev->online_queues; i++)
343 nvme_dbbuf_free(&dev->queues[i]);
344 }
345 }
346
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)347 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
348 {
349 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
350 }
351
352 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)353 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
354 volatile __le32 *dbbuf_ei)
355 {
356 if (dbbuf_db) {
357 u16 old_value, event_idx;
358
359 /*
360 * Ensure that the queue is written before updating
361 * the doorbell in memory
362 */
363 wmb();
364
365 old_value = le32_to_cpu(*dbbuf_db);
366 *dbbuf_db = cpu_to_le32(value);
367
368 /*
369 * Ensure that the doorbell is updated before reading the event
370 * index from memory. The controller needs to provide similar
371 * ordering to ensure the envent index is updated before reading
372 * the doorbell.
373 */
374 mb();
375
376 event_idx = le32_to_cpu(*dbbuf_ei);
377 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
378 return false;
379 }
380
381 return true;
382 }
383
384 /*
385 * Will slightly overestimate the number of pages needed. This is OK
386 * as it only leads to a small amount of wasted memory for the lifetime of
387 * the I/O.
388 */
nvme_pci_npages_prp(void)389 static int nvme_pci_npages_prp(void)
390 {
391 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
392 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
393 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
394 }
395
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 unsigned int hctx_idx)
398 {
399 struct nvme_dev *dev = to_nvme_dev(data);
400 struct nvme_queue *nvmeq = &dev->queues[0];
401
402 WARN_ON(hctx_idx != 0);
403 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
404
405 hctx->driver_data = nvmeq;
406 return 0;
407 }
408
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410 unsigned int hctx_idx)
411 {
412 struct nvme_dev *dev = to_nvme_dev(data);
413 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
414
415 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
416 hctx->driver_data = nvmeq;
417 return 0;
418 }
419
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)420 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
421 struct request *req, unsigned int hctx_idx,
422 unsigned int numa_node)
423 {
424 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425
426 nvme_req(req)->ctrl = set->driver_data;
427 nvme_req(req)->cmd = &iod->cmd;
428 return 0;
429 }
430
queue_irq_offset(struct nvme_dev * dev)431 static int queue_irq_offset(struct nvme_dev *dev)
432 {
433 /* if we have more than 1 vec, admin queue offsets us by 1 */
434 if (dev->num_vecs > 1)
435 return 1;
436
437 return 0;
438 }
439
nvme_pci_map_queues(struct blk_mq_tag_set * set)440 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
441 {
442 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
443 int i, qoff, offset;
444
445 offset = queue_irq_offset(dev);
446 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
447 struct blk_mq_queue_map *map = &set->map[i];
448
449 map->nr_queues = dev->io_queues[i];
450 if (!map->nr_queues) {
451 BUG_ON(i == HCTX_TYPE_DEFAULT);
452 continue;
453 }
454
455 /*
456 * The poll queue(s) doesn't have an IRQ (and hence IRQ
457 * affinity), so use the regular blk-mq cpu mapping
458 */
459 map->queue_offset = qoff;
460 if (i != HCTX_TYPE_POLL && offset)
461 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
462 else
463 blk_mq_map_queues(map);
464 qoff += map->nr_queues;
465 offset += map->nr_queues;
466 }
467 }
468
469 /*
470 * Write sq tail if we are asked to, or if the next command would wrap.
471 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)472 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
473 {
474 if (!write_sq) {
475 u16 next_tail = nvmeq->sq_tail + 1;
476
477 if (next_tail == nvmeq->q_depth)
478 next_tail = 0;
479 if (next_tail != nvmeq->last_sq_tail)
480 return;
481 }
482
483 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
484 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
485 writel(nvmeq->sq_tail, nvmeq->q_db);
486 nvmeq->last_sq_tail = nvmeq->sq_tail;
487 }
488
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)489 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
490 struct nvme_command *cmd)
491 {
492 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
493 absolute_pointer(cmd), sizeof(*cmd));
494 if (++nvmeq->sq_tail == nvmeq->q_depth)
495 nvmeq->sq_tail = 0;
496 }
497
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
499 {
500 struct nvme_queue *nvmeq = hctx->driver_data;
501
502 spin_lock(&nvmeq->sq_lock);
503 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
504 nvme_write_sq_db(nvmeq, true);
505 spin_unlock(&nvmeq->sq_lock);
506 }
507
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)508 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
509 int nseg)
510 {
511 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
512 unsigned int avg_seg_size;
513
514 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
515
516 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
517 return false;
518 if (!nvmeq->qid)
519 return false;
520 if (!sgl_threshold || avg_seg_size < sgl_threshold)
521 return false;
522 return true;
523 }
524
nvme_free_prps(struct nvme_dev * dev,struct request * req)525 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
526 {
527 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
528 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
529 dma_addr_t dma_addr = iod->first_dma;
530 int i;
531
532 for (i = 0; i < iod->nr_allocations; i++) {
533 __le64 *prp_list = iod->list[i].prp_list;
534 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
535
536 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
537 dma_addr = next_dma_addr;
538 }
539 }
540
nvme_unmap_data(struct nvme_dev * dev,struct request * req)541 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
542 {
543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544
545 if (iod->dma_len) {
546 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
547 rq_dma_dir(req));
548 return;
549 }
550
551 WARN_ON_ONCE(!iod->sgt.nents);
552
553 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
554
555 if (iod->nr_allocations == 0)
556 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
557 iod->first_dma);
558 else if (iod->nr_allocations == 1)
559 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
560 iod->first_dma);
561 else
562 nvme_free_prps(dev, req);
563 mempool_free(iod->sgt.sgl, dev->iod_mempool);
564 }
565
nvme_print_sgl(struct scatterlist * sgl,int nents)566 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
567 {
568 int i;
569 struct scatterlist *sg;
570
571 for_each_sg(sgl, sg, nents, i) {
572 dma_addr_t phys = sg_phys(sg);
573 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
574 "dma_address:%pad dma_length:%d\n",
575 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
576 sg_dma_len(sg));
577 }
578 }
579
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)580 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
581 struct request *req, struct nvme_rw_command *cmnd)
582 {
583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 struct dma_pool *pool;
585 int length = blk_rq_payload_bytes(req);
586 struct scatterlist *sg = iod->sgt.sgl;
587 int dma_len = sg_dma_len(sg);
588 u64 dma_addr = sg_dma_address(sg);
589 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
590 __le64 *prp_list;
591 dma_addr_t prp_dma;
592 int nprps, i;
593
594 length -= (NVME_CTRL_PAGE_SIZE - offset);
595 if (length <= 0) {
596 iod->first_dma = 0;
597 goto done;
598 }
599
600 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
601 if (dma_len) {
602 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
603 } else {
604 sg = sg_next(sg);
605 dma_addr = sg_dma_address(sg);
606 dma_len = sg_dma_len(sg);
607 }
608
609 if (length <= NVME_CTRL_PAGE_SIZE) {
610 iod->first_dma = dma_addr;
611 goto done;
612 }
613
614 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
615 if (nprps <= (256 / 8)) {
616 pool = dev->prp_small_pool;
617 iod->nr_allocations = 0;
618 } else {
619 pool = dev->prp_page_pool;
620 iod->nr_allocations = 1;
621 }
622
623 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
624 if (!prp_list) {
625 iod->nr_allocations = -1;
626 return BLK_STS_RESOURCE;
627 }
628 iod->list[0].prp_list = prp_list;
629 iod->first_dma = prp_dma;
630 i = 0;
631 for (;;) {
632 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
633 __le64 *old_prp_list = prp_list;
634 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
635 if (!prp_list)
636 goto free_prps;
637 iod->list[iod->nr_allocations++].prp_list = prp_list;
638 prp_list[0] = old_prp_list[i - 1];
639 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
640 i = 1;
641 }
642 prp_list[i++] = cpu_to_le64(dma_addr);
643 dma_len -= NVME_CTRL_PAGE_SIZE;
644 dma_addr += NVME_CTRL_PAGE_SIZE;
645 length -= NVME_CTRL_PAGE_SIZE;
646 if (length <= 0)
647 break;
648 if (dma_len > 0)
649 continue;
650 if (unlikely(dma_len < 0))
651 goto bad_sgl;
652 sg = sg_next(sg);
653 dma_addr = sg_dma_address(sg);
654 dma_len = sg_dma_len(sg);
655 }
656 done:
657 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
658 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
659 return BLK_STS_OK;
660 free_prps:
661 nvme_free_prps(dev, req);
662 return BLK_STS_RESOURCE;
663 bad_sgl:
664 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
665 "Invalid SGL for payload:%d nents:%d\n",
666 blk_rq_payload_bytes(req), iod->sgt.nents);
667 return BLK_STS_IOERR;
668 }
669
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)670 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
671 struct scatterlist *sg)
672 {
673 sge->addr = cpu_to_le64(sg_dma_address(sg));
674 sge->length = cpu_to_le32(sg_dma_len(sg));
675 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
676 }
677
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)678 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
679 dma_addr_t dma_addr, int entries)
680 {
681 sge->addr = cpu_to_le64(dma_addr);
682 sge->length = cpu_to_le32(entries * sizeof(*sge));
683 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
684 }
685
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)686 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
687 struct request *req, struct nvme_rw_command *cmd)
688 {
689 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
690 struct dma_pool *pool;
691 struct nvme_sgl_desc *sg_list;
692 struct scatterlist *sg = iod->sgt.sgl;
693 unsigned int entries = iod->sgt.nents;
694 dma_addr_t sgl_dma;
695 int i = 0;
696
697 /* setting the transfer type as SGL */
698 cmd->flags = NVME_CMD_SGL_METABUF;
699
700 if (entries == 1) {
701 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
702 return BLK_STS_OK;
703 }
704
705 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
706 pool = dev->prp_small_pool;
707 iod->nr_allocations = 0;
708 } else {
709 pool = dev->prp_page_pool;
710 iod->nr_allocations = 1;
711 }
712
713 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
714 if (!sg_list) {
715 iod->nr_allocations = -1;
716 return BLK_STS_RESOURCE;
717 }
718
719 iod->list[0].sg_list = sg_list;
720 iod->first_dma = sgl_dma;
721
722 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
723 do {
724 nvme_pci_sgl_set_data(&sg_list[i++], sg);
725 sg = sg_next(sg);
726 } while (--entries > 0);
727
728 return BLK_STS_OK;
729 }
730
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)731 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
732 struct request *req, struct nvme_rw_command *cmnd,
733 struct bio_vec *bv)
734 {
735 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
736 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
737 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
738
739 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
740 if (dma_mapping_error(dev->dev, iod->first_dma))
741 return BLK_STS_RESOURCE;
742 iod->dma_len = bv->bv_len;
743
744 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
745 if (bv->bv_len > first_prp_len)
746 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
747 else
748 cmnd->dptr.prp2 = 0;
749 return BLK_STS_OK;
750 }
751
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)752 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
753 struct request *req, struct nvme_rw_command *cmnd,
754 struct bio_vec *bv)
755 {
756 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757
758 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
759 if (dma_mapping_error(dev->dev, iod->first_dma))
760 return BLK_STS_RESOURCE;
761 iod->dma_len = bv->bv_len;
762
763 cmnd->flags = NVME_CMD_SGL_METABUF;
764 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
765 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
766 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
767 return BLK_STS_OK;
768 }
769
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)770 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
771 struct nvme_command *cmnd)
772 {
773 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
774 blk_status_t ret = BLK_STS_RESOURCE;
775 int rc;
776
777 if (blk_rq_nr_phys_segments(req) == 1) {
778 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
779 struct bio_vec bv = req_bvec(req);
780
781 if (!is_pci_p2pdma_page(bv.bv_page)) {
782 if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
783 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
784 return nvme_setup_prp_simple(dev, req,
785 &cmnd->rw, &bv);
786
787 if (nvmeq->qid && sgl_threshold &&
788 nvme_ctrl_sgl_supported(&dev->ctrl))
789 return nvme_setup_sgl_simple(dev, req,
790 &cmnd->rw, &bv);
791 }
792 }
793
794 iod->dma_len = 0;
795 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
796 if (!iod->sgt.sgl)
797 return BLK_STS_RESOURCE;
798 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
799 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
800 if (!iod->sgt.orig_nents)
801 goto out_free_sg;
802
803 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
804 DMA_ATTR_NO_WARN);
805 if (rc) {
806 if (rc == -EREMOTEIO)
807 ret = BLK_STS_TARGET;
808 goto out_free_sg;
809 }
810
811 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
812 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
813 else
814 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
815 if (ret != BLK_STS_OK)
816 goto out_unmap_sg;
817 return BLK_STS_OK;
818
819 out_unmap_sg:
820 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
821 out_free_sg:
822 mempool_free(iod->sgt.sgl, dev->iod_mempool);
823 return ret;
824 }
825
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)826 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
827 struct nvme_command *cmnd)
828 {
829 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830 struct bio_vec bv = rq_integrity_vec(req);
831
832 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
833 if (dma_mapping_error(dev->dev, iod->meta_dma))
834 return BLK_STS_IOERR;
835 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
836 return BLK_STS_OK;
837 }
838
nvme_prep_rq(struct nvme_dev * dev,struct request * req)839 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
840 {
841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 blk_status_t ret;
843
844 iod->aborted = false;
845 iod->nr_allocations = -1;
846 iod->sgt.nents = 0;
847
848 ret = nvme_setup_cmd(req->q->queuedata, req);
849 if (ret)
850 return ret;
851
852 if (blk_rq_nr_phys_segments(req)) {
853 ret = nvme_map_data(dev, req, &iod->cmd);
854 if (ret)
855 goto out_free_cmd;
856 }
857
858 if (blk_integrity_rq(req)) {
859 ret = nvme_map_metadata(dev, req, &iod->cmd);
860 if (ret)
861 goto out_unmap_data;
862 }
863
864 nvme_start_request(req);
865 return BLK_STS_OK;
866 out_unmap_data:
867 if (blk_rq_nr_phys_segments(req))
868 nvme_unmap_data(dev, req);
869 out_free_cmd:
870 nvme_cleanup_cmd(req);
871 return ret;
872 }
873
874 /*
875 * NOTE: ns is NULL when called on the admin queue.
876 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)877 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
878 const struct blk_mq_queue_data *bd)
879 {
880 struct nvme_queue *nvmeq = hctx->driver_data;
881 struct nvme_dev *dev = nvmeq->dev;
882 struct request *req = bd->rq;
883 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
884 blk_status_t ret;
885
886 /*
887 * We should not need to do this, but we're still using this to
888 * ensure we can drain requests on a dying queue.
889 */
890 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
891 return BLK_STS_IOERR;
892
893 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
894 return nvme_fail_nonready_command(&dev->ctrl, req);
895
896 ret = nvme_prep_rq(dev, req);
897 if (unlikely(ret))
898 return ret;
899 spin_lock(&nvmeq->sq_lock);
900 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
901 nvme_write_sq_db(nvmeq, bd->last);
902 spin_unlock(&nvmeq->sq_lock);
903 return BLK_STS_OK;
904 }
905
nvme_submit_cmds(struct nvme_queue * nvmeq,struct request ** rqlist)906 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
907 {
908 struct request *req;
909
910 spin_lock(&nvmeq->sq_lock);
911 while ((req = rq_list_pop(rqlist))) {
912 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
913
914 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
915 }
916 nvme_write_sq_db(nvmeq, true);
917 spin_unlock(&nvmeq->sq_lock);
918 }
919
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)920 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
921 {
922 /*
923 * We should not need to do this, but we're still using this to
924 * ensure we can drain requests on a dying queue.
925 */
926 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
927 return false;
928 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
929 return false;
930
931 req->mq_hctx->tags->rqs[req->tag] = req;
932 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
933 }
934
nvme_queue_rqs(struct request ** rqlist)935 static void nvme_queue_rqs(struct request **rqlist)
936 {
937 struct request *submit_list = NULL;
938 struct request *requeue_list = NULL;
939 struct request **requeue_lastp = &requeue_list;
940 struct nvme_queue *nvmeq = NULL;
941 struct request *req;
942
943 while ((req = rq_list_pop(rqlist))) {
944 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
945 nvme_submit_cmds(nvmeq, &submit_list);
946 nvmeq = req->mq_hctx->driver_data;
947
948 if (nvme_prep_rq_batch(nvmeq, req))
949 rq_list_add(&submit_list, req); /* reverse order */
950 else
951 rq_list_add_tail(&requeue_lastp, req);
952 }
953
954 if (nvmeq)
955 nvme_submit_cmds(nvmeq, &submit_list);
956 *rqlist = requeue_list;
957 }
958
nvme_pci_unmap_rq(struct request * req)959 static __always_inline void nvme_pci_unmap_rq(struct request *req)
960 {
961 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
962 struct nvme_dev *dev = nvmeq->dev;
963
964 if (blk_integrity_rq(req)) {
965 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966
967 dma_unmap_page(dev->dev, iod->meta_dma,
968 rq_integrity_vec(req).bv_len, rq_dma_dir(req));
969 }
970
971 if (blk_rq_nr_phys_segments(req))
972 nvme_unmap_data(dev, req);
973 }
974
nvme_pci_complete_rq(struct request * req)975 static void nvme_pci_complete_rq(struct request *req)
976 {
977 nvme_pci_unmap_rq(req);
978 nvme_complete_rq(req);
979 }
980
nvme_pci_complete_batch(struct io_comp_batch * iob)981 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
982 {
983 nvme_complete_batch(iob, nvme_pci_unmap_rq);
984 }
985
986 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)987 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
988 {
989 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
990
991 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
992 }
993
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)994 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
995 {
996 u16 head = nvmeq->cq_head;
997
998 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
999 nvmeq->dbbuf_cq_ei))
1000 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1001 }
1002
nvme_queue_tagset(struct nvme_queue * nvmeq)1003 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1004 {
1005 if (!nvmeq->qid)
1006 return nvmeq->dev->admin_tagset.tags[0];
1007 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1008 }
1009
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1010 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1011 struct io_comp_batch *iob, u16 idx)
1012 {
1013 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1014 __u16 command_id = READ_ONCE(cqe->command_id);
1015 struct request *req;
1016
1017 /*
1018 * AEN requests are special as they don't time out and can
1019 * survive any kind of queue freeze and often don't respond to
1020 * aborts. We don't even bother to allocate a struct request
1021 * for them but rather special case them here.
1022 */
1023 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1024 nvme_complete_async_event(&nvmeq->dev->ctrl,
1025 cqe->status, &cqe->result);
1026 return;
1027 }
1028
1029 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1030 if (unlikely(!req)) {
1031 dev_warn(nvmeq->dev->ctrl.device,
1032 "invalid id %d completed on queue %d\n",
1033 command_id, le16_to_cpu(cqe->sq_id));
1034 return;
1035 }
1036
1037 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1038 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1039 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1040 nvme_pci_complete_batch))
1041 nvme_pci_complete_rq(req);
1042 }
1043
nvme_update_cq_head(struct nvme_queue * nvmeq)1044 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1045 {
1046 u32 tmp = nvmeq->cq_head + 1;
1047
1048 if (tmp == nvmeq->q_depth) {
1049 nvmeq->cq_head = 0;
1050 nvmeq->cq_phase ^= 1;
1051 } else {
1052 nvmeq->cq_head = tmp;
1053 }
1054 }
1055
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1056 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1057 struct io_comp_batch *iob)
1058 {
1059 int found = 0;
1060
1061 while (nvme_cqe_pending(nvmeq)) {
1062 found++;
1063 /*
1064 * load-load control dependency between phase and the rest of
1065 * the cqe requires a full read memory barrier
1066 */
1067 dma_rmb();
1068 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1069 nvme_update_cq_head(nvmeq);
1070 }
1071
1072 if (found)
1073 nvme_ring_cq_doorbell(nvmeq);
1074 return found;
1075 }
1076
nvme_irq(int irq,void * data)1077 static irqreturn_t nvme_irq(int irq, void *data)
1078 {
1079 struct nvme_queue *nvmeq = data;
1080 DEFINE_IO_COMP_BATCH(iob);
1081
1082 if (nvme_poll_cq(nvmeq, &iob)) {
1083 if (!rq_list_empty(iob.req_list))
1084 nvme_pci_complete_batch(&iob);
1085 return IRQ_HANDLED;
1086 }
1087 return IRQ_NONE;
1088 }
1089
nvme_irq_check(int irq,void * data)1090 static irqreturn_t nvme_irq_check(int irq, void *data)
1091 {
1092 struct nvme_queue *nvmeq = data;
1093
1094 if (nvme_cqe_pending(nvmeq))
1095 return IRQ_WAKE_THREAD;
1096 return IRQ_NONE;
1097 }
1098
1099 /*
1100 * Poll for completions for any interrupt driven queue
1101 * Can be called from any context.
1102 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1103 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1104 {
1105 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1106
1107 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1108
1109 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1110 nvme_poll_cq(nvmeq, NULL);
1111 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1112 }
1113
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1114 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1115 {
1116 struct nvme_queue *nvmeq = hctx->driver_data;
1117 bool found;
1118
1119 if (!nvme_cqe_pending(nvmeq))
1120 return 0;
1121
1122 spin_lock(&nvmeq->cq_poll_lock);
1123 found = nvme_poll_cq(nvmeq, iob);
1124 spin_unlock(&nvmeq->cq_poll_lock);
1125
1126 return found;
1127 }
1128
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1129 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1130 {
1131 struct nvme_dev *dev = to_nvme_dev(ctrl);
1132 struct nvme_queue *nvmeq = &dev->queues[0];
1133 struct nvme_command c = { };
1134
1135 c.common.opcode = nvme_admin_async_event;
1136 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1137
1138 spin_lock(&nvmeq->sq_lock);
1139 nvme_sq_copy_cmd(nvmeq, &c);
1140 nvme_write_sq_db(nvmeq, true);
1141 spin_unlock(&nvmeq->sq_lock);
1142 }
1143
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1144 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1145 {
1146 struct nvme_command c = { };
1147
1148 c.delete_queue.opcode = opcode;
1149 c.delete_queue.qid = cpu_to_le16(id);
1150
1151 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1152 }
1153
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1154 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1155 struct nvme_queue *nvmeq, s16 vector)
1156 {
1157 struct nvme_command c = { };
1158 int flags = NVME_QUEUE_PHYS_CONTIG;
1159
1160 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1161 flags |= NVME_CQ_IRQ_ENABLED;
1162
1163 /*
1164 * Note: we (ab)use the fact that the prp fields survive if no data
1165 * is attached to the request.
1166 */
1167 c.create_cq.opcode = nvme_admin_create_cq;
1168 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1169 c.create_cq.cqid = cpu_to_le16(qid);
1170 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1171 c.create_cq.cq_flags = cpu_to_le16(flags);
1172 c.create_cq.irq_vector = cpu_to_le16(vector);
1173
1174 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1175 }
1176
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1177 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1178 struct nvme_queue *nvmeq)
1179 {
1180 struct nvme_ctrl *ctrl = &dev->ctrl;
1181 struct nvme_command c = { };
1182 int flags = NVME_QUEUE_PHYS_CONTIG;
1183
1184 /*
1185 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1186 * set. Since URGENT priority is zeroes, it makes all queues
1187 * URGENT.
1188 */
1189 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1190 flags |= NVME_SQ_PRIO_MEDIUM;
1191
1192 /*
1193 * Note: we (ab)use the fact that the prp fields survive if no data
1194 * is attached to the request.
1195 */
1196 c.create_sq.opcode = nvme_admin_create_sq;
1197 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1198 c.create_sq.sqid = cpu_to_le16(qid);
1199 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1200 c.create_sq.sq_flags = cpu_to_le16(flags);
1201 c.create_sq.cqid = cpu_to_le16(qid);
1202
1203 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1204 }
1205
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1206 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1207 {
1208 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1209 }
1210
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1211 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1212 {
1213 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1214 }
1215
abort_endio(struct request * req,blk_status_t error)1216 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1217 {
1218 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1219
1220 dev_warn(nvmeq->dev->ctrl.device,
1221 "Abort status: 0x%x", nvme_req(req)->status);
1222 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1223 blk_mq_free_request(req);
1224 return RQ_END_IO_NONE;
1225 }
1226
nvme_should_reset(struct nvme_dev * dev,u32 csts)1227 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1228 {
1229 /* If true, indicates loss of adapter communication, possibly by a
1230 * NVMe Subsystem reset.
1231 */
1232 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1233
1234 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1235 switch (nvme_ctrl_state(&dev->ctrl)) {
1236 case NVME_CTRL_RESETTING:
1237 case NVME_CTRL_CONNECTING:
1238 return false;
1239 default:
1240 break;
1241 }
1242
1243 /* We shouldn't reset unless the controller is on fatal error state
1244 * _or_ if we lost the communication with it.
1245 */
1246 if (!(csts & NVME_CSTS_CFS) && !nssro)
1247 return false;
1248
1249 return true;
1250 }
1251
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1252 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1253 {
1254 /* Read a config register to help see what died. */
1255 u16 pci_status;
1256 int result;
1257
1258 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1259 &pci_status);
1260 if (result == PCIBIOS_SUCCESSFUL)
1261 dev_warn(dev->ctrl.device,
1262 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1263 csts, pci_status);
1264 else
1265 dev_warn(dev->ctrl.device,
1266 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1267 csts, result);
1268
1269 if (csts != ~0)
1270 return;
1271
1272 dev_warn(dev->ctrl.device,
1273 "Does your device have a faulty power saving mode enabled?\n");
1274 dev_warn(dev->ctrl.device,
1275 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1276 }
1277
nvme_timeout(struct request * req)1278 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1279 {
1280 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1281 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1282 struct nvme_dev *dev = nvmeq->dev;
1283 struct request *abort_req;
1284 struct nvme_command cmd = { };
1285 struct pci_dev *pdev = to_pci_dev(dev->dev);
1286 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1287
1288 /*
1289 * Shutdown the device immediately if we see it is disconnected. This
1290 * unblocks PCIe error handling if the nvme driver is waiting in
1291 * error_resume for a device that has been removed. We can't unbind the
1292 * driver while the driver's error callback is waiting to complete, so
1293 * we're relying on a timeout to break that deadlock if a removal
1294 * occurs while reset work is running.
1295 */
1296 if (pci_dev_is_disconnected(pdev))
1297 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1298 if (nvme_state_terminal(&dev->ctrl))
1299 goto disable;
1300
1301 /* If PCI error recovery process is happening, we cannot reset or
1302 * the recovery mechanism will surely fail.
1303 */
1304 mb();
1305 if (pci_channel_offline(pdev))
1306 return BLK_EH_RESET_TIMER;
1307
1308 /*
1309 * Reset immediately if the controller is failed
1310 */
1311 if (nvme_should_reset(dev, csts)) {
1312 nvme_warn_reset(dev, csts);
1313 goto disable;
1314 }
1315
1316 /*
1317 * Did we miss an interrupt?
1318 */
1319 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1320 nvme_poll(req->mq_hctx, NULL);
1321 else
1322 nvme_poll_irqdisable(nvmeq);
1323
1324 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1325 dev_warn(dev->ctrl.device,
1326 "I/O %d QID %d timeout, completion polled\n",
1327 req->tag, nvmeq->qid);
1328 return BLK_EH_DONE;
1329 }
1330
1331 /*
1332 * Shutdown immediately if controller times out while starting. The
1333 * reset work will see the pci device disabled when it gets the forced
1334 * cancellation error. All outstanding requests are completed on
1335 * shutdown, so we return BLK_EH_DONE.
1336 */
1337 switch (nvme_ctrl_state(&dev->ctrl)) {
1338 case NVME_CTRL_CONNECTING:
1339 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1340 fallthrough;
1341 case NVME_CTRL_DELETING:
1342 dev_warn_ratelimited(dev->ctrl.device,
1343 "I/O %d QID %d timeout, disable controller\n",
1344 req->tag, nvmeq->qid);
1345 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1346 nvme_dev_disable(dev, true);
1347 return BLK_EH_DONE;
1348 case NVME_CTRL_RESETTING:
1349 return BLK_EH_RESET_TIMER;
1350 default:
1351 break;
1352 }
1353
1354 /*
1355 * Shutdown the controller immediately and schedule a reset if the
1356 * command was already aborted once before and still hasn't been
1357 * returned to the driver, or if this is the admin queue.
1358 */
1359 if (!nvmeq->qid || iod->aborted) {
1360 dev_warn(dev->ctrl.device,
1361 "I/O %d QID %d timeout, reset controller\n",
1362 req->tag, nvmeq->qid);
1363 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1364 goto disable;
1365 }
1366
1367 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1368 atomic_inc(&dev->ctrl.abort_limit);
1369 return BLK_EH_RESET_TIMER;
1370 }
1371 iod->aborted = true;
1372
1373 cmd.abort.opcode = nvme_admin_abort_cmd;
1374 cmd.abort.cid = nvme_cid(req);
1375 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1376
1377 dev_warn(nvmeq->dev->ctrl.device,
1378 "I/O %d (%s) QID %d timeout, aborting\n",
1379 req->tag,
1380 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1381 nvmeq->qid);
1382
1383 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1384 BLK_MQ_REQ_NOWAIT);
1385 if (IS_ERR(abort_req)) {
1386 atomic_inc(&dev->ctrl.abort_limit);
1387 return BLK_EH_RESET_TIMER;
1388 }
1389 nvme_init_request(abort_req, &cmd);
1390
1391 abort_req->end_io = abort_endio;
1392 abort_req->end_io_data = NULL;
1393 blk_execute_rq_nowait(abort_req, false);
1394
1395 /*
1396 * The aborted req will be completed on receiving the abort req.
1397 * We enable the timer again. If hit twice, it'll cause a device reset,
1398 * as the device then is in a faulty state.
1399 */
1400 return BLK_EH_RESET_TIMER;
1401
1402 disable:
1403 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1404 if (nvme_state_terminal(&dev->ctrl))
1405 nvme_dev_disable(dev, true);
1406 return BLK_EH_DONE;
1407 }
1408
1409 nvme_dev_disable(dev, false);
1410 if (nvme_try_sched_reset(&dev->ctrl))
1411 nvme_unquiesce_io_queues(&dev->ctrl);
1412 return BLK_EH_DONE;
1413 }
1414
nvme_free_queue(struct nvme_queue * nvmeq)1415 static void nvme_free_queue(struct nvme_queue *nvmeq)
1416 {
1417 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1418 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1419 if (!nvmeq->sq_cmds)
1420 return;
1421
1422 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1423 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1424 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1425 } else {
1426 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1427 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1428 }
1429 }
1430
nvme_free_queues(struct nvme_dev * dev,int lowest)1431 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1432 {
1433 int i;
1434
1435 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1436 dev->ctrl.queue_count--;
1437 nvme_free_queue(&dev->queues[i]);
1438 }
1439 }
1440
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1441 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1442 {
1443 struct nvme_queue *nvmeq = &dev->queues[qid];
1444
1445 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1446 return;
1447
1448 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1449 mb();
1450
1451 nvmeq->dev->online_queues--;
1452 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1453 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1454 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1455 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1456 }
1457
nvme_suspend_io_queues(struct nvme_dev * dev)1458 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1459 {
1460 int i;
1461
1462 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1463 nvme_suspend_queue(dev, i);
1464 }
1465
1466 /*
1467 * Called only on a device that has been disabled and after all other threads
1468 * that can check this device's completion queues have synced, except
1469 * nvme_poll(). This is the last chance for the driver to see a natural
1470 * completion before nvme_cancel_request() terminates all incomplete requests.
1471 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1472 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1473 {
1474 int i;
1475
1476 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1477 spin_lock(&dev->queues[i].cq_poll_lock);
1478 nvme_poll_cq(&dev->queues[i], NULL);
1479 spin_unlock(&dev->queues[i].cq_poll_lock);
1480 }
1481 }
1482
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1483 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1484 int entry_size)
1485 {
1486 int q_depth = dev->q_depth;
1487 unsigned q_size_aligned = roundup(q_depth * entry_size,
1488 NVME_CTRL_PAGE_SIZE);
1489
1490 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1491 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1492
1493 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1494 q_depth = div_u64(mem_per_q, entry_size);
1495
1496 /*
1497 * Ensure the reduced q_depth is above some threshold where it
1498 * would be better to map queues in system memory with the
1499 * original depth
1500 */
1501 if (q_depth < 64)
1502 return -ENOMEM;
1503 }
1504
1505 return q_depth;
1506 }
1507
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1508 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1509 int qid)
1510 {
1511 struct pci_dev *pdev = to_pci_dev(dev->dev);
1512
1513 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1514 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1515 if (nvmeq->sq_cmds) {
1516 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1517 nvmeq->sq_cmds);
1518 if (nvmeq->sq_dma_addr) {
1519 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1520 return 0;
1521 }
1522
1523 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1524 }
1525 }
1526
1527 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1528 &nvmeq->sq_dma_addr, GFP_KERNEL);
1529 if (!nvmeq->sq_cmds)
1530 return -ENOMEM;
1531 return 0;
1532 }
1533
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1534 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1535 {
1536 struct nvme_queue *nvmeq = &dev->queues[qid];
1537
1538 if (dev->ctrl.queue_count > qid)
1539 return 0;
1540
1541 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1542 nvmeq->q_depth = depth;
1543 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1544 &nvmeq->cq_dma_addr, GFP_KERNEL);
1545 if (!nvmeq->cqes)
1546 goto free_nvmeq;
1547
1548 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1549 goto free_cqdma;
1550
1551 nvmeq->dev = dev;
1552 spin_lock_init(&nvmeq->sq_lock);
1553 spin_lock_init(&nvmeq->cq_poll_lock);
1554 nvmeq->cq_head = 0;
1555 nvmeq->cq_phase = 1;
1556 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1557 nvmeq->qid = qid;
1558 dev->ctrl.queue_count++;
1559
1560 return 0;
1561
1562 free_cqdma:
1563 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1564 nvmeq->cq_dma_addr);
1565 free_nvmeq:
1566 return -ENOMEM;
1567 }
1568
queue_request_irq(struct nvme_queue * nvmeq)1569 static int queue_request_irq(struct nvme_queue *nvmeq)
1570 {
1571 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1572 int nr = nvmeq->dev->ctrl.instance;
1573
1574 if (use_threaded_interrupts) {
1575 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1576 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1577 } else {
1578 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1579 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1580 }
1581 }
1582
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1583 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1584 {
1585 struct nvme_dev *dev = nvmeq->dev;
1586
1587 nvmeq->sq_tail = 0;
1588 nvmeq->last_sq_tail = 0;
1589 nvmeq->cq_head = 0;
1590 nvmeq->cq_phase = 1;
1591 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1592 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1593 nvme_dbbuf_init(dev, nvmeq, qid);
1594 dev->online_queues++;
1595 wmb(); /* ensure the first interrupt sees the initialization */
1596 }
1597
1598 /*
1599 * Try getting shutdown_lock while setting up IO queues.
1600 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1601 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1602 {
1603 /*
1604 * Give up if the lock is being held by nvme_dev_disable.
1605 */
1606 if (!mutex_trylock(&dev->shutdown_lock))
1607 return -ENODEV;
1608
1609 /*
1610 * Controller is in wrong state, fail early.
1611 */
1612 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1613 mutex_unlock(&dev->shutdown_lock);
1614 return -ENODEV;
1615 }
1616
1617 return 0;
1618 }
1619
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1620 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1621 {
1622 struct nvme_dev *dev = nvmeq->dev;
1623 int result;
1624 u16 vector = 0;
1625
1626 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1627
1628 /*
1629 * A queue's vector matches the queue identifier unless the controller
1630 * has only one vector available.
1631 */
1632 if (!polled)
1633 vector = dev->num_vecs == 1 ? 0 : qid;
1634 else
1635 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1636
1637 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1638 if (result)
1639 return result;
1640
1641 result = adapter_alloc_sq(dev, qid, nvmeq);
1642 if (result < 0)
1643 return result;
1644 if (result)
1645 goto release_cq;
1646
1647 nvmeq->cq_vector = vector;
1648
1649 result = nvme_setup_io_queues_trylock(dev);
1650 if (result)
1651 return result;
1652 nvme_init_queue(nvmeq, qid);
1653 if (!polled) {
1654 result = queue_request_irq(nvmeq);
1655 if (result < 0)
1656 goto release_sq;
1657 }
1658
1659 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1660 mutex_unlock(&dev->shutdown_lock);
1661 return result;
1662
1663 release_sq:
1664 dev->online_queues--;
1665 mutex_unlock(&dev->shutdown_lock);
1666 adapter_delete_sq(dev, qid);
1667 release_cq:
1668 adapter_delete_cq(dev, qid);
1669 return result;
1670 }
1671
1672 static const struct blk_mq_ops nvme_mq_admin_ops = {
1673 .queue_rq = nvme_queue_rq,
1674 .complete = nvme_pci_complete_rq,
1675 .init_hctx = nvme_admin_init_hctx,
1676 .init_request = nvme_pci_init_request,
1677 .timeout = nvme_timeout,
1678 };
1679
1680 static const struct blk_mq_ops nvme_mq_ops = {
1681 .queue_rq = nvme_queue_rq,
1682 .queue_rqs = nvme_queue_rqs,
1683 .complete = nvme_pci_complete_rq,
1684 .commit_rqs = nvme_commit_rqs,
1685 .init_hctx = nvme_init_hctx,
1686 .init_request = nvme_pci_init_request,
1687 .map_queues = nvme_pci_map_queues,
1688 .timeout = nvme_timeout,
1689 .poll = nvme_poll,
1690 };
1691
nvme_dev_remove_admin(struct nvme_dev * dev)1692 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1693 {
1694 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1695 /*
1696 * If the controller was reset during removal, it's possible
1697 * user requests may be waiting on a stopped queue. Start the
1698 * queue to flush these to completion.
1699 */
1700 nvme_unquiesce_admin_queue(&dev->ctrl);
1701 nvme_remove_admin_tag_set(&dev->ctrl);
1702 }
1703 }
1704
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1705 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1706 {
1707 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1708 }
1709
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1710 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1711 {
1712 struct pci_dev *pdev = to_pci_dev(dev->dev);
1713
1714 if (size <= dev->bar_mapped_size)
1715 return 0;
1716 if (size > pci_resource_len(pdev, 0))
1717 return -ENOMEM;
1718 if (dev->bar)
1719 iounmap(dev->bar);
1720 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1721 if (!dev->bar) {
1722 dev->bar_mapped_size = 0;
1723 return -ENOMEM;
1724 }
1725 dev->bar_mapped_size = size;
1726 dev->dbs = dev->bar + NVME_REG_DBS;
1727
1728 return 0;
1729 }
1730
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1731 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1732 {
1733 int result;
1734 u32 aqa;
1735 struct nvme_queue *nvmeq;
1736
1737 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1738 if (result < 0)
1739 return result;
1740
1741 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1742 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1743
1744 if (dev->subsystem &&
1745 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1746 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1747
1748 /*
1749 * If the device has been passed off to us in an enabled state, just
1750 * clear the enabled bit. The spec says we should set the 'shutdown
1751 * notification bits', but doing so may cause the device to complete
1752 * commands to the admin queue ... and we don't know what memory that
1753 * might be pointing at!
1754 */
1755 result = nvme_disable_ctrl(&dev->ctrl, false);
1756 if (result < 0)
1757 return result;
1758
1759 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1760 if (result)
1761 return result;
1762
1763 dev->ctrl.numa_node = dev_to_node(dev->dev);
1764
1765 nvmeq = &dev->queues[0];
1766 aqa = nvmeq->q_depth - 1;
1767 aqa |= aqa << 16;
1768
1769 writel(aqa, dev->bar + NVME_REG_AQA);
1770 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1771 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1772
1773 result = nvme_enable_ctrl(&dev->ctrl);
1774 if (result)
1775 return result;
1776
1777 nvmeq->cq_vector = 0;
1778 nvme_init_queue(nvmeq, 0);
1779 result = queue_request_irq(nvmeq);
1780 if (result) {
1781 dev->online_queues--;
1782 return result;
1783 }
1784
1785 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1786 return result;
1787 }
1788
nvme_create_io_queues(struct nvme_dev * dev)1789 static int nvme_create_io_queues(struct nvme_dev *dev)
1790 {
1791 unsigned i, max, rw_queues;
1792 int ret = 0;
1793
1794 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1795 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1796 ret = -ENOMEM;
1797 break;
1798 }
1799 }
1800
1801 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1802 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1803 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1804 dev->io_queues[HCTX_TYPE_READ];
1805 } else {
1806 rw_queues = max;
1807 }
1808
1809 for (i = dev->online_queues; i <= max; i++) {
1810 bool polled = i > rw_queues;
1811
1812 ret = nvme_create_queue(&dev->queues[i], i, polled);
1813 if (ret)
1814 break;
1815 }
1816
1817 /*
1818 * Ignore failing Create SQ/CQ commands, we can continue with less
1819 * than the desired amount of queues, and even a controller without
1820 * I/O queues can still be used to issue admin commands. This might
1821 * be useful to upgrade a buggy firmware for example.
1822 */
1823 return ret >= 0 ? 0 : ret;
1824 }
1825
nvme_cmb_size_unit(struct nvme_dev * dev)1826 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1827 {
1828 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1829
1830 return 1ULL << (12 + 4 * szu);
1831 }
1832
nvme_cmb_size(struct nvme_dev * dev)1833 static u32 nvme_cmb_size(struct nvme_dev *dev)
1834 {
1835 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1836 }
1837
nvme_map_cmb(struct nvme_dev * dev)1838 static void nvme_map_cmb(struct nvme_dev *dev)
1839 {
1840 u64 size, offset;
1841 resource_size_t bar_size;
1842 struct pci_dev *pdev = to_pci_dev(dev->dev);
1843 int bar;
1844
1845 if (dev->cmb_size)
1846 return;
1847
1848 if (NVME_CAP_CMBS(dev->ctrl.cap))
1849 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1850
1851 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1852 if (!dev->cmbsz)
1853 return;
1854 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1855
1856 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1857 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1858 bar = NVME_CMB_BIR(dev->cmbloc);
1859 bar_size = pci_resource_len(pdev, bar);
1860
1861 if (offset > bar_size)
1862 return;
1863
1864 /*
1865 * Controllers may support a CMB size larger than their BAR, for
1866 * example, due to being behind a bridge. Reduce the CMB to the
1867 * reported size of the BAR
1868 */
1869 size = min(size, bar_size - offset);
1870
1871 if (!IS_ALIGNED(size, memremap_compat_align()) ||
1872 !IS_ALIGNED(pci_resource_start(pdev, bar),
1873 memremap_compat_align()))
1874 return;
1875
1876 /*
1877 * Tell the controller about the host side address mapping the CMB,
1878 * and enable CMB decoding for the NVMe 1.4+ scheme:
1879 */
1880 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1881 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1882 (pci_bus_address(pdev, bar) + offset),
1883 dev->bar + NVME_REG_CMBMSC);
1884 }
1885
1886 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1887 dev_warn(dev->ctrl.device,
1888 "failed to register the CMB\n");
1889 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
1890 return;
1891 }
1892
1893 dev->cmb_size = size;
1894 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1895
1896 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1897 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1898 pci_p2pmem_publish(pdev, true);
1899
1900 nvme_update_attrs(dev);
1901 }
1902
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1903 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1904 {
1905 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1906 u64 dma_addr = dev->host_mem_descs_dma;
1907 struct nvme_command c = { };
1908 int ret;
1909
1910 c.features.opcode = nvme_admin_set_features;
1911 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1912 c.features.dword11 = cpu_to_le32(bits);
1913 c.features.dword12 = cpu_to_le32(host_mem_size);
1914 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1915 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1916 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1917
1918 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1919 if (ret) {
1920 dev_warn(dev->ctrl.device,
1921 "failed to set host mem (err %d, flags %#x).\n",
1922 ret, bits);
1923 } else
1924 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1925
1926 return ret;
1927 }
1928
nvme_free_host_mem(struct nvme_dev * dev)1929 static void nvme_free_host_mem(struct nvme_dev *dev)
1930 {
1931 int i;
1932
1933 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1934 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1935 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1936
1937 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1938 le64_to_cpu(desc->addr),
1939 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1940 }
1941
1942 kfree(dev->host_mem_desc_bufs);
1943 dev->host_mem_desc_bufs = NULL;
1944 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
1945 dev->host_mem_descs, dev->host_mem_descs_dma);
1946 dev->host_mem_descs = NULL;
1947 dev->host_mem_descs_size = 0;
1948 dev->nr_host_mem_descs = 0;
1949 }
1950
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1951 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1952 u32 chunk_size)
1953 {
1954 struct nvme_host_mem_buf_desc *descs;
1955 u32 max_entries, len, descs_size;
1956 dma_addr_t descs_dma;
1957 int i = 0;
1958 void **bufs;
1959 u64 size, tmp;
1960
1961 tmp = (preferred + chunk_size - 1);
1962 do_div(tmp, chunk_size);
1963 max_entries = tmp;
1964
1965 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1966 max_entries = dev->ctrl.hmmaxd;
1967
1968 descs_size = max_entries * sizeof(*descs);
1969 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
1970 GFP_KERNEL);
1971 if (!descs)
1972 goto out;
1973
1974 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1975 if (!bufs)
1976 goto out_free_descs;
1977
1978 for (size = 0; size < preferred && i < max_entries; size += len) {
1979 dma_addr_t dma_addr;
1980
1981 len = min_t(u64, chunk_size, preferred - size);
1982 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1983 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1984 if (!bufs[i])
1985 break;
1986
1987 descs[i].addr = cpu_to_le64(dma_addr);
1988 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1989 i++;
1990 }
1991
1992 if (!size)
1993 goto out_free_bufs;
1994
1995 dev->nr_host_mem_descs = i;
1996 dev->host_mem_size = size;
1997 dev->host_mem_descs = descs;
1998 dev->host_mem_descs_dma = descs_dma;
1999 dev->host_mem_descs_size = descs_size;
2000 dev->host_mem_desc_bufs = bufs;
2001 return 0;
2002
2003 out_free_bufs:
2004 while (--i >= 0) {
2005 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2006
2007 dma_free_attrs(dev->dev, size, bufs[i],
2008 le64_to_cpu(descs[i].addr),
2009 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2010 }
2011
2012 kfree(bufs);
2013 out_free_descs:
2014 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2015 out:
2016 dev->host_mem_descs = NULL;
2017 return -ENOMEM;
2018 }
2019
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2020 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2021 {
2022 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2023 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2024 u64 chunk_size;
2025
2026 /* start big and work our way down */
2027 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2028 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2029 if (!min || dev->host_mem_size >= min)
2030 return 0;
2031 nvme_free_host_mem(dev);
2032 }
2033 }
2034
2035 return -ENOMEM;
2036 }
2037
nvme_setup_host_mem(struct nvme_dev * dev)2038 static int nvme_setup_host_mem(struct nvme_dev *dev)
2039 {
2040 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2041 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2042 u64 min = (u64)dev->ctrl.hmmin * 4096;
2043 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2044 int ret;
2045
2046 if (!dev->ctrl.hmpre)
2047 return 0;
2048
2049 preferred = min(preferred, max);
2050 if (min > max) {
2051 dev_warn(dev->ctrl.device,
2052 "min host memory (%lld MiB) above limit (%d MiB).\n",
2053 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2054 nvme_free_host_mem(dev);
2055 return 0;
2056 }
2057
2058 /*
2059 * If we already have a buffer allocated check if we can reuse it.
2060 */
2061 if (dev->host_mem_descs) {
2062 if (dev->host_mem_size >= min)
2063 enable_bits |= NVME_HOST_MEM_RETURN;
2064 else
2065 nvme_free_host_mem(dev);
2066 }
2067
2068 if (!dev->host_mem_descs) {
2069 if (nvme_alloc_host_mem(dev, min, preferred)) {
2070 dev_warn(dev->ctrl.device,
2071 "failed to allocate host memory buffer.\n");
2072 return 0; /* controller must work without HMB */
2073 }
2074
2075 dev_info(dev->ctrl.device,
2076 "allocated %lld MiB host memory buffer.\n",
2077 dev->host_mem_size >> ilog2(SZ_1M));
2078 }
2079
2080 ret = nvme_set_host_mem(dev, enable_bits);
2081 if (ret)
2082 nvme_free_host_mem(dev);
2083 return ret;
2084 }
2085
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2086 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2087 char *buf)
2088 {
2089 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2090
2091 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2092 ndev->cmbloc, ndev->cmbsz);
2093 }
2094 static DEVICE_ATTR_RO(cmb);
2095
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2096 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2097 char *buf)
2098 {
2099 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2100
2101 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2102 }
2103 static DEVICE_ATTR_RO(cmbloc);
2104
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2105 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2106 char *buf)
2107 {
2108 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2109
2110 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2111 }
2112 static DEVICE_ATTR_RO(cmbsz);
2113
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2114 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2115 char *buf)
2116 {
2117 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2118
2119 return sysfs_emit(buf, "%d\n", ndev->hmb);
2120 }
2121
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2122 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2123 const char *buf, size_t count)
2124 {
2125 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2126 bool new;
2127 int ret;
2128
2129 if (kstrtobool(buf, &new) < 0)
2130 return -EINVAL;
2131
2132 if (new == ndev->hmb)
2133 return count;
2134
2135 if (new) {
2136 ret = nvme_setup_host_mem(ndev);
2137 } else {
2138 ret = nvme_set_host_mem(ndev, 0);
2139 if (!ret)
2140 nvme_free_host_mem(ndev);
2141 }
2142
2143 if (ret < 0)
2144 return ret;
2145
2146 return count;
2147 }
2148 static DEVICE_ATTR_RW(hmb);
2149
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2150 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2151 struct attribute *a, int n)
2152 {
2153 struct nvme_ctrl *ctrl =
2154 dev_get_drvdata(container_of(kobj, struct device, kobj));
2155 struct nvme_dev *dev = to_nvme_dev(ctrl);
2156
2157 if (a == &dev_attr_cmb.attr ||
2158 a == &dev_attr_cmbloc.attr ||
2159 a == &dev_attr_cmbsz.attr) {
2160 if (!dev->cmbsz)
2161 return 0;
2162 }
2163 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2164 return 0;
2165
2166 return a->mode;
2167 }
2168
2169 static struct attribute *nvme_pci_attrs[] = {
2170 &dev_attr_cmb.attr,
2171 &dev_attr_cmbloc.attr,
2172 &dev_attr_cmbsz.attr,
2173 &dev_attr_hmb.attr,
2174 NULL,
2175 };
2176
2177 static const struct attribute_group nvme_pci_dev_attrs_group = {
2178 .attrs = nvme_pci_attrs,
2179 .is_visible = nvme_pci_attrs_are_visible,
2180 };
2181
2182 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2183 &nvme_dev_attrs_group,
2184 &nvme_pci_dev_attrs_group,
2185 NULL,
2186 };
2187
nvme_update_attrs(struct nvme_dev * dev)2188 static void nvme_update_attrs(struct nvme_dev *dev)
2189 {
2190 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2191 }
2192
2193 /*
2194 * nirqs is the number of interrupts available for write and read
2195 * queues. The core already reserved an interrupt for the admin queue.
2196 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2197 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2198 {
2199 struct nvme_dev *dev = affd->priv;
2200 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2201
2202 /*
2203 * If there is no interrupt available for queues, ensure that
2204 * the default queue is set to 1. The affinity set size is
2205 * also set to one, but the irq core ignores it for this case.
2206 *
2207 * If only one interrupt is available or 'write_queue' == 0, combine
2208 * write and read queues.
2209 *
2210 * If 'write_queues' > 0, ensure it leaves room for at least one read
2211 * queue.
2212 */
2213 if (!nrirqs) {
2214 nrirqs = 1;
2215 nr_read_queues = 0;
2216 } else if (nrirqs == 1 || !nr_write_queues) {
2217 nr_read_queues = 0;
2218 } else if (nr_write_queues >= nrirqs) {
2219 nr_read_queues = 1;
2220 } else {
2221 nr_read_queues = nrirqs - nr_write_queues;
2222 }
2223
2224 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2225 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2226 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2227 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2228 affd->nr_sets = nr_read_queues ? 2 : 1;
2229 }
2230
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2231 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2232 {
2233 struct pci_dev *pdev = to_pci_dev(dev->dev);
2234 struct irq_affinity affd = {
2235 .pre_vectors = 1,
2236 .calc_sets = nvme_calc_irq_sets,
2237 .priv = dev,
2238 };
2239 unsigned int irq_queues, poll_queues;
2240 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2241
2242 /*
2243 * Poll queues don't need interrupts, but we need at least one I/O queue
2244 * left over for non-polled I/O.
2245 */
2246 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2247 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2248
2249 /*
2250 * Initialize for the single interrupt case, will be updated in
2251 * nvme_calc_irq_sets().
2252 */
2253 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2254 dev->io_queues[HCTX_TYPE_READ] = 0;
2255
2256 /*
2257 * We need interrupts for the admin queue and each non-polled I/O queue,
2258 * but some Apple controllers require all queues to use the first
2259 * vector.
2260 */
2261 irq_queues = 1;
2262 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2263 irq_queues += (nr_io_queues - poll_queues);
2264 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2265 flags &= ~PCI_IRQ_MSI;
2266 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2267 &affd);
2268 }
2269
nvme_max_io_queues(struct nvme_dev * dev)2270 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2271 {
2272 /*
2273 * If tags are shared with admin queue (Apple bug), then
2274 * make sure we only use one IO queue.
2275 */
2276 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2277 return 1;
2278 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2279 }
2280
nvme_setup_io_queues(struct nvme_dev * dev)2281 static int nvme_setup_io_queues(struct nvme_dev *dev)
2282 {
2283 struct nvme_queue *adminq = &dev->queues[0];
2284 struct pci_dev *pdev = to_pci_dev(dev->dev);
2285 unsigned int nr_io_queues;
2286 unsigned long size;
2287 int result;
2288
2289 /*
2290 * Sample the module parameters once at reset time so that we have
2291 * stable values to work with.
2292 */
2293 dev->nr_write_queues = write_queues;
2294 dev->nr_poll_queues = poll_queues;
2295
2296 nr_io_queues = dev->nr_allocated_queues - 1;
2297 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2298 if (result < 0)
2299 return result;
2300
2301 if (nr_io_queues == 0)
2302 return 0;
2303
2304 /*
2305 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2306 * from set to unset. If there is a window to it is truely freed,
2307 * pci_free_irq_vectors() jumping into this window will crash.
2308 * And take lock to avoid racing with pci_free_irq_vectors() in
2309 * nvme_dev_disable() path.
2310 */
2311 result = nvme_setup_io_queues_trylock(dev);
2312 if (result)
2313 return result;
2314 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2315 pci_free_irq(pdev, 0, adminq);
2316
2317 if (dev->cmb_use_sqes) {
2318 result = nvme_cmb_qdepth(dev, nr_io_queues,
2319 sizeof(struct nvme_command));
2320 if (result > 0) {
2321 dev->q_depth = result;
2322 dev->ctrl.sqsize = result - 1;
2323 } else {
2324 dev->cmb_use_sqes = false;
2325 }
2326 }
2327
2328 do {
2329 size = db_bar_size(dev, nr_io_queues);
2330 result = nvme_remap_bar(dev, size);
2331 if (!result)
2332 break;
2333 if (!--nr_io_queues) {
2334 result = -ENOMEM;
2335 goto out_unlock;
2336 }
2337 } while (1);
2338 adminq->q_db = dev->dbs;
2339
2340 retry:
2341 /* Deregister the admin queue's interrupt */
2342 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2343 pci_free_irq(pdev, 0, adminq);
2344
2345 /*
2346 * If we enable msix early due to not intx, disable it again before
2347 * setting up the full range we need.
2348 */
2349 pci_free_irq_vectors(pdev);
2350
2351 result = nvme_setup_irqs(dev, nr_io_queues);
2352 if (result <= 0) {
2353 result = -EIO;
2354 goto out_unlock;
2355 }
2356
2357 dev->num_vecs = result;
2358 result = max(result - 1, 1);
2359 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2360
2361 /*
2362 * Should investigate if there's a performance win from allocating
2363 * more queues than interrupt vectors; it might allow the submission
2364 * path to scale better, even if the receive path is limited by the
2365 * number of interrupts.
2366 */
2367 result = queue_request_irq(adminq);
2368 if (result)
2369 goto out_unlock;
2370 set_bit(NVMEQ_ENABLED, &adminq->flags);
2371 mutex_unlock(&dev->shutdown_lock);
2372
2373 result = nvme_create_io_queues(dev);
2374 if (result || dev->online_queues < 2)
2375 return result;
2376
2377 if (dev->online_queues - 1 < dev->max_qid) {
2378 nr_io_queues = dev->online_queues - 1;
2379 nvme_delete_io_queues(dev);
2380 result = nvme_setup_io_queues_trylock(dev);
2381 if (result)
2382 return result;
2383 nvme_suspend_io_queues(dev);
2384 goto retry;
2385 }
2386 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2387 dev->io_queues[HCTX_TYPE_DEFAULT],
2388 dev->io_queues[HCTX_TYPE_READ],
2389 dev->io_queues[HCTX_TYPE_POLL]);
2390 return 0;
2391 out_unlock:
2392 mutex_unlock(&dev->shutdown_lock);
2393 return result;
2394 }
2395
nvme_del_queue_end(struct request * req,blk_status_t error)2396 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2397 blk_status_t error)
2398 {
2399 struct nvme_queue *nvmeq = req->end_io_data;
2400
2401 blk_mq_free_request(req);
2402 complete(&nvmeq->delete_done);
2403 return RQ_END_IO_NONE;
2404 }
2405
nvme_del_cq_end(struct request * req,blk_status_t error)2406 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2407 blk_status_t error)
2408 {
2409 struct nvme_queue *nvmeq = req->end_io_data;
2410
2411 if (error)
2412 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2413
2414 return nvme_del_queue_end(req, error);
2415 }
2416
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2417 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2418 {
2419 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2420 struct request *req;
2421 struct nvme_command cmd = { };
2422
2423 cmd.delete_queue.opcode = opcode;
2424 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2425
2426 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2427 if (IS_ERR(req))
2428 return PTR_ERR(req);
2429 nvme_init_request(req, &cmd);
2430
2431 if (opcode == nvme_admin_delete_cq)
2432 req->end_io = nvme_del_cq_end;
2433 else
2434 req->end_io = nvme_del_queue_end;
2435 req->end_io_data = nvmeq;
2436
2437 init_completion(&nvmeq->delete_done);
2438 blk_execute_rq_nowait(req, false);
2439 return 0;
2440 }
2441
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2442 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2443 {
2444 int nr_queues = dev->online_queues - 1, sent = 0;
2445 unsigned long timeout;
2446
2447 retry:
2448 timeout = NVME_ADMIN_TIMEOUT;
2449 while (nr_queues > 0) {
2450 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2451 break;
2452 nr_queues--;
2453 sent++;
2454 }
2455 while (sent) {
2456 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2457
2458 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2459 timeout);
2460 if (timeout == 0)
2461 return false;
2462
2463 sent--;
2464 if (nr_queues)
2465 goto retry;
2466 }
2467 return true;
2468 }
2469
nvme_delete_io_queues(struct nvme_dev * dev)2470 static void nvme_delete_io_queues(struct nvme_dev *dev)
2471 {
2472 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2473 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2474 }
2475
nvme_pci_nr_maps(struct nvme_dev * dev)2476 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2477 {
2478 if (dev->io_queues[HCTX_TYPE_POLL])
2479 return 3;
2480 if (dev->io_queues[HCTX_TYPE_READ])
2481 return 2;
2482 return 1;
2483 }
2484
nvme_pci_update_nr_queues(struct nvme_dev * dev)2485 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2486 {
2487 if (!dev->ctrl.tagset) {
2488 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2489 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2490 return true;
2491 }
2492
2493 /* Give up if we are racing with nvme_dev_disable() */
2494 if (!mutex_trylock(&dev->shutdown_lock))
2495 return false;
2496
2497 /* Check if nvme_dev_disable() has been executed already */
2498 if (!dev->online_queues) {
2499 mutex_unlock(&dev->shutdown_lock);
2500 return false;
2501 }
2502
2503 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2504 /* free previously allocated queues that are no longer usable */
2505 nvme_free_queues(dev, dev->online_queues);
2506 mutex_unlock(&dev->shutdown_lock);
2507 return true;
2508 }
2509
nvme_pci_enable(struct nvme_dev * dev)2510 static int nvme_pci_enable(struct nvme_dev *dev)
2511 {
2512 int result = -ENOMEM;
2513 struct pci_dev *pdev = to_pci_dev(dev->dev);
2514 unsigned int flags = PCI_IRQ_ALL_TYPES;
2515
2516 if (pci_enable_device_mem(pdev))
2517 return result;
2518
2519 pci_set_master(pdev);
2520
2521 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2522 result = -ENODEV;
2523 goto disable;
2524 }
2525
2526 /*
2527 * Some devices and/or platforms don't advertise or work with INTx
2528 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2529 * adjust this later.
2530 */
2531 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2532 flags &= ~PCI_IRQ_MSI;
2533 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2534 if (result < 0)
2535 goto disable;
2536
2537 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2538
2539 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2540 io_queue_depth);
2541 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2542 dev->dbs = dev->bar + 4096;
2543
2544 /*
2545 * Some Apple controllers require a non-standard SQE size.
2546 * Interestingly they also seem to ignore the CC:IOSQES register
2547 * so we don't bother updating it here.
2548 */
2549 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2550 dev->io_sqes = 7;
2551 else
2552 dev->io_sqes = NVME_NVM_IOSQES;
2553
2554 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2555 dev->q_depth = 2;
2556 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2557 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2558 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2559 dev->q_depth = 64;
2560 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2561 "set queue depth=%u\n", dev->q_depth);
2562 }
2563
2564 /*
2565 * Controllers with the shared tags quirk need the IO queue to be
2566 * big enough so that we get 32 tags for the admin queue
2567 */
2568 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2569 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2570 dev->q_depth = NVME_AQ_DEPTH + 2;
2571 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2572 dev->q_depth);
2573 }
2574 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2575
2576 nvme_map_cmb(dev);
2577
2578 pci_save_state(pdev);
2579
2580 result = nvme_pci_configure_admin_queue(dev);
2581 if (result)
2582 goto free_irq;
2583 return result;
2584
2585 free_irq:
2586 pci_free_irq_vectors(pdev);
2587 disable:
2588 pci_disable_device(pdev);
2589 return result;
2590 }
2591
nvme_dev_unmap(struct nvme_dev * dev)2592 static void nvme_dev_unmap(struct nvme_dev *dev)
2593 {
2594 if (dev->bar)
2595 iounmap(dev->bar);
2596 pci_release_mem_regions(to_pci_dev(dev->dev));
2597 }
2598
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2599 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2600 {
2601 struct pci_dev *pdev = to_pci_dev(dev->dev);
2602 u32 csts;
2603
2604 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2605 return true;
2606 if (pdev->error_state != pci_channel_io_normal)
2607 return true;
2608
2609 csts = readl(dev->bar + NVME_REG_CSTS);
2610 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2611 }
2612
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2613 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2614 {
2615 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2616 struct pci_dev *pdev = to_pci_dev(dev->dev);
2617 bool dead;
2618
2619 mutex_lock(&dev->shutdown_lock);
2620 dead = nvme_pci_ctrl_is_dead(dev);
2621 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2622 if (pci_is_enabled(pdev))
2623 nvme_start_freeze(&dev->ctrl);
2624 /*
2625 * Give the controller a chance to complete all entered requests
2626 * if doing a safe shutdown.
2627 */
2628 if (!dead && shutdown)
2629 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2630 }
2631
2632 nvme_quiesce_io_queues(&dev->ctrl);
2633
2634 if (!dead && dev->ctrl.queue_count > 0) {
2635 nvme_delete_io_queues(dev);
2636 nvme_disable_ctrl(&dev->ctrl, shutdown);
2637 nvme_poll_irqdisable(&dev->queues[0]);
2638 }
2639 nvme_suspend_io_queues(dev);
2640 nvme_suspend_queue(dev, 0);
2641 pci_free_irq_vectors(pdev);
2642 if (pci_is_enabled(pdev))
2643 pci_disable_device(pdev);
2644 nvme_reap_pending_cqes(dev);
2645
2646 nvme_cancel_tagset(&dev->ctrl);
2647 nvme_cancel_admin_tagset(&dev->ctrl);
2648
2649 /*
2650 * The driver will not be starting up queues again if shutting down so
2651 * must flush all entered requests to their failed completion to avoid
2652 * deadlocking blk-mq hot-cpu notifier.
2653 */
2654 if (shutdown) {
2655 nvme_unquiesce_io_queues(&dev->ctrl);
2656 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2657 nvme_unquiesce_admin_queue(&dev->ctrl);
2658 }
2659 mutex_unlock(&dev->shutdown_lock);
2660 }
2661
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2662 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2663 {
2664 if (!nvme_wait_reset(&dev->ctrl))
2665 return -EBUSY;
2666 nvme_dev_disable(dev, shutdown);
2667 return 0;
2668 }
2669
nvme_setup_prp_pools(struct nvme_dev * dev)2670 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2671 {
2672 size_t small_align = 256;
2673
2674 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2675 NVME_CTRL_PAGE_SIZE,
2676 NVME_CTRL_PAGE_SIZE, 0);
2677 if (!dev->prp_page_pool)
2678 return -ENOMEM;
2679
2680 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2681 small_align = 512;
2682
2683 /* Optimisation for I/Os between 4k and 128k */
2684 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2685 256, small_align, 0);
2686 if (!dev->prp_small_pool) {
2687 dma_pool_destroy(dev->prp_page_pool);
2688 return -ENOMEM;
2689 }
2690 return 0;
2691 }
2692
nvme_release_prp_pools(struct nvme_dev * dev)2693 static void nvme_release_prp_pools(struct nvme_dev *dev)
2694 {
2695 dma_pool_destroy(dev->prp_page_pool);
2696 dma_pool_destroy(dev->prp_small_pool);
2697 }
2698
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2699 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2700 {
2701 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2702
2703 dev->iod_mempool = mempool_create_node(1,
2704 mempool_kmalloc, mempool_kfree,
2705 (void *)alloc_size, GFP_KERNEL,
2706 dev_to_node(dev->dev));
2707 if (!dev->iod_mempool)
2708 return -ENOMEM;
2709 return 0;
2710 }
2711
nvme_free_tagset(struct nvme_dev * dev)2712 static void nvme_free_tagset(struct nvme_dev *dev)
2713 {
2714 if (dev->tagset.tags)
2715 nvme_remove_io_tag_set(&dev->ctrl);
2716 dev->ctrl.tagset = NULL;
2717 }
2718
2719 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2720 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2721 {
2722 struct nvme_dev *dev = to_nvme_dev(ctrl);
2723
2724 nvme_free_tagset(dev);
2725 put_device(dev->dev);
2726 kfree(dev->queues);
2727 kfree(dev);
2728 }
2729
nvme_reset_work(struct work_struct * work)2730 static void nvme_reset_work(struct work_struct *work)
2731 {
2732 struct nvme_dev *dev =
2733 container_of(work, struct nvme_dev, ctrl.reset_work);
2734 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2735 int result;
2736
2737 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2738 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2739 dev->ctrl.state);
2740 result = -ENODEV;
2741 goto out;
2742 }
2743
2744 /*
2745 * If we're called to reset a live controller first shut it down before
2746 * moving on.
2747 */
2748 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2749 nvme_dev_disable(dev, false);
2750 nvme_sync_queues(&dev->ctrl);
2751
2752 mutex_lock(&dev->shutdown_lock);
2753 result = nvme_pci_enable(dev);
2754 if (result)
2755 goto out_unlock;
2756 nvme_unquiesce_admin_queue(&dev->ctrl);
2757 mutex_unlock(&dev->shutdown_lock);
2758
2759 /*
2760 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2761 * initializing procedure here.
2762 */
2763 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2764 dev_warn(dev->ctrl.device,
2765 "failed to mark controller CONNECTING\n");
2766 result = -EBUSY;
2767 goto out;
2768 }
2769
2770 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2771 if (result)
2772 goto out;
2773
2774 nvme_dbbuf_dma_alloc(dev);
2775
2776 result = nvme_setup_host_mem(dev);
2777 if (result < 0)
2778 goto out;
2779
2780 result = nvme_setup_io_queues(dev);
2781 if (result)
2782 goto out;
2783
2784 /*
2785 * Freeze and update the number of I/O queues as thos might have
2786 * changed. If there are no I/O queues left after this reset, keep the
2787 * controller around but remove all namespaces.
2788 */
2789 if (dev->online_queues > 1) {
2790 nvme_dbbuf_set(dev);
2791 nvme_unquiesce_io_queues(&dev->ctrl);
2792 nvme_wait_freeze(&dev->ctrl);
2793 if (!nvme_pci_update_nr_queues(dev))
2794 goto out;
2795 nvme_unfreeze(&dev->ctrl);
2796 } else {
2797 dev_warn(dev->ctrl.device, "IO queues lost\n");
2798 nvme_mark_namespaces_dead(&dev->ctrl);
2799 nvme_unquiesce_io_queues(&dev->ctrl);
2800 nvme_remove_namespaces(&dev->ctrl);
2801 nvme_free_tagset(dev);
2802 }
2803
2804 /*
2805 * If only admin queue live, keep it to do further investigation or
2806 * recovery.
2807 */
2808 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2809 dev_warn(dev->ctrl.device,
2810 "failed to mark controller live state\n");
2811 result = -ENODEV;
2812 goto out;
2813 }
2814
2815 nvme_start_ctrl(&dev->ctrl);
2816 return;
2817
2818 out_unlock:
2819 mutex_unlock(&dev->shutdown_lock);
2820 out:
2821 /*
2822 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2823 * may be holding this pci_dev's device lock.
2824 */
2825 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2826 result);
2827 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2828 nvme_dev_disable(dev, true);
2829 nvme_sync_queues(&dev->ctrl);
2830 nvme_mark_namespaces_dead(&dev->ctrl);
2831 nvme_unquiesce_io_queues(&dev->ctrl);
2832 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2833 }
2834
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2835 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2836 {
2837 *val = readl(to_nvme_dev(ctrl)->bar + off);
2838 return 0;
2839 }
2840
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2841 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2842 {
2843 writel(val, to_nvme_dev(ctrl)->bar + off);
2844 return 0;
2845 }
2846
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2847 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2848 {
2849 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2850 return 0;
2851 }
2852
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2853 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2854 {
2855 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2856
2857 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2858 }
2859
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)2860 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2861 {
2862 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2863 struct nvme_subsystem *subsys = ctrl->subsys;
2864
2865 dev_err(ctrl->device,
2866 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2867 pdev->vendor, pdev->device,
2868 nvme_strlen(subsys->model, sizeof(subsys->model)),
2869 subsys->model, nvme_strlen(subsys->firmware_rev,
2870 sizeof(subsys->firmware_rev)),
2871 subsys->firmware_rev);
2872 }
2873
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)2874 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2875 {
2876 struct nvme_dev *dev = to_nvme_dev(ctrl);
2877
2878 return dma_pci_p2pdma_supported(dev->dev);
2879 }
2880
2881 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2882 .name = "pcie",
2883 .module = THIS_MODULE,
2884 .flags = NVME_F_METADATA_SUPPORTED,
2885 .dev_attr_groups = nvme_pci_dev_attr_groups,
2886 .reg_read32 = nvme_pci_reg_read32,
2887 .reg_write32 = nvme_pci_reg_write32,
2888 .reg_read64 = nvme_pci_reg_read64,
2889 .free_ctrl = nvme_pci_free_ctrl,
2890 .submit_async_event = nvme_pci_submit_async_event,
2891 .get_address = nvme_pci_get_address,
2892 .print_device_info = nvme_pci_print_device_info,
2893 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
2894 };
2895
nvme_dev_map(struct nvme_dev * dev)2896 static int nvme_dev_map(struct nvme_dev *dev)
2897 {
2898 struct pci_dev *pdev = to_pci_dev(dev->dev);
2899
2900 if (pci_request_mem_regions(pdev, "nvme"))
2901 return -ENODEV;
2902
2903 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2904 goto release;
2905
2906 return 0;
2907 release:
2908 pci_release_mem_regions(pdev);
2909 return -ENODEV;
2910 }
2911
check_vendor_combination_bug(struct pci_dev * pdev)2912 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2913 {
2914 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2915 /*
2916 * Several Samsung devices seem to drop off the PCIe bus
2917 * randomly when APST is on and uses the deepest sleep state.
2918 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2919 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2920 * 950 PRO 256GB", but it seems to be restricted to two Dell
2921 * laptops.
2922 */
2923 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2924 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2925 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2926 return NVME_QUIRK_NO_DEEPEST_PS;
2927 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2928 /*
2929 * Samsung SSD 960 EVO drops off the PCIe bus after system
2930 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2931 * within few minutes after bootup on a Coffee Lake board -
2932 * ASUS PRIME Z370-A
2933 */
2934 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2935 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2936 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2937 return NVME_QUIRK_NO_APST;
2938 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2939 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2940 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2941 /*
2942 * Forcing to use host managed nvme power settings for
2943 * lowest idle power with quick resume latency on
2944 * Samsung and Toshiba SSDs based on suspend behavior
2945 * on Coffee Lake board for LENOVO C640
2946 */
2947 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2948 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2949 return NVME_QUIRK_SIMPLE_SUSPEND;
2950 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2951 pdev->device == 0x500f)) {
2952 /*
2953 * Exclude some Kingston NV1 and A2000 devices from
2954 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2955 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2956 */
2957 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2958 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2959 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2960 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2961 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2962 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
2963 /*
2964 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
2965 * because of high power consumption (> 2 Watt) in s2idle
2966 * sleep. Only some boards with Intel CPU are affected.
2967 */
2968 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
2969 dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
2970 dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
2971 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
2972 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
2973 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
2974 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2975 }
2976
2977 /*
2978 * NVMe SSD drops off the PCIe bus after system idle
2979 * for 10 hours on a Lenovo N60z board.
2980 */
2981 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
2982 return NVME_QUIRK_NO_APST;
2983
2984 return 0;
2985 }
2986
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)2987 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2988 const struct pci_device_id *id)
2989 {
2990 unsigned long quirks = id->driver_data;
2991 int node = dev_to_node(&pdev->dev);
2992 struct nvme_dev *dev;
2993 int ret = -ENOMEM;
2994
2995 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2996 if (!dev)
2997 return ERR_PTR(-ENOMEM);
2998 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2999 mutex_init(&dev->shutdown_lock);
3000
3001 dev->nr_write_queues = write_queues;
3002 dev->nr_poll_queues = poll_queues;
3003 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3004 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3005 sizeof(struct nvme_queue), GFP_KERNEL, node);
3006 if (!dev->queues)
3007 goto out_free_dev;
3008
3009 dev->dev = get_device(&pdev->dev);
3010
3011 quirks |= check_vendor_combination_bug(pdev);
3012 if (!noacpi &&
3013 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3014 acpi_storage_d3(&pdev->dev)) {
3015 /*
3016 * Some systems use a bios work around to ask for D3 on
3017 * platforms that support kernel managed suspend.
3018 */
3019 dev_info(&pdev->dev,
3020 "platform quirk: setting simple suspend\n");
3021 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3022 }
3023 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3024 quirks);
3025 if (ret)
3026 goto out_put_device;
3027
3028 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3029 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3030 else
3031 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3032 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3033 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3034
3035 /*
3036 * Limit the max command size to prevent iod->sg allocations going
3037 * over a single page.
3038 */
3039 dev->ctrl.max_hw_sectors = min_t(u32,
3040 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3041 dev->ctrl.max_segments = NVME_MAX_SEGS;
3042
3043 /*
3044 * There is no support for SGLs for metadata (yet), so we are limited to
3045 * a single integrity segment for the separate metadata pointer.
3046 */
3047 dev->ctrl.max_integrity_segments = 1;
3048 return dev;
3049
3050 out_put_device:
3051 put_device(dev->dev);
3052 kfree(dev->queues);
3053 out_free_dev:
3054 kfree(dev);
3055 return ERR_PTR(ret);
3056 }
3057
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3058 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3059 {
3060 struct nvme_dev *dev;
3061 int result = -ENOMEM;
3062
3063 dev = nvme_pci_alloc_dev(pdev, id);
3064 if (IS_ERR(dev))
3065 return PTR_ERR(dev);
3066
3067 result = nvme_dev_map(dev);
3068 if (result)
3069 goto out_uninit_ctrl;
3070
3071 result = nvme_setup_prp_pools(dev);
3072 if (result)
3073 goto out_dev_unmap;
3074
3075 result = nvme_pci_alloc_iod_mempool(dev);
3076 if (result)
3077 goto out_release_prp_pools;
3078
3079 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3080
3081 result = nvme_pci_enable(dev);
3082 if (result)
3083 goto out_release_iod_mempool;
3084
3085 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3086 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3087 if (result)
3088 goto out_disable;
3089
3090 /*
3091 * Mark the controller as connecting before sending admin commands to
3092 * allow the timeout handler to do the right thing.
3093 */
3094 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3095 dev_warn(dev->ctrl.device,
3096 "failed to mark controller CONNECTING\n");
3097 result = -EBUSY;
3098 goto out_disable;
3099 }
3100
3101 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3102 if (result)
3103 goto out_disable;
3104
3105 nvme_dbbuf_dma_alloc(dev);
3106
3107 result = nvme_setup_host_mem(dev);
3108 if (result < 0)
3109 goto out_disable;
3110
3111 result = nvme_setup_io_queues(dev);
3112 if (result)
3113 goto out_disable;
3114
3115 if (dev->online_queues > 1) {
3116 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3117 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3118 nvme_dbbuf_set(dev);
3119 }
3120
3121 if (!dev->ctrl.tagset)
3122 dev_warn(dev->ctrl.device, "IO queues not created\n");
3123
3124 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3125 dev_warn(dev->ctrl.device,
3126 "failed to mark controller live state\n");
3127 result = -ENODEV;
3128 goto out_disable;
3129 }
3130
3131 pci_set_drvdata(pdev, dev);
3132
3133 nvme_start_ctrl(&dev->ctrl);
3134 nvme_put_ctrl(&dev->ctrl);
3135 flush_work(&dev->ctrl.scan_work);
3136 return 0;
3137
3138 out_disable:
3139 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3140 nvme_dev_disable(dev, true);
3141 nvme_free_host_mem(dev);
3142 nvme_dev_remove_admin(dev);
3143 nvme_dbbuf_dma_free(dev);
3144 nvme_free_queues(dev, 0);
3145 out_release_iod_mempool:
3146 mempool_destroy(dev->iod_mempool);
3147 out_release_prp_pools:
3148 nvme_release_prp_pools(dev);
3149 out_dev_unmap:
3150 nvme_dev_unmap(dev);
3151 out_uninit_ctrl:
3152 nvme_uninit_ctrl(&dev->ctrl);
3153 nvme_put_ctrl(&dev->ctrl);
3154 return result;
3155 }
3156
nvme_reset_prepare(struct pci_dev * pdev)3157 static void nvme_reset_prepare(struct pci_dev *pdev)
3158 {
3159 struct nvme_dev *dev = pci_get_drvdata(pdev);
3160
3161 /*
3162 * We don't need to check the return value from waiting for the reset
3163 * state as pci_dev device lock is held, making it impossible to race
3164 * with ->remove().
3165 */
3166 nvme_disable_prepare_reset(dev, false);
3167 nvme_sync_queues(&dev->ctrl);
3168 }
3169
nvme_reset_done(struct pci_dev * pdev)3170 static void nvme_reset_done(struct pci_dev *pdev)
3171 {
3172 struct nvme_dev *dev = pci_get_drvdata(pdev);
3173
3174 if (!nvme_try_sched_reset(&dev->ctrl))
3175 flush_work(&dev->ctrl.reset_work);
3176 }
3177
nvme_shutdown(struct pci_dev * pdev)3178 static void nvme_shutdown(struct pci_dev *pdev)
3179 {
3180 struct nvme_dev *dev = pci_get_drvdata(pdev);
3181
3182 nvme_disable_prepare_reset(dev, true);
3183 }
3184
3185 /*
3186 * The driver's remove may be called on a device in a partially initialized
3187 * state. This function must not have any dependencies on the device state in
3188 * order to proceed.
3189 */
nvme_remove(struct pci_dev * pdev)3190 static void nvme_remove(struct pci_dev *pdev)
3191 {
3192 struct nvme_dev *dev = pci_get_drvdata(pdev);
3193
3194 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3195 pci_set_drvdata(pdev, NULL);
3196
3197 if (!pci_device_is_present(pdev)) {
3198 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3199 nvme_dev_disable(dev, true);
3200 }
3201
3202 flush_work(&dev->ctrl.reset_work);
3203 nvme_stop_ctrl(&dev->ctrl);
3204 nvme_remove_namespaces(&dev->ctrl);
3205 nvme_dev_disable(dev, true);
3206 nvme_free_host_mem(dev);
3207 nvme_dev_remove_admin(dev);
3208 nvme_dbbuf_dma_free(dev);
3209 nvme_free_queues(dev, 0);
3210 mempool_destroy(dev->iod_mempool);
3211 nvme_release_prp_pools(dev);
3212 nvme_dev_unmap(dev);
3213 nvme_uninit_ctrl(&dev->ctrl);
3214 }
3215
3216 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3217 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3218 {
3219 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3220 }
3221
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3222 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3223 {
3224 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3225 }
3226
nvme_resume(struct device * dev)3227 static int nvme_resume(struct device *dev)
3228 {
3229 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3230 struct nvme_ctrl *ctrl = &ndev->ctrl;
3231
3232 if (ndev->last_ps == U32_MAX ||
3233 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3234 goto reset;
3235 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3236 goto reset;
3237
3238 return 0;
3239 reset:
3240 return nvme_try_sched_reset(ctrl);
3241 }
3242
nvme_suspend(struct device * dev)3243 static int nvme_suspend(struct device *dev)
3244 {
3245 struct pci_dev *pdev = to_pci_dev(dev);
3246 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3247 struct nvme_ctrl *ctrl = &ndev->ctrl;
3248 int ret = -EBUSY;
3249
3250 ndev->last_ps = U32_MAX;
3251
3252 /*
3253 * The platform does not remove power for a kernel managed suspend so
3254 * use host managed nvme power settings for lowest idle power if
3255 * possible. This should have quicker resume latency than a full device
3256 * shutdown. But if the firmware is involved after the suspend or the
3257 * device does not support any non-default power states, shut down the
3258 * device fully.
3259 *
3260 * If ASPM is not enabled for the device, shut down the device and allow
3261 * the PCI bus layer to put it into D3 in order to take the PCIe link
3262 * down, so as to allow the platform to achieve its minimum low-power
3263 * state (which may not be possible if the link is up).
3264 */
3265 if (pm_suspend_via_firmware() || !ctrl->npss ||
3266 !pcie_aspm_enabled(pdev) ||
3267 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3268 return nvme_disable_prepare_reset(ndev, true);
3269
3270 nvme_start_freeze(ctrl);
3271 nvme_wait_freeze(ctrl);
3272 nvme_sync_queues(ctrl);
3273
3274 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3275 goto unfreeze;
3276
3277 /*
3278 * Host memory access may not be successful in a system suspend state,
3279 * but the specification allows the controller to access memory in a
3280 * non-operational power state.
3281 */
3282 if (ndev->hmb) {
3283 ret = nvme_set_host_mem(ndev, 0);
3284 if (ret < 0)
3285 goto unfreeze;
3286 }
3287
3288 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3289 if (ret < 0)
3290 goto unfreeze;
3291
3292 /*
3293 * A saved state prevents pci pm from generically controlling the
3294 * device's power. If we're using protocol specific settings, we don't
3295 * want pci interfering.
3296 */
3297 pci_save_state(pdev);
3298
3299 ret = nvme_set_power_state(ctrl, ctrl->npss);
3300 if (ret < 0)
3301 goto unfreeze;
3302
3303 if (ret) {
3304 /* discard the saved state */
3305 pci_load_saved_state(pdev, NULL);
3306
3307 /*
3308 * Clearing npss forces a controller reset on resume. The
3309 * correct value will be rediscovered then.
3310 */
3311 ret = nvme_disable_prepare_reset(ndev, true);
3312 ctrl->npss = 0;
3313 }
3314 unfreeze:
3315 nvme_unfreeze(ctrl);
3316 return ret;
3317 }
3318
nvme_simple_suspend(struct device * dev)3319 static int nvme_simple_suspend(struct device *dev)
3320 {
3321 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3322
3323 return nvme_disable_prepare_reset(ndev, true);
3324 }
3325
nvme_simple_resume(struct device * dev)3326 static int nvme_simple_resume(struct device *dev)
3327 {
3328 struct pci_dev *pdev = to_pci_dev(dev);
3329 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3330
3331 return nvme_try_sched_reset(&ndev->ctrl);
3332 }
3333
3334 static const struct dev_pm_ops nvme_dev_pm_ops = {
3335 .suspend = nvme_suspend,
3336 .resume = nvme_resume,
3337 .freeze = nvme_simple_suspend,
3338 .thaw = nvme_simple_resume,
3339 .poweroff = nvme_simple_suspend,
3340 .restore = nvme_simple_resume,
3341 };
3342 #endif /* CONFIG_PM_SLEEP */
3343
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3344 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3345 pci_channel_state_t state)
3346 {
3347 struct nvme_dev *dev = pci_get_drvdata(pdev);
3348
3349 /*
3350 * A frozen channel requires a reset. When detected, this method will
3351 * shutdown the controller to quiesce. The controller will be restarted
3352 * after the slot reset through driver's slot_reset callback.
3353 */
3354 switch (state) {
3355 case pci_channel_io_normal:
3356 return PCI_ERS_RESULT_CAN_RECOVER;
3357 case pci_channel_io_frozen:
3358 dev_warn(dev->ctrl.device,
3359 "frozen state error detected, reset controller\n");
3360 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3361 nvme_dev_disable(dev, true);
3362 return PCI_ERS_RESULT_DISCONNECT;
3363 }
3364 nvme_dev_disable(dev, false);
3365 return PCI_ERS_RESULT_NEED_RESET;
3366 case pci_channel_io_perm_failure:
3367 dev_warn(dev->ctrl.device,
3368 "failure state error detected, request disconnect\n");
3369 return PCI_ERS_RESULT_DISCONNECT;
3370 }
3371 return PCI_ERS_RESULT_NEED_RESET;
3372 }
3373
nvme_slot_reset(struct pci_dev * pdev)3374 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3375 {
3376 struct nvme_dev *dev = pci_get_drvdata(pdev);
3377
3378 dev_info(dev->ctrl.device, "restart after slot reset\n");
3379 pci_restore_state(pdev);
3380 if (!nvme_try_sched_reset(&dev->ctrl))
3381 nvme_unquiesce_io_queues(&dev->ctrl);
3382 return PCI_ERS_RESULT_RECOVERED;
3383 }
3384
nvme_error_resume(struct pci_dev * pdev)3385 static void nvme_error_resume(struct pci_dev *pdev)
3386 {
3387 struct nvme_dev *dev = pci_get_drvdata(pdev);
3388
3389 flush_work(&dev->ctrl.reset_work);
3390 }
3391
3392 static const struct pci_error_handlers nvme_err_handler = {
3393 .error_detected = nvme_error_detected,
3394 .slot_reset = nvme_slot_reset,
3395 .resume = nvme_error_resume,
3396 .reset_prepare = nvme_reset_prepare,
3397 .reset_done = nvme_reset_done,
3398 };
3399
3400 static const struct pci_device_id nvme_id_table[] = {
3401 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3402 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3403 NVME_QUIRK_DEALLOCATE_ZEROES, },
3404 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3405 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3406 NVME_QUIRK_DEALLOCATE_ZEROES, },
3407 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3408 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3409 NVME_QUIRK_DEALLOCATE_ZEROES |
3410 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3411 NVME_QUIRK_BOGUS_NID, },
3412 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3413 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3414 NVME_QUIRK_DEALLOCATE_ZEROES, },
3415 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3416 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3417 NVME_QUIRK_MEDIUM_PRIO_SQ |
3418 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3419 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3420 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3421 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3422 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3423 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3424 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3425 NVME_QUIRK_BOGUS_NID, },
3426 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3427 .driver_data = NVME_QUIRK_BOGUS_NID, },
3428 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3429 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3430 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3431 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3432 NVME_QUIRK_BOGUS_NID, },
3433 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3434 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3435 NVME_QUIRK_BOGUS_NID, },
3436 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3437 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3438 NVME_QUIRK_NO_NS_DESC_LIST, },
3439 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3440 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3441 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3442 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3443 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3444 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3445 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3446 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3447 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3448 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3449 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3450 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3451 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3452 .driver_data = NVME_QUIRK_BROKEN_MSI },
3453 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3454 .driver_data = NVME_QUIRK_BOGUS_NID, },
3455 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3456 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3457 NVME_QUIRK_BOGUS_NID, },
3458 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3459 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3460 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3461 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3462 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3463 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3464 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3465 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3466 .driver_data = NVME_QUIRK_BOGUS_NID, },
3467 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3468 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3469 NVME_QUIRK_BOGUS_NID, },
3470 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3471 .driver_data = NVME_QUIRK_BOGUS_NID, },
3472 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3473 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3474 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3475 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3476 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3477 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3478 .driver_data = NVME_QUIRK_BOGUS_NID, },
3479 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3480 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3481 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3482 .driver_data = NVME_QUIRK_BOGUS_NID, },
3483 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3484 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3485 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3486 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3487 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3488 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3489 NVME_QUIRK_BOGUS_NID, },
3490 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3491 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3492 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3493 .driver_data = NVME_QUIRK_BOGUS_NID, },
3494 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3495 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3497 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3499 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3500 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3501 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3502 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3503 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3504 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3505 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3507 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3508 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3509 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3510 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3511 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3512 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3513 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3514 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3515 .driver_data = NVME_QUIRK_BOGUS_NID, },
3516 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3517 .driver_data = NVME_QUIRK_BOGUS_NID, },
3518 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3519 .driver_data = NVME_QUIRK_BOGUS_NID, },
3520 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3521 .driver_data = NVME_QUIRK_BOGUS_NID, },
3522 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3523 .driver_data = NVME_QUIRK_BOGUS_NID, },
3524 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3525 .driver_data = NVME_QUIRK_BOGUS_NID, },
3526 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3527 .driver_data = NVME_QUIRK_BOGUS_NID, },
3528 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3529 .driver_data = NVME_QUIRK_BOGUS_NID, },
3530 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3531 .driver_data = NVME_QUIRK_BOGUS_NID, },
3532 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3533 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3534 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3535 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3536 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3537 .driver_data = NVME_QUIRK_BOGUS_NID, },
3538 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3539 .driver_data = NVME_QUIRK_BOGUS_NID, },
3540 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3541 .driver_data = NVME_QUIRK_BOGUS_NID, },
3542 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3543 .driver_data = NVME_QUIRK_BOGUS_NID |
3544 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3545 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3546 .driver_data = NVME_QUIRK_BOGUS_NID, },
3547 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3548 .driver_data = NVME_QUIRK_BOGUS_NID, },
3549 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3550 .driver_data = NVME_QUIRK_BOGUS_NID, },
3551 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3552 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3553 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3554 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3555 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3556 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3557 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3558 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3559 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3560 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3561 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3562 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3563 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3564 /*
3565 * Fix for the Apple controller found in the MacBook8,1 and
3566 * some MacBook7,1 to avoid controller resets and data loss.
3567 */
3568 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3569 NVME_QUIRK_QDEPTH_ONE },
3570 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3571 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3572 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3573 NVME_QUIRK_128_BYTES_SQES |
3574 NVME_QUIRK_SHARED_TAGS |
3575 NVME_QUIRK_SKIP_CID_GEN |
3576 NVME_QUIRK_IDENTIFY_CNS },
3577 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3578 { 0, }
3579 };
3580 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3581
3582 static struct pci_driver nvme_driver = {
3583 .name = "nvme",
3584 .id_table = nvme_id_table,
3585 .probe = nvme_probe,
3586 .remove = nvme_remove,
3587 .shutdown = nvme_shutdown,
3588 .driver = {
3589 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3590 #ifdef CONFIG_PM_SLEEP
3591 .pm = &nvme_dev_pm_ops,
3592 #endif
3593 },
3594 .sriov_configure = pci_sriov_configure_simple,
3595 .err_handler = &nvme_err_handler,
3596 };
3597
nvme_init(void)3598 static int __init nvme_init(void)
3599 {
3600 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3601 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3602 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3603 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3604 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3605 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3606 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3607
3608 return pci_register_driver(&nvme_driver);
3609 }
3610
nvme_exit(void)3611 static void __exit nvme_exit(void)
3612 {
3613 pci_unregister_driver(&nvme_driver);
3614 flush_workqueue(nvme_wq);
3615 }
3616
3617 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3618 MODULE_LICENSE("GPL");
3619 MODULE_VERSION("1.0");
3620 module_init(nvme_init);
3621 module_exit(nvme_exit);
3622