xref: /openbmc/linux/drivers/nvme/host/pci.c (revision b694e3c604e999343258c49e574abd7be012e726)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
io_queue_count_set(const char * val,const struct kernel_param * kp)78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 
145 	mempool_t *iod_mempool;
146 
147 	/* shadow doorbell buffer support: */
148 	__le32 *dbbuf_dbs;
149 	dma_addr_t dbbuf_dbs_dma_addr;
150 	__le32 *dbbuf_eis;
151 	dma_addr_t dbbuf_eis_dma_addr;
152 
153 	/* host memory buffer support: */
154 	u64 host_mem_size;
155 	u32 nr_host_mem_descs;
156 	u32 host_mem_descs_size;
157 	dma_addr_t host_mem_descs_dma;
158 	struct nvme_host_mem_buf_desc *host_mem_descs;
159 	void **host_mem_desc_bufs;
160 	unsigned int nr_allocated_queues;
161 	unsigned int nr_write_queues;
162 	unsigned int nr_poll_queues;
163 };
164 
io_queue_depth_set(const char * val,const struct kernel_param * kp)165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 			NVME_PCI_MAX_QUEUE_SIZE);
169 }
170 
sq_idx(unsigned int qid,u32 stride)171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
cq_idx(unsigned int qid,u32 stride)176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
to_nvme_dev(struct nvme_ctrl * ctrl)181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	__le32 *dbbuf_sq_db;
214 	__le32 *dbbuf_cq_db;
215 	__le32 *dbbuf_sq_ei;
216 	__le32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 union nvme_descriptor {
221 	struct nvme_sgl_desc	*sg_list;
222 	__le64			*prp_list;
223 };
224 
225 /*
226  * The nvme_iod describes the data in an I/O.
227  *
228  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
229  * to the actual struct scatterlist.
230  */
231 struct nvme_iod {
232 	struct nvme_request req;
233 	struct nvme_command cmd;
234 	bool aborted;
235 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
236 				   pool in use */
237 	unsigned int dma_len;	/* length of single DMA segment mapping */
238 	dma_addr_t first_dma;
239 	dma_addr_t meta_dma;
240 	struct sg_table sgt;
241 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
242 };
243 
nvme_dbbuf_size(struct nvme_dev * dev)244 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
245 {
246 	return dev->nr_allocated_queues * 8 * dev->db_stride;
247 }
248 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)249 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
250 {
251 	unsigned int mem_size = nvme_dbbuf_size(dev);
252 
253 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
254 		return;
255 
256 	if (dev->dbbuf_dbs) {
257 		/*
258 		 * Clear the dbbuf memory so the driver doesn't observe stale
259 		 * values from the previous instantiation.
260 		 */
261 		memset(dev->dbbuf_dbs, 0, mem_size);
262 		memset(dev->dbbuf_eis, 0, mem_size);
263 		return;
264 	}
265 
266 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
267 					    &dev->dbbuf_dbs_dma_addr,
268 					    GFP_KERNEL);
269 	if (!dev->dbbuf_dbs)
270 		goto fail;
271 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
272 					    &dev->dbbuf_eis_dma_addr,
273 					    GFP_KERNEL);
274 	if (!dev->dbbuf_eis)
275 		goto fail_free_dbbuf_dbs;
276 	return;
277 
278 fail_free_dbbuf_dbs:
279 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
280 			  dev->dbbuf_dbs_dma_addr);
281 	dev->dbbuf_dbs = NULL;
282 fail:
283 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
284 }
285 
nvme_dbbuf_dma_free(struct nvme_dev * dev)286 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
287 {
288 	unsigned int mem_size = nvme_dbbuf_size(dev);
289 
290 	if (dev->dbbuf_dbs) {
291 		dma_free_coherent(dev->dev, mem_size,
292 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
293 		dev->dbbuf_dbs = NULL;
294 	}
295 	if (dev->dbbuf_eis) {
296 		dma_free_coherent(dev->dev, mem_size,
297 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
298 		dev->dbbuf_eis = NULL;
299 	}
300 }
301 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)302 static void nvme_dbbuf_init(struct nvme_dev *dev,
303 			    struct nvme_queue *nvmeq, int qid)
304 {
305 	if (!dev->dbbuf_dbs || !qid)
306 		return;
307 
308 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
309 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
311 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
312 }
313 
nvme_dbbuf_free(struct nvme_queue * nvmeq)314 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
315 {
316 	if (!nvmeq->qid)
317 		return;
318 
319 	nvmeq->dbbuf_sq_db = NULL;
320 	nvmeq->dbbuf_cq_db = NULL;
321 	nvmeq->dbbuf_sq_ei = NULL;
322 	nvmeq->dbbuf_cq_ei = NULL;
323 }
324 
nvme_dbbuf_set(struct nvme_dev * dev)325 static void nvme_dbbuf_set(struct nvme_dev *dev)
326 {
327 	struct nvme_command c = { };
328 	unsigned int i;
329 
330 	if (!dev->dbbuf_dbs)
331 		return;
332 
333 	c.dbbuf.opcode = nvme_admin_dbbuf;
334 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
335 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
336 
337 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
338 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
339 		/* Free memory and continue on */
340 		nvme_dbbuf_dma_free(dev);
341 
342 		for (i = 1; i <= dev->online_queues; i++)
343 			nvme_dbbuf_free(&dev->queues[i]);
344 	}
345 }
346 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)347 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
348 {
349 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
350 }
351 
352 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)353 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
354 					      volatile __le32 *dbbuf_ei)
355 {
356 	if (dbbuf_db) {
357 		u16 old_value, event_idx;
358 
359 		/*
360 		 * Ensure that the queue is written before updating
361 		 * the doorbell in memory
362 		 */
363 		wmb();
364 
365 		old_value = le32_to_cpu(*dbbuf_db);
366 		*dbbuf_db = cpu_to_le32(value);
367 
368 		/*
369 		 * Ensure that the doorbell is updated before reading the event
370 		 * index from memory.  The controller needs to provide similar
371 		 * ordering to ensure the envent index is updated before reading
372 		 * the doorbell.
373 		 */
374 		mb();
375 
376 		event_idx = le32_to_cpu(*dbbuf_ei);
377 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
378 			return false;
379 	}
380 
381 	return true;
382 }
383 
384 /*
385  * Will slightly overestimate the number of pages needed.  This is OK
386  * as it only leads to a small amount of wasted memory for the lifetime of
387  * the I/O.
388  */
nvme_pci_npages_prp(void)389 static int nvme_pci_npages_prp(void)
390 {
391 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
392 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
393 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
394 }
395 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 				unsigned int hctx_idx)
398 {
399 	struct nvme_dev *dev = to_nvme_dev(data);
400 	struct nvme_queue *nvmeq = &dev->queues[0];
401 
402 	WARN_ON(hctx_idx != 0);
403 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
404 
405 	hctx->driver_data = nvmeq;
406 	return 0;
407 }
408 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410 			  unsigned int hctx_idx)
411 {
412 	struct nvme_dev *dev = to_nvme_dev(data);
413 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
414 
415 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
416 	hctx->driver_data = nvmeq;
417 	return 0;
418 }
419 
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)420 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
421 		struct request *req, unsigned int hctx_idx,
422 		unsigned int numa_node)
423 {
424 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425 
426 	nvme_req(req)->ctrl = set->driver_data;
427 	nvme_req(req)->cmd = &iod->cmd;
428 	return 0;
429 }
430 
queue_irq_offset(struct nvme_dev * dev)431 static int queue_irq_offset(struct nvme_dev *dev)
432 {
433 	/* if we have more than 1 vec, admin queue offsets us by 1 */
434 	if (dev->num_vecs > 1)
435 		return 1;
436 
437 	return 0;
438 }
439 
nvme_pci_map_queues(struct blk_mq_tag_set * set)440 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
441 {
442 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
443 	int i, qoff, offset;
444 
445 	offset = queue_irq_offset(dev);
446 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
447 		struct blk_mq_queue_map *map = &set->map[i];
448 
449 		map->nr_queues = dev->io_queues[i];
450 		if (!map->nr_queues) {
451 			BUG_ON(i == HCTX_TYPE_DEFAULT);
452 			continue;
453 		}
454 
455 		/*
456 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
457 		 * affinity), so use the regular blk-mq cpu mapping
458 		 */
459 		map->queue_offset = qoff;
460 		if (i != HCTX_TYPE_POLL && offset)
461 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
462 		else
463 			blk_mq_map_queues(map);
464 		qoff += map->nr_queues;
465 		offset += map->nr_queues;
466 	}
467 }
468 
469 /*
470  * Write sq tail if we are asked to, or if the next command would wrap.
471  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)472 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
473 {
474 	if (!write_sq) {
475 		u16 next_tail = nvmeq->sq_tail + 1;
476 
477 		if (next_tail == nvmeq->q_depth)
478 			next_tail = 0;
479 		if (next_tail != nvmeq->last_sq_tail)
480 			return;
481 	}
482 
483 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
484 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
485 		writel(nvmeq->sq_tail, nvmeq->q_db);
486 	nvmeq->last_sq_tail = nvmeq->sq_tail;
487 }
488 
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)489 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
490 				    struct nvme_command *cmd)
491 {
492 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
493 		absolute_pointer(cmd), sizeof(*cmd));
494 	if (++nvmeq->sq_tail == nvmeq->q_depth)
495 		nvmeq->sq_tail = 0;
496 }
497 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
499 {
500 	struct nvme_queue *nvmeq = hctx->driver_data;
501 
502 	spin_lock(&nvmeq->sq_lock);
503 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
504 		nvme_write_sq_db(nvmeq, true);
505 	spin_unlock(&nvmeq->sq_lock);
506 }
507 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)508 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
509 				     int nseg)
510 {
511 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
512 	unsigned int avg_seg_size;
513 
514 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
515 
516 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
517 		return false;
518 	if (!nvmeq->qid)
519 		return false;
520 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
521 		return false;
522 	return true;
523 }
524 
nvme_free_prps(struct nvme_dev * dev,struct request * req)525 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
526 {
527 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
528 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
529 	dma_addr_t dma_addr = iod->first_dma;
530 	int i;
531 
532 	for (i = 0; i < iod->nr_allocations; i++) {
533 		__le64 *prp_list = iod->list[i].prp_list;
534 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
535 
536 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
537 		dma_addr = next_dma_addr;
538 	}
539 }
540 
nvme_unmap_data(struct nvme_dev * dev,struct request * req)541 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
542 {
543 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 
545 	if (iod->dma_len) {
546 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
547 			       rq_dma_dir(req));
548 		return;
549 	}
550 
551 	WARN_ON_ONCE(!iod->sgt.nents);
552 
553 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
554 
555 	if (iod->nr_allocations == 0)
556 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
557 			      iod->first_dma);
558 	else if (iod->nr_allocations == 1)
559 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
560 			      iod->first_dma);
561 	else
562 		nvme_free_prps(dev, req);
563 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
564 }
565 
nvme_print_sgl(struct scatterlist * sgl,int nents)566 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
567 {
568 	int i;
569 	struct scatterlist *sg;
570 
571 	for_each_sg(sgl, sg, nents, i) {
572 		dma_addr_t phys = sg_phys(sg);
573 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
574 			"dma_address:%pad dma_length:%d\n",
575 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
576 			sg_dma_len(sg));
577 	}
578 }
579 
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)580 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
581 		struct request *req, struct nvme_rw_command *cmnd)
582 {
583 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 	struct dma_pool *pool;
585 	int length = blk_rq_payload_bytes(req);
586 	struct scatterlist *sg = iod->sgt.sgl;
587 	int dma_len = sg_dma_len(sg);
588 	u64 dma_addr = sg_dma_address(sg);
589 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
590 	__le64 *prp_list;
591 	dma_addr_t prp_dma;
592 	int nprps, i;
593 
594 	length -= (NVME_CTRL_PAGE_SIZE - offset);
595 	if (length <= 0) {
596 		iod->first_dma = 0;
597 		goto done;
598 	}
599 
600 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
601 	if (dma_len) {
602 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
603 	} else {
604 		sg = sg_next(sg);
605 		dma_addr = sg_dma_address(sg);
606 		dma_len = sg_dma_len(sg);
607 	}
608 
609 	if (length <= NVME_CTRL_PAGE_SIZE) {
610 		iod->first_dma = dma_addr;
611 		goto done;
612 	}
613 
614 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
615 	if (nprps <= (256 / 8)) {
616 		pool = dev->prp_small_pool;
617 		iod->nr_allocations = 0;
618 	} else {
619 		pool = dev->prp_page_pool;
620 		iod->nr_allocations = 1;
621 	}
622 
623 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
624 	if (!prp_list) {
625 		iod->nr_allocations = -1;
626 		return BLK_STS_RESOURCE;
627 	}
628 	iod->list[0].prp_list = prp_list;
629 	iod->first_dma = prp_dma;
630 	i = 0;
631 	for (;;) {
632 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
633 			__le64 *old_prp_list = prp_list;
634 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
635 			if (!prp_list)
636 				goto free_prps;
637 			iod->list[iod->nr_allocations++].prp_list = prp_list;
638 			prp_list[0] = old_prp_list[i - 1];
639 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
640 			i = 1;
641 		}
642 		prp_list[i++] = cpu_to_le64(dma_addr);
643 		dma_len -= NVME_CTRL_PAGE_SIZE;
644 		dma_addr += NVME_CTRL_PAGE_SIZE;
645 		length -= NVME_CTRL_PAGE_SIZE;
646 		if (length <= 0)
647 			break;
648 		if (dma_len > 0)
649 			continue;
650 		if (unlikely(dma_len < 0))
651 			goto bad_sgl;
652 		sg = sg_next(sg);
653 		dma_addr = sg_dma_address(sg);
654 		dma_len = sg_dma_len(sg);
655 	}
656 done:
657 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
658 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
659 	return BLK_STS_OK;
660 free_prps:
661 	nvme_free_prps(dev, req);
662 	return BLK_STS_RESOURCE;
663 bad_sgl:
664 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
665 			"Invalid SGL for payload:%d nents:%d\n",
666 			blk_rq_payload_bytes(req), iod->sgt.nents);
667 	return BLK_STS_IOERR;
668 }
669 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)670 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
671 		struct scatterlist *sg)
672 {
673 	sge->addr = cpu_to_le64(sg_dma_address(sg));
674 	sge->length = cpu_to_le32(sg_dma_len(sg));
675 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
676 }
677 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)678 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
679 		dma_addr_t dma_addr, int entries)
680 {
681 	sge->addr = cpu_to_le64(dma_addr);
682 	sge->length = cpu_to_le32(entries * sizeof(*sge));
683 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
684 }
685 
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)686 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
687 		struct request *req, struct nvme_rw_command *cmd)
688 {
689 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
690 	struct dma_pool *pool;
691 	struct nvme_sgl_desc *sg_list;
692 	struct scatterlist *sg = iod->sgt.sgl;
693 	unsigned int entries = iod->sgt.nents;
694 	dma_addr_t sgl_dma;
695 	int i = 0;
696 
697 	/* setting the transfer type as SGL */
698 	cmd->flags = NVME_CMD_SGL_METABUF;
699 
700 	if (entries == 1) {
701 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
702 		return BLK_STS_OK;
703 	}
704 
705 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
706 		pool = dev->prp_small_pool;
707 		iod->nr_allocations = 0;
708 	} else {
709 		pool = dev->prp_page_pool;
710 		iod->nr_allocations = 1;
711 	}
712 
713 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
714 	if (!sg_list) {
715 		iod->nr_allocations = -1;
716 		return BLK_STS_RESOURCE;
717 	}
718 
719 	iod->list[0].sg_list = sg_list;
720 	iod->first_dma = sgl_dma;
721 
722 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
723 	do {
724 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
725 		sg = sg_next(sg);
726 	} while (--entries > 0);
727 
728 	return BLK_STS_OK;
729 }
730 
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)731 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
732 		struct request *req, struct nvme_rw_command *cmnd,
733 		struct bio_vec *bv)
734 {
735 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
736 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
737 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
738 
739 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
740 	if (dma_mapping_error(dev->dev, iod->first_dma))
741 		return BLK_STS_RESOURCE;
742 	iod->dma_len = bv->bv_len;
743 
744 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
745 	if (bv->bv_len > first_prp_len)
746 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
747 	else
748 		cmnd->dptr.prp2 = 0;
749 	return BLK_STS_OK;
750 }
751 
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)752 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
753 		struct request *req, struct nvme_rw_command *cmnd,
754 		struct bio_vec *bv)
755 {
756 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757 
758 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
759 	if (dma_mapping_error(dev->dev, iod->first_dma))
760 		return BLK_STS_RESOURCE;
761 	iod->dma_len = bv->bv_len;
762 
763 	cmnd->flags = NVME_CMD_SGL_METABUF;
764 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
765 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
766 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
767 	return BLK_STS_OK;
768 }
769 
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)770 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
771 		struct nvme_command *cmnd)
772 {
773 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
774 	blk_status_t ret = BLK_STS_RESOURCE;
775 	int rc;
776 
777 	if (blk_rq_nr_phys_segments(req) == 1) {
778 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
779 		struct bio_vec bv = req_bvec(req);
780 
781 		if (!is_pci_p2pdma_page(bv.bv_page)) {
782 			if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
783 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
784 				return nvme_setup_prp_simple(dev, req,
785 							     &cmnd->rw, &bv);
786 
787 			if (nvmeq->qid && sgl_threshold &&
788 			    nvme_ctrl_sgl_supported(&dev->ctrl))
789 				return nvme_setup_sgl_simple(dev, req,
790 							     &cmnd->rw, &bv);
791 		}
792 	}
793 
794 	iod->dma_len = 0;
795 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
796 	if (!iod->sgt.sgl)
797 		return BLK_STS_RESOURCE;
798 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
799 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
800 	if (!iod->sgt.orig_nents)
801 		goto out_free_sg;
802 
803 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
804 			     DMA_ATTR_NO_WARN);
805 	if (rc) {
806 		if (rc == -EREMOTEIO)
807 			ret = BLK_STS_TARGET;
808 		goto out_free_sg;
809 	}
810 
811 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
812 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
813 	else
814 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
815 	if (ret != BLK_STS_OK)
816 		goto out_unmap_sg;
817 	return BLK_STS_OK;
818 
819 out_unmap_sg:
820 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
821 out_free_sg:
822 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
823 	return ret;
824 }
825 
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)826 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
827 		struct nvme_command *cmnd)
828 {
829 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830 	struct bio_vec bv = rq_integrity_vec(req);
831 
832 	iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
833 	if (dma_mapping_error(dev->dev, iod->meta_dma))
834 		return BLK_STS_IOERR;
835 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
836 	return BLK_STS_OK;
837 }
838 
nvme_prep_rq(struct nvme_dev * dev,struct request * req)839 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
840 {
841 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 	blk_status_t ret;
843 
844 	iod->aborted = false;
845 	iod->nr_allocations = -1;
846 	iod->sgt.nents = 0;
847 
848 	ret = nvme_setup_cmd(req->q->queuedata, req);
849 	if (ret)
850 		return ret;
851 
852 	if (blk_rq_nr_phys_segments(req)) {
853 		ret = nvme_map_data(dev, req, &iod->cmd);
854 		if (ret)
855 			goto out_free_cmd;
856 	}
857 
858 	if (blk_integrity_rq(req)) {
859 		ret = nvme_map_metadata(dev, req, &iod->cmd);
860 		if (ret)
861 			goto out_unmap_data;
862 	}
863 
864 	nvme_start_request(req);
865 	return BLK_STS_OK;
866 out_unmap_data:
867 	if (blk_rq_nr_phys_segments(req))
868 		nvme_unmap_data(dev, req);
869 out_free_cmd:
870 	nvme_cleanup_cmd(req);
871 	return ret;
872 }
873 
874 /*
875  * NOTE: ns is NULL when called on the admin queue.
876  */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)877 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
878 			 const struct blk_mq_queue_data *bd)
879 {
880 	struct nvme_queue *nvmeq = hctx->driver_data;
881 	struct nvme_dev *dev = nvmeq->dev;
882 	struct request *req = bd->rq;
883 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
884 	blk_status_t ret;
885 
886 	/*
887 	 * We should not need to do this, but we're still using this to
888 	 * ensure we can drain requests on a dying queue.
889 	 */
890 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
891 		return BLK_STS_IOERR;
892 
893 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
894 		return nvme_fail_nonready_command(&dev->ctrl, req);
895 
896 	ret = nvme_prep_rq(dev, req);
897 	if (unlikely(ret))
898 		return ret;
899 	spin_lock(&nvmeq->sq_lock);
900 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
901 	nvme_write_sq_db(nvmeq, bd->last);
902 	spin_unlock(&nvmeq->sq_lock);
903 	return BLK_STS_OK;
904 }
905 
nvme_submit_cmds(struct nvme_queue * nvmeq,struct request ** rqlist)906 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
907 {
908 	struct request *req;
909 
910 	spin_lock(&nvmeq->sq_lock);
911 	while ((req = rq_list_pop(rqlist))) {
912 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
913 
914 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
915 	}
916 	nvme_write_sq_db(nvmeq, true);
917 	spin_unlock(&nvmeq->sq_lock);
918 }
919 
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)920 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
921 {
922 	/*
923 	 * We should not need to do this, but we're still using this to
924 	 * ensure we can drain requests on a dying queue.
925 	 */
926 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
927 		return false;
928 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
929 		return false;
930 
931 	req->mq_hctx->tags->rqs[req->tag] = req;
932 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
933 }
934 
nvme_queue_rqs(struct request ** rqlist)935 static void nvme_queue_rqs(struct request **rqlist)
936 {
937 	struct request *submit_list = NULL;
938 	struct request *requeue_list = NULL;
939 	struct request **requeue_lastp = &requeue_list;
940 	struct nvme_queue *nvmeq = NULL;
941 	struct request *req;
942 
943 	while ((req = rq_list_pop(rqlist))) {
944 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
945 			nvme_submit_cmds(nvmeq, &submit_list);
946 		nvmeq = req->mq_hctx->driver_data;
947 
948 		if (nvme_prep_rq_batch(nvmeq, req))
949 			rq_list_add(&submit_list, req); /* reverse order */
950 		else
951 			rq_list_add_tail(&requeue_lastp, req);
952 	}
953 
954 	if (nvmeq)
955 		nvme_submit_cmds(nvmeq, &submit_list);
956 	*rqlist = requeue_list;
957 }
958 
nvme_pci_unmap_rq(struct request * req)959 static __always_inline void nvme_pci_unmap_rq(struct request *req)
960 {
961 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
962 	struct nvme_dev *dev = nvmeq->dev;
963 
964 	if (blk_integrity_rq(req)) {
965 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966 
967 		dma_unmap_page(dev->dev, iod->meta_dma,
968 			       rq_integrity_vec(req).bv_len, rq_dma_dir(req));
969 	}
970 
971 	if (blk_rq_nr_phys_segments(req))
972 		nvme_unmap_data(dev, req);
973 }
974 
nvme_pci_complete_rq(struct request * req)975 static void nvme_pci_complete_rq(struct request *req)
976 {
977 	nvme_pci_unmap_rq(req);
978 	nvme_complete_rq(req);
979 }
980 
nvme_pci_complete_batch(struct io_comp_batch * iob)981 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
982 {
983 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
984 }
985 
986 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)987 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
988 {
989 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
990 
991 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
992 }
993 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)994 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
995 {
996 	u16 head = nvmeq->cq_head;
997 
998 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
999 					      nvmeq->dbbuf_cq_ei))
1000 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1001 }
1002 
nvme_queue_tagset(struct nvme_queue * nvmeq)1003 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1004 {
1005 	if (!nvmeq->qid)
1006 		return nvmeq->dev->admin_tagset.tags[0];
1007 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1008 }
1009 
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1010 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1011 				   struct io_comp_batch *iob, u16 idx)
1012 {
1013 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1014 	__u16 command_id = READ_ONCE(cqe->command_id);
1015 	struct request *req;
1016 
1017 	/*
1018 	 * AEN requests are special as they don't time out and can
1019 	 * survive any kind of queue freeze and often don't respond to
1020 	 * aborts.  We don't even bother to allocate a struct request
1021 	 * for them but rather special case them here.
1022 	 */
1023 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1024 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1025 				cqe->status, &cqe->result);
1026 		return;
1027 	}
1028 
1029 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1030 	if (unlikely(!req)) {
1031 		dev_warn(nvmeq->dev->ctrl.device,
1032 			"invalid id %d completed on queue %d\n",
1033 			command_id, le16_to_cpu(cqe->sq_id));
1034 		return;
1035 	}
1036 
1037 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1038 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1039 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1040 					nvme_pci_complete_batch))
1041 		nvme_pci_complete_rq(req);
1042 }
1043 
nvme_update_cq_head(struct nvme_queue * nvmeq)1044 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1045 {
1046 	u32 tmp = nvmeq->cq_head + 1;
1047 
1048 	if (tmp == nvmeq->q_depth) {
1049 		nvmeq->cq_head = 0;
1050 		nvmeq->cq_phase ^= 1;
1051 	} else {
1052 		nvmeq->cq_head = tmp;
1053 	}
1054 }
1055 
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1056 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1057 			       struct io_comp_batch *iob)
1058 {
1059 	int found = 0;
1060 
1061 	while (nvme_cqe_pending(nvmeq)) {
1062 		found++;
1063 		/*
1064 		 * load-load control dependency between phase and the rest of
1065 		 * the cqe requires a full read memory barrier
1066 		 */
1067 		dma_rmb();
1068 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1069 		nvme_update_cq_head(nvmeq);
1070 	}
1071 
1072 	if (found)
1073 		nvme_ring_cq_doorbell(nvmeq);
1074 	return found;
1075 }
1076 
nvme_irq(int irq,void * data)1077 static irqreturn_t nvme_irq(int irq, void *data)
1078 {
1079 	struct nvme_queue *nvmeq = data;
1080 	DEFINE_IO_COMP_BATCH(iob);
1081 
1082 	if (nvme_poll_cq(nvmeq, &iob)) {
1083 		if (!rq_list_empty(iob.req_list))
1084 			nvme_pci_complete_batch(&iob);
1085 		return IRQ_HANDLED;
1086 	}
1087 	return IRQ_NONE;
1088 }
1089 
nvme_irq_check(int irq,void * data)1090 static irqreturn_t nvme_irq_check(int irq, void *data)
1091 {
1092 	struct nvme_queue *nvmeq = data;
1093 
1094 	if (nvme_cqe_pending(nvmeq))
1095 		return IRQ_WAKE_THREAD;
1096 	return IRQ_NONE;
1097 }
1098 
1099 /*
1100  * Poll for completions for any interrupt driven queue
1101  * Can be called from any context.
1102  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1103 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1104 {
1105 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1106 
1107 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1108 
1109 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1110 	nvme_poll_cq(nvmeq, NULL);
1111 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1112 }
1113 
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1114 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1115 {
1116 	struct nvme_queue *nvmeq = hctx->driver_data;
1117 	bool found;
1118 
1119 	if (!nvme_cqe_pending(nvmeq))
1120 		return 0;
1121 
1122 	spin_lock(&nvmeq->cq_poll_lock);
1123 	found = nvme_poll_cq(nvmeq, iob);
1124 	spin_unlock(&nvmeq->cq_poll_lock);
1125 
1126 	return found;
1127 }
1128 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1129 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1130 {
1131 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1132 	struct nvme_queue *nvmeq = &dev->queues[0];
1133 	struct nvme_command c = { };
1134 
1135 	c.common.opcode = nvme_admin_async_event;
1136 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1137 
1138 	spin_lock(&nvmeq->sq_lock);
1139 	nvme_sq_copy_cmd(nvmeq, &c);
1140 	nvme_write_sq_db(nvmeq, true);
1141 	spin_unlock(&nvmeq->sq_lock);
1142 }
1143 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1144 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1145 {
1146 	struct nvme_command c = { };
1147 
1148 	c.delete_queue.opcode = opcode;
1149 	c.delete_queue.qid = cpu_to_le16(id);
1150 
1151 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1152 }
1153 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1154 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1155 		struct nvme_queue *nvmeq, s16 vector)
1156 {
1157 	struct nvme_command c = { };
1158 	int flags = NVME_QUEUE_PHYS_CONTIG;
1159 
1160 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1161 		flags |= NVME_CQ_IRQ_ENABLED;
1162 
1163 	/*
1164 	 * Note: we (ab)use the fact that the prp fields survive if no data
1165 	 * is attached to the request.
1166 	 */
1167 	c.create_cq.opcode = nvme_admin_create_cq;
1168 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1169 	c.create_cq.cqid = cpu_to_le16(qid);
1170 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1171 	c.create_cq.cq_flags = cpu_to_le16(flags);
1172 	c.create_cq.irq_vector = cpu_to_le16(vector);
1173 
1174 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1175 }
1176 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1177 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1178 						struct nvme_queue *nvmeq)
1179 {
1180 	struct nvme_ctrl *ctrl = &dev->ctrl;
1181 	struct nvme_command c = { };
1182 	int flags = NVME_QUEUE_PHYS_CONTIG;
1183 
1184 	/*
1185 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1186 	 * set. Since URGENT priority is zeroes, it makes all queues
1187 	 * URGENT.
1188 	 */
1189 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1190 		flags |= NVME_SQ_PRIO_MEDIUM;
1191 
1192 	/*
1193 	 * Note: we (ab)use the fact that the prp fields survive if no data
1194 	 * is attached to the request.
1195 	 */
1196 	c.create_sq.opcode = nvme_admin_create_sq;
1197 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1198 	c.create_sq.sqid = cpu_to_le16(qid);
1199 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1200 	c.create_sq.sq_flags = cpu_to_le16(flags);
1201 	c.create_sq.cqid = cpu_to_le16(qid);
1202 
1203 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1204 }
1205 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1206 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1207 {
1208 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1209 }
1210 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1211 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1212 {
1213 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1214 }
1215 
abort_endio(struct request * req,blk_status_t error)1216 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1217 {
1218 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1219 
1220 	dev_warn(nvmeq->dev->ctrl.device,
1221 		 "Abort status: 0x%x", nvme_req(req)->status);
1222 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1223 	blk_mq_free_request(req);
1224 	return RQ_END_IO_NONE;
1225 }
1226 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1227 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1228 {
1229 	/* If true, indicates loss of adapter communication, possibly by a
1230 	 * NVMe Subsystem reset.
1231 	 */
1232 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1233 
1234 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1235 	switch (nvme_ctrl_state(&dev->ctrl)) {
1236 	case NVME_CTRL_RESETTING:
1237 	case NVME_CTRL_CONNECTING:
1238 		return false;
1239 	default:
1240 		break;
1241 	}
1242 
1243 	/* We shouldn't reset unless the controller is on fatal error state
1244 	 * _or_ if we lost the communication with it.
1245 	 */
1246 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1252 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1253 {
1254 	/* Read a config register to help see what died. */
1255 	u16 pci_status;
1256 	int result;
1257 
1258 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1259 				      &pci_status);
1260 	if (result == PCIBIOS_SUCCESSFUL)
1261 		dev_warn(dev->ctrl.device,
1262 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1263 			 csts, pci_status);
1264 	else
1265 		dev_warn(dev->ctrl.device,
1266 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1267 			 csts, result);
1268 
1269 	if (csts != ~0)
1270 		return;
1271 
1272 	dev_warn(dev->ctrl.device,
1273 		 "Does your device have a faulty power saving mode enabled?\n");
1274 	dev_warn(dev->ctrl.device,
1275 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1276 }
1277 
nvme_timeout(struct request * req)1278 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1279 {
1280 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1281 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1282 	struct nvme_dev *dev = nvmeq->dev;
1283 	struct request *abort_req;
1284 	struct nvme_command cmd = { };
1285 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1286 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1287 
1288 	/*
1289 	 * Shutdown the device immediately if we see it is disconnected. This
1290 	 * unblocks PCIe error handling if the nvme driver is waiting in
1291 	 * error_resume for a device that has been removed. We can't unbind the
1292 	 * driver while the driver's error callback is waiting to complete, so
1293 	 * we're relying on a timeout to break that deadlock if a removal
1294 	 * occurs while reset work is running.
1295 	 */
1296 	if (pci_dev_is_disconnected(pdev))
1297 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1298 	if (nvme_state_terminal(&dev->ctrl))
1299 		goto disable;
1300 
1301 	/* If PCI error recovery process is happening, we cannot reset or
1302 	 * the recovery mechanism will surely fail.
1303 	 */
1304 	mb();
1305 	if (pci_channel_offline(pdev))
1306 		return BLK_EH_RESET_TIMER;
1307 
1308 	/*
1309 	 * Reset immediately if the controller is failed
1310 	 */
1311 	if (nvme_should_reset(dev, csts)) {
1312 		nvme_warn_reset(dev, csts);
1313 		goto disable;
1314 	}
1315 
1316 	/*
1317 	 * Did we miss an interrupt?
1318 	 */
1319 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1320 		nvme_poll(req->mq_hctx, NULL);
1321 	else
1322 		nvme_poll_irqdisable(nvmeq);
1323 
1324 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1325 		dev_warn(dev->ctrl.device,
1326 			 "I/O %d QID %d timeout, completion polled\n",
1327 			 req->tag, nvmeq->qid);
1328 		return BLK_EH_DONE;
1329 	}
1330 
1331 	/*
1332 	 * Shutdown immediately if controller times out while starting. The
1333 	 * reset work will see the pci device disabled when it gets the forced
1334 	 * cancellation error. All outstanding requests are completed on
1335 	 * shutdown, so we return BLK_EH_DONE.
1336 	 */
1337 	switch (nvme_ctrl_state(&dev->ctrl)) {
1338 	case NVME_CTRL_CONNECTING:
1339 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1340 		fallthrough;
1341 	case NVME_CTRL_DELETING:
1342 		dev_warn_ratelimited(dev->ctrl.device,
1343 			 "I/O %d QID %d timeout, disable controller\n",
1344 			 req->tag, nvmeq->qid);
1345 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1346 		nvme_dev_disable(dev, true);
1347 		return BLK_EH_DONE;
1348 	case NVME_CTRL_RESETTING:
1349 		return BLK_EH_RESET_TIMER;
1350 	default:
1351 		break;
1352 	}
1353 
1354 	/*
1355 	 * Shutdown the controller immediately and schedule a reset if the
1356 	 * command was already aborted once before and still hasn't been
1357 	 * returned to the driver, or if this is the admin queue.
1358 	 */
1359 	if (!nvmeq->qid || iod->aborted) {
1360 		dev_warn(dev->ctrl.device,
1361 			 "I/O %d QID %d timeout, reset controller\n",
1362 			 req->tag, nvmeq->qid);
1363 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1364 		goto disable;
1365 	}
1366 
1367 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1368 		atomic_inc(&dev->ctrl.abort_limit);
1369 		return BLK_EH_RESET_TIMER;
1370 	}
1371 	iod->aborted = true;
1372 
1373 	cmd.abort.opcode = nvme_admin_abort_cmd;
1374 	cmd.abort.cid = nvme_cid(req);
1375 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1376 
1377 	dev_warn(nvmeq->dev->ctrl.device,
1378 		"I/O %d (%s) QID %d timeout, aborting\n",
1379 		 req->tag,
1380 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1381 		 nvmeq->qid);
1382 
1383 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1384 					 BLK_MQ_REQ_NOWAIT);
1385 	if (IS_ERR(abort_req)) {
1386 		atomic_inc(&dev->ctrl.abort_limit);
1387 		return BLK_EH_RESET_TIMER;
1388 	}
1389 	nvme_init_request(abort_req, &cmd);
1390 
1391 	abort_req->end_io = abort_endio;
1392 	abort_req->end_io_data = NULL;
1393 	blk_execute_rq_nowait(abort_req, false);
1394 
1395 	/*
1396 	 * The aborted req will be completed on receiving the abort req.
1397 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1398 	 * as the device then is in a faulty state.
1399 	 */
1400 	return BLK_EH_RESET_TIMER;
1401 
1402 disable:
1403 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1404 		if (nvme_state_terminal(&dev->ctrl))
1405 			nvme_dev_disable(dev, true);
1406 		return BLK_EH_DONE;
1407 	}
1408 
1409 	nvme_dev_disable(dev, false);
1410 	if (nvme_try_sched_reset(&dev->ctrl))
1411 		nvme_unquiesce_io_queues(&dev->ctrl);
1412 	return BLK_EH_DONE;
1413 }
1414 
nvme_free_queue(struct nvme_queue * nvmeq)1415 static void nvme_free_queue(struct nvme_queue *nvmeq)
1416 {
1417 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1418 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1419 	if (!nvmeq->sq_cmds)
1420 		return;
1421 
1422 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1423 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1424 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1425 	} else {
1426 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1427 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1428 	}
1429 }
1430 
nvme_free_queues(struct nvme_dev * dev,int lowest)1431 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1432 {
1433 	int i;
1434 
1435 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1436 		dev->ctrl.queue_count--;
1437 		nvme_free_queue(&dev->queues[i]);
1438 	}
1439 }
1440 
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1441 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1442 {
1443 	struct nvme_queue *nvmeq = &dev->queues[qid];
1444 
1445 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1446 		return;
1447 
1448 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1449 	mb();
1450 
1451 	nvmeq->dev->online_queues--;
1452 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1453 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1454 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1455 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1456 }
1457 
nvme_suspend_io_queues(struct nvme_dev * dev)1458 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1459 {
1460 	int i;
1461 
1462 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1463 		nvme_suspend_queue(dev, i);
1464 }
1465 
1466 /*
1467  * Called only on a device that has been disabled and after all other threads
1468  * that can check this device's completion queues have synced, except
1469  * nvme_poll(). This is the last chance for the driver to see a natural
1470  * completion before nvme_cancel_request() terminates all incomplete requests.
1471  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1472 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1473 {
1474 	int i;
1475 
1476 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1477 		spin_lock(&dev->queues[i].cq_poll_lock);
1478 		nvme_poll_cq(&dev->queues[i], NULL);
1479 		spin_unlock(&dev->queues[i].cq_poll_lock);
1480 	}
1481 }
1482 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1483 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1484 				int entry_size)
1485 {
1486 	int q_depth = dev->q_depth;
1487 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1488 					  NVME_CTRL_PAGE_SIZE);
1489 
1490 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1491 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1492 
1493 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1494 		q_depth = div_u64(mem_per_q, entry_size);
1495 
1496 		/*
1497 		 * Ensure the reduced q_depth is above some threshold where it
1498 		 * would be better to map queues in system memory with the
1499 		 * original depth
1500 		 */
1501 		if (q_depth < 64)
1502 			return -ENOMEM;
1503 	}
1504 
1505 	return q_depth;
1506 }
1507 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1508 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1509 				int qid)
1510 {
1511 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1512 
1513 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1514 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1515 		if (nvmeq->sq_cmds) {
1516 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1517 							nvmeq->sq_cmds);
1518 			if (nvmeq->sq_dma_addr) {
1519 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1520 				return 0;
1521 			}
1522 
1523 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1524 		}
1525 	}
1526 
1527 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1528 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1529 	if (!nvmeq->sq_cmds)
1530 		return -ENOMEM;
1531 	return 0;
1532 }
1533 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1534 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1535 {
1536 	struct nvme_queue *nvmeq = &dev->queues[qid];
1537 
1538 	if (dev->ctrl.queue_count > qid)
1539 		return 0;
1540 
1541 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1542 	nvmeq->q_depth = depth;
1543 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1544 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1545 	if (!nvmeq->cqes)
1546 		goto free_nvmeq;
1547 
1548 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1549 		goto free_cqdma;
1550 
1551 	nvmeq->dev = dev;
1552 	spin_lock_init(&nvmeq->sq_lock);
1553 	spin_lock_init(&nvmeq->cq_poll_lock);
1554 	nvmeq->cq_head = 0;
1555 	nvmeq->cq_phase = 1;
1556 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1557 	nvmeq->qid = qid;
1558 	dev->ctrl.queue_count++;
1559 
1560 	return 0;
1561 
1562  free_cqdma:
1563 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1564 			  nvmeq->cq_dma_addr);
1565  free_nvmeq:
1566 	return -ENOMEM;
1567 }
1568 
queue_request_irq(struct nvme_queue * nvmeq)1569 static int queue_request_irq(struct nvme_queue *nvmeq)
1570 {
1571 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1572 	int nr = nvmeq->dev->ctrl.instance;
1573 
1574 	if (use_threaded_interrupts) {
1575 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1576 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1577 	} else {
1578 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1579 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1580 	}
1581 }
1582 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1583 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1584 {
1585 	struct nvme_dev *dev = nvmeq->dev;
1586 
1587 	nvmeq->sq_tail = 0;
1588 	nvmeq->last_sq_tail = 0;
1589 	nvmeq->cq_head = 0;
1590 	nvmeq->cq_phase = 1;
1591 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1592 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1593 	nvme_dbbuf_init(dev, nvmeq, qid);
1594 	dev->online_queues++;
1595 	wmb(); /* ensure the first interrupt sees the initialization */
1596 }
1597 
1598 /*
1599  * Try getting shutdown_lock while setting up IO queues.
1600  */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1601 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1602 {
1603 	/*
1604 	 * Give up if the lock is being held by nvme_dev_disable.
1605 	 */
1606 	if (!mutex_trylock(&dev->shutdown_lock))
1607 		return -ENODEV;
1608 
1609 	/*
1610 	 * Controller is in wrong state, fail early.
1611 	 */
1612 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1613 		mutex_unlock(&dev->shutdown_lock);
1614 		return -ENODEV;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1620 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1621 {
1622 	struct nvme_dev *dev = nvmeq->dev;
1623 	int result;
1624 	u16 vector = 0;
1625 
1626 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1627 
1628 	/*
1629 	 * A queue's vector matches the queue identifier unless the controller
1630 	 * has only one vector available.
1631 	 */
1632 	if (!polled)
1633 		vector = dev->num_vecs == 1 ? 0 : qid;
1634 	else
1635 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1636 
1637 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1638 	if (result)
1639 		return result;
1640 
1641 	result = adapter_alloc_sq(dev, qid, nvmeq);
1642 	if (result < 0)
1643 		return result;
1644 	if (result)
1645 		goto release_cq;
1646 
1647 	nvmeq->cq_vector = vector;
1648 
1649 	result = nvme_setup_io_queues_trylock(dev);
1650 	if (result)
1651 		return result;
1652 	nvme_init_queue(nvmeq, qid);
1653 	if (!polled) {
1654 		result = queue_request_irq(nvmeq);
1655 		if (result < 0)
1656 			goto release_sq;
1657 	}
1658 
1659 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1660 	mutex_unlock(&dev->shutdown_lock);
1661 	return result;
1662 
1663 release_sq:
1664 	dev->online_queues--;
1665 	mutex_unlock(&dev->shutdown_lock);
1666 	adapter_delete_sq(dev, qid);
1667 release_cq:
1668 	adapter_delete_cq(dev, qid);
1669 	return result;
1670 }
1671 
1672 static const struct blk_mq_ops nvme_mq_admin_ops = {
1673 	.queue_rq	= nvme_queue_rq,
1674 	.complete	= nvme_pci_complete_rq,
1675 	.init_hctx	= nvme_admin_init_hctx,
1676 	.init_request	= nvme_pci_init_request,
1677 	.timeout	= nvme_timeout,
1678 };
1679 
1680 static const struct blk_mq_ops nvme_mq_ops = {
1681 	.queue_rq	= nvme_queue_rq,
1682 	.queue_rqs	= nvme_queue_rqs,
1683 	.complete	= nvme_pci_complete_rq,
1684 	.commit_rqs	= nvme_commit_rqs,
1685 	.init_hctx	= nvme_init_hctx,
1686 	.init_request	= nvme_pci_init_request,
1687 	.map_queues	= nvme_pci_map_queues,
1688 	.timeout	= nvme_timeout,
1689 	.poll		= nvme_poll,
1690 };
1691 
nvme_dev_remove_admin(struct nvme_dev * dev)1692 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1693 {
1694 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1695 		/*
1696 		 * If the controller was reset during removal, it's possible
1697 		 * user requests may be waiting on a stopped queue. Start the
1698 		 * queue to flush these to completion.
1699 		 */
1700 		nvme_unquiesce_admin_queue(&dev->ctrl);
1701 		nvme_remove_admin_tag_set(&dev->ctrl);
1702 	}
1703 }
1704 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1705 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1706 {
1707 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1708 }
1709 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1710 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1711 {
1712 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1713 
1714 	if (size <= dev->bar_mapped_size)
1715 		return 0;
1716 	if (size > pci_resource_len(pdev, 0))
1717 		return -ENOMEM;
1718 	if (dev->bar)
1719 		iounmap(dev->bar);
1720 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1721 	if (!dev->bar) {
1722 		dev->bar_mapped_size = 0;
1723 		return -ENOMEM;
1724 	}
1725 	dev->bar_mapped_size = size;
1726 	dev->dbs = dev->bar + NVME_REG_DBS;
1727 
1728 	return 0;
1729 }
1730 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1731 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1732 {
1733 	int result;
1734 	u32 aqa;
1735 	struct nvme_queue *nvmeq;
1736 
1737 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1738 	if (result < 0)
1739 		return result;
1740 
1741 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1742 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1743 
1744 	if (dev->subsystem &&
1745 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1746 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1747 
1748 	/*
1749 	 * If the device has been passed off to us in an enabled state, just
1750 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1751 	 * notification bits', but doing so may cause the device to complete
1752 	 * commands to the admin queue ... and we don't know what memory that
1753 	 * might be pointing at!
1754 	 */
1755 	result = nvme_disable_ctrl(&dev->ctrl, false);
1756 	if (result < 0)
1757 		return result;
1758 
1759 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1760 	if (result)
1761 		return result;
1762 
1763 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1764 
1765 	nvmeq = &dev->queues[0];
1766 	aqa = nvmeq->q_depth - 1;
1767 	aqa |= aqa << 16;
1768 
1769 	writel(aqa, dev->bar + NVME_REG_AQA);
1770 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1771 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1772 
1773 	result = nvme_enable_ctrl(&dev->ctrl);
1774 	if (result)
1775 		return result;
1776 
1777 	nvmeq->cq_vector = 0;
1778 	nvme_init_queue(nvmeq, 0);
1779 	result = queue_request_irq(nvmeq);
1780 	if (result) {
1781 		dev->online_queues--;
1782 		return result;
1783 	}
1784 
1785 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1786 	return result;
1787 }
1788 
nvme_create_io_queues(struct nvme_dev * dev)1789 static int nvme_create_io_queues(struct nvme_dev *dev)
1790 {
1791 	unsigned i, max, rw_queues;
1792 	int ret = 0;
1793 
1794 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1795 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1796 			ret = -ENOMEM;
1797 			break;
1798 		}
1799 	}
1800 
1801 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1802 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1803 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1804 				dev->io_queues[HCTX_TYPE_READ];
1805 	} else {
1806 		rw_queues = max;
1807 	}
1808 
1809 	for (i = dev->online_queues; i <= max; i++) {
1810 		bool polled = i > rw_queues;
1811 
1812 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1813 		if (ret)
1814 			break;
1815 	}
1816 
1817 	/*
1818 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1819 	 * than the desired amount of queues, and even a controller without
1820 	 * I/O queues can still be used to issue admin commands.  This might
1821 	 * be useful to upgrade a buggy firmware for example.
1822 	 */
1823 	return ret >= 0 ? 0 : ret;
1824 }
1825 
nvme_cmb_size_unit(struct nvme_dev * dev)1826 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1827 {
1828 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1829 
1830 	return 1ULL << (12 + 4 * szu);
1831 }
1832 
nvme_cmb_size(struct nvme_dev * dev)1833 static u32 nvme_cmb_size(struct nvme_dev *dev)
1834 {
1835 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1836 }
1837 
nvme_map_cmb(struct nvme_dev * dev)1838 static void nvme_map_cmb(struct nvme_dev *dev)
1839 {
1840 	u64 size, offset;
1841 	resource_size_t bar_size;
1842 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1843 	int bar;
1844 
1845 	if (dev->cmb_size)
1846 		return;
1847 
1848 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1849 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1850 
1851 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1852 	if (!dev->cmbsz)
1853 		return;
1854 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1855 
1856 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1857 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1858 	bar = NVME_CMB_BIR(dev->cmbloc);
1859 	bar_size = pci_resource_len(pdev, bar);
1860 
1861 	if (offset > bar_size)
1862 		return;
1863 
1864 	/*
1865 	 * Controllers may support a CMB size larger than their BAR, for
1866 	 * example, due to being behind a bridge. Reduce the CMB to the
1867 	 * reported size of the BAR
1868 	 */
1869 	size = min(size, bar_size - offset);
1870 
1871 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
1872 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
1873 			memremap_compat_align()))
1874 		return;
1875 
1876 	/*
1877 	 * Tell the controller about the host side address mapping the CMB,
1878 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1879 	 */
1880 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1881 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1882 			     (pci_bus_address(pdev, bar) + offset),
1883 			     dev->bar + NVME_REG_CMBMSC);
1884 	}
1885 
1886 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1887 		dev_warn(dev->ctrl.device,
1888 			 "failed to register the CMB\n");
1889 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
1890 		return;
1891 	}
1892 
1893 	dev->cmb_size = size;
1894 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1895 
1896 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1897 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1898 		pci_p2pmem_publish(pdev, true);
1899 
1900 	nvme_update_attrs(dev);
1901 }
1902 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1903 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1904 {
1905 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1906 	u64 dma_addr = dev->host_mem_descs_dma;
1907 	struct nvme_command c = { };
1908 	int ret;
1909 
1910 	c.features.opcode	= nvme_admin_set_features;
1911 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1912 	c.features.dword11	= cpu_to_le32(bits);
1913 	c.features.dword12	= cpu_to_le32(host_mem_size);
1914 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1915 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1916 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1917 
1918 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1919 	if (ret) {
1920 		dev_warn(dev->ctrl.device,
1921 			 "failed to set host mem (err %d, flags %#x).\n",
1922 			 ret, bits);
1923 	} else
1924 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1925 
1926 	return ret;
1927 }
1928 
nvme_free_host_mem(struct nvme_dev * dev)1929 static void nvme_free_host_mem(struct nvme_dev *dev)
1930 {
1931 	int i;
1932 
1933 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1934 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1935 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1936 
1937 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1938 			       le64_to_cpu(desc->addr),
1939 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1940 	}
1941 
1942 	kfree(dev->host_mem_desc_bufs);
1943 	dev->host_mem_desc_bufs = NULL;
1944 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
1945 			dev->host_mem_descs, dev->host_mem_descs_dma);
1946 	dev->host_mem_descs = NULL;
1947 	dev->host_mem_descs_size = 0;
1948 	dev->nr_host_mem_descs = 0;
1949 }
1950 
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1951 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1952 		u32 chunk_size)
1953 {
1954 	struct nvme_host_mem_buf_desc *descs;
1955 	u32 max_entries, len, descs_size;
1956 	dma_addr_t descs_dma;
1957 	int i = 0;
1958 	void **bufs;
1959 	u64 size, tmp;
1960 
1961 	tmp = (preferred + chunk_size - 1);
1962 	do_div(tmp, chunk_size);
1963 	max_entries = tmp;
1964 
1965 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1966 		max_entries = dev->ctrl.hmmaxd;
1967 
1968 	descs_size = max_entries * sizeof(*descs);
1969 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
1970 			GFP_KERNEL);
1971 	if (!descs)
1972 		goto out;
1973 
1974 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1975 	if (!bufs)
1976 		goto out_free_descs;
1977 
1978 	for (size = 0; size < preferred && i < max_entries; size += len) {
1979 		dma_addr_t dma_addr;
1980 
1981 		len = min_t(u64, chunk_size, preferred - size);
1982 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1983 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1984 		if (!bufs[i])
1985 			break;
1986 
1987 		descs[i].addr = cpu_to_le64(dma_addr);
1988 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1989 		i++;
1990 	}
1991 
1992 	if (!size)
1993 		goto out_free_bufs;
1994 
1995 	dev->nr_host_mem_descs = i;
1996 	dev->host_mem_size = size;
1997 	dev->host_mem_descs = descs;
1998 	dev->host_mem_descs_dma = descs_dma;
1999 	dev->host_mem_descs_size = descs_size;
2000 	dev->host_mem_desc_bufs = bufs;
2001 	return 0;
2002 
2003 out_free_bufs:
2004 	while (--i >= 0) {
2005 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2006 
2007 		dma_free_attrs(dev->dev, size, bufs[i],
2008 			       le64_to_cpu(descs[i].addr),
2009 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2010 	}
2011 
2012 	kfree(bufs);
2013 out_free_descs:
2014 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2015 out:
2016 	dev->host_mem_descs = NULL;
2017 	return -ENOMEM;
2018 }
2019 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2020 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2021 {
2022 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2023 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2024 	u64 chunk_size;
2025 
2026 	/* start big and work our way down */
2027 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2028 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2029 			if (!min || dev->host_mem_size >= min)
2030 				return 0;
2031 			nvme_free_host_mem(dev);
2032 		}
2033 	}
2034 
2035 	return -ENOMEM;
2036 }
2037 
nvme_setup_host_mem(struct nvme_dev * dev)2038 static int nvme_setup_host_mem(struct nvme_dev *dev)
2039 {
2040 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2041 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2042 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2043 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2044 	int ret;
2045 
2046 	if (!dev->ctrl.hmpre)
2047 		return 0;
2048 
2049 	preferred = min(preferred, max);
2050 	if (min > max) {
2051 		dev_warn(dev->ctrl.device,
2052 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2053 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2054 		nvme_free_host_mem(dev);
2055 		return 0;
2056 	}
2057 
2058 	/*
2059 	 * If we already have a buffer allocated check if we can reuse it.
2060 	 */
2061 	if (dev->host_mem_descs) {
2062 		if (dev->host_mem_size >= min)
2063 			enable_bits |= NVME_HOST_MEM_RETURN;
2064 		else
2065 			nvme_free_host_mem(dev);
2066 	}
2067 
2068 	if (!dev->host_mem_descs) {
2069 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2070 			dev_warn(dev->ctrl.device,
2071 				"failed to allocate host memory buffer.\n");
2072 			return 0; /* controller must work without HMB */
2073 		}
2074 
2075 		dev_info(dev->ctrl.device,
2076 			"allocated %lld MiB host memory buffer.\n",
2077 			dev->host_mem_size >> ilog2(SZ_1M));
2078 	}
2079 
2080 	ret = nvme_set_host_mem(dev, enable_bits);
2081 	if (ret)
2082 		nvme_free_host_mem(dev);
2083 	return ret;
2084 }
2085 
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2086 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2087 		char *buf)
2088 {
2089 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2090 
2091 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2092 		       ndev->cmbloc, ndev->cmbsz);
2093 }
2094 static DEVICE_ATTR_RO(cmb);
2095 
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2096 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2097 		char *buf)
2098 {
2099 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2100 
2101 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2102 }
2103 static DEVICE_ATTR_RO(cmbloc);
2104 
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2105 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2106 		char *buf)
2107 {
2108 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2109 
2110 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2111 }
2112 static DEVICE_ATTR_RO(cmbsz);
2113 
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2114 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2115 			char *buf)
2116 {
2117 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2118 
2119 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2120 }
2121 
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2122 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2123 			 const char *buf, size_t count)
2124 {
2125 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2126 	bool new;
2127 	int ret;
2128 
2129 	if (kstrtobool(buf, &new) < 0)
2130 		return -EINVAL;
2131 
2132 	if (new == ndev->hmb)
2133 		return count;
2134 
2135 	if (new) {
2136 		ret = nvme_setup_host_mem(ndev);
2137 	} else {
2138 		ret = nvme_set_host_mem(ndev, 0);
2139 		if (!ret)
2140 			nvme_free_host_mem(ndev);
2141 	}
2142 
2143 	if (ret < 0)
2144 		return ret;
2145 
2146 	return count;
2147 }
2148 static DEVICE_ATTR_RW(hmb);
2149 
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2150 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2151 		struct attribute *a, int n)
2152 {
2153 	struct nvme_ctrl *ctrl =
2154 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2155 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2156 
2157 	if (a == &dev_attr_cmb.attr ||
2158 	    a == &dev_attr_cmbloc.attr ||
2159 	    a == &dev_attr_cmbsz.attr) {
2160 	    	if (!dev->cmbsz)
2161 			return 0;
2162 	}
2163 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2164 		return 0;
2165 
2166 	return a->mode;
2167 }
2168 
2169 static struct attribute *nvme_pci_attrs[] = {
2170 	&dev_attr_cmb.attr,
2171 	&dev_attr_cmbloc.attr,
2172 	&dev_attr_cmbsz.attr,
2173 	&dev_attr_hmb.attr,
2174 	NULL,
2175 };
2176 
2177 static const struct attribute_group nvme_pci_dev_attrs_group = {
2178 	.attrs		= nvme_pci_attrs,
2179 	.is_visible	= nvme_pci_attrs_are_visible,
2180 };
2181 
2182 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2183 	&nvme_dev_attrs_group,
2184 	&nvme_pci_dev_attrs_group,
2185 	NULL,
2186 };
2187 
nvme_update_attrs(struct nvme_dev * dev)2188 static void nvme_update_attrs(struct nvme_dev *dev)
2189 {
2190 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2191 }
2192 
2193 /*
2194  * nirqs is the number of interrupts available for write and read
2195  * queues. The core already reserved an interrupt for the admin queue.
2196  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2197 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2198 {
2199 	struct nvme_dev *dev = affd->priv;
2200 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2201 
2202 	/*
2203 	 * If there is no interrupt available for queues, ensure that
2204 	 * the default queue is set to 1. The affinity set size is
2205 	 * also set to one, but the irq core ignores it for this case.
2206 	 *
2207 	 * If only one interrupt is available or 'write_queue' == 0, combine
2208 	 * write and read queues.
2209 	 *
2210 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2211 	 * queue.
2212 	 */
2213 	if (!nrirqs) {
2214 		nrirqs = 1;
2215 		nr_read_queues = 0;
2216 	} else if (nrirqs == 1 || !nr_write_queues) {
2217 		nr_read_queues = 0;
2218 	} else if (nr_write_queues >= nrirqs) {
2219 		nr_read_queues = 1;
2220 	} else {
2221 		nr_read_queues = nrirqs - nr_write_queues;
2222 	}
2223 
2224 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2225 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2226 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2227 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2228 	affd->nr_sets = nr_read_queues ? 2 : 1;
2229 }
2230 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2231 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2232 {
2233 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2234 	struct irq_affinity affd = {
2235 		.pre_vectors	= 1,
2236 		.calc_sets	= nvme_calc_irq_sets,
2237 		.priv		= dev,
2238 	};
2239 	unsigned int irq_queues, poll_queues;
2240 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2241 
2242 	/*
2243 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2244 	 * left over for non-polled I/O.
2245 	 */
2246 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2247 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2248 
2249 	/*
2250 	 * Initialize for the single interrupt case, will be updated in
2251 	 * nvme_calc_irq_sets().
2252 	 */
2253 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2254 	dev->io_queues[HCTX_TYPE_READ] = 0;
2255 
2256 	/*
2257 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2258 	 * but some Apple controllers require all queues to use the first
2259 	 * vector.
2260 	 */
2261 	irq_queues = 1;
2262 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2263 		irq_queues += (nr_io_queues - poll_queues);
2264 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2265 		flags &= ~PCI_IRQ_MSI;
2266 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2267 					      &affd);
2268 }
2269 
nvme_max_io_queues(struct nvme_dev * dev)2270 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2271 {
2272 	/*
2273 	 * If tags are shared with admin queue (Apple bug), then
2274 	 * make sure we only use one IO queue.
2275 	 */
2276 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2277 		return 1;
2278 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2279 }
2280 
nvme_setup_io_queues(struct nvme_dev * dev)2281 static int nvme_setup_io_queues(struct nvme_dev *dev)
2282 {
2283 	struct nvme_queue *adminq = &dev->queues[0];
2284 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2285 	unsigned int nr_io_queues;
2286 	unsigned long size;
2287 	int result;
2288 
2289 	/*
2290 	 * Sample the module parameters once at reset time so that we have
2291 	 * stable values to work with.
2292 	 */
2293 	dev->nr_write_queues = write_queues;
2294 	dev->nr_poll_queues = poll_queues;
2295 
2296 	nr_io_queues = dev->nr_allocated_queues - 1;
2297 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2298 	if (result < 0)
2299 		return result;
2300 
2301 	if (nr_io_queues == 0)
2302 		return 0;
2303 
2304 	/*
2305 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2306 	 * from set to unset. If there is a window to it is truely freed,
2307 	 * pci_free_irq_vectors() jumping into this window will crash.
2308 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2309 	 * nvme_dev_disable() path.
2310 	 */
2311 	result = nvme_setup_io_queues_trylock(dev);
2312 	if (result)
2313 		return result;
2314 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2315 		pci_free_irq(pdev, 0, adminq);
2316 
2317 	if (dev->cmb_use_sqes) {
2318 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2319 				sizeof(struct nvme_command));
2320 		if (result > 0) {
2321 			dev->q_depth = result;
2322 			dev->ctrl.sqsize = result - 1;
2323 		} else {
2324 			dev->cmb_use_sqes = false;
2325 		}
2326 	}
2327 
2328 	do {
2329 		size = db_bar_size(dev, nr_io_queues);
2330 		result = nvme_remap_bar(dev, size);
2331 		if (!result)
2332 			break;
2333 		if (!--nr_io_queues) {
2334 			result = -ENOMEM;
2335 			goto out_unlock;
2336 		}
2337 	} while (1);
2338 	adminq->q_db = dev->dbs;
2339 
2340  retry:
2341 	/* Deregister the admin queue's interrupt */
2342 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2343 		pci_free_irq(pdev, 0, adminq);
2344 
2345 	/*
2346 	 * If we enable msix early due to not intx, disable it again before
2347 	 * setting up the full range we need.
2348 	 */
2349 	pci_free_irq_vectors(pdev);
2350 
2351 	result = nvme_setup_irqs(dev, nr_io_queues);
2352 	if (result <= 0) {
2353 		result = -EIO;
2354 		goto out_unlock;
2355 	}
2356 
2357 	dev->num_vecs = result;
2358 	result = max(result - 1, 1);
2359 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2360 
2361 	/*
2362 	 * Should investigate if there's a performance win from allocating
2363 	 * more queues than interrupt vectors; it might allow the submission
2364 	 * path to scale better, even if the receive path is limited by the
2365 	 * number of interrupts.
2366 	 */
2367 	result = queue_request_irq(adminq);
2368 	if (result)
2369 		goto out_unlock;
2370 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2371 	mutex_unlock(&dev->shutdown_lock);
2372 
2373 	result = nvme_create_io_queues(dev);
2374 	if (result || dev->online_queues < 2)
2375 		return result;
2376 
2377 	if (dev->online_queues - 1 < dev->max_qid) {
2378 		nr_io_queues = dev->online_queues - 1;
2379 		nvme_delete_io_queues(dev);
2380 		result = nvme_setup_io_queues_trylock(dev);
2381 		if (result)
2382 			return result;
2383 		nvme_suspend_io_queues(dev);
2384 		goto retry;
2385 	}
2386 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2387 					dev->io_queues[HCTX_TYPE_DEFAULT],
2388 					dev->io_queues[HCTX_TYPE_READ],
2389 					dev->io_queues[HCTX_TYPE_POLL]);
2390 	return 0;
2391 out_unlock:
2392 	mutex_unlock(&dev->shutdown_lock);
2393 	return result;
2394 }
2395 
nvme_del_queue_end(struct request * req,blk_status_t error)2396 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2397 					     blk_status_t error)
2398 {
2399 	struct nvme_queue *nvmeq = req->end_io_data;
2400 
2401 	blk_mq_free_request(req);
2402 	complete(&nvmeq->delete_done);
2403 	return RQ_END_IO_NONE;
2404 }
2405 
nvme_del_cq_end(struct request * req,blk_status_t error)2406 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2407 					  blk_status_t error)
2408 {
2409 	struct nvme_queue *nvmeq = req->end_io_data;
2410 
2411 	if (error)
2412 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2413 
2414 	return nvme_del_queue_end(req, error);
2415 }
2416 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2417 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2418 {
2419 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2420 	struct request *req;
2421 	struct nvme_command cmd = { };
2422 
2423 	cmd.delete_queue.opcode = opcode;
2424 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2425 
2426 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2427 	if (IS_ERR(req))
2428 		return PTR_ERR(req);
2429 	nvme_init_request(req, &cmd);
2430 
2431 	if (opcode == nvme_admin_delete_cq)
2432 		req->end_io = nvme_del_cq_end;
2433 	else
2434 		req->end_io = nvme_del_queue_end;
2435 	req->end_io_data = nvmeq;
2436 
2437 	init_completion(&nvmeq->delete_done);
2438 	blk_execute_rq_nowait(req, false);
2439 	return 0;
2440 }
2441 
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2442 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2443 {
2444 	int nr_queues = dev->online_queues - 1, sent = 0;
2445 	unsigned long timeout;
2446 
2447  retry:
2448 	timeout = NVME_ADMIN_TIMEOUT;
2449 	while (nr_queues > 0) {
2450 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2451 			break;
2452 		nr_queues--;
2453 		sent++;
2454 	}
2455 	while (sent) {
2456 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2457 
2458 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2459 				timeout);
2460 		if (timeout == 0)
2461 			return false;
2462 
2463 		sent--;
2464 		if (nr_queues)
2465 			goto retry;
2466 	}
2467 	return true;
2468 }
2469 
nvme_delete_io_queues(struct nvme_dev * dev)2470 static void nvme_delete_io_queues(struct nvme_dev *dev)
2471 {
2472 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2473 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2474 }
2475 
nvme_pci_nr_maps(struct nvme_dev * dev)2476 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2477 {
2478 	if (dev->io_queues[HCTX_TYPE_POLL])
2479 		return 3;
2480 	if (dev->io_queues[HCTX_TYPE_READ])
2481 		return 2;
2482 	return 1;
2483 }
2484 
nvme_pci_update_nr_queues(struct nvme_dev * dev)2485 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2486 {
2487 	if (!dev->ctrl.tagset) {
2488 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2489 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2490 		return true;
2491 	}
2492 
2493 	/* Give up if we are racing with nvme_dev_disable() */
2494 	if (!mutex_trylock(&dev->shutdown_lock))
2495 		return false;
2496 
2497 	/* Check if nvme_dev_disable() has been executed already */
2498 	if (!dev->online_queues) {
2499 		mutex_unlock(&dev->shutdown_lock);
2500 		return false;
2501 	}
2502 
2503 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2504 	/* free previously allocated queues that are no longer usable */
2505 	nvme_free_queues(dev, dev->online_queues);
2506 	mutex_unlock(&dev->shutdown_lock);
2507 	return true;
2508 }
2509 
nvme_pci_enable(struct nvme_dev * dev)2510 static int nvme_pci_enable(struct nvme_dev *dev)
2511 {
2512 	int result = -ENOMEM;
2513 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2514 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2515 
2516 	if (pci_enable_device_mem(pdev))
2517 		return result;
2518 
2519 	pci_set_master(pdev);
2520 
2521 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2522 		result = -ENODEV;
2523 		goto disable;
2524 	}
2525 
2526 	/*
2527 	 * Some devices and/or platforms don't advertise or work with INTx
2528 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2529 	 * adjust this later.
2530 	 */
2531 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2532 		flags &= ~PCI_IRQ_MSI;
2533 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2534 	if (result < 0)
2535 		goto disable;
2536 
2537 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2538 
2539 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2540 				io_queue_depth);
2541 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2542 	dev->dbs = dev->bar + 4096;
2543 
2544 	/*
2545 	 * Some Apple controllers require a non-standard SQE size.
2546 	 * Interestingly they also seem to ignore the CC:IOSQES register
2547 	 * so we don't bother updating it here.
2548 	 */
2549 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2550 		dev->io_sqes = 7;
2551 	else
2552 		dev->io_sqes = NVME_NVM_IOSQES;
2553 
2554 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2555 		dev->q_depth = 2;
2556 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2557 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2558 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2559 		dev->q_depth = 64;
2560 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2561                         "set queue depth=%u\n", dev->q_depth);
2562 	}
2563 
2564 	/*
2565 	 * Controllers with the shared tags quirk need the IO queue to be
2566 	 * big enough so that we get 32 tags for the admin queue
2567 	 */
2568 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2569 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2570 		dev->q_depth = NVME_AQ_DEPTH + 2;
2571 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2572 			 dev->q_depth);
2573 	}
2574 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2575 
2576 	nvme_map_cmb(dev);
2577 
2578 	pci_save_state(pdev);
2579 
2580 	result = nvme_pci_configure_admin_queue(dev);
2581 	if (result)
2582 		goto free_irq;
2583 	return result;
2584 
2585  free_irq:
2586 	pci_free_irq_vectors(pdev);
2587  disable:
2588 	pci_disable_device(pdev);
2589 	return result;
2590 }
2591 
nvme_dev_unmap(struct nvme_dev * dev)2592 static void nvme_dev_unmap(struct nvme_dev *dev)
2593 {
2594 	if (dev->bar)
2595 		iounmap(dev->bar);
2596 	pci_release_mem_regions(to_pci_dev(dev->dev));
2597 }
2598 
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2599 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2600 {
2601 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2602 	u32 csts;
2603 
2604 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2605 		return true;
2606 	if (pdev->error_state != pci_channel_io_normal)
2607 		return true;
2608 
2609 	csts = readl(dev->bar + NVME_REG_CSTS);
2610 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2611 }
2612 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2613 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2614 {
2615 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2616 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2617 	bool dead;
2618 
2619 	mutex_lock(&dev->shutdown_lock);
2620 	dead = nvme_pci_ctrl_is_dead(dev);
2621 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2622 		if (pci_is_enabled(pdev))
2623 			nvme_start_freeze(&dev->ctrl);
2624 		/*
2625 		 * Give the controller a chance to complete all entered requests
2626 		 * if doing a safe shutdown.
2627 		 */
2628 		if (!dead && shutdown)
2629 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2630 	}
2631 
2632 	nvme_quiesce_io_queues(&dev->ctrl);
2633 
2634 	if (!dead && dev->ctrl.queue_count > 0) {
2635 		nvme_delete_io_queues(dev);
2636 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2637 		nvme_poll_irqdisable(&dev->queues[0]);
2638 	}
2639 	nvme_suspend_io_queues(dev);
2640 	nvme_suspend_queue(dev, 0);
2641 	pci_free_irq_vectors(pdev);
2642 	if (pci_is_enabled(pdev))
2643 		pci_disable_device(pdev);
2644 	nvme_reap_pending_cqes(dev);
2645 
2646 	nvme_cancel_tagset(&dev->ctrl);
2647 	nvme_cancel_admin_tagset(&dev->ctrl);
2648 
2649 	/*
2650 	 * The driver will not be starting up queues again if shutting down so
2651 	 * must flush all entered requests to their failed completion to avoid
2652 	 * deadlocking blk-mq hot-cpu notifier.
2653 	 */
2654 	if (shutdown) {
2655 		nvme_unquiesce_io_queues(&dev->ctrl);
2656 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2657 			nvme_unquiesce_admin_queue(&dev->ctrl);
2658 	}
2659 	mutex_unlock(&dev->shutdown_lock);
2660 }
2661 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2662 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2663 {
2664 	if (!nvme_wait_reset(&dev->ctrl))
2665 		return -EBUSY;
2666 	nvme_dev_disable(dev, shutdown);
2667 	return 0;
2668 }
2669 
nvme_setup_prp_pools(struct nvme_dev * dev)2670 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2671 {
2672 	size_t small_align = 256;
2673 
2674 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2675 						NVME_CTRL_PAGE_SIZE,
2676 						NVME_CTRL_PAGE_SIZE, 0);
2677 	if (!dev->prp_page_pool)
2678 		return -ENOMEM;
2679 
2680 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2681 		small_align = 512;
2682 
2683 	/* Optimisation for I/Os between 4k and 128k */
2684 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2685 						256, small_align, 0);
2686 	if (!dev->prp_small_pool) {
2687 		dma_pool_destroy(dev->prp_page_pool);
2688 		return -ENOMEM;
2689 	}
2690 	return 0;
2691 }
2692 
nvme_release_prp_pools(struct nvme_dev * dev)2693 static void nvme_release_prp_pools(struct nvme_dev *dev)
2694 {
2695 	dma_pool_destroy(dev->prp_page_pool);
2696 	dma_pool_destroy(dev->prp_small_pool);
2697 }
2698 
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2699 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2700 {
2701 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2702 
2703 	dev->iod_mempool = mempool_create_node(1,
2704 			mempool_kmalloc, mempool_kfree,
2705 			(void *)alloc_size, GFP_KERNEL,
2706 			dev_to_node(dev->dev));
2707 	if (!dev->iod_mempool)
2708 		return -ENOMEM;
2709 	return 0;
2710 }
2711 
nvme_free_tagset(struct nvme_dev * dev)2712 static void nvme_free_tagset(struct nvme_dev *dev)
2713 {
2714 	if (dev->tagset.tags)
2715 		nvme_remove_io_tag_set(&dev->ctrl);
2716 	dev->ctrl.tagset = NULL;
2717 }
2718 
2719 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2720 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2721 {
2722 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2723 
2724 	nvme_free_tagset(dev);
2725 	put_device(dev->dev);
2726 	kfree(dev->queues);
2727 	kfree(dev);
2728 }
2729 
nvme_reset_work(struct work_struct * work)2730 static void nvme_reset_work(struct work_struct *work)
2731 {
2732 	struct nvme_dev *dev =
2733 		container_of(work, struct nvme_dev, ctrl.reset_work);
2734 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2735 	int result;
2736 
2737 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2738 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2739 			 dev->ctrl.state);
2740 		result = -ENODEV;
2741 		goto out;
2742 	}
2743 
2744 	/*
2745 	 * If we're called to reset a live controller first shut it down before
2746 	 * moving on.
2747 	 */
2748 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2749 		nvme_dev_disable(dev, false);
2750 	nvme_sync_queues(&dev->ctrl);
2751 
2752 	mutex_lock(&dev->shutdown_lock);
2753 	result = nvme_pci_enable(dev);
2754 	if (result)
2755 		goto out_unlock;
2756 	nvme_unquiesce_admin_queue(&dev->ctrl);
2757 	mutex_unlock(&dev->shutdown_lock);
2758 
2759 	/*
2760 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2761 	 * initializing procedure here.
2762 	 */
2763 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2764 		dev_warn(dev->ctrl.device,
2765 			"failed to mark controller CONNECTING\n");
2766 		result = -EBUSY;
2767 		goto out;
2768 	}
2769 
2770 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2771 	if (result)
2772 		goto out;
2773 
2774 	nvme_dbbuf_dma_alloc(dev);
2775 
2776 	result = nvme_setup_host_mem(dev);
2777 	if (result < 0)
2778 		goto out;
2779 
2780 	result = nvme_setup_io_queues(dev);
2781 	if (result)
2782 		goto out;
2783 
2784 	/*
2785 	 * Freeze and update the number of I/O queues as thos might have
2786 	 * changed.  If there are no I/O queues left after this reset, keep the
2787 	 * controller around but remove all namespaces.
2788 	 */
2789 	if (dev->online_queues > 1) {
2790 		nvme_dbbuf_set(dev);
2791 		nvme_unquiesce_io_queues(&dev->ctrl);
2792 		nvme_wait_freeze(&dev->ctrl);
2793 		if (!nvme_pci_update_nr_queues(dev))
2794 			goto out;
2795 		nvme_unfreeze(&dev->ctrl);
2796 	} else {
2797 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2798 		nvme_mark_namespaces_dead(&dev->ctrl);
2799 		nvme_unquiesce_io_queues(&dev->ctrl);
2800 		nvme_remove_namespaces(&dev->ctrl);
2801 		nvme_free_tagset(dev);
2802 	}
2803 
2804 	/*
2805 	 * If only admin queue live, keep it to do further investigation or
2806 	 * recovery.
2807 	 */
2808 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2809 		dev_warn(dev->ctrl.device,
2810 			"failed to mark controller live state\n");
2811 		result = -ENODEV;
2812 		goto out;
2813 	}
2814 
2815 	nvme_start_ctrl(&dev->ctrl);
2816 	return;
2817 
2818  out_unlock:
2819 	mutex_unlock(&dev->shutdown_lock);
2820  out:
2821 	/*
2822 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2823 	 * may be holding this pci_dev's device lock.
2824 	 */
2825 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2826 		 result);
2827 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2828 	nvme_dev_disable(dev, true);
2829 	nvme_sync_queues(&dev->ctrl);
2830 	nvme_mark_namespaces_dead(&dev->ctrl);
2831 	nvme_unquiesce_io_queues(&dev->ctrl);
2832 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2833 }
2834 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2835 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2836 {
2837 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2838 	return 0;
2839 }
2840 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2841 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2842 {
2843 	writel(val, to_nvme_dev(ctrl)->bar + off);
2844 	return 0;
2845 }
2846 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2847 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2848 {
2849 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2850 	return 0;
2851 }
2852 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2853 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2854 {
2855 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2856 
2857 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2858 }
2859 
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)2860 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2861 {
2862 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2863 	struct nvme_subsystem *subsys = ctrl->subsys;
2864 
2865 	dev_err(ctrl->device,
2866 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2867 		pdev->vendor, pdev->device,
2868 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2869 		subsys->model, nvme_strlen(subsys->firmware_rev,
2870 					   sizeof(subsys->firmware_rev)),
2871 		subsys->firmware_rev);
2872 }
2873 
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)2874 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2875 {
2876 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2877 
2878 	return dma_pci_p2pdma_supported(dev->dev);
2879 }
2880 
2881 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2882 	.name			= "pcie",
2883 	.module			= THIS_MODULE,
2884 	.flags			= NVME_F_METADATA_SUPPORTED,
2885 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2886 	.reg_read32		= nvme_pci_reg_read32,
2887 	.reg_write32		= nvme_pci_reg_write32,
2888 	.reg_read64		= nvme_pci_reg_read64,
2889 	.free_ctrl		= nvme_pci_free_ctrl,
2890 	.submit_async_event	= nvme_pci_submit_async_event,
2891 	.get_address		= nvme_pci_get_address,
2892 	.print_device_info	= nvme_pci_print_device_info,
2893 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2894 };
2895 
nvme_dev_map(struct nvme_dev * dev)2896 static int nvme_dev_map(struct nvme_dev *dev)
2897 {
2898 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2899 
2900 	if (pci_request_mem_regions(pdev, "nvme"))
2901 		return -ENODEV;
2902 
2903 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2904 		goto release;
2905 
2906 	return 0;
2907   release:
2908 	pci_release_mem_regions(pdev);
2909 	return -ENODEV;
2910 }
2911 
check_vendor_combination_bug(struct pci_dev * pdev)2912 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2913 {
2914 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2915 		/*
2916 		 * Several Samsung devices seem to drop off the PCIe bus
2917 		 * randomly when APST is on and uses the deepest sleep state.
2918 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2919 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2920 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2921 		 * laptops.
2922 		 */
2923 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2924 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2925 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2926 			return NVME_QUIRK_NO_DEEPEST_PS;
2927 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2928 		/*
2929 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2930 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2931 		 * within few minutes after bootup on a Coffee Lake board -
2932 		 * ASUS PRIME Z370-A
2933 		 */
2934 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2935 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2936 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2937 			return NVME_QUIRK_NO_APST;
2938 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2939 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2940 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2941 		/*
2942 		 * Forcing to use host managed nvme power settings for
2943 		 * lowest idle power with quick resume latency on
2944 		 * Samsung and Toshiba SSDs based on suspend behavior
2945 		 * on Coffee Lake board for LENOVO C640
2946 		 */
2947 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2948 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2949 			return NVME_QUIRK_SIMPLE_SUSPEND;
2950 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2951 		   pdev->device == 0x500f)) {
2952 		/*
2953 		 * Exclude some Kingston NV1 and A2000 devices from
2954 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2955 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2956 		 */
2957 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2958 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2959 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2960 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2961 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2962 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
2963 		/*
2964 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
2965 		 * because of high power consumption (> 2 Watt) in s2idle
2966 		 * sleep. Only some boards with Intel CPU are affected.
2967 		 */
2968 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
2969 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
2970 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
2971 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
2972 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
2973 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
2974 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2975 	}
2976 
2977 	/*
2978 	 * NVMe SSD drops off the PCIe bus after system idle
2979 	 * for 10 hours on a Lenovo N60z board.
2980 	 */
2981 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
2982 		return NVME_QUIRK_NO_APST;
2983 
2984 	return 0;
2985 }
2986 
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)2987 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2988 		const struct pci_device_id *id)
2989 {
2990 	unsigned long quirks = id->driver_data;
2991 	int node = dev_to_node(&pdev->dev);
2992 	struct nvme_dev *dev;
2993 	int ret = -ENOMEM;
2994 
2995 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2996 	if (!dev)
2997 		return ERR_PTR(-ENOMEM);
2998 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2999 	mutex_init(&dev->shutdown_lock);
3000 
3001 	dev->nr_write_queues = write_queues;
3002 	dev->nr_poll_queues = poll_queues;
3003 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3004 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3005 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3006 	if (!dev->queues)
3007 		goto out_free_dev;
3008 
3009 	dev->dev = get_device(&pdev->dev);
3010 
3011 	quirks |= check_vendor_combination_bug(pdev);
3012 	if (!noacpi &&
3013 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3014 	    acpi_storage_d3(&pdev->dev)) {
3015 		/*
3016 		 * Some systems use a bios work around to ask for D3 on
3017 		 * platforms that support kernel managed suspend.
3018 		 */
3019 		dev_info(&pdev->dev,
3020 			 "platform quirk: setting simple suspend\n");
3021 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3022 	}
3023 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3024 			     quirks);
3025 	if (ret)
3026 		goto out_put_device;
3027 
3028 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3029 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3030 	else
3031 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3032 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3033 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3034 
3035 	/*
3036 	 * Limit the max command size to prevent iod->sg allocations going
3037 	 * over a single page.
3038 	 */
3039 	dev->ctrl.max_hw_sectors = min_t(u32,
3040 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3041 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3042 
3043 	/*
3044 	 * There is no support for SGLs for metadata (yet), so we are limited to
3045 	 * a single integrity segment for the separate metadata pointer.
3046 	 */
3047 	dev->ctrl.max_integrity_segments = 1;
3048 	return dev;
3049 
3050 out_put_device:
3051 	put_device(dev->dev);
3052 	kfree(dev->queues);
3053 out_free_dev:
3054 	kfree(dev);
3055 	return ERR_PTR(ret);
3056 }
3057 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3058 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3059 {
3060 	struct nvme_dev *dev;
3061 	int result = -ENOMEM;
3062 
3063 	dev = nvme_pci_alloc_dev(pdev, id);
3064 	if (IS_ERR(dev))
3065 		return PTR_ERR(dev);
3066 
3067 	result = nvme_dev_map(dev);
3068 	if (result)
3069 		goto out_uninit_ctrl;
3070 
3071 	result = nvme_setup_prp_pools(dev);
3072 	if (result)
3073 		goto out_dev_unmap;
3074 
3075 	result = nvme_pci_alloc_iod_mempool(dev);
3076 	if (result)
3077 		goto out_release_prp_pools;
3078 
3079 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3080 
3081 	result = nvme_pci_enable(dev);
3082 	if (result)
3083 		goto out_release_iod_mempool;
3084 
3085 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3086 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3087 	if (result)
3088 		goto out_disable;
3089 
3090 	/*
3091 	 * Mark the controller as connecting before sending admin commands to
3092 	 * allow the timeout handler to do the right thing.
3093 	 */
3094 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3095 		dev_warn(dev->ctrl.device,
3096 			"failed to mark controller CONNECTING\n");
3097 		result = -EBUSY;
3098 		goto out_disable;
3099 	}
3100 
3101 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3102 	if (result)
3103 		goto out_disable;
3104 
3105 	nvme_dbbuf_dma_alloc(dev);
3106 
3107 	result = nvme_setup_host_mem(dev);
3108 	if (result < 0)
3109 		goto out_disable;
3110 
3111 	result = nvme_setup_io_queues(dev);
3112 	if (result)
3113 		goto out_disable;
3114 
3115 	if (dev->online_queues > 1) {
3116 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3117 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3118 		nvme_dbbuf_set(dev);
3119 	}
3120 
3121 	if (!dev->ctrl.tagset)
3122 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3123 
3124 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3125 		dev_warn(dev->ctrl.device,
3126 			"failed to mark controller live state\n");
3127 		result = -ENODEV;
3128 		goto out_disable;
3129 	}
3130 
3131 	pci_set_drvdata(pdev, dev);
3132 
3133 	nvme_start_ctrl(&dev->ctrl);
3134 	nvme_put_ctrl(&dev->ctrl);
3135 	flush_work(&dev->ctrl.scan_work);
3136 	return 0;
3137 
3138 out_disable:
3139 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3140 	nvme_dev_disable(dev, true);
3141 	nvme_free_host_mem(dev);
3142 	nvme_dev_remove_admin(dev);
3143 	nvme_dbbuf_dma_free(dev);
3144 	nvme_free_queues(dev, 0);
3145 out_release_iod_mempool:
3146 	mempool_destroy(dev->iod_mempool);
3147 out_release_prp_pools:
3148 	nvme_release_prp_pools(dev);
3149 out_dev_unmap:
3150 	nvme_dev_unmap(dev);
3151 out_uninit_ctrl:
3152 	nvme_uninit_ctrl(&dev->ctrl);
3153 	nvme_put_ctrl(&dev->ctrl);
3154 	return result;
3155 }
3156 
nvme_reset_prepare(struct pci_dev * pdev)3157 static void nvme_reset_prepare(struct pci_dev *pdev)
3158 {
3159 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3160 
3161 	/*
3162 	 * We don't need to check the return value from waiting for the reset
3163 	 * state as pci_dev device lock is held, making it impossible to race
3164 	 * with ->remove().
3165 	 */
3166 	nvme_disable_prepare_reset(dev, false);
3167 	nvme_sync_queues(&dev->ctrl);
3168 }
3169 
nvme_reset_done(struct pci_dev * pdev)3170 static void nvme_reset_done(struct pci_dev *pdev)
3171 {
3172 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3173 
3174 	if (!nvme_try_sched_reset(&dev->ctrl))
3175 		flush_work(&dev->ctrl.reset_work);
3176 }
3177 
nvme_shutdown(struct pci_dev * pdev)3178 static void nvme_shutdown(struct pci_dev *pdev)
3179 {
3180 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3181 
3182 	nvme_disable_prepare_reset(dev, true);
3183 }
3184 
3185 /*
3186  * The driver's remove may be called on a device in a partially initialized
3187  * state. This function must not have any dependencies on the device state in
3188  * order to proceed.
3189  */
nvme_remove(struct pci_dev * pdev)3190 static void nvme_remove(struct pci_dev *pdev)
3191 {
3192 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3193 
3194 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3195 	pci_set_drvdata(pdev, NULL);
3196 
3197 	if (!pci_device_is_present(pdev)) {
3198 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3199 		nvme_dev_disable(dev, true);
3200 	}
3201 
3202 	flush_work(&dev->ctrl.reset_work);
3203 	nvme_stop_ctrl(&dev->ctrl);
3204 	nvme_remove_namespaces(&dev->ctrl);
3205 	nvme_dev_disable(dev, true);
3206 	nvme_free_host_mem(dev);
3207 	nvme_dev_remove_admin(dev);
3208 	nvme_dbbuf_dma_free(dev);
3209 	nvme_free_queues(dev, 0);
3210 	mempool_destroy(dev->iod_mempool);
3211 	nvme_release_prp_pools(dev);
3212 	nvme_dev_unmap(dev);
3213 	nvme_uninit_ctrl(&dev->ctrl);
3214 }
3215 
3216 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3217 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3218 {
3219 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3220 }
3221 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3222 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3223 {
3224 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3225 }
3226 
nvme_resume(struct device * dev)3227 static int nvme_resume(struct device *dev)
3228 {
3229 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3230 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3231 
3232 	if (ndev->last_ps == U32_MAX ||
3233 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3234 		goto reset;
3235 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3236 		goto reset;
3237 
3238 	return 0;
3239 reset:
3240 	return nvme_try_sched_reset(ctrl);
3241 }
3242 
nvme_suspend(struct device * dev)3243 static int nvme_suspend(struct device *dev)
3244 {
3245 	struct pci_dev *pdev = to_pci_dev(dev);
3246 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3247 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3248 	int ret = -EBUSY;
3249 
3250 	ndev->last_ps = U32_MAX;
3251 
3252 	/*
3253 	 * The platform does not remove power for a kernel managed suspend so
3254 	 * use host managed nvme power settings for lowest idle power if
3255 	 * possible. This should have quicker resume latency than a full device
3256 	 * shutdown.  But if the firmware is involved after the suspend or the
3257 	 * device does not support any non-default power states, shut down the
3258 	 * device fully.
3259 	 *
3260 	 * If ASPM is not enabled for the device, shut down the device and allow
3261 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3262 	 * down, so as to allow the platform to achieve its minimum low-power
3263 	 * state (which may not be possible if the link is up).
3264 	 */
3265 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3266 	    !pcie_aspm_enabled(pdev) ||
3267 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3268 		return nvme_disable_prepare_reset(ndev, true);
3269 
3270 	nvme_start_freeze(ctrl);
3271 	nvme_wait_freeze(ctrl);
3272 	nvme_sync_queues(ctrl);
3273 
3274 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3275 		goto unfreeze;
3276 
3277 	/*
3278 	 * Host memory access may not be successful in a system suspend state,
3279 	 * but the specification allows the controller to access memory in a
3280 	 * non-operational power state.
3281 	 */
3282 	if (ndev->hmb) {
3283 		ret = nvme_set_host_mem(ndev, 0);
3284 		if (ret < 0)
3285 			goto unfreeze;
3286 	}
3287 
3288 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3289 	if (ret < 0)
3290 		goto unfreeze;
3291 
3292 	/*
3293 	 * A saved state prevents pci pm from generically controlling the
3294 	 * device's power. If we're using protocol specific settings, we don't
3295 	 * want pci interfering.
3296 	 */
3297 	pci_save_state(pdev);
3298 
3299 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3300 	if (ret < 0)
3301 		goto unfreeze;
3302 
3303 	if (ret) {
3304 		/* discard the saved state */
3305 		pci_load_saved_state(pdev, NULL);
3306 
3307 		/*
3308 		 * Clearing npss forces a controller reset on resume. The
3309 		 * correct value will be rediscovered then.
3310 		 */
3311 		ret = nvme_disable_prepare_reset(ndev, true);
3312 		ctrl->npss = 0;
3313 	}
3314 unfreeze:
3315 	nvme_unfreeze(ctrl);
3316 	return ret;
3317 }
3318 
nvme_simple_suspend(struct device * dev)3319 static int nvme_simple_suspend(struct device *dev)
3320 {
3321 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3322 
3323 	return nvme_disable_prepare_reset(ndev, true);
3324 }
3325 
nvme_simple_resume(struct device * dev)3326 static int nvme_simple_resume(struct device *dev)
3327 {
3328 	struct pci_dev *pdev = to_pci_dev(dev);
3329 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3330 
3331 	return nvme_try_sched_reset(&ndev->ctrl);
3332 }
3333 
3334 static const struct dev_pm_ops nvme_dev_pm_ops = {
3335 	.suspend	= nvme_suspend,
3336 	.resume		= nvme_resume,
3337 	.freeze		= nvme_simple_suspend,
3338 	.thaw		= nvme_simple_resume,
3339 	.poweroff	= nvme_simple_suspend,
3340 	.restore	= nvme_simple_resume,
3341 };
3342 #endif /* CONFIG_PM_SLEEP */
3343 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3344 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3345 						pci_channel_state_t state)
3346 {
3347 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3348 
3349 	/*
3350 	 * A frozen channel requires a reset. When detected, this method will
3351 	 * shutdown the controller to quiesce. The controller will be restarted
3352 	 * after the slot reset through driver's slot_reset callback.
3353 	 */
3354 	switch (state) {
3355 	case pci_channel_io_normal:
3356 		return PCI_ERS_RESULT_CAN_RECOVER;
3357 	case pci_channel_io_frozen:
3358 		dev_warn(dev->ctrl.device,
3359 			"frozen state error detected, reset controller\n");
3360 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3361 			nvme_dev_disable(dev, true);
3362 			return PCI_ERS_RESULT_DISCONNECT;
3363 		}
3364 		nvme_dev_disable(dev, false);
3365 		return PCI_ERS_RESULT_NEED_RESET;
3366 	case pci_channel_io_perm_failure:
3367 		dev_warn(dev->ctrl.device,
3368 			"failure state error detected, request disconnect\n");
3369 		return PCI_ERS_RESULT_DISCONNECT;
3370 	}
3371 	return PCI_ERS_RESULT_NEED_RESET;
3372 }
3373 
nvme_slot_reset(struct pci_dev * pdev)3374 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3375 {
3376 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3377 
3378 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3379 	pci_restore_state(pdev);
3380 	if (!nvme_try_sched_reset(&dev->ctrl))
3381 		nvme_unquiesce_io_queues(&dev->ctrl);
3382 	return PCI_ERS_RESULT_RECOVERED;
3383 }
3384 
nvme_error_resume(struct pci_dev * pdev)3385 static void nvme_error_resume(struct pci_dev *pdev)
3386 {
3387 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3388 
3389 	flush_work(&dev->ctrl.reset_work);
3390 }
3391 
3392 static const struct pci_error_handlers nvme_err_handler = {
3393 	.error_detected	= nvme_error_detected,
3394 	.slot_reset	= nvme_slot_reset,
3395 	.resume		= nvme_error_resume,
3396 	.reset_prepare	= nvme_reset_prepare,
3397 	.reset_done	= nvme_reset_done,
3398 };
3399 
3400 static const struct pci_device_id nvme_id_table[] = {
3401 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3402 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3403 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3404 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3405 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3406 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3407 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3408 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3409 				NVME_QUIRK_DEALLOCATE_ZEROES |
3410 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3411 				NVME_QUIRK_BOGUS_NID, },
3412 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3413 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3414 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3415 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3416 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3417 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3418 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3419 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3420 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3421 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3422 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3423 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3424 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3425 				NVME_QUIRK_BOGUS_NID, },
3426 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3427 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3428 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3429 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3430 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3431 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3432 				NVME_QUIRK_BOGUS_NID, },
3433 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3434 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3435 				NVME_QUIRK_BOGUS_NID, },
3436 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3437 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3438 				NVME_QUIRK_NO_NS_DESC_LIST, },
3439 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3440 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3441 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3442 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3443 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3444 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3445 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3446 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3447 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3448 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3449 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3450 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3451 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3452 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3453 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3454 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3455 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3456 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3457 				NVME_QUIRK_BOGUS_NID, },
3458 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3459 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3460 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3461 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3462 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3463 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3464 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3465 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3466 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3467 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3468 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3469 				NVME_QUIRK_BOGUS_NID, },
3470 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3471 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3472 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3473 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3474 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3475 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3476 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3477 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3478 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3479 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3480 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3481 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3482 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3483 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3484 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3485 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3486 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3487 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3488 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3489 				NVME_QUIRK_BOGUS_NID, },
3490 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3491 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3492 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3493 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3494 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3495 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3497 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3499 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3500 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3501 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3502 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3503 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3504 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3505 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3507 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3508 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3509 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3510 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3511 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3512 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3513 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3514 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3515 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3516 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3517 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3518 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3519 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3520 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3521 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3522 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3523 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3524 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3525 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3526 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3527 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3528 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3529 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3530 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3531 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3532 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3533 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3534 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3535 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3536 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3537 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3538 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3539 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3540 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3541 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3542 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3543 		.driver_data = NVME_QUIRK_BOGUS_NID |
3544 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3545 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3546 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3547 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3548 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3549 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3550 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3551 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3552 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3553 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3554 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3555 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3556 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3557 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3558 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3559 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3560 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3561 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3562 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3563 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3564 		/*
3565 		 * Fix for the Apple controller found in the MacBook8,1 and
3566 		 * some MacBook7,1 to avoid controller resets and data loss.
3567 		 */
3568 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3569 				NVME_QUIRK_QDEPTH_ONE },
3570 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3571 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3572 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3573 				NVME_QUIRK_128_BYTES_SQES |
3574 				NVME_QUIRK_SHARED_TAGS |
3575 				NVME_QUIRK_SKIP_CID_GEN |
3576 				NVME_QUIRK_IDENTIFY_CNS },
3577 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3578 	{ 0, }
3579 };
3580 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3581 
3582 static struct pci_driver nvme_driver = {
3583 	.name		= "nvme",
3584 	.id_table	= nvme_id_table,
3585 	.probe		= nvme_probe,
3586 	.remove		= nvme_remove,
3587 	.shutdown	= nvme_shutdown,
3588 	.driver		= {
3589 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3590 #ifdef CONFIG_PM_SLEEP
3591 		.pm		= &nvme_dev_pm_ops,
3592 #endif
3593 	},
3594 	.sriov_configure = pci_sriov_configure_simple,
3595 	.err_handler	= &nvme_err_handler,
3596 };
3597 
nvme_init(void)3598 static int __init nvme_init(void)
3599 {
3600 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3601 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3602 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3603 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3604 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3605 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3606 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3607 
3608 	return pci_register_driver(&nvme_driver);
3609 }
3610 
nvme_exit(void)3611 static void __exit nvme_exit(void)
3612 {
3613 	pci_unregister_driver(&nvme_driver);
3614 	flush_workqueue(nvme_wq);
3615 }
3616 
3617 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3618 MODULE_LICENSE("GPL");
3619 MODULE_VERSION("1.0");
3620 module_init(nvme_init);
3621 module_exit(nvme_exit);
3622