xref: /openbmc/qemu/block/nvme.c (revision 619c2350fae574af67d371f68f701692d9b8487a)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qobject/qdict.h"
18 #include "qobject/qstring.h"
19 #include "qemu/defer-call.h"
20 #include "qemu/error-report.h"
21 #include "qemu/host-pci-mmio.h"
22 #include "qemu/main-loop.h"
23 #include "qemu/module.h"
24 #include "qemu/cutils.h"
25 #include "qemu/option.h"
26 #include "qemu/memalign.h"
27 #include "qemu/vfio-helpers.h"
28 #include "block/block-io.h"
29 #include "block/block_int.h"
30 #include "system/block-backend.h"
31 #include "system/replay.h"
32 #include "trace.h"
33 
34 #include "block/nvme.h"
35 
36 #define NVME_SQ_ENTRY_BYTES 64
37 #define NVME_CQ_ENTRY_BYTES 16
38 #define NVME_QUEUE_SIZE 128
39 #define NVME_DOORBELL_SIZE 4096
40 
41 /*
42  * We have to leave one slot empty as that is the full queue case where
43  * head == tail + 1.
44  */
45 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
46 
47 typedef struct BDRVNVMeState BDRVNVMeState;
48 
49 /* Same index is used for queues and IRQs */
50 #define INDEX_ADMIN     0
51 #define INDEX_IO(n)     (1 + n)
52 
53 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
54 enum {
55     MSIX_SHARED_IRQ_IDX = 0,
56     MSIX_IRQ_COUNT = 1
57 };
58 
59 typedef struct {
60     int32_t  head, tail;
61     uint8_t  *queue;
62     uint64_t iova;
63     /* Hardware MMIO register */
64     uint32_t *doorbell;
65 } NVMeQueue;
66 
67 typedef struct {
68     BlockCompletionFunc *cb;
69     void *opaque;
70     int cid;
71     void *prp_list_page;
72     uint64_t prp_list_iova;
73     int free_req_next; /* q->reqs[] index of next free req */
74 } NVMeRequest;
75 
76 typedef struct {
77     QemuMutex   lock;
78 
79     /* Read from I/O code path, initialized under BQL */
80     BDRVNVMeState   *s;
81     int             index;
82 
83     /* Fields protected by BQL */
84     uint8_t     *prp_list_pages;
85 
86     /* Fields protected by @lock */
87     CoQueue     free_req_queue;
88     NVMeQueue   sq, cq;
89     int         cq_phase;
90     int         free_req_head;
91     NVMeRequest reqs[NVME_NUM_REQS];
92     int         need_kick;
93     int         inflight;
94 
95     /* Thread-safe, no lock necessary */
96     QEMUBH      *completion_bh;
97 } NVMeQueuePair;
98 
99 struct BDRVNVMeState {
100     AioContext *aio_context;
101     QEMUVFIOState *vfio;
102     void *bar0_wo_map;
103     /* Memory mapped registers */
104     struct {
105         uint32_t sq_tail;
106         uint32_t cq_head;
107     } *doorbells;
108     /* The submission/completion queue pairs.
109      * [0]: admin queue.
110      * [1..]: io queues.
111      */
112     NVMeQueuePair **queues;
113     unsigned queue_count;
114     size_t page_size;
115     /* How many uint32_t elements does each doorbell entry take. */
116     size_t doorbell_scale;
117     bool write_cache_supported;
118     EventNotifier irq_notifier[MSIX_IRQ_COUNT];
119 
120     uint64_t nsze; /* Namespace size reported by identify command */
121     int nsid;      /* The namespace id to read/write data. */
122     int blkshift;
123 
124     uint64_t max_transfer;
125 
126     bool supports_write_zeroes;
127     bool supports_discard;
128 
129     CoMutex dma_map_lock;
130     CoQueue dma_flush_queue;
131 
132     /* Total size of mapped qiov, accessed under dma_map_lock */
133     int dma_map_count;
134 
135     /* PCI address (required for nvme_refresh_filename()) */
136     char *device;
137 
138     struct {
139         uint64_t completion_errors;
140         uint64_t aligned_accesses;
141         uint64_t unaligned_accesses;
142     } stats;
143 };
144 
145 #define NVME_BLOCK_OPT_DEVICE "device"
146 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
147 
148 static void nvme_process_completion_bh(void *opaque);
149 
150 static QemuOptsList runtime_opts = {
151     .name = "nvme",
152     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
153     .desc = {
154         {
155             .name = NVME_BLOCK_OPT_DEVICE,
156             .type = QEMU_OPT_STRING,
157             .help = "NVMe PCI device address",
158         },
159         {
160             .name = NVME_BLOCK_OPT_NAMESPACE,
161             .type = QEMU_OPT_NUMBER,
162             .help = "NVMe namespace",
163         },
164         { /* end of list */ }
165     },
166 };
167 
168 /* Returns true on success, false on failure. */
nvme_init_queue(BDRVNVMeState * s,NVMeQueue * q,unsigned nentries,size_t entry_bytes,Error ** errp)169 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
170                             unsigned nentries, size_t entry_bytes, Error **errp)
171 {
172     ERRP_GUARD();
173     size_t bytes;
174     int r;
175 
176     bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
177     q->head = q->tail = 0;
178     q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
179     if (!q->queue) {
180         error_setg(errp, "Cannot allocate queue");
181         return false;
182     }
183     memset(q->queue, 0, bytes);
184     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
185     if (r) {
186         error_prepend(errp, "Cannot map queue: ");
187     }
188     return r == 0;
189 }
190 
nvme_free_queue(NVMeQueue * q)191 static void nvme_free_queue(NVMeQueue *q)
192 {
193     qemu_vfree(q->queue);
194 }
195 
nvme_free_queue_pair(NVMeQueuePair * q)196 static void nvme_free_queue_pair(NVMeQueuePair *q)
197 {
198     trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
199     if (q->completion_bh) {
200         qemu_bh_delete(q->completion_bh);
201     }
202     nvme_free_queue(&q->sq);
203     nvme_free_queue(&q->cq);
204     qemu_vfree(q->prp_list_pages);
205     qemu_mutex_destroy(&q->lock);
206     g_free(q);
207 }
208 
nvme_free_req_queue_cb(void * opaque)209 static void nvme_free_req_queue_cb(void *opaque)
210 {
211     NVMeQueuePair *q = opaque;
212 
213     qemu_mutex_lock(&q->lock);
214     while (q->free_req_head != -1 &&
215            qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
216         /* Retry waiting requests */
217     }
218     qemu_mutex_unlock(&q->lock);
219 }
220 
nvme_create_queue_pair(BDRVNVMeState * s,AioContext * aio_context,unsigned idx,size_t size,Error ** errp)221 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
222                                              AioContext *aio_context,
223                                              unsigned idx, size_t size,
224                                              Error **errp)
225 {
226     ERRP_GUARD();
227     int i, r;
228     NVMeQueuePair *q;
229     uint64_t prp_list_iova;
230     size_t bytes;
231 
232     q = g_try_new0(NVMeQueuePair, 1);
233     if (!q) {
234         error_setg(errp, "Cannot allocate queue pair");
235         return NULL;
236     }
237     trace_nvme_create_queue_pair(idx, q, size, aio_context,
238                                  event_notifier_get_fd(s->irq_notifier));
239     bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
240                           qemu_real_host_page_size());
241     q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
242     if (!q->prp_list_pages) {
243         error_setg(errp, "Cannot allocate PRP page list");
244         goto fail;
245     }
246     memset(q->prp_list_pages, 0, bytes);
247     qemu_mutex_init(&q->lock);
248     q->s = s;
249     q->index = idx;
250     qemu_co_queue_init(&q->free_req_queue);
251     q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
252     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
253                           false, &prp_list_iova, errp);
254     if (r) {
255         error_prepend(errp, "Cannot map buffer for DMA: ");
256         goto fail;
257     }
258     q->free_req_head = -1;
259     for (i = 0; i < NVME_NUM_REQS; i++) {
260         NVMeRequest *req = &q->reqs[i];
261         req->cid = i + 1;
262         req->free_req_next = q->free_req_head;
263         q->free_req_head = i;
264         req->prp_list_page = q->prp_list_pages + i * s->page_size;
265         req->prp_list_iova = prp_list_iova + i * s->page_size;
266     }
267 
268     if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
269         goto fail;
270     }
271     q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
272 
273     if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
274         goto fail;
275     }
276     q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
277 
278     return q;
279 fail:
280     nvme_free_queue_pair(q);
281     return NULL;
282 }
283 
284 /* With q->lock */
nvme_kick(NVMeQueuePair * q)285 static void nvme_kick(NVMeQueuePair *q)
286 {
287     BDRVNVMeState *s = q->s;
288 
289     if (!q->need_kick) {
290         return;
291     }
292     trace_nvme_kick(s, q->index);
293     assert(!(q->sq.tail & 0xFF00));
294     /* Fence the write to submission queue entry before notifying the device. */
295     smp_wmb();
296     host_pci_stl_le_p(q->sq.doorbell, q->sq.tail);
297     q->inflight += q->need_kick;
298     q->need_kick = 0;
299 }
300 
nvme_get_free_req_nofail_locked(NVMeQueuePair * q)301 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
302 {
303     NVMeRequest *req;
304 
305     req = &q->reqs[q->free_req_head];
306     q->free_req_head = req->free_req_next;
307     req->free_req_next = -1;
308     return req;
309 }
310 
311 /* Return a free request element if any, otherwise return NULL.  */
nvme_get_free_req_nowait(NVMeQueuePair * q)312 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
313 {
314     QEMU_LOCK_GUARD(&q->lock);
315     if (q->free_req_head == -1) {
316         return NULL;
317     }
318     return nvme_get_free_req_nofail_locked(q);
319 }
320 
321 /*
322  * Wait for a free request to become available if necessary, then
323  * return it.
324  */
nvme_get_free_req(NVMeQueuePair * q)325 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
326 {
327     QEMU_LOCK_GUARD(&q->lock);
328 
329     while (q->free_req_head == -1) {
330         trace_nvme_free_req_queue_wait(q->s, q->index);
331         qemu_co_queue_wait(&q->free_req_queue, &q->lock);
332     }
333 
334     return nvme_get_free_req_nofail_locked(q);
335 }
336 
337 /* With q->lock */
nvme_put_free_req_locked(NVMeQueuePair * q,NVMeRequest * req)338 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
339 {
340     req->free_req_next = q->free_req_head;
341     q->free_req_head = req - q->reqs;
342 }
343 
344 /* With q->lock */
nvme_wake_free_req_locked(NVMeQueuePair * q)345 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
346 {
347     if (!qemu_co_queue_empty(&q->free_req_queue)) {
348         replay_bh_schedule_oneshot_event(q->s->aio_context,
349                 nvme_free_req_queue_cb, q);
350     }
351 }
352 
353 /* Insert a request in the freelist and wake waiters */
nvme_put_free_req_and_wake(NVMeQueuePair * q,NVMeRequest * req)354 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
355 {
356     qemu_mutex_lock(&q->lock);
357     nvme_put_free_req_locked(q, req);
358     nvme_wake_free_req_locked(q);
359     qemu_mutex_unlock(&q->lock);
360 }
361 
nvme_translate_error(const NvmeCqe * c)362 static inline int nvme_translate_error(const NvmeCqe *c)
363 {
364     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
365     if (status) {
366         trace_nvme_error(le32_to_cpu(c->result),
367                          le16_to_cpu(c->sq_head),
368                          le16_to_cpu(c->sq_id),
369                          le16_to_cpu(c->cid),
370                          le16_to_cpu(status));
371     }
372     switch (status) {
373     case 0:
374         return 0;
375     case 1:
376         return -ENOSYS;
377     case 2:
378         return -EINVAL;
379     default:
380         return -EIO;
381     }
382 }
383 
384 /* With q->lock */
nvme_process_completion(NVMeQueuePair * q)385 static bool nvme_process_completion(NVMeQueuePair *q)
386 {
387     BDRVNVMeState *s = q->s;
388     bool progress = false;
389     NVMeRequest *preq;
390     NVMeRequest req;
391     NvmeCqe *c;
392 
393     trace_nvme_process_completion(s, q->index, q->inflight);
394 
395     /*
396      * Support re-entrancy when a request cb() function invokes aio_poll().
397      * Pending completions must be visible to aio_poll() so that a cb()
398      * function can wait for the completion of another request.
399      *
400      * The aio_poll() loop will execute our BH and we'll resume completion
401      * processing there.
402      */
403     qemu_bh_schedule(q->completion_bh);
404 
405     assert(q->inflight >= 0);
406     while (q->inflight) {
407         int ret;
408         int16_t cid;
409 
410         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
411         if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
412             break;
413         }
414         ret = nvme_translate_error(c);
415         if (ret) {
416             s->stats.completion_errors++;
417         }
418         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
419         if (!q->cq.head) {
420             q->cq_phase = !q->cq_phase;
421         }
422         cid = le16_to_cpu(c->cid);
423         if (cid == 0 || cid > NVME_NUM_REQS) {
424             warn_report("NVMe: Unexpected CID in completion queue: %" PRIu32
425                         ", should be within: 1..%u inclusively", cid,
426                         NVME_NUM_REQS);
427             continue;
428         }
429         trace_nvme_complete_command(s, q->index, cid);
430         preq = &q->reqs[cid - 1];
431         req = *preq;
432         assert(req.cid == cid);
433         assert(req.cb);
434         nvme_put_free_req_locked(q, preq);
435         preq->cb = preq->opaque = NULL;
436         q->inflight--;
437         qemu_mutex_unlock(&q->lock);
438         req.cb(req.opaque, ret);
439         qemu_mutex_lock(&q->lock);
440         progress = true;
441     }
442     if (progress) {
443         /* Notify the device so it can post more completions. */
444         smp_mb_release();
445         host_pci_stl_le_p(q->cq.doorbell, q->cq.head);
446         nvme_wake_free_req_locked(q);
447     }
448 
449     qemu_bh_cancel(q->completion_bh);
450 
451     return progress;
452 }
453 
nvme_process_completion_bh(void * opaque)454 static void nvme_process_completion_bh(void *opaque)
455 {
456     NVMeQueuePair *q = opaque;
457 
458     /*
459      * We're being invoked because a nvme_process_completion() cb() function
460      * called aio_poll(). The callback may be waiting for further completions
461      * so notify the device that it has space to fill in more completions now.
462      */
463     smp_mb_release();
464     host_pci_stl_le_p(q->cq.doorbell, q->cq.head);
465     nvme_wake_free_req_locked(q);
466 
467     nvme_process_completion(q);
468 }
469 
nvme_trace_command(const NvmeCmd * cmd)470 static void nvme_trace_command(const NvmeCmd *cmd)
471 {
472     int i;
473 
474     if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
475         return;
476     }
477     for (i = 0; i < 8; ++i) {
478         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
479         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
480                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
481     }
482 }
483 
nvme_kick_and_check_completions(void * opaque)484 static void nvme_kick_and_check_completions(void *opaque)
485 {
486     NVMeQueuePair *q = opaque;
487 
488     QEMU_LOCK_GUARD(&q->lock);
489     nvme_kick(q);
490     nvme_process_completion(q);
491 }
492 
nvme_deferred_fn(void * opaque)493 static void nvme_deferred_fn(void *opaque)
494 {
495     NVMeQueuePair *q = opaque;
496 
497     if (qemu_get_current_aio_context() == q->s->aio_context) {
498         nvme_kick_and_check_completions(q);
499     } else {
500         aio_bh_schedule_oneshot(q->s->aio_context,
501                                 nvme_kick_and_check_completions, q);
502     }
503 }
504 
nvme_submit_command(NVMeQueuePair * q,NVMeRequest * req,NvmeCmd * cmd,BlockCompletionFunc cb,void * opaque)505 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
506                                 NvmeCmd *cmd, BlockCompletionFunc cb,
507                                 void *opaque)
508 {
509     assert(!req->cb);
510     req->cb = cb;
511     req->opaque = opaque;
512     cmd->cid = cpu_to_le16(req->cid);
513 
514     trace_nvme_submit_command(q->s, q->index, req->cid);
515     nvme_trace_command(cmd);
516     qemu_mutex_lock(&q->lock);
517     memcpy((uint8_t *)q->sq.queue +
518            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
519     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
520     q->need_kick++;
521     qemu_mutex_unlock(&q->lock);
522 
523     defer_call(nvme_deferred_fn, q);
524 }
525 
nvme_admin_cmd_sync_cb(void * opaque,int ret)526 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
527 {
528     int *pret = opaque;
529     *pret = ret;
530     aio_wait_kick();
531 }
532 
nvme_admin_cmd_sync(BlockDriverState * bs,NvmeCmd * cmd)533 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
534 {
535     BDRVNVMeState *s = bs->opaque;
536     NVMeQueuePair *q = s->queues[INDEX_ADMIN];
537     AioContext *aio_context = bdrv_get_aio_context(bs);
538     NVMeRequest *req;
539     int ret = -EINPROGRESS;
540     req = nvme_get_free_req_nowait(q);
541     if (!req) {
542         return -EBUSY;
543     }
544     nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
545 
546     AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
547     return ret;
548 }
549 
550 /* Returns true on success, false on failure. */
nvme_identify(BlockDriverState * bs,int namespace,Error ** errp)551 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
552 {
553     ERRP_GUARD();
554     BDRVNVMeState *s = bs->opaque;
555     bool ret = false;
556     QEMU_AUTO_VFREE union {
557         NvmeIdCtrl ctrl;
558         NvmeIdNs ns;
559     } *id = NULL;
560     NvmeLBAF *lbaf;
561     uint16_t oncs;
562     int r;
563     uint64_t iova;
564     NvmeCmd cmd = {
565         .opcode = NVME_ADM_CMD_IDENTIFY,
566         .cdw10 = cpu_to_le32(0x1),
567     };
568     size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
569 
570     id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
571     if (!id) {
572         error_setg(errp, "Cannot allocate buffer for identify response");
573         goto out;
574     }
575     r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
576     if (r) {
577         error_prepend(errp, "Cannot map buffer for DMA: ");
578         goto out;
579     }
580 
581     memset(id, 0, id_size);
582     cmd.dptr.prp1 = cpu_to_le64(iova);
583     if (nvme_admin_cmd_sync(bs, &cmd)) {
584         error_setg(errp, "Failed to identify controller");
585         goto out;
586     }
587 
588     if (le32_to_cpu(id->ctrl.nn) < namespace) {
589         error_setg(errp, "Invalid namespace");
590         goto out;
591     }
592     s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
593     s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
594     /* For now the page list buffer per command is one page, to hold at most
595      * s->page_size / sizeof(uint64_t) entries. */
596     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
597                           s->page_size / sizeof(uint64_t) * s->page_size);
598 
599     oncs = le16_to_cpu(id->ctrl.oncs);
600     s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
601     s->supports_discard = !!(oncs & NVME_ONCS_DSM);
602 
603     memset(id, 0, id_size);
604     cmd.cdw10 = 0;
605     cmd.nsid = cpu_to_le32(namespace);
606     if (nvme_admin_cmd_sync(bs, &cmd)) {
607         error_setg(errp, "Failed to identify namespace");
608         goto out;
609     }
610 
611     s->nsze = le64_to_cpu(id->ns.nsze);
612     lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
613 
614     if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
615             NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
616                     NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
617         bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
618     }
619 
620     if (lbaf->ms) {
621         error_setg(errp, "Namespaces with metadata are not yet supported");
622         goto out;
623     }
624 
625     if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
626         (1 << lbaf->ds) > s->page_size)
627     {
628         error_setg(errp, "Namespace has unsupported block size (2^%d)",
629                    lbaf->ds);
630         goto out;
631     }
632 
633     ret = true;
634     s->blkshift = lbaf->ds;
635 out:
636     qemu_vfio_dma_unmap(s->vfio, id);
637 
638     return ret;
639 }
640 
nvme_poll_queue(NVMeQueuePair * q)641 static void nvme_poll_queue(NVMeQueuePair *q)
642 {
643     const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
644     NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
645 
646     trace_nvme_poll_queue(q->s, q->index);
647     /*
648      * Do an early check for completions. q->lock isn't needed because
649      * nvme_process_completion() only runs in the event loop thread and
650      * cannot race with itself.
651      */
652     if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
653         return;
654     }
655 
656     qemu_mutex_lock(&q->lock);
657     while (nvme_process_completion(q)) {
658         /* Keep polling */
659     }
660     qemu_mutex_unlock(&q->lock);
661 }
662 
nvme_poll_queues(BDRVNVMeState * s)663 static void nvme_poll_queues(BDRVNVMeState *s)
664 {
665     int i;
666 
667     for (i = 0; i < s->queue_count; i++) {
668         nvme_poll_queue(s->queues[i]);
669     }
670 }
671 
nvme_handle_event(EventNotifier * n)672 static void nvme_handle_event(EventNotifier *n)
673 {
674     BDRVNVMeState *s = container_of(n, BDRVNVMeState,
675                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
676 
677     trace_nvme_handle_event(s);
678     event_notifier_test_and_clear(n);
679     nvme_poll_queues(s);
680 }
681 
nvme_add_io_queue(BlockDriverState * bs,Error ** errp)682 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
683 {
684     BDRVNVMeState *s = bs->opaque;
685     unsigned n = s->queue_count;
686     NVMeQueuePair *q;
687     NvmeCmd cmd;
688     unsigned queue_size = NVME_QUEUE_SIZE;
689 
690     assert(n <= UINT16_MAX);
691     q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
692                                n, queue_size, errp);
693     if (!q) {
694         return false;
695     }
696     cmd = (NvmeCmd) {
697         .opcode = NVME_ADM_CMD_CREATE_CQ,
698         .dptr.prp1 = cpu_to_le64(q->cq.iova),
699         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
700         .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
701     };
702     if (nvme_admin_cmd_sync(bs, &cmd)) {
703         error_setg(errp, "Failed to create CQ io queue [%u]", n);
704         goto out_error;
705     }
706     cmd = (NvmeCmd) {
707         .opcode = NVME_ADM_CMD_CREATE_SQ,
708         .dptr.prp1 = cpu_to_le64(q->sq.iova),
709         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
710         .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
711     };
712     if (nvme_admin_cmd_sync(bs, &cmd)) {
713         error_setg(errp, "Failed to create SQ io queue [%u]", n);
714         goto out_error;
715     }
716     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
717     s->queues[n] = q;
718     s->queue_count++;
719     return true;
720 out_error:
721     nvme_free_queue_pair(q);
722     return false;
723 }
724 
nvme_poll_cb(void * opaque)725 static bool nvme_poll_cb(void *opaque)
726 {
727     EventNotifier *e = opaque;
728     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
729                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
730     int i;
731 
732     for (i = 0; i < s->queue_count; i++) {
733         NVMeQueuePair *q = s->queues[i];
734         const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
735         NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
736 
737         /*
738          * q->lock isn't needed because nvme_process_completion() only runs in
739          * the event loop thread and cannot race with itself.
740          */
741         if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
742             return true;
743         }
744     }
745     return false;
746 }
747 
nvme_poll_ready(EventNotifier * e)748 static void nvme_poll_ready(EventNotifier *e)
749 {
750     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
751                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
752 
753     nvme_poll_queues(s);
754 }
755 
nvme_init(BlockDriverState * bs,const char * device,int namespace,Error ** errp)756 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
757                      Error **errp)
758 {
759     BDRVNVMeState *s = bs->opaque;
760     NVMeQueuePair *q;
761     AioContext *aio_context = bdrv_get_aio_context(bs);
762     int ret;
763     uint64_t cap;
764     uint32_t ver;
765     uint32_t cc;
766     uint64_t timeout_ms;
767     uint64_t deadline, now;
768     NvmeBar *regs = NULL;
769 
770     qemu_co_mutex_init(&s->dma_map_lock);
771     qemu_co_queue_init(&s->dma_flush_queue);
772     s->device = g_strdup(device);
773     s->nsid = namespace;
774     s->aio_context = bdrv_get_aio_context(bs);
775     ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
776     if (ret) {
777         error_setg(errp, "Failed to init event notifier");
778         return ret;
779     }
780 
781     s->vfio = qemu_vfio_open_pci(device, errp);
782     if (!s->vfio) {
783         ret = -EINVAL;
784         goto out;
785     }
786 
787     regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
788                                  PROT_READ | PROT_WRITE, errp);
789     if (!regs) {
790         ret = -EINVAL;
791         goto out;
792     }
793     /* Perform initialize sequence as described in NVMe spec "7.6.1
794      * Initialization". */
795 
796     cap = host_pci_ldq_le_p(&regs->cap);
797     trace_nvme_controller_capability_raw(cap);
798     trace_nvme_controller_capability("Maximum Queue Entries Supported",
799                                      1 + NVME_CAP_MQES(cap));
800     trace_nvme_controller_capability("Contiguous Queues Required",
801                                      NVME_CAP_CQR(cap));
802     trace_nvme_controller_capability("Doorbell Stride",
803                                      1 << (2 + NVME_CAP_DSTRD(cap)));
804     trace_nvme_controller_capability("Subsystem Reset Supported",
805                                      NVME_CAP_NSSRS(cap));
806     trace_nvme_controller_capability("Memory Page Size Minimum",
807                                      1 << (12 + NVME_CAP_MPSMIN(cap)));
808     trace_nvme_controller_capability("Memory Page Size Maximum",
809                                      1 << (12 + NVME_CAP_MPSMAX(cap)));
810     if (!NVME_CAP_CSS(cap)) {
811         error_setg(errp, "Device doesn't support NVMe command set");
812         ret = -EINVAL;
813         goto out;
814     }
815 
816     s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
817     s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
818     bs->bl.opt_mem_alignment = s->page_size;
819     bs->bl.request_alignment = s->page_size;
820     timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
821 
822     ver = host_pci_ldl_le_p(&regs->vs);
823     trace_nvme_controller_spec_version(extract32(ver, 16, 16),
824                                        extract32(ver, 8, 8),
825                                        extract32(ver, 0, 8));
826 
827     /* Reset device to get a clean state. */
828     cc = host_pci_ldl_le_p(&regs->cc);
829     host_pci_stl_le_p(&regs->cc, cc & 0xFE);
830     /* Wait for CSTS.RDY = 0. */
831     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
832     while (NVME_CSTS_RDY(host_pci_ldl_le_p(&regs->csts))) {
833         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
834             error_setg(errp, "Timeout while waiting for device to reset (%"
835                              PRId64 " ms)",
836                        timeout_ms);
837             ret = -ETIMEDOUT;
838             goto out;
839         }
840     }
841 
842     s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
843                                            sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
844                                            PROT_WRITE, errp);
845     s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
846     if (!s->doorbells) {
847         ret = -EINVAL;
848         goto out;
849     }
850 
851     /* Set up admin queue. */
852     s->queues = g_new(NVMeQueuePair *, 1);
853     q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
854     if (!q) {
855         ret = -EINVAL;
856         goto out;
857     }
858     s->queues[INDEX_ADMIN] = q;
859     s->queue_count = 1;
860     QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
861     host_pci_stl_le_p(&regs->aqa,
862                         ((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
863                         ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
864     host_pci_stq_le_p(&regs->asq, q->sq.iova);
865     host_pci_stq_le_p(&regs->acq, q->cq.iova);
866 
867     /* After setting up all control registers we can enable device now. */
868     host_pci_stl_le_p(&regs->cc,
869                       (ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
870                       (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
871                       CC_EN_MASK);
872     /* Wait for CSTS.RDY = 1. */
873     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
874     deadline = now + timeout_ms * SCALE_MS;
875     while (!NVME_CSTS_RDY(host_pci_ldl_le_p(&regs->csts))) {
876         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
877             error_setg(errp, "Timeout while waiting for device to start (%"
878                              PRId64 " ms)",
879                        timeout_ms);
880             ret = -ETIMEDOUT;
881             goto out;
882         }
883     }
884 
885     ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
886                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
887     if (ret) {
888         goto out;
889     }
890     aio_set_event_notifier(bdrv_get_aio_context(bs),
891                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
892                            nvme_handle_event, nvme_poll_cb,
893                            nvme_poll_ready);
894 
895     if (!nvme_identify(bs, namespace, errp)) {
896         ret = -EIO;
897         goto out;
898     }
899 
900     /* Set up command queues. */
901     if (!nvme_add_io_queue(bs, errp)) {
902         ret = -EIO;
903     }
904 out:
905     if (regs) {
906         qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
907     }
908 
909     /* Cleaning up is done in nvme_open() upon error. */
910     return ret;
911 }
912 
913 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
914  *
915  *     nvme://0000:44:00.0/1
916  *
917  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
918  * is the PCI address, and the last part is the namespace number starting from
919  * 1 according to the NVMe spec. */
nvme_parse_filename(const char * filename,QDict * options,Error ** errp)920 static void nvme_parse_filename(const char *filename, QDict *options,
921                                 Error **errp)
922 {
923     int pref = strlen("nvme://");
924 
925     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
926         const char *tmp = filename + pref;
927         char *device;
928         const char *namespace;
929         unsigned long ns;
930         const char *slash = strchr(tmp, '/');
931         if (!slash) {
932             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
933             return;
934         }
935         device = g_strndup(tmp, slash - tmp);
936         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
937         g_free(device);
938         namespace = slash + 1;
939         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
940             error_setg(errp, "Invalid namespace '%s', positive number expected",
941                        namespace);
942             return;
943         }
944         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
945                       *namespace ? namespace : "1");
946     }
947 }
948 
nvme_enable_disable_write_cache(BlockDriverState * bs,bool enable,Error ** errp)949 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
950                                            Error **errp)
951 {
952     int ret;
953     BDRVNVMeState *s = bs->opaque;
954     NvmeCmd cmd = {
955         .opcode = NVME_ADM_CMD_SET_FEATURES,
956         .nsid = cpu_to_le32(s->nsid),
957         .cdw10 = cpu_to_le32(0x06),
958         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
959     };
960 
961     ret = nvme_admin_cmd_sync(bs, &cmd);
962     if (ret) {
963         error_setg(errp, "Failed to configure NVMe write cache");
964     }
965     return ret;
966 }
967 
nvme_close(BlockDriverState * bs)968 static void nvme_close(BlockDriverState *bs)
969 {
970     BDRVNVMeState *s = bs->opaque;
971 
972     for (unsigned i = 0; i < s->queue_count; ++i) {
973         nvme_free_queue_pair(s->queues[i]);
974     }
975     g_free(s->queues);
976     aio_set_event_notifier(bdrv_get_aio_context(bs),
977                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
978                            NULL, NULL, NULL);
979     event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
980     qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
981                             0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
982     qemu_vfio_close(s->vfio);
983 
984     g_free(s->device);
985 }
986 
nvme_open(BlockDriverState * bs,QDict * options,int flags,Error ** errp)987 static int nvme_open(BlockDriverState *bs, QDict *options, int flags,
988                      Error **errp)
989 {
990     const char *device;
991     QemuOpts *opts;
992     int namespace;
993     int ret;
994     BDRVNVMeState *s = bs->opaque;
995 
996     bs->supported_write_flags = BDRV_REQ_FUA;
997 
998     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
999     qemu_opts_absorb_qdict(opts, options, &error_abort);
1000     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
1001     if (!device) {
1002         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
1003         qemu_opts_del(opts);
1004         return -EINVAL;
1005     }
1006 
1007     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
1008     ret = nvme_init(bs, device, namespace, errp);
1009     qemu_opts_del(opts);
1010     if (ret) {
1011         goto fail;
1012     }
1013     if (flags & BDRV_O_NOCACHE) {
1014         if (!s->write_cache_supported) {
1015             error_setg(errp,
1016                        "NVMe controller doesn't support write cache configuration");
1017             ret = -EINVAL;
1018         } else {
1019             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
1020                                                   errp);
1021         }
1022         if (ret) {
1023             goto fail;
1024         }
1025     }
1026     return 0;
1027 fail:
1028     nvme_close(bs);
1029     return ret;
1030 }
1031 
nvme_co_getlength(BlockDriverState * bs)1032 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1033 {
1034     BDRVNVMeState *s = bs->opaque;
1035     return s->nsze << s->blkshift;
1036 }
1037 
nvme_get_blocksize(BlockDriverState * bs)1038 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1039 {
1040     BDRVNVMeState *s = bs->opaque;
1041     assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1042     return UINT32_C(1) << s->blkshift;
1043 }
1044 
nvme_probe_blocksizes(BlockDriverState * bs,BlockSizes * bsz)1045 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1046 {
1047     uint32_t blocksize = nvme_get_blocksize(bs);
1048     bsz->phys = blocksize;
1049     bsz->log = blocksize;
1050     return 0;
1051 }
1052 
1053 /* Called with s->dma_map_lock */
nvme_cmd_unmap_qiov(BlockDriverState * bs,QEMUIOVector * qiov)1054 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1055                                             QEMUIOVector *qiov)
1056 {
1057     int r = 0;
1058     BDRVNVMeState *s = bs->opaque;
1059 
1060     s->dma_map_count -= qiov->size;
1061     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1062         r = qemu_vfio_dma_reset_temporary(s->vfio);
1063         if (!r) {
1064             qemu_co_queue_restart_all(&s->dma_flush_queue);
1065         }
1066     }
1067     return r;
1068 }
1069 
1070 /* Called with s->dma_map_lock */
nvme_cmd_map_qiov(BlockDriverState * bs,NvmeCmd * cmd,NVMeRequest * req,QEMUIOVector * qiov)1071 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1072                                           NVMeRequest *req, QEMUIOVector *qiov)
1073 {
1074     BDRVNVMeState *s = bs->opaque;
1075     uint64_t *pagelist = req->prp_list_page;
1076     int i, j, r;
1077     int entries = 0;
1078     Error *local_err = NULL, **errp = NULL;
1079 
1080     assert(qiov->size);
1081     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1082     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1083     for (i = 0; i < qiov->niov; ++i) {
1084         bool retry = true;
1085         uint64_t iova;
1086         size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1087                                    qemu_real_host_page_size());
1088 try_map:
1089         r = qemu_vfio_dma_map(s->vfio,
1090                               qiov->iov[i].iov_base,
1091                               len, true, &iova, errp);
1092         if (r == -ENOSPC) {
1093             /*
1094              * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1095              * ioctl returns -ENOSPC to signal the user exhausted the DMA
1096              * mappings available for a container since Linux kernel commit
1097              * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1098              * April 2019, see CVE-2019-3882).
1099              *
1100              * This block driver already handles this error path by checking
1101              * for the -ENOMEM error, so we directly replace -ENOSPC by
1102              * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1103              * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1104              * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1105              * to add more storage to the blockdev. Not something we can do
1106              * easily with an IOMMU :)
1107              */
1108             r = -ENOMEM;
1109         }
1110         if (r == -ENOMEM && retry) {
1111             /*
1112              * We exhausted the DMA mappings available for our container:
1113              * recycle the volatile IOVA mappings.
1114              */
1115             retry = false;
1116             trace_nvme_dma_flush_queue_wait(s);
1117             if (s->dma_map_count) {
1118                 trace_nvme_dma_map_flush(s);
1119                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1120             } else {
1121                 r = qemu_vfio_dma_reset_temporary(s->vfio);
1122                 if (r) {
1123                     goto fail;
1124                 }
1125             }
1126             errp = &local_err;
1127 
1128             goto try_map;
1129         }
1130         if (r) {
1131             goto fail;
1132         }
1133 
1134         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1135             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1136         }
1137         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1138                                     qiov->iov[i].iov_len / s->page_size);
1139     }
1140 
1141     s->dma_map_count += qiov->size;
1142 
1143     assert(entries <= s->page_size / sizeof(uint64_t));
1144     switch (entries) {
1145     case 0:
1146         abort();
1147     case 1:
1148         cmd->dptr.prp1 = pagelist[0];
1149         cmd->dptr.prp2 = 0;
1150         break;
1151     case 2:
1152         cmd->dptr.prp1 = pagelist[0];
1153         cmd->dptr.prp2 = pagelist[1];
1154         break;
1155     default:
1156         cmd->dptr.prp1 = pagelist[0];
1157         cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1158         break;
1159     }
1160     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1161     for (i = 0; i < entries; ++i) {
1162         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1163     }
1164     return 0;
1165 fail:
1166     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1167      * increment s->dma_map_count. This is okay for fixed mapping memory areas
1168      * because they are already mapped before calling this function; for
1169      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1170      * calling qemu_vfio_dma_reset_temporary when necessary. */
1171     if (local_err) {
1172         error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1173     }
1174     return r;
1175 }
1176 
1177 typedef struct {
1178     Coroutine *co;
1179     bool skip_yield;
1180     int ret;
1181 } NVMeCoData;
1182 
nvme_rw_cb(void * opaque,int ret)1183 static void nvme_rw_cb(void *opaque, int ret)
1184 {
1185     NVMeCoData *data = opaque;
1186 
1187     data->ret = ret;
1188 
1189     if (data->co == qemu_coroutine_self()) {
1190         /*
1191          * Fast path: We are inside of the request coroutine (through
1192          * nvme_submit_command, nvme_deferred_fn, nvme_process_completion).
1193          * We can set data->skip_yield here to keep the coroutine from
1194          * yielding, and then we don't need to schedule a BH to wake it.
1195          */
1196         data->skip_yield = true;
1197     } else {
1198         /*
1199          * Safe to call: The case where we run in the request coroutine is
1200          * handled above, so we must be independent of it; and without
1201          * skip_yield set, the coroutine will yield.
1202          * No need to release NVMeQueuePair.lock (we are called without it
1203          * held).  (Note: If we enter the coroutine here, @data will
1204          * probably be dangling once aio_co_wake() returns.)
1205          */
1206         aio_co_wake(data->co);
1207     }
1208 }
1209 
nvme_co_prw_aligned(BlockDriverState * bs,uint64_t offset,uint64_t bytes,QEMUIOVector * qiov,bool is_write,int flags)1210 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1211                                             uint64_t offset, uint64_t bytes,
1212                                             QEMUIOVector *qiov,
1213                                             bool is_write,
1214                                             int flags)
1215 {
1216     int r;
1217     BDRVNVMeState *s = bs->opaque;
1218     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1219     NVMeRequest *req;
1220 
1221     uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1222                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1223     NvmeCmd cmd = {
1224         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1225         .nsid = cpu_to_le32(s->nsid),
1226         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1227         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1228         .cdw12 = cpu_to_le32(cdw12),
1229     };
1230     NVMeCoData data = {
1231         .co = qemu_coroutine_self(),
1232         .ret = -EINPROGRESS,
1233     };
1234 
1235     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1236     assert(s->queue_count > 1);
1237     req = nvme_get_free_req(ioq);
1238     assert(req);
1239 
1240     qemu_co_mutex_lock(&s->dma_map_lock);
1241     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1242     qemu_co_mutex_unlock(&s->dma_map_lock);
1243     if (r) {
1244         nvme_put_free_req_and_wake(ioq, req);
1245         return r;
1246     }
1247     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1248     if (!data.skip_yield) {
1249         qemu_coroutine_yield();
1250     }
1251 
1252     qemu_co_mutex_lock(&s->dma_map_lock);
1253     r = nvme_cmd_unmap_qiov(bs, qiov);
1254     qemu_co_mutex_unlock(&s->dma_map_lock);
1255     if (r) {
1256         return r;
1257     }
1258 
1259     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1260     return data.ret;
1261 }
1262 
nvme_qiov_aligned(BlockDriverState * bs,const QEMUIOVector * qiov)1263 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1264                                      const QEMUIOVector *qiov)
1265 {
1266     int i;
1267     BDRVNVMeState *s = bs->opaque;
1268 
1269     for (i = 0; i < qiov->niov; ++i) {
1270         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1271                                  qemu_real_host_page_size()) ||
1272             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1273             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1274                                       qiov->iov[i].iov_len, s->page_size);
1275             return false;
1276         }
1277     }
1278     return true;
1279 }
1280 
nvme_co_prw(BlockDriverState * bs,uint64_t offset,uint64_t bytes,QEMUIOVector * qiov,bool is_write,int flags)1281 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1282                                     uint64_t offset, uint64_t bytes,
1283                                     QEMUIOVector *qiov, bool is_write,
1284                                     int flags)
1285 {
1286     BDRVNVMeState *s = bs->opaque;
1287     int r;
1288     QEMU_AUTO_VFREE uint8_t *buf = NULL;
1289     QEMUIOVector local_qiov;
1290     size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1291     assert(QEMU_IS_ALIGNED(offset, s->page_size));
1292     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1293     assert(bytes <= s->max_transfer);
1294     if (nvme_qiov_aligned(bs, qiov)) {
1295         s->stats.aligned_accesses++;
1296         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1297     }
1298     s->stats.unaligned_accesses++;
1299     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1300     buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1301 
1302     if (!buf) {
1303         return -ENOMEM;
1304     }
1305     qemu_iovec_init(&local_qiov, 1);
1306     if (is_write) {
1307         qemu_iovec_to_buf(qiov, 0, buf, bytes);
1308     }
1309     qemu_iovec_add(&local_qiov, buf, bytes);
1310     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1311     qemu_iovec_destroy(&local_qiov);
1312     if (!r && !is_write) {
1313         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1314     }
1315     return r;
1316 }
1317 
nvme_co_preadv(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)1318 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1319                                        int64_t offset, int64_t bytes,
1320                                        QEMUIOVector *qiov,
1321                                        BdrvRequestFlags flags)
1322 {
1323     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1324 }
1325 
nvme_co_pwritev(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)1326 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1327                                         int64_t offset, int64_t bytes,
1328                                         QEMUIOVector *qiov,
1329                                         BdrvRequestFlags flags)
1330 {
1331     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1332 }
1333 
nvme_co_flush(BlockDriverState * bs)1334 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1335 {
1336     BDRVNVMeState *s = bs->opaque;
1337     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1338     NVMeRequest *req;
1339     NvmeCmd cmd = {
1340         .opcode = NVME_CMD_FLUSH,
1341         .nsid = cpu_to_le32(s->nsid),
1342     };
1343     NVMeCoData data = {
1344         .co = qemu_coroutine_self(),
1345         .ret = -EINPROGRESS,
1346     };
1347 
1348     assert(s->queue_count > 1);
1349     req = nvme_get_free_req(ioq);
1350     assert(req);
1351     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1352     if (!data.skip_yield) {
1353         qemu_coroutine_yield();
1354     }
1355 
1356     return data.ret;
1357 }
1358 
1359 
nvme_co_pwrite_zeroes(BlockDriverState * bs,int64_t offset,int64_t bytes,BdrvRequestFlags flags)1360 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1361                                               int64_t offset,
1362                                               int64_t bytes,
1363                                               BdrvRequestFlags flags)
1364 {
1365     BDRVNVMeState *s = bs->opaque;
1366     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1367     NVMeRequest *req;
1368     uint32_t cdw12;
1369 
1370     if (!s->supports_write_zeroes) {
1371         return -ENOTSUP;
1372     }
1373 
1374     if (bytes == 0) {
1375         return 0;
1376     }
1377 
1378     cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1379     /*
1380      * We should not lose information. pwrite_zeroes_alignment and
1381      * max_pwrite_zeroes guarantees it.
1382      */
1383     assert(((cdw12 + 1) << s->blkshift) == bytes);
1384 
1385     NvmeCmd cmd = {
1386         .opcode = NVME_CMD_WRITE_ZEROES,
1387         .nsid = cpu_to_le32(s->nsid),
1388         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1389         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1390     };
1391 
1392     NVMeCoData data = {
1393         .co = qemu_coroutine_self(),
1394         .ret = -EINPROGRESS,
1395     };
1396 
1397     if (flags & BDRV_REQ_MAY_UNMAP) {
1398         cdw12 |= (1 << 25);
1399     }
1400 
1401     if (flags & BDRV_REQ_FUA) {
1402         cdw12 |= (1 << 30);
1403     }
1404 
1405     cmd.cdw12 = cpu_to_le32(cdw12);
1406 
1407     trace_nvme_write_zeroes(s, offset, bytes, flags);
1408     assert(s->queue_count > 1);
1409     req = nvme_get_free_req(ioq);
1410     assert(req);
1411 
1412     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1413     if (!data.skip_yield) {
1414         qemu_coroutine_yield();
1415     }
1416 
1417     trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1418     return data.ret;
1419 }
1420 
1421 
nvme_co_pdiscard(BlockDriverState * bs,int64_t offset,int64_t bytes)1422 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1423                                          int64_t offset,
1424                                          int64_t bytes)
1425 {
1426     BDRVNVMeState *s = bs->opaque;
1427     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1428     NVMeRequest *req;
1429     QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1430     QEMUIOVector local_qiov;
1431     int ret;
1432 
1433     NvmeCmd cmd = {
1434         .opcode = NVME_CMD_DSM,
1435         .nsid = cpu_to_le32(s->nsid),
1436         .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1437         .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1438     };
1439 
1440     NVMeCoData data = {
1441         .co = qemu_coroutine_self(),
1442         .ret = -EINPROGRESS,
1443     };
1444 
1445     if (!s->supports_discard) {
1446         return -ENOTSUP;
1447     }
1448 
1449     assert(s->queue_count > 1);
1450 
1451     /*
1452      * Filling the @buf requires @offset and @bytes to satisfy restrictions
1453      * defined in nvme_refresh_limits().
1454      */
1455     assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1456     assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1457     assert((bytes >> s->blkshift) <= UINT32_MAX);
1458 
1459     buf = qemu_try_memalign(s->page_size, s->page_size);
1460     if (!buf) {
1461         return -ENOMEM;
1462     }
1463     memset(buf, 0, s->page_size);
1464     buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1465     buf->slba = cpu_to_le64(offset >> s->blkshift);
1466     buf->cattr = 0;
1467 
1468     qemu_iovec_init(&local_qiov, 1);
1469     qemu_iovec_add(&local_qiov, buf, 4096);
1470 
1471     req = nvme_get_free_req(ioq);
1472     assert(req);
1473 
1474     qemu_co_mutex_lock(&s->dma_map_lock);
1475     ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1476     qemu_co_mutex_unlock(&s->dma_map_lock);
1477 
1478     if (ret) {
1479         nvme_put_free_req_and_wake(ioq, req);
1480         goto out;
1481     }
1482 
1483     trace_nvme_dsm(s, offset, bytes);
1484 
1485     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1486     if (!data.skip_yield) {
1487         qemu_coroutine_yield();
1488     }
1489 
1490     qemu_co_mutex_lock(&s->dma_map_lock);
1491     ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1492     qemu_co_mutex_unlock(&s->dma_map_lock);
1493 
1494     if (ret) {
1495         goto out;
1496     }
1497 
1498     ret = data.ret;
1499     trace_nvme_dsm_done(s, offset, bytes, ret);
1500 out:
1501     qemu_iovec_destroy(&local_qiov);
1502     return ret;
1503 
1504 }
1505 
nvme_co_truncate(BlockDriverState * bs,int64_t offset,bool exact,PreallocMode prealloc,BdrvRequestFlags flags,Error ** errp)1506 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1507                                          bool exact, PreallocMode prealloc,
1508                                          BdrvRequestFlags flags, Error **errp)
1509 {
1510     int64_t cur_length;
1511 
1512     if (prealloc != PREALLOC_MODE_OFF) {
1513         error_setg(errp, "Unsupported preallocation mode '%s'",
1514                    PreallocMode_str(prealloc));
1515         return -ENOTSUP;
1516     }
1517 
1518     cur_length = nvme_co_getlength(bs);
1519     if (offset != cur_length && exact) {
1520         error_setg(errp, "Cannot resize NVMe devices");
1521         return -ENOTSUP;
1522     } else if (offset > cur_length) {
1523         error_setg(errp, "Cannot grow NVMe devices");
1524         return -EINVAL;
1525     }
1526 
1527     return 0;
1528 }
1529 
nvme_reopen_prepare(BDRVReopenState * reopen_state,BlockReopenQueue * queue,Error ** errp)1530 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1531                                BlockReopenQueue *queue, Error **errp)
1532 {
1533     return 0;
1534 }
1535 
nvme_refresh_filename(BlockDriverState * bs)1536 static void nvme_refresh_filename(BlockDriverState *bs)
1537 {
1538     BDRVNVMeState *s = bs->opaque;
1539 
1540     snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1541              s->device, s->nsid);
1542 }
1543 
nvme_refresh_limits(BlockDriverState * bs,Error ** errp)1544 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1545 {
1546     BDRVNVMeState *s = bs->opaque;
1547 
1548     bs->bl.opt_mem_alignment = s->page_size;
1549     bs->bl.request_alignment = s->page_size;
1550     bs->bl.max_transfer = s->max_transfer;
1551 
1552     /*
1553      * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1554      * at most 0xFFFF
1555      */
1556     bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1557     bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1558                                          1UL << s->blkshift);
1559 
1560     bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1561     bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1562                                     1UL << s->blkshift);
1563 }
1564 
nvme_detach_aio_context(BlockDriverState * bs)1565 static void nvme_detach_aio_context(BlockDriverState *bs)
1566 {
1567     BDRVNVMeState *s = bs->opaque;
1568 
1569     for (unsigned i = 0; i < s->queue_count; i++) {
1570         NVMeQueuePair *q = s->queues[i];
1571 
1572         qemu_bh_delete(q->completion_bh);
1573         q->completion_bh = NULL;
1574     }
1575 
1576     aio_set_event_notifier(bdrv_get_aio_context(bs),
1577                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1578                            NULL, NULL, NULL);
1579 }
1580 
nvme_attach_aio_context(BlockDriverState * bs,AioContext * new_context)1581 static void nvme_attach_aio_context(BlockDriverState *bs,
1582                                     AioContext *new_context)
1583 {
1584     BDRVNVMeState *s = bs->opaque;
1585 
1586     s->aio_context = new_context;
1587     aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1588                            nvme_handle_event, nvme_poll_cb,
1589                            nvme_poll_ready);
1590 
1591     for (unsigned i = 0; i < s->queue_count; i++) {
1592         NVMeQueuePair *q = s->queues[i];
1593 
1594         q->completion_bh =
1595             aio_bh_new(new_context, nvme_process_completion_bh, q);
1596     }
1597 }
1598 
nvme_register_buf(BlockDriverState * bs,void * host,size_t size,Error ** errp)1599 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1600                               Error **errp)
1601 {
1602     int ret;
1603     BDRVNVMeState *s = bs->opaque;
1604 
1605     /*
1606      * FIXME: we may run out of IOVA addresses after repeated
1607      * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1608      * doesn't reclaim addresses for fixed mappings.
1609      */
1610     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1611     return ret == 0;
1612 }
1613 
nvme_unregister_buf(BlockDriverState * bs,void * host,size_t size)1614 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1615 {
1616     BDRVNVMeState *s = bs->opaque;
1617 
1618     qemu_vfio_dma_unmap(s->vfio, host);
1619 }
1620 
nvme_get_specific_stats(BlockDriverState * bs)1621 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1622 {
1623     BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1624     BDRVNVMeState *s = bs->opaque;
1625 
1626     stats->driver = BLOCKDEV_DRIVER_NVME;
1627     stats->u.nvme = (BlockStatsSpecificNvme) {
1628         .completion_errors = s->stats.completion_errors,
1629         .aligned_accesses = s->stats.aligned_accesses,
1630         .unaligned_accesses = s->stats.unaligned_accesses,
1631     };
1632 
1633     return stats;
1634 }
1635 
1636 static const char *const nvme_strong_runtime_opts[] = {
1637     NVME_BLOCK_OPT_DEVICE,
1638     NVME_BLOCK_OPT_NAMESPACE,
1639 
1640     NULL
1641 };
1642 
1643 static BlockDriver bdrv_nvme = {
1644     .format_name              = "nvme",
1645     .protocol_name            = "nvme",
1646     .instance_size            = sizeof(BDRVNVMeState),
1647 
1648     .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1649     .create_opts              = &bdrv_create_opts_simple,
1650 
1651     .bdrv_parse_filename      = nvme_parse_filename,
1652     .bdrv_open                = nvme_open,
1653     .bdrv_close               = nvme_close,
1654     .bdrv_co_getlength        = nvme_co_getlength,
1655     .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1656     .bdrv_co_truncate         = nvme_co_truncate,
1657 
1658     .bdrv_co_preadv           = nvme_co_preadv,
1659     .bdrv_co_pwritev          = nvme_co_pwritev,
1660 
1661     .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1662     .bdrv_co_pdiscard         = nvme_co_pdiscard,
1663 
1664     .bdrv_co_flush_to_disk    = nvme_co_flush,
1665     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1666 
1667     .bdrv_refresh_filename    = nvme_refresh_filename,
1668     .bdrv_refresh_limits      = nvme_refresh_limits,
1669     .strong_runtime_opts      = nvme_strong_runtime_opts,
1670     .bdrv_get_specific_stats  = nvme_get_specific_stats,
1671 
1672     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1673     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1674 
1675     .bdrv_register_buf        = nvme_register_buf,
1676     .bdrv_unregister_buf      = nvme_unregister_buf,
1677 };
1678 
bdrv_nvme_init(void)1679 static void bdrv_nvme_init(void)
1680 {
1681     bdrv_register(&bdrv_nvme);
1682 }
1683 
1684 block_init(bdrv_nvme_init);
1685