1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4 * Shaohua Li <shli@fb.com>
5 */
6 #include <linux/module.h>
7
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13
14 #undef pr_fmt
15 #define pr_fmt(fmt) "null_blk: " fmt
16
17 #define FREE_BATCH 16
18
19 #define TICKS_PER_SEC 50ULL
20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
21
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27
mb_per_tick(int mbps)28 static inline u64 mb_per_tick(int mbps)
29 {
30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32
33 /*
34 * Status flags for nullb_device.
35 *
36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
37 * UP: Device is currently on and visible in userspace.
38 * THROTTLED: Device is being throttled.
39 * CACHE: Device is using a write-back cache.
40 */
41 enum nullb_device_flags {
42 NULLB_DEV_FL_CONFIGURED = 0,
43 NULLB_DEV_FL_UP = 1,
44 NULLB_DEV_FL_THROTTLED = 2,
45 NULLB_DEV_FL_CACHE = 3,
46 };
47
48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50 * nullb_page is a page in memory for nullb devices.
51 *
52 * @page: The page holding the data.
53 * @bitmap: The bitmap represents which sector in the page has data.
54 * Each bit represents one block size. For example, sector 8
55 * will use the 7th bit
56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57 * page is being flushing to storage. FREE means the cache page is freed and
58 * should be skipped from flushing to storage. Please see
59 * null_make_cache_space
60 */
61 struct nullb_page {
62 struct page *page;
63 DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73
74 enum {
75 NULL_IRQ_NONE = 0,
76 NULL_IRQ_SOFTIRQ = 1,
77 NULL_IRQ_TIMER = 2,
78 };
79
80 static bool g_virt_boundary = false;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102 * For more details about fault injection, please refer to
103 * Documentation/fault-injection/fault-injection.rst.
104 */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117
118 static int g_queue_mode = NULL_Q_MQ;
119
null_param_store_val(const char * str,int * val,int min,int max)120 static int null_param_store_val(const char *str, int *val, int min, int max)
121 {
122 int ret, new_val;
123
124 ret = kstrtoint(str, 10, &new_val);
125 if (ret)
126 return -EINVAL;
127
128 if (new_val < min || new_val > max)
129 return -EINVAL;
130
131 *val = new_val;
132 return 0;
133 }
134
null_set_queue_mode(const char * str,const struct kernel_param * kp)135 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
136 {
137 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
138 }
139
140 static const struct kernel_param_ops null_queue_mode_param_ops = {
141 .set = null_set_queue_mode,
142 .get = param_get_int,
143 };
144
145 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
146 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
147
148 static int g_gb = 250;
149 module_param_named(gb, g_gb, int, 0444);
150 MODULE_PARM_DESC(gb, "Size in GB");
151
152 static int g_bs = 512;
153 module_param_named(bs, g_bs, int, 0444);
154 MODULE_PARM_DESC(bs, "Block size (in bytes)");
155
156 static int g_max_sectors;
157 module_param_named(max_sectors, g_max_sectors, int, 0444);
158 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
159
160 static unsigned int nr_devices = 1;
161 module_param(nr_devices, uint, 0444);
162 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
163
164 static bool g_blocking;
165 module_param_named(blocking, g_blocking, bool, 0444);
166 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
167
168 static bool shared_tags;
169 module_param(shared_tags, bool, 0444);
170 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
171
172 static bool g_shared_tag_bitmap;
173 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
174 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
175
176 static int g_irqmode = NULL_IRQ_SOFTIRQ;
177
null_set_irqmode(const char * str,const struct kernel_param * kp)178 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
179 {
180 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
181 NULL_IRQ_TIMER);
182 }
183
184 static const struct kernel_param_ops null_irqmode_param_ops = {
185 .set = null_set_irqmode,
186 .get = param_get_int,
187 };
188
189 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
190 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
191
192 static unsigned long g_completion_nsec = 10000;
193 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
194 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
195
196 static int g_hw_queue_depth = 64;
197 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
198 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
199
200 static bool g_use_per_node_hctx;
201 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
202 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
203
204 static bool g_memory_backed;
205 module_param_named(memory_backed, g_memory_backed, bool, 0444);
206 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
207
208 static bool g_discard;
209 module_param_named(discard, g_discard, bool, 0444);
210 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
211
212 static unsigned long g_cache_size;
213 module_param_named(cache_size, g_cache_size, ulong, 0444);
214 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
215
216 static unsigned int g_mbps;
217 module_param_named(mbps, g_mbps, uint, 0444);
218 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
219
220 static bool g_zoned;
221 module_param_named(zoned, g_zoned, bool, S_IRUGO);
222 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
223
224 static unsigned long g_zone_size = 256;
225 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
226 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
227
228 static unsigned long g_zone_capacity;
229 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
230 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
231
232 static unsigned int g_zone_nr_conv;
233 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
234 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
235
236 static unsigned int g_zone_max_open;
237 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
238 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
239
240 static unsigned int g_zone_max_active;
241 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
242 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
243
244 static struct nullb_device *null_alloc_dev(void);
245 static void null_free_dev(struct nullb_device *dev);
246 static void null_del_dev(struct nullb *nullb);
247 static int null_add_dev(struct nullb_device *dev);
248 static struct nullb *null_find_dev_by_name(const char *name);
249 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
250
to_nullb_device(struct config_item * item)251 static inline struct nullb_device *to_nullb_device(struct config_item *item)
252 {
253 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
254 }
255
nullb_device_uint_attr_show(unsigned int val,char * page)256 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
257 {
258 return snprintf(page, PAGE_SIZE, "%u\n", val);
259 }
260
nullb_device_ulong_attr_show(unsigned long val,char * page)261 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
262 char *page)
263 {
264 return snprintf(page, PAGE_SIZE, "%lu\n", val);
265 }
266
nullb_device_bool_attr_show(bool val,char * page)267 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
268 {
269 return snprintf(page, PAGE_SIZE, "%u\n", val);
270 }
271
nullb_device_uint_attr_store(unsigned int * val,const char * page,size_t count)272 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
273 const char *page, size_t count)
274 {
275 unsigned int tmp;
276 int result;
277
278 result = kstrtouint(page, 0, &tmp);
279 if (result < 0)
280 return result;
281
282 *val = tmp;
283 return count;
284 }
285
nullb_device_ulong_attr_store(unsigned long * val,const char * page,size_t count)286 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
287 const char *page, size_t count)
288 {
289 int result;
290 unsigned long tmp;
291
292 result = kstrtoul(page, 0, &tmp);
293 if (result < 0)
294 return result;
295
296 *val = tmp;
297 return count;
298 }
299
nullb_device_bool_attr_store(bool * val,const char * page,size_t count)300 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
301 size_t count)
302 {
303 bool tmp;
304 int result;
305
306 result = kstrtobool(page, &tmp);
307 if (result < 0)
308 return result;
309
310 *val = tmp;
311 return count;
312 }
313
314 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
315 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \
316 static ssize_t \
317 nullb_device_##NAME##_show(struct config_item *item, char *page) \
318 { \
319 return nullb_device_##TYPE##_attr_show( \
320 to_nullb_device(item)->NAME, page); \
321 } \
322 static ssize_t \
323 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
324 size_t count) \
325 { \
326 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
327 struct nullb_device *dev = to_nullb_device(item); \
328 TYPE new_value = 0; \
329 int ret; \
330 \
331 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
332 if (ret < 0) \
333 return ret; \
334 if (apply_fn) \
335 ret = apply_fn(dev, new_value); \
336 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \
337 ret = -EBUSY; \
338 if (ret < 0) \
339 return ret; \
340 dev->NAME = new_value; \
341 return count; \
342 } \
343 CONFIGFS_ATTR(nullb_device_, NAME);
344
nullb_update_nr_hw_queues(struct nullb_device * dev,unsigned int submit_queues,unsigned int poll_queues)345 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
346 unsigned int submit_queues,
347 unsigned int poll_queues)
348
349 {
350 struct blk_mq_tag_set *set;
351 int ret, nr_hw_queues;
352
353 if (!dev->nullb)
354 return 0;
355
356 /*
357 * Make sure at least one submit queue exists.
358 */
359 if (!submit_queues)
360 return -EINVAL;
361
362 /*
363 * Make sure that null_init_hctx() does not access nullb->queues[] past
364 * the end of that array.
365 */
366 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
367 return -EINVAL;
368
369 /*
370 * Keep previous and new queue numbers in nullb_device for reference in
371 * the call back function null_map_queues().
372 */
373 dev->prev_submit_queues = dev->submit_queues;
374 dev->prev_poll_queues = dev->poll_queues;
375 dev->submit_queues = submit_queues;
376 dev->poll_queues = poll_queues;
377
378 set = dev->nullb->tag_set;
379 nr_hw_queues = submit_queues + poll_queues;
380 blk_mq_update_nr_hw_queues(set, nr_hw_queues);
381 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
382
383 if (ret) {
384 /* on error, revert the queue numbers */
385 dev->submit_queues = dev->prev_submit_queues;
386 dev->poll_queues = dev->prev_poll_queues;
387 }
388
389 return ret;
390 }
391
nullb_apply_submit_queues(struct nullb_device * dev,unsigned int submit_queues)392 static int nullb_apply_submit_queues(struct nullb_device *dev,
393 unsigned int submit_queues)
394 {
395 int ret;
396
397 mutex_lock(&lock);
398 ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
399 mutex_unlock(&lock);
400
401 return ret;
402 }
403
nullb_apply_poll_queues(struct nullb_device * dev,unsigned int poll_queues)404 static int nullb_apply_poll_queues(struct nullb_device *dev,
405 unsigned int poll_queues)
406 {
407 int ret;
408
409 mutex_lock(&lock);
410 ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
411 mutex_unlock(&lock);
412
413 return ret;
414 }
415
416 NULLB_DEVICE_ATTR(size, ulong, NULL);
417 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
418 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
419 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
420 NULLB_DEVICE_ATTR(home_node, uint, NULL);
421 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
422 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
423 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
424 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
425 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
426 NULLB_DEVICE_ATTR(index, uint, NULL);
427 NULLB_DEVICE_ATTR(blocking, bool, NULL);
428 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
429 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
430 NULLB_DEVICE_ATTR(discard, bool, NULL);
431 NULLB_DEVICE_ATTR(mbps, uint, NULL);
432 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
433 NULLB_DEVICE_ATTR(zoned, bool, NULL);
434 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
435 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
436 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
437 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
438 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
439 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
440 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
441 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
442
nullb_device_power_show(struct config_item * item,char * page)443 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
444 {
445 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
446 }
447
nullb_device_power_store(struct config_item * item,const char * page,size_t count)448 static ssize_t nullb_device_power_store(struct config_item *item,
449 const char *page, size_t count)
450 {
451 struct nullb_device *dev = to_nullb_device(item);
452 bool newp = false;
453 ssize_t ret;
454
455 ret = nullb_device_bool_attr_store(&newp, page, count);
456 if (ret < 0)
457 return ret;
458
459 ret = count;
460 mutex_lock(&lock);
461 if (!dev->power && newp) {
462 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
463 goto out;
464
465 ret = null_add_dev(dev);
466 if (ret) {
467 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
468 goto out;
469 }
470
471 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
472 dev->power = newp;
473 ret = count;
474 } else if (dev->power && !newp) {
475 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
476 dev->power = newp;
477 null_del_dev(dev->nullb);
478 }
479 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
480 }
481
482 out:
483 mutex_unlock(&lock);
484 return ret;
485 }
486
487 CONFIGFS_ATTR(nullb_device_, power);
488
nullb_device_badblocks_show(struct config_item * item,char * page)489 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
490 {
491 struct nullb_device *t_dev = to_nullb_device(item);
492
493 return badblocks_show(&t_dev->badblocks, page, 0);
494 }
495
nullb_device_badblocks_store(struct config_item * item,const char * page,size_t count)496 static ssize_t nullb_device_badblocks_store(struct config_item *item,
497 const char *page, size_t count)
498 {
499 struct nullb_device *t_dev = to_nullb_device(item);
500 char *orig, *buf, *tmp;
501 u64 start, end;
502 int ret;
503
504 orig = kstrndup(page, count, GFP_KERNEL);
505 if (!orig)
506 return -ENOMEM;
507
508 buf = strstrip(orig);
509
510 ret = -EINVAL;
511 if (buf[0] != '+' && buf[0] != '-')
512 goto out;
513 tmp = strchr(&buf[1], '-');
514 if (!tmp)
515 goto out;
516 *tmp = '\0';
517 ret = kstrtoull(buf + 1, 0, &start);
518 if (ret)
519 goto out;
520 ret = kstrtoull(tmp + 1, 0, &end);
521 if (ret)
522 goto out;
523 ret = -EINVAL;
524 if (start > end)
525 goto out;
526 /* enable badblocks */
527 cmpxchg(&t_dev->badblocks.shift, -1, 0);
528 if (buf[0] == '+')
529 ret = badblocks_set(&t_dev->badblocks, start,
530 end - start + 1, 1);
531 else
532 ret = badblocks_clear(&t_dev->badblocks, start,
533 end - start + 1);
534 if (ret == 0)
535 ret = count;
536 out:
537 kfree(orig);
538 return ret;
539 }
540 CONFIGFS_ATTR(nullb_device_, badblocks);
541
nullb_device_zone_readonly_store(struct config_item * item,const char * page,size_t count)542 static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
543 const char *page, size_t count)
544 {
545 struct nullb_device *dev = to_nullb_device(item);
546
547 return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
548 }
549 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
550
nullb_device_zone_offline_store(struct config_item * item,const char * page,size_t count)551 static ssize_t nullb_device_zone_offline_store(struct config_item *item,
552 const char *page, size_t count)
553 {
554 struct nullb_device *dev = to_nullb_device(item);
555
556 return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
557 }
558 CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
559
560 static struct configfs_attribute *nullb_device_attrs[] = {
561 &nullb_device_attr_size,
562 &nullb_device_attr_completion_nsec,
563 &nullb_device_attr_submit_queues,
564 &nullb_device_attr_poll_queues,
565 &nullb_device_attr_home_node,
566 &nullb_device_attr_queue_mode,
567 &nullb_device_attr_blocksize,
568 &nullb_device_attr_max_sectors,
569 &nullb_device_attr_irqmode,
570 &nullb_device_attr_hw_queue_depth,
571 &nullb_device_attr_index,
572 &nullb_device_attr_blocking,
573 &nullb_device_attr_use_per_node_hctx,
574 &nullb_device_attr_power,
575 &nullb_device_attr_memory_backed,
576 &nullb_device_attr_discard,
577 &nullb_device_attr_mbps,
578 &nullb_device_attr_cache_size,
579 &nullb_device_attr_badblocks,
580 &nullb_device_attr_zoned,
581 &nullb_device_attr_zone_size,
582 &nullb_device_attr_zone_capacity,
583 &nullb_device_attr_zone_nr_conv,
584 &nullb_device_attr_zone_max_open,
585 &nullb_device_attr_zone_max_active,
586 &nullb_device_attr_zone_readonly,
587 &nullb_device_attr_zone_offline,
588 &nullb_device_attr_virt_boundary,
589 &nullb_device_attr_no_sched,
590 &nullb_device_attr_shared_tag_bitmap,
591 NULL,
592 };
593
nullb_device_release(struct config_item * item)594 static void nullb_device_release(struct config_item *item)
595 {
596 struct nullb_device *dev = to_nullb_device(item);
597
598 null_free_device_storage(dev, false);
599 null_free_dev(dev);
600 }
601
602 static struct configfs_item_operations nullb_device_ops = {
603 .release = nullb_device_release,
604 };
605
606 static const struct config_item_type nullb_device_type = {
607 .ct_item_ops = &nullb_device_ops,
608 .ct_attrs = nullb_device_attrs,
609 .ct_owner = THIS_MODULE,
610 };
611
612 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
613
nullb_add_fault_config(struct nullb_device * dev)614 static void nullb_add_fault_config(struct nullb_device *dev)
615 {
616 fault_config_init(&dev->timeout_config, "timeout_inject");
617 fault_config_init(&dev->requeue_config, "requeue_inject");
618 fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
619
620 configfs_add_default_group(&dev->timeout_config.group, &dev->group);
621 configfs_add_default_group(&dev->requeue_config.group, &dev->group);
622 configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
623 }
624
625 #else
626
nullb_add_fault_config(struct nullb_device * dev)627 static void nullb_add_fault_config(struct nullb_device *dev)
628 {
629 }
630
631 #endif
632
633 static struct
nullb_group_make_group(struct config_group * group,const char * name)634 config_group *nullb_group_make_group(struct config_group *group, const char *name)
635 {
636 struct nullb_device *dev;
637
638 if (null_find_dev_by_name(name))
639 return ERR_PTR(-EEXIST);
640
641 dev = null_alloc_dev();
642 if (!dev)
643 return ERR_PTR(-ENOMEM);
644
645 config_group_init_type_name(&dev->group, name, &nullb_device_type);
646 nullb_add_fault_config(dev);
647
648 return &dev->group;
649 }
650
651 static void
nullb_group_drop_item(struct config_group * group,struct config_item * item)652 nullb_group_drop_item(struct config_group *group, struct config_item *item)
653 {
654 struct nullb_device *dev = to_nullb_device(item);
655
656 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
657 mutex_lock(&lock);
658 dev->power = false;
659 null_del_dev(dev->nullb);
660 mutex_unlock(&lock);
661 }
662
663 config_item_put(item);
664 }
665
memb_group_features_show(struct config_item * item,char * page)666 static ssize_t memb_group_features_show(struct config_item *item, char *page)
667 {
668 return snprintf(page, PAGE_SIZE,
669 "badblocks,blocking,blocksize,cache_size,"
670 "completion_nsec,discard,home_node,hw_queue_depth,"
671 "irqmode,max_sectors,mbps,memory_backed,no_sched,"
672 "poll_queues,power,queue_mode,shared_tag_bitmap,size,"
673 "submit_queues,use_per_node_hctx,virt_boundary,zoned,"
674 "zone_capacity,zone_max_active,zone_max_open,"
675 "zone_nr_conv,zone_offline,zone_readonly,zone_size\n");
676 }
677
678 CONFIGFS_ATTR_RO(memb_group_, features);
679
680 static struct configfs_attribute *nullb_group_attrs[] = {
681 &memb_group_attr_features,
682 NULL,
683 };
684
685 static struct configfs_group_operations nullb_group_ops = {
686 .make_group = nullb_group_make_group,
687 .drop_item = nullb_group_drop_item,
688 };
689
690 static const struct config_item_type nullb_group_type = {
691 .ct_group_ops = &nullb_group_ops,
692 .ct_attrs = nullb_group_attrs,
693 .ct_owner = THIS_MODULE,
694 };
695
696 static struct configfs_subsystem nullb_subsys = {
697 .su_group = {
698 .cg_item = {
699 .ci_namebuf = "nullb",
700 .ci_type = &nullb_group_type,
701 },
702 },
703 };
704
null_cache_active(struct nullb * nullb)705 static inline int null_cache_active(struct nullb *nullb)
706 {
707 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
708 }
709
null_alloc_dev(void)710 static struct nullb_device *null_alloc_dev(void)
711 {
712 struct nullb_device *dev;
713
714 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
715 if (!dev)
716 return NULL;
717
718 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
719 dev->timeout_config.attr = null_timeout_attr;
720 dev->requeue_config.attr = null_requeue_attr;
721 dev->init_hctx_fault_config.attr = null_init_hctx_attr;
722 #endif
723
724 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
725 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
726 if (badblocks_init(&dev->badblocks, 0)) {
727 kfree(dev);
728 return NULL;
729 }
730
731 dev->size = g_gb * 1024;
732 dev->completion_nsec = g_completion_nsec;
733 dev->submit_queues = g_submit_queues;
734 dev->prev_submit_queues = g_submit_queues;
735 dev->poll_queues = g_poll_queues;
736 dev->prev_poll_queues = g_poll_queues;
737 dev->home_node = g_home_node;
738 dev->queue_mode = g_queue_mode;
739 dev->blocksize = g_bs;
740 dev->max_sectors = g_max_sectors;
741 dev->irqmode = g_irqmode;
742 dev->hw_queue_depth = g_hw_queue_depth;
743 dev->blocking = g_blocking;
744 dev->memory_backed = g_memory_backed;
745 dev->discard = g_discard;
746 dev->cache_size = g_cache_size;
747 dev->mbps = g_mbps;
748 dev->use_per_node_hctx = g_use_per_node_hctx;
749 dev->zoned = g_zoned;
750 dev->zone_size = g_zone_size;
751 dev->zone_capacity = g_zone_capacity;
752 dev->zone_nr_conv = g_zone_nr_conv;
753 dev->zone_max_open = g_zone_max_open;
754 dev->zone_max_active = g_zone_max_active;
755 dev->virt_boundary = g_virt_boundary;
756 dev->no_sched = g_no_sched;
757 dev->shared_tag_bitmap = g_shared_tag_bitmap;
758 return dev;
759 }
760
null_free_dev(struct nullb_device * dev)761 static void null_free_dev(struct nullb_device *dev)
762 {
763 if (!dev)
764 return;
765
766 null_free_zoned_dev(dev);
767 badblocks_exit(&dev->badblocks);
768 kfree(dev);
769 }
770
put_tag(struct nullb_queue * nq,unsigned int tag)771 static void put_tag(struct nullb_queue *nq, unsigned int tag)
772 {
773 clear_bit_unlock(tag, nq->tag_map);
774
775 if (waitqueue_active(&nq->wait))
776 wake_up(&nq->wait);
777 }
778
get_tag(struct nullb_queue * nq)779 static unsigned int get_tag(struct nullb_queue *nq)
780 {
781 unsigned int tag;
782
783 do {
784 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
785 if (tag >= nq->queue_depth)
786 return -1U;
787 } while (test_and_set_bit_lock(tag, nq->tag_map));
788
789 return tag;
790 }
791
free_cmd(struct nullb_cmd * cmd)792 static void free_cmd(struct nullb_cmd *cmd)
793 {
794 put_tag(cmd->nq, cmd->tag);
795 }
796
797 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
798
__alloc_cmd(struct nullb_queue * nq)799 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
800 {
801 struct nullb_cmd *cmd;
802 unsigned int tag;
803
804 tag = get_tag(nq);
805 if (tag != -1U) {
806 cmd = &nq->cmds[tag];
807 cmd->tag = tag;
808 cmd->error = BLK_STS_OK;
809 cmd->nq = nq;
810 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
811 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
812 HRTIMER_MODE_REL);
813 cmd->timer.function = null_cmd_timer_expired;
814 }
815 return cmd;
816 }
817
818 return NULL;
819 }
820
alloc_cmd(struct nullb_queue * nq,struct bio * bio)821 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, struct bio *bio)
822 {
823 struct nullb_cmd *cmd;
824 DEFINE_WAIT(wait);
825
826 do {
827 /*
828 * This avoids multiple return statements, multiple calls to
829 * __alloc_cmd() and a fast path call to prepare_to_wait().
830 */
831 cmd = __alloc_cmd(nq);
832 if (cmd) {
833 cmd->bio = bio;
834 return cmd;
835 }
836 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
837 io_schedule();
838 finish_wait(&nq->wait, &wait);
839 } while (1);
840 }
841
end_cmd(struct nullb_cmd * cmd)842 static void end_cmd(struct nullb_cmd *cmd)
843 {
844 int queue_mode = cmd->nq->dev->queue_mode;
845
846 switch (queue_mode) {
847 case NULL_Q_MQ:
848 blk_mq_end_request(cmd->rq, cmd->error);
849 return;
850 case NULL_Q_BIO:
851 cmd->bio->bi_status = cmd->error;
852 bio_endio(cmd->bio);
853 break;
854 }
855
856 free_cmd(cmd);
857 }
858
null_cmd_timer_expired(struct hrtimer * timer)859 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
860 {
861 end_cmd(container_of(timer, struct nullb_cmd, timer));
862
863 return HRTIMER_NORESTART;
864 }
865
null_cmd_end_timer(struct nullb_cmd * cmd)866 static void null_cmd_end_timer(struct nullb_cmd *cmd)
867 {
868 ktime_t kt = cmd->nq->dev->completion_nsec;
869
870 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
871 }
872
null_complete_rq(struct request * rq)873 static void null_complete_rq(struct request *rq)
874 {
875 end_cmd(blk_mq_rq_to_pdu(rq));
876 }
877
null_alloc_page(void)878 static struct nullb_page *null_alloc_page(void)
879 {
880 struct nullb_page *t_page;
881
882 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
883 if (!t_page)
884 return NULL;
885
886 t_page->page = alloc_pages(GFP_NOIO, 0);
887 if (!t_page->page) {
888 kfree(t_page);
889 return NULL;
890 }
891
892 memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
893 return t_page;
894 }
895
null_free_page(struct nullb_page * t_page)896 static void null_free_page(struct nullb_page *t_page)
897 {
898 __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
899 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
900 return;
901 __free_page(t_page->page);
902 kfree(t_page);
903 }
904
null_page_empty(struct nullb_page * page)905 static bool null_page_empty(struct nullb_page *page)
906 {
907 int size = MAP_SZ - 2;
908
909 return find_first_bit(page->bitmap, size) == size;
910 }
911
null_free_sector(struct nullb * nullb,sector_t sector,bool is_cache)912 static void null_free_sector(struct nullb *nullb, sector_t sector,
913 bool is_cache)
914 {
915 unsigned int sector_bit;
916 u64 idx;
917 struct nullb_page *t_page, *ret;
918 struct radix_tree_root *root;
919
920 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
921 idx = sector >> PAGE_SECTORS_SHIFT;
922 sector_bit = (sector & SECTOR_MASK);
923
924 t_page = radix_tree_lookup(root, idx);
925 if (t_page) {
926 __clear_bit(sector_bit, t_page->bitmap);
927
928 if (null_page_empty(t_page)) {
929 ret = radix_tree_delete_item(root, idx, t_page);
930 WARN_ON(ret != t_page);
931 null_free_page(ret);
932 if (is_cache)
933 nullb->dev->curr_cache -= PAGE_SIZE;
934 }
935 }
936 }
937
null_radix_tree_insert(struct nullb * nullb,u64 idx,struct nullb_page * t_page,bool is_cache)938 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
939 struct nullb_page *t_page, bool is_cache)
940 {
941 struct radix_tree_root *root;
942
943 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
944
945 if (radix_tree_insert(root, idx, t_page)) {
946 null_free_page(t_page);
947 t_page = radix_tree_lookup(root, idx);
948 WARN_ON(!t_page || t_page->page->index != idx);
949 } else if (is_cache)
950 nullb->dev->curr_cache += PAGE_SIZE;
951
952 return t_page;
953 }
954
null_free_device_storage(struct nullb_device * dev,bool is_cache)955 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
956 {
957 unsigned long pos = 0;
958 int nr_pages;
959 struct nullb_page *ret, *t_pages[FREE_BATCH];
960 struct radix_tree_root *root;
961
962 root = is_cache ? &dev->cache : &dev->data;
963
964 do {
965 int i;
966
967 nr_pages = radix_tree_gang_lookup(root,
968 (void **)t_pages, pos, FREE_BATCH);
969
970 for (i = 0; i < nr_pages; i++) {
971 pos = t_pages[i]->page->index;
972 ret = radix_tree_delete_item(root, pos, t_pages[i]);
973 WARN_ON(ret != t_pages[i]);
974 null_free_page(ret);
975 }
976
977 pos++;
978 } while (nr_pages == FREE_BATCH);
979
980 if (is_cache)
981 dev->curr_cache = 0;
982 }
983
__null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool is_cache)984 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
985 sector_t sector, bool for_write, bool is_cache)
986 {
987 unsigned int sector_bit;
988 u64 idx;
989 struct nullb_page *t_page;
990 struct radix_tree_root *root;
991
992 idx = sector >> PAGE_SECTORS_SHIFT;
993 sector_bit = (sector & SECTOR_MASK);
994
995 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
996 t_page = radix_tree_lookup(root, idx);
997 WARN_ON(t_page && t_page->page->index != idx);
998
999 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
1000 return t_page;
1001
1002 return NULL;
1003 }
1004
null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool ignore_cache)1005 static struct nullb_page *null_lookup_page(struct nullb *nullb,
1006 sector_t sector, bool for_write, bool ignore_cache)
1007 {
1008 struct nullb_page *page = NULL;
1009
1010 if (!ignore_cache)
1011 page = __null_lookup_page(nullb, sector, for_write, true);
1012 if (page)
1013 return page;
1014 return __null_lookup_page(nullb, sector, for_write, false);
1015 }
1016
null_insert_page(struct nullb * nullb,sector_t sector,bool ignore_cache)1017 static struct nullb_page *null_insert_page(struct nullb *nullb,
1018 sector_t sector, bool ignore_cache)
1019 __releases(&nullb->lock)
1020 __acquires(&nullb->lock)
1021 {
1022 u64 idx;
1023 struct nullb_page *t_page;
1024
1025 t_page = null_lookup_page(nullb, sector, true, ignore_cache);
1026 if (t_page)
1027 return t_page;
1028
1029 spin_unlock_irq(&nullb->lock);
1030
1031 t_page = null_alloc_page();
1032 if (!t_page)
1033 goto out_lock;
1034
1035 if (radix_tree_preload(GFP_NOIO))
1036 goto out_freepage;
1037
1038 spin_lock_irq(&nullb->lock);
1039 idx = sector >> PAGE_SECTORS_SHIFT;
1040 t_page->page->index = idx;
1041 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
1042 radix_tree_preload_end();
1043
1044 return t_page;
1045 out_freepage:
1046 null_free_page(t_page);
1047 out_lock:
1048 spin_lock_irq(&nullb->lock);
1049 return null_lookup_page(nullb, sector, true, ignore_cache);
1050 }
1051
null_flush_cache_page(struct nullb * nullb,struct nullb_page * c_page)1052 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1053 {
1054 int i;
1055 unsigned int offset;
1056 u64 idx;
1057 struct nullb_page *t_page, *ret;
1058 void *dst, *src;
1059
1060 idx = c_page->page->index;
1061
1062 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1063
1064 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1065 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1066 null_free_page(c_page);
1067 if (t_page && null_page_empty(t_page)) {
1068 ret = radix_tree_delete_item(&nullb->dev->data,
1069 idx, t_page);
1070 null_free_page(t_page);
1071 }
1072 return 0;
1073 }
1074
1075 if (!t_page)
1076 return -ENOMEM;
1077
1078 src = kmap_local_page(c_page->page);
1079 dst = kmap_local_page(t_page->page);
1080
1081 for (i = 0; i < PAGE_SECTORS;
1082 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1083 if (test_bit(i, c_page->bitmap)) {
1084 offset = (i << SECTOR_SHIFT);
1085 memcpy(dst + offset, src + offset,
1086 nullb->dev->blocksize);
1087 __set_bit(i, t_page->bitmap);
1088 }
1089 }
1090
1091 kunmap_local(dst);
1092 kunmap_local(src);
1093
1094 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1095 null_free_page(ret);
1096 nullb->dev->curr_cache -= PAGE_SIZE;
1097
1098 return 0;
1099 }
1100
null_make_cache_space(struct nullb * nullb,unsigned long n)1101 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1102 {
1103 int i, err, nr_pages;
1104 struct nullb_page *c_pages[FREE_BATCH];
1105 unsigned long flushed = 0, one_round;
1106
1107 again:
1108 if ((nullb->dev->cache_size * 1024 * 1024) >
1109 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1110 return 0;
1111
1112 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1113 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1114 /*
1115 * nullb_flush_cache_page could unlock before using the c_pages. To
1116 * avoid race, we don't allow page free
1117 */
1118 for (i = 0; i < nr_pages; i++) {
1119 nullb->cache_flush_pos = c_pages[i]->page->index;
1120 /*
1121 * We found the page which is being flushed to disk by other
1122 * threads
1123 */
1124 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1125 c_pages[i] = NULL;
1126 else
1127 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1128 }
1129
1130 one_round = 0;
1131 for (i = 0; i < nr_pages; i++) {
1132 if (c_pages[i] == NULL)
1133 continue;
1134 err = null_flush_cache_page(nullb, c_pages[i]);
1135 if (err)
1136 return err;
1137 one_round++;
1138 }
1139 flushed += one_round << PAGE_SHIFT;
1140
1141 if (n > flushed) {
1142 if (nr_pages == 0)
1143 nullb->cache_flush_pos = 0;
1144 if (one_round == 0) {
1145 /* give other threads a chance */
1146 spin_unlock_irq(&nullb->lock);
1147 spin_lock_irq(&nullb->lock);
1148 }
1149 goto again;
1150 }
1151 return 0;
1152 }
1153
copy_to_nullb(struct nullb * nullb,struct page * source,unsigned int off,sector_t sector,size_t n,bool is_fua)1154 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1155 unsigned int off, sector_t sector, size_t n, bool is_fua)
1156 {
1157 size_t temp, count = 0;
1158 unsigned int offset;
1159 struct nullb_page *t_page;
1160
1161 while (count < n) {
1162 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1163
1164 if (null_cache_active(nullb) && !is_fua)
1165 null_make_cache_space(nullb, PAGE_SIZE);
1166
1167 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1168 t_page = null_insert_page(nullb, sector,
1169 !null_cache_active(nullb) || is_fua);
1170 if (!t_page)
1171 return -ENOSPC;
1172
1173 memcpy_page(t_page->page, offset, source, off + count, temp);
1174
1175 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1176
1177 if (is_fua)
1178 null_free_sector(nullb, sector, true);
1179
1180 count += temp;
1181 sector += temp >> SECTOR_SHIFT;
1182 }
1183 return 0;
1184 }
1185
copy_from_nullb(struct nullb * nullb,struct page * dest,unsigned int off,sector_t sector,size_t n)1186 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1187 unsigned int off, sector_t sector, size_t n)
1188 {
1189 size_t temp, count = 0;
1190 unsigned int offset;
1191 struct nullb_page *t_page;
1192
1193 while (count < n) {
1194 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1195
1196 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1197 t_page = null_lookup_page(nullb, sector, false,
1198 !null_cache_active(nullb));
1199
1200 if (t_page)
1201 memcpy_page(dest, off + count, t_page->page, offset,
1202 temp);
1203 else
1204 zero_user(dest, off + count, temp);
1205
1206 count += temp;
1207 sector += temp >> SECTOR_SHIFT;
1208 }
1209 return 0;
1210 }
1211
nullb_fill_pattern(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off)1212 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1213 unsigned int len, unsigned int off)
1214 {
1215 memset_page(page, off, 0xff, len);
1216 }
1217
null_handle_discard(struct nullb_device * dev,sector_t sector,sector_t nr_sectors)1218 blk_status_t null_handle_discard(struct nullb_device *dev,
1219 sector_t sector, sector_t nr_sectors)
1220 {
1221 struct nullb *nullb = dev->nullb;
1222 size_t n = nr_sectors << SECTOR_SHIFT;
1223 size_t temp;
1224
1225 spin_lock_irq(&nullb->lock);
1226 while (n > 0) {
1227 temp = min_t(size_t, n, dev->blocksize);
1228 null_free_sector(nullb, sector, false);
1229 if (null_cache_active(nullb))
1230 null_free_sector(nullb, sector, true);
1231 sector += temp >> SECTOR_SHIFT;
1232 n -= temp;
1233 }
1234 spin_unlock_irq(&nullb->lock);
1235
1236 return BLK_STS_OK;
1237 }
1238
null_handle_flush(struct nullb * nullb)1239 static int null_handle_flush(struct nullb *nullb)
1240 {
1241 int err;
1242
1243 if (!null_cache_active(nullb))
1244 return 0;
1245
1246 spin_lock_irq(&nullb->lock);
1247 while (true) {
1248 err = null_make_cache_space(nullb,
1249 nullb->dev->cache_size * 1024 * 1024);
1250 if (err || nullb->dev->curr_cache == 0)
1251 break;
1252 }
1253
1254 WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1255 spin_unlock_irq(&nullb->lock);
1256 return err;
1257 }
1258
null_transfer(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off,bool is_write,sector_t sector,bool is_fua)1259 static int null_transfer(struct nullb *nullb, struct page *page,
1260 unsigned int len, unsigned int off, bool is_write, sector_t sector,
1261 bool is_fua)
1262 {
1263 struct nullb_device *dev = nullb->dev;
1264 unsigned int valid_len = len;
1265 int err = 0;
1266
1267 if (!is_write) {
1268 if (dev->zoned)
1269 valid_len = null_zone_valid_read_len(nullb,
1270 sector, len);
1271
1272 if (valid_len) {
1273 err = copy_from_nullb(nullb, page, off,
1274 sector, valid_len);
1275 off += valid_len;
1276 len -= valid_len;
1277 }
1278
1279 if (len)
1280 nullb_fill_pattern(nullb, page, len, off);
1281 flush_dcache_page(page);
1282 } else {
1283 flush_dcache_page(page);
1284 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1285 }
1286
1287 return err;
1288 }
1289
null_handle_rq(struct nullb_cmd * cmd)1290 static int null_handle_rq(struct nullb_cmd *cmd)
1291 {
1292 struct request *rq = cmd->rq;
1293 struct nullb *nullb = cmd->nq->dev->nullb;
1294 int err;
1295 unsigned int len;
1296 sector_t sector = blk_rq_pos(rq);
1297 struct req_iterator iter;
1298 struct bio_vec bvec;
1299
1300 spin_lock_irq(&nullb->lock);
1301 rq_for_each_segment(bvec, rq, iter) {
1302 len = bvec.bv_len;
1303 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1304 op_is_write(req_op(rq)), sector,
1305 rq->cmd_flags & REQ_FUA);
1306 if (err) {
1307 spin_unlock_irq(&nullb->lock);
1308 return err;
1309 }
1310 sector += len >> SECTOR_SHIFT;
1311 }
1312 spin_unlock_irq(&nullb->lock);
1313
1314 return 0;
1315 }
1316
null_handle_bio(struct nullb_cmd * cmd)1317 static int null_handle_bio(struct nullb_cmd *cmd)
1318 {
1319 struct bio *bio = cmd->bio;
1320 struct nullb *nullb = cmd->nq->dev->nullb;
1321 int err;
1322 unsigned int len;
1323 sector_t sector = bio->bi_iter.bi_sector;
1324 struct bio_vec bvec;
1325 struct bvec_iter iter;
1326
1327 spin_lock_irq(&nullb->lock);
1328 bio_for_each_segment(bvec, bio, iter) {
1329 len = bvec.bv_len;
1330 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1331 op_is_write(bio_op(bio)), sector,
1332 bio->bi_opf & REQ_FUA);
1333 if (err) {
1334 spin_unlock_irq(&nullb->lock);
1335 return err;
1336 }
1337 sector += len >> SECTOR_SHIFT;
1338 }
1339 spin_unlock_irq(&nullb->lock);
1340 return 0;
1341 }
1342
null_stop_queue(struct nullb * nullb)1343 static void null_stop_queue(struct nullb *nullb)
1344 {
1345 struct request_queue *q = nullb->q;
1346
1347 if (nullb->dev->queue_mode == NULL_Q_MQ)
1348 blk_mq_stop_hw_queues(q);
1349 }
1350
null_restart_queue_async(struct nullb * nullb)1351 static void null_restart_queue_async(struct nullb *nullb)
1352 {
1353 struct request_queue *q = nullb->q;
1354
1355 if (nullb->dev->queue_mode == NULL_Q_MQ)
1356 blk_mq_start_stopped_hw_queues(q, true);
1357 }
1358
null_handle_throttled(struct nullb_cmd * cmd)1359 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1360 {
1361 struct nullb_device *dev = cmd->nq->dev;
1362 struct nullb *nullb = dev->nullb;
1363 blk_status_t sts = BLK_STS_OK;
1364 struct request *rq = cmd->rq;
1365
1366 if (!hrtimer_active(&nullb->bw_timer))
1367 hrtimer_restart(&nullb->bw_timer);
1368
1369 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1370 null_stop_queue(nullb);
1371 /* race with timer */
1372 if (atomic_long_read(&nullb->cur_bytes) > 0)
1373 null_restart_queue_async(nullb);
1374 /* requeue request */
1375 sts = BLK_STS_DEV_RESOURCE;
1376 }
1377 return sts;
1378 }
1379
null_handle_badblocks(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors)1380 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1381 sector_t sector,
1382 sector_t nr_sectors)
1383 {
1384 struct badblocks *bb = &cmd->nq->dev->badblocks;
1385 sector_t first_bad;
1386 int bad_sectors;
1387
1388 if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1389 return BLK_STS_IOERR;
1390
1391 return BLK_STS_OK;
1392 }
1393
null_handle_memory_backed(struct nullb_cmd * cmd,enum req_op op,sector_t sector,sector_t nr_sectors)1394 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1395 enum req_op op,
1396 sector_t sector,
1397 sector_t nr_sectors)
1398 {
1399 struct nullb_device *dev = cmd->nq->dev;
1400 int err;
1401
1402 if (op == REQ_OP_DISCARD)
1403 return null_handle_discard(dev, sector, nr_sectors);
1404
1405 if (dev->queue_mode == NULL_Q_BIO)
1406 err = null_handle_bio(cmd);
1407 else
1408 err = null_handle_rq(cmd);
1409
1410 return errno_to_blk_status(err);
1411 }
1412
nullb_zero_read_cmd_buffer(struct nullb_cmd * cmd)1413 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1414 {
1415 struct nullb_device *dev = cmd->nq->dev;
1416 struct bio *bio;
1417
1418 if (dev->memory_backed)
1419 return;
1420
1421 if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1422 zero_fill_bio(cmd->bio);
1423 } else if (req_op(cmd->rq) == REQ_OP_READ) {
1424 __rq_for_each_bio(bio, cmd->rq)
1425 zero_fill_bio(bio);
1426 }
1427 }
1428
nullb_complete_cmd(struct nullb_cmd * cmd)1429 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1430 {
1431 /*
1432 * Since root privileges are required to configure the null_blk
1433 * driver, it is fine that this driver does not initialize the
1434 * data buffers of read commands. Zero-initialize these buffers
1435 * anyway if KMSAN is enabled to prevent that KMSAN complains
1436 * about null_blk not initializing read data buffers.
1437 */
1438 if (IS_ENABLED(CONFIG_KMSAN))
1439 nullb_zero_read_cmd_buffer(cmd);
1440
1441 /* Complete IO by inline, softirq or timer */
1442 switch (cmd->nq->dev->irqmode) {
1443 case NULL_IRQ_SOFTIRQ:
1444 switch (cmd->nq->dev->queue_mode) {
1445 case NULL_Q_MQ:
1446 blk_mq_complete_request(cmd->rq);
1447 break;
1448 case NULL_Q_BIO:
1449 /*
1450 * XXX: no proper submitting cpu information available.
1451 */
1452 end_cmd(cmd);
1453 break;
1454 }
1455 break;
1456 case NULL_IRQ_NONE:
1457 end_cmd(cmd);
1458 break;
1459 case NULL_IRQ_TIMER:
1460 null_cmd_end_timer(cmd);
1461 break;
1462 }
1463 }
1464
null_process_cmd(struct nullb_cmd * cmd,enum req_op op,sector_t sector,unsigned int nr_sectors)1465 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1466 sector_t sector, unsigned int nr_sectors)
1467 {
1468 struct nullb_device *dev = cmd->nq->dev;
1469 blk_status_t ret;
1470
1471 if (dev->badblocks.shift != -1) {
1472 ret = null_handle_badblocks(cmd, sector, nr_sectors);
1473 if (ret != BLK_STS_OK)
1474 return ret;
1475 }
1476
1477 if (dev->memory_backed)
1478 return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1479
1480 return BLK_STS_OK;
1481 }
1482
null_handle_cmd(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors,enum req_op op)1483 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1484 sector_t nr_sectors, enum req_op op)
1485 {
1486 struct nullb_device *dev = cmd->nq->dev;
1487 struct nullb *nullb = dev->nullb;
1488 blk_status_t sts;
1489
1490 if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1491 sts = null_handle_throttled(cmd);
1492 if (sts != BLK_STS_OK)
1493 return sts;
1494 }
1495
1496 if (op == REQ_OP_FLUSH) {
1497 cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1498 goto out;
1499 }
1500
1501 if (dev->zoned)
1502 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1503 else
1504 sts = null_process_cmd(cmd, op, sector, nr_sectors);
1505
1506 /* Do not overwrite errors (e.g. timeout errors) */
1507 if (cmd->error == BLK_STS_OK)
1508 cmd->error = sts;
1509
1510 out:
1511 nullb_complete_cmd(cmd);
1512 return BLK_STS_OK;
1513 }
1514
nullb_bwtimer_fn(struct hrtimer * timer)1515 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1516 {
1517 struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1518 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1519 unsigned int mbps = nullb->dev->mbps;
1520
1521 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1522 return HRTIMER_NORESTART;
1523
1524 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1525 null_restart_queue_async(nullb);
1526
1527 hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1528
1529 return HRTIMER_RESTART;
1530 }
1531
nullb_setup_bwtimer(struct nullb * nullb)1532 static void nullb_setup_bwtimer(struct nullb *nullb)
1533 {
1534 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1535
1536 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1537 nullb->bw_timer.function = nullb_bwtimer_fn;
1538 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1539 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1540 }
1541
nullb_to_queue(struct nullb * nullb)1542 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1543 {
1544 int index = 0;
1545
1546 if (nullb->nr_queues != 1)
1547 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1548
1549 return &nullb->queues[index];
1550 }
1551
null_submit_bio(struct bio * bio)1552 static void null_submit_bio(struct bio *bio)
1553 {
1554 sector_t sector = bio->bi_iter.bi_sector;
1555 sector_t nr_sectors = bio_sectors(bio);
1556 struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
1557 struct nullb_queue *nq = nullb_to_queue(nullb);
1558
1559 null_handle_cmd(alloc_cmd(nq, bio), sector, nr_sectors, bio_op(bio));
1560 }
1561
1562 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1563
should_timeout_request(struct request * rq)1564 static bool should_timeout_request(struct request *rq)
1565 {
1566 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1567 struct nullb_device *dev = cmd->nq->dev;
1568
1569 return should_fail(&dev->timeout_config.attr, 1);
1570 }
1571
should_requeue_request(struct request * rq)1572 static bool should_requeue_request(struct request *rq)
1573 {
1574 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1575 struct nullb_device *dev = cmd->nq->dev;
1576
1577 return should_fail(&dev->requeue_config.attr, 1);
1578 }
1579
should_init_hctx_fail(struct nullb_device * dev)1580 static bool should_init_hctx_fail(struct nullb_device *dev)
1581 {
1582 return should_fail(&dev->init_hctx_fault_config.attr, 1);
1583 }
1584
1585 #else
1586
should_timeout_request(struct request * rq)1587 static bool should_timeout_request(struct request *rq)
1588 {
1589 return false;
1590 }
1591
should_requeue_request(struct request * rq)1592 static bool should_requeue_request(struct request *rq)
1593 {
1594 return false;
1595 }
1596
should_init_hctx_fail(struct nullb_device * dev)1597 static bool should_init_hctx_fail(struct nullb_device *dev)
1598 {
1599 return false;
1600 }
1601
1602 #endif
1603
null_map_queues(struct blk_mq_tag_set * set)1604 static void null_map_queues(struct blk_mq_tag_set *set)
1605 {
1606 struct nullb *nullb = set->driver_data;
1607 int i, qoff;
1608 unsigned int submit_queues = g_submit_queues;
1609 unsigned int poll_queues = g_poll_queues;
1610
1611 if (nullb) {
1612 struct nullb_device *dev = nullb->dev;
1613
1614 /*
1615 * Refer nr_hw_queues of the tag set to check if the expected
1616 * number of hardware queues are prepared. If block layer failed
1617 * to prepare them, use previous numbers of submit queues and
1618 * poll queues to map queues.
1619 */
1620 if (set->nr_hw_queues ==
1621 dev->submit_queues + dev->poll_queues) {
1622 submit_queues = dev->submit_queues;
1623 poll_queues = dev->poll_queues;
1624 } else if (set->nr_hw_queues ==
1625 dev->prev_submit_queues + dev->prev_poll_queues) {
1626 submit_queues = dev->prev_submit_queues;
1627 poll_queues = dev->prev_poll_queues;
1628 } else {
1629 pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1630 set->nr_hw_queues);
1631 WARN_ON_ONCE(true);
1632 submit_queues = 1;
1633 poll_queues = 0;
1634 }
1635 }
1636
1637 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1638 struct blk_mq_queue_map *map = &set->map[i];
1639
1640 switch (i) {
1641 case HCTX_TYPE_DEFAULT:
1642 map->nr_queues = submit_queues;
1643 break;
1644 case HCTX_TYPE_READ:
1645 map->nr_queues = 0;
1646 continue;
1647 case HCTX_TYPE_POLL:
1648 map->nr_queues = poll_queues;
1649 break;
1650 }
1651 map->queue_offset = qoff;
1652 qoff += map->nr_queues;
1653 blk_mq_map_queues(map);
1654 }
1655 }
1656
null_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1657 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1658 {
1659 struct nullb_queue *nq = hctx->driver_data;
1660 LIST_HEAD(list);
1661 int nr = 0;
1662 struct request *rq;
1663
1664 spin_lock(&nq->poll_lock);
1665 list_splice_init(&nq->poll_list, &list);
1666 list_for_each_entry(rq, &list, queuelist)
1667 blk_mq_set_request_complete(rq);
1668 spin_unlock(&nq->poll_lock);
1669
1670 while (!list_empty(&list)) {
1671 struct nullb_cmd *cmd;
1672 struct request *req;
1673
1674 req = list_first_entry(&list, struct request, queuelist);
1675 list_del_init(&req->queuelist);
1676 cmd = blk_mq_rq_to_pdu(req);
1677 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1678 blk_rq_sectors(req));
1679 if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1680 blk_mq_end_request_batch))
1681 end_cmd(cmd);
1682 nr++;
1683 }
1684
1685 return nr;
1686 }
1687
null_timeout_rq(struct request * rq)1688 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1689 {
1690 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1691 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1692
1693 if (hctx->type == HCTX_TYPE_POLL) {
1694 struct nullb_queue *nq = hctx->driver_data;
1695
1696 spin_lock(&nq->poll_lock);
1697 /* The request may have completed meanwhile. */
1698 if (blk_mq_request_completed(rq)) {
1699 spin_unlock(&nq->poll_lock);
1700 return BLK_EH_DONE;
1701 }
1702 list_del_init(&rq->queuelist);
1703 spin_unlock(&nq->poll_lock);
1704 }
1705
1706 pr_info("rq %p timed out\n", rq);
1707
1708 /*
1709 * If the device is marked as blocking (i.e. memory backed or zoned
1710 * device), the submission path may be blocked waiting for resources
1711 * and cause real timeouts. For these real timeouts, the submission
1712 * path will complete the request using blk_mq_complete_request().
1713 * Only fake timeouts need to execute blk_mq_complete_request() here.
1714 */
1715 cmd->error = BLK_STS_TIMEOUT;
1716 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1717 blk_mq_complete_request(rq);
1718 return BLK_EH_DONE;
1719 }
1720
null_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1721 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1722 const struct blk_mq_queue_data *bd)
1723 {
1724 struct request *rq = bd->rq;
1725 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1726 struct nullb_queue *nq = hctx->driver_data;
1727 sector_t nr_sectors = blk_rq_sectors(rq);
1728 sector_t sector = blk_rq_pos(rq);
1729 const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1730
1731 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1732
1733 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1734 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1735 cmd->timer.function = null_cmd_timer_expired;
1736 }
1737 cmd->rq = rq;
1738 cmd->error = BLK_STS_OK;
1739 cmd->nq = nq;
1740 cmd->fake_timeout = should_timeout_request(rq) ||
1741 blk_should_fake_timeout(rq->q);
1742
1743 blk_mq_start_request(rq);
1744
1745 if (should_requeue_request(rq)) {
1746 /*
1747 * Alternate between hitting the core BUSY path, and the
1748 * driver driven requeue path
1749 */
1750 nq->requeue_selection++;
1751 if (nq->requeue_selection & 1)
1752 return BLK_STS_RESOURCE;
1753 blk_mq_requeue_request(rq, true);
1754 return BLK_STS_OK;
1755 }
1756
1757 if (is_poll) {
1758 spin_lock(&nq->poll_lock);
1759 list_add_tail(&rq->queuelist, &nq->poll_list);
1760 spin_unlock(&nq->poll_lock);
1761 return BLK_STS_OK;
1762 }
1763 if (cmd->fake_timeout)
1764 return BLK_STS_OK;
1765
1766 return null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1767 }
1768
cleanup_queue(struct nullb_queue * nq)1769 static void cleanup_queue(struct nullb_queue *nq)
1770 {
1771 bitmap_free(nq->tag_map);
1772 kfree(nq->cmds);
1773 }
1774
cleanup_queues(struct nullb * nullb)1775 static void cleanup_queues(struct nullb *nullb)
1776 {
1777 int i;
1778
1779 for (i = 0; i < nullb->nr_queues; i++)
1780 cleanup_queue(&nullb->queues[i]);
1781
1782 kfree(nullb->queues);
1783 }
1784
null_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)1785 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1786 {
1787 struct nullb_queue *nq = hctx->driver_data;
1788 struct nullb *nullb = nq->dev->nullb;
1789
1790 nullb->nr_queues--;
1791 }
1792
null_init_queue(struct nullb * nullb,struct nullb_queue * nq)1793 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1794 {
1795 init_waitqueue_head(&nq->wait);
1796 nq->queue_depth = nullb->queue_depth;
1797 nq->dev = nullb->dev;
1798 INIT_LIST_HEAD(&nq->poll_list);
1799 spin_lock_init(&nq->poll_lock);
1800 }
1801
null_init_hctx(struct blk_mq_hw_ctx * hctx,void * driver_data,unsigned int hctx_idx)1802 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1803 unsigned int hctx_idx)
1804 {
1805 struct nullb *nullb = hctx->queue->queuedata;
1806 struct nullb_queue *nq;
1807
1808 if (should_init_hctx_fail(nullb->dev))
1809 return -EFAULT;
1810
1811 nq = &nullb->queues[hctx_idx];
1812 hctx->driver_data = nq;
1813 null_init_queue(nullb, nq);
1814 nullb->nr_queues++;
1815
1816 return 0;
1817 }
1818
1819 static const struct blk_mq_ops null_mq_ops = {
1820 .queue_rq = null_queue_rq,
1821 .complete = null_complete_rq,
1822 .timeout = null_timeout_rq,
1823 .poll = null_poll,
1824 .map_queues = null_map_queues,
1825 .init_hctx = null_init_hctx,
1826 .exit_hctx = null_exit_hctx,
1827 };
1828
null_del_dev(struct nullb * nullb)1829 static void null_del_dev(struct nullb *nullb)
1830 {
1831 struct nullb_device *dev;
1832
1833 if (!nullb)
1834 return;
1835
1836 dev = nullb->dev;
1837
1838 ida_free(&nullb_indexes, nullb->index);
1839
1840 list_del_init(&nullb->list);
1841
1842 del_gendisk(nullb->disk);
1843
1844 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1845 hrtimer_cancel(&nullb->bw_timer);
1846 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1847 null_restart_queue_async(nullb);
1848 }
1849
1850 put_disk(nullb->disk);
1851 if (dev->queue_mode == NULL_Q_MQ &&
1852 nullb->tag_set == &nullb->__tag_set)
1853 blk_mq_free_tag_set(nullb->tag_set);
1854 cleanup_queues(nullb);
1855 if (null_cache_active(nullb))
1856 null_free_device_storage(nullb->dev, true);
1857 kfree(nullb);
1858 dev->nullb = NULL;
1859 }
1860
null_config_discard(struct nullb * nullb)1861 static void null_config_discard(struct nullb *nullb)
1862 {
1863 if (nullb->dev->discard == false)
1864 return;
1865
1866 if (!nullb->dev->memory_backed) {
1867 nullb->dev->discard = false;
1868 pr_info("discard option is ignored without memory backing\n");
1869 return;
1870 }
1871
1872 if (nullb->dev->zoned) {
1873 nullb->dev->discard = false;
1874 pr_info("discard option is ignored in zoned mode\n");
1875 return;
1876 }
1877
1878 nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1879 blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1880 }
1881
1882 static const struct block_device_operations null_bio_ops = {
1883 .owner = THIS_MODULE,
1884 .submit_bio = null_submit_bio,
1885 .report_zones = null_report_zones,
1886 };
1887
1888 static const struct block_device_operations null_rq_ops = {
1889 .owner = THIS_MODULE,
1890 .report_zones = null_report_zones,
1891 };
1892
setup_commands(struct nullb_queue * nq)1893 static int setup_commands(struct nullb_queue *nq)
1894 {
1895 struct nullb_cmd *cmd;
1896 int i;
1897
1898 nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1899 if (!nq->cmds)
1900 return -ENOMEM;
1901
1902 nq->tag_map = bitmap_zalloc(nq->queue_depth, GFP_KERNEL);
1903 if (!nq->tag_map) {
1904 kfree(nq->cmds);
1905 return -ENOMEM;
1906 }
1907
1908 for (i = 0; i < nq->queue_depth; i++) {
1909 cmd = &nq->cmds[i];
1910 cmd->tag = -1U;
1911 }
1912
1913 return 0;
1914 }
1915
setup_queues(struct nullb * nullb)1916 static int setup_queues(struct nullb *nullb)
1917 {
1918 int nqueues = nr_cpu_ids;
1919
1920 if (g_poll_queues)
1921 nqueues += g_poll_queues;
1922
1923 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1924 GFP_KERNEL);
1925 if (!nullb->queues)
1926 return -ENOMEM;
1927
1928 nullb->queue_depth = nullb->dev->hw_queue_depth;
1929 return 0;
1930 }
1931
init_driver_queues(struct nullb * nullb)1932 static int init_driver_queues(struct nullb *nullb)
1933 {
1934 struct nullb_queue *nq;
1935 int i, ret = 0;
1936
1937 for (i = 0; i < nullb->dev->submit_queues; i++) {
1938 nq = &nullb->queues[i];
1939
1940 null_init_queue(nullb, nq);
1941
1942 ret = setup_commands(nq);
1943 if (ret)
1944 return ret;
1945 nullb->nr_queues++;
1946 }
1947 return 0;
1948 }
1949
null_gendisk_register(struct nullb * nullb)1950 static int null_gendisk_register(struct nullb *nullb)
1951 {
1952 sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1953 struct gendisk *disk = nullb->disk;
1954
1955 set_capacity(disk, size);
1956
1957 disk->major = null_major;
1958 disk->first_minor = nullb->index;
1959 disk->minors = 1;
1960 if (queue_is_mq(nullb->q))
1961 disk->fops = &null_rq_ops;
1962 else
1963 disk->fops = &null_bio_ops;
1964 disk->private_data = nullb;
1965 strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1966
1967 if (nullb->dev->zoned) {
1968 int ret = null_register_zoned_dev(nullb);
1969
1970 if (ret)
1971 return ret;
1972 }
1973
1974 return add_disk(disk);
1975 }
1976
null_init_tag_set(struct nullb * nullb,struct blk_mq_tag_set * set)1977 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1978 {
1979 unsigned int flags = BLK_MQ_F_SHOULD_MERGE;
1980 int hw_queues, numa_node;
1981 unsigned int queue_depth;
1982 int poll_queues;
1983
1984 if (nullb) {
1985 hw_queues = nullb->dev->submit_queues;
1986 poll_queues = nullb->dev->poll_queues;
1987 queue_depth = nullb->dev->hw_queue_depth;
1988 numa_node = nullb->dev->home_node;
1989 if (nullb->dev->no_sched)
1990 flags |= BLK_MQ_F_NO_SCHED;
1991 if (nullb->dev->shared_tag_bitmap)
1992 flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1993 if (nullb->dev->blocking)
1994 flags |= BLK_MQ_F_BLOCKING;
1995 } else {
1996 hw_queues = g_submit_queues;
1997 poll_queues = g_poll_queues;
1998 queue_depth = g_hw_queue_depth;
1999 numa_node = g_home_node;
2000 if (g_no_sched)
2001 flags |= BLK_MQ_F_NO_SCHED;
2002 if (g_shared_tag_bitmap)
2003 flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2004 if (g_blocking)
2005 flags |= BLK_MQ_F_BLOCKING;
2006 }
2007
2008 set->ops = &null_mq_ops;
2009 set->cmd_size = sizeof(struct nullb_cmd);
2010 set->flags = flags;
2011 set->driver_data = nullb;
2012 set->nr_hw_queues = hw_queues;
2013 set->queue_depth = queue_depth;
2014 set->numa_node = numa_node;
2015 if (poll_queues) {
2016 set->nr_hw_queues += poll_queues;
2017 set->nr_maps = 3;
2018 } else {
2019 set->nr_maps = 1;
2020 }
2021
2022 return blk_mq_alloc_tag_set(set);
2023 }
2024
null_validate_conf(struct nullb_device * dev)2025 static int null_validate_conf(struct nullb_device *dev)
2026 {
2027 if (dev->queue_mode == NULL_Q_RQ) {
2028 pr_err("legacy IO path is no longer available\n");
2029 return -EINVAL;
2030 }
2031
2032 if (blk_validate_block_size(dev->blocksize))
2033 return -EINVAL;
2034
2035 if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
2036 if (dev->submit_queues != nr_online_nodes)
2037 dev->submit_queues = nr_online_nodes;
2038 } else if (dev->submit_queues > nr_cpu_ids)
2039 dev->submit_queues = nr_cpu_ids;
2040 else if (dev->submit_queues == 0)
2041 dev->submit_queues = 1;
2042 dev->prev_submit_queues = dev->submit_queues;
2043
2044 if (dev->poll_queues > g_poll_queues)
2045 dev->poll_queues = g_poll_queues;
2046 dev->prev_poll_queues = dev->poll_queues;
2047
2048 dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
2049 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
2050
2051 /* Do memory allocation, so set blocking */
2052 if (dev->memory_backed)
2053 dev->blocking = true;
2054 else /* cache is meaningless */
2055 dev->cache_size = 0;
2056 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
2057 dev->cache_size);
2058 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
2059 /* can not stop a queue */
2060 if (dev->queue_mode == NULL_Q_BIO)
2061 dev->mbps = 0;
2062
2063 if (dev->zoned &&
2064 (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
2065 pr_err("zone_size must be power-of-two\n");
2066 return -EINVAL;
2067 }
2068
2069 return 0;
2070 }
2071
2072 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
__null_setup_fault(struct fault_attr * attr,char * str)2073 static bool __null_setup_fault(struct fault_attr *attr, char *str)
2074 {
2075 if (!str[0])
2076 return true;
2077
2078 if (!setup_fault_attr(attr, str))
2079 return false;
2080
2081 attr->verbose = 0;
2082 return true;
2083 }
2084 #endif
2085
null_setup_fault(void)2086 static bool null_setup_fault(void)
2087 {
2088 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
2089 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
2090 return false;
2091 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
2092 return false;
2093 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
2094 return false;
2095 #endif
2096 return true;
2097 }
2098
null_add_dev(struct nullb_device * dev)2099 static int null_add_dev(struct nullb_device *dev)
2100 {
2101 struct nullb *nullb;
2102 int rv;
2103
2104 rv = null_validate_conf(dev);
2105 if (rv)
2106 return rv;
2107
2108 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
2109 if (!nullb) {
2110 rv = -ENOMEM;
2111 goto out;
2112 }
2113 nullb->dev = dev;
2114 dev->nullb = nullb;
2115
2116 spin_lock_init(&nullb->lock);
2117
2118 rv = setup_queues(nullb);
2119 if (rv)
2120 goto out_free_nullb;
2121
2122 if (dev->queue_mode == NULL_Q_MQ) {
2123 if (shared_tags) {
2124 nullb->tag_set = &tag_set;
2125 rv = 0;
2126 } else {
2127 nullb->tag_set = &nullb->__tag_set;
2128 rv = null_init_tag_set(nullb, nullb->tag_set);
2129 }
2130
2131 if (rv)
2132 goto out_cleanup_queues;
2133
2134 nullb->tag_set->timeout = 5 * HZ;
2135 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb);
2136 if (IS_ERR(nullb->disk)) {
2137 rv = PTR_ERR(nullb->disk);
2138 goto out_cleanup_tags;
2139 }
2140 nullb->q = nullb->disk->queue;
2141 } else if (dev->queue_mode == NULL_Q_BIO) {
2142 rv = -ENOMEM;
2143 nullb->disk = blk_alloc_disk(nullb->dev->home_node);
2144 if (!nullb->disk)
2145 goto out_cleanup_queues;
2146
2147 nullb->q = nullb->disk->queue;
2148 rv = init_driver_queues(nullb);
2149 if (rv)
2150 goto out_cleanup_disk;
2151 }
2152
2153 if (dev->mbps) {
2154 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2155 nullb_setup_bwtimer(nullb);
2156 }
2157
2158 if (dev->cache_size > 0) {
2159 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
2160 blk_queue_write_cache(nullb->q, true, true);
2161 }
2162
2163 if (dev->zoned) {
2164 rv = null_init_zoned_dev(dev, nullb->q);
2165 if (rv)
2166 goto out_cleanup_disk;
2167 }
2168
2169 nullb->q->queuedata = nullb;
2170 blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
2171
2172 rv = ida_alloc(&nullb_indexes, GFP_KERNEL);
2173 if (rv < 0)
2174 goto out_cleanup_zone;
2175
2176 nullb->index = rv;
2177 dev->index = rv;
2178
2179 blk_queue_logical_block_size(nullb->q, dev->blocksize);
2180 blk_queue_physical_block_size(nullb->q, dev->blocksize);
2181 if (dev->max_sectors)
2182 blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
2183
2184 if (dev->virt_boundary)
2185 blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
2186
2187 null_config_discard(nullb);
2188
2189 if (config_item_name(&dev->group.cg_item)) {
2190 /* Use configfs dir name as the device name */
2191 snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2192 "%s", config_item_name(&dev->group.cg_item));
2193 } else {
2194 sprintf(nullb->disk_name, "nullb%d", nullb->index);
2195 }
2196
2197 rv = null_gendisk_register(nullb);
2198 if (rv)
2199 goto out_ida_free;
2200
2201 list_add_tail(&nullb->list, &nullb_list);
2202
2203 pr_info("disk %s created\n", nullb->disk_name);
2204
2205 return 0;
2206
2207 out_ida_free:
2208 ida_free(&nullb_indexes, nullb->index);
2209 out_cleanup_zone:
2210 null_free_zoned_dev(dev);
2211 out_cleanup_disk:
2212 put_disk(nullb->disk);
2213 out_cleanup_tags:
2214 if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
2215 blk_mq_free_tag_set(nullb->tag_set);
2216 out_cleanup_queues:
2217 cleanup_queues(nullb);
2218 out_free_nullb:
2219 kfree(nullb);
2220 dev->nullb = NULL;
2221 out:
2222 return rv;
2223 }
2224
null_find_dev_by_name(const char * name)2225 static struct nullb *null_find_dev_by_name(const char *name)
2226 {
2227 struct nullb *nullb = NULL, *nb;
2228
2229 mutex_lock(&lock);
2230 list_for_each_entry(nb, &nullb_list, list) {
2231 if (strcmp(nb->disk_name, name) == 0) {
2232 nullb = nb;
2233 break;
2234 }
2235 }
2236 mutex_unlock(&lock);
2237
2238 return nullb;
2239 }
2240
null_create_dev(void)2241 static int null_create_dev(void)
2242 {
2243 struct nullb_device *dev;
2244 int ret;
2245
2246 dev = null_alloc_dev();
2247 if (!dev)
2248 return -ENOMEM;
2249
2250 mutex_lock(&lock);
2251 ret = null_add_dev(dev);
2252 mutex_unlock(&lock);
2253 if (ret) {
2254 null_free_dev(dev);
2255 return ret;
2256 }
2257
2258 return 0;
2259 }
2260
null_destroy_dev(struct nullb * nullb)2261 static void null_destroy_dev(struct nullb *nullb)
2262 {
2263 struct nullb_device *dev = nullb->dev;
2264
2265 null_del_dev(nullb);
2266 null_free_device_storage(dev, false);
2267 null_free_dev(dev);
2268 }
2269
null_init(void)2270 static int __init null_init(void)
2271 {
2272 int ret = 0;
2273 unsigned int i;
2274 struct nullb *nullb;
2275
2276 if (g_bs > PAGE_SIZE) {
2277 pr_warn("invalid block size\n");
2278 pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2279 g_bs = PAGE_SIZE;
2280 }
2281
2282 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2283 pr_err("invalid home_node value\n");
2284 g_home_node = NUMA_NO_NODE;
2285 }
2286
2287 if (!null_setup_fault())
2288 return -EINVAL;
2289
2290 if (g_queue_mode == NULL_Q_RQ) {
2291 pr_err("legacy IO path is no longer available\n");
2292 return -EINVAL;
2293 }
2294
2295 if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
2296 if (g_submit_queues != nr_online_nodes) {
2297 pr_warn("submit_queues param is set to %u.\n",
2298 nr_online_nodes);
2299 g_submit_queues = nr_online_nodes;
2300 }
2301 } else if (g_submit_queues > nr_cpu_ids) {
2302 g_submit_queues = nr_cpu_ids;
2303 } else if (g_submit_queues <= 0) {
2304 g_submit_queues = 1;
2305 }
2306
2307 if (g_queue_mode == NULL_Q_MQ && shared_tags) {
2308 ret = null_init_tag_set(NULL, &tag_set);
2309 if (ret)
2310 return ret;
2311 }
2312
2313 config_group_init(&nullb_subsys.su_group);
2314 mutex_init(&nullb_subsys.su_mutex);
2315
2316 ret = configfs_register_subsystem(&nullb_subsys);
2317 if (ret)
2318 goto err_tagset;
2319
2320 mutex_init(&lock);
2321
2322 null_major = register_blkdev(0, "nullb");
2323 if (null_major < 0) {
2324 ret = null_major;
2325 goto err_conf;
2326 }
2327
2328 for (i = 0; i < nr_devices; i++) {
2329 ret = null_create_dev();
2330 if (ret)
2331 goto err_dev;
2332 }
2333
2334 pr_info("module loaded\n");
2335 return 0;
2336
2337 err_dev:
2338 while (!list_empty(&nullb_list)) {
2339 nullb = list_entry(nullb_list.next, struct nullb, list);
2340 null_destroy_dev(nullb);
2341 }
2342 unregister_blkdev(null_major, "nullb");
2343 err_conf:
2344 configfs_unregister_subsystem(&nullb_subsys);
2345 err_tagset:
2346 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2347 blk_mq_free_tag_set(&tag_set);
2348 return ret;
2349 }
2350
null_exit(void)2351 static void __exit null_exit(void)
2352 {
2353 struct nullb *nullb;
2354
2355 configfs_unregister_subsystem(&nullb_subsys);
2356
2357 unregister_blkdev(null_major, "nullb");
2358
2359 mutex_lock(&lock);
2360 while (!list_empty(&nullb_list)) {
2361 nullb = list_entry(nullb_list.next, struct nullb, list);
2362 null_destroy_dev(nullb);
2363 }
2364 mutex_unlock(&lock);
2365
2366 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2367 blk_mq_free_tag_set(&tag_set);
2368
2369 mutex_destroy(&lock);
2370 }
2371
2372 module_init(null_init);
2373 module_exit(null_exit);
2374
2375 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2376 MODULE_DESCRIPTION("multi queue aware block test driver");
2377 MODULE_LICENSE("GPL");
2378