xref: /openbmc/linux/drivers/memory/omap-gpmc.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * GPMC support functions
4   *
5   * Copyright (C) 2005-2006 Nokia Corporation
6   *
7   * Author: Juha Yrjola
8   *
9   * Copyright (C) 2009 Texas Instruments
10   * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
11   */
12  #include <linux/cpu_pm.h>
13  #include <linux/irq.h>
14  #include <linux/kernel.h>
15  #include <linux/module.h>
16  #include <linux/init.h>
17  #include <linux/err.h>
18  #include <linux/clk.h>
19  #include <linux/ioport.h>
20  #include <linux/spinlock.h>
21  #include <linux/io.h>
22  #include <linux/gpio/driver.h>
23  #include <linux/gpio/consumer.h> /* GPIO descriptor enum */
24  #include <linux/gpio/machine.h>
25  #include <linux/interrupt.h>
26  #include <linux/irqdomain.h>
27  #include <linux/platform_device.h>
28  #include <linux/of.h>
29  #include <linux/of_address.h>
30  #include <linux/of_device.h>
31  #include <linux/of_platform.h>
32  #include <linux/omap-gpmc.h>
33  #include <linux/pm_runtime.h>
34  #include <linux/sizes.h>
35  
36  #include <linux/platform_data/mtd-nand-omap2.h>
37  
38  #define	DEVICE_NAME		"omap-gpmc"
39  
40  /* GPMC register offsets */
41  #define GPMC_REVISION		0x00
42  #define GPMC_SYSCONFIG		0x10
43  #define GPMC_SYSSTATUS		0x14
44  #define GPMC_IRQSTATUS		0x18
45  #define GPMC_IRQENABLE		0x1c
46  #define GPMC_TIMEOUT_CONTROL	0x40
47  #define GPMC_ERR_ADDRESS	0x44
48  #define GPMC_ERR_TYPE		0x48
49  #define GPMC_CONFIG		0x50
50  #define GPMC_STATUS		0x54
51  #define GPMC_PREFETCH_CONFIG1	0x1e0
52  #define GPMC_PREFETCH_CONFIG2	0x1e4
53  #define GPMC_PREFETCH_CONTROL	0x1ec
54  #define GPMC_PREFETCH_STATUS	0x1f0
55  #define GPMC_ECC_CONFIG		0x1f4
56  #define GPMC_ECC_CONTROL	0x1f8
57  #define GPMC_ECC_SIZE_CONFIG	0x1fc
58  #define GPMC_ECC1_RESULT        0x200
59  #define GPMC_ECC_BCH_RESULT_0   0x240   /* not available on OMAP2 */
60  #define	GPMC_ECC_BCH_RESULT_1	0x244	/* not available on OMAP2 */
61  #define	GPMC_ECC_BCH_RESULT_2	0x248	/* not available on OMAP2 */
62  #define	GPMC_ECC_BCH_RESULT_3	0x24c	/* not available on OMAP2 */
63  #define	GPMC_ECC_BCH_RESULT_4	0x300	/* not available on OMAP2 */
64  #define	GPMC_ECC_BCH_RESULT_5	0x304	/* not available on OMAP2 */
65  #define	GPMC_ECC_BCH_RESULT_6	0x308	/* not available on OMAP2 */
66  
67  /* GPMC ECC control settings */
68  #define GPMC_ECC_CTRL_ECCCLEAR		0x100
69  #define GPMC_ECC_CTRL_ECCDISABLE	0x000
70  #define GPMC_ECC_CTRL_ECCREG1		0x001
71  #define GPMC_ECC_CTRL_ECCREG2		0x002
72  #define GPMC_ECC_CTRL_ECCREG3		0x003
73  #define GPMC_ECC_CTRL_ECCREG4		0x004
74  #define GPMC_ECC_CTRL_ECCREG5		0x005
75  #define GPMC_ECC_CTRL_ECCREG6		0x006
76  #define GPMC_ECC_CTRL_ECCREG7		0x007
77  #define GPMC_ECC_CTRL_ECCREG8		0x008
78  #define GPMC_ECC_CTRL_ECCREG9		0x009
79  
80  #define GPMC_CONFIG_LIMITEDADDRESS		BIT(1)
81  
82  #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS	BIT(0)
83  
84  #define	GPMC_CONFIG2_CSEXTRADELAY		BIT(7)
85  #define	GPMC_CONFIG3_ADVEXTRADELAY		BIT(7)
86  #define	GPMC_CONFIG4_OEEXTRADELAY		BIT(7)
87  #define	GPMC_CONFIG4_WEEXTRADELAY		BIT(23)
88  #define	GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN	BIT(6)
89  #define	GPMC_CONFIG6_CYCLE2CYCLESAMECSEN	BIT(7)
90  
91  #define GPMC_CS0_OFFSET		0x60
92  #define GPMC_CS_SIZE		0x30
93  #define	GPMC_BCH_SIZE		0x10
94  
95  /*
96   * The first 1MB of GPMC address space is typically mapped to
97   * the internal ROM. Never allocate the first page, to
98   * facilitate bug detection; even if we didn't boot from ROM.
99   * As GPMC minimum partition size is 16MB we can only start from
100   * there.
101   */
102  #define GPMC_MEM_START		0x1000000
103  #define GPMC_MEM_END		0x3FFFFFFF
104  
105  #define GPMC_CHUNK_SHIFT	24		/* 16 MB */
106  #define GPMC_SECTION_SHIFT	28		/* 128 MB */
107  
108  #define CS_NUM_SHIFT		24
109  #define ENABLE_PREFETCH		(0x1 << 7)
110  #define DMA_MPU_MODE		2
111  
112  #define	GPMC_REVISION_MAJOR(l)		(((l) >> 4) & 0xf)
113  #define	GPMC_REVISION_MINOR(l)		((l) & 0xf)
114  
115  #define	GPMC_HAS_WR_ACCESS		0x1
116  #define	GPMC_HAS_WR_DATA_MUX_BUS	0x2
117  #define	GPMC_HAS_MUX_AAD		0x4
118  
119  #define GPMC_NR_WAITPINS		4
120  
121  #define GPMC_CS_CONFIG1		0x00
122  #define GPMC_CS_CONFIG2		0x04
123  #define GPMC_CS_CONFIG3		0x08
124  #define GPMC_CS_CONFIG4		0x0c
125  #define GPMC_CS_CONFIG5		0x10
126  #define GPMC_CS_CONFIG6		0x14
127  #define GPMC_CS_CONFIG7		0x18
128  #define GPMC_CS_NAND_COMMAND	0x1c
129  #define GPMC_CS_NAND_ADDRESS	0x20
130  #define GPMC_CS_NAND_DATA	0x24
131  
132  /* Control Commands */
133  #define GPMC_CONFIG_RDY_BSY	0x00000001
134  #define GPMC_CONFIG_DEV_SIZE	0x00000002
135  #define GPMC_CONFIG_DEV_TYPE	0x00000003
136  
137  #define GPMC_CONFIG_WAITPINPOLARITY(pin)	(BIT(pin) << 8)
138  #define GPMC_CONFIG1_WRAPBURST_SUPP     (1 << 31)
139  #define GPMC_CONFIG1_READMULTIPLE_SUPP  (1 << 30)
140  #define GPMC_CONFIG1_READTYPE_ASYNC     (0 << 29)
141  #define GPMC_CONFIG1_READTYPE_SYNC      (1 << 29)
142  #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
143  #define GPMC_CONFIG1_WRITETYPE_ASYNC    (0 << 27)
144  #define GPMC_CONFIG1_WRITETYPE_SYNC     (1 << 27)
145  #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) (((val) & 3) << 25)
146  /** CLKACTIVATIONTIME Max Ticks */
147  #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
148  #define GPMC_CONFIG1_PAGE_LEN(val)      (((val) & 3) << 23)
149  /** ATTACHEDDEVICEPAGELENGTH Max Value */
150  #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
151  #define GPMC_CONFIG1_WAIT_READ_MON      (1 << 22)
152  #define GPMC_CONFIG1_WAIT_WRITE_MON     (1 << 21)
153  #define GPMC_CONFIG1_WAIT_MON_TIME(val) (((val) & 3) << 18)
154  /** WAITMONITORINGTIME Max Ticks */
155  #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX  2
156  #define GPMC_CONFIG1_WAIT_PIN_SEL(val)  (((val) & 3) << 16)
157  #define GPMC_CONFIG1_DEVICESIZE(val)    (((val) & 3) << 12)
158  #define GPMC_CONFIG1_DEVICESIZE_16      GPMC_CONFIG1_DEVICESIZE(1)
159  /** DEVICESIZE Max Value */
160  #define GPMC_CONFIG1_DEVICESIZE_MAX     1
161  #define GPMC_CONFIG1_DEVICETYPE(val)    (((val) & 3) << 10)
162  #define GPMC_CONFIG1_DEVICETYPE_NOR     GPMC_CONFIG1_DEVICETYPE(0)
163  #define GPMC_CONFIG1_MUXTYPE(val)       (((val) & 3) << 8)
164  #define GPMC_CONFIG1_TIME_PARA_GRAN     (1 << 4)
165  #define GPMC_CONFIG1_FCLK_DIV(val)      ((val) & 3)
166  #define GPMC_CONFIG1_FCLK_DIV2          (GPMC_CONFIG1_FCLK_DIV(1))
167  #define GPMC_CONFIG1_FCLK_DIV3          (GPMC_CONFIG1_FCLK_DIV(2))
168  #define GPMC_CONFIG1_FCLK_DIV4          (GPMC_CONFIG1_FCLK_DIV(3))
169  #define GPMC_CONFIG7_CSVALID		(1 << 6)
170  
171  #define GPMC_CONFIG7_BASEADDRESS_MASK	0x3f
172  #define GPMC_CONFIG7_CSVALID_MASK	BIT(6)
173  #define GPMC_CONFIG7_MASKADDRESS_OFFSET	8
174  #define GPMC_CONFIG7_MASKADDRESS_MASK	(0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
175  /* All CONFIG7 bits except reserved bits */
176  #define GPMC_CONFIG7_MASK		(GPMC_CONFIG7_BASEADDRESS_MASK | \
177  					 GPMC_CONFIG7_CSVALID_MASK |     \
178  					 GPMC_CONFIG7_MASKADDRESS_MASK)
179  
180  #define GPMC_DEVICETYPE_NOR		0
181  #define GPMC_DEVICETYPE_NAND		2
182  #define GPMC_CONFIG_WRITEPROTECT	0x00000010
183  #define WR_RD_PIN_MONITORING		0x00600000
184  
185  /* ECC commands */
186  #define GPMC_ECC_READ		0 /* Reset Hardware ECC for read */
187  #define GPMC_ECC_WRITE		1 /* Reset Hardware ECC for write */
188  #define GPMC_ECC_READSYN	2 /* Reset before syndrom is read back */
189  
190  #define	GPMC_NR_NAND_IRQS	2 /* number of NAND specific IRQs */
191  
192  enum gpmc_clk_domain {
193  	GPMC_CD_FCLK,
194  	GPMC_CD_CLK
195  };
196  
197  struct gpmc_cs_data {
198  	const char *name;
199  
200  #define GPMC_CS_RESERVED	(1 << 0)
201  	u32 flags;
202  
203  	struct resource mem;
204  };
205  
206  /* Structure to save gpmc cs context */
207  struct gpmc_cs_config {
208  	u32 config1;
209  	u32 config2;
210  	u32 config3;
211  	u32 config4;
212  	u32 config5;
213  	u32 config6;
214  	u32 config7;
215  	int is_valid;
216  };
217  
218  /*
219   * Structure to save/restore gpmc context
220   * to support core off on OMAP3
221   */
222  struct omap3_gpmc_regs {
223  	u32 sysconfig;
224  	u32 irqenable;
225  	u32 timeout_ctrl;
226  	u32 config;
227  	u32 prefetch_config1;
228  	u32 prefetch_config2;
229  	u32 prefetch_control;
230  	struct gpmc_cs_config cs_context[GPMC_CS_NUM];
231  };
232  
233  struct gpmc_waitpin {
234  	u32 pin;
235  	u32 polarity;
236  	struct gpio_desc *desc;
237  };
238  
239  struct gpmc_device {
240  	struct device *dev;
241  	int irq;
242  	struct irq_chip irq_chip;
243  	struct gpio_chip gpio_chip;
244  	struct notifier_block nb;
245  	struct omap3_gpmc_regs context;
246  	struct gpmc_waitpin *waitpins;
247  	int nirqs;
248  	unsigned int is_suspended:1;
249  	struct resource *data;
250  };
251  
252  static struct irq_domain *gpmc_irq_domain;
253  
254  static struct resource	gpmc_mem_root;
255  static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
256  static DEFINE_SPINLOCK(gpmc_mem_lock);
257  /* Define chip-selects as reserved by default until probe completes */
258  static unsigned int gpmc_cs_num = GPMC_CS_NUM;
259  static unsigned int gpmc_nr_waitpins;
260  static unsigned int gpmc_capability;
261  static void __iomem *gpmc_base;
262  
263  static struct clk *gpmc_l3_clk;
264  
265  static irqreturn_t gpmc_handle_irq(int irq, void *dev);
266  
gpmc_write_reg(int idx,u32 val)267  static void gpmc_write_reg(int idx, u32 val)
268  {
269  	writel_relaxed(val, gpmc_base + idx);
270  }
271  
gpmc_read_reg(int idx)272  static u32 gpmc_read_reg(int idx)
273  {
274  	return readl_relaxed(gpmc_base + idx);
275  }
276  
gpmc_cs_write_reg(int cs,int idx,u32 val)277  void gpmc_cs_write_reg(int cs, int idx, u32 val)
278  {
279  	void __iomem *reg_addr;
280  
281  	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
282  	writel_relaxed(val, reg_addr);
283  }
284  
gpmc_cs_read_reg(int cs,int idx)285  static u32 gpmc_cs_read_reg(int cs, int idx)
286  {
287  	void __iomem *reg_addr;
288  
289  	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
290  	return readl_relaxed(reg_addr);
291  }
292  
293  /* TODO: Add support for gpmc_fck to clock framework and use it */
gpmc_get_fclk_period(void)294  static unsigned long gpmc_get_fclk_period(void)
295  {
296  	unsigned long rate = clk_get_rate(gpmc_l3_clk);
297  
298  	rate /= 1000;
299  	rate = 1000000000 / rate;	/* In picoseconds */
300  
301  	return rate;
302  }
303  
304  /**
305   * gpmc_get_clk_period - get period of selected clock domain in ps
306   * @cs: Chip Select Region.
307   * @cd: Clock Domain.
308   *
309   * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
310   * prior to calling this function with GPMC_CD_CLK.
311   */
gpmc_get_clk_period(int cs,enum gpmc_clk_domain cd)312  static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
313  {
314  	unsigned long tick_ps = gpmc_get_fclk_period();
315  	u32 l;
316  	int div;
317  
318  	switch (cd) {
319  	case GPMC_CD_CLK:
320  		/* get current clk divider */
321  		l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
322  		div = (l & 0x03) + 1;
323  		/* get GPMC_CLK period */
324  		tick_ps *= div;
325  		break;
326  	case GPMC_CD_FCLK:
327  	default:
328  		break;
329  	}
330  
331  	return tick_ps;
332  }
333  
gpmc_ns_to_clk_ticks(unsigned int time_ns,int cs,enum gpmc_clk_domain cd)334  static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
335  					 enum gpmc_clk_domain cd)
336  {
337  	unsigned long tick_ps;
338  
339  	/* Calculate in picosecs to yield more exact results */
340  	tick_ps = gpmc_get_clk_period(cs, cd);
341  
342  	return (time_ns * 1000 + tick_ps - 1) / tick_ps;
343  }
344  
gpmc_ns_to_ticks(unsigned int time_ns)345  static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
346  {
347  	return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
348  }
349  
gpmc_ps_to_ticks(unsigned int time_ps)350  static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
351  {
352  	unsigned long tick_ps;
353  
354  	/* Calculate in picosecs to yield more exact results */
355  	tick_ps = gpmc_get_fclk_period();
356  
357  	return (time_ps + tick_ps - 1) / tick_ps;
358  }
359  
gpmc_clk_ticks_to_ns(unsigned int ticks,int cs,enum gpmc_clk_domain cd)360  static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
361  					 enum gpmc_clk_domain cd)
362  {
363  	return ticks * gpmc_get_clk_period(cs, cd) / 1000;
364  }
365  
gpmc_ticks_to_ns(unsigned int ticks)366  unsigned int gpmc_ticks_to_ns(unsigned int ticks)
367  {
368  	return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
369  }
370  
gpmc_ticks_to_ps(unsigned int ticks)371  static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
372  {
373  	return ticks * gpmc_get_fclk_period();
374  }
375  
gpmc_round_ps_to_ticks(unsigned int time_ps)376  static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
377  {
378  	unsigned long ticks = gpmc_ps_to_ticks(time_ps);
379  
380  	return ticks * gpmc_get_fclk_period();
381  }
382  
gpmc_cs_modify_reg(int cs,int reg,u32 mask,bool value)383  static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
384  {
385  	u32 l;
386  
387  	l = gpmc_cs_read_reg(cs, reg);
388  	if (value)
389  		l |= mask;
390  	else
391  		l &= ~mask;
392  	gpmc_cs_write_reg(cs, reg, l);
393  }
394  
gpmc_cs_bool_timings(int cs,const struct gpmc_bool_timings * p)395  static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
396  {
397  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
398  			   GPMC_CONFIG1_TIME_PARA_GRAN,
399  			   p->time_para_granularity);
400  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
401  			   GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
402  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
403  			   GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
404  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
405  			   GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
406  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
407  			   GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
408  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
409  			   GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
410  			   p->cycle2cyclesamecsen);
411  	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
412  			   GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
413  			   p->cycle2cyclediffcsen);
414  }
415  
416  #ifdef CONFIG_OMAP_GPMC_DEBUG
417  /**
418   * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
419   * @cs:      Chip Select Region
420   * @reg:     GPMC_CS_CONFIGn register offset.
421   * @st_bit:  Start Bit
422   * @end_bit: End Bit. Must be >= @st_bit.
423   * @max:     Maximum parameter value (before optional @shift).
424   *           If 0, maximum is as high as @st_bit and @end_bit allow.
425   * @name:    DTS node name, w/o "gpmc,"
426   * @cd:      Clock Domain of timing parameter.
427   * @shift:   Parameter value left shifts @shift, which is then printed instead of value.
428   * @raw:     Raw Format Option.
429   *           raw format:  gpmc,name = <value>
430   *           tick format: gpmc,name = <value> /&zwj;* x ns -- y ns; x ticks *&zwj;/
431   *           Where x ns -- y ns result in the same tick value.
432   *           When @max is exceeded, "invalid" is printed inside comment.
433   * @noval:   Parameter values equal to 0 are not printed.
434   * @return:  Specified timing parameter (after optional @shift).
435   *
436   */
get_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,const char * name,const enum gpmc_clk_domain cd,int shift,bool raw,bool noval)437  static int get_gpmc_timing_reg(
438  	/* timing specifiers */
439  	int cs, int reg, int st_bit, int end_bit, int max,
440  	const char *name, const enum gpmc_clk_domain cd,
441  	/* value transform */
442  	int shift,
443  	/* format specifiers */
444  	bool raw, bool noval)
445  {
446  	u32 l;
447  	int nr_bits;
448  	int mask;
449  	bool invalid;
450  
451  	l = gpmc_cs_read_reg(cs, reg);
452  	nr_bits = end_bit - st_bit + 1;
453  	mask = (1 << nr_bits) - 1;
454  	l = (l >> st_bit) & mask;
455  	if (!max)
456  		max = mask;
457  	invalid = l > max;
458  	if (shift)
459  		l = (shift << l);
460  	if (noval && (l == 0))
461  		return 0;
462  	if (!raw) {
463  		/* DTS tick format for timings in ns */
464  		unsigned int time_ns;
465  		unsigned int time_ns_min = 0;
466  
467  		if (l)
468  			time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
469  		time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
470  		pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
471  			name, time_ns, time_ns_min, time_ns, l,
472  			invalid ? "; invalid " : " ");
473  	} else {
474  		/* raw format */
475  		pr_info("gpmc,%s = <%u>;%s\n", name, l,
476  			invalid ? " /* invalid */" : "");
477  	}
478  
479  	return l;
480  }
481  
482  #define GPMC_PRINT_CONFIG(cs, config) \
483  	pr_info("cs%i %s: 0x%08x\n", cs, #config, \
484  		gpmc_cs_read_reg(cs, config))
485  #define GPMC_GET_RAW(reg, st, end, field) \
486  	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
487  #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
488  	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
489  #define GPMC_GET_RAW_BOOL(reg, st, end, field) \
490  	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
491  #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
492  	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
493  #define GPMC_GET_TICKS(reg, st, end, field) \
494  	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
495  #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
496  	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
497  #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
498  	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
499  
gpmc_show_regs(int cs,const char * desc)500  static void gpmc_show_regs(int cs, const char *desc)
501  {
502  	pr_info("gpmc cs%i %s:\n", cs, desc);
503  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
504  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
505  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
506  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
507  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
508  	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
509  }
510  
511  /*
512   * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
513   * see commit c9fb809.
514   */
gpmc_cs_show_timings(int cs,const char * desc)515  static void gpmc_cs_show_timings(int cs, const char *desc)
516  {
517  	gpmc_show_regs(cs, desc);
518  
519  	pr_info("gpmc cs%i access configuration:\n", cs);
520  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1,  4,  4, "time-para-granularity");
521  	GPMC_GET_RAW(GPMC_CS_CONFIG1,  8,  9, "mux-add-data");
522  	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
523  			       GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
524  	GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
525  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
526  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
527  	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
528  			       GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
529  			       "burst-length");
530  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
531  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
532  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
533  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
534  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
535  
536  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2,  7,  7, "cs-extra-delay");
537  
538  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3,  7,  7, "adv-extra-delay");
539  
540  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
541  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4,  7,  7, "oe-extra-delay");
542  
543  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  7,  7, "cycle2cycle-samecsen");
544  	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  6,  6, "cycle2cycle-diffcsen");
545  
546  	pr_info("gpmc cs%i timings configuration:\n", cs);
547  	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  0,  3, "cs-on-ns");
548  	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  8, 12, "cs-rd-off-ns");
549  	GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
550  
551  	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  0,  3, "adv-on-ns");
552  	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  8, 12, "adv-rd-off-ns");
553  	GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
554  	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
555  		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
556  		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
557  				"adv-aad-mux-rd-off-ns");
558  		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
559  				"adv-aad-mux-wr-off-ns");
560  	}
561  
562  	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  0,  3, "oe-on-ns");
563  	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  8, 12, "oe-off-ns");
564  	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
565  		GPMC_GET_TICKS(GPMC_CS_CONFIG4,  4,  6, "oe-aad-mux-on-ns");
566  		GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
567  	}
568  	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
569  	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
570  
571  	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  0,  4, "rd-cycle-ns");
572  	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  8, 12, "wr-cycle-ns");
573  	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
574  
575  	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
576  
577  	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
578  	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
579  
580  	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
581  			      GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
582  			      "wait-monitoring-ns", GPMC_CD_CLK);
583  	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
584  			      GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
585  			      "clk-activation-ns", GPMC_CD_FCLK);
586  
587  	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
588  	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
589  }
590  #else
gpmc_cs_show_timings(int cs,const char * desc)591  static inline void gpmc_cs_show_timings(int cs, const char *desc)
592  {
593  }
594  #endif
595  
596  /**
597   * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
598   * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
599   * prior to calling this function with @cd equal to GPMC_CD_CLK.
600   *
601   * @cs:      Chip Select Region.
602   * @reg:     GPMC_CS_CONFIGn register offset.
603   * @st_bit:  Start Bit
604   * @end_bit: End Bit. Must be >= @st_bit.
605   * @max:     Maximum parameter value.
606   *           If 0, maximum is as high as @st_bit and @end_bit allow.
607   * @time:    Timing parameter in ns.
608   * @cd:      Timing parameter clock domain.
609   * @name:    Timing parameter name.
610   * @return:  0 on success, -1 on error.
611   */
set_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,int time,enum gpmc_clk_domain cd,const char * name)612  static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
613  			       int time, enum gpmc_clk_domain cd, const char *name)
614  {
615  	u32 l;
616  	int ticks, mask, nr_bits;
617  
618  	if (time == 0)
619  		ticks = 0;
620  	else
621  		ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
622  	nr_bits = end_bit - st_bit + 1;
623  	mask = (1 << nr_bits) - 1;
624  
625  	if (!max)
626  		max = mask;
627  
628  	if (ticks > max) {
629  		pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
630  		       __func__, cs, name, time, ticks, max);
631  
632  		return -1;
633  	}
634  
635  	l = gpmc_cs_read_reg(cs, reg);
636  #ifdef CONFIG_OMAP_GPMC_DEBUG
637  	pr_info("GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
638  		cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
639  			(l >> st_bit) & mask, time);
640  #endif
641  	l &= ~(mask << st_bit);
642  	l |= ticks << st_bit;
643  	gpmc_cs_write_reg(cs, reg, l);
644  
645  	return 0;
646  }
647  
648  /**
649   * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
650   * WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
651   * read  --> don't sample bus too early
652   * write --> data is longer on bus
653   *
654   * Formula:
655   * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
656   *                    / waitmonitoring_ticks)
657   * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
658   * div <= 0 check.
659   *
660   * @wait_monitoring: WAITMONITORINGTIME in ns.
661   * @return:          -1 on failure to scale, else proper divider > 0.
662   */
gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)663  static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
664  {
665  	int div = gpmc_ns_to_ticks(wait_monitoring);
666  
667  	div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
668  	div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
669  
670  	if (div > 4)
671  		return -1;
672  	if (div <= 0)
673  		div = 1;
674  
675  	return div;
676  }
677  
678  /**
679   * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
680   * @sync_clk: GPMC_CLK period in ps.
681   * @return:   Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
682   *            Else, returns -1.
683   */
gpmc_calc_divider(unsigned int sync_clk)684  int gpmc_calc_divider(unsigned int sync_clk)
685  {
686  	int div = gpmc_ps_to_ticks(sync_clk);
687  
688  	if (div > 4)
689  		return -1;
690  	if (div <= 0)
691  		div = 1;
692  
693  	return div;
694  }
695  
696  /**
697   * gpmc_cs_set_timings - program timing parameters for Chip Select Region.
698   * @cs:     Chip Select Region.
699   * @t:      GPMC timing parameters.
700   * @s:      GPMC timing settings.
701   * @return: 0 on success, -1 on error.
702   */
gpmc_cs_set_timings(int cs,const struct gpmc_timings * t,const struct gpmc_settings * s)703  int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
704  			const struct gpmc_settings *s)
705  {
706  	int div, ret;
707  	u32 l;
708  
709  	div = gpmc_calc_divider(t->sync_clk);
710  	if (div < 0)
711  		return -EINVAL;
712  
713  	/*
714  	 * See if we need to change the divider for waitmonitoringtime.
715  	 *
716  	 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
717  	 * pure asynchronous accesses, i.e. both read and write asynchronous.
718  	 * However, only do so if WAITMONITORINGTIME is actually used, i.e.
719  	 * either WAITREADMONITORING or WAITWRITEMONITORING is set.
720  	 *
721  	 * This statement must not change div to scale async WAITMONITORINGTIME
722  	 * to protect mixed synchronous and asynchronous accesses.
723  	 *
724  	 * We raise an error later if WAITMONITORINGTIME does not fit.
725  	 */
726  	if (!s->sync_read && !s->sync_write &&
727  	    (s->wait_on_read || s->wait_on_write)
728  	   ) {
729  		div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
730  		if (div < 0) {
731  			pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
732  			       __func__,
733  			       t->wait_monitoring
734  			       );
735  			return -ENXIO;
736  		}
737  	}
738  
739  	ret = 0;
740  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 0, 3, 0, t->cs_on,
741  				   GPMC_CD_FCLK, "cs_on");
742  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 8, 12, 0, t->cs_rd_off,
743  				   GPMC_CD_FCLK, "cs_rd_off");
744  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 16, 20, 0, t->cs_wr_off,
745  				   GPMC_CD_FCLK, "cs_wr_off");
746  	if (ret)
747  		return -ENXIO;
748  
749  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 0, 3, 0, t->adv_on,
750  				   GPMC_CD_FCLK, "adv_on");
751  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 8, 12, 0, t->adv_rd_off,
752  				   GPMC_CD_FCLK, "adv_rd_off");
753  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 16, 20, 0, t->adv_wr_off,
754  				   GPMC_CD_FCLK, "adv_wr_off");
755  	if (ret)
756  		return -ENXIO;
757  
758  	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
759  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 4, 6, 0,
760  					   t->adv_aad_mux_on, GPMC_CD_FCLK,
761  					   "adv_aad_mux_on");
762  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 24, 26, 0,
763  					   t->adv_aad_mux_rd_off, GPMC_CD_FCLK,
764  					   "adv_aad_mux_rd_off");
765  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 28, 30, 0,
766  					   t->adv_aad_mux_wr_off, GPMC_CD_FCLK,
767  					   "adv_aad_mux_wr_off");
768  		if (ret)
769  			return -ENXIO;
770  	}
771  
772  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 0, 3, 0, t->oe_on,
773  				   GPMC_CD_FCLK, "oe_on");
774  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 8, 12, 0, t->oe_off,
775  				   GPMC_CD_FCLK, "oe_off");
776  	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
777  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 4, 6, 0,
778  					   t->oe_aad_mux_on, GPMC_CD_FCLK,
779  					   "oe_aad_mux_on");
780  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 13, 15, 0,
781  					   t->oe_aad_mux_off, GPMC_CD_FCLK,
782  					   "oe_aad_mux_off");
783  	}
784  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 16, 19, 0, t->we_on,
785  				   GPMC_CD_FCLK, "we_on");
786  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 24, 28, 0, t->we_off,
787  				   GPMC_CD_FCLK, "we_off");
788  	if (ret)
789  		return -ENXIO;
790  
791  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 0, 4, 0, t->rd_cycle,
792  				   GPMC_CD_FCLK, "rd_cycle");
793  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 8, 12, 0, t->wr_cycle,
794  				   GPMC_CD_FCLK, "wr_cycle");
795  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 16, 20, 0, t->access,
796  				   GPMC_CD_FCLK, "access");
797  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 24, 27, 0,
798  				   t->page_burst_access, GPMC_CD_FCLK,
799  				   "page_burst_access");
800  	if (ret)
801  		return -ENXIO;
802  
803  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 0, 3, 0,
804  				   t->bus_turnaround, GPMC_CD_FCLK,
805  				   "bus_turnaround");
806  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 8, 11, 0,
807  				   t->cycle2cycle_delay, GPMC_CD_FCLK,
808  				   "cycle2cycle_delay");
809  	if (ret)
810  		return -ENXIO;
811  
812  	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) {
813  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 16, 19, 0,
814  					   t->wr_data_mux_bus, GPMC_CD_FCLK,
815  					   "wr_data_mux_bus");
816  		if (ret)
817  			return -ENXIO;
818  	}
819  	if (gpmc_capability & GPMC_HAS_WR_ACCESS) {
820  		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 24, 28, 0,
821  					   t->wr_access, GPMC_CD_FCLK,
822  					   "wr_access");
823  		if (ret)
824  			return -ENXIO;
825  	}
826  
827  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
828  	l &= ~0x03;
829  	l |= (div - 1);
830  	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
831  
832  	ret = 0;
833  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 18, 19,
834  				   GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
835  				   t->wait_monitoring, GPMC_CD_CLK,
836  				   "wait_monitoring");
837  	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 25, 26,
838  				   GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
839  				   t->clk_activation, GPMC_CD_FCLK,
840  				   "clk_activation");
841  	if (ret)
842  		return -ENXIO;
843  
844  #ifdef CONFIG_OMAP_GPMC_DEBUG
845  	pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
846  			cs, (div * gpmc_get_fclk_period()) / 1000, div);
847  #endif
848  
849  	gpmc_cs_bool_timings(cs, &t->bool_timings);
850  	gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
851  
852  	return 0;
853  }
854  
gpmc_cs_set_memconf(int cs,u32 base,u32 size)855  static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
856  {
857  	u32 l;
858  	u32 mask;
859  
860  	/*
861  	 * Ensure that base address is aligned on a
862  	 * boundary equal to or greater than size.
863  	 */
864  	if (base & (size - 1))
865  		return -EINVAL;
866  
867  	base >>= GPMC_CHUNK_SHIFT;
868  	mask = (1 << GPMC_SECTION_SHIFT) - size;
869  	mask >>= GPMC_CHUNK_SHIFT;
870  	mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
871  
872  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
873  	l &= ~GPMC_CONFIG7_MASK;
874  	l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
875  	l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
876  	l |= GPMC_CONFIG7_CSVALID;
877  	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
878  
879  	return 0;
880  }
881  
gpmc_cs_enable_mem(int cs)882  static void gpmc_cs_enable_mem(int cs)
883  {
884  	u32 l;
885  
886  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
887  	l |= GPMC_CONFIG7_CSVALID;
888  	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
889  }
890  
gpmc_cs_disable_mem(int cs)891  static void gpmc_cs_disable_mem(int cs)
892  {
893  	u32 l;
894  
895  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
896  	l &= ~GPMC_CONFIG7_CSVALID;
897  	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
898  }
899  
gpmc_cs_get_memconf(int cs,u32 * base,u32 * size)900  static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
901  {
902  	u32 l;
903  	u32 mask;
904  
905  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
906  	*base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
907  	mask = (l >> 8) & 0x0f;
908  	*size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
909  }
910  
gpmc_cs_mem_enabled(int cs)911  static int gpmc_cs_mem_enabled(int cs)
912  {
913  	u32 l;
914  
915  	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
916  	return l & GPMC_CONFIG7_CSVALID;
917  }
918  
gpmc_cs_set_reserved(int cs,int reserved)919  static void gpmc_cs_set_reserved(int cs, int reserved)
920  {
921  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
922  
923  	gpmc->flags |= GPMC_CS_RESERVED;
924  }
925  
gpmc_cs_reserved(int cs)926  static bool gpmc_cs_reserved(int cs)
927  {
928  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
929  
930  	return gpmc->flags & GPMC_CS_RESERVED;
931  }
932  
gpmc_mem_align(unsigned long size)933  static unsigned long gpmc_mem_align(unsigned long size)
934  {
935  	int order;
936  
937  	size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
938  	order = GPMC_CHUNK_SHIFT - 1;
939  	do {
940  		size >>= 1;
941  		order++;
942  	} while (size);
943  	size = 1 << order;
944  	return size;
945  }
946  
gpmc_cs_insert_mem(int cs,unsigned long base,unsigned long size)947  static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
948  {
949  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
950  	struct resource *res = &gpmc->mem;
951  	int r;
952  
953  	size = gpmc_mem_align(size);
954  	spin_lock(&gpmc_mem_lock);
955  	res->start = base;
956  	res->end = base + size - 1;
957  	r = request_resource(&gpmc_mem_root, res);
958  	spin_unlock(&gpmc_mem_lock);
959  
960  	return r;
961  }
962  
gpmc_cs_delete_mem(int cs)963  static int gpmc_cs_delete_mem(int cs)
964  {
965  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
966  	struct resource *res = &gpmc->mem;
967  	int r;
968  
969  	spin_lock(&gpmc_mem_lock);
970  	r = release_resource(res);
971  	res->start = 0;
972  	res->end = 0;
973  	spin_unlock(&gpmc_mem_lock);
974  
975  	return r;
976  }
977  
gpmc_cs_request(int cs,unsigned long size,unsigned long * base)978  int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
979  {
980  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
981  	struct resource *res = &gpmc->mem;
982  	int r = -1;
983  
984  	if (cs >= gpmc_cs_num) {
985  		pr_err("%s: requested chip-select is disabled\n", __func__);
986  		return -ENODEV;
987  	}
988  	size = gpmc_mem_align(size);
989  	if (size > (1 << GPMC_SECTION_SHIFT))
990  		return -ENOMEM;
991  
992  	spin_lock(&gpmc_mem_lock);
993  	if (gpmc_cs_reserved(cs)) {
994  		r = -EBUSY;
995  		goto out;
996  	}
997  	if (gpmc_cs_mem_enabled(cs))
998  		r = adjust_resource(res, res->start & ~(size - 1), size);
999  	if (r < 0)
1000  		r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
1001  				      size, NULL, NULL);
1002  	if (r < 0)
1003  		goto out;
1004  
1005  	/* Disable CS while changing base address and size mask */
1006  	gpmc_cs_disable_mem(cs);
1007  
1008  	r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
1009  	if (r < 0) {
1010  		release_resource(res);
1011  		goto out;
1012  	}
1013  
1014  	/* Enable CS */
1015  	gpmc_cs_enable_mem(cs);
1016  	*base = res->start;
1017  	gpmc_cs_set_reserved(cs, 1);
1018  out:
1019  	spin_unlock(&gpmc_mem_lock);
1020  	return r;
1021  }
1022  EXPORT_SYMBOL(gpmc_cs_request);
1023  
gpmc_cs_free(int cs)1024  void gpmc_cs_free(int cs)
1025  {
1026  	struct gpmc_cs_data *gpmc;
1027  	struct resource *res;
1028  
1029  	spin_lock(&gpmc_mem_lock);
1030  	if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
1031  		WARN(1, "Trying to free non-reserved GPMC CS%d\n", cs);
1032  		spin_unlock(&gpmc_mem_lock);
1033  		return;
1034  	}
1035  	gpmc = &gpmc_cs[cs];
1036  	res = &gpmc->mem;
1037  
1038  	gpmc_cs_disable_mem(cs);
1039  	if (res->flags)
1040  		release_resource(res);
1041  	gpmc_cs_set_reserved(cs, 0);
1042  	spin_unlock(&gpmc_mem_lock);
1043  }
1044  EXPORT_SYMBOL(gpmc_cs_free);
1045  
gpmc_is_valid_waitpin(u32 waitpin)1046  static bool gpmc_is_valid_waitpin(u32 waitpin)
1047  {
1048  	return waitpin < gpmc_nr_waitpins;
1049  }
1050  
gpmc_alloc_waitpin(struct gpmc_device * gpmc,struct gpmc_settings * p)1051  static int gpmc_alloc_waitpin(struct gpmc_device *gpmc,
1052  			      struct gpmc_settings *p)
1053  {
1054  	int ret;
1055  	struct gpmc_waitpin *waitpin;
1056  	struct gpio_desc *waitpin_desc;
1057  
1058  	if (!gpmc_is_valid_waitpin(p->wait_pin))
1059  		return -EINVAL;
1060  
1061  	waitpin = &gpmc->waitpins[p->wait_pin];
1062  
1063  	if (!waitpin->desc) {
1064  		/* Reserve the GPIO for wait pin usage.
1065  		 * GPIO polarity doesn't matter here. Wait pin polarity
1066  		 * is set in GPMC_CONFIG register.
1067  		 */
1068  		waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
1069  							 p->wait_pin, "WAITPIN",
1070  							 GPIO_ACTIVE_HIGH,
1071  							 GPIOD_IN);
1072  
1073  		ret = PTR_ERR(waitpin_desc);
1074  		if (IS_ERR(waitpin_desc) && ret != -EBUSY)
1075  			return ret;
1076  
1077  		/* New wait pin */
1078  		waitpin->desc = waitpin_desc;
1079  		waitpin->pin = p->wait_pin;
1080  		waitpin->polarity = p->wait_pin_polarity;
1081  	} else {
1082  		/* Shared wait pin */
1083  		if (p->wait_pin_polarity != waitpin->polarity ||
1084  		    p->wait_pin != waitpin->pin) {
1085  			dev_err(gpmc->dev,
1086  				"shared-wait-pin: invalid configuration\n");
1087  			return -EINVAL;
1088  		}
1089  		dev_info(gpmc->dev, "shared wait-pin: %d\n", waitpin->pin);
1090  	}
1091  
1092  	return 0;
1093  }
1094  
gpmc_free_waitpin(struct gpmc_device * gpmc,int wait_pin)1095  static void gpmc_free_waitpin(struct gpmc_device *gpmc,
1096  			      int wait_pin)
1097  {
1098  	if (gpmc_is_valid_waitpin(wait_pin))
1099  		gpiochip_free_own_desc(gpmc->waitpins[wait_pin].desc);
1100  }
1101  
1102  /**
1103   * gpmc_configure - write request to configure gpmc
1104   * @cmd: command type
1105   * @wval: value to write
1106   * @return status of the operation
1107   */
gpmc_configure(int cmd,int wval)1108  int gpmc_configure(int cmd, int wval)
1109  {
1110  	u32 regval;
1111  
1112  	switch (cmd) {
1113  	case GPMC_CONFIG_WP:
1114  		regval = gpmc_read_reg(GPMC_CONFIG);
1115  		if (wval)
1116  			regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
1117  		else
1118  			regval |= GPMC_CONFIG_WRITEPROTECT;  /* WP is OFF */
1119  		gpmc_write_reg(GPMC_CONFIG, regval);
1120  		break;
1121  
1122  	default:
1123  		pr_err("%s: command not supported\n", __func__);
1124  		return -EINVAL;
1125  	}
1126  
1127  	return 0;
1128  }
1129  EXPORT_SYMBOL(gpmc_configure);
1130  
gpmc_nand_writebuffer_empty(void)1131  static bool gpmc_nand_writebuffer_empty(void)
1132  {
1133  	if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
1134  		return true;
1135  
1136  	return false;
1137  }
1138  
1139  static struct gpmc_nand_ops nand_ops = {
1140  	.nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
1141  };
1142  
1143  /**
1144   * gpmc_omap_get_nand_ops - Get the GPMC NAND interface
1145   * @reg: the GPMC NAND register map exclusive for NAND use.
1146   * @cs: GPMC chip select number on which the NAND sits. The
1147   *      register map returned will be specific to this chip select.
1148   *
1149   * Returns NULL on error e.g. invalid cs.
1150   */
gpmc_omap_get_nand_ops(struct gpmc_nand_regs * reg,int cs)1151  struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
1152  {
1153  	int i;
1154  
1155  	if (cs >= gpmc_cs_num)
1156  		return NULL;
1157  
1158  	reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
1159  				GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
1160  	reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
1161  				GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
1162  	reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
1163  				GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
1164  	reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
1165  	reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
1166  	reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
1167  	reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
1168  	reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
1169  	reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
1170  	reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
1171  	reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
1172  
1173  	for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
1174  		reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
1175  					   GPMC_BCH_SIZE * i;
1176  		reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
1177  					   GPMC_BCH_SIZE * i;
1178  		reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
1179  					   GPMC_BCH_SIZE * i;
1180  		reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
1181  					   GPMC_BCH_SIZE * i;
1182  		reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
1183  					   i * GPMC_BCH_SIZE;
1184  		reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
1185  					   i * GPMC_BCH_SIZE;
1186  		reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
1187  					   i * GPMC_BCH_SIZE;
1188  	}
1189  
1190  	return &nand_ops;
1191  }
1192  EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
1193  
gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings * t,struct gpmc_settings * s,int freq,int latency)1194  static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
1195  						struct gpmc_settings *s,
1196  						int freq, int latency)
1197  {
1198  	struct gpmc_device_timings dev_t;
1199  	const int t_cer  = 15;
1200  	const int t_avdp = 12;
1201  	const int t_cez  = 20; /* max of t_cez, t_oez */
1202  	const int t_wpl  = 40;
1203  	const int t_wph  = 30;
1204  	int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
1205  
1206  	switch (freq) {
1207  	case 104:
1208  		min_gpmc_clk_period = 9600; /* 104 MHz */
1209  		t_ces   = 3;
1210  		t_avds  = 4;
1211  		t_avdh  = 2;
1212  		t_ach   = 3;
1213  		t_aavdh = 6;
1214  		t_rdyo  = 6;
1215  		break;
1216  	case 83:
1217  		min_gpmc_clk_period = 12000; /* 83 MHz */
1218  		t_ces   = 5;
1219  		t_avds  = 4;
1220  		t_avdh  = 2;
1221  		t_ach   = 6;
1222  		t_aavdh = 6;
1223  		t_rdyo  = 9;
1224  		break;
1225  	case 66:
1226  		min_gpmc_clk_period = 15000; /* 66 MHz */
1227  		t_ces   = 6;
1228  		t_avds  = 5;
1229  		t_avdh  = 2;
1230  		t_ach   = 6;
1231  		t_aavdh = 6;
1232  		t_rdyo  = 11;
1233  		break;
1234  	default:
1235  		min_gpmc_clk_period = 18500; /* 54 MHz */
1236  		t_ces   = 7;
1237  		t_avds  = 7;
1238  		t_avdh  = 7;
1239  		t_ach   = 9;
1240  		t_aavdh = 7;
1241  		t_rdyo  = 15;
1242  		break;
1243  	}
1244  
1245  	/* Set synchronous read timings */
1246  	memset(&dev_t, 0, sizeof(dev_t));
1247  
1248  	if (!s->sync_write) {
1249  		dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
1250  		dev_t.t_wpl = t_wpl * 1000;
1251  		dev_t.t_wph = t_wph * 1000;
1252  		dev_t.t_aavdh = t_aavdh * 1000;
1253  	}
1254  	dev_t.ce_xdelay = true;
1255  	dev_t.avd_xdelay = true;
1256  	dev_t.oe_xdelay = true;
1257  	dev_t.we_xdelay = true;
1258  	dev_t.clk = min_gpmc_clk_period;
1259  	dev_t.t_bacc = dev_t.clk;
1260  	dev_t.t_ces = t_ces * 1000;
1261  	dev_t.t_avds = t_avds * 1000;
1262  	dev_t.t_avdh = t_avdh * 1000;
1263  	dev_t.t_ach = t_ach * 1000;
1264  	dev_t.cyc_iaa = (latency + 1);
1265  	dev_t.t_cez_r = t_cez * 1000;
1266  	dev_t.t_cez_w = dev_t.t_cez_r;
1267  	dev_t.cyc_aavdh_oe = 1;
1268  	dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
1269  
1270  	gpmc_calc_timings(t, s, &dev_t);
1271  }
1272  
gpmc_omap_onenand_set_timings(struct device * dev,int cs,int freq,int latency,struct gpmc_onenand_info * info)1273  int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
1274  				  int latency,
1275  				  struct gpmc_onenand_info *info)
1276  {
1277  	int ret;
1278  	struct gpmc_timings gpmc_t;
1279  	struct gpmc_settings gpmc_s;
1280  
1281  	gpmc_read_settings_dt(dev->of_node, &gpmc_s);
1282  
1283  	info->sync_read = gpmc_s.sync_read;
1284  	info->sync_write = gpmc_s.sync_write;
1285  	info->burst_len = gpmc_s.burst_len;
1286  
1287  	if (!gpmc_s.sync_read && !gpmc_s.sync_write)
1288  		return 0;
1289  
1290  	gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
1291  
1292  	ret = gpmc_cs_program_settings(cs, &gpmc_s);
1293  	if (ret < 0)
1294  		return ret;
1295  
1296  	return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
1297  }
1298  EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
1299  
gpmc_get_client_irq(unsigned int irq_config)1300  int gpmc_get_client_irq(unsigned int irq_config)
1301  {
1302  	if (!gpmc_irq_domain) {
1303  		pr_warn("%s called before GPMC IRQ domain available\n",
1304  			__func__);
1305  		return 0;
1306  	}
1307  
1308  	/* we restrict this to NAND IRQs only */
1309  	if (irq_config >= GPMC_NR_NAND_IRQS)
1310  		return 0;
1311  
1312  	return irq_create_mapping(gpmc_irq_domain, irq_config);
1313  }
1314  
gpmc_irq_endis(unsigned long hwirq,bool endis)1315  static int gpmc_irq_endis(unsigned long hwirq, bool endis)
1316  {
1317  	u32 regval;
1318  
1319  	/* bits GPMC_NR_NAND_IRQS to 8 are reserved */
1320  	if (hwirq >= GPMC_NR_NAND_IRQS)
1321  		hwirq += 8 - GPMC_NR_NAND_IRQS;
1322  
1323  	regval = gpmc_read_reg(GPMC_IRQENABLE);
1324  	if (endis)
1325  		regval |= BIT(hwirq);
1326  	else
1327  		regval &= ~BIT(hwirq);
1328  	gpmc_write_reg(GPMC_IRQENABLE, regval);
1329  
1330  	return 0;
1331  }
1332  
gpmc_irq_disable(struct irq_data * p)1333  static void gpmc_irq_disable(struct irq_data *p)
1334  {
1335  	gpmc_irq_endis(p->hwirq, false);
1336  }
1337  
gpmc_irq_enable(struct irq_data * p)1338  static void gpmc_irq_enable(struct irq_data *p)
1339  {
1340  	gpmc_irq_endis(p->hwirq, true);
1341  }
1342  
gpmc_irq_mask(struct irq_data * d)1343  static void gpmc_irq_mask(struct irq_data *d)
1344  {
1345  	gpmc_irq_endis(d->hwirq, false);
1346  }
1347  
gpmc_irq_unmask(struct irq_data * d)1348  static void gpmc_irq_unmask(struct irq_data *d)
1349  {
1350  	gpmc_irq_endis(d->hwirq, true);
1351  }
1352  
gpmc_irq_edge_config(unsigned long hwirq,bool rising_edge)1353  static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
1354  {
1355  	u32 regval;
1356  
1357  	/* NAND IRQs polarity is not configurable */
1358  	if (hwirq < GPMC_NR_NAND_IRQS)
1359  		return;
1360  
1361  	/* WAITPIN starts at BIT 8 */
1362  	hwirq += 8 - GPMC_NR_NAND_IRQS;
1363  
1364  	regval = gpmc_read_reg(GPMC_CONFIG);
1365  	if (rising_edge)
1366  		regval &= ~BIT(hwirq);
1367  	else
1368  		regval |= BIT(hwirq);
1369  
1370  	gpmc_write_reg(GPMC_CONFIG, regval);
1371  }
1372  
gpmc_irq_ack(struct irq_data * d)1373  static void gpmc_irq_ack(struct irq_data *d)
1374  {
1375  	unsigned int hwirq = d->hwirq;
1376  
1377  	/* skip reserved bits */
1378  	if (hwirq >= GPMC_NR_NAND_IRQS)
1379  		hwirq += 8 - GPMC_NR_NAND_IRQS;
1380  
1381  	/* Setting bit to 1 clears (or Acks) the interrupt */
1382  	gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
1383  }
1384  
gpmc_irq_set_type(struct irq_data * d,unsigned int trigger)1385  static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
1386  {
1387  	/* can't set type for NAND IRQs */
1388  	if (d->hwirq < GPMC_NR_NAND_IRQS)
1389  		return -EINVAL;
1390  
1391  	/* We can support either rising or falling edge at a time */
1392  	if (trigger == IRQ_TYPE_EDGE_FALLING)
1393  		gpmc_irq_edge_config(d->hwirq, false);
1394  	else if (trigger == IRQ_TYPE_EDGE_RISING)
1395  		gpmc_irq_edge_config(d->hwirq, true);
1396  	else
1397  		return -EINVAL;
1398  
1399  	return 0;
1400  }
1401  
gpmc_irq_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hw)1402  static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
1403  			irq_hw_number_t hw)
1404  {
1405  	struct gpmc_device *gpmc = d->host_data;
1406  
1407  	irq_set_chip_data(virq, gpmc);
1408  	if (hw < GPMC_NR_NAND_IRQS) {
1409  		irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
1410  		irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1411  					 handle_simple_irq);
1412  	} else {
1413  		irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1414  					 handle_edge_irq);
1415  	}
1416  
1417  	return 0;
1418  }
1419  
1420  static const struct irq_domain_ops gpmc_irq_domain_ops = {
1421  	.map    = gpmc_irq_map,
1422  	.xlate  = irq_domain_xlate_twocell,
1423  };
1424  
gpmc_handle_irq(int irq,void * data)1425  static irqreturn_t gpmc_handle_irq(int irq, void *data)
1426  {
1427  	int hwirq, virq;
1428  	u32 regval, regvalx;
1429  	struct gpmc_device *gpmc = data;
1430  
1431  	regval = gpmc_read_reg(GPMC_IRQSTATUS);
1432  	regvalx = regval;
1433  
1434  	if (!regval)
1435  		return IRQ_NONE;
1436  
1437  	for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
1438  		/* skip reserved status bits */
1439  		if (hwirq == GPMC_NR_NAND_IRQS)
1440  			regvalx >>= 8 - GPMC_NR_NAND_IRQS;
1441  
1442  		if (regvalx & BIT(hwirq)) {
1443  			virq = irq_find_mapping(gpmc_irq_domain, hwirq);
1444  			if (!virq) {
1445  				dev_warn(gpmc->dev,
1446  					 "spurious irq detected hwirq %d, virq %d\n",
1447  					 hwirq, virq);
1448  			}
1449  
1450  			generic_handle_irq(virq);
1451  		}
1452  	}
1453  
1454  	gpmc_write_reg(GPMC_IRQSTATUS, regval);
1455  
1456  	return IRQ_HANDLED;
1457  }
1458  
gpmc_setup_irq(struct gpmc_device * gpmc)1459  static int gpmc_setup_irq(struct gpmc_device *gpmc)
1460  {
1461  	u32 regval;
1462  	int rc;
1463  
1464  	/* Disable interrupts */
1465  	gpmc_write_reg(GPMC_IRQENABLE, 0);
1466  
1467  	/* clear interrupts */
1468  	regval = gpmc_read_reg(GPMC_IRQSTATUS);
1469  	gpmc_write_reg(GPMC_IRQSTATUS, regval);
1470  
1471  	gpmc->irq_chip.name = "gpmc";
1472  	gpmc->irq_chip.irq_enable = gpmc_irq_enable;
1473  	gpmc->irq_chip.irq_disable = gpmc_irq_disable;
1474  	gpmc->irq_chip.irq_ack = gpmc_irq_ack;
1475  	gpmc->irq_chip.irq_mask = gpmc_irq_mask;
1476  	gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
1477  	gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
1478  
1479  	gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
1480  						gpmc->nirqs,
1481  						&gpmc_irq_domain_ops,
1482  						gpmc);
1483  	if (!gpmc_irq_domain) {
1484  		dev_err(gpmc->dev, "IRQ domain add failed\n");
1485  		return -ENODEV;
1486  	}
1487  
1488  	rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
1489  	if (rc) {
1490  		dev_err(gpmc->dev, "failed to request irq %d: %d\n",
1491  			gpmc->irq, rc);
1492  		irq_domain_remove(gpmc_irq_domain);
1493  		gpmc_irq_domain = NULL;
1494  	}
1495  
1496  	return rc;
1497  }
1498  
gpmc_free_irq(struct gpmc_device * gpmc)1499  static int gpmc_free_irq(struct gpmc_device *gpmc)
1500  {
1501  	int hwirq;
1502  
1503  	free_irq(gpmc->irq, gpmc);
1504  
1505  	for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
1506  		irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
1507  
1508  	irq_domain_remove(gpmc_irq_domain);
1509  	gpmc_irq_domain = NULL;
1510  
1511  	return 0;
1512  }
1513  
gpmc_mem_exit(void)1514  static void gpmc_mem_exit(void)
1515  {
1516  	int cs;
1517  
1518  	for (cs = 0; cs < gpmc_cs_num; cs++) {
1519  		if (!gpmc_cs_mem_enabled(cs))
1520  			continue;
1521  		gpmc_cs_delete_mem(cs);
1522  	}
1523  }
1524  
gpmc_mem_init(struct gpmc_device * gpmc)1525  static void gpmc_mem_init(struct gpmc_device *gpmc)
1526  {
1527  	int cs;
1528  
1529  	if (!gpmc->data) {
1530  		/* All legacy devices have same data IO window */
1531  		gpmc_mem_root.start = GPMC_MEM_START;
1532  		gpmc_mem_root.end = GPMC_MEM_END;
1533  	} else {
1534  		gpmc_mem_root.start = gpmc->data->start;
1535  		gpmc_mem_root.end = gpmc->data->end;
1536  	}
1537  
1538  	/* Reserve all regions that has been set up by bootloader */
1539  	for (cs = 0; cs < gpmc_cs_num; cs++) {
1540  		u32 base, size;
1541  
1542  		if (!gpmc_cs_mem_enabled(cs))
1543  			continue;
1544  		gpmc_cs_get_memconf(cs, &base, &size);
1545  		if (gpmc_cs_insert_mem(cs, base, size)) {
1546  			pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
1547  				__func__, cs, base, base + size);
1548  			gpmc_cs_disable_mem(cs);
1549  		}
1550  	}
1551  }
1552  
gpmc_round_ps_to_sync_clk(u32 time_ps,u32 sync_clk)1553  static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
1554  {
1555  	u32 temp;
1556  	int div;
1557  
1558  	div = gpmc_calc_divider(sync_clk);
1559  	temp = gpmc_ps_to_ticks(time_ps);
1560  	temp = (temp + div - 1) / div;
1561  	return gpmc_ticks_to_ps(temp * div);
1562  }
1563  
1564  /* XXX: can the cycles be avoided ? */
gpmc_calc_sync_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1565  static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
1566  				       struct gpmc_device_timings *dev_t,
1567  				       bool mux)
1568  {
1569  	u32 temp;
1570  
1571  	/* adv_rd_off */
1572  	temp = dev_t->t_avdp_r;
1573  	/* XXX: mux check required ? */
1574  	if (mux) {
1575  		/* XXX: t_avdp not to be required for sync, only added for tusb
1576  		 * this indirectly necessitates requirement of t_avdp_r and
1577  		 * t_avdp_w instead of having a single t_avdp
1578  		 */
1579  		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_avdh);
1580  		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1581  	}
1582  	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1583  
1584  	/* oe_on */
1585  	temp = dev_t->t_oeasu; /* XXX: remove this ? */
1586  	if (mux) {
1587  		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_ach);
1588  		temp = max_t(u32, temp, gpmc_t->adv_rd_off +
1589  				gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
1590  	}
1591  	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1592  
1593  	/* access */
1594  	/* XXX: any scope for improvement ?, by combining oe_on
1595  	 * and clk_activation, need to check whether
1596  	 * access = clk_activation + round to sync clk ?
1597  	 */
1598  	temp = max_t(u32, dev_t->t_iaa,	dev_t->cyc_iaa * gpmc_t->sync_clk);
1599  	temp += gpmc_t->clk_activation;
1600  	if (dev_t->cyc_oe)
1601  		temp = max_t(u32, temp, gpmc_t->oe_on +
1602  				gpmc_ticks_to_ps(dev_t->cyc_oe));
1603  	gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1604  
1605  	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1606  	gpmc_t->cs_rd_off = gpmc_t->oe_off;
1607  
1608  	/* rd_cycle */
1609  	temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
1610  	temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
1611  							gpmc_t->access;
1612  	/* XXX: barter t_ce_rdyz with t_cez_r ? */
1613  	if (dev_t->t_ce_rdyz)
1614  		temp = max_t(u32, temp,	gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
1615  	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1616  
1617  	return 0;
1618  }
1619  
gpmc_calc_sync_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1620  static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
1621  					struct gpmc_device_timings *dev_t,
1622  					bool mux)
1623  {
1624  	u32 temp;
1625  
1626  	/* adv_wr_off */
1627  	temp = dev_t->t_avdp_w;
1628  	if (mux) {
1629  		temp = max_t(u32, temp,
1630  			gpmc_t->clk_activation + dev_t->t_avdh);
1631  		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1632  	}
1633  	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1634  
1635  	/* wr_data_mux_bus */
1636  	temp = max_t(u32, dev_t->t_weasu,
1637  			gpmc_t->clk_activation + dev_t->t_rdyo);
1638  	/* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
1639  	 * and in that case remember to handle we_on properly
1640  	 */
1641  	if (mux) {
1642  		temp = max_t(u32, temp,
1643  			gpmc_t->adv_wr_off + dev_t->t_aavdh);
1644  		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1645  				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1646  	}
1647  	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1648  
1649  	/* we_on */
1650  	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1651  		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1652  	else
1653  		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1654  
1655  	/* wr_access */
1656  	/* XXX: gpmc_capability check reqd ? , even if not, will not harm */
1657  	gpmc_t->wr_access = gpmc_t->access;
1658  
1659  	/* we_off */
1660  	temp = gpmc_t->we_on + dev_t->t_wpl;
1661  	temp = max_t(u32, temp,
1662  			gpmc_t->wr_access + gpmc_ticks_to_ps(1));
1663  	temp = max_t(u32, temp,
1664  		gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
1665  	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1666  
1667  	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1668  							dev_t->t_wph);
1669  
1670  	/* wr_cycle */
1671  	temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
1672  	temp += gpmc_t->wr_access;
1673  	/* XXX: barter t_ce_rdyz with t_cez_w ? */
1674  	if (dev_t->t_ce_rdyz)
1675  		temp = max_t(u32, temp,
1676  				 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
1677  	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1678  
1679  	return 0;
1680  }
1681  
gpmc_calc_async_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1682  static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
1683  					struct gpmc_device_timings *dev_t,
1684  					bool mux)
1685  {
1686  	u32 temp;
1687  
1688  	/* adv_rd_off */
1689  	temp = dev_t->t_avdp_r;
1690  	if (mux)
1691  		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1692  	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1693  
1694  	/* oe_on */
1695  	temp = dev_t->t_oeasu;
1696  	if (mux)
1697  		temp = max_t(u32, temp, gpmc_t->adv_rd_off + dev_t->t_aavdh);
1698  	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1699  
1700  	/* access */
1701  	temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
1702  		     gpmc_t->oe_on + dev_t->t_oe);
1703  	temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce);
1704  	temp = max_t(u32, temp, gpmc_t->adv_on + dev_t->t_aa);
1705  	gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1706  
1707  	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1708  	gpmc_t->cs_rd_off = gpmc_t->oe_off;
1709  
1710  	/* rd_cycle */
1711  	temp = max_t(u32, dev_t->t_rd_cycle,
1712  			gpmc_t->cs_rd_off + dev_t->t_cez_r);
1713  	temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
1714  	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1715  
1716  	return 0;
1717  }
1718  
gpmc_calc_async_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1719  static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
1720  					 struct gpmc_device_timings *dev_t,
1721  					 bool mux)
1722  {
1723  	u32 temp;
1724  
1725  	/* adv_wr_off */
1726  	temp = dev_t->t_avdp_w;
1727  	if (mux)
1728  		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1729  	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1730  
1731  	/* wr_data_mux_bus */
1732  	temp = dev_t->t_weasu;
1733  	if (mux) {
1734  		temp = max_t(u32, temp,	gpmc_t->adv_wr_off + dev_t->t_aavdh);
1735  		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1736  				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1737  	}
1738  	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1739  
1740  	/* we_on */
1741  	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1742  		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1743  	else
1744  		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1745  
1746  	/* we_off */
1747  	temp = gpmc_t->we_on + dev_t->t_wpl;
1748  	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1749  
1750  	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1751  							dev_t->t_wph);
1752  
1753  	/* wr_cycle */
1754  	temp = max_t(u32, dev_t->t_wr_cycle,
1755  				gpmc_t->cs_wr_off + dev_t->t_cez_w);
1756  	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1757  
1758  	return 0;
1759  }
1760  
gpmc_calc_sync_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t)1761  static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
1762  			struct gpmc_device_timings *dev_t)
1763  {
1764  	u32 temp;
1765  
1766  	gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
1767  						gpmc_get_fclk_period();
1768  
1769  	gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
1770  					dev_t->t_bacc,
1771  					gpmc_t->sync_clk);
1772  
1773  	temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
1774  	gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
1775  
1776  	if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
1777  		return 0;
1778  
1779  	if (dev_t->ce_xdelay)
1780  		gpmc_t->bool_timings.cs_extra_delay = true;
1781  	if (dev_t->avd_xdelay)
1782  		gpmc_t->bool_timings.adv_extra_delay = true;
1783  	if (dev_t->oe_xdelay)
1784  		gpmc_t->bool_timings.oe_extra_delay = true;
1785  	if (dev_t->we_xdelay)
1786  		gpmc_t->bool_timings.we_extra_delay = true;
1787  
1788  	return 0;
1789  }
1790  
gpmc_calc_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool sync)1791  static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1792  				    struct gpmc_device_timings *dev_t,
1793  				    bool sync)
1794  {
1795  	u32 temp;
1796  
1797  	/* cs_on */
1798  	gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
1799  
1800  	/* adv_on */
1801  	temp = dev_t->t_avdasu;
1802  	if (dev_t->t_ce_avd)
1803  		temp = max_t(u32, temp,
1804  				gpmc_t->cs_on + dev_t->t_ce_avd);
1805  	gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
1806  
1807  	if (sync)
1808  		gpmc_calc_sync_common_timings(gpmc_t, dev_t);
1809  
1810  	return 0;
1811  }
1812  
1813  /*
1814   * TODO: remove this function once all peripherals are confirmed to
1815   * work with generic timing. Simultaneously gpmc_cs_set_timings()
1816   * has to be modified to handle timings in ps instead of ns
1817   */
gpmc_convert_ps_to_ns(struct gpmc_timings * t)1818  static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
1819  {
1820  	t->cs_on /= 1000;
1821  	t->cs_rd_off /= 1000;
1822  	t->cs_wr_off /= 1000;
1823  	t->adv_on /= 1000;
1824  	t->adv_rd_off /= 1000;
1825  	t->adv_wr_off /= 1000;
1826  	t->we_on /= 1000;
1827  	t->we_off /= 1000;
1828  	t->oe_on /= 1000;
1829  	t->oe_off /= 1000;
1830  	t->page_burst_access /= 1000;
1831  	t->access /= 1000;
1832  	t->rd_cycle /= 1000;
1833  	t->wr_cycle /= 1000;
1834  	t->bus_turnaround /= 1000;
1835  	t->cycle2cycle_delay /= 1000;
1836  	t->wait_monitoring /= 1000;
1837  	t->clk_activation /= 1000;
1838  	t->wr_access /= 1000;
1839  	t->wr_data_mux_bus /= 1000;
1840  }
1841  
gpmc_calc_timings(struct gpmc_timings * gpmc_t,struct gpmc_settings * gpmc_s,struct gpmc_device_timings * dev_t)1842  int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1843  		      struct gpmc_settings *gpmc_s,
1844  		      struct gpmc_device_timings *dev_t)
1845  {
1846  	bool mux = false, sync = false;
1847  
1848  	if (gpmc_s) {
1849  		mux = gpmc_s->mux_add_data ? true : false;
1850  		sync = (gpmc_s->sync_read || gpmc_s->sync_write);
1851  	}
1852  
1853  	memset(gpmc_t, 0, sizeof(*gpmc_t));
1854  
1855  	gpmc_calc_common_timings(gpmc_t, dev_t, sync);
1856  
1857  	if (gpmc_s && gpmc_s->sync_read)
1858  		gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
1859  	else
1860  		gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
1861  
1862  	if (gpmc_s && gpmc_s->sync_write)
1863  		gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
1864  	else
1865  		gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
1866  
1867  	/* TODO: remove, see function definition */
1868  	gpmc_convert_ps_to_ns(gpmc_t);
1869  
1870  	return 0;
1871  }
1872  
1873  /**
1874   * gpmc_cs_program_settings - programs non-timing related settings
1875   * @cs:		GPMC chip-select to program
1876   * @p:		pointer to GPMC settings structure
1877   *
1878   * Programs non-timing related settings for a GPMC chip-select, such as
1879   * bus-width, burst configuration, etc. Function should be called once
1880   * for each chip-select that is being used and must be called before
1881   * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
1882   * register will be initialised to zero by this function. Returns 0 on
1883   * success and appropriate negative error code on failure.
1884   */
gpmc_cs_program_settings(int cs,struct gpmc_settings * p)1885  int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
1886  {
1887  	u32 config1;
1888  
1889  	if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
1890  		pr_err("%s: invalid width %d!", __func__, p->device_width);
1891  		return -EINVAL;
1892  	}
1893  
1894  	/* Address-data multiplexing not supported for NAND devices */
1895  	if (p->device_nand && p->mux_add_data) {
1896  		pr_err("%s: invalid configuration!\n", __func__);
1897  		return -EINVAL;
1898  	}
1899  
1900  	if ((p->mux_add_data > GPMC_MUX_AD) ||
1901  	    ((p->mux_add_data == GPMC_MUX_AAD) &&
1902  	     !(gpmc_capability & GPMC_HAS_MUX_AAD))) {
1903  		pr_err("%s: invalid multiplex configuration!\n", __func__);
1904  		return -EINVAL;
1905  	}
1906  
1907  	/* Page/burst mode supports lengths of 4, 8 and 16 bytes */
1908  	if (p->burst_read || p->burst_write) {
1909  		switch (p->burst_len) {
1910  		case GPMC_BURST_4:
1911  		case GPMC_BURST_8:
1912  		case GPMC_BURST_16:
1913  			break;
1914  		default:
1915  			pr_err("%s: invalid page/burst-length (%d)\n",
1916  			       __func__, p->burst_len);
1917  			return -EINVAL;
1918  		}
1919  	}
1920  
1921  	if (p->wait_pin != GPMC_WAITPIN_INVALID &&
1922  	    p->wait_pin > gpmc_nr_waitpins) {
1923  		pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
1924  		return -EINVAL;
1925  	}
1926  
1927  	config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
1928  
1929  	if (p->sync_read)
1930  		config1 |= GPMC_CONFIG1_READTYPE_SYNC;
1931  	if (p->sync_write)
1932  		config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
1933  	if (p->wait_on_read)
1934  		config1 |= GPMC_CONFIG1_WAIT_READ_MON;
1935  	if (p->wait_on_write)
1936  		config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
1937  	if (p->wait_on_read || p->wait_on_write)
1938  		config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
1939  	if (p->device_nand)
1940  		config1	|= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
1941  	if (p->mux_add_data)
1942  		config1	|= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
1943  	if (p->burst_read)
1944  		config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
1945  	if (p->burst_write)
1946  		config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
1947  	if (p->burst_read || p->burst_write) {
1948  		config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
1949  		config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
1950  	}
1951  
1952  	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
1953  
1954  	if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_INVALID) {
1955  		config1 = gpmc_read_reg(GPMC_CONFIG);
1956  
1957  		if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_LOW)
1958  			config1 &= ~GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin);
1959  		else if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_HIGH)
1960  			config1 |= GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin);
1961  
1962  		gpmc_write_reg(GPMC_CONFIG, config1);
1963  	}
1964  
1965  	return 0;
1966  }
1967  
1968  #ifdef CONFIG_OF
gpmc_cs_set_name(int cs,const char * name)1969  static void gpmc_cs_set_name(int cs, const char *name)
1970  {
1971  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1972  
1973  	gpmc->name = name;
1974  }
1975  
gpmc_cs_get_name(int cs)1976  static const char *gpmc_cs_get_name(int cs)
1977  {
1978  	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1979  
1980  	return gpmc->name;
1981  }
1982  
1983  /**
1984   * gpmc_cs_remap - remaps a chip-select physical base address
1985   * @cs:		chip-select to remap
1986   * @base:	physical base address to re-map chip-select to
1987   *
1988   * Re-maps a chip-select to a new physical base address specified by
1989   * "base". Returns 0 on success and appropriate negative error code
1990   * on failure.
1991   */
gpmc_cs_remap(int cs,u32 base)1992  static int gpmc_cs_remap(int cs, u32 base)
1993  {
1994  	int ret;
1995  	u32 old_base, size;
1996  
1997  	if (cs >= gpmc_cs_num) {
1998  		pr_err("%s: requested chip-select is disabled\n", __func__);
1999  		return -ENODEV;
2000  	}
2001  
2002  	/*
2003  	 * Make sure we ignore any device offsets from the GPMC partition
2004  	 * allocated for the chip select and that the new base confirms
2005  	 * to the GPMC 16MB minimum granularity.
2006  	 */
2007  	base &= ~(SZ_16M - 1);
2008  
2009  	gpmc_cs_get_memconf(cs, &old_base, &size);
2010  	if (base == old_base)
2011  		return 0;
2012  
2013  	ret = gpmc_cs_delete_mem(cs);
2014  	if (ret < 0)
2015  		return ret;
2016  
2017  	ret = gpmc_cs_insert_mem(cs, base, size);
2018  	if (ret < 0)
2019  		return ret;
2020  
2021  	ret = gpmc_cs_set_memconf(cs, base, size);
2022  
2023  	return ret;
2024  }
2025  
2026  /**
2027   * gpmc_read_settings_dt - read gpmc settings from device-tree
2028   * @np:		pointer to device-tree node for a gpmc child device
2029   * @p:		pointer to gpmc settings structure
2030   *
2031   * Reads the GPMC settings for a GPMC child device from device-tree and
2032   * stores them in the GPMC settings structure passed. The GPMC settings
2033   * structure is initialised to zero by this function and so any
2034   * previously stored settings will be cleared.
2035   */
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2036  void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2037  {
2038  	memset(p, 0, sizeof(struct gpmc_settings));
2039  
2040  	p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
2041  	p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
2042  	of_property_read_u32(np, "gpmc,device-width", &p->device_width);
2043  	of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
2044  
2045  	if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
2046  		p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
2047  		p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
2048  		p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
2049  		if (!p->burst_read && !p->burst_write)
2050  			pr_warn("%s: page/burst-length set but not used!\n",
2051  				__func__);
2052  	}
2053  
2054  	p->wait_pin = GPMC_WAITPIN_INVALID;
2055  	p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID;
2056  
2057  	if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
2058  		if (!gpmc_is_valid_waitpin(p->wait_pin)) {
2059  			pr_err("%s: Invalid wait-pin (%d)\n", __func__, p->wait_pin);
2060  			p->wait_pin = GPMC_WAITPIN_INVALID;
2061  		}
2062  
2063  		if (!of_property_read_u32(np, "ti,wait-pin-polarity",
2064  					  &p->wait_pin_polarity)) {
2065  			if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_HIGH &&
2066  			    p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_LOW) {
2067  				pr_err("%s: Invalid wait-pin-polarity (%d)\n",
2068  				       __func__, p->wait_pin_polarity);
2069  				p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID;
2070  				}
2071  		}
2072  
2073  		p->wait_on_read = of_property_read_bool(np,
2074  							"gpmc,wait-on-read");
2075  		p->wait_on_write = of_property_read_bool(np,
2076  							 "gpmc,wait-on-write");
2077  		if (!p->wait_on_read && !p->wait_on_write)
2078  			pr_debug("%s: rd/wr wait monitoring not enabled!\n",
2079  				 __func__);
2080  	}
2081  }
2082  
gpmc_read_timings_dt(struct device_node * np,struct gpmc_timings * gpmc_t)2083  static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
2084  						struct gpmc_timings *gpmc_t)
2085  {
2086  	struct gpmc_bool_timings *p;
2087  
2088  	if (!np || !gpmc_t)
2089  		return;
2090  
2091  	memset(gpmc_t, 0, sizeof(*gpmc_t));
2092  
2093  	/* minimum clock period for syncronous mode */
2094  	of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
2095  
2096  	/* chip select timtings */
2097  	of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
2098  	of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
2099  	of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
2100  
2101  	/* ADV signal timings */
2102  	of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
2103  	of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
2104  	of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
2105  	of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
2106  			     &gpmc_t->adv_aad_mux_on);
2107  	of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
2108  			     &gpmc_t->adv_aad_mux_rd_off);
2109  	of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
2110  			     &gpmc_t->adv_aad_mux_wr_off);
2111  
2112  	/* WE signal timings */
2113  	of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
2114  	of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
2115  
2116  	/* OE signal timings */
2117  	of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
2118  	of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
2119  	of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
2120  			     &gpmc_t->oe_aad_mux_on);
2121  	of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
2122  			     &gpmc_t->oe_aad_mux_off);
2123  
2124  	/* access and cycle timings */
2125  	of_property_read_u32(np, "gpmc,page-burst-access-ns",
2126  			     &gpmc_t->page_burst_access);
2127  	of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
2128  	of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
2129  	of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
2130  	of_property_read_u32(np, "gpmc,bus-turnaround-ns",
2131  			     &gpmc_t->bus_turnaround);
2132  	of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
2133  			     &gpmc_t->cycle2cycle_delay);
2134  	of_property_read_u32(np, "gpmc,wait-monitoring-ns",
2135  			     &gpmc_t->wait_monitoring);
2136  	of_property_read_u32(np, "gpmc,clk-activation-ns",
2137  			     &gpmc_t->clk_activation);
2138  
2139  	/* only applicable to OMAP3+ */
2140  	of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
2141  	of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
2142  			     &gpmc_t->wr_data_mux_bus);
2143  
2144  	/* bool timing parameters */
2145  	p = &gpmc_t->bool_timings;
2146  
2147  	p->cycle2cyclediffcsen =
2148  		of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
2149  	p->cycle2cyclesamecsen =
2150  		of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
2151  	p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
2152  	p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
2153  	p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
2154  	p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
2155  	p->time_para_granularity =
2156  		of_property_read_bool(np, "gpmc,time-para-granularity");
2157  }
2158  
2159  /**
2160   * gpmc_probe_generic_child - configures the gpmc for a child device
2161   * @pdev:	pointer to gpmc platform device
2162   * @child:	pointer to device-tree node for child device
2163   *
2164   * Allocates and configures a GPMC chip-select for a child device.
2165   * Returns 0 on success and appropriate negative error code on failure.
2166   */
gpmc_probe_generic_child(struct platform_device * pdev,struct device_node * child)2167  static int gpmc_probe_generic_child(struct platform_device *pdev,
2168  				struct device_node *child)
2169  {
2170  	struct gpmc_settings gpmc_s;
2171  	struct gpmc_timings gpmc_t;
2172  	struct resource res;
2173  	unsigned long base;
2174  	const char *name;
2175  	int ret, cs;
2176  	u32 val;
2177  	struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2178  
2179  	if (of_property_read_u32(child, "reg", &cs) < 0) {
2180  		dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
2181  			child);
2182  		return -ENODEV;
2183  	}
2184  
2185  	if (of_address_to_resource(child, 0, &res) < 0) {
2186  		dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
2187  			child);
2188  		return -ENODEV;
2189  	}
2190  
2191  	/*
2192  	 * Check if we have multiple instances of the same device
2193  	 * on a single chip select. If so, use the already initialized
2194  	 * timings.
2195  	 */
2196  	name = gpmc_cs_get_name(cs);
2197  	if (name && of_node_name_eq(child, name))
2198  		goto no_timings;
2199  
2200  	ret = gpmc_cs_request(cs, resource_size(&res), &base);
2201  	if (ret < 0) {
2202  		dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
2203  		return ret;
2204  	}
2205  	gpmc_cs_set_name(cs, child->full_name);
2206  
2207  	gpmc_read_settings_dt(child, &gpmc_s);
2208  	gpmc_read_timings_dt(child, &gpmc_t);
2209  
2210  	/*
2211  	 * For some GPMC devices we still need to rely on the bootloader
2212  	 * timings because the devices can be connected via FPGA.
2213  	 * REVISIT: Add timing support from slls644g.pdf.
2214  	 */
2215  	if (!gpmc_t.cs_rd_off) {
2216  		WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
2217  			cs);
2218  		gpmc_cs_show_timings(cs,
2219  				     "please add GPMC bootloader timings to .dts");
2220  		goto no_timings;
2221  	}
2222  
2223  	/* CS must be disabled while making changes to gpmc configuration */
2224  	gpmc_cs_disable_mem(cs);
2225  
2226  	/*
2227  	 * FIXME: gpmc_cs_request() will map the CS to an arbitrary
2228  	 * location in the gpmc address space. When booting with
2229  	 * device-tree we want the NOR flash to be mapped to the
2230  	 * location specified in the device-tree blob. So remap the
2231  	 * CS to this location. Once DT migration is complete should
2232  	 * just make gpmc_cs_request() map a specific address.
2233  	 */
2234  	ret = gpmc_cs_remap(cs, res.start);
2235  	if (ret < 0) {
2236  		dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
2237  			cs, &res.start);
2238  		if (res.start < GPMC_MEM_START) {
2239  			dev_info(&pdev->dev,
2240  				 "GPMC CS %d start cannot be lesser than 0x%x\n",
2241  				 cs, GPMC_MEM_START);
2242  		} else if (res.end > GPMC_MEM_END) {
2243  			dev_info(&pdev->dev,
2244  				 "GPMC CS %d end cannot be greater than 0x%x\n",
2245  				 cs, GPMC_MEM_END);
2246  		}
2247  		goto err;
2248  	}
2249  
2250  	if (of_node_name_eq(child, "nand")) {
2251  		/* Warn about older DT blobs with no compatible property */
2252  		if (!of_property_read_bool(child, "compatible")) {
2253  			dev_warn(&pdev->dev,
2254  				 "Incompatible NAND node: missing compatible");
2255  			ret = -EINVAL;
2256  			goto err;
2257  		}
2258  	}
2259  
2260  	if (of_node_name_eq(child, "onenand")) {
2261  		/* Warn about older DT blobs with no compatible property */
2262  		if (!of_property_read_bool(child, "compatible")) {
2263  			dev_warn(&pdev->dev,
2264  				 "Incompatible OneNAND node: missing compatible");
2265  			ret = -EINVAL;
2266  			goto err;
2267  		}
2268  	}
2269  
2270  	if (of_match_node(omap_nand_ids, child)) {
2271  		/* NAND specific setup */
2272  		val = 8;
2273  		of_property_read_u32(child, "nand-bus-width", &val);
2274  		switch (val) {
2275  		case 8:
2276  			gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
2277  			break;
2278  		case 16:
2279  			gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
2280  			break;
2281  		default:
2282  			dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n",
2283  				child);
2284  			ret = -EINVAL;
2285  			goto err;
2286  		}
2287  
2288  		/* disable write protect */
2289  		gpmc_configure(GPMC_CONFIG_WP, 0);
2290  		gpmc_s.device_nand = true;
2291  	} else {
2292  		ret = of_property_read_u32(child, "bank-width",
2293  					   &gpmc_s.device_width);
2294  		if (ret < 0 && !gpmc_s.device_width) {
2295  			dev_err(&pdev->dev,
2296  				"%pOF has no 'gpmc,device-width' property\n",
2297  				child);
2298  			goto err;
2299  		}
2300  	}
2301  
2302  	/* Reserve wait pin if it is required and valid */
2303  	if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
2304  		ret = gpmc_alloc_waitpin(gpmc, &gpmc_s);
2305  		if (ret < 0)
2306  			goto err;
2307  	}
2308  
2309  	gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
2310  
2311  	ret = gpmc_cs_program_settings(cs, &gpmc_s);
2312  	if (ret < 0)
2313  		goto err_cs;
2314  
2315  	ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
2316  	if (ret) {
2317  		dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n",
2318  			child);
2319  		goto err_cs;
2320  	}
2321  
2322  	/* Clear limited address i.e. enable A26-A11 */
2323  	val = gpmc_read_reg(GPMC_CONFIG);
2324  	val &= ~GPMC_CONFIG_LIMITEDADDRESS;
2325  	gpmc_write_reg(GPMC_CONFIG, val);
2326  
2327  	/* Enable CS region */
2328  	gpmc_cs_enable_mem(cs);
2329  
2330  no_timings:
2331  
2332  	/* create platform device, NULL on error or when disabled */
2333  	if (!of_platform_device_create(child, NULL, &pdev->dev))
2334  		goto err_child_fail;
2335  
2336  	/* create children and other common bus children */
2337  	if (of_platform_default_populate(child, NULL, &pdev->dev))
2338  		goto err_child_fail;
2339  
2340  	return 0;
2341  
2342  err_child_fail:
2343  
2344  	dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child);
2345  	ret = -ENODEV;
2346  
2347  err_cs:
2348  	gpmc_free_waitpin(gpmc, gpmc_s.wait_pin);
2349  err:
2350  	gpmc_cs_free(cs);
2351  
2352  	return ret;
2353  }
2354  
2355  static const struct of_device_id gpmc_dt_ids[];
2356  
gpmc_probe_dt(struct platform_device * pdev)2357  static int gpmc_probe_dt(struct platform_device *pdev)
2358  {
2359  	int ret;
2360  	const struct of_device_id *of_id =
2361  		of_match_device(gpmc_dt_ids, &pdev->dev);
2362  
2363  	if (!of_id)
2364  		return 0;
2365  
2366  	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
2367  				   &gpmc_cs_num);
2368  	if (ret < 0) {
2369  		pr_err("%s: number of chip-selects not defined\n", __func__);
2370  		return ret;
2371  	} else if (gpmc_cs_num < 1) {
2372  		pr_err("%s: all chip-selects are disabled\n", __func__);
2373  		return -EINVAL;
2374  	} else if (gpmc_cs_num > GPMC_CS_NUM) {
2375  		pr_err("%s: number of supported chip-selects cannot be > %d\n",
2376  					 __func__, GPMC_CS_NUM);
2377  		return -EINVAL;
2378  	}
2379  
2380  	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
2381  				   &gpmc_nr_waitpins);
2382  	if (ret < 0) {
2383  		pr_err("%s: number of wait pins not found!\n", __func__);
2384  		return ret;
2385  	}
2386  
2387  	return 0;
2388  }
2389  
gpmc_probe_dt_children(struct platform_device * pdev)2390  static void gpmc_probe_dt_children(struct platform_device *pdev)
2391  {
2392  	int ret;
2393  	struct device_node *child;
2394  
2395  	for_each_available_child_of_node(pdev->dev.of_node, child) {
2396  		ret = gpmc_probe_generic_child(pdev, child);
2397  		if (ret) {
2398  			dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n",
2399  				child, ret);
2400  		}
2401  	}
2402  }
2403  #else
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2404  void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2405  {
2406  	memset(p, 0, sizeof(*p));
2407  }
gpmc_probe_dt(struct platform_device * pdev)2408  static int gpmc_probe_dt(struct platform_device *pdev)
2409  {
2410  	return 0;
2411  }
2412  
gpmc_probe_dt_children(struct platform_device * pdev)2413  static void gpmc_probe_dt_children(struct platform_device *pdev)
2414  {
2415  }
2416  #endif /* CONFIG_OF */
2417  
gpmc_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)2418  static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
2419  {
2420  	return 1;	/* we're input only */
2421  }
2422  
gpmc_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)2423  static int gpmc_gpio_direction_input(struct gpio_chip *chip,
2424  				     unsigned int offset)
2425  {
2426  	return 0;	/* we're input only */
2427  }
2428  
gpmc_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int value)2429  static int gpmc_gpio_direction_output(struct gpio_chip *chip,
2430  				      unsigned int offset, int value)
2431  {
2432  	return -EINVAL;	/* we're input only */
2433  }
2434  
gpmc_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)2435  static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
2436  			  int value)
2437  {
2438  }
2439  
gpmc_gpio_get(struct gpio_chip * chip,unsigned int offset)2440  static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
2441  {
2442  	u32 reg;
2443  
2444  	offset += 8;
2445  
2446  	reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
2447  
2448  	return !!reg;
2449  }
2450  
gpmc_gpio_init(struct gpmc_device * gpmc)2451  static int gpmc_gpio_init(struct gpmc_device *gpmc)
2452  {
2453  	int ret;
2454  
2455  	gpmc->gpio_chip.parent = gpmc->dev;
2456  	gpmc->gpio_chip.owner = THIS_MODULE;
2457  	gpmc->gpio_chip.label = DEVICE_NAME;
2458  	gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
2459  	gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
2460  	gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
2461  	gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
2462  	gpmc->gpio_chip.set = gpmc_gpio_set;
2463  	gpmc->gpio_chip.get = gpmc_gpio_get;
2464  	gpmc->gpio_chip.base = -1;
2465  
2466  	ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
2467  	if (ret < 0) {
2468  		dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
2469  		return ret;
2470  	}
2471  
2472  	return 0;
2473  }
2474  
omap3_gpmc_save_context(struct gpmc_device * gpmc)2475  static void omap3_gpmc_save_context(struct gpmc_device *gpmc)
2476  {
2477  	struct omap3_gpmc_regs *gpmc_context;
2478  	int i;
2479  
2480  	if (!gpmc || !gpmc_base)
2481  		return;
2482  
2483  	gpmc_context = &gpmc->context;
2484  
2485  	gpmc_context->sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
2486  	gpmc_context->irqenable = gpmc_read_reg(GPMC_IRQENABLE);
2487  	gpmc_context->timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
2488  	gpmc_context->config = gpmc_read_reg(GPMC_CONFIG);
2489  	gpmc_context->prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
2490  	gpmc_context->prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
2491  	gpmc_context->prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
2492  	for (i = 0; i < gpmc_cs_num; i++) {
2493  		gpmc_context->cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
2494  		if (gpmc_context->cs_context[i].is_valid) {
2495  			gpmc_context->cs_context[i].config1 =
2496  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
2497  			gpmc_context->cs_context[i].config2 =
2498  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
2499  			gpmc_context->cs_context[i].config3 =
2500  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
2501  			gpmc_context->cs_context[i].config4 =
2502  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
2503  			gpmc_context->cs_context[i].config5 =
2504  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
2505  			gpmc_context->cs_context[i].config6 =
2506  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
2507  			gpmc_context->cs_context[i].config7 =
2508  				gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
2509  		}
2510  	}
2511  }
2512  
omap3_gpmc_restore_context(struct gpmc_device * gpmc)2513  static void omap3_gpmc_restore_context(struct gpmc_device *gpmc)
2514  {
2515  	struct omap3_gpmc_regs *gpmc_context;
2516  	int i;
2517  
2518  	if (!gpmc || !gpmc_base)
2519  		return;
2520  
2521  	gpmc_context = &gpmc->context;
2522  
2523  	gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context->sysconfig);
2524  	gpmc_write_reg(GPMC_IRQENABLE, gpmc_context->irqenable);
2525  	gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context->timeout_ctrl);
2526  	gpmc_write_reg(GPMC_CONFIG, gpmc_context->config);
2527  	gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context->prefetch_config1);
2528  	gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context->prefetch_config2);
2529  	gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context->prefetch_control);
2530  	for (i = 0; i < gpmc_cs_num; i++) {
2531  		if (gpmc_context->cs_context[i].is_valid) {
2532  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
2533  					  gpmc_context->cs_context[i].config1);
2534  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
2535  					  gpmc_context->cs_context[i].config2);
2536  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
2537  					  gpmc_context->cs_context[i].config3);
2538  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
2539  					  gpmc_context->cs_context[i].config4);
2540  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
2541  					  gpmc_context->cs_context[i].config5);
2542  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
2543  					  gpmc_context->cs_context[i].config6);
2544  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
2545  					  gpmc_context->cs_context[i].config7);
2546  		} else {
2547  			gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 0);
2548  		}
2549  	}
2550  }
2551  
omap_gpmc_context_notifier(struct notifier_block * nb,unsigned long cmd,void * v)2552  static int omap_gpmc_context_notifier(struct notifier_block *nb,
2553  				      unsigned long cmd, void *v)
2554  {
2555  	struct gpmc_device *gpmc;
2556  
2557  	gpmc = container_of(nb, struct gpmc_device, nb);
2558  	if (gpmc->is_suspended || pm_runtime_suspended(gpmc->dev))
2559  		return NOTIFY_OK;
2560  
2561  	switch (cmd) {
2562  	case CPU_CLUSTER_PM_ENTER:
2563  		omap3_gpmc_save_context(gpmc);
2564  		break;
2565  	case CPU_CLUSTER_PM_ENTER_FAILED:	/* No need to restore context */
2566  		break;
2567  	case CPU_CLUSTER_PM_EXIT:
2568  		omap3_gpmc_restore_context(gpmc);
2569  		break;
2570  	}
2571  
2572  	return NOTIFY_OK;
2573  }
2574  
gpmc_probe(struct platform_device * pdev)2575  static int gpmc_probe(struct platform_device *pdev)
2576  {
2577  	int rc, i;
2578  	u32 l;
2579  	struct resource *res;
2580  	struct gpmc_device *gpmc;
2581  
2582  	gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
2583  	if (!gpmc)
2584  		return -ENOMEM;
2585  
2586  	gpmc->dev = &pdev->dev;
2587  	platform_set_drvdata(pdev, gpmc);
2588  
2589  	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg");
2590  	if (!res) {
2591  		/* legacy DT */
2592  		gpmc_base = devm_platform_ioremap_resource(pdev, 0);
2593  		if (IS_ERR(gpmc_base))
2594  			return PTR_ERR(gpmc_base);
2595  	} else {
2596  		gpmc_base = devm_ioremap_resource(&pdev->dev, res);
2597  		if (IS_ERR(gpmc_base))
2598  			return PTR_ERR(gpmc_base);
2599  
2600  		res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "data");
2601  		if (!res) {
2602  			dev_err(&pdev->dev, "couldn't get data reg resource\n");
2603  			return -ENOENT;
2604  		}
2605  
2606  		gpmc->data = res;
2607  	}
2608  
2609  	gpmc->irq = platform_get_irq(pdev, 0);
2610  	if (gpmc->irq < 0)
2611  		return gpmc->irq;
2612  
2613  	gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
2614  	if (IS_ERR(gpmc_l3_clk)) {
2615  		dev_err(&pdev->dev, "Failed to get GPMC fck\n");
2616  		return PTR_ERR(gpmc_l3_clk);
2617  	}
2618  
2619  	if (!clk_get_rate(gpmc_l3_clk)) {
2620  		dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
2621  		return -EINVAL;
2622  	}
2623  
2624  	if (pdev->dev.of_node) {
2625  		rc = gpmc_probe_dt(pdev);
2626  		if (rc)
2627  			return rc;
2628  	} else {
2629  		gpmc_cs_num = GPMC_CS_NUM;
2630  		gpmc_nr_waitpins = GPMC_NR_WAITPINS;
2631  	}
2632  
2633  	gpmc->waitpins = devm_kzalloc(&pdev->dev,
2634  				      gpmc_nr_waitpins * sizeof(struct gpmc_waitpin),
2635  				      GFP_KERNEL);
2636  	if (!gpmc->waitpins)
2637  		return -ENOMEM;
2638  
2639  	for (i = 0; i < gpmc_nr_waitpins; i++)
2640  		gpmc->waitpins[i].pin = GPMC_WAITPIN_INVALID;
2641  
2642  	pm_runtime_enable(&pdev->dev);
2643  	pm_runtime_get_sync(&pdev->dev);
2644  
2645  	l = gpmc_read_reg(GPMC_REVISION);
2646  
2647  	/*
2648  	 * FIXME: Once device-tree migration is complete the below flags
2649  	 * should be populated based upon the device-tree compatible
2650  	 * string. For now just use the IP revision. OMAP3+ devices have
2651  	 * the wr_access and wr_data_mux_bus register fields. OMAP4+
2652  	 * devices support the addr-addr-data multiplex protocol.
2653  	 *
2654  	 * GPMC IP revisions:
2655  	 * - OMAP24xx			= 2.0
2656  	 * - OMAP3xxx			= 5.0
2657  	 * - OMAP44xx/54xx/AM335x	= 6.0
2658  	 */
2659  	if (GPMC_REVISION_MAJOR(l) > 0x4)
2660  		gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
2661  	if (GPMC_REVISION_MAJOR(l) > 0x5)
2662  		gpmc_capability |= GPMC_HAS_MUX_AAD;
2663  	dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
2664  		 GPMC_REVISION_MINOR(l));
2665  
2666  	gpmc_mem_init(gpmc);
2667  	rc = gpmc_gpio_init(gpmc);
2668  	if (rc)
2669  		goto gpio_init_failed;
2670  
2671  	gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
2672  	rc = gpmc_setup_irq(gpmc);
2673  	if (rc) {
2674  		dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
2675  		goto gpio_init_failed;
2676  	}
2677  
2678  	gpmc_probe_dt_children(pdev);
2679  
2680  	gpmc->nb.notifier_call = omap_gpmc_context_notifier;
2681  	cpu_pm_register_notifier(&gpmc->nb);
2682  
2683  	return 0;
2684  
2685  gpio_init_failed:
2686  	gpmc_mem_exit();
2687  	pm_runtime_put_sync(&pdev->dev);
2688  	pm_runtime_disable(&pdev->dev);
2689  
2690  	return rc;
2691  }
2692  
gpmc_remove(struct platform_device * pdev)2693  static int gpmc_remove(struct platform_device *pdev)
2694  {
2695  	int i;
2696  	struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2697  
2698  	cpu_pm_unregister_notifier(&gpmc->nb);
2699  	for (i = 0; i < gpmc_nr_waitpins; i++)
2700  		gpmc_free_waitpin(gpmc, i);
2701  	gpmc_free_irq(gpmc);
2702  	gpmc_mem_exit();
2703  	pm_runtime_put_sync(&pdev->dev);
2704  	pm_runtime_disable(&pdev->dev);
2705  
2706  	return 0;
2707  }
2708  
2709  #ifdef CONFIG_PM_SLEEP
gpmc_suspend(struct device * dev)2710  static int gpmc_suspend(struct device *dev)
2711  {
2712  	struct gpmc_device *gpmc = dev_get_drvdata(dev);
2713  
2714  	omap3_gpmc_save_context(gpmc);
2715  	pm_runtime_put_sync(dev);
2716  	gpmc->is_suspended = 1;
2717  
2718  	return 0;
2719  }
2720  
gpmc_resume(struct device * dev)2721  static int gpmc_resume(struct device *dev)
2722  {
2723  	struct gpmc_device *gpmc = dev_get_drvdata(dev);
2724  
2725  	pm_runtime_get_sync(dev);
2726  	omap3_gpmc_restore_context(gpmc);
2727  	gpmc->is_suspended = 0;
2728  
2729  	return 0;
2730  }
2731  #endif
2732  
2733  static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
2734  
2735  #ifdef CONFIG_OF
2736  static const struct of_device_id gpmc_dt_ids[] = {
2737  	{ .compatible = "ti,omap2420-gpmc" },
2738  	{ .compatible = "ti,omap2430-gpmc" },
2739  	{ .compatible = "ti,omap3430-gpmc" },	/* omap3430 & omap3630 */
2740  	{ .compatible = "ti,omap4430-gpmc" },	/* omap4430 & omap4460 & omap543x */
2741  	{ .compatible = "ti,am3352-gpmc" },	/* am335x devices */
2742  	{ .compatible = "ti,am64-gpmc" },
2743  	{ }
2744  };
2745  MODULE_DEVICE_TABLE(of, gpmc_dt_ids);
2746  #endif
2747  
2748  static struct platform_driver gpmc_driver = {
2749  	.probe		= gpmc_probe,
2750  	.remove		= gpmc_remove,
2751  	.driver		= {
2752  		.name	= DEVICE_NAME,
2753  		.of_match_table = of_match_ptr(gpmc_dt_ids),
2754  		.pm	= &gpmc_pm_ops,
2755  	},
2756  };
2757  
2758  module_platform_driver(gpmc_driver);
2759  
2760  MODULE_DESCRIPTION("Texas Instruments GPMC driver");
2761  MODULE_LICENSE("GPL");
2762